xref: /linux-6.15/kernel/trace/ring_buffer.c (revision 4009cc31)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Generic ring buffer
4  *
5  * Copyright (C) 2008 Steven Rostedt <[email protected]>
6  */
7 #include <linux/trace_recursion.h>
8 #include <linux/trace_events.h>
9 #include <linux/ring_buffer.h>
10 #include <linux/trace_clock.h>
11 #include <linux/sched/clock.h>
12 #include <linux/cacheflush.h>
13 #include <linux/trace_seq.h>
14 #include <linux/spinlock.h>
15 #include <linux/irq_work.h>
16 #include <linux/security.h>
17 #include <linux/uaccess.h>
18 #include <linux/hardirq.h>
19 #include <linux/kthread.h>	/* for self test */
20 #include <linux/module.h>
21 #include <linux/percpu.h>
22 #include <linux/mutex.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/init.h>
26 #include <linux/hash.h>
27 #include <linux/list.h>
28 #include <linux/cpu.h>
29 #include <linux/oom.h>
30 #include <linux/mm.h>
31 
32 #include <asm/local64.h>
33 #include <asm/local.h>
34 #include <asm/setup.h>
35 
36 #include "trace.h"
37 
38 /*
39  * The "absolute" timestamp in the buffer is only 59 bits.
40  * If a clock has the 5 MSBs set, it needs to be saved and
41  * reinserted.
42  */
43 #define TS_MSB		(0xf8ULL << 56)
44 #define ABS_TS_MASK	(~TS_MSB)
45 
46 static void update_pages_handler(struct work_struct *work);
47 
48 #define RING_BUFFER_META_MAGIC	0xBADFEED
49 
50 struct ring_buffer_meta {
51 	int		magic;
52 	int		struct_sizes;
53 	unsigned long	total_size;
54 	unsigned long	buffers_offset;
55 };
56 
57 struct ring_buffer_cpu_meta {
58 	unsigned long	kaslr_addr;
59 	unsigned long	first_buffer;
60 	unsigned long	head_buffer;
61 	unsigned long	commit_buffer;
62 	__u32		subbuf_size;
63 	__u32		nr_subbufs;
64 	int		buffers[];
65 };
66 
67 /*
68  * The ring buffer header is special. We must manually up keep it.
69  */
70 int ring_buffer_print_entry_header(struct trace_seq *s)
71 {
72 	trace_seq_puts(s, "# compressed entry header\n");
73 	trace_seq_puts(s, "\ttype_len    :    5 bits\n");
74 	trace_seq_puts(s, "\ttime_delta  :   27 bits\n");
75 	trace_seq_puts(s, "\tarray       :   32 bits\n");
76 	trace_seq_putc(s, '\n');
77 	trace_seq_printf(s, "\tpadding     : type == %d\n",
78 			 RINGBUF_TYPE_PADDING);
79 	trace_seq_printf(s, "\ttime_extend : type == %d\n",
80 			 RINGBUF_TYPE_TIME_EXTEND);
81 	trace_seq_printf(s, "\ttime_stamp : type == %d\n",
82 			 RINGBUF_TYPE_TIME_STAMP);
83 	trace_seq_printf(s, "\tdata max type_len  == %d\n",
84 			 RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
85 
86 	return !trace_seq_has_overflowed(s);
87 }
88 
89 /*
90  * The ring buffer is made up of a list of pages. A separate list of pages is
91  * allocated for each CPU. A writer may only write to a buffer that is
92  * associated with the CPU it is currently executing on.  A reader may read
93  * from any per cpu buffer.
94  *
95  * The reader is special. For each per cpu buffer, the reader has its own
96  * reader page. When a reader has read the entire reader page, this reader
97  * page is swapped with another page in the ring buffer.
98  *
99  * Now, as long as the writer is off the reader page, the reader can do what
100  * ever it wants with that page. The writer will never write to that page
101  * again (as long as it is out of the ring buffer).
102  *
103  * Here's some silly ASCII art.
104  *
105  *   +------+
106  *   |reader|          RING BUFFER
107  *   |page  |
108  *   +------+        +---+   +---+   +---+
109  *                   |   |-->|   |-->|   |
110  *                   +---+   +---+   +---+
111  *                     ^               |
112  *                     |               |
113  *                     +---------------+
114  *
115  *
116  *   +------+
117  *   |reader|          RING BUFFER
118  *   |page  |------------------v
119  *   +------+        +---+   +---+   +---+
120  *                   |   |-->|   |-->|   |
121  *                   +---+   +---+   +---+
122  *                     ^               |
123  *                     |               |
124  *                     +---------------+
125  *
126  *
127  *   +------+
128  *   |reader|          RING BUFFER
129  *   |page  |------------------v
130  *   +------+        +---+   +---+   +---+
131  *      ^            |   |-->|   |-->|   |
132  *      |            +---+   +---+   +---+
133  *      |                              |
134  *      |                              |
135  *      +------------------------------+
136  *
137  *
138  *   +------+
139  *   |buffer|          RING BUFFER
140  *   |page  |------------------v
141  *   +------+        +---+   +---+   +---+
142  *      ^            |   |   |   |-->|   |
143  *      |   New      +---+   +---+   +---+
144  *      |  Reader------^               |
145  *      |   page                       |
146  *      +------------------------------+
147  *
148  *
149  * After we make this swap, the reader can hand this page off to the splice
150  * code and be done with it. It can even allocate a new page if it needs to
151  * and swap that into the ring buffer.
152  *
153  * We will be using cmpxchg soon to make all this lockless.
154  *
155  */
156 
157 /* Used for individual buffers (after the counter) */
158 #define RB_BUFFER_OFF		(1 << 20)
159 
160 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
161 
162 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
163 #define RB_ALIGNMENT		4U
164 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
165 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
166 
167 #ifndef CONFIG_HAVE_64BIT_ALIGNED_ACCESS
168 # define RB_FORCE_8BYTE_ALIGNMENT	0
169 # define RB_ARCH_ALIGNMENT		RB_ALIGNMENT
170 #else
171 # define RB_FORCE_8BYTE_ALIGNMENT	1
172 # define RB_ARCH_ALIGNMENT		8U
173 #endif
174 
175 #define RB_ALIGN_DATA		__aligned(RB_ARCH_ALIGNMENT)
176 
177 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
178 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
179 
180 enum {
181 	RB_LEN_TIME_EXTEND = 8,
182 	RB_LEN_TIME_STAMP =  8,
183 };
184 
185 #define skip_time_extend(event) \
186 	((struct ring_buffer_event *)((char *)event + RB_LEN_TIME_EXTEND))
187 
188 #define extended_time(event) \
189 	(event->type_len >= RINGBUF_TYPE_TIME_EXTEND)
190 
191 static inline bool rb_null_event(struct ring_buffer_event *event)
192 {
193 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
194 }
195 
196 static void rb_event_set_padding(struct ring_buffer_event *event)
197 {
198 	/* padding has a NULL time_delta */
199 	event->type_len = RINGBUF_TYPE_PADDING;
200 	event->time_delta = 0;
201 }
202 
203 static unsigned
204 rb_event_data_length(struct ring_buffer_event *event)
205 {
206 	unsigned length;
207 
208 	if (event->type_len)
209 		length = event->type_len * RB_ALIGNMENT;
210 	else
211 		length = event->array[0];
212 	return length + RB_EVNT_HDR_SIZE;
213 }
214 
215 /*
216  * Return the length of the given event. Will return
217  * the length of the time extend if the event is a
218  * time extend.
219  */
220 static inline unsigned
221 rb_event_length(struct ring_buffer_event *event)
222 {
223 	switch (event->type_len) {
224 	case RINGBUF_TYPE_PADDING:
225 		if (rb_null_event(event))
226 			/* undefined */
227 			return -1;
228 		return  event->array[0] + RB_EVNT_HDR_SIZE;
229 
230 	case RINGBUF_TYPE_TIME_EXTEND:
231 		return RB_LEN_TIME_EXTEND;
232 
233 	case RINGBUF_TYPE_TIME_STAMP:
234 		return RB_LEN_TIME_STAMP;
235 
236 	case RINGBUF_TYPE_DATA:
237 		return rb_event_data_length(event);
238 	default:
239 		WARN_ON_ONCE(1);
240 	}
241 	/* not hit */
242 	return 0;
243 }
244 
245 /*
246  * Return total length of time extend and data,
247  *   or just the event length for all other events.
248  */
249 static inline unsigned
250 rb_event_ts_length(struct ring_buffer_event *event)
251 {
252 	unsigned len = 0;
253 
254 	if (extended_time(event)) {
255 		/* time extends include the data event after it */
256 		len = RB_LEN_TIME_EXTEND;
257 		event = skip_time_extend(event);
258 	}
259 	return len + rb_event_length(event);
260 }
261 
262 /**
263  * ring_buffer_event_length - return the length of the event
264  * @event: the event to get the length of
265  *
266  * Returns the size of the data load of a data event.
267  * If the event is something other than a data event, it
268  * returns the size of the event itself. With the exception
269  * of a TIME EXTEND, where it still returns the size of the
270  * data load of the data event after it.
271  */
272 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
273 {
274 	unsigned length;
275 
276 	if (extended_time(event))
277 		event = skip_time_extend(event);
278 
279 	length = rb_event_length(event);
280 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
281 		return length;
282 	length -= RB_EVNT_HDR_SIZE;
283 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
284                 length -= sizeof(event->array[0]);
285 	return length;
286 }
287 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
288 
289 /* inline for ring buffer fast paths */
290 static __always_inline void *
291 rb_event_data(struct ring_buffer_event *event)
292 {
293 	if (extended_time(event))
294 		event = skip_time_extend(event);
295 	WARN_ON_ONCE(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
296 	/* If length is in len field, then array[0] has the data */
297 	if (event->type_len)
298 		return (void *)&event->array[0];
299 	/* Otherwise length is in array[0] and array[1] has the data */
300 	return (void *)&event->array[1];
301 }
302 
303 /**
304  * ring_buffer_event_data - return the data of the event
305  * @event: the event to get the data from
306  */
307 void *ring_buffer_event_data(struct ring_buffer_event *event)
308 {
309 	return rb_event_data(event);
310 }
311 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
312 
313 #define for_each_buffer_cpu(buffer, cpu)		\
314 	for_each_cpu(cpu, buffer->cpumask)
315 
316 #define for_each_online_buffer_cpu(buffer, cpu)		\
317 	for_each_cpu_and(cpu, buffer->cpumask, cpu_online_mask)
318 
319 #define TS_SHIFT	27
320 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
321 #define TS_DELTA_TEST	(~TS_MASK)
322 
323 static u64 rb_event_time_stamp(struct ring_buffer_event *event)
324 {
325 	u64 ts;
326 
327 	ts = event->array[0];
328 	ts <<= TS_SHIFT;
329 	ts += event->time_delta;
330 
331 	return ts;
332 }
333 
334 /* Flag when events were overwritten */
335 #define RB_MISSED_EVENTS	(1 << 31)
336 /* Missed count stored at end */
337 #define RB_MISSED_STORED	(1 << 30)
338 
339 #define RB_MISSED_MASK		(3 << 30)
340 
341 struct buffer_data_page {
342 	u64		 time_stamp;	/* page time stamp */
343 	local_t		 commit;	/* write committed index */
344 	unsigned char	 data[] RB_ALIGN_DATA;	/* data of buffer page */
345 };
346 
347 struct buffer_data_read_page {
348 	unsigned		order;	/* order of the page */
349 	struct buffer_data_page	*data;	/* actual data, stored in this page */
350 };
351 
352 /*
353  * Note, the buffer_page list must be first. The buffer pages
354  * are allocated in cache lines, which means that each buffer
355  * page will be at the beginning of a cache line, and thus
356  * the least significant bits will be zero. We use this to
357  * add flags in the list struct pointers, to make the ring buffer
358  * lockless.
359  */
360 struct buffer_page {
361 	struct list_head list;		/* list of buffer pages */
362 	local_t		 write;		/* index for next write */
363 	unsigned	 read;		/* index for next read */
364 	local_t		 entries;	/* entries on this page */
365 	unsigned long	 real_end;	/* real end of data */
366 	unsigned	 order;		/* order of the page */
367 	u32		 id:30;		/* ID for external mapping */
368 	u32		 range:1;	/* Mapped via a range */
369 	struct buffer_data_page *page;	/* Actual data page */
370 };
371 
372 /*
373  * The buffer page counters, write and entries, must be reset
374  * atomically when crossing page boundaries. To synchronize this
375  * update, two counters are inserted into the number. One is
376  * the actual counter for the write position or count on the page.
377  *
378  * The other is a counter of updaters. Before an update happens
379  * the update partition of the counter is incremented. This will
380  * allow the updater to update the counter atomically.
381  *
382  * The counter is 20 bits, and the state data is 12.
383  */
384 #define RB_WRITE_MASK		0xfffff
385 #define RB_WRITE_INTCNT		(1 << 20)
386 
387 static void rb_init_page(struct buffer_data_page *bpage)
388 {
389 	local_set(&bpage->commit, 0);
390 }
391 
392 static __always_inline unsigned int rb_page_commit(struct buffer_page *bpage)
393 {
394 	return local_read(&bpage->page->commit);
395 }
396 
397 static void free_buffer_page(struct buffer_page *bpage)
398 {
399 	/* Range pages are not to be freed */
400 	if (!bpage->range)
401 		free_pages((unsigned long)bpage->page, bpage->order);
402 	kfree(bpage);
403 }
404 
405 /*
406  * We need to fit the time_stamp delta into 27 bits.
407  */
408 static inline bool test_time_stamp(u64 delta)
409 {
410 	return !!(delta & TS_DELTA_TEST);
411 }
412 
413 struct rb_irq_work {
414 	struct irq_work			work;
415 	wait_queue_head_t		waiters;
416 	wait_queue_head_t		full_waiters;
417 	atomic_t			seq;
418 	bool				waiters_pending;
419 	bool				full_waiters_pending;
420 	bool				wakeup_full;
421 };
422 
423 /*
424  * Structure to hold event state and handle nested events.
425  */
426 struct rb_event_info {
427 	u64			ts;
428 	u64			delta;
429 	u64			before;
430 	u64			after;
431 	unsigned long		length;
432 	struct buffer_page	*tail_page;
433 	int			add_timestamp;
434 };
435 
436 /*
437  * Used for the add_timestamp
438  *  NONE
439  *  EXTEND - wants a time extend
440  *  ABSOLUTE - the buffer requests all events to have absolute time stamps
441  *  FORCE - force a full time stamp.
442  */
443 enum {
444 	RB_ADD_STAMP_NONE		= 0,
445 	RB_ADD_STAMP_EXTEND		= BIT(1),
446 	RB_ADD_STAMP_ABSOLUTE		= BIT(2),
447 	RB_ADD_STAMP_FORCE		= BIT(3)
448 };
449 /*
450  * Used for which event context the event is in.
451  *  TRANSITION = 0
452  *  NMI     = 1
453  *  IRQ     = 2
454  *  SOFTIRQ = 3
455  *  NORMAL  = 4
456  *
457  * See trace_recursive_lock() comment below for more details.
458  */
459 enum {
460 	RB_CTX_TRANSITION,
461 	RB_CTX_NMI,
462 	RB_CTX_IRQ,
463 	RB_CTX_SOFTIRQ,
464 	RB_CTX_NORMAL,
465 	RB_CTX_MAX
466 };
467 
468 struct rb_time_struct {
469 	local64_t	time;
470 };
471 typedef struct rb_time_struct rb_time_t;
472 
473 #define MAX_NEST	5
474 
475 /*
476  * head_page == tail_page && head == tail then buffer is empty.
477  */
478 struct ring_buffer_per_cpu {
479 	int				cpu;
480 	atomic_t			record_disabled;
481 	atomic_t			resize_disabled;
482 	struct trace_buffer	*buffer;
483 	raw_spinlock_t			reader_lock;	/* serialize readers */
484 	arch_spinlock_t			lock;
485 	struct lock_class_key		lock_key;
486 	struct buffer_data_page		*free_page;
487 	unsigned long			nr_pages;
488 	unsigned int			current_context;
489 	struct list_head		*pages;
490 	/* pages generation counter, incremented when the list changes */
491 	unsigned long			cnt;
492 	struct buffer_page		*head_page;	/* read from head */
493 	struct buffer_page		*tail_page;	/* write to tail */
494 	struct buffer_page		*commit_page;	/* committed pages */
495 	struct buffer_page		*reader_page;
496 	unsigned long			lost_events;
497 	unsigned long			last_overrun;
498 	unsigned long			nest;
499 	local_t				entries_bytes;
500 	local_t				entries;
501 	local_t				overrun;
502 	local_t				commit_overrun;
503 	local_t				dropped_events;
504 	local_t				committing;
505 	local_t				commits;
506 	local_t				pages_touched;
507 	local_t				pages_lost;
508 	local_t				pages_read;
509 	long				last_pages_touch;
510 	size_t				shortest_full;
511 	unsigned long			read;
512 	unsigned long			read_bytes;
513 	rb_time_t			write_stamp;
514 	rb_time_t			before_stamp;
515 	u64				event_stamp[MAX_NEST];
516 	u64				read_stamp;
517 	/* pages removed since last reset */
518 	unsigned long			pages_removed;
519 
520 	unsigned int			mapped;
521 	unsigned int			user_mapped;	/* user space mapping */
522 	struct mutex			mapping_lock;
523 	unsigned long			*subbuf_ids;	/* ID to subbuf VA */
524 	struct trace_buffer_meta	*meta_page;
525 	struct ring_buffer_cpu_meta	*ring_meta;
526 
527 	/* ring buffer pages to update, > 0 to add, < 0 to remove */
528 	long				nr_pages_to_update;
529 	struct list_head		new_pages; /* new pages to add */
530 	struct work_struct		update_pages_work;
531 	struct completion		update_done;
532 
533 	struct rb_irq_work		irq_work;
534 };
535 
536 struct trace_buffer {
537 	unsigned			flags;
538 	int				cpus;
539 	atomic_t			record_disabled;
540 	atomic_t			resizing;
541 	cpumask_var_t			cpumask;
542 
543 	struct lock_class_key		*reader_lock_key;
544 
545 	struct mutex			mutex;
546 
547 	struct ring_buffer_per_cpu	**buffers;
548 
549 	struct hlist_node		node;
550 	u64				(*clock)(void);
551 
552 	struct rb_irq_work		irq_work;
553 	bool				time_stamp_abs;
554 
555 	unsigned long			range_addr_start;
556 	unsigned long			range_addr_end;
557 
558 	struct ring_buffer_meta		*meta;
559 
560 	unsigned long			kaslr_addr;
561 
562 	unsigned int			subbuf_size;
563 	unsigned int			subbuf_order;
564 	unsigned int			max_data_size;
565 };
566 
567 struct ring_buffer_iter {
568 	struct ring_buffer_per_cpu	*cpu_buffer;
569 	unsigned long			head;
570 	unsigned long			next_event;
571 	struct buffer_page		*head_page;
572 	struct buffer_page		*cache_reader_page;
573 	unsigned long			cache_read;
574 	unsigned long			cache_pages_removed;
575 	u64				read_stamp;
576 	u64				page_stamp;
577 	struct ring_buffer_event	*event;
578 	size_t				event_size;
579 	int				missed_events;
580 };
581 
582 int ring_buffer_print_page_header(struct trace_buffer *buffer, struct trace_seq *s)
583 {
584 	struct buffer_data_page field;
585 
586 	trace_seq_printf(s, "\tfield: u64 timestamp;\t"
587 			 "offset:0;\tsize:%u;\tsigned:%u;\n",
588 			 (unsigned int)sizeof(field.time_stamp),
589 			 (unsigned int)is_signed_type(u64));
590 
591 	trace_seq_printf(s, "\tfield: local_t commit;\t"
592 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
593 			 (unsigned int)offsetof(typeof(field), commit),
594 			 (unsigned int)sizeof(field.commit),
595 			 (unsigned int)is_signed_type(long));
596 
597 	trace_seq_printf(s, "\tfield: int overwrite;\t"
598 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
599 			 (unsigned int)offsetof(typeof(field), commit),
600 			 1,
601 			 (unsigned int)is_signed_type(long));
602 
603 	trace_seq_printf(s, "\tfield: char data;\t"
604 			 "offset:%u;\tsize:%u;\tsigned:%u;\n",
605 			 (unsigned int)offsetof(typeof(field), data),
606 			 (unsigned int)buffer->subbuf_size,
607 			 (unsigned int)is_signed_type(char));
608 
609 	return !trace_seq_has_overflowed(s);
610 }
611 
612 static inline void rb_time_read(rb_time_t *t, u64 *ret)
613 {
614 	*ret = local64_read(&t->time);
615 }
616 static void rb_time_set(rb_time_t *t, u64 val)
617 {
618 	local64_set(&t->time, val);
619 }
620 
621 /*
622  * Enable this to make sure that the event passed to
623  * ring_buffer_event_time_stamp() is not committed and also
624  * is on the buffer that it passed in.
625  */
626 //#define RB_VERIFY_EVENT
627 #ifdef RB_VERIFY_EVENT
628 static struct list_head *rb_list_head(struct list_head *list);
629 static void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
630 			 void *event)
631 {
632 	struct buffer_page *page = cpu_buffer->commit_page;
633 	struct buffer_page *tail_page = READ_ONCE(cpu_buffer->tail_page);
634 	struct list_head *next;
635 	long commit, write;
636 	unsigned long addr = (unsigned long)event;
637 	bool done = false;
638 	int stop = 0;
639 
640 	/* Make sure the event exists and is not committed yet */
641 	do {
642 		if (page == tail_page || WARN_ON_ONCE(stop++ > 100))
643 			done = true;
644 		commit = local_read(&page->page->commit);
645 		write = local_read(&page->write);
646 		if (addr >= (unsigned long)&page->page->data[commit] &&
647 		    addr < (unsigned long)&page->page->data[write])
648 			return;
649 
650 		next = rb_list_head(page->list.next);
651 		page = list_entry(next, struct buffer_page, list);
652 	} while (!done);
653 	WARN_ON_ONCE(1);
654 }
655 #else
656 static inline void verify_event(struct ring_buffer_per_cpu *cpu_buffer,
657 			 void *event)
658 {
659 }
660 #endif
661 
662 /*
663  * The absolute time stamp drops the 5 MSBs and some clocks may
664  * require them. The rb_fix_abs_ts() will take a previous full
665  * time stamp, and add the 5 MSB of that time stamp on to the
666  * saved absolute time stamp. Then they are compared in case of
667  * the unlikely event that the latest time stamp incremented
668  * the 5 MSB.
669  */
670 static inline u64 rb_fix_abs_ts(u64 abs, u64 save_ts)
671 {
672 	if (save_ts & TS_MSB) {
673 		abs |= save_ts & TS_MSB;
674 		/* Check for overflow */
675 		if (unlikely(abs < save_ts))
676 			abs += 1ULL << 59;
677 	}
678 	return abs;
679 }
680 
681 static inline u64 rb_time_stamp(struct trace_buffer *buffer);
682 
683 /**
684  * ring_buffer_event_time_stamp - return the event's current time stamp
685  * @buffer: The buffer that the event is on
686  * @event: the event to get the time stamp of
687  *
688  * Note, this must be called after @event is reserved, and before it is
689  * committed to the ring buffer. And must be called from the same
690  * context where the event was reserved (normal, softirq, irq, etc).
691  *
692  * Returns the time stamp associated with the current event.
693  * If the event has an extended time stamp, then that is used as
694  * the time stamp to return.
695  * In the highly unlikely case that the event was nested more than
696  * the max nesting, then the write_stamp of the buffer is returned,
697  * otherwise  current time is returned, but that really neither of
698  * the last two cases should ever happen.
699  */
700 u64 ring_buffer_event_time_stamp(struct trace_buffer *buffer,
701 				 struct ring_buffer_event *event)
702 {
703 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[smp_processor_id()];
704 	unsigned int nest;
705 	u64 ts;
706 
707 	/* If the event includes an absolute time, then just use that */
708 	if (event->type_len == RINGBUF_TYPE_TIME_STAMP) {
709 		ts = rb_event_time_stamp(event);
710 		return rb_fix_abs_ts(ts, cpu_buffer->tail_page->page->time_stamp);
711 	}
712 
713 	nest = local_read(&cpu_buffer->committing);
714 	verify_event(cpu_buffer, event);
715 	if (WARN_ON_ONCE(!nest))
716 		goto fail;
717 
718 	/* Read the current saved nesting level time stamp */
719 	if (likely(--nest < MAX_NEST))
720 		return cpu_buffer->event_stamp[nest];
721 
722 	/* Shouldn't happen, warn if it does */
723 	WARN_ONCE(1, "nest (%d) greater than max", nest);
724 
725  fail:
726 	rb_time_read(&cpu_buffer->write_stamp, &ts);
727 
728 	return ts;
729 }
730 
731 /**
732  * ring_buffer_nr_dirty_pages - get the number of used pages in the ring buffer
733  * @buffer: The ring_buffer to get the number of pages from
734  * @cpu: The cpu of the ring_buffer to get the number of pages from
735  *
736  * Returns the number of pages that have content in the ring buffer.
737  */
738 size_t ring_buffer_nr_dirty_pages(struct trace_buffer *buffer, int cpu)
739 {
740 	size_t read;
741 	size_t lost;
742 	size_t cnt;
743 
744 	read = local_read(&buffer->buffers[cpu]->pages_read);
745 	lost = local_read(&buffer->buffers[cpu]->pages_lost);
746 	cnt = local_read(&buffer->buffers[cpu]->pages_touched);
747 
748 	if (WARN_ON_ONCE(cnt < lost))
749 		return 0;
750 
751 	cnt -= lost;
752 
753 	/* The reader can read an empty page, but not more than that */
754 	if (cnt < read) {
755 		WARN_ON_ONCE(read > cnt + 1);
756 		return 0;
757 	}
758 
759 	return cnt - read;
760 }
761 
762 static __always_inline bool full_hit(struct trace_buffer *buffer, int cpu, int full)
763 {
764 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
765 	size_t nr_pages;
766 	size_t dirty;
767 
768 	nr_pages = cpu_buffer->nr_pages;
769 	if (!nr_pages || !full)
770 		return true;
771 
772 	/*
773 	 * Add one as dirty will never equal nr_pages, as the sub-buffer
774 	 * that the writer is on is not counted as dirty.
775 	 * This is needed if "buffer_percent" is set to 100.
776 	 */
777 	dirty = ring_buffer_nr_dirty_pages(buffer, cpu) + 1;
778 
779 	return (dirty * 100) >= (full * nr_pages);
780 }
781 
782 /*
783  * rb_wake_up_waiters - wake up tasks waiting for ring buffer input
784  *
785  * Schedules a delayed work to wake up any task that is blocked on the
786  * ring buffer waiters queue.
787  */
788 static void rb_wake_up_waiters(struct irq_work *work)
789 {
790 	struct rb_irq_work *rbwork = container_of(work, struct rb_irq_work, work);
791 
792 	/* For waiters waiting for the first wake up */
793 	(void)atomic_fetch_inc_release(&rbwork->seq);
794 
795 	wake_up_all(&rbwork->waiters);
796 	if (rbwork->full_waiters_pending || rbwork->wakeup_full) {
797 		/* Only cpu_buffer sets the above flags */
798 		struct ring_buffer_per_cpu *cpu_buffer =
799 			container_of(rbwork, struct ring_buffer_per_cpu, irq_work);
800 
801 		/* Called from interrupt context */
802 		raw_spin_lock(&cpu_buffer->reader_lock);
803 		rbwork->wakeup_full = false;
804 		rbwork->full_waiters_pending = false;
805 
806 		/* Waking up all waiters, they will reset the shortest full */
807 		cpu_buffer->shortest_full = 0;
808 		raw_spin_unlock(&cpu_buffer->reader_lock);
809 
810 		wake_up_all(&rbwork->full_waiters);
811 	}
812 }
813 
814 /**
815  * ring_buffer_wake_waiters - wake up any waiters on this ring buffer
816  * @buffer: The ring buffer to wake waiters on
817  * @cpu: The CPU buffer to wake waiters on
818  *
819  * In the case of a file that represents a ring buffer is closing,
820  * it is prudent to wake up any waiters that are on this.
821  */
822 void ring_buffer_wake_waiters(struct trace_buffer *buffer, int cpu)
823 {
824 	struct ring_buffer_per_cpu *cpu_buffer;
825 	struct rb_irq_work *rbwork;
826 
827 	if (!buffer)
828 		return;
829 
830 	if (cpu == RING_BUFFER_ALL_CPUS) {
831 
832 		/* Wake up individual ones too. One level recursion */
833 		for_each_buffer_cpu(buffer, cpu)
834 			ring_buffer_wake_waiters(buffer, cpu);
835 
836 		rbwork = &buffer->irq_work;
837 	} else {
838 		if (WARN_ON_ONCE(!buffer->buffers))
839 			return;
840 		if (WARN_ON_ONCE(cpu >= nr_cpu_ids))
841 			return;
842 
843 		cpu_buffer = buffer->buffers[cpu];
844 		/* The CPU buffer may not have been initialized yet */
845 		if (!cpu_buffer)
846 			return;
847 		rbwork = &cpu_buffer->irq_work;
848 	}
849 
850 	/* This can be called in any context */
851 	irq_work_queue(&rbwork->work);
852 }
853 
854 static bool rb_watermark_hit(struct trace_buffer *buffer, int cpu, int full)
855 {
856 	struct ring_buffer_per_cpu *cpu_buffer;
857 	bool ret = false;
858 
859 	/* Reads of all CPUs always waits for any data */
860 	if (cpu == RING_BUFFER_ALL_CPUS)
861 		return !ring_buffer_empty(buffer);
862 
863 	cpu_buffer = buffer->buffers[cpu];
864 
865 	if (!ring_buffer_empty_cpu(buffer, cpu)) {
866 		unsigned long flags;
867 		bool pagebusy;
868 
869 		if (!full)
870 			return true;
871 
872 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
873 		pagebusy = cpu_buffer->reader_page == cpu_buffer->commit_page;
874 		ret = !pagebusy && full_hit(buffer, cpu, full);
875 
876 		if (!ret && (!cpu_buffer->shortest_full ||
877 			     cpu_buffer->shortest_full > full)) {
878 		    cpu_buffer->shortest_full = full;
879 		}
880 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
881 	}
882 	return ret;
883 }
884 
885 static inline bool
886 rb_wait_cond(struct rb_irq_work *rbwork, struct trace_buffer *buffer,
887 	     int cpu, int full, ring_buffer_cond_fn cond, void *data)
888 {
889 	if (rb_watermark_hit(buffer, cpu, full))
890 		return true;
891 
892 	if (cond(data))
893 		return true;
894 
895 	/*
896 	 * The events can happen in critical sections where
897 	 * checking a work queue can cause deadlocks.
898 	 * After adding a task to the queue, this flag is set
899 	 * only to notify events to try to wake up the queue
900 	 * using irq_work.
901 	 *
902 	 * We don't clear it even if the buffer is no longer
903 	 * empty. The flag only causes the next event to run
904 	 * irq_work to do the work queue wake up. The worse
905 	 * that can happen if we race with !trace_empty() is that
906 	 * an event will cause an irq_work to try to wake up
907 	 * an empty queue.
908 	 *
909 	 * There's no reason to protect this flag either, as
910 	 * the work queue and irq_work logic will do the necessary
911 	 * synchronization for the wake ups. The only thing
912 	 * that is necessary is that the wake up happens after
913 	 * a task has been queued. It's OK for spurious wake ups.
914 	 */
915 	if (full)
916 		rbwork->full_waiters_pending = true;
917 	else
918 		rbwork->waiters_pending = true;
919 
920 	return false;
921 }
922 
923 struct rb_wait_data {
924 	struct rb_irq_work		*irq_work;
925 	int				seq;
926 };
927 
928 /*
929  * The default wait condition for ring_buffer_wait() is to just to exit the
930  * wait loop the first time it is woken up.
931  */
932 static bool rb_wait_once(void *data)
933 {
934 	struct rb_wait_data *rdata = data;
935 	struct rb_irq_work *rbwork = rdata->irq_work;
936 
937 	return atomic_read_acquire(&rbwork->seq) != rdata->seq;
938 }
939 
940 /**
941  * ring_buffer_wait - wait for input to the ring buffer
942  * @buffer: buffer to wait on
943  * @cpu: the cpu buffer to wait on
944  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
945  * @cond: condition function to break out of wait (NULL to run once)
946  * @data: the data to pass to @cond.
947  *
948  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
949  * as data is added to any of the @buffer's cpu buffers. Otherwise
950  * it will wait for data to be added to a specific cpu buffer.
951  */
952 int ring_buffer_wait(struct trace_buffer *buffer, int cpu, int full,
953 		     ring_buffer_cond_fn cond, void *data)
954 {
955 	struct ring_buffer_per_cpu *cpu_buffer;
956 	struct wait_queue_head *waitq;
957 	struct rb_irq_work *rbwork;
958 	struct rb_wait_data rdata;
959 	int ret = 0;
960 
961 	/*
962 	 * Depending on what the caller is waiting for, either any
963 	 * data in any cpu buffer, or a specific buffer, put the
964 	 * caller on the appropriate wait queue.
965 	 */
966 	if (cpu == RING_BUFFER_ALL_CPUS) {
967 		rbwork = &buffer->irq_work;
968 		/* Full only makes sense on per cpu reads */
969 		full = 0;
970 	} else {
971 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
972 			return -ENODEV;
973 		cpu_buffer = buffer->buffers[cpu];
974 		rbwork = &cpu_buffer->irq_work;
975 	}
976 
977 	if (full)
978 		waitq = &rbwork->full_waiters;
979 	else
980 		waitq = &rbwork->waiters;
981 
982 	/* Set up to exit loop as soon as it is woken */
983 	if (!cond) {
984 		cond = rb_wait_once;
985 		rdata.irq_work = rbwork;
986 		rdata.seq = atomic_read_acquire(&rbwork->seq);
987 		data = &rdata;
988 	}
989 
990 	ret = wait_event_interruptible((*waitq),
991 				rb_wait_cond(rbwork, buffer, cpu, full, cond, data));
992 
993 	return ret;
994 }
995 
996 /**
997  * ring_buffer_poll_wait - poll on buffer input
998  * @buffer: buffer to wait on
999  * @cpu: the cpu buffer to wait on
1000  * @filp: the file descriptor
1001  * @poll_table: The poll descriptor
1002  * @full: wait until the percentage of pages are available, if @cpu != RING_BUFFER_ALL_CPUS
1003  *
1004  * If @cpu == RING_BUFFER_ALL_CPUS then the task will wake up as soon
1005  * as data is added to any of the @buffer's cpu buffers. Otherwise
1006  * it will wait for data to be added to a specific cpu buffer.
1007  *
1008  * Returns EPOLLIN | EPOLLRDNORM if data exists in the buffers,
1009  * zero otherwise.
1010  */
1011 __poll_t ring_buffer_poll_wait(struct trace_buffer *buffer, int cpu,
1012 			  struct file *filp, poll_table *poll_table, int full)
1013 {
1014 	struct ring_buffer_per_cpu *cpu_buffer;
1015 	struct rb_irq_work *rbwork;
1016 
1017 	if (cpu == RING_BUFFER_ALL_CPUS) {
1018 		rbwork = &buffer->irq_work;
1019 		full = 0;
1020 	} else {
1021 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
1022 			return EPOLLERR;
1023 
1024 		cpu_buffer = buffer->buffers[cpu];
1025 		rbwork = &cpu_buffer->irq_work;
1026 	}
1027 
1028 	if (full) {
1029 		poll_wait(filp, &rbwork->full_waiters, poll_table);
1030 
1031 		if (rb_watermark_hit(buffer, cpu, full))
1032 			return EPOLLIN | EPOLLRDNORM;
1033 		/*
1034 		 * Only allow full_waiters_pending update to be seen after
1035 		 * the shortest_full is set (in rb_watermark_hit). If the
1036 		 * writer sees the full_waiters_pending flag set, it will
1037 		 * compare the amount in the ring buffer to shortest_full.
1038 		 * If the amount in the ring buffer is greater than the
1039 		 * shortest_full percent, it will call the irq_work handler
1040 		 * to wake up this list. The irq_handler will reset shortest_full
1041 		 * back to zero. That's done under the reader_lock, but
1042 		 * the below smp_mb() makes sure that the update to
1043 		 * full_waiters_pending doesn't leak up into the above.
1044 		 */
1045 		smp_mb();
1046 		rbwork->full_waiters_pending = true;
1047 		return 0;
1048 	}
1049 
1050 	poll_wait(filp, &rbwork->waiters, poll_table);
1051 	rbwork->waiters_pending = true;
1052 
1053 	/*
1054 	 * There's a tight race between setting the waiters_pending and
1055 	 * checking if the ring buffer is empty.  Once the waiters_pending bit
1056 	 * is set, the next event will wake the task up, but we can get stuck
1057 	 * if there's only a single event in.
1058 	 *
1059 	 * FIXME: Ideally, we need a memory barrier on the writer side as well,
1060 	 * but adding a memory barrier to all events will cause too much of a
1061 	 * performance hit in the fast path.  We only need a memory barrier when
1062 	 * the buffer goes from empty to having content.  But as this race is
1063 	 * extremely small, and it's not a problem if another event comes in, we
1064 	 * will fix it later.
1065 	 */
1066 	smp_mb();
1067 
1068 	if ((cpu == RING_BUFFER_ALL_CPUS && !ring_buffer_empty(buffer)) ||
1069 	    (cpu != RING_BUFFER_ALL_CPUS && !ring_buffer_empty_cpu(buffer, cpu)))
1070 		return EPOLLIN | EPOLLRDNORM;
1071 	return 0;
1072 }
1073 
1074 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
1075 #define RB_WARN_ON(b, cond)						\
1076 	({								\
1077 		int _____ret = unlikely(cond);				\
1078 		if (_____ret) {						\
1079 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
1080 				struct ring_buffer_per_cpu *__b =	\
1081 					(void *)b;			\
1082 				atomic_inc(&__b->buffer->record_disabled); \
1083 			} else						\
1084 				atomic_inc(&b->record_disabled);	\
1085 			WARN_ON(1);					\
1086 		}							\
1087 		_____ret;						\
1088 	})
1089 
1090 /* Up this if you want to test the TIME_EXTENTS and normalization */
1091 #define DEBUG_SHIFT 0
1092 
1093 static inline u64 rb_time_stamp(struct trace_buffer *buffer)
1094 {
1095 	u64 ts;
1096 
1097 	/* Skip retpolines :-( */
1098 	if (IS_ENABLED(CONFIG_MITIGATION_RETPOLINE) && likely(buffer->clock == trace_clock_local))
1099 		ts = trace_clock_local();
1100 	else
1101 		ts = buffer->clock();
1102 
1103 	/* shift to debug/test normalization and TIME_EXTENTS */
1104 	return ts << DEBUG_SHIFT;
1105 }
1106 
1107 u64 ring_buffer_time_stamp(struct trace_buffer *buffer)
1108 {
1109 	u64 time;
1110 
1111 	preempt_disable_notrace();
1112 	time = rb_time_stamp(buffer);
1113 	preempt_enable_notrace();
1114 
1115 	return time;
1116 }
1117 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
1118 
1119 void ring_buffer_normalize_time_stamp(struct trace_buffer *buffer,
1120 				      int cpu, u64 *ts)
1121 {
1122 	/* Just stupid testing the normalize function and deltas */
1123 	*ts >>= DEBUG_SHIFT;
1124 }
1125 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
1126 
1127 /*
1128  * Making the ring buffer lockless makes things tricky.
1129  * Although writes only happen on the CPU that they are on,
1130  * and they only need to worry about interrupts. Reads can
1131  * happen on any CPU.
1132  *
1133  * The reader page is always off the ring buffer, but when the
1134  * reader finishes with a page, it needs to swap its page with
1135  * a new one from the buffer. The reader needs to take from
1136  * the head (writes go to the tail). But if a writer is in overwrite
1137  * mode and wraps, it must push the head page forward.
1138  *
1139  * Here lies the problem.
1140  *
1141  * The reader must be careful to replace only the head page, and
1142  * not another one. As described at the top of the file in the
1143  * ASCII art, the reader sets its old page to point to the next
1144  * page after head. It then sets the page after head to point to
1145  * the old reader page. But if the writer moves the head page
1146  * during this operation, the reader could end up with the tail.
1147  *
1148  * We use cmpxchg to help prevent this race. We also do something
1149  * special with the page before head. We set the LSB to 1.
1150  *
1151  * When the writer must push the page forward, it will clear the
1152  * bit that points to the head page, move the head, and then set
1153  * the bit that points to the new head page.
1154  *
1155  * We also don't want an interrupt coming in and moving the head
1156  * page on another writer. Thus we use the second LSB to catch
1157  * that too. Thus:
1158  *
1159  * head->list->prev->next        bit 1          bit 0
1160  *                              -------        -------
1161  * Normal page                     0              0
1162  * Points to head page             0              1
1163  * New head page                   1              0
1164  *
1165  * Note we can not trust the prev pointer of the head page, because:
1166  *
1167  * +----+       +-----+        +-----+
1168  * |    |------>|  T  |---X--->|  N  |
1169  * |    |<------|     |        |     |
1170  * +----+       +-----+        +-----+
1171  *   ^                           ^ |
1172  *   |          +-----+          | |
1173  *   +----------|  R  |----------+ |
1174  *              |     |<-----------+
1175  *              +-----+
1176  *
1177  * Key:  ---X-->  HEAD flag set in pointer
1178  *         T      Tail page
1179  *         R      Reader page
1180  *         N      Next page
1181  *
1182  * (see __rb_reserve_next() to see where this happens)
1183  *
1184  *  What the above shows is that the reader just swapped out
1185  *  the reader page with a page in the buffer, but before it
1186  *  could make the new header point back to the new page added
1187  *  it was preempted by a writer. The writer moved forward onto
1188  *  the new page added by the reader and is about to move forward
1189  *  again.
1190  *
1191  *  You can see, it is legitimate for the previous pointer of
1192  *  the head (or any page) not to point back to itself. But only
1193  *  temporarily.
1194  */
1195 
1196 #define RB_PAGE_NORMAL		0UL
1197 #define RB_PAGE_HEAD		1UL
1198 #define RB_PAGE_UPDATE		2UL
1199 
1200 
1201 #define RB_FLAG_MASK		3UL
1202 
1203 /* PAGE_MOVED is not part of the mask */
1204 #define RB_PAGE_MOVED		4UL
1205 
1206 /*
1207  * rb_list_head - remove any bit
1208  */
1209 static struct list_head *rb_list_head(struct list_head *list)
1210 {
1211 	unsigned long val = (unsigned long)list;
1212 
1213 	return (struct list_head *)(val & ~RB_FLAG_MASK);
1214 }
1215 
1216 /*
1217  * rb_is_head_page - test if the given page is the head page
1218  *
1219  * Because the reader may move the head_page pointer, we can
1220  * not trust what the head page is (it may be pointing to
1221  * the reader page). But if the next page is a header page,
1222  * its flags will be non zero.
1223  */
1224 static inline int
1225 rb_is_head_page(struct buffer_page *page, struct list_head *list)
1226 {
1227 	unsigned long val;
1228 
1229 	val = (unsigned long)list->next;
1230 
1231 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
1232 		return RB_PAGE_MOVED;
1233 
1234 	return val & RB_FLAG_MASK;
1235 }
1236 
1237 /*
1238  * rb_is_reader_page
1239  *
1240  * The unique thing about the reader page, is that, if the
1241  * writer is ever on it, the previous pointer never points
1242  * back to the reader page.
1243  */
1244 static bool rb_is_reader_page(struct buffer_page *page)
1245 {
1246 	struct list_head *list = page->list.prev;
1247 
1248 	return rb_list_head(list->next) != &page->list;
1249 }
1250 
1251 /*
1252  * rb_set_list_to_head - set a list_head to be pointing to head.
1253  */
1254 static void rb_set_list_to_head(struct list_head *list)
1255 {
1256 	unsigned long *ptr;
1257 
1258 	ptr = (unsigned long *)&list->next;
1259 	*ptr |= RB_PAGE_HEAD;
1260 	*ptr &= ~RB_PAGE_UPDATE;
1261 }
1262 
1263 /*
1264  * rb_head_page_activate - sets up head page
1265  */
1266 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
1267 {
1268 	struct buffer_page *head;
1269 
1270 	head = cpu_buffer->head_page;
1271 	if (!head)
1272 		return;
1273 
1274 	/*
1275 	 * Set the previous list pointer to have the HEAD flag.
1276 	 */
1277 	rb_set_list_to_head(head->list.prev);
1278 
1279 	if (cpu_buffer->ring_meta) {
1280 		struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1281 		meta->head_buffer = (unsigned long)head->page;
1282 	}
1283 }
1284 
1285 static void rb_list_head_clear(struct list_head *list)
1286 {
1287 	unsigned long *ptr = (unsigned long *)&list->next;
1288 
1289 	*ptr &= ~RB_FLAG_MASK;
1290 }
1291 
1292 /*
1293  * rb_head_page_deactivate - clears head page ptr (for free list)
1294  */
1295 static void
1296 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
1297 {
1298 	struct list_head *hd;
1299 
1300 	/* Go through the whole list and clear any pointers found. */
1301 	rb_list_head_clear(cpu_buffer->pages);
1302 
1303 	list_for_each(hd, cpu_buffer->pages)
1304 		rb_list_head_clear(hd);
1305 }
1306 
1307 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
1308 			    struct buffer_page *head,
1309 			    struct buffer_page *prev,
1310 			    int old_flag, int new_flag)
1311 {
1312 	struct list_head *list;
1313 	unsigned long val = (unsigned long)&head->list;
1314 	unsigned long ret;
1315 
1316 	list = &prev->list;
1317 
1318 	val &= ~RB_FLAG_MASK;
1319 
1320 	ret = cmpxchg((unsigned long *)&list->next,
1321 		      val | old_flag, val | new_flag);
1322 
1323 	/* check if the reader took the page */
1324 	if ((ret & ~RB_FLAG_MASK) != val)
1325 		return RB_PAGE_MOVED;
1326 
1327 	return ret & RB_FLAG_MASK;
1328 }
1329 
1330 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
1331 				   struct buffer_page *head,
1332 				   struct buffer_page *prev,
1333 				   int old_flag)
1334 {
1335 	return rb_head_page_set(cpu_buffer, head, prev,
1336 				old_flag, RB_PAGE_UPDATE);
1337 }
1338 
1339 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
1340 				 struct buffer_page *head,
1341 				 struct buffer_page *prev,
1342 				 int old_flag)
1343 {
1344 	return rb_head_page_set(cpu_buffer, head, prev,
1345 				old_flag, RB_PAGE_HEAD);
1346 }
1347 
1348 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
1349 				   struct buffer_page *head,
1350 				   struct buffer_page *prev,
1351 				   int old_flag)
1352 {
1353 	return rb_head_page_set(cpu_buffer, head, prev,
1354 				old_flag, RB_PAGE_NORMAL);
1355 }
1356 
1357 static inline void rb_inc_page(struct buffer_page **bpage)
1358 {
1359 	struct list_head *p = rb_list_head((*bpage)->list.next);
1360 
1361 	*bpage = list_entry(p, struct buffer_page, list);
1362 }
1363 
1364 static struct buffer_page *
1365 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
1366 {
1367 	struct buffer_page *head;
1368 	struct buffer_page *page;
1369 	struct list_head *list;
1370 	int i;
1371 
1372 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
1373 		return NULL;
1374 
1375 	/* sanity check */
1376 	list = cpu_buffer->pages;
1377 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
1378 		return NULL;
1379 
1380 	page = head = cpu_buffer->head_page;
1381 	/*
1382 	 * It is possible that the writer moves the header behind
1383 	 * where we started, and we miss in one loop.
1384 	 * A second loop should grab the header, but we'll do
1385 	 * three loops just because I'm paranoid.
1386 	 */
1387 	for (i = 0; i < 3; i++) {
1388 		do {
1389 			if (rb_is_head_page(page, page->list.prev)) {
1390 				cpu_buffer->head_page = page;
1391 				return page;
1392 			}
1393 			rb_inc_page(&page);
1394 		} while (page != head);
1395 	}
1396 
1397 	RB_WARN_ON(cpu_buffer, 1);
1398 
1399 	return NULL;
1400 }
1401 
1402 static bool rb_head_page_replace(struct buffer_page *old,
1403 				struct buffer_page *new)
1404 {
1405 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
1406 	unsigned long val;
1407 
1408 	val = *ptr & ~RB_FLAG_MASK;
1409 	val |= RB_PAGE_HEAD;
1410 
1411 	return try_cmpxchg(ptr, &val, (unsigned long)&new->list);
1412 }
1413 
1414 /*
1415  * rb_tail_page_update - move the tail page forward
1416  */
1417 static void rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
1418 			       struct buffer_page *tail_page,
1419 			       struct buffer_page *next_page)
1420 {
1421 	unsigned long old_entries;
1422 	unsigned long old_write;
1423 
1424 	/*
1425 	 * The tail page now needs to be moved forward.
1426 	 *
1427 	 * We need to reset the tail page, but without messing
1428 	 * with possible erasing of data brought in by interrupts
1429 	 * that have moved the tail page and are currently on it.
1430 	 *
1431 	 * We add a counter to the write field to denote this.
1432 	 */
1433 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
1434 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
1435 
1436 	/*
1437 	 * Just make sure we have seen our old_write and synchronize
1438 	 * with any interrupts that come in.
1439 	 */
1440 	barrier();
1441 
1442 	/*
1443 	 * If the tail page is still the same as what we think
1444 	 * it is, then it is up to us to update the tail
1445 	 * pointer.
1446 	 */
1447 	if (tail_page == READ_ONCE(cpu_buffer->tail_page)) {
1448 		/* Zero the write counter */
1449 		unsigned long val = old_write & ~RB_WRITE_MASK;
1450 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
1451 
1452 		/*
1453 		 * This will only succeed if an interrupt did
1454 		 * not come in and change it. In which case, we
1455 		 * do not want to modify it.
1456 		 *
1457 		 * We add (void) to let the compiler know that we do not care
1458 		 * about the return value of these functions. We use the
1459 		 * cmpxchg to only update if an interrupt did not already
1460 		 * do it for us. If the cmpxchg fails, we don't care.
1461 		 */
1462 		(void)local_cmpxchg(&next_page->write, old_write, val);
1463 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
1464 
1465 		/*
1466 		 * No need to worry about races with clearing out the commit.
1467 		 * it only can increment when a commit takes place. But that
1468 		 * only happens in the outer most nested commit.
1469 		 */
1470 		local_set(&next_page->page->commit, 0);
1471 
1472 		/* Either we update tail_page or an interrupt does */
1473 		if (try_cmpxchg(&cpu_buffer->tail_page, &tail_page, next_page))
1474 			local_inc(&cpu_buffer->pages_touched);
1475 	}
1476 }
1477 
1478 static void rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
1479 			  struct buffer_page *bpage)
1480 {
1481 	unsigned long val = (unsigned long)bpage;
1482 
1483 	RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK);
1484 }
1485 
1486 static bool rb_check_links(struct ring_buffer_per_cpu *cpu_buffer,
1487 			   struct list_head *list)
1488 {
1489 	if (RB_WARN_ON(cpu_buffer,
1490 		       rb_list_head(rb_list_head(list->next)->prev) != list))
1491 		return false;
1492 
1493 	if (RB_WARN_ON(cpu_buffer,
1494 		       rb_list_head(rb_list_head(list->prev)->next) != list))
1495 		return false;
1496 
1497 	return true;
1498 }
1499 
1500 /**
1501  * rb_check_pages - integrity check of buffer pages
1502  * @cpu_buffer: CPU buffer with pages to test
1503  *
1504  * As a safety measure we check to make sure the data pages have not
1505  * been corrupted.
1506  */
1507 static void rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
1508 {
1509 	struct list_head *head, *tmp;
1510 	unsigned long buffer_cnt;
1511 	unsigned long flags;
1512 	int nr_loops = 0;
1513 
1514 	/*
1515 	 * Walk the linked list underpinning the ring buffer and validate all
1516 	 * its next and prev links.
1517 	 *
1518 	 * The check acquires the reader_lock to avoid concurrent processing
1519 	 * with code that could be modifying the list. However, the lock cannot
1520 	 * be held for the entire duration of the walk, as this would make the
1521 	 * time when interrupts are disabled non-deterministic, dependent on the
1522 	 * ring buffer size. Therefore, the code releases and re-acquires the
1523 	 * lock after checking each page. The ring_buffer_per_cpu.cnt variable
1524 	 * is then used to detect if the list was modified while the lock was
1525 	 * not held, in which case the check needs to be restarted.
1526 	 *
1527 	 * The code attempts to perform the check at most three times before
1528 	 * giving up. This is acceptable because this is only a self-validation
1529 	 * to detect problems early on. In practice, the list modification
1530 	 * operations are fairly spaced, and so this check typically succeeds at
1531 	 * most on the second try.
1532 	 */
1533 again:
1534 	if (++nr_loops > 3)
1535 		return;
1536 
1537 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1538 	head = rb_list_head(cpu_buffer->pages);
1539 	if (!rb_check_links(cpu_buffer, head))
1540 		goto out_locked;
1541 	buffer_cnt = cpu_buffer->cnt;
1542 	tmp = head;
1543 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1544 
1545 	while (true) {
1546 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
1547 
1548 		if (buffer_cnt != cpu_buffer->cnt) {
1549 			/* The list was updated, try again. */
1550 			raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1551 			goto again;
1552 		}
1553 
1554 		tmp = rb_list_head(tmp->next);
1555 		if (tmp == head)
1556 			/* The iteration circled back, all is done. */
1557 			goto out_locked;
1558 
1559 		if (!rb_check_links(cpu_buffer, tmp))
1560 			goto out_locked;
1561 
1562 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1563 	}
1564 
1565 out_locked:
1566 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
1567 }
1568 
1569 /*
1570  * Take an address, add the meta data size as well as the array of
1571  * array subbuffer indexes, then align it to a subbuffer size.
1572  *
1573  * This is used to help find the next per cpu subbuffer within a mapped range.
1574  */
1575 static unsigned long
1576 rb_range_align_subbuf(unsigned long addr, int subbuf_size, int nr_subbufs)
1577 {
1578 	addr += sizeof(struct ring_buffer_cpu_meta) +
1579 		sizeof(int) * nr_subbufs;
1580 	return ALIGN(addr, subbuf_size);
1581 }
1582 
1583 /*
1584  * Return the ring_buffer_meta for a given @cpu.
1585  */
1586 static void *rb_range_meta(struct trace_buffer *buffer, int nr_pages, int cpu)
1587 {
1588 	int subbuf_size = buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
1589 	struct ring_buffer_cpu_meta *meta;
1590 	struct ring_buffer_meta *bmeta;
1591 	unsigned long ptr;
1592 	int nr_subbufs;
1593 
1594 	bmeta = buffer->meta;
1595 	if (!bmeta)
1596 		return NULL;
1597 
1598 	ptr = (unsigned long)bmeta + bmeta->buffers_offset;
1599 	meta = (struct ring_buffer_cpu_meta *)ptr;
1600 
1601 	/* When nr_pages passed in is zero, the first meta has already been initialized */
1602 	if (!nr_pages) {
1603 		nr_subbufs = meta->nr_subbufs;
1604 	} else {
1605 		/* Include the reader page */
1606 		nr_subbufs = nr_pages + 1;
1607 	}
1608 
1609 	/*
1610 	 * The first chunk may not be subbuffer aligned, where as
1611 	 * the rest of the chunks are.
1612 	 */
1613 	if (cpu) {
1614 		ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1615 		ptr += subbuf_size * nr_subbufs;
1616 
1617 		/* We can use multiplication to find chunks greater than 1 */
1618 		if (cpu > 1) {
1619 			unsigned long size;
1620 			unsigned long p;
1621 
1622 			/* Save the beginning of this CPU chunk */
1623 			p = ptr;
1624 			ptr = rb_range_align_subbuf(ptr, subbuf_size, nr_subbufs);
1625 			ptr += subbuf_size * nr_subbufs;
1626 
1627 			/* Now all chunks after this are the same size */
1628 			size = ptr - p;
1629 			ptr += size * (cpu - 2);
1630 		}
1631 	}
1632 	return (void *)ptr;
1633 }
1634 
1635 /* Return the start of subbufs given the meta pointer */
1636 static void *rb_subbufs_from_meta(struct ring_buffer_cpu_meta *meta)
1637 {
1638 	int subbuf_size = meta->subbuf_size;
1639 	unsigned long ptr;
1640 
1641 	ptr = (unsigned long)meta;
1642 	ptr = rb_range_align_subbuf(ptr, subbuf_size, meta->nr_subbufs);
1643 
1644 	return (void *)ptr;
1645 }
1646 
1647 /*
1648  * Return a specific sub-buffer for a given @cpu defined by @idx.
1649  */
1650 static void *rb_range_buffer(struct ring_buffer_per_cpu *cpu_buffer, int idx)
1651 {
1652 	struct ring_buffer_cpu_meta *meta;
1653 	unsigned long ptr;
1654 	int subbuf_size;
1655 
1656 	meta = rb_range_meta(cpu_buffer->buffer, 0, cpu_buffer->cpu);
1657 	if (!meta)
1658 		return NULL;
1659 
1660 	if (WARN_ON_ONCE(idx >= meta->nr_subbufs))
1661 		return NULL;
1662 
1663 	subbuf_size = meta->subbuf_size;
1664 
1665 	/* Map this buffer to the order that's in meta->buffers[] */
1666 	idx = meta->buffers[idx];
1667 
1668 	ptr = (unsigned long)rb_subbufs_from_meta(meta);
1669 
1670 	ptr += subbuf_size * idx;
1671 	if (ptr + subbuf_size > cpu_buffer->buffer->range_addr_end)
1672 		return NULL;
1673 
1674 	return (void *)ptr;
1675 }
1676 
1677 /*
1678  * See if the existing memory contains a valid meta section.
1679  * if so, use that, otherwise initialize it.
1680  */
1681 static bool rb_meta_init(struct trace_buffer *buffer)
1682 {
1683 	unsigned long ptr = buffer->range_addr_start;
1684 	struct ring_buffer_meta *bmeta;
1685 	unsigned long total_size;
1686 	int struct_sizes;
1687 
1688 	bmeta = (struct ring_buffer_meta *)ptr;
1689 	buffer->meta = bmeta;
1690 
1691 	total_size = buffer->range_addr_end - buffer->range_addr_start;
1692 
1693 	struct_sizes = sizeof(struct ring_buffer_cpu_meta);
1694 	struct_sizes |= sizeof(*bmeta) << 16;
1695 
1696 	/* The first buffer will start word size after the meta page */
1697 	ptr += sizeof(*bmeta);
1698 	ptr = ALIGN(ptr, sizeof(long));
1699 
1700 	if (bmeta->magic != RING_BUFFER_META_MAGIC) {
1701 		pr_info("Ring buffer boot meta mismatch of magic\n");
1702 		goto init;
1703 	}
1704 
1705 	if (bmeta->struct_sizes != struct_sizes) {
1706 		pr_info("Ring buffer boot meta mismatch of struct size\n");
1707 		goto init;
1708 	}
1709 
1710 	if (bmeta->total_size != total_size) {
1711 		pr_info("Ring buffer boot meta mismatch of total size\n");
1712 		goto init;
1713 	}
1714 
1715 	if (bmeta->buffers_offset > bmeta->total_size) {
1716 		pr_info("Ring buffer boot meta mismatch of offset outside of total size\n");
1717 		goto init;
1718 	}
1719 
1720 	if (bmeta->buffers_offset != (void *)ptr - (void *)bmeta) {
1721 		pr_info("Ring buffer boot meta mismatch of first buffer offset\n");
1722 		goto init;
1723 	}
1724 
1725 	return true;
1726 
1727  init:
1728 	bmeta->magic = RING_BUFFER_META_MAGIC;
1729 	bmeta->struct_sizes = struct_sizes;
1730 	bmeta->total_size = total_size;
1731 	bmeta->buffers_offset = (void *)ptr - (void *)bmeta;
1732 
1733 	return false;
1734 }
1735 
1736 /*
1737  * See if the existing memory contains valid ring buffer data.
1738  * As the previous kernel must be the same as this kernel, all
1739  * the calculations (size of buffers and number of buffers)
1740  * must be the same.
1741  */
1742 static bool rb_cpu_meta_valid(struct ring_buffer_cpu_meta *meta, int cpu,
1743 			      struct trace_buffer *buffer, int nr_pages,
1744 			      unsigned long *subbuf_mask)
1745 {
1746 	int subbuf_size = PAGE_SIZE;
1747 	struct buffer_data_page *subbuf;
1748 	unsigned long buffers_start;
1749 	unsigned long buffers_end;
1750 	int i;
1751 
1752 	if (!subbuf_mask)
1753 		return false;
1754 
1755 	buffers_start = meta->first_buffer;
1756 	buffers_end = meta->first_buffer + (subbuf_size * meta->nr_subbufs);
1757 
1758 	/* Is the head and commit buffers within the range of buffers? */
1759 	if (meta->head_buffer < buffers_start ||
1760 	    meta->head_buffer >= buffers_end) {
1761 		pr_info("Ring buffer boot meta [%d] head buffer out of range\n", cpu);
1762 		return false;
1763 	}
1764 
1765 	if (meta->commit_buffer < buffers_start ||
1766 	    meta->commit_buffer >= buffers_end) {
1767 		pr_info("Ring buffer boot meta [%d] commit buffer out of range\n", cpu);
1768 		return false;
1769 	}
1770 
1771 	subbuf = rb_subbufs_from_meta(meta);
1772 
1773 	bitmap_clear(subbuf_mask, 0, meta->nr_subbufs);
1774 
1775 	/* Is the meta buffers and the subbufs themselves have correct data? */
1776 	for (i = 0; i < meta->nr_subbufs; i++) {
1777 		if (meta->buffers[i] < 0 ||
1778 		    meta->buffers[i] >= meta->nr_subbufs) {
1779 			pr_info("Ring buffer boot meta [%d] array out of range\n", cpu);
1780 			return false;
1781 		}
1782 
1783 		if ((unsigned)local_read(&subbuf->commit) > subbuf_size) {
1784 			pr_info("Ring buffer boot meta [%d] buffer invalid commit\n", cpu);
1785 			return false;
1786 		}
1787 
1788 		if (test_bit(meta->buffers[i], subbuf_mask)) {
1789 			pr_info("Ring buffer boot meta [%d] array has duplicates\n", cpu);
1790 			return false;
1791 		}
1792 
1793 		set_bit(meta->buffers[i], subbuf_mask);
1794 		subbuf = (void *)subbuf + subbuf_size;
1795 	}
1796 
1797 	return true;
1798 }
1799 
1800 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf);
1801 
1802 static int rb_read_data_buffer(struct buffer_data_page *dpage, int tail, int cpu,
1803 			       unsigned long long *timestamp, u64 *delta_ptr)
1804 {
1805 	struct ring_buffer_event *event;
1806 	u64 ts, delta;
1807 	int events = 0;
1808 	int e;
1809 
1810 	*delta_ptr = 0;
1811 	*timestamp = 0;
1812 
1813 	ts = dpage->time_stamp;
1814 
1815 	for (e = 0; e < tail; e += rb_event_length(event)) {
1816 
1817 		event = (struct ring_buffer_event *)(dpage->data + e);
1818 
1819 		switch (event->type_len) {
1820 
1821 		case RINGBUF_TYPE_TIME_EXTEND:
1822 			delta = rb_event_time_stamp(event);
1823 			ts += delta;
1824 			break;
1825 
1826 		case RINGBUF_TYPE_TIME_STAMP:
1827 			delta = rb_event_time_stamp(event);
1828 			delta = rb_fix_abs_ts(delta, ts);
1829 			if (delta < ts) {
1830 				*delta_ptr = delta;
1831 				*timestamp = ts;
1832 				return -1;
1833 			}
1834 			ts = delta;
1835 			break;
1836 
1837 		case RINGBUF_TYPE_PADDING:
1838 			if (event->time_delta == 1)
1839 				break;
1840 			fallthrough;
1841 		case RINGBUF_TYPE_DATA:
1842 			events++;
1843 			ts += event->time_delta;
1844 			break;
1845 
1846 		default:
1847 			return -1;
1848 		}
1849 	}
1850 	*timestamp = ts;
1851 	return events;
1852 }
1853 
1854 static int rb_validate_buffer(struct buffer_data_page *dpage, int cpu)
1855 {
1856 	unsigned long long ts;
1857 	u64 delta;
1858 	int tail;
1859 
1860 	tail = local_read(&dpage->commit);
1861 	return rb_read_data_buffer(dpage, tail, cpu, &ts, &delta);
1862 }
1863 
1864 /* If the meta data has been validated, now validate the events */
1865 static void rb_meta_validate_events(struct ring_buffer_per_cpu *cpu_buffer)
1866 {
1867 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
1868 	struct buffer_page *head_page;
1869 	unsigned long entry_bytes = 0;
1870 	unsigned long entries = 0;
1871 	int ret;
1872 	int i;
1873 
1874 	if (!meta || !meta->head_buffer)
1875 		return;
1876 
1877 	/* Do the reader page first */
1878 	ret = rb_validate_buffer(cpu_buffer->reader_page->page, cpu_buffer->cpu);
1879 	if (ret < 0) {
1880 		pr_info("Ring buffer reader page is invalid\n");
1881 		goto invalid;
1882 	}
1883 	entries += ret;
1884 	entry_bytes += local_read(&cpu_buffer->reader_page->page->commit);
1885 	local_set(&cpu_buffer->reader_page->entries, ret);
1886 
1887 	head_page = cpu_buffer->head_page;
1888 
1889 	/* If both the head and commit are on the reader_page then we are done. */
1890 	if (head_page == cpu_buffer->reader_page &&
1891 	    head_page == cpu_buffer->commit_page)
1892 		goto done;
1893 
1894 	/* Iterate until finding the commit page */
1895 	for (i = 0; i < meta->nr_subbufs + 1; i++, rb_inc_page(&head_page)) {
1896 
1897 		/* Reader page has already been done */
1898 		if (head_page == cpu_buffer->reader_page)
1899 			continue;
1900 
1901 		ret = rb_validate_buffer(head_page->page, cpu_buffer->cpu);
1902 		if (ret < 0) {
1903 			pr_info("Ring buffer meta [%d] invalid buffer page\n",
1904 				cpu_buffer->cpu);
1905 			goto invalid;
1906 		}
1907 
1908 		/* If the buffer has content, update pages_touched */
1909 		if (ret)
1910 			local_inc(&cpu_buffer->pages_touched);
1911 
1912 		entries += ret;
1913 		entry_bytes += local_read(&head_page->page->commit);
1914 		local_set(&cpu_buffer->head_page->entries, ret);
1915 
1916 		if (head_page == cpu_buffer->commit_page)
1917 			break;
1918 	}
1919 
1920 	if (head_page != cpu_buffer->commit_page) {
1921 		pr_info("Ring buffer meta [%d] commit page not found\n",
1922 			cpu_buffer->cpu);
1923 		goto invalid;
1924 	}
1925  done:
1926 	local_set(&cpu_buffer->entries, entries);
1927 	local_set(&cpu_buffer->entries_bytes, entry_bytes);
1928 
1929 	pr_info("Ring buffer meta [%d] is from previous boot!\n", cpu_buffer->cpu);
1930 	return;
1931 
1932  invalid:
1933 	/* The content of the buffers are invalid, reset the meta data */
1934 	meta->head_buffer = 0;
1935 	meta->commit_buffer = 0;
1936 
1937 	/* Reset the reader page */
1938 	local_set(&cpu_buffer->reader_page->entries, 0);
1939 	local_set(&cpu_buffer->reader_page->page->commit, 0);
1940 
1941 	/* Reset all the subbuffers */
1942 	for (i = 0; i < meta->nr_subbufs - 1; i++, rb_inc_page(&head_page)) {
1943 		local_set(&head_page->entries, 0);
1944 		local_set(&head_page->page->commit, 0);
1945 	}
1946 }
1947 
1948 static void rb_meta_init_text_addr(struct ring_buffer_cpu_meta *meta)
1949 {
1950 #ifdef CONFIG_RANDOMIZE_BASE
1951 	meta->kaslr_addr = kaslr_offset();
1952 #else
1953 	meta->kaslr_addr = 0;
1954 #endif
1955 }
1956 
1957 static void rb_range_meta_init(struct trace_buffer *buffer, int nr_pages)
1958 {
1959 	struct ring_buffer_cpu_meta *meta;
1960 	struct ring_buffer_meta *bmeta;
1961 	unsigned long *subbuf_mask;
1962 	unsigned long delta;
1963 	void *subbuf;
1964 	bool valid = false;
1965 	int cpu;
1966 	int i;
1967 
1968 	/* Create a mask to test the subbuf array */
1969 	subbuf_mask = bitmap_alloc(nr_pages + 1, GFP_KERNEL);
1970 	/* If subbuf_mask fails to allocate, then rb_meta_valid() will return false */
1971 
1972 	if (rb_meta_init(buffer))
1973 		valid = true;
1974 
1975 	bmeta = buffer->meta;
1976 
1977 	for (cpu = 0; cpu < nr_cpu_ids; cpu++) {
1978 		void *next_meta;
1979 
1980 		meta = rb_range_meta(buffer, nr_pages, cpu);
1981 
1982 		if (valid && rb_cpu_meta_valid(meta, cpu, buffer, nr_pages, subbuf_mask)) {
1983 			/* Make the mappings match the current address */
1984 			subbuf = rb_subbufs_from_meta(meta);
1985 			delta = (unsigned long)subbuf - meta->first_buffer;
1986 			meta->first_buffer += delta;
1987 			meta->head_buffer += delta;
1988 			meta->commit_buffer += delta;
1989 			buffer->kaslr_addr = meta->kaslr_addr;
1990 			continue;
1991 		}
1992 
1993 		if (cpu < nr_cpu_ids - 1)
1994 			next_meta = rb_range_meta(buffer, nr_pages, cpu + 1);
1995 		else
1996 			next_meta = (void *)buffer->range_addr_end;
1997 
1998 		memset(meta, 0, next_meta - (void *)meta);
1999 
2000 		meta->nr_subbufs = nr_pages + 1;
2001 		meta->subbuf_size = PAGE_SIZE;
2002 
2003 		subbuf = rb_subbufs_from_meta(meta);
2004 
2005 		meta->first_buffer = (unsigned long)subbuf;
2006 		rb_meta_init_text_addr(meta);
2007 
2008 		/*
2009 		 * The buffers[] array holds the order of the sub-buffers
2010 		 * that are after the meta data. The sub-buffers may
2011 		 * be swapped out when read and inserted into a different
2012 		 * location of the ring buffer. Although their addresses
2013 		 * remain the same, the buffers[] array contains the
2014 		 * index into the sub-buffers holding their actual order.
2015 		 */
2016 		for (i = 0; i < meta->nr_subbufs; i++) {
2017 			meta->buffers[i] = i;
2018 			rb_init_page(subbuf);
2019 			subbuf += meta->subbuf_size;
2020 		}
2021 	}
2022 	bitmap_free(subbuf_mask);
2023 }
2024 
2025 static void *rbm_start(struct seq_file *m, loff_t *pos)
2026 {
2027 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
2028 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2029 	unsigned long val;
2030 
2031 	if (!meta)
2032 		return NULL;
2033 
2034 	if (*pos > meta->nr_subbufs)
2035 		return NULL;
2036 
2037 	val = *pos;
2038 	val++;
2039 
2040 	return (void *)val;
2041 }
2042 
2043 static void *rbm_next(struct seq_file *m, void *v, loff_t *pos)
2044 {
2045 	(*pos)++;
2046 
2047 	return rbm_start(m, pos);
2048 }
2049 
2050 static int rbm_show(struct seq_file *m, void *v)
2051 {
2052 	struct ring_buffer_per_cpu *cpu_buffer = m->private;
2053 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2054 	unsigned long val = (unsigned long)v;
2055 
2056 	if (val == 1) {
2057 		seq_printf(m, "head_buffer:   %d\n",
2058 			   rb_meta_subbuf_idx(meta, (void *)meta->head_buffer));
2059 		seq_printf(m, "commit_buffer: %d\n",
2060 			   rb_meta_subbuf_idx(meta, (void *)meta->commit_buffer));
2061 		seq_printf(m, "subbuf_size:   %d\n", meta->subbuf_size);
2062 		seq_printf(m, "nr_subbufs:    %d\n", meta->nr_subbufs);
2063 		return 0;
2064 	}
2065 
2066 	val -= 2;
2067 	seq_printf(m, "buffer[%ld]:    %d\n", val, meta->buffers[val]);
2068 
2069 	return 0;
2070 }
2071 
2072 static void rbm_stop(struct seq_file *m, void *p)
2073 {
2074 }
2075 
2076 static const struct seq_operations rb_meta_seq_ops = {
2077 	.start		= rbm_start,
2078 	.next		= rbm_next,
2079 	.show		= rbm_show,
2080 	.stop		= rbm_stop,
2081 };
2082 
2083 int ring_buffer_meta_seq_init(struct file *file, struct trace_buffer *buffer, int cpu)
2084 {
2085 	struct seq_file *m;
2086 	int ret;
2087 
2088 	ret = seq_open(file, &rb_meta_seq_ops);
2089 	if (ret)
2090 		return ret;
2091 
2092 	m = file->private_data;
2093 	m->private = buffer->buffers[cpu];
2094 
2095 	return 0;
2096 }
2097 
2098 /* Map the buffer_pages to the previous head and commit pages */
2099 static void rb_meta_buffer_update(struct ring_buffer_per_cpu *cpu_buffer,
2100 				  struct buffer_page *bpage)
2101 {
2102 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
2103 
2104 	if (meta->head_buffer == (unsigned long)bpage->page)
2105 		cpu_buffer->head_page = bpage;
2106 
2107 	if (meta->commit_buffer == (unsigned long)bpage->page) {
2108 		cpu_buffer->commit_page = bpage;
2109 		cpu_buffer->tail_page = bpage;
2110 	}
2111 }
2112 
2113 static int __rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2114 		long nr_pages, struct list_head *pages)
2115 {
2116 	struct trace_buffer *buffer = cpu_buffer->buffer;
2117 	struct ring_buffer_cpu_meta *meta = NULL;
2118 	struct buffer_page *bpage, *tmp;
2119 	bool user_thread = current->mm != NULL;
2120 	gfp_t mflags;
2121 	long i;
2122 
2123 	/*
2124 	 * Check if the available memory is there first.
2125 	 * Note, si_mem_available() only gives us a rough estimate of available
2126 	 * memory. It may not be accurate. But we don't care, we just want
2127 	 * to prevent doing any allocation when it is obvious that it is
2128 	 * not going to succeed.
2129 	 */
2130 	i = si_mem_available();
2131 	if (i < nr_pages)
2132 		return -ENOMEM;
2133 
2134 	/*
2135 	 * __GFP_RETRY_MAYFAIL flag makes sure that the allocation fails
2136 	 * gracefully without invoking oom-killer and the system is not
2137 	 * destabilized.
2138 	 */
2139 	mflags = GFP_KERNEL | __GFP_RETRY_MAYFAIL;
2140 
2141 	/*
2142 	 * If a user thread allocates too much, and si_mem_available()
2143 	 * reports there's enough memory, even though there is not.
2144 	 * Make sure the OOM killer kills this thread. This can happen
2145 	 * even with RETRY_MAYFAIL because another task may be doing
2146 	 * an allocation after this task has taken all memory.
2147 	 * This is the task the OOM killer needs to take out during this
2148 	 * loop, even if it was triggered by an allocation somewhere else.
2149 	 */
2150 	if (user_thread)
2151 		set_current_oom_origin();
2152 
2153 	if (buffer->range_addr_start)
2154 		meta = rb_range_meta(buffer, nr_pages, cpu_buffer->cpu);
2155 
2156 	for (i = 0; i < nr_pages; i++) {
2157 		struct page *page;
2158 
2159 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2160 				    mflags, cpu_to_node(cpu_buffer->cpu));
2161 		if (!bpage)
2162 			goto free_pages;
2163 
2164 		rb_check_bpage(cpu_buffer, bpage);
2165 
2166 		/*
2167 		 * Append the pages as for mapped buffers we want to keep
2168 		 * the order
2169 		 */
2170 		list_add_tail(&bpage->list, pages);
2171 
2172 		if (meta) {
2173 			/* A range was given. Use that for the buffer page */
2174 			bpage->page = rb_range_buffer(cpu_buffer, i + 1);
2175 			if (!bpage->page)
2176 				goto free_pages;
2177 			/* If this is valid from a previous boot */
2178 			if (meta->head_buffer)
2179 				rb_meta_buffer_update(cpu_buffer, bpage);
2180 			bpage->range = 1;
2181 			bpage->id = i + 1;
2182 		} else {
2183 			page = alloc_pages_node(cpu_to_node(cpu_buffer->cpu),
2184 						mflags | __GFP_COMP | __GFP_ZERO,
2185 						cpu_buffer->buffer->subbuf_order);
2186 			if (!page)
2187 				goto free_pages;
2188 			bpage->page = page_address(page);
2189 			rb_init_page(bpage->page);
2190 		}
2191 		bpage->order = cpu_buffer->buffer->subbuf_order;
2192 
2193 		if (user_thread && fatal_signal_pending(current))
2194 			goto free_pages;
2195 	}
2196 	if (user_thread)
2197 		clear_current_oom_origin();
2198 
2199 	return 0;
2200 
2201 free_pages:
2202 	list_for_each_entry_safe(bpage, tmp, pages, list) {
2203 		list_del_init(&bpage->list);
2204 		free_buffer_page(bpage);
2205 	}
2206 	if (user_thread)
2207 		clear_current_oom_origin();
2208 
2209 	return -ENOMEM;
2210 }
2211 
2212 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
2213 			     unsigned long nr_pages)
2214 {
2215 	LIST_HEAD(pages);
2216 
2217 	WARN_ON(!nr_pages);
2218 
2219 	if (__rb_allocate_pages(cpu_buffer, nr_pages, &pages))
2220 		return -ENOMEM;
2221 
2222 	/*
2223 	 * The ring buffer page list is a circular list that does not
2224 	 * start and end with a list head. All page list items point to
2225 	 * other pages.
2226 	 */
2227 	cpu_buffer->pages = pages.next;
2228 	list_del(&pages);
2229 
2230 	cpu_buffer->nr_pages = nr_pages;
2231 
2232 	rb_check_pages(cpu_buffer);
2233 
2234 	return 0;
2235 }
2236 
2237 static struct ring_buffer_per_cpu *
2238 rb_allocate_cpu_buffer(struct trace_buffer *buffer, long nr_pages, int cpu)
2239 {
2240 	struct ring_buffer_per_cpu *cpu_buffer;
2241 	struct ring_buffer_cpu_meta *meta;
2242 	struct buffer_page *bpage;
2243 	struct page *page;
2244 	int ret;
2245 
2246 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
2247 				  GFP_KERNEL, cpu_to_node(cpu));
2248 	if (!cpu_buffer)
2249 		return NULL;
2250 
2251 	cpu_buffer->cpu = cpu;
2252 	cpu_buffer->buffer = buffer;
2253 	raw_spin_lock_init(&cpu_buffer->reader_lock);
2254 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
2255 	cpu_buffer->lock = (arch_spinlock_t)__ARCH_SPIN_LOCK_UNLOCKED;
2256 	INIT_WORK(&cpu_buffer->update_pages_work, update_pages_handler);
2257 	init_completion(&cpu_buffer->update_done);
2258 	init_irq_work(&cpu_buffer->irq_work.work, rb_wake_up_waiters);
2259 	init_waitqueue_head(&cpu_buffer->irq_work.waiters);
2260 	init_waitqueue_head(&cpu_buffer->irq_work.full_waiters);
2261 	mutex_init(&cpu_buffer->mapping_lock);
2262 
2263 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
2264 			    GFP_KERNEL, cpu_to_node(cpu));
2265 	if (!bpage)
2266 		goto fail_free_buffer;
2267 
2268 	rb_check_bpage(cpu_buffer, bpage);
2269 
2270 	cpu_buffer->reader_page = bpage;
2271 
2272 	if (buffer->range_addr_start) {
2273 		/*
2274 		 * Range mapped buffers have the same restrictions as memory
2275 		 * mapped ones do.
2276 		 */
2277 		cpu_buffer->mapped = 1;
2278 		cpu_buffer->ring_meta = rb_range_meta(buffer, nr_pages, cpu);
2279 		bpage->page = rb_range_buffer(cpu_buffer, 0);
2280 		if (!bpage->page)
2281 			goto fail_free_reader;
2282 		if (cpu_buffer->ring_meta->head_buffer)
2283 			rb_meta_buffer_update(cpu_buffer, bpage);
2284 		bpage->range = 1;
2285 	} else {
2286 		page = alloc_pages_node(cpu_to_node(cpu),
2287 					GFP_KERNEL | __GFP_COMP | __GFP_ZERO,
2288 					cpu_buffer->buffer->subbuf_order);
2289 		if (!page)
2290 			goto fail_free_reader;
2291 		bpage->page = page_address(page);
2292 		rb_init_page(bpage->page);
2293 	}
2294 
2295 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
2296 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
2297 
2298 	ret = rb_allocate_pages(cpu_buffer, nr_pages);
2299 	if (ret < 0)
2300 		goto fail_free_reader;
2301 
2302 	rb_meta_validate_events(cpu_buffer);
2303 
2304 	/* If the boot meta was valid then this has already been updated */
2305 	meta = cpu_buffer->ring_meta;
2306 	if (!meta || !meta->head_buffer ||
2307 	    !cpu_buffer->head_page || !cpu_buffer->commit_page || !cpu_buffer->tail_page) {
2308 		if (meta && meta->head_buffer &&
2309 		    (cpu_buffer->head_page || cpu_buffer->commit_page || cpu_buffer->tail_page)) {
2310 			pr_warn("Ring buffer meta buffers not all mapped\n");
2311 			if (!cpu_buffer->head_page)
2312 				pr_warn("   Missing head_page\n");
2313 			if (!cpu_buffer->commit_page)
2314 				pr_warn("   Missing commit_page\n");
2315 			if (!cpu_buffer->tail_page)
2316 				pr_warn("   Missing tail_page\n");
2317 		}
2318 
2319 		cpu_buffer->head_page
2320 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
2321 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
2322 
2323 		rb_head_page_activate(cpu_buffer);
2324 
2325 		if (cpu_buffer->ring_meta)
2326 			meta->commit_buffer = meta->head_buffer;
2327 	} else {
2328 		/* The valid meta buffer still needs to activate the head page */
2329 		rb_head_page_activate(cpu_buffer);
2330 	}
2331 
2332 	return cpu_buffer;
2333 
2334  fail_free_reader:
2335 	free_buffer_page(cpu_buffer->reader_page);
2336 
2337  fail_free_buffer:
2338 	kfree(cpu_buffer);
2339 	return NULL;
2340 }
2341 
2342 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
2343 {
2344 	struct list_head *head = cpu_buffer->pages;
2345 	struct buffer_page *bpage, *tmp;
2346 
2347 	irq_work_sync(&cpu_buffer->irq_work.work);
2348 
2349 	free_buffer_page(cpu_buffer->reader_page);
2350 
2351 	if (head) {
2352 		rb_head_page_deactivate(cpu_buffer);
2353 
2354 		list_for_each_entry_safe(bpage, tmp, head, list) {
2355 			list_del_init(&bpage->list);
2356 			free_buffer_page(bpage);
2357 		}
2358 		bpage = list_entry(head, struct buffer_page, list);
2359 		free_buffer_page(bpage);
2360 	}
2361 
2362 	free_page((unsigned long)cpu_buffer->free_page);
2363 
2364 	kfree(cpu_buffer);
2365 }
2366 
2367 static struct trace_buffer *alloc_buffer(unsigned long size, unsigned flags,
2368 					 int order, unsigned long start,
2369 					 unsigned long end,
2370 					 struct lock_class_key *key)
2371 {
2372 	struct trace_buffer *buffer;
2373 	long nr_pages;
2374 	int subbuf_size;
2375 	int bsize;
2376 	int cpu;
2377 	int ret;
2378 
2379 	/* keep it in its own cache line */
2380 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
2381 			 GFP_KERNEL);
2382 	if (!buffer)
2383 		return NULL;
2384 
2385 	if (!zalloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
2386 		goto fail_free_buffer;
2387 
2388 	buffer->subbuf_order = order;
2389 	subbuf_size = (PAGE_SIZE << order);
2390 	buffer->subbuf_size = subbuf_size - BUF_PAGE_HDR_SIZE;
2391 
2392 	/* Max payload is buffer page size - header (8bytes) */
2393 	buffer->max_data_size = buffer->subbuf_size - (sizeof(u32) * 2);
2394 
2395 	buffer->flags = flags;
2396 	buffer->clock = trace_clock_local;
2397 	buffer->reader_lock_key = key;
2398 
2399 	init_irq_work(&buffer->irq_work.work, rb_wake_up_waiters);
2400 	init_waitqueue_head(&buffer->irq_work.waiters);
2401 
2402 	buffer->cpus = nr_cpu_ids;
2403 
2404 	bsize = sizeof(void *) * nr_cpu_ids;
2405 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
2406 				  GFP_KERNEL);
2407 	if (!buffer->buffers)
2408 		goto fail_free_cpumask;
2409 
2410 	/* If start/end are specified, then that overrides size */
2411 	if (start && end) {
2412 		unsigned long buffers_start;
2413 		unsigned long ptr;
2414 		int n;
2415 
2416 		/* Make sure that start is word aligned */
2417 		start = ALIGN(start, sizeof(long));
2418 
2419 		/* Subtract the buffer meta data and word aligned */
2420 		buffers_start = start + sizeof(struct ring_buffer_cpu_meta);
2421 		buffers_start = ALIGN(buffers_start, sizeof(long));
2422 
2423 		size = end - buffers_start;
2424 		size = size / nr_cpu_ids;
2425 
2426 		/*
2427 		 * The number of sub-buffers (nr_pages) is determined by the
2428 		 * total size allocated minus the meta data size.
2429 		 * Then that is divided by the number of per CPU buffers
2430 		 * needed, plus account for the integer array index that
2431 		 * will be appended to the meta data.
2432 		 */
2433 		nr_pages = (size - sizeof(struct ring_buffer_cpu_meta)) /
2434 			(subbuf_size + sizeof(int));
2435 		/* Need at least two pages plus the reader page */
2436 		if (nr_pages < 3)
2437 			goto fail_free_buffers;
2438 
2439  again:
2440 		/* Make sure that the size fits aligned */
2441 		for (n = 0, ptr = buffers_start; n < nr_cpu_ids; n++) {
2442 			ptr += sizeof(struct ring_buffer_cpu_meta) +
2443 				sizeof(int) * nr_pages;
2444 			ptr = ALIGN(ptr, subbuf_size);
2445 			ptr += subbuf_size * nr_pages;
2446 		}
2447 		if (ptr > end) {
2448 			if (nr_pages <= 3)
2449 				goto fail_free_buffers;
2450 			nr_pages--;
2451 			goto again;
2452 		}
2453 
2454 		/* nr_pages should not count the reader page */
2455 		nr_pages--;
2456 		buffer->range_addr_start = start;
2457 		buffer->range_addr_end = end;
2458 
2459 		rb_range_meta_init(buffer, nr_pages);
2460 	} else {
2461 
2462 		/* need at least two pages */
2463 		nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2464 		if (nr_pages < 2)
2465 			nr_pages = 2;
2466 	}
2467 
2468 	cpu = raw_smp_processor_id();
2469 	cpumask_set_cpu(cpu, buffer->cpumask);
2470 	buffer->buffers[cpu] = rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
2471 	if (!buffer->buffers[cpu])
2472 		goto fail_free_buffers;
2473 
2474 	ret = cpuhp_state_add_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2475 	if (ret < 0)
2476 		goto fail_free_buffers;
2477 
2478 	mutex_init(&buffer->mutex);
2479 
2480 	return buffer;
2481 
2482  fail_free_buffers:
2483 	for_each_buffer_cpu(buffer, cpu) {
2484 		if (buffer->buffers[cpu])
2485 			rb_free_cpu_buffer(buffer->buffers[cpu]);
2486 	}
2487 	kfree(buffer->buffers);
2488 
2489  fail_free_cpumask:
2490 	free_cpumask_var(buffer->cpumask);
2491 
2492  fail_free_buffer:
2493 	kfree(buffer);
2494 	return NULL;
2495 }
2496 
2497 /**
2498  * __ring_buffer_alloc - allocate a new ring_buffer
2499  * @size: the size in bytes per cpu that is needed.
2500  * @flags: attributes to set for the ring buffer.
2501  * @key: ring buffer reader_lock_key.
2502  *
2503  * Currently the only flag that is available is the RB_FL_OVERWRITE
2504  * flag. This flag means that the buffer will overwrite old data
2505  * when the buffer wraps. If this flag is not set, the buffer will
2506  * drop data when the tail hits the head.
2507  */
2508 struct trace_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
2509 					struct lock_class_key *key)
2510 {
2511 	/* Default buffer page size - one system page */
2512 	return alloc_buffer(size, flags, 0, 0, 0,key);
2513 
2514 }
2515 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
2516 
2517 /**
2518  * __ring_buffer_alloc_range - allocate a new ring_buffer from existing memory
2519  * @size: the size in bytes per cpu that is needed.
2520  * @flags: attributes to set for the ring buffer.
2521  * @order: sub-buffer order
2522  * @start: start of allocated range
2523  * @range_size: size of allocated range
2524  * @key: ring buffer reader_lock_key.
2525  *
2526  * Currently the only flag that is available is the RB_FL_OVERWRITE
2527  * flag. This flag means that the buffer will overwrite old data
2528  * when the buffer wraps. If this flag is not set, the buffer will
2529  * drop data when the tail hits the head.
2530  */
2531 struct trace_buffer *__ring_buffer_alloc_range(unsigned long size, unsigned flags,
2532 					       int order, unsigned long start,
2533 					       unsigned long range_size,
2534 					       struct lock_class_key *key)
2535 {
2536 	return alloc_buffer(size, flags, order, start, start + range_size, key);
2537 }
2538 
2539 /**
2540  * ring_buffer_last_boot_delta - return the delta offset from last boot
2541  * @buffer: The buffer to return the delta from
2542  * @text: Return text delta
2543  * @data: Return data delta
2544  *
2545  * Returns: The true if the delta is non zero
2546  */
2547 bool ring_buffer_last_boot_delta(struct trace_buffer *buffer, unsigned long *kaslr_addr)
2548 {
2549 	if (!buffer)
2550 		return false;
2551 
2552 	if (!buffer->kaslr_addr)
2553 		return false;
2554 
2555 	*kaslr_addr = buffer->kaslr_addr;
2556 
2557 	return true;
2558 }
2559 
2560 /**
2561  * ring_buffer_free - free a ring buffer.
2562  * @buffer: the buffer to free.
2563  */
2564 void
2565 ring_buffer_free(struct trace_buffer *buffer)
2566 {
2567 	int cpu;
2568 
2569 	cpuhp_state_remove_instance(CPUHP_TRACE_RB_PREPARE, &buffer->node);
2570 
2571 	irq_work_sync(&buffer->irq_work.work);
2572 
2573 	for_each_buffer_cpu(buffer, cpu)
2574 		rb_free_cpu_buffer(buffer->buffers[cpu]);
2575 
2576 	kfree(buffer->buffers);
2577 	free_cpumask_var(buffer->cpumask);
2578 
2579 	kfree(buffer);
2580 }
2581 EXPORT_SYMBOL_GPL(ring_buffer_free);
2582 
2583 void ring_buffer_set_clock(struct trace_buffer *buffer,
2584 			   u64 (*clock)(void))
2585 {
2586 	buffer->clock = clock;
2587 }
2588 
2589 void ring_buffer_set_time_stamp_abs(struct trace_buffer *buffer, bool abs)
2590 {
2591 	buffer->time_stamp_abs = abs;
2592 }
2593 
2594 bool ring_buffer_time_stamp_abs(struct trace_buffer *buffer)
2595 {
2596 	return buffer->time_stamp_abs;
2597 }
2598 
2599 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
2600 {
2601 	return local_read(&bpage->entries) & RB_WRITE_MASK;
2602 }
2603 
2604 static inline unsigned long rb_page_write(struct buffer_page *bpage)
2605 {
2606 	return local_read(&bpage->write) & RB_WRITE_MASK;
2607 }
2608 
2609 static bool
2610 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned long nr_pages)
2611 {
2612 	struct list_head *tail_page, *to_remove, *next_page;
2613 	struct buffer_page *to_remove_page, *tmp_iter_page;
2614 	struct buffer_page *last_page, *first_page;
2615 	unsigned long nr_removed;
2616 	unsigned long head_bit;
2617 	int page_entries;
2618 
2619 	head_bit = 0;
2620 
2621 	raw_spin_lock_irq(&cpu_buffer->reader_lock);
2622 	atomic_inc(&cpu_buffer->record_disabled);
2623 	/*
2624 	 * We don't race with the readers since we have acquired the reader
2625 	 * lock. We also don't race with writers after disabling recording.
2626 	 * This makes it easy to figure out the first and the last page to be
2627 	 * removed from the list. We unlink all the pages in between including
2628 	 * the first and last pages. This is done in a busy loop so that we
2629 	 * lose the least number of traces.
2630 	 * The pages are freed after we restart recording and unlock readers.
2631 	 */
2632 	tail_page = &cpu_buffer->tail_page->list;
2633 
2634 	/*
2635 	 * tail page might be on reader page, we remove the next page
2636 	 * from the ring buffer
2637 	 */
2638 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
2639 		tail_page = rb_list_head(tail_page->next);
2640 	to_remove = tail_page;
2641 
2642 	/* start of pages to remove */
2643 	first_page = list_entry(rb_list_head(to_remove->next),
2644 				struct buffer_page, list);
2645 
2646 	for (nr_removed = 0; nr_removed < nr_pages; nr_removed++) {
2647 		to_remove = rb_list_head(to_remove)->next;
2648 		head_bit |= (unsigned long)to_remove & RB_PAGE_HEAD;
2649 	}
2650 	/* Read iterators need to reset themselves when some pages removed */
2651 	cpu_buffer->pages_removed += nr_removed;
2652 
2653 	next_page = rb_list_head(to_remove)->next;
2654 
2655 	/*
2656 	 * Now we remove all pages between tail_page and next_page.
2657 	 * Make sure that we have head_bit value preserved for the
2658 	 * next page
2659 	 */
2660 	tail_page->next = (struct list_head *)((unsigned long)next_page |
2661 						head_bit);
2662 	next_page = rb_list_head(next_page);
2663 	next_page->prev = tail_page;
2664 
2665 	/* make sure pages points to a valid page in the ring buffer */
2666 	cpu_buffer->pages = next_page;
2667 	cpu_buffer->cnt++;
2668 
2669 	/* update head page */
2670 	if (head_bit)
2671 		cpu_buffer->head_page = list_entry(next_page,
2672 						struct buffer_page, list);
2673 
2674 	/* pages are removed, resume tracing and then free the pages */
2675 	atomic_dec(&cpu_buffer->record_disabled);
2676 	raw_spin_unlock_irq(&cpu_buffer->reader_lock);
2677 
2678 	RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages));
2679 
2680 	/* last buffer page to remove */
2681 	last_page = list_entry(rb_list_head(to_remove), struct buffer_page,
2682 				list);
2683 	tmp_iter_page = first_page;
2684 
2685 	do {
2686 		cond_resched();
2687 
2688 		to_remove_page = tmp_iter_page;
2689 		rb_inc_page(&tmp_iter_page);
2690 
2691 		/* update the counters */
2692 		page_entries = rb_page_entries(to_remove_page);
2693 		if (page_entries) {
2694 			/*
2695 			 * If something was added to this page, it was full
2696 			 * since it is not the tail page. So we deduct the
2697 			 * bytes consumed in ring buffer from here.
2698 			 * Increment overrun to account for the lost events.
2699 			 */
2700 			local_add(page_entries, &cpu_buffer->overrun);
2701 			local_sub(rb_page_commit(to_remove_page), &cpu_buffer->entries_bytes);
2702 			local_inc(&cpu_buffer->pages_lost);
2703 		}
2704 
2705 		/*
2706 		 * We have already removed references to this list item, just
2707 		 * free up the buffer_page and its page
2708 		 */
2709 		free_buffer_page(to_remove_page);
2710 		nr_removed--;
2711 
2712 	} while (to_remove_page != last_page);
2713 
2714 	RB_WARN_ON(cpu_buffer, nr_removed);
2715 
2716 	return nr_removed == 0;
2717 }
2718 
2719 static bool
2720 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer)
2721 {
2722 	struct list_head *pages = &cpu_buffer->new_pages;
2723 	unsigned long flags;
2724 	bool success;
2725 	int retries;
2726 
2727 	/* Can be called at early boot up, where interrupts must not been enabled */
2728 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2729 	/*
2730 	 * We are holding the reader lock, so the reader page won't be swapped
2731 	 * in the ring buffer. Now we are racing with the writer trying to
2732 	 * move head page and the tail page.
2733 	 * We are going to adapt the reader page update process where:
2734 	 * 1. We first splice the start and end of list of new pages between
2735 	 *    the head page and its previous page.
2736 	 * 2. We cmpxchg the prev_page->next to point from head page to the
2737 	 *    start of new pages list.
2738 	 * 3. Finally, we update the head->prev to the end of new list.
2739 	 *
2740 	 * We will try this process 10 times, to make sure that we don't keep
2741 	 * spinning.
2742 	 */
2743 	retries = 10;
2744 	success = false;
2745 	while (retries--) {
2746 		struct list_head *head_page, *prev_page;
2747 		struct list_head *last_page, *first_page;
2748 		struct list_head *head_page_with_bit;
2749 		struct buffer_page *hpage = rb_set_head_page(cpu_buffer);
2750 
2751 		if (!hpage)
2752 			break;
2753 		head_page = &hpage->list;
2754 		prev_page = head_page->prev;
2755 
2756 		first_page = pages->next;
2757 		last_page  = pages->prev;
2758 
2759 		head_page_with_bit = (struct list_head *)
2760 				     ((unsigned long)head_page | RB_PAGE_HEAD);
2761 
2762 		last_page->next = head_page_with_bit;
2763 		first_page->prev = prev_page;
2764 
2765 		/* caution: head_page_with_bit gets updated on cmpxchg failure */
2766 		if (try_cmpxchg(&prev_page->next,
2767 				&head_page_with_bit, first_page)) {
2768 			/*
2769 			 * yay, we replaced the page pointer to our new list,
2770 			 * now, we just have to update to head page's prev
2771 			 * pointer to point to end of list
2772 			 */
2773 			head_page->prev = last_page;
2774 			cpu_buffer->cnt++;
2775 			success = true;
2776 			break;
2777 		}
2778 	}
2779 
2780 	if (success)
2781 		INIT_LIST_HEAD(pages);
2782 	/*
2783 	 * If we weren't successful in adding in new pages, warn and stop
2784 	 * tracing
2785 	 */
2786 	RB_WARN_ON(cpu_buffer, !success);
2787 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2788 
2789 	/* free pages if they weren't inserted */
2790 	if (!success) {
2791 		struct buffer_page *bpage, *tmp;
2792 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
2793 					 list) {
2794 			list_del_init(&bpage->list);
2795 			free_buffer_page(bpage);
2796 		}
2797 	}
2798 	return success;
2799 }
2800 
2801 static void rb_update_pages(struct ring_buffer_per_cpu *cpu_buffer)
2802 {
2803 	bool success;
2804 
2805 	if (cpu_buffer->nr_pages_to_update > 0)
2806 		success = rb_insert_pages(cpu_buffer);
2807 	else
2808 		success = rb_remove_pages(cpu_buffer,
2809 					-cpu_buffer->nr_pages_to_update);
2810 
2811 	if (success)
2812 		cpu_buffer->nr_pages += cpu_buffer->nr_pages_to_update;
2813 }
2814 
2815 static void update_pages_handler(struct work_struct *work)
2816 {
2817 	struct ring_buffer_per_cpu *cpu_buffer = container_of(work,
2818 			struct ring_buffer_per_cpu, update_pages_work);
2819 	rb_update_pages(cpu_buffer);
2820 	complete(&cpu_buffer->update_done);
2821 }
2822 
2823 /**
2824  * ring_buffer_resize - resize the ring buffer
2825  * @buffer: the buffer to resize.
2826  * @size: the new size.
2827  * @cpu_id: the cpu buffer to resize
2828  *
2829  * Minimum size is 2 * buffer->subbuf_size.
2830  *
2831  * Returns 0 on success and < 0 on failure.
2832  */
2833 int ring_buffer_resize(struct trace_buffer *buffer, unsigned long size,
2834 			int cpu_id)
2835 {
2836 	struct ring_buffer_per_cpu *cpu_buffer;
2837 	unsigned long nr_pages;
2838 	int cpu, err;
2839 
2840 	/*
2841 	 * Always succeed at resizing a non-existent buffer:
2842 	 */
2843 	if (!buffer)
2844 		return 0;
2845 
2846 	/* Make sure the requested buffer exists */
2847 	if (cpu_id != RING_BUFFER_ALL_CPUS &&
2848 	    !cpumask_test_cpu(cpu_id, buffer->cpumask))
2849 		return 0;
2850 
2851 	nr_pages = DIV_ROUND_UP(size, buffer->subbuf_size);
2852 
2853 	/* we need a minimum of two pages */
2854 	if (nr_pages < 2)
2855 		nr_pages = 2;
2856 
2857 	/* prevent another thread from changing buffer sizes */
2858 	mutex_lock(&buffer->mutex);
2859 	atomic_inc(&buffer->resizing);
2860 
2861 	if (cpu_id == RING_BUFFER_ALL_CPUS) {
2862 		/*
2863 		 * Don't succeed if resizing is disabled, as a reader might be
2864 		 * manipulating the ring buffer and is expecting a sane state while
2865 		 * this is true.
2866 		 */
2867 		for_each_buffer_cpu(buffer, cpu) {
2868 			cpu_buffer = buffer->buffers[cpu];
2869 			if (atomic_read(&cpu_buffer->resize_disabled)) {
2870 				err = -EBUSY;
2871 				goto out_err_unlock;
2872 			}
2873 		}
2874 
2875 		/* calculate the pages to update */
2876 		for_each_buffer_cpu(buffer, cpu) {
2877 			cpu_buffer = buffer->buffers[cpu];
2878 
2879 			cpu_buffer->nr_pages_to_update = nr_pages -
2880 							cpu_buffer->nr_pages;
2881 			/*
2882 			 * nothing more to do for removing pages or no update
2883 			 */
2884 			if (cpu_buffer->nr_pages_to_update <= 0)
2885 				continue;
2886 			/*
2887 			 * to add pages, make sure all new pages can be
2888 			 * allocated without receiving ENOMEM
2889 			 */
2890 			INIT_LIST_HEAD(&cpu_buffer->new_pages);
2891 			if (__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2892 						&cpu_buffer->new_pages)) {
2893 				/* not enough memory for new pages */
2894 				err = -ENOMEM;
2895 				goto out_err;
2896 			}
2897 
2898 			cond_resched();
2899 		}
2900 
2901 		cpus_read_lock();
2902 		/*
2903 		 * Fire off all the required work handlers
2904 		 * We can't schedule on offline CPUs, but it's not necessary
2905 		 * since we can change their buffer sizes without any race.
2906 		 */
2907 		for_each_buffer_cpu(buffer, cpu) {
2908 			cpu_buffer = buffer->buffers[cpu];
2909 			if (!cpu_buffer->nr_pages_to_update)
2910 				continue;
2911 
2912 			/* Can't run something on an offline CPU. */
2913 			if (!cpu_online(cpu)) {
2914 				rb_update_pages(cpu_buffer);
2915 				cpu_buffer->nr_pages_to_update = 0;
2916 			} else {
2917 				/* Run directly if possible. */
2918 				migrate_disable();
2919 				if (cpu != smp_processor_id()) {
2920 					migrate_enable();
2921 					schedule_work_on(cpu,
2922 							 &cpu_buffer->update_pages_work);
2923 				} else {
2924 					update_pages_handler(&cpu_buffer->update_pages_work);
2925 					migrate_enable();
2926 				}
2927 			}
2928 		}
2929 
2930 		/* wait for all the updates to complete */
2931 		for_each_buffer_cpu(buffer, cpu) {
2932 			cpu_buffer = buffer->buffers[cpu];
2933 			if (!cpu_buffer->nr_pages_to_update)
2934 				continue;
2935 
2936 			if (cpu_online(cpu))
2937 				wait_for_completion(&cpu_buffer->update_done);
2938 			cpu_buffer->nr_pages_to_update = 0;
2939 		}
2940 
2941 		cpus_read_unlock();
2942 	} else {
2943 		cpu_buffer = buffer->buffers[cpu_id];
2944 
2945 		if (nr_pages == cpu_buffer->nr_pages)
2946 			goto out;
2947 
2948 		/*
2949 		 * Don't succeed if resizing is disabled, as a reader might be
2950 		 * manipulating the ring buffer and is expecting a sane state while
2951 		 * this is true.
2952 		 */
2953 		if (atomic_read(&cpu_buffer->resize_disabled)) {
2954 			err = -EBUSY;
2955 			goto out_err_unlock;
2956 		}
2957 
2958 		cpu_buffer->nr_pages_to_update = nr_pages -
2959 						cpu_buffer->nr_pages;
2960 
2961 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
2962 		if (cpu_buffer->nr_pages_to_update > 0 &&
2963 			__rb_allocate_pages(cpu_buffer, cpu_buffer->nr_pages_to_update,
2964 					    &cpu_buffer->new_pages)) {
2965 			err = -ENOMEM;
2966 			goto out_err;
2967 		}
2968 
2969 		cpus_read_lock();
2970 
2971 		/* Can't run something on an offline CPU. */
2972 		if (!cpu_online(cpu_id))
2973 			rb_update_pages(cpu_buffer);
2974 		else {
2975 			/* Run directly if possible. */
2976 			migrate_disable();
2977 			if (cpu_id == smp_processor_id()) {
2978 				rb_update_pages(cpu_buffer);
2979 				migrate_enable();
2980 			} else {
2981 				migrate_enable();
2982 				schedule_work_on(cpu_id,
2983 						 &cpu_buffer->update_pages_work);
2984 				wait_for_completion(&cpu_buffer->update_done);
2985 			}
2986 		}
2987 
2988 		cpu_buffer->nr_pages_to_update = 0;
2989 		cpus_read_unlock();
2990 	}
2991 
2992  out:
2993 	/*
2994 	 * The ring buffer resize can happen with the ring buffer
2995 	 * enabled, so that the update disturbs the tracing as little
2996 	 * as possible. But if the buffer is disabled, we do not need
2997 	 * to worry about that, and we can take the time to verify
2998 	 * that the buffer is not corrupt.
2999 	 */
3000 	if (atomic_read(&buffer->record_disabled)) {
3001 		atomic_inc(&buffer->record_disabled);
3002 		/*
3003 		 * Even though the buffer was disabled, we must make sure
3004 		 * that it is truly disabled before calling rb_check_pages.
3005 		 * There could have been a race between checking
3006 		 * record_disable and incrementing it.
3007 		 */
3008 		synchronize_rcu();
3009 		for_each_buffer_cpu(buffer, cpu) {
3010 			cpu_buffer = buffer->buffers[cpu];
3011 			rb_check_pages(cpu_buffer);
3012 		}
3013 		atomic_dec(&buffer->record_disabled);
3014 	}
3015 
3016 	atomic_dec(&buffer->resizing);
3017 	mutex_unlock(&buffer->mutex);
3018 	return 0;
3019 
3020  out_err:
3021 	for_each_buffer_cpu(buffer, cpu) {
3022 		struct buffer_page *bpage, *tmp;
3023 
3024 		cpu_buffer = buffer->buffers[cpu];
3025 		cpu_buffer->nr_pages_to_update = 0;
3026 
3027 		if (list_empty(&cpu_buffer->new_pages))
3028 			continue;
3029 
3030 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages,
3031 					list) {
3032 			list_del_init(&bpage->list);
3033 			free_buffer_page(bpage);
3034 		}
3035 	}
3036  out_err_unlock:
3037 	atomic_dec(&buffer->resizing);
3038 	mutex_unlock(&buffer->mutex);
3039 	return err;
3040 }
3041 EXPORT_SYMBOL_GPL(ring_buffer_resize);
3042 
3043 void ring_buffer_change_overwrite(struct trace_buffer *buffer, int val)
3044 {
3045 	mutex_lock(&buffer->mutex);
3046 	if (val)
3047 		buffer->flags |= RB_FL_OVERWRITE;
3048 	else
3049 		buffer->flags &= ~RB_FL_OVERWRITE;
3050 	mutex_unlock(&buffer->mutex);
3051 }
3052 EXPORT_SYMBOL_GPL(ring_buffer_change_overwrite);
3053 
3054 static __always_inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
3055 {
3056 	return bpage->page->data + index;
3057 }
3058 
3059 static __always_inline struct ring_buffer_event *
3060 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
3061 {
3062 	return __rb_page_index(cpu_buffer->reader_page,
3063 			       cpu_buffer->reader_page->read);
3064 }
3065 
3066 static struct ring_buffer_event *
3067 rb_iter_head_event(struct ring_buffer_iter *iter)
3068 {
3069 	struct ring_buffer_event *event;
3070 	struct buffer_page *iter_head_page = iter->head_page;
3071 	unsigned long commit;
3072 	unsigned length;
3073 
3074 	if (iter->head != iter->next_event)
3075 		return iter->event;
3076 
3077 	/*
3078 	 * When the writer goes across pages, it issues a cmpxchg which
3079 	 * is a mb(), which will synchronize with the rmb here.
3080 	 * (see rb_tail_page_update() and __rb_reserve_next())
3081 	 */
3082 	commit = rb_page_commit(iter_head_page);
3083 	smp_rmb();
3084 
3085 	/* An event needs to be at least 8 bytes in size */
3086 	if (iter->head > commit - 8)
3087 		goto reset;
3088 
3089 	event = __rb_page_index(iter_head_page, iter->head);
3090 	length = rb_event_length(event);
3091 
3092 	/*
3093 	 * READ_ONCE() doesn't work on functions and we don't want the
3094 	 * compiler doing any crazy optimizations with length.
3095 	 */
3096 	barrier();
3097 
3098 	if ((iter->head + length) > commit || length > iter->event_size)
3099 		/* Writer corrupted the read? */
3100 		goto reset;
3101 
3102 	memcpy(iter->event, event, length);
3103 	/*
3104 	 * If the page stamp is still the same after this rmb() then the
3105 	 * event was safely copied without the writer entering the page.
3106 	 */
3107 	smp_rmb();
3108 
3109 	/* Make sure the page didn't change since we read this */
3110 	if (iter->page_stamp != iter_head_page->page->time_stamp ||
3111 	    commit > rb_page_commit(iter_head_page))
3112 		goto reset;
3113 
3114 	iter->next_event = iter->head + length;
3115 	return iter->event;
3116  reset:
3117 	/* Reset to the beginning */
3118 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3119 	iter->head = 0;
3120 	iter->next_event = 0;
3121 	iter->missed_events = 1;
3122 	return NULL;
3123 }
3124 
3125 /* Size is determined by what has been committed */
3126 static __always_inline unsigned rb_page_size(struct buffer_page *bpage)
3127 {
3128 	return rb_page_commit(bpage) & ~RB_MISSED_MASK;
3129 }
3130 
3131 static __always_inline unsigned
3132 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
3133 {
3134 	return rb_page_commit(cpu_buffer->commit_page);
3135 }
3136 
3137 static __always_inline unsigned
3138 rb_event_index(struct ring_buffer_per_cpu *cpu_buffer, struct ring_buffer_event *event)
3139 {
3140 	unsigned long addr = (unsigned long)event;
3141 
3142 	addr &= (PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1;
3143 
3144 	return addr - BUF_PAGE_HDR_SIZE;
3145 }
3146 
3147 static void rb_inc_iter(struct ring_buffer_iter *iter)
3148 {
3149 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3150 
3151 	/*
3152 	 * The iterator could be on the reader page (it starts there).
3153 	 * But the head could have moved, since the reader was
3154 	 * found. Check for this case and assign the iterator
3155 	 * to the head page instead of next.
3156 	 */
3157 	if (iter->head_page == cpu_buffer->reader_page)
3158 		iter->head_page = rb_set_head_page(cpu_buffer);
3159 	else
3160 		rb_inc_page(&iter->head_page);
3161 
3162 	iter->page_stamp = iter->read_stamp = iter->head_page->page->time_stamp;
3163 	iter->head = 0;
3164 	iter->next_event = 0;
3165 }
3166 
3167 /* Return the index into the sub-buffers for a given sub-buffer */
3168 static int rb_meta_subbuf_idx(struct ring_buffer_cpu_meta *meta, void *subbuf)
3169 {
3170 	void *subbuf_array;
3171 
3172 	subbuf_array = (void *)meta + sizeof(int) * meta->nr_subbufs;
3173 	subbuf_array = (void *)ALIGN((unsigned long)subbuf_array, meta->subbuf_size);
3174 	return (subbuf - subbuf_array) / meta->subbuf_size;
3175 }
3176 
3177 static void rb_update_meta_head(struct ring_buffer_per_cpu *cpu_buffer,
3178 				struct buffer_page *next_page)
3179 {
3180 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3181 	unsigned long old_head = (unsigned long)next_page->page;
3182 	unsigned long new_head;
3183 
3184 	rb_inc_page(&next_page);
3185 	new_head = (unsigned long)next_page->page;
3186 
3187 	/*
3188 	 * Only move it forward once, if something else came in and
3189 	 * moved it forward, then we don't want to touch it.
3190 	 */
3191 	(void)cmpxchg(&meta->head_buffer, old_head, new_head);
3192 }
3193 
3194 static void rb_update_meta_reader(struct ring_buffer_per_cpu *cpu_buffer,
3195 				  struct buffer_page *reader)
3196 {
3197 	struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3198 	void *old_reader = cpu_buffer->reader_page->page;
3199 	void *new_reader = reader->page;
3200 	int id;
3201 
3202 	id = reader->id;
3203 	cpu_buffer->reader_page->id = id;
3204 	reader->id = 0;
3205 
3206 	meta->buffers[0] = rb_meta_subbuf_idx(meta, new_reader);
3207 	meta->buffers[id] = rb_meta_subbuf_idx(meta, old_reader);
3208 
3209 	/* The head pointer is the one after the reader */
3210 	rb_update_meta_head(cpu_buffer, reader);
3211 }
3212 
3213 /*
3214  * rb_handle_head_page - writer hit the head page
3215  *
3216  * Returns: +1 to retry page
3217  *           0 to continue
3218  *          -1 on error
3219  */
3220 static int
3221 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
3222 		    struct buffer_page *tail_page,
3223 		    struct buffer_page *next_page)
3224 {
3225 	struct buffer_page *new_head;
3226 	int entries;
3227 	int type;
3228 	int ret;
3229 
3230 	entries = rb_page_entries(next_page);
3231 
3232 	/*
3233 	 * The hard part is here. We need to move the head
3234 	 * forward, and protect against both readers on
3235 	 * other CPUs and writers coming in via interrupts.
3236 	 */
3237 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
3238 				       RB_PAGE_HEAD);
3239 
3240 	/*
3241 	 * type can be one of four:
3242 	 *  NORMAL - an interrupt already moved it for us
3243 	 *  HEAD   - we are the first to get here.
3244 	 *  UPDATE - we are the interrupt interrupting
3245 	 *           a current move.
3246 	 *  MOVED  - a reader on another CPU moved the next
3247 	 *           pointer to its reader page. Give up
3248 	 *           and try again.
3249 	 */
3250 
3251 	switch (type) {
3252 	case RB_PAGE_HEAD:
3253 		/*
3254 		 * We changed the head to UPDATE, thus
3255 		 * it is our responsibility to update
3256 		 * the counters.
3257 		 */
3258 		local_add(entries, &cpu_buffer->overrun);
3259 		local_sub(rb_page_commit(next_page), &cpu_buffer->entries_bytes);
3260 		local_inc(&cpu_buffer->pages_lost);
3261 
3262 		if (cpu_buffer->ring_meta)
3263 			rb_update_meta_head(cpu_buffer, next_page);
3264 		/*
3265 		 * The entries will be zeroed out when we move the
3266 		 * tail page.
3267 		 */
3268 
3269 		/* still more to do */
3270 		break;
3271 
3272 	case RB_PAGE_UPDATE:
3273 		/*
3274 		 * This is an interrupt that interrupt the
3275 		 * previous update. Still more to do.
3276 		 */
3277 		break;
3278 	case RB_PAGE_NORMAL:
3279 		/*
3280 		 * An interrupt came in before the update
3281 		 * and processed this for us.
3282 		 * Nothing left to do.
3283 		 */
3284 		return 1;
3285 	case RB_PAGE_MOVED:
3286 		/*
3287 		 * The reader is on another CPU and just did
3288 		 * a swap with our next_page.
3289 		 * Try again.
3290 		 */
3291 		return 1;
3292 	default:
3293 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
3294 		return -1;
3295 	}
3296 
3297 	/*
3298 	 * Now that we are here, the old head pointer is
3299 	 * set to UPDATE. This will keep the reader from
3300 	 * swapping the head page with the reader page.
3301 	 * The reader (on another CPU) will spin till
3302 	 * we are finished.
3303 	 *
3304 	 * We just need to protect against interrupts
3305 	 * doing the job. We will set the next pointer
3306 	 * to HEAD. After that, we set the old pointer
3307 	 * to NORMAL, but only if it was HEAD before.
3308 	 * otherwise we are an interrupt, and only
3309 	 * want the outer most commit to reset it.
3310 	 */
3311 	new_head = next_page;
3312 	rb_inc_page(&new_head);
3313 
3314 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
3315 				    RB_PAGE_NORMAL);
3316 
3317 	/*
3318 	 * Valid returns are:
3319 	 *  HEAD   - an interrupt came in and already set it.
3320 	 *  NORMAL - One of two things:
3321 	 *            1) We really set it.
3322 	 *            2) A bunch of interrupts came in and moved
3323 	 *               the page forward again.
3324 	 */
3325 	switch (ret) {
3326 	case RB_PAGE_HEAD:
3327 	case RB_PAGE_NORMAL:
3328 		/* OK */
3329 		break;
3330 	default:
3331 		RB_WARN_ON(cpu_buffer, 1);
3332 		return -1;
3333 	}
3334 
3335 	/*
3336 	 * It is possible that an interrupt came in,
3337 	 * set the head up, then more interrupts came in
3338 	 * and moved it again. When we get back here,
3339 	 * the page would have been set to NORMAL but we
3340 	 * just set it back to HEAD.
3341 	 *
3342 	 * How do you detect this? Well, if that happened
3343 	 * the tail page would have moved.
3344 	 */
3345 	if (ret == RB_PAGE_NORMAL) {
3346 		struct buffer_page *buffer_tail_page;
3347 
3348 		buffer_tail_page = READ_ONCE(cpu_buffer->tail_page);
3349 		/*
3350 		 * If the tail had moved passed next, then we need
3351 		 * to reset the pointer.
3352 		 */
3353 		if (buffer_tail_page != tail_page &&
3354 		    buffer_tail_page != next_page)
3355 			rb_head_page_set_normal(cpu_buffer, new_head,
3356 						next_page,
3357 						RB_PAGE_HEAD);
3358 	}
3359 
3360 	/*
3361 	 * If this was the outer most commit (the one that
3362 	 * changed the original pointer from HEAD to UPDATE),
3363 	 * then it is up to us to reset it to NORMAL.
3364 	 */
3365 	if (type == RB_PAGE_HEAD) {
3366 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
3367 					      tail_page,
3368 					      RB_PAGE_UPDATE);
3369 		if (RB_WARN_ON(cpu_buffer,
3370 			       ret != RB_PAGE_UPDATE))
3371 			return -1;
3372 	}
3373 
3374 	return 0;
3375 }
3376 
3377 static inline void
3378 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
3379 	      unsigned long tail, struct rb_event_info *info)
3380 {
3381 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
3382 	struct buffer_page *tail_page = info->tail_page;
3383 	struct ring_buffer_event *event;
3384 	unsigned long length = info->length;
3385 
3386 	/*
3387 	 * Only the event that crossed the page boundary
3388 	 * must fill the old tail_page with padding.
3389 	 */
3390 	if (tail >= bsize) {
3391 		/*
3392 		 * If the page was filled, then we still need
3393 		 * to update the real_end. Reset it to zero
3394 		 * and the reader will ignore it.
3395 		 */
3396 		if (tail == bsize)
3397 			tail_page->real_end = 0;
3398 
3399 		local_sub(length, &tail_page->write);
3400 		return;
3401 	}
3402 
3403 	event = __rb_page_index(tail_page, tail);
3404 
3405 	/*
3406 	 * Save the original length to the meta data.
3407 	 * This will be used by the reader to add lost event
3408 	 * counter.
3409 	 */
3410 	tail_page->real_end = tail;
3411 
3412 	/*
3413 	 * If this event is bigger than the minimum size, then
3414 	 * we need to be careful that we don't subtract the
3415 	 * write counter enough to allow another writer to slip
3416 	 * in on this page.
3417 	 * We put in a discarded commit instead, to make sure
3418 	 * that this space is not used again, and this space will
3419 	 * not be accounted into 'entries_bytes'.
3420 	 *
3421 	 * If we are less than the minimum size, we don't need to
3422 	 * worry about it.
3423 	 */
3424 	if (tail > (bsize - RB_EVNT_MIN_SIZE)) {
3425 		/* No room for any events */
3426 
3427 		/* Mark the rest of the page with padding */
3428 		rb_event_set_padding(event);
3429 
3430 		/* Make sure the padding is visible before the write update */
3431 		smp_wmb();
3432 
3433 		/* Set the write back to the previous setting */
3434 		local_sub(length, &tail_page->write);
3435 		return;
3436 	}
3437 
3438 	/* Put in a discarded event */
3439 	event->array[0] = (bsize - tail) - RB_EVNT_HDR_SIZE;
3440 	event->type_len = RINGBUF_TYPE_PADDING;
3441 	/* time delta must be non zero */
3442 	event->time_delta = 1;
3443 
3444 	/* account for padding bytes */
3445 	local_add(bsize - tail, &cpu_buffer->entries_bytes);
3446 
3447 	/* Make sure the padding is visible before the tail_page->write update */
3448 	smp_wmb();
3449 
3450 	/* Set write to end of buffer */
3451 	length = (tail + length) - bsize;
3452 	local_sub(length, &tail_page->write);
3453 }
3454 
3455 static inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer);
3456 
3457 /*
3458  * This is the slow path, force gcc not to inline it.
3459  */
3460 static noinline struct ring_buffer_event *
3461 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
3462 	     unsigned long tail, struct rb_event_info *info)
3463 {
3464 	struct buffer_page *tail_page = info->tail_page;
3465 	struct buffer_page *commit_page = cpu_buffer->commit_page;
3466 	struct trace_buffer *buffer = cpu_buffer->buffer;
3467 	struct buffer_page *next_page;
3468 	int ret;
3469 
3470 	next_page = tail_page;
3471 
3472 	rb_inc_page(&next_page);
3473 
3474 	/*
3475 	 * If for some reason, we had an interrupt storm that made
3476 	 * it all the way around the buffer, bail, and warn
3477 	 * about it.
3478 	 */
3479 	if (unlikely(next_page == commit_page)) {
3480 		local_inc(&cpu_buffer->commit_overrun);
3481 		goto out_reset;
3482 	}
3483 
3484 	/*
3485 	 * This is where the fun begins!
3486 	 *
3487 	 * We are fighting against races between a reader that
3488 	 * could be on another CPU trying to swap its reader
3489 	 * page with the buffer head.
3490 	 *
3491 	 * We are also fighting against interrupts coming in and
3492 	 * moving the head or tail on us as well.
3493 	 *
3494 	 * If the next page is the head page then we have filled
3495 	 * the buffer, unless the commit page is still on the
3496 	 * reader page.
3497 	 */
3498 	if (rb_is_head_page(next_page, &tail_page->list)) {
3499 
3500 		/*
3501 		 * If the commit is not on the reader page, then
3502 		 * move the header page.
3503 		 */
3504 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
3505 			/*
3506 			 * If we are not in overwrite mode,
3507 			 * this is easy, just stop here.
3508 			 */
3509 			if (!(buffer->flags & RB_FL_OVERWRITE)) {
3510 				local_inc(&cpu_buffer->dropped_events);
3511 				goto out_reset;
3512 			}
3513 
3514 			ret = rb_handle_head_page(cpu_buffer,
3515 						  tail_page,
3516 						  next_page);
3517 			if (ret < 0)
3518 				goto out_reset;
3519 			if (ret)
3520 				goto out_again;
3521 		} else {
3522 			/*
3523 			 * We need to be careful here too. The
3524 			 * commit page could still be on the reader
3525 			 * page. We could have a small buffer, and
3526 			 * have filled up the buffer with events
3527 			 * from interrupts and such, and wrapped.
3528 			 *
3529 			 * Note, if the tail page is also on the
3530 			 * reader_page, we let it move out.
3531 			 */
3532 			if (unlikely((cpu_buffer->commit_page !=
3533 				      cpu_buffer->tail_page) &&
3534 				     (cpu_buffer->commit_page ==
3535 				      cpu_buffer->reader_page))) {
3536 				local_inc(&cpu_buffer->commit_overrun);
3537 				goto out_reset;
3538 			}
3539 		}
3540 	}
3541 
3542 	rb_tail_page_update(cpu_buffer, tail_page, next_page);
3543 
3544  out_again:
3545 
3546 	rb_reset_tail(cpu_buffer, tail, info);
3547 
3548 	/* Commit what we have for now. */
3549 	rb_end_commit(cpu_buffer);
3550 	/* rb_end_commit() decs committing */
3551 	local_inc(&cpu_buffer->committing);
3552 
3553 	/* fail and let the caller try again */
3554 	return ERR_PTR(-EAGAIN);
3555 
3556  out_reset:
3557 	/* reset write */
3558 	rb_reset_tail(cpu_buffer, tail, info);
3559 
3560 	return NULL;
3561 }
3562 
3563 /* Slow path */
3564 static struct ring_buffer_event *
3565 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
3566 		  struct ring_buffer_event *event, u64 delta, bool abs)
3567 {
3568 	if (abs)
3569 		event->type_len = RINGBUF_TYPE_TIME_STAMP;
3570 	else
3571 		event->type_len = RINGBUF_TYPE_TIME_EXTEND;
3572 
3573 	/* Not the first event on the page, or not delta? */
3574 	if (abs || rb_event_index(cpu_buffer, event)) {
3575 		event->time_delta = delta & TS_MASK;
3576 		event->array[0] = delta >> TS_SHIFT;
3577 	} else {
3578 		/* nope, just zero it */
3579 		event->time_delta = 0;
3580 		event->array[0] = 0;
3581 	}
3582 
3583 	return skip_time_extend(event);
3584 }
3585 
3586 #ifndef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
3587 static inline bool sched_clock_stable(void)
3588 {
3589 	return true;
3590 }
3591 #endif
3592 
3593 static void
3594 rb_check_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3595 		   struct rb_event_info *info)
3596 {
3597 	u64 write_stamp;
3598 
3599 	WARN_ONCE(1, "Delta way too big! %llu ts=%llu before=%llu after=%llu write stamp=%llu\n%s",
3600 		  (unsigned long long)info->delta,
3601 		  (unsigned long long)info->ts,
3602 		  (unsigned long long)info->before,
3603 		  (unsigned long long)info->after,
3604 		  (unsigned long long)({rb_time_read(&cpu_buffer->write_stamp, &write_stamp); write_stamp;}),
3605 		  sched_clock_stable() ? "" :
3606 		  "If you just came from a suspend/resume,\n"
3607 		  "please switch to the trace global clock:\n"
3608 		  "  echo global > /sys/kernel/tracing/trace_clock\n"
3609 		  "or add trace_clock=global to the kernel command line\n");
3610 }
3611 
3612 static void rb_add_timestamp(struct ring_buffer_per_cpu *cpu_buffer,
3613 				      struct ring_buffer_event **event,
3614 				      struct rb_event_info *info,
3615 				      u64 *delta,
3616 				      unsigned int *length)
3617 {
3618 	bool abs = info->add_timestamp &
3619 		(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE);
3620 
3621 	if (unlikely(info->delta > (1ULL << 59))) {
3622 		/*
3623 		 * Some timers can use more than 59 bits, and when a timestamp
3624 		 * is added to the buffer, it will lose those bits.
3625 		 */
3626 		if (abs && (info->ts & TS_MSB)) {
3627 			info->delta &= ABS_TS_MASK;
3628 
3629 		/* did the clock go backwards */
3630 		} else if (info->before == info->after && info->before > info->ts) {
3631 			/* not interrupted */
3632 			static int once;
3633 
3634 			/*
3635 			 * This is possible with a recalibrating of the TSC.
3636 			 * Do not produce a call stack, but just report it.
3637 			 */
3638 			if (!once) {
3639 				once++;
3640 				pr_warn("Ring buffer clock went backwards: %llu -> %llu\n",
3641 					info->before, info->ts);
3642 			}
3643 		} else
3644 			rb_check_timestamp(cpu_buffer, info);
3645 		if (!abs)
3646 			info->delta = 0;
3647 	}
3648 	*event = rb_add_time_stamp(cpu_buffer, *event, info->delta, abs);
3649 	*length -= RB_LEN_TIME_EXTEND;
3650 	*delta = 0;
3651 }
3652 
3653 /**
3654  * rb_update_event - update event type and data
3655  * @cpu_buffer: The per cpu buffer of the @event
3656  * @event: the event to update
3657  * @info: The info to update the @event with (contains length and delta)
3658  *
3659  * Update the type and data fields of the @event. The length
3660  * is the actual size that is written to the ring buffer,
3661  * and with this, we can determine what to place into the
3662  * data field.
3663  */
3664 static void
3665 rb_update_event(struct ring_buffer_per_cpu *cpu_buffer,
3666 		struct ring_buffer_event *event,
3667 		struct rb_event_info *info)
3668 {
3669 	unsigned length = info->length;
3670 	u64 delta = info->delta;
3671 	unsigned int nest = local_read(&cpu_buffer->committing) - 1;
3672 
3673 	if (!WARN_ON_ONCE(nest >= MAX_NEST))
3674 		cpu_buffer->event_stamp[nest] = info->ts;
3675 
3676 	/*
3677 	 * If we need to add a timestamp, then we
3678 	 * add it to the start of the reserved space.
3679 	 */
3680 	if (unlikely(info->add_timestamp))
3681 		rb_add_timestamp(cpu_buffer, &event, info, &delta, &length);
3682 
3683 	event->time_delta = delta;
3684 	length -= RB_EVNT_HDR_SIZE;
3685 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT) {
3686 		event->type_len = 0;
3687 		event->array[0] = length;
3688 	} else
3689 		event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
3690 }
3691 
3692 static unsigned rb_calculate_event_length(unsigned length)
3693 {
3694 	struct ring_buffer_event event; /* Used only for sizeof array */
3695 
3696 	/* zero length can cause confusions */
3697 	if (!length)
3698 		length++;
3699 
3700 	if (length > RB_MAX_SMALL_DATA || RB_FORCE_8BYTE_ALIGNMENT)
3701 		length += sizeof(event.array[0]);
3702 
3703 	length += RB_EVNT_HDR_SIZE;
3704 	length = ALIGN(length, RB_ARCH_ALIGNMENT);
3705 
3706 	/*
3707 	 * In case the time delta is larger than the 27 bits for it
3708 	 * in the header, we need to add a timestamp. If another
3709 	 * event comes in when trying to discard this one to increase
3710 	 * the length, then the timestamp will be added in the allocated
3711 	 * space of this event. If length is bigger than the size needed
3712 	 * for the TIME_EXTEND, then padding has to be used. The events
3713 	 * length must be either RB_LEN_TIME_EXTEND, or greater than or equal
3714 	 * to RB_LEN_TIME_EXTEND + 8, as 8 is the minimum size for padding.
3715 	 * As length is a multiple of 4, we only need to worry if it
3716 	 * is 12 (RB_LEN_TIME_EXTEND + 4).
3717 	 */
3718 	if (length == RB_LEN_TIME_EXTEND + RB_ALIGNMENT)
3719 		length += RB_ALIGNMENT;
3720 
3721 	return length;
3722 }
3723 
3724 static inline bool
3725 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
3726 		  struct ring_buffer_event *event)
3727 {
3728 	unsigned long new_index, old_index;
3729 	struct buffer_page *bpage;
3730 	unsigned long addr;
3731 
3732 	new_index = rb_event_index(cpu_buffer, event);
3733 	old_index = new_index + rb_event_ts_length(event);
3734 	addr = (unsigned long)event;
3735 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
3736 
3737 	bpage = READ_ONCE(cpu_buffer->tail_page);
3738 
3739 	/*
3740 	 * Make sure the tail_page is still the same and
3741 	 * the next write location is the end of this event
3742 	 */
3743 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
3744 		unsigned long write_mask =
3745 			local_read(&bpage->write) & ~RB_WRITE_MASK;
3746 		unsigned long event_length = rb_event_length(event);
3747 
3748 		/*
3749 		 * For the before_stamp to be different than the write_stamp
3750 		 * to make sure that the next event adds an absolute
3751 		 * value and does not rely on the saved write stamp, which
3752 		 * is now going to be bogus.
3753 		 *
3754 		 * By setting the before_stamp to zero, the next event
3755 		 * is not going to use the write_stamp and will instead
3756 		 * create an absolute timestamp. This means there's no
3757 		 * reason to update the wirte_stamp!
3758 		 */
3759 		rb_time_set(&cpu_buffer->before_stamp, 0);
3760 
3761 		/*
3762 		 * If an event were to come in now, it would see that the
3763 		 * write_stamp and the before_stamp are different, and assume
3764 		 * that this event just added itself before updating
3765 		 * the write stamp. The interrupting event will fix the
3766 		 * write stamp for us, and use an absolute timestamp.
3767 		 */
3768 
3769 		/*
3770 		 * This is on the tail page. It is possible that
3771 		 * a write could come in and move the tail page
3772 		 * and write to the next page. That is fine
3773 		 * because we just shorten what is on this page.
3774 		 */
3775 		old_index += write_mask;
3776 		new_index += write_mask;
3777 
3778 		/* caution: old_index gets updated on cmpxchg failure */
3779 		if (local_try_cmpxchg(&bpage->write, &old_index, new_index)) {
3780 			/* update counters */
3781 			local_sub(event_length, &cpu_buffer->entries_bytes);
3782 			return true;
3783 		}
3784 	}
3785 
3786 	/* could not discard */
3787 	return false;
3788 }
3789 
3790 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
3791 {
3792 	local_inc(&cpu_buffer->committing);
3793 	local_inc(&cpu_buffer->commits);
3794 }
3795 
3796 static __always_inline void
3797 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
3798 {
3799 	unsigned long max_count;
3800 
3801 	/*
3802 	 * We only race with interrupts and NMIs on this CPU.
3803 	 * If we own the commit event, then we can commit
3804 	 * all others that interrupted us, since the interruptions
3805 	 * are in stack format (they finish before they come
3806 	 * back to us). This allows us to do a simple loop to
3807 	 * assign the commit to the tail.
3808 	 */
3809  again:
3810 	max_count = cpu_buffer->nr_pages * 100;
3811 
3812 	while (cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)) {
3813 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
3814 			return;
3815 		if (RB_WARN_ON(cpu_buffer,
3816 			       rb_is_reader_page(cpu_buffer->tail_page)))
3817 			return;
3818 		/*
3819 		 * No need for a memory barrier here, as the update
3820 		 * of the tail_page did it for this page.
3821 		 */
3822 		local_set(&cpu_buffer->commit_page->page->commit,
3823 			  rb_page_write(cpu_buffer->commit_page));
3824 		rb_inc_page(&cpu_buffer->commit_page);
3825 		if (cpu_buffer->ring_meta) {
3826 			struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
3827 			meta->commit_buffer = (unsigned long)cpu_buffer->commit_page->page;
3828 		}
3829 		/* add barrier to keep gcc from optimizing too much */
3830 		barrier();
3831 	}
3832 	while (rb_commit_index(cpu_buffer) !=
3833 	       rb_page_write(cpu_buffer->commit_page)) {
3834 
3835 		/* Make sure the readers see the content of what is committed. */
3836 		smp_wmb();
3837 		local_set(&cpu_buffer->commit_page->page->commit,
3838 			  rb_page_write(cpu_buffer->commit_page));
3839 		RB_WARN_ON(cpu_buffer,
3840 			   local_read(&cpu_buffer->commit_page->page->commit) &
3841 			   ~RB_WRITE_MASK);
3842 		barrier();
3843 	}
3844 
3845 	/* again, keep gcc from optimizing */
3846 	barrier();
3847 
3848 	/*
3849 	 * If an interrupt came in just after the first while loop
3850 	 * and pushed the tail page forward, we will be left with
3851 	 * a dangling commit that will never go forward.
3852 	 */
3853 	if (unlikely(cpu_buffer->commit_page != READ_ONCE(cpu_buffer->tail_page)))
3854 		goto again;
3855 }
3856 
3857 static __always_inline void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
3858 {
3859 	unsigned long commits;
3860 
3861 	if (RB_WARN_ON(cpu_buffer,
3862 		       !local_read(&cpu_buffer->committing)))
3863 		return;
3864 
3865  again:
3866 	commits = local_read(&cpu_buffer->commits);
3867 	/* synchronize with interrupts */
3868 	barrier();
3869 	if (local_read(&cpu_buffer->committing) == 1)
3870 		rb_set_commit_to_write(cpu_buffer);
3871 
3872 	local_dec(&cpu_buffer->committing);
3873 
3874 	/* synchronize with interrupts */
3875 	barrier();
3876 
3877 	/*
3878 	 * Need to account for interrupts coming in between the
3879 	 * updating of the commit page and the clearing of the
3880 	 * committing counter.
3881 	 */
3882 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
3883 	    !local_read(&cpu_buffer->committing)) {
3884 		local_inc(&cpu_buffer->committing);
3885 		goto again;
3886 	}
3887 }
3888 
3889 static inline void rb_event_discard(struct ring_buffer_event *event)
3890 {
3891 	if (extended_time(event))
3892 		event = skip_time_extend(event);
3893 
3894 	/* array[0] holds the actual length for the discarded event */
3895 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
3896 	event->type_len = RINGBUF_TYPE_PADDING;
3897 	/* time delta must be non zero */
3898 	if (!event->time_delta)
3899 		event->time_delta = 1;
3900 }
3901 
3902 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer)
3903 {
3904 	local_inc(&cpu_buffer->entries);
3905 	rb_end_commit(cpu_buffer);
3906 }
3907 
3908 static __always_inline void
3909 rb_wakeups(struct trace_buffer *buffer, struct ring_buffer_per_cpu *cpu_buffer)
3910 {
3911 	if (buffer->irq_work.waiters_pending) {
3912 		buffer->irq_work.waiters_pending = false;
3913 		/* irq_work_queue() supplies it's own memory barriers */
3914 		irq_work_queue(&buffer->irq_work.work);
3915 	}
3916 
3917 	if (cpu_buffer->irq_work.waiters_pending) {
3918 		cpu_buffer->irq_work.waiters_pending = false;
3919 		/* irq_work_queue() supplies it's own memory barriers */
3920 		irq_work_queue(&cpu_buffer->irq_work.work);
3921 	}
3922 
3923 	if (cpu_buffer->last_pages_touch == local_read(&cpu_buffer->pages_touched))
3924 		return;
3925 
3926 	if (cpu_buffer->reader_page == cpu_buffer->commit_page)
3927 		return;
3928 
3929 	if (!cpu_buffer->irq_work.full_waiters_pending)
3930 		return;
3931 
3932 	cpu_buffer->last_pages_touch = local_read(&cpu_buffer->pages_touched);
3933 
3934 	if (!full_hit(buffer, cpu_buffer->cpu, cpu_buffer->shortest_full))
3935 		return;
3936 
3937 	cpu_buffer->irq_work.wakeup_full = true;
3938 	cpu_buffer->irq_work.full_waiters_pending = false;
3939 	/* irq_work_queue() supplies it's own memory barriers */
3940 	irq_work_queue(&cpu_buffer->irq_work.work);
3941 }
3942 
3943 #ifdef CONFIG_RING_BUFFER_RECORD_RECURSION
3944 # define do_ring_buffer_record_recursion()	\
3945 	do_ftrace_record_recursion(_THIS_IP_, _RET_IP_)
3946 #else
3947 # define do_ring_buffer_record_recursion() do { } while (0)
3948 #endif
3949 
3950 /*
3951  * The lock and unlock are done within a preempt disable section.
3952  * The current_context per_cpu variable can only be modified
3953  * by the current task between lock and unlock. But it can
3954  * be modified more than once via an interrupt. To pass this
3955  * information from the lock to the unlock without having to
3956  * access the 'in_interrupt()' functions again (which do show
3957  * a bit of overhead in something as critical as function tracing,
3958  * we use a bitmask trick.
3959  *
3960  *  bit 1 =  NMI context
3961  *  bit 2 =  IRQ context
3962  *  bit 3 =  SoftIRQ context
3963  *  bit 4 =  normal context.
3964  *
3965  * This works because this is the order of contexts that can
3966  * preempt other contexts. A SoftIRQ never preempts an IRQ
3967  * context.
3968  *
3969  * When the context is determined, the corresponding bit is
3970  * checked and set (if it was set, then a recursion of that context
3971  * happened).
3972  *
3973  * On unlock, we need to clear this bit. To do so, just subtract
3974  * 1 from the current_context and AND it to itself.
3975  *
3976  * (binary)
3977  *  101 - 1 = 100
3978  *  101 & 100 = 100 (clearing bit zero)
3979  *
3980  *  1010 - 1 = 1001
3981  *  1010 & 1001 = 1000 (clearing bit 1)
3982  *
3983  * The least significant bit can be cleared this way, and it
3984  * just so happens that it is the same bit corresponding to
3985  * the current context.
3986  *
3987  * Now the TRANSITION bit breaks the above slightly. The TRANSITION bit
3988  * is set when a recursion is detected at the current context, and if
3989  * the TRANSITION bit is already set, it will fail the recursion.
3990  * This is needed because there's a lag between the changing of
3991  * interrupt context and updating the preempt count. In this case,
3992  * a false positive will be found. To handle this, one extra recursion
3993  * is allowed, and this is done by the TRANSITION bit. If the TRANSITION
3994  * bit is already set, then it is considered a recursion and the function
3995  * ends. Otherwise, the TRANSITION bit is set, and that bit is returned.
3996  *
3997  * On the trace_recursive_unlock(), the TRANSITION bit will be the first
3998  * to be cleared. Even if it wasn't the context that set it. That is,
3999  * if an interrupt comes in while NORMAL bit is set and the ring buffer
4000  * is called before preempt_count() is updated, since the check will
4001  * be on the NORMAL bit, the TRANSITION bit will then be set. If an
4002  * NMI then comes in, it will set the NMI bit, but when the NMI code
4003  * does the trace_recursive_unlock() it will clear the TRANSITION bit
4004  * and leave the NMI bit set. But this is fine, because the interrupt
4005  * code that set the TRANSITION bit will then clear the NMI bit when it
4006  * calls trace_recursive_unlock(). If another NMI comes in, it will
4007  * set the TRANSITION bit and continue.
4008  *
4009  * Note: The TRANSITION bit only handles a single transition between context.
4010  */
4011 
4012 static __always_inline bool
4013 trace_recursive_lock(struct ring_buffer_per_cpu *cpu_buffer)
4014 {
4015 	unsigned int val = cpu_buffer->current_context;
4016 	int bit = interrupt_context_level();
4017 
4018 	bit = RB_CTX_NORMAL - bit;
4019 
4020 	if (unlikely(val & (1 << (bit + cpu_buffer->nest)))) {
4021 		/*
4022 		 * It is possible that this was called by transitioning
4023 		 * between interrupt context, and preempt_count() has not
4024 		 * been updated yet. In this case, use the TRANSITION bit.
4025 		 */
4026 		bit = RB_CTX_TRANSITION;
4027 		if (val & (1 << (bit + cpu_buffer->nest))) {
4028 			do_ring_buffer_record_recursion();
4029 			return true;
4030 		}
4031 	}
4032 
4033 	val |= (1 << (bit + cpu_buffer->nest));
4034 	cpu_buffer->current_context = val;
4035 
4036 	return false;
4037 }
4038 
4039 static __always_inline void
4040 trace_recursive_unlock(struct ring_buffer_per_cpu *cpu_buffer)
4041 {
4042 	cpu_buffer->current_context &=
4043 		cpu_buffer->current_context - (1 << cpu_buffer->nest);
4044 }
4045 
4046 /* The recursive locking above uses 5 bits */
4047 #define NESTED_BITS 5
4048 
4049 /**
4050  * ring_buffer_nest_start - Allow to trace while nested
4051  * @buffer: The ring buffer to modify
4052  *
4053  * The ring buffer has a safety mechanism to prevent recursion.
4054  * But there may be a case where a trace needs to be done while
4055  * tracing something else. In this case, calling this function
4056  * will allow this function to nest within a currently active
4057  * ring_buffer_lock_reserve().
4058  *
4059  * Call this function before calling another ring_buffer_lock_reserve() and
4060  * call ring_buffer_nest_end() after the nested ring_buffer_unlock_commit().
4061  */
4062 void ring_buffer_nest_start(struct trace_buffer *buffer)
4063 {
4064 	struct ring_buffer_per_cpu *cpu_buffer;
4065 	int cpu;
4066 
4067 	/* Enabled by ring_buffer_nest_end() */
4068 	preempt_disable_notrace();
4069 	cpu = raw_smp_processor_id();
4070 	cpu_buffer = buffer->buffers[cpu];
4071 	/* This is the shift value for the above recursive locking */
4072 	cpu_buffer->nest += NESTED_BITS;
4073 }
4074 
4075 /**
4076  * ring_buffer_nest_end - Allow to trace while nested
4077  * @buffer: The ring buffer to modify
4078  *
4079  * Must be called after ring_buffer_nest_start() and after the
4080  * ring_buffer_unlock_commit().
4081  */
4082 void ring_buffer_nest_end(struct trace_buffer *buffer)
4083 {
4084 	struct ring_buffer_per_cpu *cpu_buffer;
4085 	int cpu;
4086 
4087 	/* disabled by ring_buffer_nest_start() */
4088 	cpu = raw_smp_processor_id();
4089 	cpu_buffer = buffer->buffers[cpu];
4090 	/* This is the shift value for the above recursive locking */
4091 	cpu_buffer->nest -= NESTED_BITS;
4092 	preempt_enable_notrace();
4093 }
4094 
4095 /**
4096  * ring_buffer_unlock_commit - commit a reserved
4097  * @buffer: The buffer to commit to
4098  *
4099  * This commits the data to the ring buffer, and releases any locks held.
4100  *
4101  * Must be paired with ring_buffer_lock_reserve.
4102  */
4103 int ring_buffer_unlock_commit(struct trace_buffer *buffer)
4104 {
4105 	struct ring_buffer_per_cpu *cpu_buffer;
4106 	int cpu = raw_smp_processor_id();
4107 
4108 	cpu_buffer = buffer->buffers[cpu];
4109 
4110 	rb_commit(cpu_buffer);
4111 
4112 	rb_wakeups(buffer, cpu_buffer);
4113 
4114 	trace_recursive_unlock(cpu_buffer);
4115 
4116 	preempt_enable_notrace();
4117 
4118 	return 0;
4119 }
4120 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
4121 
4122 /* Special value to validate all deltas on a page. */
4123 #define CHECK_FULL_PAGE		1L
4124 
4125 #ifdef CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS
4126 
4127 static const char *show_irq_str(int bits)
4128 {
4129 	const char *type[] = {
4130 		".",	// 0
4131 		"s",	// 1
4132 		"h",	// 2
4133 		"Hs",	// 3
4134 		"n",	// 4
4135 		"Ns",	// 5
4136 		"Nh",	// 6
4137 		"NHs",	// 7
4138 	};
4139 
4140 	return type[bits];
4141 }
4142 
4143 /* Assume this is a trace event */
4144 static const char *show_flags(struct ring_buffer_event *event)
4145 {
4146 	struct trace_entry *entry;
4147 	int bits = 0;
4148 
4149 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4150 		return "X";
4151 
4152 	entry = ring_buffer_event_data(event);
4153 
4154 	if (entry->flags & TRACE_FLAG_SOFTIRQ)
4155 		bits |= 1;
4156 
4157 	if (entry->flags & TRACE_FLAG_HARDIRQ)
4158 		bits |= 2;
4159 
4160 	if (entry->flags & TRACE_FLAG_NMI)
4161 		bits |= 4;
4162 
4163 	return show_irq_str(bits);
4164 }
4165 
4166 static const char *show_irq(struct ring_buffer_event *event)
4167 {
4168 	struct trace_entry *entry;
4169 
4170 	if (rb_event_data_length(event) - RB_EVNT_HDR_SIZE < sizeof(*entry))
4171 		return "";
4172 
4173 	entry = ring_buffer_event_data(event);
4174 	if (entry->flags & TRACE_FLAG_IRQS_OFF)
4175 		return "d";
4176 	return "";
4177 }
4178 
4179 static const char *show_interrupt_level(void)
4180 {
4181 	unsigned long pc = preempt_count();
4182 	unsigned char level = 0;
4183 
4184 	if (pc & SOFTIRQ_OFFSET)
4185 		level |= 1;
4186 
4187 	if (pc & HARDIRQ_MASK)
4188 		level |= 2;
4189 
4190 	if (pc & NMI_MASK)
4191 		level |= 4;
4192 
4193 	return show_irq_str(level);
4194 }
4195 
4196 static void dump_buffer_page(struct buffer_data_page *bpage,
4197 			     struct rb_event_info *info,
4198 			     unsigned long tail)
4199 {
4200 	struct ring_buffer_event *event;
4201 	u64 ts, delta;
4202 	int e;
4203 
4204 	ts = bpage->time_stamp;
4205 	pr_warn("  [%lld] PAGE TIME STAMP\n", ts);
4206 
4207 	for (e = 0; e < tail; e += rb_event_length(event)) {
4208 
4209 		event = (struct ring_buffer_event *)(bpage->data + e);
4210 
4211 		switch (event->type_len) {
4212 
4213 		case RINGBUF_TYPE_TIME_EXTEND:
4214 			delta = rb_event_time_stamp(event);
4215 			ts += delta;
4216 			pr_warn(" 0x%x: [%lld] delta:%lld TIME EXTEND\n",
4217 				e, ts, delta);
4218 			break;
4219 
4220 		case RINGBUF_TYPE_TIME_STAMP:
4221 			delta = rb_event_time_stamp(event);
4222 			ts = rb_fix_abs_ts(delta, ts);
4223 			pr_warn(" 0x%x:  [%lld] absolute:%lld TIME STAMP\n",
4224 				e, ts, delta);
4225 			break;
4226 
4227 		case RINGBUF_TYPE_PADDING:
4228 			ts += event->time_delta;
4229 			pr_warn(" 0x%x:  [%lld] delta:%d PADDING\n",
4230 				e, ts, event->time_delta);
4231 			break;
4232 
4233 		case RINGBUF_TYPE_DATA:
4234 			ts += event->time_delta;
4235 			pr_warn(" 0x%x:  [%lld] delta:%d %s%s\n",
4236 				e, ts, event->time_delta,
4237 				show_flags(event), show_irq(event));
4238 			break;
4239 
4240 		default:
4241 			break;
4242 		}
4243 	}
4244 	pr_warn("expected end:0x%lx last event actually ended at:0x%x\n", tail, e);
4245 }
4246 
4247 static DEFINE_PER_CPU(atomic_t, checking);
4248 static atomic_t ts_dump;
4249 
4250 #define buffer_warn_return(fmt, ...)					\
4251 	do {								\
4252 		/* If another report is happening, ignore this one */	\
4253 		if (atomic_inc_return(&ts_dump) != 1) {			\
4254 			atomic_dec(&ts_dump);				\
4255 			goto out;					\
4256 		}							\
4257 		atomic_inc(&cpu_buffer->record_disabled);		\
4258 		pr_warn(fmt, ##__VA_ARGS__);				\
4259 		dump_buffer_page(bpage, info, tail);			\
4260 		atomic_dec(&ts_dump);					\
4261 		/* There's some cases in boot up that this can happen */ \
4262 		if (WARN_ON_ONCE(system_state != SYSTEM_BOOTING))	\
4263 			/* Do not re-enable checking */			\
4264 			return;						\
4265 	} while (0)
4266 
4267 /*
4268  * Check if the current event time stamp matches the deltas on
4269  * the buffer page.
4270  */
4271 static void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4272 			 struct rb_event_info *info,
4273 			 unsigned long tail)
4274 {
4275 	struct buffer_data_page *bpage;
4276 	u64 ts, delta;
4277 	bool full = false;
4278 	int ret;
4279 
4280 	bpage = info->tail_page->page;
4281 
4282 	if (tail == CHECK_FULL_PAGE) {
4283 		full = true;
4284 		tail = local_read(&bpage->commit);
4285 	} else if (info->add_timestamp &
4286 		   (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE)) {
4287 		/* Ignore events with absolute time stamps */
4288 		return;
4289 	}
4290 
4291 	/*
4292 	 * Do not check the first event (skip possible extends too).
4293 	 * Also do not check if previous events have not been committed.
4294 	 */
4295 	if (tail <= 8 || tail > local_read(&bpage->commit))
4296 		return;
4297 
4298 	/*
4299 	 * If this interrupted another event,
4300 	 */
4301 	if (atomic_inc_return(this_cpu_ptr(&checking)) != 1)
4302 		goto out;
4303 
4304 	ret = rb_read_data_buffer(bpage, tail, cpu_buffer->cpu, &ts, &delta);
4305 	if (ret < 0) {
4306 		if (delta < ts) {
4307 			buffer_warn_return("[CPU: %d]ABSOLUTE TIME WENT BACKWARDS: last ts: %lld absolute ts: %lld\n",
4308 					   cpu_buffer->cpu, ts, delta);
4309 			goto out;
4310 		}
4311 	}
4312 	if ((full && ts > info->ts) ||
4313 	    (!full && ts + info->delta != info->ts)) {
4314 		buffer_warn_return("[CPU: %d]TIME DOES NOT MATCH expected:%lld actual:%lld delta:%lld before:%lld after:%lld%s context:%s\n",
4315 				   cpu_buffer->cpu,
4316 				   ts + info->delta, info->ts, info->delta,
4317 				   info->before, info->after,
4318 				   full ? " (full)" : "", show_interrupt_level());
4319 	}
4320 out:
4321 	atomic_dec(this_cpu_ptr(&checking));
4322 }
4323 #else
4324 static inline void check_buffer(struct ring_buffer_per_cpu *cpu_buffer,
4325 			 struct rb_event_info *info,
4326 			 unsigned long tail)
4327 {
4328 }
4329 #endif /* CONFIG_RING_BUFFER_VALIDATE_TIME_DELTAS */
4330 
4331 static struct ring_buffer_event *
4332 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
4333 		  struct rb_event_info *info)
4334 {
4335 	struct ring_buffer_event *event;
4336 	struct buffer_page *tail_page;
4337 	unsigned long tail, write, w;
4338 
4339 	/* Don't let the compiler play games with cpu_buffer->tail_page */
4340 	tail_page = info->tail_page = READ_ONCE(cpu_buffer->tail_page);
4341 
4342  /*A*/	w = local_read(&tail_page->write) & RB_WRITE_MASK;
4343 	barrier();
4344 	rb_time_read(&cpu_buffer->before_stamp, &info->before);
4345 	rb_time_read(&cpu_buffer->write_stamp, &info->after);
4346 	barrier();
4347 	info->ts = rb_time_stamp(cpu_buffer->buffer);
4348 
4349 	if ((info->add_timestamp & RB_ADD_STAMP_ABSOLUTE)) {
4350 		info->delta = info->ts;
4351 	} else {
4352 		/*
4353 		 * If interrupting an event time update, we may need an
4354 		 * absolute timestamp.
4355 		 * Don't bother if this is the start of a new page (w == 0).
4356 		 */
4357 		if (!w) {
4358 			/* Use the sub-buffer timestamp */
4359 			info->delta = 0;
4360 		} else if (unlikely(info->before != info->after)) {
4361 			info->add_timestamp |= RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND;
4362 			info->length += RB_LEN_TIME_EXTEND;
4363 		} else {
4364 			info->delta = info->ts - info->after;
4365 			if (unlikely(test_time_stamp(info->delta))) {
4366 				info->add_timestamp |= RB_ADD_STAMP_EXTEND;
4367 				info->length += RB_LEN_TIME_EXTEND;
4368 			}
4369 		}
4370 	}
4371 
4372  /*B*/	rb_time_set(&cpu_buffer->before_stamp, info->ts);
4373 
4374  /*C*/	write = local_add_return(info->length, &tail_page->write);
4375 
4376 	/* set write to only the index of the write */
4377 	write &= RB_WRITE_MASK;
4378 
4379 	tail = write - info->length;
4380 
4381 	/* See if we shot pass the end of this buffer page */
4382 	if (unlikely(write > cpu_buffer->buffer->subbuf_size)) {
4383 		check_buffer(cpu_buffer, info, CHECK_FULL_PAGE);
4384 		return rb_move_tail(cpu_buffer, tail, info);
4385 	}
4386 
4387 	if (likely(tail == w)) {
4388 		/* Nothing interrupted us between A and C */
4389  /*D*/		rb_time_set(&cpu_buffer->write_stamp, info->ts);
4390 		/*
4391 		 * If something came in between C and D, the write stamp
4392 		 * may now not be in sync. But that's fine as the before_stamp
4393 		 * will be different and then next event will just be forced
4394 		 * to use an absolute timestamp.
4395 		 */
4396 		if (likely(!(info->add_timestamp &
4397 			     (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4398 			/* This did not interrupt any time update */
4399 			info->delta = info->ts - info->after;
4400 		else
4401 			/* Just use full timestamp for interrupting event */
4402 			info->delta = info->ts;
4403 		check_buffer(cpu_buffer, info, tail);
4404 	} else {
4405 		u64 ts;
4406 		/* SLOW PATH - Interrupted between A and C */
4407 
4408 		/* Save the old before_stamp */
4409 		rb_time_read(&cpu_buffer->before_stamp, &info->before);
4410 
4411 		/*
4412 		 * Read a new timestamp and update the before_stamp to make
4413 		 * the next event after this one force using an absolute
4414 		 * timestamp. This is in case an interrupt were to come in
4415 		 * between E and F.
4416 		 */
4417 		ts = rb_time_stamp(cpu_buffer->buffer);
4418 		rb_time_set(&cpu_buffer->before_stamp, ts);
4419 
4420 		barrier();
4421  /*E*/		rb_time_read(&cpu_buffer->write_stamp, &info->after);
4422 		barrier();
4423  /*F*/		if (write == (local_read(&tail_page->write) & RB_WRITE_MASK) &&
4424 		    info->after == info->before && info->after < ts) {
4425 			/*
4426 			 * Nothing came after this event between C and F, it is
4427 			 * safe to use info->after for the delta as it
4428 			 * matched info->before and is still valid.
4429 			 */
4430 			info->delta = ts - info->after;
4431 		} else {
4432 			/*
4433 			 * Interrupted between C and F:
4434 			 * Lost the previous events time stamp. Just set the
4435 			 * delta to zero, and this will be the same time as
4436 			 * the event this event interrupted. And the events that
4437 			 * came after this will still be correct (as they would
4438 			 * have built their delta on the previous event.
4439 			 */
4440 			info->delta = 0;
4441 		}
4442 		info->ts = ts;
4443 		info->add_timestamp &= ~RB_ADD_STAMP_FORCE;
4444 	}
4445 
4446 	/*
4447 	 * If this is the first commit on the page, then it has the same
4448 	 * timestamp as the page itself.
4449 	 */
4450 	if (unlikely(!tail && !(info->add_timestamp &
4451 				(RB_ADD_STAMP_FORCE | RB_ADD_STAMP_ABSOLUTE))))
4452 		info->delta = 0;
4453 
4454 	/* We reserved something on the buffer */
4455 
4456 	event = __rb_page_index(tail_page, tail);
4457 	rb_update_event(cpu_buffer, event, info);
4458 
4459 	local_inc(&tail_page->entries);
4460 
4461 	/*
4462 	 * If this is the first commit on the page, then update
4463 	 * its timestamp.
4464 	 */
4465 	if (unlikely(!tail))
4466 		tail_page->page->time_stamp = info->ts;
4467 
4468 	/* account for these added bytes */
4469 	local_add(info->length, &cpu_buffer->entries_bytes);
4470 
4471 	return event;
4472 }
4473 
4474 static __always_inline struct ring_buffer_event *
4475 rb_reserve_next_event(struct trace_buffer *buffer,
4476 		      struct ring_buffer_per_cpu *cpu_buffer,
4477 		      unsigned long length)
4478 {
4479 	struct ring_buffer_event *event;
4480 	struct rb_event_info info;
4481 	int nr_loops = 0;
4482 	int add_ts_default;
4483 
4484 	/*
4485 	 * ring buffer does cmpxchg as well as atomic64 operations
4486 	 * (which some archs use locking for atomic64), make sure this
4487 	 * is safe in NMI context
4488 	 */
4489 	if ((!IS_ENABLED(CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG) ||
4490 	     IS_ENABLED(CONFIG_GENERIC_ATOMIC64)) &&
4491 	    (unlikely(in_nmi()))) {
4492 		return NULL;
4493 	}
4494 
4495 	rb_start_commit(cpu_buffer);
4496 	/* The commit page can not change after this */
4497 
4498 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
4499 	/*
4500 	 * Due to the ability to swap a cpu buffer from a buffer
4501 	 * it is possible it was swapped before we committed.
4502 	 * (committing stops a swap). We check for it here and
4503 	 * if it happened, we have to fail the write.
4504 	 */
4505 	barrier();
4506 	if (unlikely(READ_ONCE(cpu_buffer->buffer) != buffer)) {
4507 		local_dec(&cpu_buffer->committing);
4508 		local_dec(&cpu_buffer->commits);
4509 		return NULL;
4510 	}
4511 #endif
4512 
4513 	info.length = rb_calculate_event_length(length);
4514 
4515 	if (ring_buffer_time_stamp_abs(cpu_buffer->buffer)) {
4516 		add_ts_default = RB_ADD_STAMP_ABSOLUTE;
4517 		info.length += RB_LEN_TIME_EXTEND;
4518 		if (info.length > cpu_buffer->buffer->max_data_size)
4519 			goto out_fail;
4520 	} else {
4521 		add_ts_default = RB_ADD_STAMP_NONE;
4522 	}
4523 
4524  again:
4525 	info.add_timestamp = add_ts_default;
4526 	info.delta = 0;
4527 
4528 	/*
4529 	 * We allow for interrupts to reenter here and do a trace.
4530 	 * If one does, it will cause this original code to loop
4531 	 * back here. Even with heavy interrupts happening, this
4532 	 * should only happen a few times in a row. If this happens
4533 	 * 1000 times in a row, there must be either an interrupt
4534 	 * storm or we have something buggy.
4535 	 * Bail!
4536 	 */
4537 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
4538 		goto out_fail;
4539 
4540 	event = __rb_reserve_next(cpu_buffer, &info);
4541 
4542 	if (unlikely(PTR_ERR(event) == -EAGAIN)) {
4543 		if (info.add_timestamp & (RB_ADD_STAMP_FORCE | RB_ADD_STAMP_EXTEND))
4544 			info.length -= RB_LEN_TIME_EXTEND;
4545 		goto again;
4546 	}
4547 
4548 	if (likely(event))
4549 		return event;
4550  out_fail:
4551 	rb_end_commit(cpu_buffer);
4552 	return NULL;
4553 }
4554 
4555 /**
4556  * ring_buffer_lock_reserve - reserve a part of the buffer
4557  * @buffer: the ring buffer to reserve from
4558  * @length: the length of the data to reserve (excluding event header)
4559  *
4560  * Returns a reserved event on the ring buffer to copy directly to.
4561  * The user of this interface will need to get the body to write into
4562  * and can use the ring_buffer_event_data() interface.
4563  *
4564  * The length is the length of the data needed, not the event length
4565  * which also includes the event header.
4566  *
4567  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
4568  * If NULL is returned, then nothing has been allocated or locked.
4569  */
4570 struct ring_buffer_event *
4571 ring_buffer_lock_reserve(struct trace_buffer *buffer, unsigned long length)
4572 {
4573 	struct ring_buffer_per_cpu *cpu_buffer;
4574 	struct ring_buffer_event *event;
4575 	int cpu;
4576 
4577 	/* If we are tracing schedule, we don't want to recurse */
4578 	preempt_disable_notrace();
4579 
4580 	if (unlikely(atomic_read(&buffer->record_disabled)))
4581 		goto out;
4582 
4583 	cpu = raw_smp_processor_id();
4584 
4585 	if (unlikely(!cpumask_test_cpu(cpu, buffer->cpumask)))
4586 		goto out;
4587 
4588 	cpu_buffer = buffer->buffers[cpu];
4589 
4590 	if (unlikely(atomic_read(&cpu_buffer->record_disabled)))
4591 		goto out;
4592 
4593 	if (unlikely(length > buffer->max_data_size))
4594 		goto out;
4595 
4596 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4597 		goto out;
4598 
4599 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4600 	if (!event)
4601 		goto out_unlock;
4602 
4603 	return event;
4604 
4605  out_unlock:
4606 	trace_recursive_unlock(cpu_buffer);
4607  out:
4608 	preempt_enable_notrace();
4609 	return NULL;
4610 }
4611 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
4612 
4613 /*
4614  * Decrement the entries to the page that an event is on.
4615  * The event does not even need to exist, only the pointer
4616  * to the page it is on. This may only be called before the commit
4617  * takes place.
4618  */
4619 static inline void
4620 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
4621 		   struct ring_buffer_event *event)
4622 {
4623 	unsigned long addr = (unsigned long)event;
4624 	struct buffer_page *bpage = cpu_buffer->commit_page;
4625 	struct buffer_page *start;
4626 
4627 	addr &= ~((PAGE_SIZE << cpu_buffer->buffer->subbuf_order) - 1);
4628 
4629 	/* Do the likely case first */
4630 	if (likely(bpage->page == (void *)addr)) {
4631 		local_dec(&bpage->entries);
4632 		return;
4633 	}
4634 
4635 	/*
4636 	 * Because the commit page may be on the reader page we
4637 	 * start with the next page and check the end loop there.
4638 	 */
4639 	rb_inc_page(&bpage);
4640 	start = bpage;
4641 	do {
4642 		if (bpage->page == (void *)addr) {
4643 			local_dec(&bpage->entries);
4644 			return;
4645 		}
4646 		rb_inc_page(&bpage);
4647 	} while (bpage != start);
4648 
4649 	/* commit not part of this buffer?? */
4650 	RB_WARN_ON(cpu_buffer, 1);
4651 }
4652 
4653 /**
4654  * ring_buffer_discard_commit - discard an event that has not been committed
4655  * @buffer: the ring buffer
4656  * @event: non committed event to discard
4657  *
4658  * Sometimes an event that is in the ring buffer needs to be ignored.
4659  * This function lets the user discard an event in the ring buffer
4660  * and then that event will not be read later.
4661  *
4662  * This function only works if it is called before the item has been
4663  * committed. It will try to free the event from the ring buffer
4664  * if another event has not been added behind it.
4665  *
4666  * If another event has been added behind it, it will set the event
4667  * up as discarded, and perform the commit.
4668  *
4669  * If this function is called, do not call ring_buffer_unlock_commit on
4670  * the event.
4671  */
4672 void ring_buffer_discard_commit(struct trace_buffer *buffer,
4673 				struct ring_buffer_event *event)
4674 {
4675 	struct ring_buffer_per_cpu *cpu_buffer;
4676 	int cpu;
4677 
4678 	/* The event is discarded regardless */
4679 	rb_event_discard(event);
4680 
4681 	cpu = smp_processor_id();
4682 	cpu_buffer = buffer->buffers[cpu];
4683 
4684 	/*
4685 	 * This must only be called if the event has not been
4686 	 * committed yet. Thus we can assume that preemption
4687 	 * is still disabled.
4688 	 */
4689 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
4690 
4691 	rb_decrement_entry(cpu_buffer, event);
4692 	if (rb_try_to_discard(cpu_buffer, event))
4693 		goto out;
4694 
4695  out:
4696 	rb_end_commit(cpu_buffer);
4697 
4698 	trace_recursive_unlock(cpu_buffer);
4699 
4700 	preempt_enable_notrace();
4701 
4702 }
4703 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
4704 
4705 /**
4706  * ring_buffer_write - write data to the buffer without reserving
4707  * @buffer: The ring buffer to write to.
4708  * @length: The length of the data being written (excluding the event header)
4709  * @data: The data to write to the buffer.
4710  *
4711  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
4712  * one function. If you already have the data to write to the buffer, it
4713  * may be easier to simply call this function.
4714  *
4715  * Note, like ring_buffer_lock_reserve, the length is the length of the data
4716  * and not the length of the event which would hold the header.
4717  */
4718 int ring_buffer_write(struct trace_buffer *buffer,
4719 		      unsigned long length,
4720 		      void *data)
4721 {
4722 	struct ring_buffer_per_cpu *cpu_buffer;
4723 	struct ring_buffer_event *event;
4724 	void *body;
4725 	int ret = -EBUSY;
4726 	int cpu;
4727 
4728 	preempt_disable_notrace();
4729 
4730 	if (atomic_read(&buffer->record_disabled))
4731 		goto out;
4732 
4733 	cpu = raw_smp_processor_id();
4734 
4735 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4736 		goto out;
4737 
4738 	cpu_buffer = buffer->buffers[cpu];
4739 
4740 	if (atomic_read(&cpu_buffer->record_disabled))
4741 		goto out;
4742 
4743 	if (length > buffer->max_data_size)
4744 		goto out;
4745 
4746 	if (unlikely(trace_recursive_lock(cpu_buffer)))
4747 		goto out;
4748 
4749 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
4750 	if (!event)
4751 		goto out_unlock;
4752 
4753 	body = rb_event_data(event);
4754 
4755 	memcpy(body, data, length);
4756 
4757 	rb_commit(cpu_buffer);
4758 
4759 	rb_wakeups(buffer, cpu_buffer);
4760 
4761 	ret = 0;
4762 
4763  out_unlock:
4764 	trace_recursive_unlock(cpu_buffer);
4765 
4766  out:
4767 	preempt_enable_notrace();
4768 
4769 	return ret;
4770 }
4771 EXPORT_SYMBOL_GPL(ring_buffer_write);
4772 
4773 /*
4774  * The total entries in the ring buffer is the running counter
4775  * of entries entered into the ring buffer, minus the sum of
4776  * the entries read from the ring buffer and the number of
4777  * entries that were overwritten.
4778  */
4779 static inline unsigned long
4780 rb_num_of_entries(struct ring_buffer_per_cpu *cpu_buffer)
4781 {
4782 	return local_read(&cpu_buffer->entries) -
4783 		(local_read(&cpu_buffer->overrun) + cpu_buffer->read);
4784 }
4785 
4786 static bool rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
4787 {
4788 	return !rb_num_of_entries(cpu_buffer);
4789 }
4790 
4791 /**
4792  * ring_buffer_record_disable - stop all writes into the buffer
4793  * @buffer: The ring buffer to stop writes to.
4794  *
4795  * This prevents all writes to the buffer. Any attempt to write
4796  * to the buffer after this will fail and return NULL.
4797  *
4798  * The caller should call synchronize_rcu() after this.
4799  */
4800 void ring_buffer_record_disable(struct trace_buffer *buffer)
4801 {
4802 	atomic_inc(&buffer->record_disabled);
4803 }
4804 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
4805 
4806 /**
4807  * ring_buffer_record_enable - enable writes to the buffer
4808  * @buffer: The ring buffer to enable writes
4809  *
4810  * Note, multiple disables will need the same number of enables
4811  * to truly enable the writing (much like preempt_disable).
4812  */
4813 void ring_buffer_record_enable(struct trace_buffer *buffer)
4814 {
4815 	atomic_dec(&buffer->record_disabled);
4816 }
4817 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
4818 
4819 /**
4820  * ring_buffer_record_off - stop all writes into the buffer
4821  * @buffer: The ring buffer to stop writes to.
4822  *
4823  * This prevents all writes to the buffer. Any attempt to write
4824  * to the buffer after this will fail and return NULL.
4825  *
4826  * This is different than ring_buffer_record_disable() as
4827  * it works like an on/off switch, where as the disable() version
4828  * must be paired with a enable().
4829  */
4830 void ring_buffer_record_off(struct trace_buffer *buffer)
4831 {
4832 	unsigned int rd;
4833 	unsigned int new_rd;
4834 
4835 	rd = atomic_read(&buffer->record_disabled);
4836 	do {
4837 		new_rd = rd | RB_BUFFER_OFF;
4838 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4839 }
4840 EXPORT_SYMBOL_GPL(ring_buffer_record_off);
4841 
4842 /**
4843  * ring_buffer_record_on - restart writes into the buffer
4844  * @buffer: The ring buffer to start writes to.
4845  *
4846  * This enables all writes to the buffer that was disabled by
4847  * ring_buffer_record_off().
4848  *
4849  * This is different than ring_buffer_record_enable() as
4850  * it works like an on/off switch, where as the enable() version
4851  * must be paired with a disable().
4852  */
4853 void ring_buffer_record_on(struct trace_buffer *buffer)
4854 {
4855 	unsigned int rd;
4856 	unsigned int new_rd;
4857 
4858 	rd = atomic_read(&buffer->record_disabled);
4859 	do {
4860 		new_rd = rd & ~RB_BUFFER_OFF;
4861 	} while (!atomic_try_cmpxchg(&buffer->record_disabled, &rd, new_rd));
4862 }
4863 EXPORT_SYMBOL_GPL(ring_buffer_record_on);
4864 
4865 /**
4866  * ring_buffer_record_is_on - return true if the ring buffer can write
4867  * @buffer: The ring buffer to see if write is enabled
4868  *
4869  * Returns true if the ring buffer is in a state that it accepts writes.
4870  */
4871 bool ring_buffer_record_is_on(struct trace_buffer *buffer)
4872 {
4873 	return !atomic_read(&buffer->record_disabled);
4874 }
4875 
4876 /**
4877  * ring_buffer_record_is_set_on - return true if the ring buffer is set writable
4878  * @buffer: The ring buffer to see if write is set enabled
4879  *
4880  * Returns true if the ring buffer is set writable by ring_buffer_record_on().
4881  * Note that this does NOT mean it is in a writable state.
4882  *
4883  * It may return true when the ring buffer has been disabled by
4884  * ring_buffer_record_disable(), as that is a temporary disabling of
4885  * the ring buffer.
4886  */
4887 bool ring_buffer_record_is_set_on(struct trace_buffer *buffer)
4888 {
4889 	return !(atomic_read(&buffer->record_disabled) & RB_BUFFER_OFF);
4890 }
4891 
4892 /**
4893  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
4894  * @buffer: The ring buffer to stop writes to.
4895  * @cpu: The CPU buffer to stop
4896  *
4897  * This prevents all writes to the buffer. Any attempt to write
4898  * to the buffer after this will fail and return NULL.
4899  *
4900  * The caller should call synchronize_rcu() after this.
4901  */
4902 void ring_buffer_record_disable_cpu(struct trace_buffer *buffer, int cpu)
4903 {
4904 	struct ring_buffer_per_cpu *cpu_buffer;
4905 
4906 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4907 		return;
4908 
4909 	cpu_buffer = buffer->buffers[cpu];
4910 	atomic_inc(&cpu_buffer->record_disabled);
4911 }
4912 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
4913 
4914 /**
4915  * ring_buffer_record_enable_cpu - enable writes to the buffer
4916  * @buffer: The ring buffer to enable writes
4917  * @cpu: The CPU to enable.
4918  *
4919  * Note, multiple disables will need the same number of enables
4920  * to truly enable the writing (much like preempt_disable).
4921  */
4922 void ring_buffer_record_enable_cpu(struct trace_buffer *buffer, int cpu)
4923 {
4924 	struct ring_buffer_per_cpu *cpu_buffer;
4925 
4926 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4927 		return;
4928 
4929 	cpu_buffer = buffer->buffers[cpu];
4930 	atomic_dec(&cpu_buffer->record_disabled);
4931 }
4932 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
4933 
4934 /**
4935  * ring_buffer_oldest_event_ts - get the oldest event timestamp from the buffer
4936  * @buffer: The ring buffer
4937  * @cpu: The per CPU buffer to read from.
4938  */
4939 u64 ring_buffer_oldest_event_ts(struct trace_buffer *buffer, int cpu)
4940 {
4941 	unsigned long flags;
4942 	struct ring_buffer_per_cpu *cpu_buffer;
4943 	struct buffer_page *bpage;
4944 	u64 ret = 0;
4945 
4946 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4947 		return 0;
4948 
4949 	cpu_buffer = buffer->buffers[cpu];
4950 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
4951 	/*
4952 	 * if the tail is on reader_page, oldest time stamp is on the reader
4953 	 * page
4954 	 */
4955 	if (cpu_buffer->tail_page == cpu_buffer->reader_page)
4956 		bpage = cpu_buffer->reader_page;
4957 	else
4958 		bpage = rb_set_head_page(cpu_buffer);
4959 	if (bpage)
4960 		ret = bpage->page->time_stamp;
4961 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
4962 
4963 	return ret;
4964 }
4965 EXPORT_SYMBOL_GPL(ring_buffer_oldest_event_ts);
4966 
4967 /**
4968  * ring_buffer_bytes_cpu - get the number of bytes unconsumed in a cpu buffer
4969  * @buffer: The ring buffer
4970  * @cpu: The per CPU buffer to read from.
4971  */
4972 unsigned long ring_buffer_bytes_cpu(struct trace_buffer *buffer, int cpu)
4973 {
4974 	struct ring_buffer_per_cpu *cpu_buffer;
4975 	unsigned long ret;
4976 
4977 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4978 		return 0;
4979 
4980 	cpu_buffer = buffer->buffers[cpu];
4981 	ret = local_read(&cpu_buffer->entries_bytes) - cpu_buffer->read_bytes;
4982 
4983 	return ret;
4984 }
4985 EXPORT_SYMBOL_GPL(ring_buffer_bytes_cpu);
4986 
4987 /**
4988  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
4989  * @buffer: The ring buffer
4990  * @cpu: The per CPU buffer to get the entries from.
4991  */
4992 unsigned long ring_buffer_entries_cpu(struct trace_buffer *buffer, int cpu)
4993 {
4994 	struct ring_buffer_per_cpu *cpu_buffer;
4995 
4996 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
4997 		return 0;
4998 
4999 	cpu_buffer = buffer->buffers[cpu];
5000 
5001 	return rb_num_of_entries(cpu_buffer);
5002 }
5003 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
5004 
5005 /**
5006  * ring_buffer_overrun_cpu - get the number of overruns caused by the ring
5007  * buffer wrapping around (only if RB_FL_OVERWRITE is on).
5008  * @buffer: The ring buffer
5009  * @cpu: The per CPU buffer to get the number of overruns from
5010  */
5011 unsigned long ring_buffer_overrun_cpu(struct trace_buffer *buffer, int cpu)
5012 {
5013 	struct ring_buffer_per_cpu *cpu_buffer;
5014 	unsigned long ret;
5015 
5016 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5017 		return 0;
5018 
5019 	cpu_buffer = buffer->buffers[cpu];
5020 	ret = local_read(&cpu_buffer->overrun);
5021 
5022 	return ret;
5023 }
5024 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
5025 
5026 /**
5027  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by
5028  * commits failing due to the buffer wrapping around while there are uncommitted
5029  * events, such as during an interrupt storm.
5030  * @buffer: The ring buffer
5031  * @cpu: The per CPU buffer to get the number of overruns from
5032  */
5033 unsigned long
5034 ring_buffer_commit_overrun_cpu(struct trace_buffer *buffer, int cpu)
5035 {
5036 	struct ring_buffer_per_cpu *cpu_buffer;
5037 	unsigned long ret;
5038 
5039 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5040 		return 0;
5041 
5042 	cpu_buffer = buffer->buffers[cpu];
5043 	ret = local_read(&cpu_buffer->commit_overrun);
5044 
5045 	return ret;
5046 }
5047 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
5048 
5049 /**
5050  * ring_buffer_dropped_events_cpu - get the number of dropped events caused by
5051  * the ring buffer filling up (only if RB_FL_OVERWRITE is off).
5052  * @buffer: The ring buffer
5053  * @cpu: The per CPU buffer to get the number of overruns from
5054  */
5055 unsigned long
5056 ring_buffer_dropped_events_cpu(struct trace_buffer *buffer, int cpu)
5057 {
5058 	struct ring_buffer_per_cpu *cpu_buffer;
5059 	unsigned long ret;
5060 
5061 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5062 		return 0;
5063 
5064 	cpu_buffer = buffer->buffers[cpu];
5065 	ret = local_read(&cpu_buffer->dropped_events);
5066 
5067 	return ret;
5068 }
5069 EXPORT_SYMBOL_GPL(ring_buffer_dropped_events_cpu);
5070 
5071 /**
5072  * ring_buffer_read_events_cpu - get the number of events successfully read
5073  * @buffer: The ring buffer
5074  * @cpu: The per CPU buffer to get the number of events read
5075  */
5076 unsigned long
5077 ring_buffer_read_events_cpu(struct trace_buffer *buffer, int cpu)
5078 {
5079 	struct ring_buffer_per_cpu *cpu_buffer;
5080 
5081 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5082 		return 0;
5083 
5084 	cpu_buffer = buffer->buffers[cpu];
5085 	return cpu_buffer->read;
5086 }
5087 EXPORT_SYMBOL_GPL(ring_buffer_read_events_cpu);
5088 
5089 /**
5090  * ring_buffer_entries - get the number of entries in a buffer
5091  * @buffer: The ring buffer
5092  *
5093  * Returns the total number of entries in the ring buffer
5094  * (all CPU entries)
5095  */
5096 unsigned long ring_buffer_entries(struct trace_buffer *buffer)
5097 {
5098 	struct ring_buffer_per_cpu *cpu_buffer;
5099 	unsigned long entries = 0;
5100 	int cpu;
5101 
5102 	/* if you care about this being correct, lock the buffer */
5103 	for_each_buffer_cpu(buffer, cpu) {
5104 		cpu_buffer = buffer->buffers[cpu];
5105 		entries += rb_num_of_entries(cpu_buffer);
5106 	}
5107 
5108 	return entries;
5109 }
5110 EXPORT_SYMBOL_GPL(ring_buffer_entries);
5111 
5112 /**
5113  * ring_buffer_overruns - get the number of overruns in buffer
5114  * @buffer: The ring buffer
5115  *
5116  * Returns the total number of overruns in the ring buffer
5117  * (all CPU entries)
5118  */
5119 unsigned long ring_buffer_overruns(struct trace_buffer *buffer)
5120 {
5121 	struct ring_buffer_per_cpu *cpu_buffer;
5122 	unsigned long overruns = 0;
5123 	int cpu;
5124 
5125 	/* if you care about this being correct, lock the buffer */
5126 	for_each_buffer_cpu(buffer, cpu) {
5127 		cpu_buffer = buffer->buffers[cpu];
5128 		overruns += local_read(&cpu_buffer->overrun);
5129 	}
5130 
5131 	return overruns;
5132 }
5133 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
5134 
5135 static void rb_iter_reset(struct ring_buffer_iter *iter)
5136 {
5137 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5138 
5139 	/* Iterator usage is expected to have record disabled */
5140 	iter->head_page = cpu_buffer->reader_page;
5141 	iter->head = cpu_buffer->reader_page->read;
5142 	iter->next_event = iter->head;
5143 
5144 	iter->cache_reader_page = iter->head_page;
5145 	iter->cache_read = cpu_buffer->read;
5146 	iter->cache_pages_removed = cpu_buffer->pages_removed;
5147 
5148 	if (iter->head) {
5149 		iter->read_stamp = cpu_buffer->read_stamp;
5150 		iter->page_stamp = cpu_buffer->reader_page->page->time_stamp;
5151 	} else {
5152 		iter->read_stamp = iter->head_page->page->time_stamp;
5153 		iter->page_stamp = iter->read_stamp;
5154 	}
5155 }
5156 
5157 /**
5158  * ring_buffer_iter_reset - reset an iterator
5159  * @iter: The iterator to reset
5160  *
5161  * Resets the iterator, so that it will start from the beginning
5162  * again.
5163  */
5164 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
5165 {
5166 	struct ring_buffer_per_cpu *cpu_buffer;
5167 	unsigned long flags;
5168 
5169 	if (!iter)
5170 		return;
5171 
5172 	cpu_buffer = iter->cpu_buffer;
5173 
5174 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5175 	rb_iter_reset(iter);
5176 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5177 }
5178 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
5179 
5180 /**
5181  * ring_buffer_iter_empty - check if an iterator has no more to read
5182  * @iter: The iterator to check
5183  */
5184 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
5185 {
5186 	struct ring_buffer_per_cpu *cpu_buffer;
5187 	struct buffer_page *reader;
5188 	struct buffer_page *head_page;
5189 	struct buffer_page *commit_page;
5190 	struct buffer_page *curr_commit_page;
5191 	unsigned commit;
5192 	u64 curr_commit_ts;
5193 	u64 commit_ts;
5194 
5195 	cpu_buffer = iter->cpu_buffer;
5196 	reader = cpu_buffer->reader_page;
5197 	head_page = cpu_buffer->head_page;
5198 	commit_page = READ_ONCE(cpu_buffer->commit_page);
5199 	commit_ts = commit_page->page->time_stamp;
5200 
5201 	/*
5202 	 * When the writer goes across pages, it issues a cmpxchg which
5203 	 * is a mb(), which will synchronize with the rmb here.
5204 	 * (see rb_tail_page_update())
5205 	 */
5206 	smp_rmb();
5207 	commit = rb_page_commit(commit_page);
5208 	/* We want to make sure that the commit page doesn't change */
5209 	smp_rmb();
5210 
5211 	/* Make sure commit page didn't change */
5212 	curr_commit_page = READ_ONCE(cpu_buffer->commit_page);
5213 	curr_commit_ts = READ_ONCE(curr_commit_page->page->time_stamp);
5214 
5215 	/* If the commit page changed, then there's more data */
5216 	if (curr_commit_page != commit_page ||
5217 	    curr_commit_ts != commit_ts)
5218 		return 0;
5219 
5220 	/* Still racy, as it may return a false positive, but that's OK */
5221 	return ((iter->head_page == commit_page && iter->head >= commit) ||
5222 		(iter->head_page == reader && commit_page == head_page &&
5223 		 head_page->read == commit &&
5224 		 iter->head == rb_page_size(cpu_buffer->reader_page)));
5225 }
5226 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
5227 
5228 static void
5229 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
5230 		     struct ring_buffer_event *event)
5231 {
5232 	u64 delta;
5233 
5234 	switch (event->type_len) {
5235 	case RINGBUF_TYPE_PADDING:
5236 		return;
5237 
5238 	case RINGBUF_TYPE_TIME_EXTEND:
5239 		delta = rb_event_time_stamp(event);
5240 		cpu_buffer->read_stamp += delta;
5241 		return;
5242 
5243 	case RINGBUF_TYPE_TIME_STAMP:
5244 		delta = rb_event_time_stamp(event);
5245 		delta = rb_fix_abs_ts(delta, cpu_buffer->read_stamp);
5246 		cpu_buffer->read_stamp = delta;
5247 		return;
5248 
5249 	case RINGBUF_TYPE_DATA:
5250 		cpu_buffer->read_stamp += event->time_delta;
5251 		return;
5252 
5253 	default:
5254 		RB_WARN_ON(cpu_buffer, 1);
5255 	}
5256 }
5257 
5258 static void
5259 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
5260 			  struct ring_buffer_event *event)
5261 {
5262 	u64 delta;
5263 
5264 	switch (event->type_len) {
5265 	case RINGBUF_TYPE_PADDING:
5266 		return;
5267 
5268 	case RINGBUF_TYPE_TIME_EXTEND:
5269 		delta = rb_event_time_stamp(event);
5270 		iter->read_stamp += delta;
5271 		return;
5272 
5273 	case RINGBUF_TYPE_TIME_STAMP:
5274 		delta = rb_event_time_stamp(event);
5275 		delta = rb_fix_abs_ts(delta, iter->read_stamp);
5276 		iter->read_stamp = delta;
5277 		return;
5278 
5279 	case RINGBUF_TYPE_DATA:
5280 		iter->read_stamp += event->time_delta;
5281 		return;
5282 
5283 	default:
5284 		RB_WARN_ON(iter->cpu_buffer, 1);
5285 	}
5286 }
5287 
5288 static struct buffer_page *
5289 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
5290 {
5291 	struct buffer_page *reader = NULL;
5292 	unsigned long bsize = READ_ONCE(cpu_buffer->buffer->subbuf_size);
5293 	unsigned long overwrite;
5294 	unsigned long flags;
5295 	int nr_loops = 0;
5296 	bool ret;
5297 
5298 	local_irq_save(flags);
5299 	arch_spin_lock(&cpu_buffer->lock);
5300 
5301  again:
5302 	/*
5303 	 * This should normally only loop twice. But because the
5304 	 * start of the reader inserts an empty page, it causes
5305 	 * a case where we will loop three times. There should be no
5306 	 * reason to loop four times (that I know of).
5307 	 */
5308 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
5309 		reader = NULL;
5310 		goto out;
5311 	}
5312 
5313 	reader = cpu_buffer->reader_page;
5314 
5315 	/* If there's more to read, return this page */
5316 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
5317 		goto out;
5318 
5319 	/* Never should we have an index greater than the size */
5320 	if (RB_WARN_ON(cpu_buffer,
5321 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
5322 		goto out;
5323 
5324 	/* check if we caught up to the tail */
5325 	reader = NULL;
5326 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
5327 		goto out;
5328 
5329 	/* Don't bother swapping if the ring buffer is empty */
5330 	if (rb_num_of_entries(cpu_buffer) == 0)
5331 		goto out;
5332 
5333 	/*
5334 	 * Reset the reader page to size zero.
5335 	 */
5336 	local_set(&cpu_buffer->reader_page->write, 0);
5337 	local_set(&cpu_buffer->reader_page->entries, 0);
5338 	local_set(&cpu_buffer->reader_page->page->commit, 0);
5339 	cpu_buffer->reader_page->real_end = 0;
5340 
5341  spin:
5342 	/*
5343 	 * Splice the empty reader page into the list around the head.
5344 	 */
5345 	reader = rb_set_head_page(cpu_buffer);
5346 	if (!reader)
5347 		goto out;
5348 	cpu_buffer->reader_page->list.next = rb_list_head(reader->list.next);
5349 	cpu_buffer->reader_page->list.prev = reader->list.prev;
5350 
5351 	/*
5352 	 * cpu_buffer->pages just needs to point to the buffer, it
5353 	 *  has no specific buffer page to point to. Lets move it out
5354 	 *  of our way so we don't accidentally swap it.
5355 	 */
5356 	cpu_buffer->pages = reader->list.prev;
5357 
5358 	/* The reader page will be pointing to the new head */
5359 	rb_set_list_to_head(&cpu_buffer->reader_page->list);
5360 
5361 	/*
5362 	 * We want to make sure we read the overruns after we set up our
5363 	 * pointers to the next object. The writer side does a
5364 	 * cmpxchg to cross pages which acts as the mb on the writer
5365 	 * side. Note, the reader will constantly fail the swap
5366 	 * while the writer is updating the pointers, so this
5367 	 * guarantees that the overwrite recorded here is the one we
5368 	 * want to compare with the last_overrun.
5369 	 */
5370 	smp_mb();
5371 	overwrite = local_read(&(cpu_buffer->overrun));
5372 
5373 	/*
5374 	 * Here's the tricky part.
5375 	 *
5376 	 * We need to move the pointer past the header page.
5377 	 * But we can only do that if a writer is not currently
5378 	 * moving it. The page before the header page has the
5379 	 * flag bit '1' set if it is pointing to the page we want.
5380 	 * but if the writer is in the process of moving it
5381 	 * than it will be '2' or already moved '0'.
5382 	 */
5383 
5384 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
5385 
5386 	/*
5387 	 * If we did not convert it, then we must try again.
5388 	 */
5389 	if (!ret)
5390 		goto spin;
5391 
5392 	if (cpu_buffer->ring_meta)
5393 		rb_update_meta_reader(cpu_buffer, reader);
5394 
5395 	/*
5396 	 * Yay! We succeeded in replacing the page.
5397 	 *
5398 	 * Now make the new head point back to the reader page.
5399 	 */
5400 	rb_list_head(reader->list.next)->prev = &cpu_buffer->reader_page->list;
5401 	rb_inc_page(&cpu_buffer->head_page);
5402 
5403 	cpu_buffer->cnt++;
5404 	local_inc(&cpu_buffer->pages_read);
5405 
5406 	/* Finally update the reader page to the new head */
5407 	cpu_buffer->reader_page = reader;
5408 	cpu_buffer->reader_page->read = 0;
5409 
5410 	if (overwrite != cpu_buffer->last_overrun) {
5411 		cpu_buffer->lost_events = overwrite - cpu_buffer->last_overrun;
5412 		cpu_buffer->last_overrun = overwrite;
5413 	}
5414 
5415 	goto again;
5416 
5417  out:
5418 	/* Update the read_stamp on the first event */
5419 	if (reader && reader->read == 0)
5420 		cpu_buffer->read_stamp = reader->page->time_stamp;
5421 
5422 	arch_spin_unlock(&cpu_buffer->lock);
5423 	local_irq_restore(flags);
5424 
5425 	/*
5426 	 * The writer has preempt disable, wait for it. But not forever
5427 	 * Although, 1 second is pretty much "forever"
5428 	 */
5429 #define USECS_WAIT	1000000
5430         for (nr_loops = 0; nr_loops < USECS_WAIT; nr_loops++) {
5431 		/* If the write is past the end of page, a writer is still updating it */
5432 		if (likely(!reader || rb_page_write(reader) <= bsize))
5433 			break;
5434 
5435 		udelay(1);
5436 
5437 		/* Get the latest version of the reader write value */
5438 		smp_rmb();
5439 	}
5440 
5441 	/* The writer is not moving forward? Something is wrong */
5442 	if (RB_WARN_ON(cpu_buffer, nr_loops == USECS_WAIT))
5443 		reader = NULL;
5444 
5445 	/*
5446 	 * Make sure we see any padding after the write update
5447 	 * (see rb_reset_tail()).
5448 	 *
5449 	 * In addition, a writer may be writing on the reader page
5450 	 * if the page has not been fully filled, so the read barrier
5451 	 * is also needed to make sure we see the content of what is
5452 	 * committed by the writer (see rb_set_commit_to_write()).
5453 	 */
5454 	smp_rmb();
5455 
5456 
5457 	return reader;
5458 }
5459 
5460 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
5461 {
5462 	struct ring_buffer_event *event;
5463 	struct buffer_page *reader;
5464 	unsigned length;
5465 
5466 	reader = rb_get_reader_page(cpu_buffer);
5467 
5468 	/* This function should not be called when buffer is empty */
5469 	if (RB_WARN_ON(cpu_buffer, !reader))
5470 		return;
5471 
5472 	event = rb_reader_event(cpu_buffer);
5473 
5474 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
5475 		cpu_buffer->read++;
5476 
5477 	rb_update_read_stamp(cpu_buffer, event);
5478 
5479 	length = rb_event_length(event);
5480 	cpu_buffer->reader_page->read += length;
5481 	cpu_buffer->read_bytes += length;
5482 }
5483 
5484 static void rb_advance_iter(struct ring_buffer_iter *iter)
5485 {
5486 	struct ring_buffer_per_cpu *cpu_buffer;
5487 
5488 	cpu_buffer = iter->cpu_buffer;
5489 
5490 	/* If head == next_event then we need to jump to the next event */
5491 	if (iter->head == iter->next_event) {
5492 		/* If the event gets overwritten again, there's nothing to do */
5493 		if (rb_iter_head_event(iter) == NULL)
5494 			return;
5495 	}
5496 
5497 	iter->head = iter->next_event;
5498 
5499 	/*
5500 	 * Check if we are at the end of the buffer.
5501 	 */
5502 	if (iter->next_event >= rb_page_size(iter->head_page)) {
5503 		/* discarded commits can make the page empty */
5504 		if (iter->head_page == cpu_buffer->commit_page)
5505 			return;
5506 		rb_inc_iter(iter);
5507 		return;
5508 	}
5509 
5510 	rb_update_iter_read_stamp(iter, iter->event);
5511 }
5512 
5513 static int rb_lost_events(struct ring_buffer_per_cpu *cpu_buffer)
5514 {
5515 	return cpu_buffer->lost_events;
5516 }
5517 
5518 static struct ring_buffer_event *
5519 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts,
5520 	       unsigned long *lost_events)
5521 {
5522 	struct ring_buffer_event *event;
5523 	struct buffer_page *reader;
5524 	int nr_loops = 0;
5525 
5526 	if (ts)
5527 		*ts = 0;
5528  again:
5529 	/*
5530 	 * We repeat when a time extend is encountered.
5531 	 * Since the time extend is always attached to a data event,
5532 	 * we should never loop more than once.
5533 	 * (We never hit the following condition more than twice).
5534 	 */
5535 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 2))
5536 		return NULL;
5537 
5538 	reader = rb_get_reader_page(cpu_buffer);
5539 	if (!reader)
5540 		return NULL;
5541 
5542 	event = rb_reader_event(cpu_buffer);
5543 
5544 	switch (event->type_len) {
5545 	case RINGBUF_TYPE_PADDING:
5546 		if (rb_null_event(event))
5547 			RB_WARN_ON(cpu_buffer, 1);
5548 		/*
5549 		 * Because the writer could be discarding every
5550 		 * event it creates (which would probably be bad)
5551 		 * if we were to go back to "again" then we may never
5552 		 * catch up, and will trigger the warn on, or lock
5553 		 * the box. Return the padding, and we will release
5554 		 * the current locks, and try again.
5555 		 */
5556 		return event;
5557 
5558 	case RINGBUF_TYPE_TIME_EXTEND:
5559 		/* Internal data, OK to advance */
5560 		rb_advance_reader(cpu_buffer);
5561 		goto again;
5562 
5563 	case RINGBUF_TYPE_TIME_STAMP:
5564 		if (ts) {
5565 			*ts = rb_event_time_stamp(event);
5566 			*ts = rb_fix_abs_ts(*ts, reader->page->time_stamp);
5567 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5568 							 cpu_buffer->cpu, ts);
5569 		}
5570 		/* Internal data, OK to advance */
5571 		rb_advance_reader(cpu_buffer);
5572 		goto again;
5573 
5574 	case RINGBUF_TYPE_DATA:
5575 		if (ts && !(*ts)) {
5576 			*ts = cpu_buffer->read_stamp + event->time_delta;
5577 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5578 							 cpu_buffer->cpu, ts);
5579 		}
5580 		if (lost_events)
5581 			*lost_events = rb_lost_events(cpu_buffer);
5582 		return event;
5583 
5584 	default:
5585 		RB_WARN_ON(cpu_buffer, 1);
5586 	}
5587 
5588 	return NULL;
5589 }
5590 EXPORT_SYMBOL_GPL(ring_buffer_peek);
5591 
5592 static struct ring_buffer_event *
5593 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5594 {
5595 	struct trace_buffer *buffer;
5596 	struct ring_buffer_per_cpu *cpu_buffer;
5597 	struct ring_buffer_event *event;
5598 	int nr_loops = 0;
5599 
5600 	if (ts)
5601 		*ts = 0;
5602 
5603 	cpu_buffer = iter->cpu_buffer;
5604 	buffer = cpu_buffer->buffer;
5605 
5606 	/*
5607 	 * Check if someone performed a consuming read to the buffer
5608 	 * or removed some pages from the buffer. In these cases,
5609 	 * iterator was invalidated and we need to reset it.
5610 	 */
5611 	if (unlikely(iter->cache_read != cpu_buffer->read ||
5612 		     iter->cache_reader_page != cpu_buffer->reader_page ||
5613 		     iter->cache_pages_removed != cpu_buffer->pages_removed))
5614 		rb_iter_reset(iter);
5615 
5616  again:
5617 	if (ring_buffer_iter_empty(iter))
5618 		return NULL;
5619 
5620 	/*
5621 	 * As the writer can mess with what the iterator is trying
5622 	 * to read, just give up if we fail to get an event after
5623 	 * three tries. The iterator is not as reliable when reading
5624 	 * the ring buffer with an active write as the consumer is.
5625 	 * Do not warn if the three failures is reached.
5626 	 */
5627 	if (++nr_loops > 3)
5628 		return NULL;
5629 
5630 	if (rb_per_cpu_empty(cpu_buffer))
5631 		return NULL;
5632 
5633 	if (iter->head >= rb_page_size(iter->head_page)) {
5634 		rb_inc_iter(iter);
5635 		goto again;
5636 	}
5637 
5638 	event = rb_iter_head_event(iter);
5639 	if (!event)
5640 		goto again;
5641 
5642 	switch (event->type_len) {
5643 	case RINGBUF_TYPE_PADDING:
5644 		if (rb_null_event(event)) {
5645 			rb_inc_iter(iter);
5646 			goto again;
5647 		}
5648 		rb_advance_iter(iter);
5649 		return event;
5650 
5651 	case RINGBUF_TYPE_TIME_EXTEND:
5652 		/* Internal data, OK to advance */
5653 		rb_advance_iter(iter);
5654 		goto again;
5655 
5656 	case RINGBUF_TYPE_TIME_STAMP:
5657 		if (ts) {
5658 			*ts = rb_event_time_stamp(event);
5659 			*ts = rb_fix_abs_ts(*ts, iter->head_page->page->time_stamp);
5660 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
5661 							 cpu_buffer->cpu, ts);
5662 		}
5663 		/* Internal data, OK to advance */
5664 		rb_advance_iter(iter);
5665 		goto again;
5666 
5667 	case RINGBUF_TYPE_DATA:
5668 		if (ts && !(*ts)) {
5669 			*ts = iter->read_stamp + event->time_delta;
5670 			ring_buffer_normalize_time_stamp(buffer,
5671 							 cpu_buffer->cpu, ts);
5672 		}
5673 		return event;
5674 
5675 	default:
5676 		RB_WARN_ON(cpu_buffer, 1);
5677 	}
5678 
5679 	return NULL;
5680 }
5681 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
5682 
5683 static inline bool rb_reader_lock(struct ring_buffer_per_cpu *cpu_buffer)
5684 {
5685 	if (likely(!in_nmi())) {
5686 		raw_spin_lock(&cpu_buffer->reader_lock);
5687 		return true;
5688 	}
5689 
5690 	/*
5691 	 * If an NMI die dumps out the content of the ring buffer
5692 	 * trylock must be used to prevent a deadlock if the NMI
5693 	 * preempted a task that holds the ring buffer locks. If
5694 	 * we get the lock then all is fine, if not, then continue
5695 	 * to do the read, but this can corrupt the ring buffer,
5696 	 * so it must be permanently disabled from future writes.
5697 	 * Reading from NMI is a oneshot deal.
5698 	 */
5699 	if (raw_spin_trylock(&cpu_buffer->reader_lock))
5700 		return true;
5701 
5702 	/* Continue without locking, but disable the ring buffer */
5703 	atomic_inc(&cpu_buffer->record_disabled);
5704 	return false;
5705 }
5706 
5707 static inline void
5708 rb_reader_unlock(struct ring_buffer_per_cpu *cpu_buffer, bool locked)
5709 {
5710 	if (likely(locked))
5711 		raw_spin_unlock(&cpu_buffer->reader_lock);
5712 }
5713 
5714 /**
5715  * ring_buffer_peek - peek at the next event to be read
5716  * @buffer: The ring buffer to read
5717  * @cpu: The cpu to peak at
5718  * @ts: The timestamp counter of this event.
5719  * @lost_events: a variable to store if events were lost (may be NULL)
5720  *
5721  * This will return the event that will be read next, but does
5722  * not consume the data.
5723  */
5724 struct ring_buffer_event *
5725 ring_buffer_peek(struct trace_buffer *buffer, int cpu, u64 *ts,
5726 		 unsigned long *lost_events)
5727 {
5728 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
5729 	struct ring_buffer_event *event;
5730 	unsigned long flags;
5731 	bool dolock;
5732 
5733 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5734 		return NULL;
5735 
5736  again:
5737 	local_irq_save(flags);
5738 	dolock = rb_reader_lock(cpu_buffer);
5739 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5740 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5741 		rb_advance_reader(cpu_buffer);
5742 	rb_reader_unlock(cpu_buffer, dolock);
5743 	local_irq_restore(flags);
5744 
5745 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5746 		goto again;
5747 
5748 	return event;
5749 }
5750 
5751 /** ring_buffer_iter_dropped - report if there are dropped events
5752  * @iter: The ring buffer iterator
5753  *
5754  * Returns true if there was dropped events since the last peek.
5755  */
5756 bool ring_buffer_iter_dropped(struct ring_buffer_iter *iter)
5757 {
5758 	bool ret = iter->missed_events != 0;
5759 
5760 	iter->missed_events = 0;
5761 	return ret;
5762 }
5763 EXPORT_SYMBOL_GPL(ring_buffer_iter_dropped);
5764 
5765 /**
5766  * ring_buffer_iter_peek - peek at the next event to be read
5767  * @iter: The ring buffer iterator
5768  * @ts: The timestamp counter of this event.
5769  *
5770  * This will return the event that will be read next, but does
5771  * not increment the iterator.
5772  */
5773 struct ring_buffer_event *
5774 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
5775 {
5776 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5777 	struct ring_buffer_event *event;
5778 	unsigned long flags;
5779 
5780  again:
5781 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5782 	event = rb_iter_peek(iter, ts);
5783 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5784 
5785 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5786 		goto again;
5787 
5788 	return event;
5789 }
5790 
5791 /**
5792  * ring_buffer_consume - return an event and consume it
5793  * @buffer: The ring buffer to get the next event from
5794  * @cpu: the cpu to read the buffer from
5795  * @ts: a variable to store the timestamp (may be NULL)
5796  * @lost_events: a variable to store if events were lost (may be NULL)
5797  *
5798  * Returns the next event in the ring buffer, and that event is consumed.
5799  * Meaning, that sequential reads will keep returning a different event,
5800  * and eventually empty the ring buffer if the producer is slower.
5801  */
5802 struct ring_buffer_event *
5803 ring_buffer_consume(struct trace_buffer *buffer, int cpu, u64 *ts,
5804 		    unsigned long *lost_events)
5805 {
5806 	struct ring_buffer_per_cpu *cpu_buffer;
5807 	struct ring_buffer_event *event = NULL;
5808 	unsigned long flags;
5809 	bool dolock;
5810 
5811  again:
5812 	/* might be called in atomic */
5813 	preempt_disable();
5814 
5815 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5816 		goto out;
5817 
5818 	cpu_buffer = buffer->buffers[cpu];
5819 	local_irq_save(flags);
5820 	dolock = rb_reader_lock(cpu_buffer);
5821 
5822 	event = rb_buffer_peek(cpu_buffer, ts, lost_events);
5823 	if (event) {
5824 		cpu_buffer->lost_events = 0;
5825 		rb_advance_reader(cpu_buffer);
5826 	}
5827 
5828 	rb_reader_unlock(cpu_buffer, dolock);
5829 	local_irq_restore(flags);
5830 
5831  out:
5832 	preempt_enable();
5833 
5834 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
5835 		goto again;
5836 
5837 	return event;
5838 }
5839 EXPORT_SYMBOL_GPL(ring_buffer_consume);
5840 
5841 /**
5842  * ring_buffer_read_prepare - Prepare for a non consuming read of the buffer
5843  * @buffer: The ring buffer to read from
5844  * @cpu: The cpu buffer to iterate over
5845  * @flags: gfp flags to use for memory allocation
5846  *
5847  * This performs the initial preparations necessary to iterate
5848  * through the buffer.  Memory is allocated, buffer resizing
5849  * is disabled, and the iterator pointer is returned to the caller.
5850  *
5851  * After a sequence of ring_buffer_read_prepare calls, the user is
5852  * expected to make at least one call to ring_buffer_read_prepare_sync.
5853  * Afterwards, ring_buffer_read_start is invoked to get things going
5854  * for real.
5855  *
5856  * This overall must be paired with ring_buffer_read_finish.
5857  */
5858 struct ring_buffer_iter *
5859 ring_buffer_read_prepare(struct trace_buffer *buffer, int cpu, gfp_t flags)
5860 {
5861 	struct ring_buffer_per_cpu *cpu_buffer;
5862 	struct ring_buffer_iter *iter;
5863 
5864 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5865 		return NULL;
5866 
5867 	iter = kzalloc(sizeof(*iter), flags);
5868 	if (!iter)
5869 		return NULL;
5870 
5871 	/* Holds the entire event: data and meta data */
5872 	iter->event_size = buffer->subbuf_size;
5873 	iter->event = kmalloc(iter->event_size, flags);
5874 	if (!iter->event) {
5875 		kfree(iter);
5876 		return NULL;
5877 	}
5878 
5879 	cpu_buffer = buffer->buffers[cpu];
5880 
5881 	iter->cpu_buffer = cpu_buffer;
5882 
5883 	atomic_inc(&cpu_buffer->resize_disabled);
5884 
5885 	return iter;
5886 }
5887 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare);
5888 
5889 /**
5890  * ring_buffer_read_prepare_sync - Synchronize a set of prepare calls
5891  *
5892  * All previously invoked ring_buffer_read_prepare calls to prepare
5893  * iterators will be synchronized.  Afterwards, read_buffer_read_start
5894  * calls on those iterators are allowed.
5895  */
5896 void
5897 ring_buffer_read_prepare_sync(void)
5898 {
5899 	synchronize_rcu();
5900 }
5901 EXPORT_SYMBOL_GPL(ring_buffer_read_prepare_sync);
5902 
5903 /**
5904  * ring_buffer_read_start - start a non consuming read of the buffer
5905  * @iter: The iterator returned by ring_buffer_read_prepare
5906  *
5907  * This finalizes the startup of an iteration through the buffer.
5908  * The iterator comes from a call to ring_buffer_read_prepare and
5909  * an intervening ring_buffer_read_prepare_sync must have been
5910  * performed.
5911  *
5912  * Must be paired with ring_buffer_read_finish.
5913  */
5914 void
5915 ring_buffer_read_start(struct ring_buffer_iter *iter)
5916 {
5917 	struct ring_buffer_per_cpu *cpu_buffer;
5918 	unsigned long flags;
5919 
5920 	if (!iter)
5921 		return;
5922 
5923 	cpu_buffer = iter->cpu_buffer;
5924 
5925 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5926 	arch_spin_lock(&cpu_buffer->lock);
5927 	rb_iter_reset(iter);
5928 	arch_spin_unlock(&cpu_buffer->lock);
5929 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5930 }
5931 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
5932 
5933 /**
5934  * ring_buffer_read_finish - finish reading the iterator of the buffer
5935  * @iter: The iterator retrieved by ring_buffer_start
5936  *
5937  * This re-enables resizing of the buffer, and frees the iterator.
5938  */
5939 void
5940 ring_buffer_read_finish(struct ring_buffer_iter *iter)
5941 {
5942 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5943 
5944 	/* Use this opportunity to check the integrity of the ring buffer. */
5945 	rb_check_pages(cpu_buffer);
5946 
5947 	atomic_dec(&cpu_buffer->resize_disabled);
5948 	kfree(iter->event);
5949 	kfree(iter);
5950 }
5951 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
5952 
5953 /**
5954  * ring_buffer_iter_advance - advance the iterator to the next location
5955  * @iter: The ring buffer iterator
5956  *
5957  * Move the location of the iterator such that the next read will
5958  * be the next location of the iterator.
5959  */
5960 void ring_buffer_iter_advance(struct ring_buffer_iter *iter)
5961 {
5962 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
5963 	unsigned long flags;
5964 
5965 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
5966 
5967 	rb_advance_iter(iter);
5968 
5969 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
5970 }
5971 EXPORT_SYMBOL_GPL(ring_buffer_iter_advance);
5972 
5973 /**
5974  * ring_buffer_size - return the size of the ring buffer (in bytes)
5975  * @buffer: The ring buffer.
5976  * @cpu: The CPU to get ring buffer size from.
5977  */
5978 unsigned long ring_buffer_size(struct trace_buffer *buffer, int cpu)
5979 {
5980 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
5981 		return 0;
5982 
5983 	return buffer->subbuf_size * buffer->buffers[cpu]->nr_pages;
5984 }
5985 EXPORT_SYMBOL_GPL(ring_buffer_size);
5986 
5987 /**
5988  * ring_buffer_max_event_size - return the max data size of an event
5989  * @buffer: The ring buffer.
5990  *
5991  * Returns the maximum size an event can be.
5992  */
5993 unsigned long ring_buffer_max_event_size(struct trace_buffer *buffer)
5994 {
5995 	/* If abs timestamp is requested, events have a timestamp too */
5996 	if (ring_buffer_time_stamp_abs(buffer))
5997 		return buffer->max_data_size - RB_LEN_TIME_EXTEND;
5998 	return buffer->max_data_size;
5999 }
6000 EXPORT_SYMBOL_GPL(ring_buffer_max_event_size);
6001 
6002 static void rb_clear_buffer_page(struct buffer_page *page)
6003 {
6004 	local_set(&page->write, 0);
6005 	local_set(&page->entries, 0);
6006 	rb_init_page(page->page);
6007 	page->read = 0;
6008 }
6009 
6010 static void rb_update_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6011 {
6012 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6013 
6014 	if (!meta)
6015 		return;
6016 
6017 	meta->reader.read = cpu_buffer->reader_page->read;
6018 	meta->reader.id = cpu_buffer->reader_page->id;
6019 	meta->reader.lost_events = cpu_buffer->lost_events;
6020 
6021 	meta->entries = local_read(&cpu_buffer->entries);
6022 	meta->overrun = local_read(&cpu_buffer->overrun);
6023 	meta->read = cpu_buffer->read;
6024 
6025 	/* Some archs do not have data cache coherency between kernel and user-space */
6026 	flush_dcache_folio(virt_to_folio(cpu_buffer->meta_page));
6027 }
6028 
6029 static void
6030 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
6031 {
6032 	struct buffer_page *page;
6033 
6034 	rb_head_page_deactivate(cpu_buffer);
6035 
6036 	cpu_buffer->head_page
6037 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
6038 	rb_clear_buffer_page(cpu_buffer->head_page);
6039 	list_for_each_entry(page, cpu_buffer->pages, list) {
6040 		rb_clear_buffer_page(page);
6041 	}
6042 
6043 	cpu_buffer->tail_page = cpu_buffer->head_page;
6044 	cpu_buffer->commit_page = cpu_buffer->head_page;
6045 
6046 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
6047 	INIT_LIST_HEAD(&cpu_buffer->new_pages);
6048 	rb_clear_buffer_page(cpu_buffer->reader_page);
6049 
6050 	local_set(&cpu_buffer->entries_bytes, 0);
6051 	local_set(&cpu_buffer->overrun, 0);
6052 	local_set(&cpu_buffer->commit_overrun, 0);
6053 	local_set(&cpu_buffer->dropped_events, 0);
6054 	local_set(&cpu_buffer->entries, 0);
6055 	local_set(&cpu_buffer->committing, 0);
6056 	local_set(&cpu_buffer->commits, 0);
6057 	local_set(&cpu_buffer->pages_touched, 0);
6058 	local_set(&cpu_buffer->pages_lost, 0);
6059 	local_set(&cpu_buffer->pages_read, 0);
6060 	cpu_buffer->last_pages_touch = 0;
6061 	cpu_buffer->shortest_full = 0;
6062 	cpu_buffer->read = 0;
6063 	cpu_buffer->read_bytes = 0;
6064 
6065 	rb_time_set(&cpu_buffer->write_stamp, 0);
6066 	rb_time_set(&cpu_buffer->before_stamp, 0);
6067 
6068 	memset(cpu_buffer->event_stamp, 0, sizeof(cpu_buffer->event_stamp));
6069 
6070 	cpu_buffer->lost_events = 0;
6071 	cpu_buffer->last_overrun = 0;
6072 
6073 	rb_head_page_activate(cpu_buffer);
6074 	cpu_buffer->pages_removed = 0;
6075 
6076 	if (cpu_buffer->mapped) {
6077 		rb_update_meta_page(cpu_buffer);
6078 		if (cpu_buffer->ring_meta) {
6079 			struct ring_buffer_cpu_meta *meta = cpu_buffer->ring_meta;
6080 			meta->commit_buffer = meta->head_buffer;
6081 		}
6082 	}
6083 }
6084 
6085 /* Must have disabled the cpu buffer then done a synchronize_rcu */
6086 static void reset_disabled_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6087 {
6088 	unsigned long flags;
6089 
6090 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6091 
6092 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
6093 		goto out;
6094 
6095 	arch_spin_lock(&cpu_buffer->lock);
6096 
6097 	rb_reset_cpu(cpu_buffer);
6098 
6099 	arch_spin_unlock(&cpu_buffer->lock);
6100 
6101  out:
6102 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6103 }
6104 
6105 /**
6106  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
6107  * @buffer: The ring buffer to reset a per cpu buffer of
6108  * @cpu: The CPU buffer to be reset
6109  */
6110 void ring_buffer_reset_cpu(struct trace_buffer *buffer, int cpu)
6111 {
6112 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6113 	struct ring_buffer_cpu_meta *meta;
6114 
6115 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6116 		return;
6117 
6118 	/* prevent another thread from changing buffer sizes */
6119 	mutex_lock(&buffer->mutex);
6120 
6121 	atomic_inc(&cpu_buffer->resize_disabled);
6122 	atomic_inc(&cpu_buffer->record_disabled);
6123 
6124 	/* Make sure all commits have finished */
6125 	synchronize_rcu();
6126 
6127 	reset_disabled_cpu_buffer(cpu_buffer);
6128 
6129 	atomic_dec(&cpu_buffer->record_disabled);
6130 	atomic_dec(&cpu_buffer->resize_disabled);
6131 
6132 	/* Make sure persistent meta now uses this buffer's addresses */
6133 	meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6134 	if (meta)
6135 		rb_meta_init_text_addr(meta);
6136 
6137 	mutex_unlock(&buffer->mutex);
6138 }
6139 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
6140 
6141 /* Flag to ensure proper resetting of atomic variables */
6142 #define RESET_BIT	(1 << 30)
6143 
6144 /**
6145  * ring_buffer_reset_online_cpus - reset a ring buffer per CPU buffer
6146  * @buffer: The ring buffer to reset a per cpu buffer of
6147  */
6148 void ring_buffer_reset_online_cpus(struct trace_buffer *buffer)
6149 {
6150 	struct ring_buffer_per_cpu *cpu_buffer;
6151 	struct ring_buffer_cpu_meta *meta;
6152 	int cpu;
6153 
6154 	/* prevent another thread from changing buffer sizes */
6155 	mutex_lock(&buffer->mutex);
6156 
6157 	for_each_online_buffer_cpu(buffer, cpu) {
6158 		cpu_buffer = buffer->buffers[cpu];
6159 
6160 		atomic_add(RESET_BIT, &cpu_buffer->resize_disabled);
6161 		atomic_inc(&cpu_buffer->record_disabled);
6162 	}
6163 
6164 	/* Make sure all commits have finished */
6165 	synchronize_rcu();
6166 
6167 	for_each_buffer_cpu(buffer, cpu) {
6168 		cpu_buffer = buffer->buffers[cpu];
6169 
6170 		/*
6171 		 * If a CPU came online during the synchronize_rcu(), then
6172 		 * ignore it.
6173 		 */
6174 		if (!(atomic_read(&cpu_buffer->resize_disabled) & RESET_BIT))
6175 			continue;
6176 
6177 		reset_disabled_cpu_buffer(cpu_buffer);
6178 
6179 		/* Make sure persistent meta now uses this buffer's addresses */
6180 		meta = rb_range_meta(buffer, 0, cpu_buffer->cpu);
6181 		if (meta)
6182 			rb_meta_init_text_addr(meta);
6183 
6184 		atomic_dec(&cpu_buffer->record_disabled);
6185 		atomic_sub(RESET_BIT, &cpu_buffer->resize_disabled);
6186 	}
6187 
6188 	mutex_unlock(&buffer->mutex);
6189 }
6190 
6191 /**
6192  * ring_buffer_reset - reset a ring buffer
6193  * @buffer: The ring buffer to reset all cpu buffers
6194  */
6195 void ring_buffer_reset(struct trace_buffer *buffer)
6196 {
6197 	struct ring_buffer_per_cpu *cpu_buffer;
6198 	int cpu;
6199 
6200 	/* prevent another thread from changing buffer sizes */
6201 	mutex_lock(&buffer->mutex);
6202 
6203 	for_each_buffer_cpu(buffer, cpu) {
6204 		cpu_buffer = buffer->buffers[cpu];
6205 
6206 		atomic_inc(&cpu_buffer->resize_disabled);
6207 		atomic_inc(&cpu_buffer->record_disabled);
6208 	}
6209 
6210 	/* Make sure all commits have finished */
6211 	synchronize_rcu();
6212 
6213 	for_each_buffer_cpu(buffer, cpu) {
6214 		cpu_buffer = buffer->buffers[cpu];
6215 
6216 		reset_disabled_cpu_buffer(cpu_buffer);
6217 
6218 		atomic_dec(&cpu_buffer->record_disabled);
6219 		atomic_dec(&cpu_buffer->resize_disabled);
6220 	}
6221 
6222 	mutex_unlock(&buffer->mutex);
6223 }
6224 EXPORT_SYMBOL_GPL(ring_buffer_reset);
6225 
6226 /**
6227  * ring_buffer_empty - is the ring buffer empty?
6228  * @buffer: The ring buffer to test
6229  */
6230 bool ring_buffer_empty(struct trace_buffer *buffer)
6231 {
6232 	struct ring_buffer_per_cpu *cpu_buffer;
6233 	unsigned long flags;
6234 	bool dolock;
6235 	bool ret;
6236 	int cpu;
6237 
6238 	/* yes this is racy, but if you don't like the race, lock the buffer */
6239 	for_each_buffer_cpu(buffer, cpu) {
6240 		cpu_buffer = buffer->buffers[cpu];
6241 		local_irq_save(flags);
6242 		dolock = rb_reader_lock(cpu_buffer);
6243 		ret = rb_per_cpu_empty(cpu_buffer);
6244 		rb_reader_unlock(cpu_buffer, dolock);
6245 		local_irq_restore(flags);
6246 
6247 		if (!ret)
6248 			return false;
6249 	}
6250 
6251 	return true;
6252 }
6253 EXPORT_SYMBOL_GPL(ring_buffer_empty);
6254 
6255 /**
6256  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
6257  * @buffer: The ring buffer
6258  * @cpu: The CPU buffer to test
6259  */
6260 bool ring_buffer_empty_cpu(struct trace_buffer *buffer, int cpu)
6261 {
6262 	struct ring_buffer_per_cpu *cpu_buffer;
6263 	unsigned long flags;
6264 	bool dolock;
6265 	bool ret;
6266 
6267 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6268 		return true;
6269 
6270 	cpu_buffer = buffer->buffers[cpu];
6271 	local_irq_save(flags);
6272 	dolock = rb_reader_lock(cpu_buffer);
6273 	ret = rb_per_cpu_empty(cpu_buffer);
6274 	rb_reader_unlock(cpu_buffer, dolock);
6275 	local_irq_restore(flags);
6276 
6277 	return ret;
6278 }
6279 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
6280 
6281 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
6282 /**
6283  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
6284  * @buffer_a: One buffer to swap with
6285  * @buffer_b: The other buffer to swap with
6286  * @cpu: the CPU of the buffers to swap
6287  *
6288  * This function is useful for tracers that want to take a "snapshot"
6289  * of a CPU buffer and has another back up buffer lying around.
6290  * it is expected that the tracer handles the cpu buffer not being
6291  * used at the moment.
6292  */
6293 int ring_buffer_swap_cpu(struct trace_buffer *buffer_a,
6294 			 struct trace_buffer *buffer_b, int cpu)
6295 {
6296 	struct ring_buffer_per_cpu *cpu_buffer_a;
6297 	struct ring_buffer_per_cpu *cpu_buffer_b;
6298 	int ret = -EINVAL;
6299 
6300 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
6301 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
6302 		goto out;
6303 
6304 	cpu_buffer_a = buffer_a->buffers[cpu];
6305 	cpu_buffer_b = buffer_b->buffers[cpu];
6306 
6307 	/* It's up to the callers to not try to swap mapped buffers */
6308 	if (WARN_ON_ONCE(cpu_buffer_a->mapped || cpu_buffer_b->mapped)) {
6309 		ret = -EBUSY;
6310 		goto out;
6311 	}
6312 
6313 	/* At least make sure the two buffers are somewhat the same */
6314 	if (cpu_buffer_a->nr_pages != cpu_buffer_b->nr_pages)
6315 		goto out;
6316 
6317 	if (buffer_a->subbuf_order != buffer_b->subbuf_order)
6318 		goto out;
6319 
6320 	ret = -EAGAIN;
6321 
6322 	if (atomic_read(&buffer_a->record_disabled))
6323 		goto out;
6324 
6325 	if (atomic_read(&buffer_b->record_disabled))
6326 		goto out;
6327 
6328 	if (atomic_read(&cpu_buffer_a->record_disabled))
6329 		goto out;
6330 
6331 	if (atomic_read(&cpu_buffer_b->record_disabled))
6332 		goto out;
6333 
6334 	/*
6335 	 * We can't do a synchronize_rcu here because this
6336 	 * function can be called in atomic context.
6337 	 * Normally this will be called from the same CPU as cpu.
6338 	 * If not it's up to the caller to protect this.
6339 	 */
6340 	atomic_inc(&cpu_buffer_a->record_disabled);
6341 	atomic_inc(&cpu_buffer_b->record_disabled);
6342 
6343 	ret = -EBUSY;
6344 	if (local_read(&cpu_buffer_a->committing))
6345 		goto out_dec;
6346 	if (local_read(&cpu_buffer_b->committing))
6347 		goto out_dec;
6348 
6349 	/*
6350 	 * When resize is in progress, we cannot swap it because
6351 	 * it will mess the state of the cpu buffer.
6352 	 */
6353 	if (atomic_read(&buffer_a->resizing))
6354 		goto out_dec;
6355 	if (atomic_read(&buffer_b->resizing))
6356 		goto out_dec;
6357 
6358 	buffer_a->buffers[cpu] = cpu_buffer_b;
6359 	buffer_b->buffers[cpu] = cpu_buffer_a;
6360 
6361 	cpu_buffer_b->buffer = buffer_a;
6362 	cpu_buffer_a->buffer = buffer_b;
6363 
6364 	ret = 0;
6365 
6366 out_dec:
6367 	atomic_dec(&cpu_buffer_a->record_disabled);
6368 	atomic_dec(&cpu_buffer_b->record_disabled);
6369 out:
6370 	return ret;
6371 }
6372 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
6373 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
6374 
6375 /**
6376  * ring_buffer_alloc_read_page - allocate a page to read from buffer
6377  * @buffer: the buffer to allocate for.
6378  * @cpu: the cpu buffer to allocate.
6379  *
6380  * This function is used in conjunction with ring_buffer_read_page.
6381  * When reading a full page from the ring buffer, these functions
6382  * can be used to speed up the process. The calling function should
6383  * allocate a few pages first with this function. Then when it
6384  * needs to get pages from the ring buffer, it passes the result
6385  * of this function into ring_buffer_read_page, which will swap
6386  * the page that was allocated, with the read page of the buffer.
6387  *
6388  * Returns:
6389  *  The page allocated, or ERR_PTR
6390  */
6391 struct buffer_data_read_page *
6392 ring_buffer_alloc_read_page(struct trace_buffer *buffer, int cpu)
6393 {
6394 	struct ring_buffer_per_cpu *cpu_buffer;
6395 	struct buffer_data_read_page *bpage = NULL;
6396 	unsigned long flags;
6397 	struct page *page;
6398 
6399 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6400 		return ERR_PTR(-ENODEV);
6401 
6402 	bpage = kzalloc(sizeof(*bpage), GFP_KERNEL);
6403 	if (!bpage)
6404 		return ERR_PTR(-ENOMEM);
6405 
6406 	bpage->order = buffer->subbuf_order;
6407 	cpu_buffer = buffer->buffers[cpu];
6408 	local_irq_save(flags);
6409 	arch_spin_lock(&cpu_buffer->lock);
6410 
6411 	if (cpu_buffer->free_page) {
6412 		bpage->data = cpu_buffer->free_page;
6413 		cpu_buffer->free_page = NULL;
6414 	}
6415 
6416 	arch_spin_unlock(&cpu_buffer->lock);
6417 	local_irq_restore(flags);
6418 
6419 	if (bpage->data)
6420 		goto out;
6421 
6422 	page = alloc_pages_node(cpu_to_node(cpu),
6423 				GFP_KERNEL | __GFP_NORETRY | __GFP_COMP | __GFP_ZERO,
6424 				cpu_buffer->buffer->subbuf_order);
6425 	if (!page) {
6426 		kfree(bpage);
6427 		return ERR_PTR(-ENOMEM);
6428 	}
6429 
6430 	bpage->data = page_address(page);
6431 
6432  out:
6433 	rb_init_page(bpage->data);
6434 
6435 	return bpage;
6436 }
6437 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
6438 
6439 /**
6440  * ring_buffer_free_read_page - free an allocated read page
6441  * @buffer: the buffer the page was allocate for
6442  * @cpu: the cpu buffer the page came from
6443  * @data_page: the page to free
6444  *
6445  * Free a page allocated from ring_buffer_alloc_read_page.
6446  */
6447 void ring_buffer_free_read_page(struct trace_buffer *buffer, int cpu,
6448 				struct buffer_data_read_page *data_page)
6449 {
6450 	struct ring_buffer_per_cpu *cpu_buffer;
6451 	struct buffer_data_page *bpage = data_page->data;
6452 	struct page *page = virt_to_page(bpage);
6453 	unsigned long flags;
6454 
6455 	if (!buffer || !buffer->buffers || !buffer->buffers[cpu])
6456 		return;
6457 
6458 	cpu_buffer = buffer->buffers[cpu];
6459 
6460 	/*
6461 	 * If the page is still in use someplace else, or order of the page
6462 	 * is different from the subbuffer order of the buffer -
6463 	 * we can't reuse it
6464 	 */
6465 	if (page_ref_count(page) > 1 || data_page->order != buffer->subbuf_order)
6466 		goto out;
6467 
6468 	local_irq_save(flags);
6469 	arch_spin_lock(&cpu_buffer->lock);
6470 
6471 	if (!cpu_buffer->free_page) {
6472 		cpu_buffer->free_page = bpage;
6473 		bpage = NULL;
6474 	}
6475 
6476 	arch_spin_unlock(&cpu_buffer->lock);
6477 	local_irq_restore(flags);
6478 
6479  out:
6480 	free_pages((unsigned long)bpage, data_page->order);
6481 	kfree(data_page);
6482 }
6483 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
6484 
6485 /**
6486  * ring_buffer_read_page - extract a page from the ring buffer
6487  * @buffer: buffer to extract from
6488  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
6489  * @len: amount to extract
6490  * @cpu: the cpu of the buffer to extract
6491  * @full: should the extraction only happen when the page is full.
6492  *
6493  * This function will pull out a page from the ring buffer and consume it.
6494  * @data_page must be the address of the variable that was returned
6495  * from ring_buffer_alloc_read_page. This is because the page might be used
6496  * to swap with a page in the ring buffer.
6497  *
6498  * for example:
6499  *	rpage = ring_buffer_alloc_read_page(buffer, cpu);
6500  *	if (IS_ERR(rpage))
6501  *		return PTR_ERR(rpage);
6502  *	ret = ring_buffer_read_page(buffer, rpage, len, cpu, 0);
6503  *	if (ret >= 0)
6504  *		process_page(ring_buffer_read_page_data(rpage), ret);
6505  *	ring_buffer_free_read_page(buffer, cpu, rpage);
6506  *
6507  * When @full is set, the function will not return true unless
6508  * the writer is off the reader page.
6509  *
6510  * Note: it is up to the calling functions to handle sleeps and wakeups.
6511  *  The ring buffer can be used anywhere in the kernel and can not
6512  *  blindly call wake_up. The layer that uses the ring buffer must be
6513  *  responsible for that.
6514  *
6515  * Returns:
6516  *  >=0 if data has been transferred, returns the offset of consumed data.
6517  *  <0 if no data has been transferred.
6518  */
6519 int ring_buffer_read_page(struct trace_buffer *buffer,
6520 			  struct buffer_data_read_page *data_page,
6521 			  size_t len, int cpu, int full)
6522 {
6523 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
6524 	struct ring_buffer_event *event;
6525 	struct buffer_data_page *bpage;
6526 	struct buffer_page *reader;
6527 	unsigned long missed_events;
6528 	unsigned long flags;
6529 	unsigned int commit;
6530 	unsigned int read;
6531 	u64 save_timestamp;
6532 	int ret = -1;
6533 
6534 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6535 		goto out;
6536 
6537 	/*
6538 	 * If len is not big enough to hold the page header, then
6539 	 * we can not copy anything.
6540 	 */
6541 	if (len <= BUF_PAGE_HDR_SIZE)
6542 		goto out;
6543 
6544 	len -= BUF_PAGE_HDR_SIZE;
6545 
6546 	if (!data_page || !data_page->data)
6547 		goto out;
6548 	if (data_page->order != buffer->subbuf_order)
6549 		goto out;
6550 
6551 	bpage = data_page->data;
6552 	if (!bpage)
6553 		goto out;
6554 
6555 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6556 
6557 	reader = rb_get_reader_page(cpu_buffer);
6558 	if (!reader)
6559 		goto out_unlock;
6560 
6561 	event = rb_reader_event(cpu_buffer);
6562 
6563 	read = reader->read;
6564 	commit = rb_page_size(reader);
6565 
6566 	/* Check if any events were dropped */
6567 	missed_events = cpu_buffer->lost_events;
6568 
6569 	/*
6570 	 * If this page has been partially read or
6571 	 * if len is not big enough to read the rest of the page or
6572 	 * a writer is still on the page, then
6573 	 * we must copy the data from the page to the buffer.
6574 	 * Otherwise, we can simply swap the page with the one passed in.
6575 	 */
6576 	if (read || (len < (commit - read)) ||
6577 	    cpu_buffer->reader_page == cpu_buffer->commit_page ||
6578 	    cpu_buffer->mapped) {
6579 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
6580 		unsigned int rpos = read;
6581 		unsigned int pos = 0;
6582 		unsigned int size;
6583 
6584 		/*
6585 		 * If a full page is expected, this can still be returned
6586 		 * if there's been a previous partial read and the
6587 		 * rest of the page can be read and the commit page is off
6588 		 * the reader page.
6589 		 */
6590 		if (full &&
6591 		    (!read || (len < (commit - read)) ||
6592 		     cpu_buffer->reader_page == cpu_buffer->commit_page))
6593 			goto out_unlock;
6594 
6595 		if (len > (commit - read))
6596 			len = (commit - read);
6597 
6598 		/* Always keep the time extend and data together */
6599 		size = rb_event_ts_length(event);
6600 
6601 		if (len < size)
6602 			goto out_unlock;
6603 
6604 		/* save the current timestamp, since the user will need it */
6605 		save_timestamp = cpu_buffer->read_stamp;
6606 
6607 		/* Need to copy one event at a time */
6608 		do {
6609 			/* We need the size of one event, because
6610 			 * rb_advance_reader only advances by one event,
6611 			 * whereas rb_event_ts_length may include the size of
6612 			 * one or two events.
6613 			 * We have already ensured there's enough space if this
6614 			 * is a time extend. */
6615 			size = rb_event_length(event);
6616 			memcpy(bpage->data + pos, rpage->data + rpos, size);
6617 
6618 			len -= size;
6619 
6620 			rb_advance_reader(cpu_buffer);
6621 			rpos = reader->read;
6622 			pos += size;
6623 
6624 			if (rpos >= commit)
6625 				break;
6626 
6627 			event = rb_reader_event(cpu_buffer);
6628 			/* Always keep the time extend and data together */
6629 			size = rb_event_ts_length(event);
6630 		} while (len >= size);
6631 
6632 		/* update bpage */
6633 		local_set(&bpage->commit, pos);
6634 		bpage->time_stamp = save_timestamp;
6635 
6636 		/* we copied everything to the beginning */
6637 		read = 0;
6638 	} else {
6639 		/* update the entry counter */
6640 		cpu_buffer->read += rb_page_entries(reader);
6641 		cpu_buffer->read_bytes += rb_page_size(reader);
6642 
6643 		/* swap the pages */
6644 		rb_init_page(bpage);
6645 		bpage = reader->page;
6646 		reader->page = data_page->data;
6647 		local_set(&reader->write, 0);
6648 		local_set(&reader->entries, 0);
6649 		reader->read = 0;
6650 		data_page->data = bpage;
6651 
6652 		/*
6653 		 * Use the real_end for the data size,
6654 		 * This gives us a chance to store the lost events
6655 		 * on the page.
6656 		 */
6657 		if (reader->real_end)
6658 			local_set(&bpage->commit, reader->real_end);
6659 	}
6660 	ret = read;
6661 
6662 	cpu_buffer->lost_events = 0;
6663 
6664 	commit = local_read(&bpage->commit);
6665 	/*
6666 	 * Set a flag in the commit field if we lost events
6667 	 */
6668 	if (missed_events) {
6669 		/* If there is room at the end of the page to save the
6670 		 * missed events, then record it there.
6671 		 */
6672 		if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
6673 			memcpy(&bpage->data[commit], &missed_events,
6674 			       sizeof(missed_events));
6675 			local_add(RB_MISSED_STORED, &bpage->commit);
6676 			commit += sizeof(missed_events);
6677 		}
6678 		local_add(RB_MISSED_EVENTS, &bpage->commit);
6679 	}
6680 
6681 	/*
6682 	 * This page may be off to user land. Zero it out here.
6683 	 */
6684 	if (commit < buffer->subbuf_size)
6685 		memset(&bpage->data[commit], 0, buffer->subbuf_size - commit);
6686 
6687  out_unlock:
6688 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6689 
6690  out:
6691 	return ret;
6692 }
6693 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
6694 
6695 /**
6696  * ring_buffer_read_page_data - get pointer to the data in the page.
6697  * @page:  the page to get the data from
6698  *
6699  * Returns pointer to the actual data in this page.
6700  */
6701 void *ring_buffer_read_page_data(struct buffer_data_read_page *page)
6702 {
6703 	return page->data;
6704 }
6705 EXPORT_SYMBOL_GPL(ring_buffer_read_page_data);
6706 
6707 /**
6708  * ring_buffer_subbuf_size_get - get size of the sub buffer.
6709  * @buffer: the buffer to get the sub buffer size from
6710  *
6711  * Returns size of the sub buffer, in bytes.
6712  */
6713 int ring_buffer_subbuf_size_get(struct trace_buffer *buffer)
6714 {
6715 	return buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6716 }
6717 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_size_get);
6718 
6719 /**
6720  * ring_buffer_subbuf_order_get - get order of system sub pages in one buffer page.
6721  * @buffer: The ring_buffer to get the system sub page order from
6722  *
6723  * By default, one ring buffer sub page equals to one system page. This parameter
6724  * is configurable, per ring buffer. The size of the ring buffer sub page can be
6725  * extended, but must be an order of system page size.
6726  *
6727  * Returns the order of buffer sub page size, in system pages:
6728  * 0 means the sub buffer size is 1 system page and so forth.
6729  * In case of an error < 0 is returned.
6730  */
6731 int ring_buffer_subbuf_order_get(struct trace_buffer *buffer)
6732 {
6733 	if (!buffer)
6734 		return -EINVAL;
6735 
6736 	return buffer->subbuf_order;
6737 }
6738 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_get);
6739 
6740 /**
6741  * ring_buffer_subbuf_order_set - set the size of ring buffer sub page.
6742  * @buffer: The ring_buffer to set the new page size.
6743  * @order: Order of the system pages in one sub buffer page
6744  *
6745  * By default, one ring buffer pages equals to one system page. This API can be
6746  * used to set new size of the ring buffer page. The size must be order of
6747  * system page size, that's why the input parameter @order is the order of
6748  * system pages that are allocated for one ring buffer page:
6749  *  0 - 1 system page
6750  *  1 - 2 system pages
6751  *  3 - 4 system pages
6752  *  ...
6753  *
6754  * Returns 0 on success or < 0 in case of an error.
6755  */
6756 int ring_buffer_subbuf_order_set(struct trace_buffer *buffer, int order)
6757 {
6758 	struct ring_buffer_per_cpu *cpu_buffer;
6759 	struct buffer_page *bpage, *tmp;
6760 	int old_order, old_size;
6761 	int nr_pages;
6762 	int psize;
6763 	int err;
6764 	int cpu;
6765 
6766 	if (!buffer || order < 0)
6767 		return -EINVAL;
6768 
6769 	if (buffer->subbuf_order == order)
6770 		return 0;
6771 
6772 	psize = (1 << order) * PAGE_SIZE;
6773 	if (psize <= BUF_PAGE_HDR_SIZE)
6774 		return -EINVAL;
6775 
6776 	/* Size of a subbuf cannot be greater than the write counter */
6777 	if (psize > RB_WRITE_MASK + 1)
6778 		return -EINVAL;
6779 
6780 	old_order = buffer->subbuf_order;
6781 	old_size = buffer->subbuf_size;
6782 
6783 	/* prevent another thread from changing buffer sizes */
6784 	mutex_lock(&buffer->mutex);
6785 	atomic_inc(&buffer->record_disabled);
6786 
6787 	/* Make sure all commits have finished */
6788 	synchronize_rcu();
6789 
6790 	buffer->subbuf_order = order;
6791 	buffer->subbuf_size = psize - BUF_PAGE_HDR_SIZE;
6792 
6793 	/* Make sure all new buffers are allocated, before deleting the old ones */
6794 	for_each_buffer_cpu(buffer, cpu) {
6795 
6796 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6797 			continue;
6798 
6799 		cpu_buffer = buffer->buffers[cpu];
6800 
6801 		if (cpu_buffer->mapped) {
6802 			err = -EBUSY;
6803 			goto error;
6804 		}
6805 
6806 		/* Update the number of pages to match the new size */
6807 		nr_pages = old_size * buffer->buffers[cpu]->nr_pages;
6808 		nr_pages = DIV_ROUND_UP(nr_pages, buffer->subbuf_size);
6809 
6810 		/* we need a minimum of two pages */
6811 		if (nr_pages < 2)
6812 			nr_pages = 2;
6813 
6814 		cpu_buffer->nr_pages_to_update = nr_pages;
6815 
6816 		/* Include the reader page */
6817 		nr_pages++;
6818 
6819 		/* Allocate the new size buffer */
6820 		INIT_LIST_HEAD(&cpu_buffer->new_pages);
6821 		if (__rb_allocate_pages(cpu_buffer, nr_pages,
6822 					&cpu_buffer->new_pages)) {
6823 			/* not enough memory for new pages */
6824 			err = -ENOMEM;
6825 			goto error;
6826 		}
6827 	}
6828 
6829 	for_each_buffer_cpu(buffer, cpu) {
6830 		struct buffer_data_page *old_free_data_page;
6831 		struct list_head old_pages;
6832 		unsigned long flags;
6833 
6834 		if (!cpumask_test_cpu(cpu, buffer->cpumask))
6835 			continue;
6836 
6837 		cpu_buffer = buffer->buffers[cpu];
6838 
6839 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
6840 
6841 		/* Clear the head bit to make the link list normal to read */
6842 		rb_head_page_deactivate(cpu_buffer);
6843 
6844 		/*
6845 		 * Collect buffers from the cpu_buffer pages list and the
6846 		 * reader_page on old_pages, so they can be freed later when not
6847 		 * under a spinlock. The pages list is a linked list with no
6848 		 * head, adding old_pages turns it into a regular list with
6849 		 * old_pages being the head.
6850 		 */
6851 		list_add(&old_pages, cpu_buffer->pages);
6852 		list_add(&cpu_buffer->reader_page->list, &old_pages);
6853 
6854 		/* One page was allocated for the reader page */
6855 		cpu_buffer->reader_page = list_entry(cpu_buffer->new_pages.next,
6856 						     struct buffer_page, list);
6857 		list_del_init(&cpu_buffer->reader_page->list);
6858 
6859 		/* Install the new pages, remove the head from the list */
6860 		cpu_buffer->pages = cpu_buffer->new_pages.next;
6861 		list_del_init(&cpu_buffer->new_pages);
6862 		cpu_buffer->cnt++;
6863 
6864 		cpu_buffer->head_page
6865 			= list_entry(cpu_buffer->pages, struct buffer_page, list);
6866 		cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
6867 
6868 		cpu_buffer->nr_pages = cpu_buffer->nr_pages_to_update;
6869 		cpu_buffer->nr_pages_to_update = 0;
6870 
6871 		old_free_data_page = cpu_buffer->free_page;
6872 		cpu_buffer->free_page = NULL;
6873 
6874 		rb_head_page_activate(cpu_buffer);
6875 
6876 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
6877 
6878 		/* Free old sub buffers */
6879 		list_for_each_entry_safe(bpage, tmp, &old_pages, list) {
6880 			list_del_init(&bpage->list);
6881 			free_buffer_page(bpage);
6882 		}
6883 		free_pages((unsigned long)old_free_data_page, old_order);
6884 
6885 		rb_check_pages(cpu_buffer);
6886 	}
6887 
6888 	atomic_dec(&buffer->record_disabled);
6889 	mutex_unlock(&buffer->mutex);
6890 
6891 	return 0;
6892 
6893 error:
6894 	buffer->subbuf_order = old_order;
6895 	buffer->subbuf_size = old_size;
6896 
6897 	atomic_dec(&buffer->record_disabled);
6898 	mutex_unlock(&buffer->mutex);
6899 
6900 	for_each_buffer_cpu(buffer, cpu) {
6901 		cpu_buffer = buffer->buffers[cpu];
6902 
6903 		if (!cpu_buffer->nr_pages_to_update)
6904 			continue;
6905 
6906 		list_for_each_entry_safe(bpage, tmp, &cpu_buffer->new_pages, list) {
6907 			list_del_init(&bpage->list);
6908 			free_buffer_page(bpage);
6909 		}
6910 	}
6911 
6912 	return err;
6913 }
6914 EXPORT_SYMBOL_GPL(ring_buffer_subbuf_order_set);
6915 
6916 static int rb_alloc_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6917 {
6918 	struct page *page;
6919 
6920 	if (cpu_buffer->meta_page)
6921 		return 0;
6922 
6923 	page = alloc_page(GFP_USER | __GFP_ZERO);
6924 	if (!page)
6925 		return -ENOMEM;
6926 
6927 	cpu_buffer->meta_page = page_to_virt(page);
6928 
6929 	return 0;
6930 }
6931 
6932 static void rb_free_meta_page(struct ring_buffer_per_cpu *cpu_buffer)
6933 {
6934 	unsigned long addr = (unsigned long)cpu_buffer->meta_page;
6935 
6936 	free_page(addr);
6937 	cpu_buffer->meta_page = NULL;
6938 }
6939 
6940 static void rb_setup_ids_meta_page(struct ring_buffer_per_cpu *cpu_buffer,
6941 				   unsigned long *subbuf_ids)
6942 {
6943 	struct trace_buffer_meta *meta = cpu_buffer->meta_page;
6944 	unsigned int nr_subbufs = cpu_buffer->nr_pages + 1;
6945 	struct buffer_page *first_subbuf, *subbuf;
6946 	int id = 0;
6947 
6948 	subbuf_ids[id] = (unsigned long)cpu_buffer->reader_page->page;
6949 	cpu_buffer->reader_page->id = id++;
6950 
6951 	first_subbuf = subbuf = rb_set_head_page(cpu_buffer);
6952 	do {
6953 		if (WARN_ON(id >= nr_subbufs))
6954 			break;
6955 
6956 		subbuf_ids[id] = (unsigned long)subbuf->page;
6957 		subbuf->id = id;
6958 
6959 		rb_inc_page(&subbuf);
6960 		id++;
6961 	} while (subbuf != first_subbuf);
6962 
6963 	/* install subbuf ID to kern VA translation */
6964 	cpu_buffer->subbuf_ids = subbuf_ids;
6965 
6966 	meta->meta_struct_len = sizeof(*meta);
6967 	meta->nr_subbufs = nr_subbufs;
6968 	meta->subbuf_size = cpu_buffer->buffer->subbuf_size + BUF_PAGE_HDR_SIZE;
6969 	meta->meta_page_size = meta->subbuf_size;
6970 
6971 	rb_update_meta_page(cpu_buffer);
6972 }
6973 
6974 static struct ring_buffer_per_cpu *
6975 rb_get_mapped_buffer(struct trace_buffer *buffer, int cpu)
6976 {
6977 	struct ring_buffer_per_cpu *cpu_buffer;
6978 
6979 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
6980 		return ERR_PTR(-EINVAL);
6981 
6982 	cpu_buffer = buffer->buffers[cpu];
6983 
6984 	mutex_lock(&cpu_buffer->mapping_lock);
6985 
6986 	if (!cpu_buffer->user_mapped) {
6987 		mutex_unlock(&cpu_buffer->mapping_lock);
6988 		return ERR_PTR(-ENODEV);
6989 	}
6990 
6991 	return cpu_buffer;
6992 }
6993 
6994 static void rb_put_mapped_buffer(struct ring_buffer_per_cpu *cpu_buffer)
6995 {
6996 	mutex_unlock(&cpu_buffer->mapping_lock);
6997 }
6998 
6999 /*
7000  * Fast-path for rb_buffer_(un)map(). Called whenever the meta-page doesn't need
7001  * to be set-up or torn-down.
7002  */
7003 static int __rb_inc_dec_mapped(struct ring_buffer_per_cpu *cpu_buffer,
7004 			       bool inc)
7005 {
7006 	unsigned long flags;
7007 
7008 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7009 
7010 	/* mapped is always greater or equal to user_mapped */
7011 	if (WARN_ON(cpu_buffer->mapped < cpu_buffer->user_mapped))
7012 		return -EINVAL;
7013 
7014 	if (inc && cpu_buffer->mapped == UINT_MAX)
7015 		return -EBUSY;
7016 
7017 	if (WARN_ON(!inc && cpu_buffer->user_mapped == 0))
7018 		return -EINVAL;
7019 
7020 	mutex_lock(&cpu_buffer->buffer->mutex);
7021 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7022 
7023 	if (inc) {
7024 		cpu_buffer->user_mapped++;
7025 		cpu_buffer->mapped++;
7026 	} else {
7027 		cpu_buffer->user_mapped--;
7028 		cpu_buffer->mapped--;
7029 	}
7030 
7031 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7032 	mutex_unlock(&cpu_buffer->buffer->mutex);
7033 
7034 	return 0;
7035 }
7036 
7037 /*
7038  *   +--------------+  pgoff == 0
7039  *   |   meta page  |
7040  *   +--------------+  pgoff == 1
7041  *   | subbuffer 0  |
7042  *   |              |
7043  *   +--------------+  pgoff == (1 + (1 << subbuf_order))
7044  *   | subbuffer 1  |
7045  *   |              |
7046  *         ...
7047  */
7048 #ifdef CONFIG_MMU
7049 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7050 			struct vm_area_struct *vma)
7051 {
7052 	unsigned long nr_subbufs, nr_pages, nr_vma_pages, pgoff = vma->vm_pgoff;
7053 	unsigned int subbuf_pages, subbuf_order;
7054 	struct page **pages;
7055 	int p = 0, s = 0;
7056 	int err;
7057 
7058 	/* Refuse MP_PRIVATE or writable mappings */
7059 	if (vma->vm_flags & VM_WRITE || vma->vm_flags & VM_EXEC ||
7060 	    !(vma->vm_flags & VM_MAYSHARE))
7061 		return -EPERM;
7062 
7063 	subbuf_order = cpu_buffer->buffer->subbuf_order;
7064 	subbuf_pages = 1 << subbuf_order;
7065 
7066 	if (subbuf_order && pgoff % subbuf_pages)
7067 		return -EINVAL;
7068 
7069 	/*
7070 	 * Make sure the mapping cannot become writable later. Also tell the VM
7071 	 * to not touch these pages (VM_DONTCOPY | VM_DONTEXPAND).
7072 	 */
7073 	vm_flags_mod(vma, VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP,
7074 		     VM_MAYWRITE);
7075 
7076 	lockdep_assert_held(&cpu_buffer->mapping_lock);
7077 
7078 	nr_subbufs = cpu_buffer->nr_pages + 1; /* + reader-subbuf */
7079 	nr_pages = ((nr_subbufs + 1) << subbuf_order); /* + meta-page */
7080 	if (nr_pages <= pgoff)
7081 		return -EINVAL;
7082 
7083 	nr_pages -= pgoff;
7084 
7085 	nr_vma_pages = vma_pages(vma);
7086 	if (!nr_vma_pages || nr_vma_pages > nr_pages)
7087 		return -EINVAL;
7088 
7089 	nr_pages = nr_vma_pages;
7090 
7091 	pages = kcalloc(nr_pages, sizeof(*pages), GFP_KERNEL);
7092 	if (!pages)
7093 		return -ENOMEM;
7094 
7095 	if (!pgoff) {
7096 		unsigned long meta_page_padding;
7097 
7098 		pages[p++] = virt_to_page(cpu_buffer->meta_page);
7099 
7100 		/*
7101 		 * Pad with the zero-page to align the meta-page with the
7102 		 * sub-buffers.
7103 		 */
7104 		meta_page_padding = subbuf_pages - 1;
7105 		while (meta_page_padding-- && p < nr_pages) {
7106 			unsigned long __maybe_unused zero_addr =
7107 				vma->vm_start + (PAGE_SIZE * p);
7108 
7109 			pages[p++] = ZERO_PAGE(zero_addr);
7110 		}
7111 	} else {
7112 		/* Skip the meta-page */
7113 		pgoff -= subbuf_pages;
7114 
7115 		s += pgoff / subbuf_pages;
7116 	}
7117 
7118 	while (p < nr_pages) {
7119 		struct page *page;
7120 		int off = 0;
7121 
7122 		if (WARN_ON_ONCE(s >= nr_subbufs)) {
7123 			err = -EINVAL;
7124 			goto out;
7125 		}
7126 
7127 		page = virt_to_page((void *)cpu_buffer->subbuf_ids[s]);
7128 
7129 		for (; off < (1 << (subbuf_order)); off++, page++) {
7130 			if (p >= nr_pages)
7131 				break;
7132 
7133 			pages[p++] = page;
7134 		}
7135 		s++;
7136 	}
7137 
7138 	err = vm_insert_pages(vma, vma->vm_start, pages, &nr_pages);
7139 
7140 out:
7141 	kfree(pages);
7142 
7143 	return err;
7144 }
7145 #else
7146 static int __rb_map_vma(struct ring_buffer_per_cpu *cpu_buffer,
7147 			struct vm_area_struct *vma)
7148 {
7149 	return -EOPNOTSUPP;
7150 }
7151 #endif
7152 
7153 int ring_buffer_map(struct trace_buffer *buffer, int cpu,
7154 		    struct vm_area_struct *vma)
7155 {
7156 	struct ring_buffer_per_cpu *cpu_buffer;
7157 	unsigned long flags, *subbuf_ids;
7158 	int err = 0;
7159 
7160 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7161 		return -EINVAL;
7162 
7163 	cpu_buffer = buffer->buffers[cpu];
7164 
7165 	mutex_lock(&cpu_buffer->mapping_lock);
7166 
7167 	if (cpu_buffer->user_mapped) {
7168 		err = __rb_map_vma(cpu_buffer, vma);
7169 		if (!err)
7170 			err = __rb_inc_dec_mapped(cpu_buffer, true);
7171 		mutex_unlock(&cpu_buffer->mapping_lock);
7172 		return err;
7173 	}
7174 
7175 	/* prevent another thread from changing buffer/sub-buffer sizes */
7176 	mutex_lock(&buffer->mutex);
7177 
7178 	err = rb_alloc_meta_page(cpu_buffer);
7179 	if (err)
7180 		goto unlock;
7181 
7182 	/* subbuf_ids include the reader while nr_pages does not */
7183 	subbuf_ids = kcalloc(cpu_buffer->nr_pages + 1, sizeof(*subbuf_ids), GFP_KERNEL);
7184 	if (!subbuf_ids) {
7185 		rb_free_meta_page(cpu_buffer);
7186 		err = -ENOMEM;
7187 		goto unlock;
7188 	}
7189 
7190 	atomic_inc(&cpu_buffer->resize_disabled);
7191 
7192 	/*
7193 	 * Lock all readers to block any subbuf swap until the subbuf IDs are
7194 	 * assigned.
7195 	 */
7196 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7197 	rb_setup_ids_meta_page(cpu_buffer, subbuf_ids);
7198 
7199 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7200 
7201 	err = __rb_map_vma(cpu_buffer, vma);
7202 	if (!err) {
7203 		raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7204 		/* This is the first time it is mapped by user */
7205 		cpu_buffer->mapped++;
7206 		cpu_buffer->user_mapped = 1;
7207 		raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7208 	} else {
7209 		kfree(cpu_buffer->subbuf_ids);
7210 		cpu_buffer->subbuf_ids = NULL;
7211 		rb_free_meta_page(cpu_buffer);
7212 		atomic_dec(&cpu_buffer->resize_disabled);
7213 	}
7214 
7215 unlock:
7216 	mutex_unlock(&buffer->mutex);
7217 	mutex_unlock(&cpu_buffer->mapping_lock);
7218 
7219 	return err;
7220 }
7221 
7222 int ring_buffer_unmap(struct trace_buffer *buffer, int cpu)
7223 {
7224 	struct ring_buffer_per_cpu *cpu_buffer;
7225 	unsigned long flags;
7226 	int err = 0;
7227 
7228 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
7229 		return -EINVAL;
7230 
7231 	cpu_buffer = buffer->buffers[cpu];
7232 
7233 	mutex_lock(&cpu_buffer->mapping_lock);
7234 
7235 	if (!cpu_buffer->user_mapped) {
7236 		err = -ENODEV;
7237 		goto out;
7238 	} else if (cpu_buffer->user_mapped > 1) {
7239 		__rb_inc_dec_mapped(cpu_buffer, false);
7240 		goto out;
7241 	}
7242 
7243 	mutex_lock(&buffer->mutex);
7244 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7245 
7246 	/* This is the last user space mapping */
7247 	if (!WARN_ON_ONCE(cpu_buffer->mapped < cpu_buffer->user_mapped))
7248 		cpu_buffer->mapped--;
7249 	cpu_buffer->user_mapped = 0;
7250 
7251 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7252 
7253 	kfree(cpu_buffer->subbuf_ids);
7254 	cpu_buffer->subbuf_ids = NULL;
7255 	rb_free_meta_page(cpu_buffer);
7256 	atomic_dec(&cpu_buffer->resize_disabled);
7257 
7258 	mutex_unlock(&buffer->mutex);
7259 
7260 out:
7261 	mutex_unlock(&cpu_buffer->mapping_lock);
7262 
7263 	return err;
7264 }
7265 
7266 int ring_buffer_map_get_reader(struct trace_buffer *buffer, int cpu)
7267 {
7268 	struct ring_buffer_per_cpu *cpu_buffer;
7269 	struct buffer_page *reader;
7270 	unsigned long missed_events;
7271 	unsigned long reader_size;
7272 	unsigned long flags;
7273 
7274 	cpu_buffer = rb_get_mapped_buffer(buffer, cpu);
7275 	if (IS_ERR(cpu_buffer))
7276 		return (int)PTR_ERR(cpu_buffer);
7277 
7278 	raw_spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
7279 
7280 consume:
7281 	if (rb_per_cpu_empty(cpu_buffer))
7282 		goto out;
7283 
7284 	reader_size = rb_page_size(cpu_buffer->reader_page);
7285 
7286 	/*
7287 	 * There are data to be read on the current reader page, we can
7288 	 * return to the caller. But before that, we assume the latter will read
7289 	 * everything. Let's update the kernel reader accordingly.
7290 	 */
7291 	if (cpu_buffer->reader_page->read < reader_size) {
7292 		while (cpu_buffer->reader_page->read < reader_size)
7293 			rb_advance_reader(cpu_buffer);
7294 		goto out;
7295 	}
7296 
7297 	reader = rb_get_reader_page(cpu_buffer);
7298 	if (WARN_ON(!reader))
7299 		goto out;
7300 
7301 	/* Check if any events were dropped */
7302 	missed_events = cpu_buffer->lost_events;
7303 
7304 	if (cpu_buffer->reader_page != cpu_buffer->commit_page) {
7305 		if (missed_events) {
7306 			struct buffer_data_page *bpage = reader->page;
7307 			unsigned int commit;
7308 			/*
7309 			 * Use the real_end for the data size,
7310 			 * This gives us a chance to store the lost events
7311 			 * on the page.
7312 			 */
7313 			if (reader->real_end)
7314 				local_set(&bpage->commit, reader->real_end);
7315 			/*
7316 			 * If there is room at the end of the page to save the
7317 			 * missed events, then record it there.
7318 			 */
7319 			commit = rb_page_size(reader);
7320 			if (buffer->subbuf_size - commit >= sizeof(missed_events)) {
7321 				memcpy(&bpage->data[commit], &missed_events,
7322 				       sizeof(missed_events));
7323 				local_add(RB_MISSED_STORED, &bpage->commit);
7324 			}
7325 			local_add(RB_MISSED_EVENTS, &bpage->commit);
7326 		}
7327 	} else {
7328 		/*
7329 		 * There really shouldn't be any missed events if the commit
7330 		 * is on the reader page.
7331 		 */
7332 		WARN_ON_ONCE(missed_events);
7333 	}
7334 
7335 	cpu_buffer->lost_events = 0;
7336 
7337 	goto consume;
7338 
7339 out:
7340 	/* Some archs do not have data cache coherency between kernel and user-space */
7341 	flush_dcache_folio(virt_to_folio(cpu_buffer->reader_page->page));
7342 
7343 	rb_update_meta_page(cpu_buffer);
7344 
7345 	raw_spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
7346 	rb_put_mapped_buffer(cpu_buffer);
7347 
7348 	return 0;
7349 }
7350 
7351 /*
7352  * We only allocate new buffers, never free them if the CPU goes down.
7353  * If we were to free the buffer, then the user would lose any trace that was in
7354  * the buffer.
7355  */
7356 int trace_rb_cpu_prepare(unsigned int cpu, struct hlist_node *node)
7357 {
7358 	struct trace_buffer *buffer;
7359 	long nr_pages_same;
7360 	int cpu_i;
7361 	unsigned long nr_pages;
7362 
7363 	buffer = container_of(node, struct trace_buffer, node);
7364 	if (cpumask_test_cpu(cpu, buffer->cpumask))
7365 		return 0;
7366 
7367 	nr_pages = 0;
7368 	nr_pages_same = 1;
7369 	/* check if all cpu sizes are same */
7370 	for_each_buffer_cpu(buffer, cpu_i) {
7371 		/* fill in the size from first enabled cpu */
7372 		if (nr_pages == 0)
7373 			nr_pages = buffer->buffers[cpu_i]->nr_pages;
7374 		if (nr_pages != buffer->buffers[cpu_i]->nr_pages) {
7375 			nr_pages_same = 0;
7376 			break;
7377 		}
7378 	}
7379 	/* allocate minimum pages, user can later expand it */
7380 	if (!nr_pages_same)
7381 		nr_pages = 2;
7382 	buffer->buffers[cpu] =
7383 		rb_allocate_cpu_buffer(buffer, nr_pages, cpu);
7384 	if (!buffer->buffers[cpu]) {
7385 		WARN(1, "failed to allocate ring buffer on CPU %u\n",
7386 		     cpu);
7387 		return -ENOMEM;
7388 	}
7389 	smp_wmb();
7390 	cpumask_set_cpu(cpu, buffer->cpumask);
7391 	return 0;
7392 }
7393 
7394 #ifdef CONFIG_RING_BUFFER_STARTUP_TEST
7395 /*
7396  * This is a basic integrity check of the ring buffer.
7397  * Late in the boot cycle this test will run when configured in.
7398  * It will kick off a thread per CPU that will go into a loop
7399  * writing to the per cpu ring buffer various sizes of data.
7400  * Some of the data will be large items, some small.
7401  *
7402  * Another thread is created that goes into a spin, sending out
7403  * IPIs to the other CPUs to also write into the ring buffer.
7404  * this is to test the nesting ability of the buffer.
7405  *
7406  * Basic stats are recorded and reported. If something in the
7407  * ring buffer should happen that's not expected, a big warning
7408  * is displayed and all ring buffers are disabled.
7409  */
7410 static struct task_struct *rb_threads[NR_CPUS] __initdata;
7411 
7412 struct rb_test_data {
7413 	struct trace_buffer *buffer;
7414 	unsigned long		events;
7415 	unsigned long		bytes_written;
7416 	unsigned long		bytes_alloc;
7417 	unsigned long		bytes_dropped;
7418 	unsigned long		events_nested;
7419 	unsigned long		bytes_written_nested;
7420 	unsigned long		bytes_alloc_nested;
7421 	unsigned long		bytes_dropped_nested;
7422 	int			min_size_nested;
7423 	int			max_size_nested;
7424 	int			max_size;
7425 	int			min_size;
7426 	int			cpu;
7427 	int			cnt;
7428 };
7429 
7430 static struct rb_test_data rb_data[NR_CPUS] __initdata;
7431 
7432 /* 1 meg per cpu */
7433 #define RB_TEST_BUFFER_SIZE	1048576
7434 
7435 static char rb_string[] __initdata =
7436 	"abcdefghijklmnopqrstuvwxyz1234567890!@#$%^&*()?+\\"
7437 	"?+|:';\",.<>/?abcdefghijklmnopqrstuvwxyz1234567890"
7438 	"!@#$%^&*()?+\\?+|:';\",.<>/?abcdefghijklmnopqrstuv";
7439 
7440 static bool rb_test_started __initdata;
7441 
7442 struct rb_item {
7443 	int size;
7444 	char str[];
7445 };
7446 
7447 static __init int rb_write_something(struct rb_test_data *data, bool nested)
7448 {
7449 	struct ring_buffer_event *event;
7450 	struct rb_item *item;
7451 	bool started;
7452 	int event_len;
7453 	int size;
7454 	int len;
7455 	int cnt;
7456 
7457 	/* Have nested writes different that what is written */
7458 	cnt = data->cnt + (nested ? 27 : 0);
7459 
7460 	/* Multiply cnt by ~e, to make some unique increment */
7461 	size = (cnt * 68 / 25) % (sizeof(rb_string) - 1);
7462 
7463 	len = size + sizeof(struct rb_item);
7464 
7465 	started = rb_test_started;
7466 	/* read rb_test_started before checking buffer enabled */
7467 	smp_rmb();
7468 
7469 	event = ring_buffer_lock_reserve(data->buffer, len);
7470 	if (!event) {
7471 		/* Ignore dropped events before test starts. */
7472 		if (started) {
7473 			if (nested)
7474 				data->bytes_dropped_nested += len;
7475 			else
7476 				data->bytes_dropped += len;
7477 		}
7478 		return len;
7479 	}
7480 
7481 	event_len = ring_buffer_event_length(event);
7482 
7483 	if (RB_WARN_ON(data->buffer, event_len < len))
7484 		goto out;
7485 
7486 	item = ring_buffer_event_data(event);
7487 	item->size = size;
7488 	memcpy(item->str, rb_string, size);
7489 
7490 	if (nested) {
7491 		data->bytes_alloc_nested += event_len;
7492 		data->bytes_written_nested += len;
7493 		data->events_nested++;
7494 		if (!data->min_size_nested || len < data->min_size_nested)
7495 			data->min_size_nested = len;
7496 		if (len > data->max_size_nested)
7497 			data->max_size_nested = len;
7498 	} else {
7499 		data->bytes_alloc += event_len;
7500 		data->bytes_written += len;
7501 		data->events++;
7502 		if (!data->min_size || len < data->min_size)
7503 			data->max_size = len;
7504 		if (len > data->max_size)
7505 			data->max_size = len;
7506 	}
7507 
7508  out:
7509 	ring_buffer_unlock_commit(data->buffer);
7510 
7511 	return 0;
7512 }
7513 
7514 static __init int rb_test(void *arg)
7515 {
7516 	struct rb_test_data *data = arg;
7517 
7518 	while (!kthread_should_stop()) {
7519 		rb_write_something(data, false);
7520 		data->cnt++;
7521 
7522 		set_current_state(TASK_INTERRUPTIBLE);
7523 		/* Now sleep between a min of 100-300us and a max of 1ms */
7524 		usleep_range(((data->cnt % 3) + 1) * 100, 1000);
7525 	}
7526 
7527 	return 0;
7528 }
7529 
7530 static __init void rb_ipi(void *ignore)
7531 {
7532 	struct rb_test_data *data;
7533 	int cpu = smp_processor_id();
7534 
7535 	data = &rb_data[cpu];
7536 	rb_write_something(data, true);
7537 }
7538 
7539 static __init int rb_hammer_test(void *arg)
7540 {
7541 	while (!kthread_should_stop()) {
7542 
7543 		/* Send an IPI to all cpus to write data! */
7544 		smp_call_function(rb_ipi, NULL, 1);
7545 		/* No sleep, but for non preempt, let others run */
7546 		schedule();
7547 	}
7548 
7549 	return 0;
7550 }
7551 
7552 static __init int test_ringbuffer(void)
7553 {
7554 	struct task_struct *rb_hammer;
7555 	struct trace_buffer *buffer;
7556 	int cpu;
7557 	int ret = 0;
7558 
7559 	if (security_locked_down(LOCKDOWN_TRACEFS)) {
7560 		pr_warn("Lockdown is enabled, skipping ring buffer tests\n");
7561 		return 0;
7562 	}
7563 
7564 	pr_info("Running ring buffer tests...\n");
7565 
7566 	buffer = ring_buffer_alloc(RB_TEST_BUFFER_SIZE, RB_FL_OVERWRITE);
7567 	if (WARN_ON(!buffer))
7568 		return 0;
7569 
7570 	/* Disable buffer so that threads can't write to it yet */
7571 	ring_buffer_record_off(buffer);
7572 
7573 	for_each_online_cpu(cpu) {
7574 		rb_data[cpu].buffer = buffer;
7575 		rb_data[cpu].cpu = cpu;
7576 		rb_data[cpu].cnt = cpu;
7577 		rb_threads[cpu] = kthread_run_on_cpu(rb_test, &rb_data[cpu],
7578 						     cpu, "rbtester/%u");
7579 		if (WARN_ON(IS_ERR(rb_threads[cpu]))) {
7580 			pr_cont("FAILED\n");
7581 			ret = PTR_ERR(rb_threads[cpu]);
7582 			goto out_free;
7583 		}
7584 	}
7585 
7586 	/* Now create the rb hammer! */
7587 	rb_hammer = kthread_run(rb_hammer_test, NULL, "rbhammer");
7588 	if (WARN_ON(IS_ERR(rb_hammer))) {
7589 		pr_cont("FAILED\n");
7590 		ret = PTR_ERR(rb_hammer);
7591 		goto out_free;
7592 	}
7593 
7594 	ring_buffer_record_on(buffer);
7595 	/*
7596 	 * Show buffer is enabled before setting rb_test_started.
7597 	 * Yes there's a small race window where events could be
7598 	 * dropped and the thread wont catch it. But when a ring
7599 	 * buffer gets enabled, there will always be some kind of
7600 	 * delay before other CPUs see it. Thus, we don't care about
7601 	 * those dropped events. We care about events dropped after
7602 	 * the threads see that the buffer is active.
7603 	 */
7604 	smp_wmb();
7605 	rb_test_started = true;
7606 
7607 	set_current_state(TASK_INTERRUPTIBLE);
7608 	/* Just run for 10 seconds */;
7609 	schedule_timeout(10 * HZ);
7610 
7611 	kthread_stop(rb_hammer);
7612 
7613  out_free:
7614 	for_each_online_cpu(cpu) {
7615 		if (!rb_threads[cpu])
7616 			break;
7617 		kthread_stop(rb_threads[cpu]);
7618 	}
7619 	if (ret) {
7620 		ring_buffer_free(buffer);
7621 		return ret;
7622 	}
7623 
7624 	/* Report! */
7625 	pr_info("finished\n");
7626 	for_each_online_cpu(cpu) {
7627 		struct ring_buffer_event *event;
7628 		struct rb_test_data *data = &rb_data[cpu];
7629 		struct rb_item *item;
7630 		unsigned long total_events;
7631 		unsigned long total_dropped;
7632 		unsigned long total_written;
7633 		unsigned long total_alloc;
7634 		unsigned long total_read = 0;
7635 		unsigned long total_size = 0;
7636 		unsigned long total_len = 0;
7637 		unsigned long total_lost = 0;
7638 		unsigned long lost;
7639 		int big_event_size;
7640 		int small_event_size;
7641 
7642 		ret = -1;
7643 
7644 		total_events = data->events + data->events_nested;
7645 		total_written = data->bytes_written + data->bytes_written_nested;
7646 		total_alloc = data->bytes_alloc + data->bytes_alloc_nested;
7647 		total_dropped = data->bytes_dropped + data->bytes_dropped_nested;
7648 
7649 		big_event_size = data->max_size + data->max_size_nested;
7650 		small_event_size = data->min_size + data->min_size_nested;
7651 
7652 		pr_info("CPU %d:\n", cpu);
7653 		pr_info("              events:    %ld\n", total_events);
7654 		pr_info("       dropped bytes:    %ld\n", total_dropped);
7655 		pr_info("       alloced bytes:    %ld\n", total_alloc);
7656 		pr_info("       written bytes:    %ld\n", total_written);
7657 		pr_info("       biggest event:    %d\n", big_event_size);
7658 		pr_info("      smallest event:    %d\n", small_event_size);
7659 
7660 		if (RB_WARN_ON(buffer, total_dropped))
7661 			break;
7662 
7663 		ret = 0;
7664 
7665 		while ((event = ring_buffer_consume(buffer, cpu, NULL, &lost))) {
7666 			total_lost += lost;
7667 			item = ring_buffer_event_data(event);
7668 			total_len += ring_buffer_event_length(event);
7669 			total_size += item->size + sizeof(struct rb_item);
7670 			if (memcmp(&item->str[0], rb_string, item->size) != 0) {
7671 				pr_info("FAILED!\n");
7672 				pr_info("buffer had: %.*s\n", item->size, item->str);
7673 				pr_info("expected:   %.*s\n", item->size, rb_string);
7674 				RB_WARN_ON(buffer, 1);
7675 				ret = -1;
7676 				break;
7677 			}
7678 			total_read++;
7679 		}
7680 		if (ret)
7681 			break;
7682 
7683 		ret = -1;
7684 
7685 		pr_info("         read events:   %ld\n", total_read);
7686 		pr_info("         lost events:   %ld\n", total_lost);
7687 		pr_info("        total events:   %ld\n", total_lost + total_read);
7688 		pr_info("  recorded len bytes:   %ld\n", total_len);
7689 		pr_info(" recorded size bytes:   %ld\n", total_size);
7690 		if (total_lost) {
7691 			pr_info(" With dropped events, record len and size may not match\n"
7692 				" alloced and written from above\n");
7693 		} else {
7694 			if (RB_WARN_ON(buffer, total_len != total_alloc ||
7695 				       total_size != total_written))
7696 				break;
7697 		}
7698 		if (RB_WARN_ON(buffer, total_lost + total_read != total_events))
7699 			break;
7700 
7701 		ret = 0;
7702 	}
7703 	if (!ret)
7704 		pr_info("Ring buffer PASSED!\n");
7705 
7706 	ring_buffer_free(buffer);
7707 	return 0;
7708 }
7709 
7710 late_initcall(test_ringbuffer);
7711 #endif /* CONFIG_RING_BUFFER_STARTUP_TEST */
7712