1 /* 2 * Generic ring buffer 3 * 4 * Copyright (C) 2008 Steven Rostedt <[email protected]> 5 */ 6 #include <linux/ring_buffer.h> 7 #include <linux/trace_clock.h> 8 #include <linux/ftrace_irq.h> 9 #include <linux/spinlock.h> 10 #include <linux/debugfs.h> 11 #include <linux/uaccess.h> 12 #include <linux/hardirq.h> 13 #include <linux/kmemcheck.h> 14 #include <linux/module.h> 15 #include <linux/percpu.h> 16 #include <linux/mutex.h> 17 #include <linux/init.h> 18 #include <linux/hash.h> 19 #include <linux/list.h> 20 #include <linux/cpu.h> 21 #include <linux/fs.h> 22 23 #include "trace.h" 24 25 /* 26 * The ring buffer header is special. We must manually up keep it. 27 */ 28 int ring_buffer_print_entry_header(struct trace_seq *s) 29 { 30 int ret; 31 32 ret = trace_seq_printf(s, "# compressed entry header\n"); 33 ret = trace_seq_printf(s, "\ttype_len : 5 bits\n"); 34 ret = trace_seq_printf(s, "\ttime_delta : 27 bits\n"); 35 ret = trace_seq_printf(s, "\tarray : 32 bits\n"); 36 ret = trace_seq_printf(s, "\n"); 37 ret = trace_seq_printf(s, "\tpadding : type == %d\n", 38 RINGBUF_TYPE_PADDING); 39 ret = trace_seq_printf(s, "\ttime_extend : type == %d\n", 40 RINGBUF_TYPE_TIME_EXTEND); 41 ret = trace_seq_printf(s, "\tdata max type_len == %d\n", 42 RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 43 44 return ret; 45 } 46 47 /* 48 * The ring buffer is made up of a list of pages. A separate list of pages is 49 * allocated for each CPU. A writer may only write to a buffer that is 50 * associated with the CPU it is currently executing on. A reader may read 51 * from any per cpu buffer. 52 * 53 * The reader is special. For each per cpu buffer, the reader has its own 54 * reader page. When a reader has read the entire reader page, this reader 55 * page is swapped with another page in the ring buffer. 56 * 57 * Now, as long as the writer is off the reader page, the reader can do what 58 * ever it wants with that page. The writer will never write to that page 59 * again (as long as it is out of the ring buffer). 60 * 61 * Here's some silly ASCII art. 62 * 63 * +------+ 64 * |reader| RING BUFFER 65 * |page | 66 * +------+ +---+ +---+ +---+ 67 * | |-->| |-->| | 68 * +---+ +---+ +---+ 69 * ^ | 70 * | | 71 * +---------------+ 72 * 73 * 74 * +------+ 75 * |reader| RING BUFFER 76 * |page |------------------v 77 * +------+ +---+ +---+ +---+ 78 * | |-->| |-->| | 79 * +---+ +---+ +---+ 80 * ^ | 81 * | | 82 * +---------------+ 83 * 84 * 85 * +------+ 86 * |reader| RING BUFFER 87 * |page |------------------v 88 * +------+ +---+ +---+ +---+ 89 * ^ | |-->| |-->| | 90 * | +---+ +---+ +---+ 91 * | | 92 * | | 93 * +------------------------------+ 94 * 95 * 96 * +------+ 97 * |buffer| RING BUFFER 98 * |page |------------------v 99 * +------+ +---+ +---+ +---+ 100 * ^ | | | |-->| | 101 * | New +---+ +---+ +---+ 102 * | Reader------^ | 103 * | page | 104 * +------------------------------+ 105 * 106 * 107 * After we make this swap, the reader can hand this page off to the splice 108 * code and be done with it. It can even allocate a new page if it needs to 109 * and swap that into the ring buffer. 110 * 111 * We will be using cmpxchg soon to make all this lockless. 112 * 113 */ 114 115 /* 116 * A fast way to enable or disable all ring buffers is to 117 * call tracing_on or tracing_off. Turning off the ring buffers 118 * prevents all ring buffers from being recorded to. 119 * Turning this switch on, makes it OK to write to the 120 * ring buffer, if the ring buffer is enabled itself. 121 * 122 * There's three layers that must be on in order to write 123 * to the ring buffer. 124 * 125 * 1) This global flag must be set. 126 * 2) The ring buffer must be enabled for recording. 127 * 3) The per cpu buffer must be enabled for recording. 128 * 129 * In case of an anomaly, this global flag has a bit set that 130 * will permantly disable all ring buffers. 131 */ 132 133 /* 134 * Global flag to disable all recording to ring buffers 135 * This has two bits: ON, DISABLED 136 * 137 * ON DISABLED 138 * ---- ---------- 139 * 0 0 : ring buffers are off 140 * 1 0 : ring buffers are on 141 * X 1 : ring buffers are permanently disabled 142 */ 143 144 enum { 145 RB_BUFFERS_ON_BIT = 0, 146 RB_BUFFERS_DISABLED_BIT = 1, 147 }; 148 149 enum { 150 RB_BUFFERS_ON = 1 << RB_BUFFERS_ON_BIT, 151 RB_BUFFERS_DISABLED = 1 << RB_BUFFERS_DISABLED_BIT, 152 }; 153 154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON; 155 156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data) 157 158 /** 159 * tracing_on - enable all tracing buffers 160 * 161 * This function enables all tracing buffers that may have been 162 * disabled with tracing_off. 163 */ 164 void tracing_on(void) 165 { 166 set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 167 } 168 EXPORT_SYMBOL_GPL(tracing_on); 169 170 /** 171 * tracing_off - turn off all tracing buffers 172 * 173 * This function stops all tracing buffers from recording data. 174 * It does not disable any overhead the tracers themselves may 175 * be causing. This function simply causes all recording to 176 * the ring buffers to fail. 177 */ 178 void tracing_off(void) 179 { 180 clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags); 181 } 182 EXPORT_SYMBOL_GPL(tracing_off); 183 184 /** 185 * tracing_off_permanent - permanently disable ring buffers 186 * 187 * This function, once called, will disable all ring buffers 188 * permanently. 189 */ 190 void tracing_off_permanent(void) 191 { 192 set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags); 193 } 194 195 /** 196 * tracing_is_on - show state of ring buffers enabled 197 */ 198 int tracing_is_on(void) 199 { 200 return ring_buffer_flags == RB_BUFFERS_ON; 201 } 202 EXPORT_SYMBOL_GPL(tracing_is_on); 203 204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array)) 205 #define RB_ALIGNMENT 4U 206 #define RB_MAX_SMALL_DATA (RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 207 #define RB_EVNT_MIN_SIZE 8U /* two 32bit words */ 208 209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */ 210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX 211 212 enum { 213 RB_LEN_TIME_EXTEND = 8, 214 RB_LEN_TIME_STAMP = 16, 215 }; 216 217 static inline int rb_null_event(struct ring_buffer_event *event) 218 { 219 return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta; 220 } 221 222 static void rb_event_set_padding(struct ring_buffer_event *event) 223 { 224 /* padding has a NULL time_delta */ 225 event->type_len = RINGBUF_TYPE_PADDING; 226 event->time_delta = 0; 227 } 228 229 static unsigned 230 rb_event_data_length(struct ring_buffer_event *event) 231 { 232 unsigned length; 233 234 if (event->type_len) 235 length = event->type_len * RB_ALIGNMENT; 236 else 237 length = event->array[0]; 238 return length + RB_EVNT_HDR_SIZE; 239 } 240 241 /* inline for ring buffer fast paths */ 242 static unsigned 243 rb_event_length(struct ring_buffer_event *event) 244 { 245 switch (event->type_len) { 246 case RINGBUF_TYPE_PADDING: 247 if (rb_null_event(event)) 248 /* undefined */ 249 return -1; 250 return event->array[0] + RB_EVNT_HDR_SIZE; 251 252 case RINGBUF_TYPE_TIME_EXTEND: 253 return RB_LEN_TIME_EXTEND; 254 255 case RINGBUF_TYPE_TIME_STAMP: 256 return RB_LEN_TIME_STAMP; 257 258 case RINGBUF_TYPE_DATA: 259 return rb_event_data_length(event); 260 default: 261 BUG(); 262 } 263 /* not hit */ 264 return 0; 265 } 266 267 /** 268 * ring_buffer_event_length - return the length of the event 269 * @event: the event to get the length of 270 */ 271 unsigned ring_buffer_event_length(struct ring_buffer_event *event) 272 { 273 unsigned length = rb_event_length(event); 274 if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 275 return length; 276 length -= RB_EVNT_HDR_SIZE; 277 if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0])) 278 length -= sizeof(event->array[0]); 279 return length; 280 } 281 EXPORT_SYMBOL_GPL(ring_buffer_event_length); 282 283 /* inline for ring buffer fast paths */ 284 static void * 285 rb_event_data(struct ring_buffer_event *event) 286 { 287 BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX); 288 /* If length is in len field, then array[0] has the data */ 289 if (event->type_len) 290 return (void *)&event->array[0]; 291 /* Otherwise length is in array[0] and array[1] has the data */ 292 return (void *)&event->array[1]; 293 } 294 295 /** 296 * ring_buffer_event_data - return the data of the event 297 * @event: the event to get the data from 298 */ 299 void *ring_buffer_event_data(struct ring_buffer_event *event) 300 { 301 return rb_event_data(event); 302 } 303 EXPORT_SYMBOL_GPL(ring_buffer_event_data); 304 305 #define for_each_buffer_cpu(buffer, cpu) \ 306 for_each_cpu(cpu, buffer->cpumask) 307 308 #define TS_SHIFT 27 309 #define TS_MASK ((1ULL << TS_SHIFT) - 1) 310 #define TS_DELTA_TEST (~TS_MASK) 311 312 struct buffer_data_page { 313 u64 time_stamp; /* page time stamp */ 314 local_t commit; /* write committed index */ 315 unsigned char data[]; /* data of buffer page */ 316 }; 317 318 /* 319 * Note, the buffer_page list must be first. The buffer pages 320 * are allocated in cache lines, which means that each buffer 321 * page will be at the beginning of a cache line, and thus 322 * the least significant bits will be zero. We use this to 323 * add flags in the list struct pointers, to make the ring buffer 324 * lockless. 325 */ 326 struct buffer_page { 327 struct list_head list; /* list of buffer pages */ 328 local_t write; /* index for next write */ 329 unsigned read; /* index for next read */ 330 local_t entries; /* entries on this page */ 331 struct buffer_data_page *page; /* Actual data page */ 332 }; 333 334 /* 335 * The buffer page counters, write and entries, must be reset 336 * atomically when crossing page boundaries. To synchronize this 337 * update, two counters are inserted into the number. One is 338 * the actual counter for the write position or count on the page. 339 * 340 * The other is a counter of updaters. Before an update happens 341 * the update partition of the counter is incremented. This will 342 * allow the updater to update the counter atomically. 343 * 344 * The counter is 20 bits, and the state data is 12. 345 */ 346 #define RB_WRITE_MASK 0xfffff 347 #define RB_WRITE_INTCNT (1 << 20) 348 349 static void rb_init_page(struct buffer_data_page *bpage) 350 { 351 local_set(&bpage->commit, 0); 352 } 353 354 /** 355 * ring_buffer_page_len - the size of data on the page. 356 * @page: The page to read 357 * 358 * Returns the amount of data on the page, including buffer page header. 359 */ 360 size_t ring_buffer_page_len(void *page) 361 { 362 return local_read(&((struct buffer_data_page *)page)->commit) 363 + BUF_PAGE_HDR_SIZE; 364 } 365 366 /* 367 * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing 368 * this issue out. 369 */ 370 static void free_buffer_page(struct buffer_page *bpage) 371 { 372 free_page((unsigned long)bpage->page); 373 kfree(bpage); 374 } 375 376 /* 377 * We need to fit the time_stamp delta into 27 bits. 378 */ 379 static inline int test_time_stamp(u64 delta) 380 { 381 if (delta & TS_DELTA_TEST) 382 return 1; 383 return 0; 384 } 385 386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE) 387 388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */ 389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2)) 390 391 /* Max number of timestamps that can fit on a page */ 392 #define RB_TIMESTAMPS_PER_PAGE (BUF_PAGE_SIZE / RB_LEN_TIME_STAMP) 393 394 int ring_buffer_print_page_header(struct trace_seq *s) 395 { 396 struct buffer_data_page field; 397 int ret; 398 399 ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t" 400 "offset:0;\tsize:%u;\tsigned:%u;\n", 401 (unsigned int)sizeof(field.time_stamp), 402 (unsigned int)is_signed_type(u64)); 403 404 ret = trace_seq_printf(s, "\tfield: local_t commit;\t" 405 "offset:%u;\tsize:%u;\tsigned:%u;\n", 406 (unsigned int)offsetof(typeof(field), commit), 407 (unsigned int)sizeof(field.commit), 408 (unsigned int)is_signed_type(long)); 409 410 ret = trace_seq_printf(s, "\tfield: char data;\t" 411 "offset:%u;\tsize:%u;\tsigned:%u;\n", 412 (unsigned int)offsetof(typeof(field), data), 413 (unsigned int)BUF_PAGE_SIZE, 414 (unsigned int)is_signed_type(char)); 415 416 return ret; 417 } 418 419 /* 420 * head_page == tail_page && head == tail then buffer is empty. 421 */ 422 struct ring_buffer_per_cpu { 423 int cpu; 424 struct ring_buffer *buffer; 425 spinlock_t reader_lock; /* serialize readers */ 426 raw_spinlock_t lock; 427 struct lock_class_key lock_key; 428 struct list_head *pages; 429 struct buffer_page *head_page; /* read from head */ 430 struct buffer_page *tail_page; /* write to tail */ 431 struct buffer_page *commit_page; /* committed pages */ 432 struct buffer_page *reader_page; 433 local_t commit_overrun; 434 local_t overrun; 435 local_t entries; 436 local_t committing; 437 local_t commits; 438 unsigned long read; 439 u64 write_stamp; 440 u64 read_stamp; 441 atomic_t record_disabled; 442 }; 443 444 struct ring_buffer { 445 unsigned pages; 446 unsigned flags; 447 int cpus; 448 atomic_t record_disabled; 449 cpumask_var_t cpumask; 450 451 struct lock_class_key *reader_lock_key; 452 453 struct mutex mutex; 454 455 struct ring_buffer_per_cpu **buffers; 456 457 #ifdef CONFIG_HOTPLUG_CPU 458 struct notifier_block cpu_notify; 459 #endif 460 u64 (*clock)(void); 461 }; 462 463 struct ring_buffer_iter { 464 struct ring_buffer_per_cpu *cpu_buffer; 465 unsigned long head; 466 struct buffer_page *head_page; 467 u64 read_stamp; 468 }; 469 470 /* buffer may be either ring_buffer or ring_buffer_per_cpu */ 471 #define RB_WARN_ON(b, cond) \ 472 ({ \ 473 int _____ret = unlikely(cond); \ 474 if (_____ret) { \ 475 if (__same_type(*(b), struct ring_buffer_per_cpu)) { \ 476 struct ring_buffer_per_cpu *__b = \ 477 (void *)b; \ 478 atomic_inc(&__b->buffer->record_disabled); \ 479 } else \ 480 atomic_inc(&b->record_disabled); \ 481 WARN_ON(1); \ 482 } \ 483 _____ret; \ 484 }) 485 486 /* Up this if you want to test the TIME_EXTENTS and normalization */ 487 #define DEBUG_SHIFT 0 488 489 static inline u64 rb_time_stamp(struct ring_buffer *buffer) 490 { 491 /* shift to debug/test normalization and TIME_EXTENTS */ 492 return buffer->clock() << DEBUG_SHIFT; 493 } 494 495 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu) 496 { 497 u64 time; 498 499 preempt_disable_notrace(); 500 time = rb_time_stamp(buffer); 501 preempt_enable_no_resched_notrace(); 502 503 return time; 504 } 505 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp); 506 507 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer, 508 int cpu, u64 *ts) 509 { 510 /* Just stupid testing the normalize function and deltas */ 511 *ts >>= DEBUG_SHIFT; 512 } 513 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp); 514 515 /* 516 * Making the ring buffer lockless makes things tricky. 517 * Although writes only happen on the CPU that they are on, 518 * and they only need to worry about interrupts. Reads can 519 * happen on any CPU. 520 * 521 * The reader page is always off the ring buffer, but when the 522 * reader finishes with a page, it needs to swap its page with 523 * a new one from the buffer. The reader needs to take from 524 * the head (writes go to the tail). But if a writer is in overwrite 525 * mode and wraps, it must push the head page forward. 526 * 527 * Here lies the problem. 528 * 529 * The reader must be careful to replace only the head page, and 530 * not another one. As described at the top of the file in the 531 * ASCII art, the reader sets its old page to point to the next 532 * page after head. It then sets the page after head to point to 533 * the old reader page. But if the writer moves the head page 534 * during this operation, the reader could end up with the tail. 535 * 536 * We use cmpxchg to help prevent this race. We also do something 537 * special with the page before head. We set the LSB to 1. 538 * 539 * When the writer must push the page forward, it will clear the 540 * bit that points to the head page, move the head, and then set 541 * the bit that points to the new head page. 542 * 543 * We also don't want an interrupt coming in and moving the head 544 * page on another writer. Thus we use the second LSB to catch 545 * that too. Thus: 546 * 547 * head->list->prev->next bit 1 bit 0 548 * ------- ------- 549 * Normal page 0 0 550 * Points to head page 0 1 551 * New head page 1 0 552 * 553 * Note we can not trust the prev pointer of the head page, because: 554 * 555 * +----+ +-----+ +-----+ 556 * | |------>| T |---X--->| N | 557 * | |<------| | | | 558 * +----+ +-----+ +-----+ 559 * ^ ^ | 560 * | +-----+ | | 561 * +----------| R |----------+ | 562 * | |<-----------+ 563 * +-----+ 564 * 565 * Key: ---X--> HEAD flag set in pointer 566 * T Tail page 567 * R Reader page 568 * N Next page 569 * 570 * (see __rb_reserve_next() to see where this happens) 571 * 572 * What the above shows is that the reader just swapped out 573 * the reader page with a page in the buffer, but before it 574 * could make the new header point back to the new page added 575 * it was preempted by a writer. The writer moved forward onto 576 * the new page added by the reader and is about to move forward 577 * again. 578 * 579 * You can see, it is legitimate for the previous pointer of 580 * the head (or any page) not to point back to itself. But only 581 * temporarially. 582 */ 583 584 #define RB_PAGE_NORMAL 0UL 585 #define RB_PAGE_HEAD 1UL 586 #define RB_PAGE_UPDATE 2UL 587 588 589 #define RB_FLAG_MASK 3UL 590 591 /* PAGE_MOVED is not part of the mask */ 592 #define RB_PAGE_MOVED 4UL 593 594 /* 595 * rb_list_head - remove any bit 596 */ 597 static struct list_head *rb_list_head(struct list_head *list) 598 { 599 unsigned long val = (unsigned long)list; 600 601 return (struct list_head *)(val & ~RB_FLAG_MASK); 602 } 603 604 /* 605 * rb_is_head_page - test if the given page is the head page 606 * 607 * Because the reader may move the head_page pointer, we can 608 * not trust what the head page is (it may be pointing to 609 * the reader page). But if the next page is a header page, 610 * its flags will be non zero. 611 */ 612 static int inline 613 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer, 614 struct buffer_page *page, struct list_head *list) 615 { 616 unsigned long val; 617 618 val = (unsigned long)list->next; 619 620 if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list) 621 return RB_PAGE_MOVED; 622 623 return val & RB_FLAG_MASK; 624 } 625 626 /* 627 * rb_is_reader_page 628 * 629 * The unique thing about the reader page, is that, if the 630 * writer is ever on it, the previous pointer never points 631 * back to the reader page. 632 */ 633 static int rb_is_reader_page(struct buffer_page *page) 634 { 635 struct list_head *list = page->list.prev; 636 637 return rb_list_head(list->next) != &page->list; 638 } 639 640 /* 641 * rb_set_list_to_head - set a list_head to be pointing to head. 642 */ 643 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer, 644 struct list_head *list) 645 { 646 unsigned long *ptr; 647 648 ptr = (unsigned long *)&list->next; 649 *ptr |= RB_PAGE_HEAD; 650 *ptr &= ~RB_PAGE_UPDATE; 651 } 652 653 /* 654 * rb_head_page_activate - sets up head page 655 */ 656 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer) 657 { 658 struct buffer_page *head; 659 660 head = cpu_buffer->head_page; 661 if (!head) 662 return; 663 664 /* 665 * Set the previous list pointer to have the HEAD flag. 666 */ 667 rb_set_list_to_head(cpu_buffer, head->list.prev); 668 } 669 670 static void rb_list_head_clear(struct list_head *list) 671 { 672 unsigned long *ptr = (unsigned long *)&list->next; 673 674 *ptr &= ~RB_FLAG_MASK; 675 } 676 677 /* 678 * rb_head_page_dactivate - clears head page ptr (for free list) 679 */ 680 static void 681 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer) 682 { 683 struct list_head *hd; 684 685 /* Go through the whole list and clear any pointers found. */ 686 rb_list_head_clear(cpu_buffer->pages); 687 688 list_for_each(hd, cpu_buffer->pages) 689 rb_list_head_clear(hd); 690 } 691 692 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer, 693 struct buffer_page *head, 694 struct buffer_page *prev, 695 int old_flag, int new_flag) 696 { 697 struct list_head *list; 698 unsigned long val = (unsigned long)&head->list; 699 unsigned long ret; 700 701 list = &prev->list; 702 703 val &= ~RB_FLAG_MASK; 704 705 ret = cmpxchg((unsigned long *)&list->next, 706 val | old_flag, val | new_flag); 707 708 /* check if the reader took the page */ 709 if ((ret & ~RB_FLAG_MASK) != val) 710 return RB_PAGE_MOVED; 711 712 return ret & RB_FLAG_MASK; 713 } 714 715 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer, 716 struct buffer_page *head, 717 struct buffer_page *prev, 718 int old_flag) 719 { 720 return rb_head_page_set(cpu_buffer, head, prev, 721 old_flag, RB_PAGE_UPDATE); 722 } 723 724 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer, 725 struct buffer_page *head, 726 struct buffer_page *prev, 727 int old_flag) 728 { 729 return rb_head_page_set(cpu_buffer, head, prev, 730 old_flag, RB_PAGE_HEAD); 731 } 732 733 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer, 734 struct buffer_page *head, 735 struct buffer_page *prev, 736 int old_flag) 737 { 738 return rb_head_page_set(cpu_buffer, head, prev, 739 old_flag, RB_PAGE_NORMAL); 740 } 741 742 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer, 743 struct buffer_page **bpage) 744 { 745 struct list_head *p = rb_list_head((*bpage)->list.next); 746 747 *bpage = list_entry(p, struct buffer_page, list); 748 } 749 750 static struct buffer_page * 751 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer) 752 { 753 struct buffer_page *head; 754 struct buffer_page *page; 755 struct list_head *list; 756 int i; 757 758 if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page)) 759 return NULL; 760 761 /* sanity check */ 762 list = cpu_buffer->pages; 763 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list)) 764 return NULL; 765 766 page = head = cpu_buffer->head_page; 767 /* 768 * It is possible that the writer moves the header behind 769 * where we started, and we miss in one loop. 770 * A second loop should grab the header, but we'll do 771 * three loops just because I'm paranoid. 772 */ 773 for (i = 0; i < 3; i++) { 774 do { 775 if (rb_is_head_page(cpu_buffer, page, page->list.prev)) { 776 cpu_buffer->head_page = page; 777 return page; 778 } 779 rb_inc_page(cpu_buffer, &page); 780 } while (page != head); 781 } 782 783 RB_WARN_ON(cpu_buffer, 1); 784 785 return NULL; 786 } 787 788 static int rb_head_page_replace(struct buffer_page *old, 789 struct buffer_page *new) 790 { 791 unsigned long *ptr = (unsigned long *)&old->list.prev->next; 792 unsigned long val; 793 unsigned long ret; 794 795 val = *ptr & ~RB_FLAG_MASK; 796 val |= RB_PAGE_HEAD; 797 798 ret = cmpxchg(ptr, val, (unsigned long)&new->list); 799 800 return ret == val; 801 } 802 803 /* 804 * rb_tail_page_update - move the tail page forward 805 * 806 * Returns 1 if moved tail page, 0 if someone else did. 807 */ 808 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer, 809 struct buffer_page *tail_page, 810 struct buffer_page *next_page) 811 { 812 struct buffer_page *old_tail; 813 unsigned long old_entries; 814 unsigned long old_write; 815 int ret = 0; 816 817 /* 818 * The tail page now needs to be moved forward. 819 * 820 * We need to reset the tail page, but without messing 821 * with possible erasing of data brought in by interrupts 822 * that have moved the tail page and are currently on it. 823 * 824 * We add a counter to the write field to denote this. 825 */ 826 old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write); 827 old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries); 828 829 /* 830 * Just make sure we have seen our old_write and synchronize 831 * with any interrupts that come in. 832 */ 833 barrier(); 834 835 /* 836 * If the tail page is still the same as what we think 837 * it is, then it is up to us to update the tail 838 * pointer. 839 */ 840 if (tail_page == cpu_buffer->tail_page) { 841 /* Zero the write counter */ 842 unsigned long val = old_write & ~RB_WRITE_MASK; 843 unsigned long eval = old_entries & ~RB_WRITE_MASK; 844 845 /* 846 * This will only succeed if an interrupt did 847 * not come in and change it. In which case, we 848 * do not want to modify it. 849 * 850 * We add (void) to let the compiler know that we do not care 851 * about the return value of these functions. We use the 852 * cmpxchg to only update if an interrupt did not already 853 * do it for us. If the cmpxchg fails, we don't care. 854 */ 855 (void)local_cmpxchg(&next_page->write, old_write, val); 856 (void)local_cmpxchg(&next_page->entries, old_entries, eval); 857 858 /* 859 * No need to worry about races with clearing out the commit. 860 * it only can increment when a commit takes place. But that 861 * only happens in the outer most nested commit. 862 */ 863 local_set(&next_page->page->commit, 0); 864 865 old_tail = cmpxchg(&cpu_buffer->tail_page, 866 tail_page, next_page); 867 868 if (old_tail == tail_page) 869 ret = 1; 870 } 871 872 return ret; 873 } 874 875 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer, 876 struct buffer_page *bpage) 877 { 878 unsigned long val = (unsigned long)bpage; 879 880 if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK)) 881 return 1; 882 883 return 0; 884 } 885 886 /** 887 * rb_check_list - make sure a pointer to a list has the last bits zero 888 */ 889 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer, 890 struct list_head *list) 891 { 892 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev)) 893 return 1; 894 if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next)) 895 return 1; 896 return 0; 897 } 898 899 /** 900 * check_pages - integrity check of buffer pages 901 * @cpu_buffer: CPU buffer with pages to test 902 * 903 * As a safety measure we check to make sure the data pages have not 904 * been corrupted. 905 */ 906 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer) 907 { 908 struct list_head *head = cpu_buffer->pages; 909 struct buffer_page *bpage, *tmp; 910 911 rb_head_page_deactivate(cpu_buffer); 912 913 if (RB_WARN_ON(cpu_buffer, head->next->prev != head)) 914 return -1; 915 if (RB_WARN_ON(cpu_buffer, head->prev->next != head)) 916 return -1; 917 918 if (rb_check_list(cpu_buffer, head)) 919 return -1; 920 921 list_for_each_entry_safe(bpage, tmp, head, list) { 922 if (RB_WARN_ON(cpu_buffer, 923 bpage->list.next->prev != &bpage->list)) 924 return -1; 925 if (RB_WARN_ON(cpu_buffer, 926 bpage->list.prev->next != &bpage->list)) 927 return -1; 928 if (rb_check_list(cpu_buffer, &bpage->list)) 929 return -1; 930 } 931 932 rb_head_page_activate(cpu_buffer); 933 934 return 0; 935 } 936 937 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer, 938 unsigned nr_pages) 939 { 940 struct buffer_page *bpage, *tmp; 941 unsigned long addr; 942 LIST_HEAD(pages); 943 unsigned i; 944 945 WARN_ON(!nr_pages); 946 947 for (i = 0; i < nr_pages; i++) { 948 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 949 GFP_KERNEL, cpu_to_node(cpu_buffer->cpu)); 950 if (!bpage) 951 goto free_pages; 952 953 rb_check_bpage(cpu_buffer, bpage); 954 955 list_add(&bpage->list, &pages); 956 957 addr = __get_free_page(GFP_KERNEL); 958 if (!addr) 959 goto free_pages; 960 bpage->page = (void *)addr; 961 rb_init_page(bpage->page); 962 } 963 964 /* 965 * The ring buffer page list is a circular list that does not 966 * start and end with a list head. All page list items point to 967 * other pages. 968 */ 969 cpu_buffer->pages = pages.next; 970 list_del(&pages); 971 972 rb_check_pages(cpu_buffer); 973 974 return 0; 975 976 free_pages: 977 list_for_each_entry_safe(bpage, tmp, &pages, list) { 978 list_del_init(&bpage->list); 979 free_buffer_page(bpage); 980 } 981 return -ENOMEM; 982 } 983 984 static struct ring_buffer_per_cpu * 985 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu) 986 { 987 struct ring_buffer_per_cpu *cpu_buffer; 988 struct buffer_page *bpage; 989 unsigned long addr; 990 int ret; 991 992 cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()), 993 GFP_KERNEL, cpu_to_node(cpu)); 994 if (!cpu_buffer) 995 return NULL; 996 997 cpu_buffer->cpu = cpu; 998 cpu_buffer->buffer = buffer; 999 spin_lock_init(&cpu_buffer->reader_lock); 1000 lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key); 1001 cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED; 1002 1003 bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()), 1004 GFP_KERNEL, cpu_to_node(cpu)); 1005 if (!bpage) 1006 goto fail_free_buffer; 1007 1008 rb_check_bpage(cpu_buffer, bpage); 1009 1010 cpu_buffer->reader_page = bpage; 1011 addr = __get_free_page(GFP_KERNEL); 1012 if (!addr) 1013 goto fail_free_reader; 1014 bpage->page = (void *)addr; 1015 rb_init_page(bpage->page); 1016 1017 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 1018 1019 ret = rb_allocate_pages(cpu_buffer, buffer->pages); 1020 if (ret < 0) 1021 goto fail_free_reader; 1022 1023 cpu_buffer->head_page 1024 = list_entry(cpu_buffer->pages, struct buffer_page, list); 1025 cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page; 1026 1027 rb_head_page_activate(cpu_buffer); 1028 1029 return cpu_buffer; 1030 1031 fail_free_reader: 1032 free_buffer_page(cpu_buffer->reader_page); 1033 1034 fail_free_buffer: 1035 kfree(cpu_buffer); 1036 return NULL; 1037 } 1038 1039 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer) 1040 { 1041 struct list_head *head = cpu_buffer->pages; 1042 struct buffer_page *bpage, *tmp; 1043 1044 free_buffer_page(cpu_buffer->reader_page); 1045 1046 rb_head_page_deactivate(cpu_buffer); 1047 1048 if (head) { 1049 list_for_each_entry_safe(bpage, tmp, head, list) { 1050 list_del_init(&bpage->list); 1051 free_buffer_page(bpage); 1052 } 1053 bpage = list_entry(head, struct buffer_page, list); 1054 free_buffer_page(bpage); 1055 } 1056 1057 kfree(cpu_buffer); 1058 } 1059 1060 #ifdef CONFIG_HOTPLUG_CPU 1061 static int rb_cpu_notify(struct notifier_block *self, 1062 unsigned long action, void *hcpu); 1063 #endif 1064 1065 /** 1066 * ring_buffer_alloc - allocate a new ring_buffer 1067 * @size: the size in bytes per cpu that is needed. 1068 * @flags: attributes to set for the ring buffer. 1069 * 1070 * Currently the only flag that is available is the RB_FL_OVERWRITE 1071 * flag. This flag means that the buffer will overwrite old data 1072 * when the buffer wraps. If this flag is not set, the buffer will 1073 * drop data when the tail hits the head. 1074 */ 1075 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags, 1076 struct lock_class_key *key) 1077 { 1078 struct ring_buffer *buffer; 1079 int bsize; 1080 int cpu; 1081 1082 /* keep it in its own cache line */ 1083 buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()), 1084 GFP_KERNEL); 1085 if (!buffer) 1086 return NULL; 1087 1088 if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL)) 1089 goto fail_free_buffer; 1090 1091 buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1092 buffer->flags = flags; 1093 buffer->clock = trace_clock_local; 1094 buffer->reader_lock_key = key; 1095 1096 /* need at least two pages */ 1097 if (buffer->pages < 2) 1098 buffer->pages = 2; 1099 1100 /* 1101 * In case of non-hotplug cpu, if the ring-buffer is allocated 1102 * in early initcall, it will not be notified of secondary cpus. 1103 * In that off case, we need to allocate for all possible cpus. 1104 */ 1105 #ifdef CONFIG_HOTPLUG_CPU 1106 get_online_cpus(); 1107 cpumask_copy(buffer->cpumask, cpu_online_mask); 1108 #else 1109 cpumask_copy(buffer->cpumask, cpu_possible_mask); 1110 #endif 1111 buffer->cpus = nr_cpu_ids; 1112 1113 bsize = sizeof(void *) * nr_cpu_ids; 1114 buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()), 1115 GFP_KERNEL); 1116 if (!buffer->buffers) 1117 goto fail_free_cpumask; 1118 1119 for_each_buffer_cpu(buffer, cpu) { 1120 buffer->buffers[cpu] = 1121 rb_allocate_cpu_buffer(buffer, cpu); 1122 if (!buffer->buffers[cpu]) 1123 goto fail_free_buffers; 1124 } 1125 1126 #ifdef CONFIG_HOTPLUG_CPU 1127 buffer->cpu_notify.notifier_call = rb_cpu_notify; 1128 buffer->cpu_notify.priority = 0; 1129 register_cpu_notifier(&buffer->cpu_notify); 1130 #endif 1131 1132 put_online_cpus(); 1133 mutex_init(&buffer->mutex); 1134 1135 return buffer; 1136 1137 fail_free_buffers: 1138 for_each_buffer_cpu(buffer, cpu) { 1139 if (buffer->buffers[cpu]) 1140 rb_free_cpu_buffer(buffer->buffers[cpu]); 1141 } 1142 kfree(buffer->buffers); 1143 1144 fail_free_cpumask: 1145 free_cpumask_var(buffer->cpumask); 1146 put_online_cpus(); 1147 1148 fail_free_buffer: 1149 kfree(buffer); 1150 return NULL; 1151 } 1152 EXPORT_SYMBOL_GPL(__ring_buffer_alloc); 1153 1154 /** 1155 * ring_buffer_free - free a ring buffer. 1156 * @buffer: the buffer to free. 1157 */ 1158 void 1159 ring_buffer_free(struct ring_buffer *buffer) 1160 { 1161 int cpu; 1162 1163 get_online_cpus(); 1164 1165 #ifdef CONFIG_HOTPLUG_CPU 1166 unregister_cpu_notifier(&buffer->cpu_notify); 1167 #endif 1168 1169 for_each_buffer_cpu(buffer, cpu) 1170 rb_free_cpu_buffer(buffer->buffers[cpu]); 1171 1172 put_online_cpus(); 1173 1174 kfree(buffer->buffers); 1175 free_cpumask_var(buffer->cpumask); 1176 1177 kfree(buffer); 1178 } 1179 EXPORT_SYMBOL_GPL(ring_buffer_free); 1180 1181 void ring_buffer_set_clock(struct ring_buffer *buffer, 1182 u64 (*clock)(void)) 1183 { 1184 buffer->clock = clock; 1185 } 1186 1187 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer); 1188 1189 static void 1190 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages) 1191 { 1192 struct buffer_page *bpage; 1193 struct list_head *p; 1194 unsigned i; 1195 1196 atomic_inc(&cpu_buffer->record_disabled); 1197 synchronize_sched(); 1198 1199 spin_lock_irq(&cpu_buffer->reader_lock); 1200 rb_head_page_deactivate(cpu_buffer); 1201 1202 for (i = 0; i < nr_pages; i++) { 1203 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1204 return; 1205 p = cpu_buffer->pages->next; 1206 bpage = list_entry(p, struct buffer_page, list); 1207 list_del_init(&bpage->list); 1208 free_buffer_page(bpage); 1209 } 1210 if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages))) 1211 return; 1212 1213 rb_reset_cpu(cpu_buffer); 1214 spin_unlock_irq(&cpu_buffer->reader_lock); 1215 1216 rb_check_pages(cpu_buffer); 1217 1218 atomic_dec(&cpu_buffer->record_disabled); 1219 1220 } 1221 1222 static void 1223 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer, 1224 struct list_head *pages, unsigned nr_pages) 1225 { 1226 struct buffer_page *bpage; 1227 struct list_head *p; 1228 unsigned i; 1229 1230 atomic_inc(&cpu_buffer->record_disabled); 1231 synchronize_sched(); 1232 1233 spin_lock_irq(&cpu_buffer->reader_lock); 1234 rb_head_page_deactivate(cpu_buffer); 1235 1236 for (i = 0; i < nr_pages; i++) { 1237 if (RB_WARN_ON(cpu_buffer, list_empty(pages))) 1238 return; 1239 p = pages->next; 1240 bpage = list_entry(p, struct buffer_page, list); 1241 list_del_init(&bpage->list); 1242 list_add_tail(&bpage->list, cpu_buffer->pages); 1243 } 1244 rb_reset_cpu(cpu_buffer); 1245 spin_unlock_irq(&cpu_buffer->reader_lock); 1246 1247 rb_check_pages(cpu_buffer); 1248 1249 atomic_dec(&cpu_buffer->record_disabled); 1250 } 1251 1252 /** 1253 * ring_buffer_resize - resize the ring buffer 1254 * @buffer: the buffer to resize. 1255 * @size: the new size. 1256 * 1257 * The tracer is responsible for making sure that the buffer is 1258 * not being used while changing the size. 1259 * Note: We may be able to change the above requirement by using 1260 * RCU synchronizations. 1261 * 1262 * Minimum size is 2 * BUF_PAGE_SIZE. 1263 * 1264 * Returns -1 on failure. 1265 */ 1266 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size) 1267 { 1268 struct ring_buffer_per_cpu *cpu_buffer; 1269 unsigned nr_pages, rm_pages, new_pages; 1270 struct buffer_page *bpage, *tmp; 1271 unsigned long buffer_size; 1272 unsigned long addr; 1273 LIST_HEAD(pages); 1274 int i, cpu; 1275 1276 /* 1277 * Always succeed at resizing a non-existent buffer: 1278 */ 1279 if (!buffer) 1280 return size; 1281 1282 size = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1283 size *= BUF_PAGE_SIZE; 1284 buffer_size = buffer->pages * BUF_PAGE_SIZE; 1285 1286 /* we need a minimum of two pages */ 1287 if (size < BUF_PAGE_SIZE * 2) 1288 size = BUF_PAGE_SIZE * 2; 1289 1290 if (size == buffer_size) 1291 return size; 1292 1293 mutex_lock(&buffer->mutex); 1294 get_online_cpus(); 1295 1296 nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE); 1297 1298 if (size < buffer_size) { 1299 1300 /* easy case, just free pages */ 1301 if (RB_WARN_ON(buffer, nr_pages >= buffer->pages)) 1302 goto out_fail; 1303 1304 rm_pages = buffer->pages - nr_pages; 1305 1306 for_each_buffer_cpu(buffer, cpu) { 1307 cpu_buffer = buffer->buffers[cpu]; 1308 rb_remove_pages(cpu_buffer, rm_pages); 1309 } 1310 goto out; 1311 } 1312 1313 /* 1314 * This is a bit more difficult. We only want to add pages 1315 * when we can allocate enough for all CPUs. We do this 1316 * by allocating all the pages and storing them on a local 1317 * link list. If we succeed in our allocation, then we 1318 * add these pages to the cpu_buffers. Otherwise we just free 1319 * them all and return -ENOMEM; 1320 */ 1321 if (RB_WARN_ON(buffer, nr_pages <= buffer->pages)) 1322 goto out_fail; 1323 1324 new_pages = nr_pages - buffer->pages; 1325 1326 for_each_buffer_cpu(buffer, cpu) { 1327 for (i = 0; i < new_pages; i++) { 1328 bpage = kzalloc_node(ALIGN(sizeof(*bpage), 1329 cache_line_size()), 1330 GFP_KERNEL, cpu_to_node(cpu)); 1331 if (!bpage) 1332 goto free_pages; 1333 list_add(&bpage->list, &pages); 1334 addr = __get_free_page(GFP_KERNEL); 1335 if (!addr) 1336 goto free_pages; 1337 bpage->page = (void *)addr; 1338 rb_init_page(bpage->page); 1339 } 1340 } 1341 1342 for_each_buffer_cpu(buffer, cpu) { 1343 cpu_buffer = buffer->buffers[cpu]; 1344 rb_insert_pages(cpu_buffer, &pages, new_pages); 1345 } 1346 1347 if (RB_WARN_ON(buffer, !list_empty(&pages))) 1348 goto out_fail; 1349 1350 out: 1351 buffer->pages = nr_pages; 1352 put_online_cpus(); 1353 mutex_unlock(&buffer->mutex); 1354 1355 return size; 1356 1357 free_pages: 1358 list_for_each_entry_safe(bpage, tmp, &pages, list) { 1359 list_del_init(&bpage->list); 1360 free_buffer_page(bpage); 1361 } 1362 put_online_cpus(); 1363 mutex_unlock(&buffer->mutex); 1364 return -ENOMEM; 1365 1366 /* 1367 * Something went totally wrong, and we are too paranoid 1368 * to even clean up the mess. 1369 */ 1370 out_fail: 1371 put_online_cpus(); 1372 mutex_unlock(&buffer->mutex); 1373 return -1; 1374 } 1375 EXPORT_SYMBOL_GPL(ring_buffer_resize); 1376 1377 static inline void * 1378 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index) 1379 { 1380 return bpage->data + index; 1381 } 1382 1383 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index) 1384 { 1385 return bpage->page->data + index; 1386 } 1387 1388 static inline struct ring_buffer_event * 1389 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer) 1390 { 1391 return __rb_page_index(cpu_buffer->reader_page, 1392 cpu_buffer->reader_page->read); 1393 } 1394 1395 static inline struct ring_buffer_event * 1396 rb_iter_head_event(struct ring_buffer_iter *iter) 1397 { 1398 return __rb_page_index(iter->head_page, iter->head); 1399 } 1400 1401 static inline unsigned long rb_page_write(struct buffer_page *bpage) 1402 { 1403 return local_read(&bpage->write) & RB_WRITE_MASK; 1404 } 1405 1406 static inline unsigned rb_page_commit(struct buffer_page *bpage) 1407 { 1408 return local_read(&bpage->page->commit); 1409 } 1410 1411 static inline unsigned long rb_page_entries(struct buffer_page *bpage) 1412 { 1413 return local_read(&bpage->entries) & RB_WRITE_MASK; 1414 } 1415 1416 /* Size is determined by what has been commited */ 1417 static inline unsigned rb_page_size(struct buffer_page *bpage) 1418 { 1419 return rb_page_commit(bpage); 1420 } 1421 1422 static inline unsigned 1423 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer) 1424 { 1425 return rb_page_commit(cpu_buffer->commit_page); 1426 } 1427 1428 static inline unsigned 1429 rb_event_index(struct ring_buffer_event *event) 1430 { 1431 unsigned long addr = (unsigned long)event; 1432 1433 return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE; 1434 } 1435 1436 static inline int 1437 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer, 1438 struct ring_buffer_event *event) 1439 { 1440 unsigned long addr = (unsigned long)event; 1441 unsigned long index; 1442 1443 index = rb_event_index(event); 1444 addr &= PAGE_MASK; 1445 1446 return cpu_buffer->commit_page->page == (void *)addr && 1447 rb_commit_index(cpu_buffer) == index; 1448 } 1449 1450 static void 1451 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer) 1452 { 1453 unsigned long max_count; 1454 1455 /* 1456 * We only race with interrupts and NMIs on this CPU. 1457 * If we own the commit event, then we can commit 1458 * all others that interrupted us, since the interruptions 1459 * are in stack format (they finish before they come 1460 * back to us). This allows us to do a simple loop to 1461 * assign the commit to the tail. 1462 */ 1463 again: 1464 max_count = cpu_buffer->buffer->pages * 100; 1465 1466 while (cpu_buffer->commit_page != cpu_buffer->tail_page) { 1467 if (RB_WARN_ON(cpu_buffer, !(--max_count))) 1468 return; 1469 if (RB_WARN_ON(cpu_buffer, 1470 rb_is_reader_page(cpu_buffer->tail_page))) 1471 return; 1472 local_set(&cpu_buffer->commit_page->page->commit, 1473 rb_page_write(cpu_buffer->commit_page)); 1474 rb_inc_page(cpu_buffer, &cpu_buffer->commit_page); 1475 cpu_buffer->write_stamp = 1476 cpu_buffer->commit_page->page->time_stamp; 1477 /* add barrier to keep gcc from optimizing too much */ 1478 barrier(); 1479 } 1480 while (rb_commit_index(cpu_buffer) != 1481 rb_page_write(cpu_buffer->commit_page)) { 1482 1483 local_set(&cpu_buffer->commit_page->page->commit, 1484 rb_page_write(cpu_buffer->commit_page)); 1485 RB_WARN_ON(cpu_buffer, 1486 local_read(&cpu_buffer->commit_page->page->commit) & 1487 ~RB_WRITE_MASK); 1488 barrier(); 1489 } 1490 1491 /* again, keep gcc from optimizing */ 1492 barrier(); 1493 1494 /* 1495 * If an interrupt came in just after the first while loop 1496 * and pushed the tail page forward, we will be left with 1497 * a dangling commit that will never go forward. 1498 */ 1499 if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page)) 1500 goto again; 1501 } 1502 1503 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 1504 { 1505 cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp; 1506 cpu_buffer->reader_page->read = 0; 1507 } 1508 1509 static void rb_inc_iter(struct ring_buffer_iter *iter) 1510 { 1511 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 1512 1513 /* 1514 * The iterator could be on the reader page (it starts there). 1515 * But the head could have moved, since the reader was 1516 * found. Check for this case and assign the iterator 1517 * to the head page instead of next. 1518 */ 1519 if (iter->head_page == cpu_buffer->reader_page) 1520 iter->head_page = rb_set_head_page(cpu_buffer); 1521 else 1522 rb_inc_page(cpu_buffer, &iter->head_page); 1523 1524 iter->read_stamp = iter->head_page->page->time_stamp; 1525 iter->head = 0; 1526 } 1527 1528 /** 1529 * ring_buffer_update_event - update event type and data 1530 * @event: the even to update 1531 * @type: the type of event 1532 * @length: the size of the event field in the ring buffer 1533 * 1534 * Update the type and data fields of the event. The length 1535 * is the actual size that is written to the ring buffer, 1536 * and with this, we can determine what to place into the 1537 * data field. 1538 */ 1539 static void 1540 rb_update_event(struct ring_buffer_event *event, 1541 unsigned type, unsigned length) 1542 { 1543 event->type_len = type; 1544 1545 switch (type) { 1546 1547 case RINGBUF_TYPE_PADDING: 1548 case RINGBUF_TYPE_TIME_EXTEND: 1549 case RINGBUF_TYPE_TIME_STAMP: 1550 break; 1551 1552 case 0: 1553 length -= RB_EVNT_HDR_SIZE; 1554 if (length > RB_MAX_SMALL_DATA) 1555 event->array[0] = length; 1556 else 1557 event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT); 1558 break; 1559 default: 1560 BUG(); 1561 } 1562 } 1563 1564 /* 1565 * rb_handle_head_page - writer hit the head page 1566 * 1567 * Returns: +1 to retry page 1568 * 0 to continue 1569 * -1 on error 1570 */ 1571 static int 1572 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer, 1573 struct buffer_page *tail_page, 1574 struct buffer_page *next_page) 1575 { 1576 struct buffer_page *new_head; 1577 int entries; 1578 int type; 1579 int ret; 1580 1581 entries = rb_page_entries(next_page); 1582 1583 /* 1584 * The hard part is here. We need to move the head 1585 * forward, and protect against both readers on 1586 * other CPUs and writers coming in via interrupts. 1587 */ 1588 type = rb_head_page_set_update(cpu_buffer, next_page, tail_page, 1589 RB_PAGE_HEAD); 1590 1591 /* 1592 * type can be one of four: 1593 * NORMAL - an interrupt already moved it for us 1594 * HEAD - we are the first to get here. 1595 * UPDATE - we are the interrupt interrupting 1596 * a current move. 1597 * MOVED - a reader on another CPU moved the next 1598 * pointer to its reader page. Give up 1599 * and try again. 1600 */ 1601 1602 switch (type) { 1603 case RB_PAGE_HEAD: 1604 /* 1605 * We changed the head to UPDATE, thus 1606 * it is our responsibility to update 1607 * the counters. 1608 */ 1609 local_add(entries, &cpu_buffer->overrun); 1610 1611 /* 1612 * The entries will be zeroed out when we move the 1613 * tail page. 1614 */ 1615 1616 /* still more to do */ 1617 break; 1618 1619 case RB_PAGE_UPDATE: 1620 /* 1621 * This is an interrupt that interrupt the 1622 * previous update. Still more to do. 1623 */ 1624 break; 1625 case RB_PAGE_NORMAL: 1626 /* 1627 * An interrupt came in before the update 1628 * and processed this for us. 1629 * Nothing left to do. 1630 */ 1631 return 1; 1632 case RB_PAGE_MOVED: 1633 /* 1634 * The reader is on another CPU and just did 1635 * a swap with our next_page. 1636 * Try again. 1637 */ 1638 return 1; 1639 default: 1640 RB_WARN_ON(cpu_buffer, 1); /* WTF??? */ 1641 return -1; 1642 } 1643 1644 /* 1645 * Now that we are here, the old head pointer is 1646 * set to UPDATE. This will keep the reader from 1647 * swapping the head page with the reader page. 1648 * The reader (on another CPU) will spin till 1649 * we are finished. 1650 * 1651 * We just need to protect against interrupts 1652 * doing the job. We will set the next pointer 1653 * to HEAD. After that, we set the old pointer 1654 * to NORMAL, but only if it was HEAD before. 1655 * otherwise we are an interrupt, and only 1656 * want the outer most commit to reset it. 1657 */ 1658 new_head = next_page; 1659 rb_inc_page(cpu_buffer, &new_head); 1660 1661 ret = rb_head_page_set_head(cpu_buffer, new_head, next_page, 1662 RB_PAGE_NORMAL); 1663 1664 /* 1665 * Valid returns are: 1666 * HEAD - an interrupt came in and already set it. 1667 * NORMAL - One of two things: 1668 * 1) We really set it. 1669 * 2) A bunch of interrupts came in and moved 1670 * the page forward again. 1671 */ 1672 switch (ret) { 1673 case RB_PAGE_HEAD: 1674 case RB_PAGE_NORMAL: 1675 /* OK */ 1676 break; 1677 default: 1678 RB_WARN_ON(cpu_buffer, 1); 1679 return -1; 1680 } 1681 1682 /* 1683 * It is possible that an interrupt came in, 1684 * set the head up, then more interrupts came in 1685 * and moved it again. When we get back here, 1686 * the page would have been set to NORMAL but we 1687 * just set it back to HEAD. 1688 * 1689 * How do you detect this? Well, if that happened 1690 * the tail page would have moved. 1691 */ 1692 if (ret == RB_PAGE_NORMAL) { 1693 /* 1694 * If the tail had moved passed next, then we need 1695 * to reset the pointer. 1696 */ 1697 if (cpu_buffer->tail_page != tail_page && 1698 cpu_buffer->tail_page != next_page) 1699 rb_head_page_set_normal(cpu_buffer, new_head, 1700 next_page, 1701 RB_PAGE_HEAD); 1702 } 1703 1704 /* 1705 * If this was the outer most commit (the one that 1706 * changed the original pointer from HEAD to UPDATE), 1707 * then it is up to us to reset it to NORMAL. 1708 */ 1709 if (type == RB_PAGE_HEAD) { 1710 ret = rb_head_page_set_normal(cpu_buffer, next_page, 1711 tail_page, 1712 RB_PAGE_UPDATE); 1713 if (RB_WARN_ON(cpu_buffer, 1714 ret != RB_PAGE_UPDATE)) 1715 return -1; 1716 } 1717 1718 return 0; 1719 } 1720 1721 static unsigned rb_calculate_event_length(unsigned length) 1722 { 1723 struct ring_buffer_event event; /* Used only for sizeof array */ 1724 1725 /* zero length can cause confusions */ 1726 if (!length) 1727 length = 1; 1728 1729 if (length > RB_MAX_SMALL_DATA) 1730 length += sizeof(event.array[0]); 1731 1732 length += RB_EVNT_HDR_SIZE; 1733 length = ALIGN(length, RB_ALIGNMENT); 1734 1735 return length; 1736 } 1737 1738 static inline void 1739 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer, 1740 struct buffer_page *tail_page, 1741 unsigned long tail, unsigned long length) 1742 { 1743 struct ring_buffer_event *event; 1744 1745 /* 1746 * Only the event that crossed the page boundary 1747 * must fill the old tail_page with padding. 1748 */ 1749 if (tail >= BUF_PAGE_SIZE) { 1750 local_sub(length, &tail_page->write); 1751 return; 1752 } 1753 1754 event = __rb_page_index(tail_page, tail); 1755 kmemcheck_annotate_bitfield(event, bitfield); 1756 1757 /* 1758 * If this event is bigger than the minimum size, then 1759 * we need to be careful that we don't subtract the 1760 * write counter enough to allow another writer to slip 1761 * in on this page. 1762 * We put in a discarded commit instead, to make sure 1763 * that this space is not used again. 1764 * 1765 * If we are less than the minimum size, we don't need to 1766 * worry about it. 1767 */ 1768 if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) { 1769 /* No room for any events */ 1770 1771 /* Mark the rest of the page with padding */ 1772 rb_event_set_padding(event); 1773 1774 /* Set the write back to the previous setting */ 1775 local_sub(length, &tail_page->write); 1776 return; 1777 } 1778 1779 /* Put in a discarded event */ 1780 event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE; 1781 event->type_len = RINGBUF_TYPE_PADDING; 1782 /* time delta must be non zero */ 1783 event->time_delta = 1; 1784 1785 /* Set write to end of buffer */ 1786 length = (tail + length) - BUF_PAGE_SIZE; 1787 local_sub(length, &tail_page->write); 1788 } 1789 1790 static struct ring_buffer_event * 1791 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer, 1792 unsigned long length, unsigned long tail, 1793 struct buffer_page *commit_page, 1794 struct buffer_page *tail_page, u64 *ts) 1795 { 1796 struct ring_buffer *buffer = cpu_buffer->buffer; 1797 struct buffer_page *next_page; 1798 int ret; 1799 1800 next_page = tail_page; 1801 1802 rb_inc_page(cpu_buffer, &next_page); 1803 1804 /* 1805 * If for some reason, we had an interrupt storm that made 1806 * it all the way around the buffer, bail, and warn 1807 * about it. 1808 */ 1809 if (unlikely(next_page == commit_page)) { 1810 local_inc(&cpu_buffer->commit_overrun); 1811 goto out_reset; 1812 } 1813 1814 /* 1815 * This is where the fun begins! 1816 * 1817 * We are fighting against races between a reader that 1818 * could be on another CPU trying to swap its reader 1819 * page with the buffer head. 1820 * 1821 * We are also fighting against interrupts coming in and 1822 * moving the head or tail on us as well. 1823 * 1824 * If the next page is the head page then we have filled 1825 * the buffer, unless the commit page is still on the 1826 * reader page. 1827 */ 1828 if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) { 1829 1830 /* 1831 * If the commit is not on the reader page, then 1832 * move the header page. 1833 */ 1834 if (!rb_is_reader_page(cpu_buffer->commit_page)) { 1835 /* 1836 * If we are not in overwrite mode, 1837 * this is easy, just stop here. 1838 */ 1839 if (!(buffer->flags & RB_FL_OVERWRITE)) 1840 goto out_reset; 1841 1842 ret = rb_handle_head_page(cpu_buffer, 1843 tail_page, 1844 next_page); 1845 if (ret < 0) 1846 goto out_reset; 1847 if (ret) 1848 goto out_again; 1849 } else { 1850 /* 1851 * We need to be careful here too. The 1852 * commit page could still be on the reader 1853 * page. We could have a small buffer, and 1854 * have filled up the buffer with events 1855 * from interrupts and such, and wrapped. 1856 * 1857 * Note, if the tail page is also the on the 1858 * reader_page, we let it move out. 1859 */ 1860 if (unlikely((cpu_buffer->commit_page != 1861 cpu_buffer->tail_page) && 1862 (cpu_buffer->commit_page == 1863 cpu_buffer->reader_page))) { 1864 local_inc(&cpu_buffer->commit_overrun); 1865 goto out_reset; 1866 } 1867 } 1868 } 1869 1870 ret = rb_tail_page_update(cpu_buffer, tail_page, next_page); 1871 if (ret) { 1872 /* 1873 * Nested commits always have zero deltas, so 1874 * just reread the time stamp 1875 */ 1876 *ts = rb_time_stamp(buffer); 1877 next_page->page->time_stamp = *ts; 1878 } 1879 1880 out_again: 1881 1882 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1883 1884 /* fail and let the caller try again */ 1885 return ERR_PTR(-EAGAIN); 1886 1887 out_reset: 1888 /* reset write */ 1889 rb_reset_tail(cpu_buffer, tail_page, tail, length); 1890 1891 return NULL; 1892 } 1893 1894 static struct ring_buffer_event * 1895 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer, 1896 unsigned type, unsigned long length, u64 *ts) 1897 { 1898 struct buffer_page *tail_page, *commit_page; 1899 struct ring_buffer_event *event; 1900 unsigned long tail, write; 1901 1902 commit_page = cpu_buffer->commit_page; 1903 /* we just need to protect against interrupts */ 1904 barrier(); 1905 tail_page = cpu_buffer->tail_page; 1906 write = local_add_return(length, &tail_page->write); 1907 1908 /* set write to only the index of the write */ 1909 write &= RB_WRITE_MASK; 1910 tail = write - length; 1911 1912 /* See if we shot pass the end of this buffer page */ 1913 if (write > BUF_PAGE_SIZE) 1914 return rb_move_tail(cpu_buffer, length, tail, 1915 commit_page, tail_page, ts); 1916 1917 /* We reserved something on the buffer */ 1918 1919 event = __rb_page_index(tail_page, tail); 1920 kmemcheck_annotate_bitfield(event, bitfield); 1921 rb_update_event(event, type, length); 1922 1923 /* The passed in type is zero for DATA */ 1924 if (likely(!type)) 1925 local_inc(&tail_page->entries); 1926 1927 /* 1928 * If this is the first commit on the page, then update 1929 * its timestamp. 1930 */ 1931 if (!tail) 1932 tail_page->page->time_stamp = *ts; 1933 1934 return event; 1935 } 1936 1937 static inline int 1938 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer, 1939 struct ring_buffer_event *event) 1940 { 1941 unsigned long new_index, old_index; 1942 struct buffer_page *bpage; 1943 unsigned long index; 1944 unsigned long addr; 1945 1946 new_index = rb_event_index(event); 1947 old_index = new_index + rb_event_length(event); 1948 addr = (unsigned long)event; 1949 addr &= PAGE_MASK; 1950 1951 bpage = cpu_buffer->tail_page; 1952 1953 if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) { 1954 unsigned long write_mask = 1955 local_read(&bpage->write) & ~RB_WRITE_MASK; 1956 /* 1957 * This is on the tail page. It is possible that 1958 * a write could come in and move the tail page 1959 * and write to the next page. That is fine 1960 * because we just shorten what is on this page. 1961 */ 1962 old_index += write_mask; 1963 new_index += write_mask; 1964 index = local_cmpxchg(&bpage->write, old_index, new_index); 1965 if (index == old_index) 1966 return 1; 1967 } 1968 1969 /* could not discard */ 1970 return 0; 1971 } 1972 1973 static int 1974 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer, 1975 u64 *ts, u64 *delta) 1976 { 1977 struct ring_buffer_event *event; 1978 static int once; 1979 int ret; 1980 1981 if (unlikely(*delta > (1ULL << 59) && !once++)) { 1982 printk(KERN_WARNING "Delta way too big! %llu" 1983 " ts=%llu write stamp = %llu\n", 1984 (unsigned long long)*delta, 1985 (unsigned long long)*ts, 1986 (unsigned long long)cpu_buffer->write_stamp); 1987 WARN_ON(1); 1988 } 1989 1990 /* 1991 * The delta is too big, we to add a 1992 * new timestamp. 1993 */ 1994 event = __rb_reserve_next(cpu_buffer, 1995 RINGBUF_TYPE_TIME_EXTEND, 1996 RB_LEN_TIME_EXTEND, 1997 ts); 1998 if (!event) 1999 return -EBUSY; 2000 2001 if (PTR_ERR(event) == -EAGAIN) 2002 return -EAGAIN; 2003 2004 /* Only a commited time event can update the write stamp */ 2005 if (rb_event_is_commit(cpu_buffer, event)) { 2006 /* 2007 * If this is the first on the page, then it was 2008 * updated with the page itself. Try to discard it 2009 * and if we can't just make it zero. 2010 */ 2011 if (rb_event_index(event)) { 2012 event->time_delta = *delta & TS_MASK; 2013 event->array[0] = *delta >> TS_SHIFT; 2014 } else { 2015 /* try to discard, since we do not need this */ 2016 if (!rb_try_to_discard(cpu_buffer, event)) { 2017 /* nope, just zero it */ 2018 event->time_delta = 0; 2019 event->array[0] = 0; 2020 } 2021 } 2022 cpu_buffer->write_stamp = *ts; 2023 /* let the caller know this was the commit */ 2024 ret = 1; 2025 } else { 2026 /* Try to discard the event */ 2027 if (!rb_try_to_discard(cpu_buffer, event)) { 2028 /* Darn, this is just wasted space */ 2029 event->time_delta = 0; 2030 event->array[0] = 0; 2031 } 2032 ret = 0; 2033 } 2034 2035 *delta = 0; 2036 2037 return ret; 2038 } 2039 2040 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer) 2041 { 2042 local_inc(&cpu_buffer->committing); 2043 local_inc(&cpu_buffer->commits); 2044 } 2045 2046 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer) 2047 { 2048 unsigned long commits; 2049 2050 if (RB_WARN_ON(cpu_buffer, 2051 !local_read(&cpu_buffer->committing))) 2052 return; 2053 2054 again: 2055 commits = local_read(&cpu_buffer->commits); 2056 /* synchronize with interrupts */ 2057 barrier(); 2058 if (local_read(&cpu_buffer->committing) == 1) 2059 rb_set_commit_to_write(cpu_buffer); 2060 2061 local_dec(&cpu_buffer->committing); 2062 2063 /* synchronize with interrupts */ 2064 barrier(); 2065 2066 /* 2067 * Need to account for interrupts coming in between the 2068 * updating of the commit page and the clearing of the 2069 * committing counter. 2070 */ 2071 if (unlikely(local_read(&cpu_buffer->commits) != commits) && 2072 !local_read(&cpu_buffer->committing)) { 2073 local_inc(&cpu_buffer->committing); 2074 goto again; 2075 } 2076 } 2077 2078 static struct ring_buffer_event * 2079 rb_reserve_next_event(struct ring_buffer *buffer, 2080 struct ring_buffer_per_cpu *cpu_buffer, 2081 unsigned long length) 2082 { 2083 struct ring_buffer_event *event; 2084 u64 ts, delta = 0; 2085 int commit = 0; 2086 int nr_loops = 0; 2087 2088 rb_start_commit(cpu_buffer); 2089 2090 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 2091 /* 2092 * Due to the ability to swap a cpu buffer from a buffer 2093 * it is possible it was swapped before we committed. 2094 * (committing stops a swap). We check for it here and 2095 * if it happened, we have to fail the write. 2096 */ 2097 barrier(); 2098 if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) { 2099 local_dec(&cpu_buffer->committing); 2100 local_dec(&cpu_buffer->commits); 2101 return NULL; 2102 } 2103 #endif 2104 2105 length = rb_calculate_event_length(length); 2106 again: 2107 /* 2108 * We allow for interrupts to reenter here and do a trace. 2109 * If one does, it will cause this original code to loop 2110 * back here. Even with heavy interrupts happening, this 2111 * should only happen a few times in a row. If this happens 2112 * 1000 times in a row, there must be either an interrupt 2113 * storm or we have something buggy. 2114 * Bail! 2115 */ 2116 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000)) 2117 goto out_fail; 2118 2119 ts = rb_time_stamp(cpu_buffer->buffer); 2120 2121 /* 2122 * Only the first commit can update the timestamp. 2123 * Yes there is a race here. If an interrupt comes in 2124 * just after the conditional and it traces too, then it 2125 * will also check the deltas. More than one timestamp may 2126 * also be made. But only the entry that did the actual 2127 * commit will be something other than zero. 2128 */ 2129 if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page && 2130 rb_page_write(cpu_buffer->tail_page) == 2131 rb_commit_index(cpu_buffer))) { 2132 u64 diff; 2133 2134 diff = ts - cpu_buffer->write_stamp; 2135 2136 /* make sure this diff is calculated here */ 2137 barrier(); 2138 2139 /* Did the write stamp get updated already? */ 2140 if (unlikely(ts < cpu_buffer->write_stamp)) 2141 goto get_event; 2142 2143 delta = diff; 2144 if (unlikely(test_time_stamp(delta))) { 2145 2146 commit = rb_add_time_stamp(cpu_buffer, &ts, &delta); 2147 if (commit == -EBUSY) 2148 goto out_fail; 2149 2150 if (commit == -EAGAIN) 2151 goto again; 2152 2153 RB_WARN_ON(cpu_buffer, commit < 0); 2154 } 2155 } 2156 2157 get_event: 2158 event = __rb_reserve_next(cpu_buffer, 0, length, &ts); 2159 if (unlikely(PTR_ERR(event) == -EAGAIN)) 2160 goto again; 2161 2162 if (!event) 2163 goto out_fail; 2164 2165 if (!rb_event_is_commit(cpu_buffer, event)) 2166 delta = 0; 2167 2168 event->time_delta = delta; 2169 2170 return event; 2171 2172 out_fail: 2173 rb_end_commit(cpu_buffer); 2174 return NULL; 2175 } 2176 2177 #ifdef CONFIG_TRACING 2178 2179 #define TRACE_RECURSIVE_DEPTH 16 2180 2181 static int trace_recursive_lock(void) 2182 { 2183 current->trace_recursion++; 2184 2185 if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH)) 2186 return 0; 2187 2188 /* Disable all tracing before we do anything else */ 2189 tracing_off_permanent(); 2190 2191 printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:" 2192 "HC[%lu]:SC[%lu]:NMI[%lu]\n", 2193 current->trace_recursion, 2194 hardirq_count() >> HARDIRQ_SHIFT, 2195 softirq_count() >> SOFTIRQ_SHIFT, 2196 in_nmi()); 2197 2198 WARN_ON_ONCE(1); 2199 return -1; 2200 } 2201 2202 static void trace_recursive_unlock(void) 2203 { 2204 WARN_ON_ONCE(!current->trace_recursion); 2205 2206 current->trace_recursion--; 2207 } 2208 2209 #else 2210 2211 #define trace_recursive_lock() (0) 2212 #define trace_recursive_unlock() do { } while (0) 2213 2214 #endif 2215 2216 static DEFINE_PER_CPU(int, rb_need_resched); 2217 2218 /** 2219 * ring_buffer_lock_reserve - reserve a part of the buffer 2220 * @buffer: the ring buffer to reserve from 2221 * @length: the length of the data to reserve (excluding event header) 2222 * 2223 * Returns a reseverd event on the ring buffer to copy directly to. 2224 * The user of this interface will need to get the body to write into 2225 * and can use the ring_buffer_event_data() interface. 2226 * 2227 * The length is the length of the data needed, not the event length 2228 * which also includes the event header. 2229 * 2230 * Must be paired with ring_buffer_unlock_commit, unless NULL is returned. 2231 * If NULL is returned, then nothing has been allocated or locked. 2232 */ 2233 struct ring_buffer_event * 2234 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length) 2235 { 2236 struct ring_buffer_per_cpu *cpu_buffer; 2237 struct ring_buffer_event *event; 2238 int cpu, resched; 2239 2240 if (ring_buffer_flags != RB_BUFFERS_ON) 2241 return NULL; 2242 2243 if (atomic_read(&buffer->record_disabled)) 2244 return NULL; 2245 2246 /* If we are tracing schedule, we don't want to recurse */ 2247 resched = ftrace_preempt_disable(); 2248 2249 if (trace_recursive_lock()) 2250 goto out_nocheck; 2251 2252 cpu = raw_smp_processor_id(); 2253 2254 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2255 goto out; 2256 2257 cpu_buffer = buffer->buffers[cpu]; 2258 2259 if (atomic_read(&cpu_buffer->record_disabled)) 2260 goto out; 2261 2262 if (length > BUF_MAX_DATA_SIZE) 2263 goto out; 2264 2265 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2266 if (!event) 2267 goto out; 2268 2269 /* 2270 * Need to store resched state on this cpu. 2271 * Only the first needs to. 2272 */ 2273 2274 if (preempt_count() == 1) 2275 per_cpu(rb_need_resched, cpu) = resched; 2276 2277 return event; 2278 2279 out: 2280 trace_recursive_unlock(); 2281 2282 out_nocheck: 2283 ftrace_preempt_enable(resched); 2284 return NULL; 2285 } 2286 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve); 2287 2288 static void 2289 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2290 struct ring_buffer_event *event) 2291 { 2292 /* 2293 * The event first in the commit queue updates the 2294 * time stamp. 2295 */ 2296 if (rb_event_is_commit(cpu_buffer, event)) 2297 cpu_buffer->write_stamp += event->time_delta; 2298 } 2299 2300 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer, 2301 struct ring_buffer_event *event) 2302 { 2303 local_inc(&cpu_buffer->entries); 2304 rb_update_write_stamp(cpu_buffer, event); 2305 rb_end_commit(cpu_buffer); 2306 } 2307 2308 /** 2309 * ring_buffer_unlock_commit - commit a reserved 2310 * @buffer: The buffer to commit to 2311 * @event: The event pointer to commit. 2312 * 2313 * This commits the data to the ring buffer, and releases any locks held. 2314 * 2315 * Must be paired with ring_buffer_lock_reserve. 2316 */ 2317 int ring_buffer_unlock_commit(struct ring_buffer *buffer, 2318 struct ring_buffer_event *event) 2319 { 2320 struct ring_buffer_per_cpu *cpu_buffer; 2321 int cpu = raw_smp_processor_id(); 2322 2323 cpu_buffer = buffer->buffers[cpu]; 2324 2325 rb_commit(cpu_buffer, event); 2326 2327 trace_recursive_unlock(); 2328 2329 /* 2330 * Only the last preempt count needs to restore preemption. 2331 */ 2332 if (preempt_count() == 1) 2333 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu)); 2334 else 2335 preempt_enable_no_resched_notrace(); 2336 2337 return 0; 2338 } 2339 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit); 2340 2341 static inline void rb_event_discard(struct ring_buffer_event *event) 2342 { 2343 /* array[0] holds the actual length for the discarded event */ 2344 event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE; 2345 event->type_len = RINGBUF_TYPE_PADDING; 2346 /* time delta must be non zero */ 2347 if (!event->time_delta) 2348 event->time_delta = 1; 2349 } 2350 2351 /* 2352 * Decrement the entries to the page that an event is on. 2353 * The event does not even need to exist, only the pointer 2354 * to the page it is on. This may only be called before the commit 2355 * takes place. 2356 */ 2357 static inline void 2358 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer, 2359 struct ring_buffer_event *event) 2360 { 2361 unsigned long addr = (unsigned long)event; 2362 struct buffer_page *bpage = cpu_buffer->commit_page; 2363 struct buffer_page *start; 2364 2365 addr &= PAGE_MASK; 2366 2367 /* Do the likely case first */ 2368 if (likely(bpage->page == (void *)addr)) { 2369 local_dec(&bpage->entries); 2370 return; 2371 } 2372 2373 /* 2374 * Because the commit page may be on the reader page we 2375 * start with the next page and check the end loop there. 2376 */ 2377 rb_inc_page(cpu_buffer, &bpage); 2378 start = bpage; 2379 do { 2380 if (bpage->page == (void *)addr) { 2381 local_dec(&bpage->entries); 2382 return; 2383 } 2384 rb_inc_page(cpu_buffer, &bpage); 2385 } while (bpage != start); 2386 2387 /* commit not part of this buffer?? */ 2388 RB_WARN_ON(cpu_buffer, 1); 2389 } 2390 2391 /** 2392 * ring_buffer_commit_discard - discard an event that has not been committed 2393 * @buffer: the ring buffer 2394 * @event: non committed event to discard 2395 * 2396 * Sometimes an event that is in the ring buffer needs to be ignored. 2397 * This function lets the user discard an event in the ring buffer 2398 * and then that event will not be read later. 2399 * 2400 * This function only works if it is called before the the item has been 2401 * committed. It will try to free the event from the ring buffer 2402 * if another event has not been added behind it. 2403 * 2404 * If another event has been added behind it, it will set the event 2405 * up as discarded, and perform the commit. 2406 * 2407 * If this function is called, do not call ring_buffer_unlock_commit on 2408 * the event. 2409 */ 2410 void ring_buffer_discard_commit(struct ring_buffer *buffer, 2411 struct ring_buffer_event *event) 2412 { 2413 struct ring_buffer_per_cpu *cpu_buffer; 2414 int cpu; 2415 2416 /* The event is discarded regardless */ 2417 rb_event_discard(event); 2418 2419 cpu = smp_processor_id(); 2420 cpu_buffer = buffer->buffers[cpu]; 2421 2422 /* 2423 * This must only be called if the event has not been 2424 * committed yet. Thus we can assume that preemption 2425 * is still disabled. 2426 */ 2427 RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing)); 2428 2429 rb_decrement_entry(cpu_buffer, event); 2430 if (rb_try_to_discard(cpu_buffer, event)) 2431 goto out; 2432 2433 /* 2434 * The commit is still visible by the reader, so we 2435 * must still update the timestamp. 2436 */ 2437 rb_update_write_stamp(cpu_buffer, event); 2438 out: 2439 rb_end_commit(cpu_buffer); 2440 2441 trace_recursive_unlock(); 2442 2443 /* 2444 * Only the last preempt count needs to restore preemption. 2445 */ 2446 if (preempt_count() == 1) 2447 ftrace_preempt_enable(per_cpu(rb_need_resched, cpu)); 2448 else 2449 preempt_enable_no_resched_notrace(); 2450 2451 } 2452 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit); 2453 2454 /** 2455 * ring_buffer_write - write data to the buffer without reserving 2456 * @buffer: The ring buffer to write to. 2457 * @length: The length of the data being written (excluding the event header) 2458 * @data: The data to write to the buffer. 2459 * 2460 * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as 2461 * one function. If you already have the data to write to the buffer, it 2462 * may be easier to simply call this function. 2463 * 2464 * Note, like ring_buffer_lock_reserve, the length is the length of the data 2465 * and not the length of the event which would hold the header. 2466 */ 2467 int ring_buffer_write(struct ring_buffer *buffer, 2468 unsigned long length, 2469 void *data) 2470 { 2471 struct ring_buffer_per_cpu *cpu_buffer; 2472 struct ring_buffer_event *event; 2473 void *body; 2474 int ret = -EBUSY; 2475 int cpu, resched; 2476 2477 if (ring_buffer_flags != RB_BUFFERS_ON) 2478 return -EBUSY; 2479 2480 if (atomic_read(&buffer->record_disabled)) 2481 return -EBUSY; 2482 2483 resched = ftrace_preempt_disable(); 2484 2485 cpu = raw_smp_processor_id(); 2486 2487 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2488 goto out; 2489 2490 cpu_buffer = buffer->buffers[cpu]; 2491 2492 if (atomic_read(&cpu_buffer->record_disabled)) 2493 goto out; 2494 2495 if (length > BUF_MAX_DATA_SIZE) 2496 goto out; 2497 2498 event = rb_reserve_next_event(buffer, cpu_buffer, length); 2499 if (!event) 2500 goto out; 2501 2502 body = rb_event_data(event); 2503 2504 memcpy(body, data, length); 2505 2506 rb_commit(cpu_buffer, event); 2507 2508 ret = 0; 2509 out: 2510 ftrace_preempt_enable(resched); 2511 2512 return ret; 2513 } 2514 EXPORT_SYMBOL_GPL(ring_buffer_write); 2515 2516 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer) 2517 { 2518 struct buffer_page *reader = cpu_buffer->reader_page; 2519 struct buffer_page *head = rb_set_head_page(cpu_buffer); 2520 struct buffer_page *commit = cpu_buffer->commit_page; 2521 2522 /* In case of error, head will be NULL */ 2523 if (unlikely(!head)) 2524 return 1; 2525 2526 return reader->read == rb_page_commit(reader) && 2527 (commit == reader || 2528 (commit == head && 2529 head->read == rb_page_commit(commit))); 2530 } 2531 2532 /** 2533 * ring_buffer_record_disable - stop all writes into the buffer 2534 * @buffer: The ring buffer to stop writes to. 2535 * 2536 * This prevents all writes to the buffer. Any attempt to write 2537 * to the buffer after this will fail and return NULL. 2538 * 2539 * The caller should call synchronize_sched() after this. 2540 */ 2541 void ring_buffer_record_disable(struct ring_buffer *buffer) 2542 { 2543 atomic_inc(&buffer->record_disabled); 2544 } 2545 EXPORT_SYMBOL_GPL(ring_buffer_record_disable); 2546 2547 /** 2548 * ring_buffer_record_enable - enable writes to the buffer 2549 * @buffer: The ring buffer to enable writes 2550 * 2551 * Note, multiple disables will need the same number of enables 2552 * to truely enable the writing (much like preempt_disable). 2553 */ 2554 void ring_buffer_record_enable(struct ring_buffer *buffer) 2555 { 2556 atomic_dec(&buffer->record_disabled); 2557 } 2558 EXPORT_SYMBOL_GPL(ring_buffer_record_enable); 2559 2560 /** 2561 * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer 2562 * @buffer: The ring buffer to stop writes to. 2563 * @cpu: The CPU buffer to stop 2564 * 2565 * This prevents all writes to the buffer. Any attempt to write 2566 * to the buffer after this will fail and return NULL. 2567 * 2568 * The caller should call synchronize_sched() after this. 2569 */ 2570 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu) 2571 { 2572 struct ring_buffer_per_cpu *cpu_buffer; 2573 2574 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2575 return; 2576 2577 cpu_buffer = buffer->buffers[cpu]; 2578 atomic_inc(&cpu_buffer->record_disabled); 2579 } 2580 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu); 2581 2582 /** 2583 * ring_buffer_record_enable_cpu - enable writes to the buffer 2584 * @buffer: The ring buffer to enable writes 2585 * @cpu: The CPU to enable. 2586 * 2587 * Note, multiple disables will need the same number of enables 2588 * to truely enable the writing (much like preempt_disable). 2589 */ 2590 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu) 2591 { 2592 struct ring_buffer_per_cpu *cpu_buffer; 2593 2594 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2595 return; 2596 2597 cpu_buffer = buffer->buffers[cpu]; 2598 atomic_dec(&cpu_buffer->record_disabled); 2599 } 2600 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu); 2601 2602 /** 2603 * ring_buffer_entries_cpu - get the number of entries in a cpu buffer 2604 * @buffer: The ring buffer 2605 * @cpu: The per CPU buffer to get the entries from. 2606 */ 2607 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu) 2608 { 2609 struct ring_buffer_per_cpu *cpu_buffer; 2610 unsigned long ret; 2611 2612 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2613 return 0; 2614 2615 cpu_buffer = buffer->buffers[cpu]; 2616 ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun)) 2617 - cpu_buffer->read; 2618 2619 return ret; 2620 } 2621 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu); 2622 2623 /** 2624 * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer 2625 * @buffer: The ring buffer 2626 * @cpu: The per CPU buffer to get the number of overruns from 2627 */ 2628 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu) 2629 { 2630 struct ring_buffer_per_cpu *cpu_buffer; 2631 unsigned long ret; 2632 2633 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2634 return 0; 2635 2636 cpu_buffer = buffer->buffers[cpu]; 2637 ret = local_read(&cpu_buffer->overrun); 2638 2639 return ret; 2640 } 2641 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu); 2642 2643 /** 2644 * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits 2645 * @buffer: The ring buffer 2646 * @cpu: The per CPU buffer to get the number of overruns from 2647 */ 2648 unsigned long 2649 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu) 2650 { 2651 struct ring_buffer_per_cpu *cpu_buffer; 2652 unsigned long ret; 2653 2654 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 2655 return 0; 2656 2657 cpu_buffer = buffer->buffers[cpu]; 2658 ret = local_read(&cpu_buffer->commit_overrun); 2659 2660 return ret; 2661 } 2662 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu); 2663 2664 /** 2665 * ring_buffer_entries - get the number of entries in a buffer 2666 * @buffer: The ring buffer 2667 * 2668 * Returns the total number of entries in the ring buffer 2669 * (all CPU entries) 2670 */ 2671 unsigned long ring_buffer_entries(struct ring_buffer *buffer) 2672 { 2673 struct ring_buffer_per_cpu *cpu_buffer; 2674 unsigned long entries = 0; 2675 int cpu; 2676 2677 /* if you care about this being correct, lock the buffer */ 2678 for_each_buffer_cpu(buffer, cpu) { 2679 cpu_buffer = buffer->buffers[cpu]; 2680 entries += (local_read(&cpu_buffer->entries) - 2681 local_read(&cpu_buffer->overrun)) - cpu_buffer->read; 2682 } 2683 2684 return entries; 2685 } 2686 EXPORT_SYMBOL_GPL(ring_buffer_entries); 2687 2688 /** 2689 * ring_buffer_overruns - get the number of overruns in buffer 2690 * @buffer: The ring buffer 2691 * 2692 * Returns the total number of overruns in the ring buffer 2693 * (all CPU entries) 2694 */ 2695 unsigned long ring_buffer_overruns(struct ring_buffer *buffer) 2696 { 2697 struct ring_buffer_per_cpu *cpu_buffer; 2698 unsigned long overruns = 0; 2699 int cpu; 2700 2701 /* if you care about this being correct, lock the buffer */ 2702 for_each_buffer_cpu(buffer, cpu) { 2703 cpu_buffer = buffer->buffers[cpu]; 2704 overruns += local_read(&cpu_buffer->overrun); 2705 } 2706 2707 return overruns; 2708 } 2709 EXPORT_SYMBOL_GPL(ring_buffer_overruns); 2710 2711 static void rb_iter_reset(struct ring_buffer_iter *iter) 2712 { 2713 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 2714 2715 /* Iterator usage is expected to have record disabled */ 2716 if (list_empty(&cpu_buffer->reader_page->list)) { 2717 iter->head_page = rb_set_head_page(cpu_buffer); 2718 if (unlikely(!iter->head_page)) 2719 return; 2720 iter->head = iter->head_page->read; 2721 } else { 2722 iter->head_page = cpu_buffer->reader_page; 2723 iter->head = cpu_buffer->reader_page->read; 2724 } 2725 if (iter->head) 2726 iter->read_stamp = cpu_buffer->read_stamp; 2727 else 2728 iter->read_stamp = iter->head_page->page->time_stamp; 2729 } 2730 2731 /** 2732 * ring_buffer_iter_reset - reset an iterator 2733 * @iter: The iterator to reset 2734 * 2735 * Resets the iterator, so that it will start from the beginning 2736 * again. 2737 */ 2738 void ring_buffer_iter_reset(struct ring_buffer_iter *iter) 2739 { 2740 struct ring_buffer_per_cpu *cpu_buffer; 2741 unsigned long flags; 2742 2743 if (!iter) 2744 return; 2745 2746 cpu_buffer = iter->cpu_buffer; 2747 2748 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 2749 rb_iter_reset(iter); 2750 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 2751 } 2752 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset); 2753 2754 /** 2755 * ring_buffer_iter_empty - check if an iterator has no more to read 2756 * @iter: The iterator to check 2757 */ 2758 int ring_buffer_iter_empty(struct ring_buffer_iter *iter) 2759 { 2760 struct ring_buffer_per_cpu *cpu_buffer; 2761 2762 cpu_buffer = iter->cpu_buffer; 2763 2764 return iter->head_page == cpu_buffer->commit_page && 2765 iter->head == rb_commit_index(cpu_buffer); 2766 } 2767 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty); 2768 2769 static void 2770 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer, 2771 struct ring_buffer_event *event) 2772 { 2773 u64 delta; 2774 2775 switch (event->type_len) { 2776 case RINGBUF_TYPE_PADDING: 2777 return; 2778 2779 case RINGBUF_TYPE_TIME_EXTEND: 2780 delta = event->array[0]; 2781 delta <<= TS_SHIFT; 2782 delta += event->time_delta; 2783 cpu_buffer->read_stamp += delta; 2784 return; 2785 2786 case RINGBUF_TYPE_TIME_STAMP: 2787 /* FIXME: not implemented */ 2788 return; 2789 2790 case RINGBUF_TYPE_DATA: 2791 cpu_buffer->read_stamp += event->time_delta; 2792 return; 2793 2794 default: 2795 BUG(); 2796 } 2797 return; 2798 } 2799 2800 static void 2801 rb_update_iter_read_stamp(struct ring_buffer_iter *iter, 2802 struct ring_buffer_event *event) 2803 { 2804 u64 delta; 2805 2806 switch (event->type_len) { 2807 case RINGBUF_TYPE_PADDING: 2808 return; 2809 2810 case RINGBUF_TYPE_TIME_EXTEND: 2811 delta = event->array[0]; 2812 delta <<= TS_SHIFT; 2813 delta += event->time_delta; 2814 iter->read_stamp += delta; 2815 return; 2816 2817 case RINGBUF_TYPE_TIME_STAMP: 2818 /* FIXME: not implemented */ 2819 return; 2820 2821 case RINGBUF_TYPE_DATA: 2822 iter->read_stamp += event->time_delta; 2823 return; 2824 2825 default: 2826 BUG(); 2827 } 2828 return; 2829 } 2830 2831 static struct buffer_page * 2832 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer) 2833 { 2834 struct buffer_page *reader = NULL; 2835 unsigned long flags; 2836 int nr_loops = 0; 2837 int ret; 2838 2839 local_irq_save(flags); 2840 __raw_spin_lock(&cpu_buffer->lock); 2841 2842 again: 2843 /* 2844 * This should normally only loop twice. But because the 2845 * start of the reader inserts an empty page, it causes 2846 * a case where we will loop three times. There should be no 2847 * reason to loop four times (that I know of). 2848 */ 2849 if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) { 2850 reader = NULL; 2851 goto out; 2852 } 2853 2854 reader = cpu_buffer->reader_page; 2855 2856 /* If there's more to read, return this page */ 2857 if (cpu_buffer->reader_page->read < rb_page_size(reader)) 2858 goto out; 2859 2860 /* Never should we have an index greater than the size */ 2861 if (RB_WARN_ON(cpu_buffer, 2862 cpu_buffer->reader_page->read > rb_page_size(reader))) 2863 goto out; 2864 2865 /* check if we caught up to the tail */ 2866 reader = NULL; 2867 if (cpu_buffer->commit_page == cpu_buffer->reader_page) 2868 goto out; 2869 2870 /* 2871 * Reset the reader page to size zero. 2872 */ 2873 local_set(&cpu_buffer->reader_page->write, 0); 2874 local_set(&cpu_buffer->reader_page->entries, 0); 2875 local_set(&cpu_buffer->reader_page->page->commit, 0); 2876 2877 spin: 2878 /* 2879 * Splice the empty reader page into the list around the head. 2880 */ 2881 reader = rb_set_head_page(cpu_buffer); 2882 cpu_buffer->reader_page->list.next = reader->list.next; 2883 cpu_buffer->reader_page->list.prev = reader->list.prev; 2884 2885 /* 2886 * cpu_buffer->pages just needs to point to the buffer, it 2887 * has no specific buffer page to point to. Lets move it out 2888 * of our way so we don't accidently swap it. 2889 */ 2890 cpu_buffer->pages = reader->list.prev; 2891 2892 /* The reader page will be pointing to the new head */ 2893 rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list); 2894 2895 /* 2896 * Here's the tricky part. 2897 * 2898 * We need to move the pointer past the header page. 2899 * But we can only do that if a writer is not currently 2900 * moving it. The page before the header page has the 2901 * flag bit '1' set if it is pointing to the page we want. 2902 * but if the writer is in the process of moving it 2903 * than it will be '2' or already moved '0'. 2904 */ 2905 2906 ret = rb_head_page_replace(reader, cpu_buffer->reader_page); 2907 2908 /* 2909 * If we did not convert it, then we must try again. 2910 */ 2911 if (!ret) 2912 goto spin; 2913 2914 /* 2915 * Yeah! We succeeded in replacing the page. 2916 * 2917 * Now make the new head point back to the reader page. 2918 */ 2919 reader->list.next->prev = &cpu_buffer->reader_page->list; 2920 rb_inc_page(cpu_buffer, &cpu_buffer->head_page); 2921 2922 /* Finally update the reader page to the new head */ 2923 cpu_buffer->reader_page = reader; 2924 rb_reset_reader_page(cpu_buffer); 2925 2926 goto again; 2927 2928 out: 2929 __raw_spin_unlock(&cpu_buffer->lock); 2930 local_irq_restore(flags); 2931 2932 return reader; 2933 } 2934 2935 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer) 2936 { 2937 struct ring_buffer_event *event; 2938 struct buffer_page *reader; 2939 unsigned length; 2940 2941 reader = rb_get_reader_page(cpu_buffer); 2942 2943 /* This function should not be called when buffer is empty */ 2944 if (RB_WARN_ON(cpu_buffer, !reader)) 2945 return; 2946 2947 event = rb_reader_event(cpu_buffer); 2948 2949 if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX) 2950 cpu_buffer->read++; 2951 2952 rb_update_read_stamp(cpu_buffer, event); 2953 2954 length = rb_event_length(event); 2955 cpu_buffer->reader_page->read += length; 2956 } 2957 2958 static void rb_advance_iter(struct ring_buffer_iter *iter) 2959 { 2960 struct ring_buffer *buffer; 2961 struct ring_buffer_per_cpu *cpu_buffer; 2962 struct ring_buffer_event *event; 2963 unsigned length; 2964 2965 cpu_buffer = iter->cpu_buffer; 2966 buffer = cpu_buffer->buffer; 2967 2968 /* 2969 * Check if we are at the end of the buffer. 2970 */ 2971 if (iter->head >= rb_page_size(iter->head_page)) { 2972 /* discarded commits can make the page empty */ 2973 if (iter->head_page == cpu_buffer->commit_page) 2974 return; 2975 rb_inc_iter(iter); 2976 return; 2977 } 2978 2979 event = rb_iter_head_event(iter); 2980 2981 length = rb_event_length(event); 2982 2983 /* 2984 * This should not be called to advance the header if we are 2985 * at the tail of the buffer. 2986 */ 2987 if (RB_WARN_ON(cpu_buffer, 2988 (iter->head_page == cpu_buffer->commit_page) && 2989 (iter->head + length > rb_commit_index(cpu_buffer)))) 2990 return; 2991 2992 rb_update_iter_read_stamp(iter, event); 2993 2994 iter->head += length; 2995 2996 /* check for end of page padding */ 2997 if ((iter->head >= rb_page_size(iter->head_page)) && 2998 (iter->head_page != cpu_buffer->commit_page)) 2999 rb_advance_iter(iter); 3000 } 3001 3002 static struct ring_buffer_event * 3003 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts) 3004 { 3005 struct ring_buffer_event *event; 3006 struct buffer_page *reader; 3007 int nr_loops = 0; 3008 3009 again: 3010 /* 3011 * We repeat when a timestamp is encountered. It is possible 3012 * to get multiple timestamps from an interrupt entering just 3013 * as one timestamp is about to be written, or from discarded 3014 * commits. The most that we can have is the number on a single page. 3015 */ 3016 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE)) 3017 return NULL; 3018 3019 reader = rb_get_reader_page(cpu_buffer); 3020 if (!reader) 3021 return NULL; 3022 3023 event = rb_reader_event(cpu_buffer); 3024 3025 switch (event->type_len) { 3026 case RINGBUF_TYPE_PADDING: 3027 if (rb_null_event(event)) 3028 RB_WARN_ON(cpu_buffer, 1); 3029 /* 3030 * Because the writer could be discarding every 3031 * event it creates (which would probably be bad) 3032 * if we were to go back to "again" then we may never 3033 * catch up, and will trigger the warn on, or lock 3034 * the box. Return the padding, and we will release 3035 * the current locks, and try again. 3036 */ 3037 return event; 3038 3039 case RINGBUF_TYPE_TIME_EXTEND: 3040 /* Internal data, OK to advance */ 3041 rb_advance_reader(cpu_buffer); 3042 goto again; 3043 3044 case RINGBUF_TYPE_TIME_STAMP: 3045 /* FIXME: not implemented */ 3046 rb_advance_reader(cpu_buffer); 3047 goto again; 3048 3049 case RINGBUF_TYPE_DATA: 3050 if (ts) { 3051 *ts = cpu_buffer->read_stamp + event->time_delta; 3052 ring_buffer_normalize_time_stamp(cpu_buffer->buffer, 3053 cpu_buffer->cpu, ts); 3054 } 3055 return event; 3056 3057 default: 3058 BUG(); 3059 } 3060 3061 return NULL; 3062 } 3063 EXPORT_SYMBOL_GPL(ring_buffer_peek); 3064 3065 static struct ring_buffer_event * 3066 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3067 { 3068 struct ring_buffer *buffer; 3069 struct ring_buffer_per_cpu *cpu_buffer; 3070 struct ring_buffer_event *event; 3071 int nr_loops = 0; 3072 3073 if (ring_buffer_iter_empty(iter)) 3074 return NULL; 3075 3076 cpu_buffer = iter->cpu_buffer; 3077 buffer = cpu_buffer->buffer; 3078 3079 again: 3080 /* 3081 * We repeat when a timestamp is encountered. 3082 * We can get multiple timestamps by nested interrupts or also 3083 * if filtering is on (discarding commits). Since discarding 3084 * commits can be frequent we can get a lot of timestamps. 3085 * But we limit them by not adding timestamps if they begin 3086 * at the start of a page. 3087 */ 3088 if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE)) 3089 return NULL; 3090 3091 if (rb_per_cpu_empty(cpu_buffer)) 3092 return NULL; 3093 3094 event = rb_iter_head_event(iter); 3095 3096 switch (event->type_len) { 3097 case RINGBUF_TYPE_PADDING: 3098 if (rb_null_event(event)) { 3099 rb_inc_iter(iter); 3100 goto again; 3101 } 3102 rb_advance_iter(iter); 3103 return event; 3104 3105 case RINGBUF_TYPE_TIME_EXTEND: 3106 /* Internal data, OK to advance */ 3107 rb_advance_iter(iter); 3108 goto again; 3109 3110 case RINGBUF_TYPE_TIME_STAMP: 3111 /* FIXME: not implemented */ 3112 rb_advance_iter(iter); 3113 goto again; 3114 3115 case RINGBUF_TYPE_DATA: 3116 if (ts) { 3117 *ts = iter->read_stamp + event->time_delta; 3118 ring_buffer_normalize_time_stamp(buffer, 3119 cpu_buffer->cpu, ts); 3120 } 3121 return event; 3122 3123 default: 3124 BUG(); 3125 } 3126 3127 return NULL; 3128 } 3129 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek); 3130 3131 static inline int rb_ok_to_lock(void) 3132 { 3133 /* 3134 * If an NMI die dumps out the content of the ring buffer 3135 * do not grab locks. We also permanently disable the ring 3136 * buffer too. A one time deal is all you get from reading 3137 * the ring buffer from an NMI. 3138 */ 3139 if (likely(!in_nmi())) 3140 return 1; 3141 3142 tracing_off_permanent(); 3143 return 0; 3144 } 3145 3146 /** 3147 * ring_buffer_peek - peek at the next event to be read 3148 * @buffer: The ring buffer to read 3149 * @cpu: The cpu to peak at 3150 * @ts: The timestamp counter of this event. 3151 * 3152 * This will return the event that will be read next, but does 3153 * not consume the data. 3154 */ 3155 struct ring_buffer_event * 3156 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts) 3157 { 3158 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3159 struct ring_buffer_event *event; 3160 unsigned long flags; 3161 int dolock; 3162 3163 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3164 return NULL; 3165 3166 dolock = rb_ok_to_lock(); 3167 again: 3168 local_irq_save(flags); 3169 if (dolock) 3170 spin_lock(&cpu_buffer->reader_lock); 3171 event = rb_buffer_peek(cpu_buffer, ts); 3172 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3173 rb_advance_reader(cpu_buffer); 3174 if (dolock) 3175 spin_unlock(&cpu_buffer->reader_lock); 3176 local_irq_restore(flags); 3177 3178 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3179 goto again; 3180 3181 return event; 3182 } 3183 3184 /** 3185 * ring_buffer_iter_peek - peek at the next event to be read 3186 * @iter: The ring buffer iterator 3187 * @ts: The timestamp counter of this event. 3188 * 3189 * This will return the event that will be read next, but does 3190 * not increment the iterator. 3191 */ 3192 struct ring_buffer_event * 3193 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts) 3194 { 3195 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3196 struct ring_buffer_event *event; 3197 unsigned long flags; 3198 3199 again: 3200 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3201 event = rb_iter_peek(iter, ts); 3202 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3203 3204 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3205 goto again; 3206 3207 return event; 3208 } 3209 3210 /** 3211 * ring_buffer_consume - return an event and consume it 3212 * @buffer: The ring buffer to get the next event from 3213 * 3214 * Returns the next event in the ring buffer, and that event is consumed. 3215 * Meaning, that sequential reads will keep returning a different event, 3216 * and eventually empty the ring buffer if the producer is slower. 3217 */ 3218 struct ring_buffer_event * 3219 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts) 3220 { 3221 struct ring_buffer_per_cpu *cpu_buffer; 3222 struct ring_buffer_event *event = NULL; 3223 unsigned long flags; 3224 int dolock; 3225 3226 dolock = rb_ok_to_lock(); 3227 3228 again: 3229 /* might be called in atomic */ 3230 preempt_disable(); 3231 3232 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3233 goto out; 3234 3235 cpu_buffer = buffer->buffers[cpu]; 3236 local_irq_save(flags); 3237 if (dolock) 3238 spin_lock(&cpu_buffer->reader_lock); 3239 3240 event = rb_buffer_peek(cpu_buffer, ts); 3241 if (event) 3242 rb_advance_reader(cpu_buffer); 3243 3244 if (dolock) 3245 spin_unlock(&cpu_buffer->reader_lock); 3246 local_irq_restore(flags); 3247 3248 out: 3249 preempt_enable(); 3250 3251 if (event && event->type_len == RINGBUF_TYPE_PADDING) 3252 goto again; 3253 3254 return event; 3255 } 3256 EXPORT_SYMBOL_GPL(ring_buffer_consume); 3257 3258 /** 3259 * ring_buffer_read_start - start a non consuming read of the buffer 3260 * @buffer: The ring buffer to read from 3261 * @cpu: The cpu buffer to iterate over 3262 * 3263 * This starts up an iteration through the buffer. It also disables 3264 * the recording to the buffer until the reading is finished. 3265 * This prevents the reading from being corrupted. This is not 3266 * a consuming read, so a producer is not expected. 3267 * 3268 * Must be paired with ring_buffer_finish. 3269 */ 3270 struct ring_buffer_iter * 3271 ring_buffer_read_start(struct ring_buffer *buffer, int cpu) 3272 { 3273 struct ring_buffer_per_cpu *cpu_buffer; 3274 struct ring_buffer_iter *iter; 3275 unsigned long flags; 3276 3277 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3278 return NULL; 3279 3280 iter = kmalloc(sizeof(*iter), GFP_KERNEL); 3281 if (!iter) 3282 return NULL; 3283 3284 cpu_buffer = buffer->buffers[cpu]; 3285 3286 iter->cpu_buffer = cpu_buffer; 3287 3288 atomic_inc(&cpu_buffer->record_disabled); 3289 synchronize_sched(); 3290 3291 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3292 __raw_spin_lock(&cpu_buffer->lock); 3293 rb_iter_reset(iter); 3294 __raw_spin_unlock(&cpu_buffer->lock); 3295 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3296 3297 return iter; 3298 } 3299 EXPORT_SYMBOL_GPL(ring_buffer_read_start); 3300 3301 /** 3302 * ring_buffer_finish - finish reading the iterator of the buffer 3303 * @iter: The iterator retrieved by ring_buffer_start 3304 * 3305 * This re-enables the recording to the buffer, and frees the 3306 * iterator. 3307 */ 3308 void 3309 ring_buffer_read_finish(struct ring_buffer_iter *iter) 3310 { 3311 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3312 3313 atomic_dec(&cpu_buffer->record_disabled); 3314 kfree(iter); 3315 } 3316 EXPORT_SYMBOL_GPL(ring_buffer_read_finish); 3317 3318 /** 3319 * ring_buffer_read - read the next item in the ring buffer by the iterator 3320 * @iter: The ring buffer iterator 3321 * @ts: The time stamp of the event read. 3322 * 3323 * This reads the next event in the ring buffer and increments the iterator. 3324 */ 3325 struct ring_buffer_event * 3326 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts) 3327 { 3328 struct ring_buffer_event *event; 3329 struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer; 3330 unsigned long flags; 3331 3332 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3333 again: 3334 event = rb_iter_peek(iter, ts); 3335 if (!event) 3336 goto out; 3337 3338 if (event->type_len == RINGBUF_TYPE_PADDING) 3339 goto again; 3340 3341 rb_advance_iter(iter); 3342 out: 3343 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3344 3345 return event; 3346 } 3347 EXPORT_SYMBOL_GPL(ring_buffer_read); 3348 3349 /** 3350 * ring_buffer_size - return the size of the ring buffer (in bytes) 3351 * @buffer: The ring buffer. 3352 */ 3353 unsigned long ring_buffer_size(struct ring_buffer *buffer) 3354 { 3355 return BUF_PAGE_SIZE * buffer->pages; 3356 } 3357 EXPORT_SYMBOL_GPL(ring_buffer_size); 3358 3359 static void 3360 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer) 3361 { 3362 rb_head_page_deactivate(cpu_buffer); 3363 3364 cpu_buffer->head_page 3365 = list_entry(cpu_buffer->pages, struct buffer_page, list); 3366 local_set(&cpu_buffer->head_page->write, 0); 3367 local_set(&cpu_buffer->head_page->entries, 0); 3368 local_set(&cpu_buffer->head_page->page->commit, 0); 3369 3370 cpu_buffer->head_page->read = 0; 3371 3372 cpu_buffer->tail_page = cpu_buffer->head_page; 3373 cpu_buffer->commit_page = cpu_buffer->head_page; 3374 3375 INIT_LIST_HEAD(&cpu_buffer->reader_page->list); 3376 local_set(&cpu_buffer->reader_page->write, 0); 3377 local_set(&cpu_buffer->reader_page->entries, 0); 3378 local_set(&cpu_buffer->reader_page->page->commit, 0); 3379 cpu_buffer->reader_page->read = 0; 3380 3381 local_set(&cpu_buffer->commit_overrun, 0); 3382 local_set(&cpu_buffer->overrun, 0); 3383 local_set(&cpu_buffer->entries, 0); 3384 local_set(&cpu_buffer->committing, 0); 3385 local_set(&cpu_buffer->commits, 0); 3386 cpu_buffer->read = 0; 3387 3388 cpu_buffer->write_stamp = 0; 3389 cpu_buffer->read_stamp = 0; 3390 3391 rb_head_page_activate(cpu_buffer); 3392 } 3393 3394 /** 3395 * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer 3396 * @buffer: The ring buffer to reset a per cpu buffer of 3397 * @cpu: The CPU buffer to be reset 3398 */ 3399 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu) 3400 { 3401 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3402 unsigned long flags; 3403 3404 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3405 return; 3406 3407 atomic_inc(&cpu_buffer->record_disabled); 3408 3409 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3410 3411 if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing))) 3412 goto out; 3413 3414 __raw_spin_lock(&cpu_buffer->lock); 3415 3416 rb_reset_cpu(cpu_buffer); 3417 3418 __raw_spin_unlock(&cpu_buffer->lock); 3419 3420 out: 3421 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3422 3423 atomic_dec(&cpu_buffer->record_disabled); 3424 } 3425 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu); 3426 3427 /** 3428 * ring_buffer_reset - reset a ring buffer 3429 * @buffer: The ring buffer to reset all cpu buffers 3430 */ 3431 void ring_buffer_reset(struct ring_buffer *buffer) 3432 { 3433 int cpu; 3434 3435 for_each_buffer_cpu(buffer, cpu) 3436 ring_buffer_reset_cpu(buffer, cpu); 3437 } 3438 EXPORT_SYMBOL_GPL(ring_buffer_reset); 3439 3440 /** 3441 * rind_buffer_empty - is the ring buffer empty? 3442 * @buffer: The ring buffer to test 3443 */ 3444 int ring_buffer_empty(struct ring_buffer *buffer) 3445 { 3446 struct ring_buffer_per_cpu *cpu_buffer; 3447 unsigned long flags; 3448 int dolock; 3449 int cpu; 3450 int ret; 3451 3452 dolock = rb_ok_to_lock(); 3453 3454 /* yes this is racy, but if you don't like the race, lock the buffer */ 3455 for_each_buffer_cpu(buffer, cpu) { 3456 cpu_buffer = buffer->buffers[cpu]; 3457 local_irq_save(flags); 3458 if (dolock) 3459 spin_lock(&cpu_buffer->reader_lock); 3460 ret = rb_per_cpu_empty(cpu_buffer); 3461 if (dolock) 3462 spin_unlock(&cpu_buffer->reader_lock); 3463 local_irq_restore(flags); 3464 3465 if (!ret) 3466 return 0; 3467 } 3468 3469 return 1; 3470 } 3471 EXPORT_SYMBOL_GPL(ring_buffer_empty); 3472 3473 /** 3474 * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty? 3475 * @buffer: The ring buffer 3476 * @cpu: The CPU buffer to test 3477 */ 3478 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu) 3479 { 3480 struct ring_buffer_per_cpu *cpu_buffer; 3481 unsigned long flags; 3482 int dolock; 3483 int ret; 3484 3485 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3486 return 1; 3487 3488 dolock = rb_ok_to_lock(); 3489 3490 cpu_buffer = buffer->buffers[cpu]; 3491 local_irq_save(flags); 3492 if (dolock) 3493 spin_lock(&cpu_buffer->reader_lock); 3494 ret = rb_per_cpu_empty(cpu_buffer); 3495 if (dolock) 3496 spin_unlock(&cpu_buffer->reader_lock); 3497 local_irq_restore(flags); 3498 3499 return ret; 3500 } 3501 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu); 3502 3503 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP 3504 /** 3505 * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers 3506 * @buffer_a: One buffer to swap with 3507 * @buffer_b: The other buffer to swap with 3508 * 3509 * This function is useful for tracers that want to take a "snapshot" 3510 * of a CPU buffer and has another back up buffer lying around. 3511 * it is expected that the tracer handles the cpu buffer not being 3512 * used at the moment. 3513 */ 3514 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a, 3515 struct ring_buffer *buffer_b, int cpu) 3516 { 3517 struct ring_buffer_per_cpu *cpu_buffer_a; 3518 struct ring_buffer_per_cpu *cpu_buffer_b; 3519 int ret = -EINVAL; 3520 3521 if (!cpumask_test_cpu(cpu, buffer_a->cpumask) || 3522 !cpumask_test_cpu(cpu, buffer_b->cpumask)) 3523 goto out; 3524 3525 /* At least make sure the two buffers are somewhat the same */ 3526 if (buffer_a->pages != buffer_b->pages) 3527 goto out; 3528 3529 ret = -EAGAIN; 3530 3531 if (ring_buffer_flags != RB_BUFFERS_ON) 3532 goto out; 3533 3534 if (atomic_read(&buffer_a->record_disabled)) 3535 goto out; 3536 3537 if (atomic_read(&buffer_b->record_disabled)) 3538 goto out; 3539 3540 cpu_buffer_a = buffer_a->buffers[cpu]; 3541 cpu_buffer_b = buffer_b->buffers[cpu]; 3542 3543 if (atomic_read(&cpu_buffer_a->record_disabled)) 3544 goto out; 3545 3546 if (atomic_read(&cpu_buffer_b->record_disabled)) 3547 goto out; 3548 3549 /* 3550 * We can't do a synchronize_sched here because this 3551 * function can be called in atomic context. 3552 * Normally this will be called from the same CPU as cpu. 3553 * If not it's up to the caller to protect this. 3554 */ 3555 atomic_inc(&cpu_buffer_a->record_disabled); 3556 atomic_inc(&cpu_buffer_b->record_disabled); 3557 3558 ret = -EBUSY; 3559 if (local_read(&cpu_buffer_a->committing)) 3560 goto out_dec; 3561 if (local_read(&cpu_buffer_b->committing)) 3562 goto out_dec; 3563 3564 buffer_a->buffers[cpu] = cpu_buffer_b; 3565 buffer_b->buffers[cpu] = cpu_buffer_a; 3566 3567 cpu_buffer_b->buffer = buffer_a; 3568 cpu_buffer_a->buffer = buffer_b; 3569 3570 ret = 0; 3571 3572 out_dec: 3573 atomic_dec(&cpu_buffer_a->record_disabled); 3574 atomic_dec(&cpu_buffer_b->record_disabled); 3575 out: 3576 return ret; 3577 } 3578 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu); 3579 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */ 3580 3581 /** 3582 * ring_buffer_alloc_read_page - allocate a page to read from buffer 3583 * @buffer: the buffer to allocate for. 3584 * 3585 * This function is used in conjunction with ring_buffer_read_page. 3586 * When reading a full page from the ring buffer, these functions 3587 * can be used to speed up the process. The calling function should 3588 * allocate a few pages first with this function. Then when it 3589 * needs to get pages from the ring buffer, it passes the result 3590 * of this function into ring_buffer_read_page, which will swap 3591 * the page that was allocated, with the read page of the buffer. 3592 * 3593 * Returns: 3594 * The page allocated, or NULL on error. 3595 */ 3596 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer) 3597 { 3598 struct buffer_data_page *bpage; 3599 unsigned long addr; 3600 3601 addr = __get_free_page(GFP_KERNEL); 3602 if (!addr) 3603 return NULL; 3604 3605 bpage = (void *)addr; 3606 3607 rb_init_page(bpage); 3608 3609 return bpage; 3610 } 3611 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page); 3612 3613 /** 3614 * ring_buffer_free_read_page - free an allocated read page 3615 * @buffer: the buffer the page was allocate for 3616 * @data: the page to free 3617 * 3618 * Free a page allocated from ring_buffer_alloc_read_page. 3619 */ 3620 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data) 3621 { 3622 free_page((unsigned long)data); 3623 } 3624 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page); 3625 3626 /** 3627 * ring_buffer_read_page - extract a page from the ring buffer 3628 * @buffer: buffer to extract from 3629 * @data_page: the page to use allocated from ring_buffer_alloc_read_page 3630 * @len: amount to extract 3631 * @cpu: the cpu of the buffer to extract 3632 * @full: should the extraction only happen when the page is full. 3633 * 3634 * This function will pull out a page from the ring buffer and consume it. 3635 * @data_page must be the address of the variable that was returned 3636 * from ring_buffer_alloc_read_page. This is because the page might be used 3637 * to swap with a page in the ring buffer. 3638 * 3639 * for example: 3640 * rpage = ring_buffer_alloc_read_page(buffer); 3641 * if (!rpage) 3642 * return error; 3643 * ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0); 3644 * if (ret >= 0) 3645 * process_page(rpage, ret); 3646 * 3647 * When @full is set, the function will not return true unless 3648 * the writer is off the reader page. 3649 * 3650 * Note: it is up to the calling functions to handle sleeps and wakeups. 3651 * The ring buffer can be used anywhere in the kernel and can not 3652 * blindly call wake_up. The layer that uses the ring buffer must be 3653 * responsible for that. 3654 * 3655 * Returns: 3656 * >=0 if data has been transferred, returns the offset of consumed data. 3657 * <0 if no data has been transferred. 3658 */ 3659 int ring_buffer_read_page(struct ring_buffer *buffer, 3660 void **data_page, size_t len, int cpu, int full) 3661 { 3662 struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu]; 3663 struct ring_buffer_event *event; 3664 struct buffer_data_page *bpage; 3665 struct buffer_page *reader; 3666 unsigned long flags; 3667 unsigned int commit; 3668 unsigned int read; 3669 u64 save_timestamp; 3670 int ret = -1; 3671 3672 if (!cpumask_test_cpu(cpu, buffer->cpumask)) 3673 goto out; 3674 3675 /* 3676 * If len is not big enough to hold the page header, then 3677 * we can not copy anything. 3678 */ 3679 if (len <= BUF_PAGE_HDR_SIZE) 3680 goto out; 3681 3682 len -= BUF_PAGE_HDR_SIZE; 3683 3684 if (!data_page) 3685 goto out; 3686 3687 bpage = *data_page; 3688 if (!bpage) 3689 goto out; 3690 3691 spin_lock_irqsave(&cpu_buffer->reader_lock, flags); 3692 3693 reader = rb_get_reader_page(cpu_buffer); 3694 if (!reader) 3695 goto out_unlock; 3696 3697 event = rb_reader_event(cpu_buffer); 3698 3699 read = reader->read; 3700 commit = rb_page_commit(reader); 3701 3702 /* 3703 * If this page has been partially read or 3704 * if len is not big enough to read the rest of the page or 3705 * a writer is still on the page, then 3706 * we must copy the data from the page to the buffer. 3707 * Otherwise, we can simply swap the page with the one passed in. 3708 */ 3709 if (read || (len < (commit - read)) || 3710 cpu_buffer->reader_page == cpu_buffer->commit_page) { 3711 struct buffer_data_page *rpage = cpu_buffer->reader_page->page; 3712 unsigned int rpos = read; 3713 unsigned int pos = 0; 3714 unsigned int size; 3715 3716 if (full) 3717 goto out_unlock; 3718 3719 if (len > (commit - read)) 3720 len = (commit - read); 3721 3722 size = rb_event_length(event); 3723 3724 if (len < size) 3725 goto out_unlock; 3726 3727 /* save the current timestamp, since the user will need it */ 3728 save_timestamp = cpu_buffer->read_stamp; 3729 3730 /* Need to copy one event at a time */ 3731 do { 3732 memcpy(bpage->data + pos, rpage->data + rpos, size); 3733 3734 len -= size; 3735 3736 rb_advance_reader(cpu_buffer); 3737 rpos = reader->read; 3738 pos += size; 3739 3740 event = rb_reader_event(cpu_buffer); 3741 size = rb_event_length(event); 3742 } while (len > size); 3743 3744 /* update bpage */ 3745 local_set(&bpage->commit, pos); 3746 bpage->time_stamp = save_timestamp; 3747 3748 /* we copied everything to the beginning */ 3749 read = 0; 3750 } else { 3751 /* update the entry counter */ 3752 cpu_buffer->read += rb_page_entries(reader); 3753 3754 /* swap the pages */ 3755 rb_init_page(bpage); 3756 bpage = reader->page; 3757 reader->page = *data_page; 3758 local_set(&reader->write, 0); 3759 local_set(&reader->entries, 0); 3760 reader->read = 0; 3761 *data_page = bpage; 3762 } 3763 ret = read; 3764 3765 out_unlock: 3766 spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags); 3767 3768 out: 3769 return ret; 3770 } 3771 EXPORT_SYMBOL_GPL(ring_buffer_read_page); 3772 3773 #ifdef CONFIG_TRACING 3774 static ssize_t 3775 rb_simple_read(struct file *filp, char __user *ubuf, 3776 size_t cnt, loff_t *ppos) 3777 { 3778 unsigned long *p = filp->private_data; 3779 char buf[64]; 3780 int r; 3781 3782 if (test_bit(RB_BUFFERS_DISABLED_BIT, p)) 3783 r = sprintf(buf, "permanently disabled\n"); 3784 else 3785 r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p)); 3786 3787 return simple_read_from_buffer(ubuf, cnt, ppos, buf, r); 3788 } 3789 3790 static ssize_t 3791 rb_simple_write(struct file *filp, const char __user *ubuf, 3792 size_t cnt, loff_t *ppos) 3793 { 3794 unsigned long *p = filp->private_data; 3795 char buf[64]; 3796 unsigned long val; 3797 int ret; 3798 3799 if (cnt >= sizeof(buf)) 3800 return -EINVAL; 3801 3802 if (copy_from_user(&buf, ubuf, cnt)) 3803 return -EFAULT; 3804 3805 buf[cnt] = 0; 3806 3807 ret = strict_strtoul(buf, 10, &val); 3808 if (ret < 0) 3809 return ret; 3810 3811 if (val) 3812 set_bit(RB_BUFFERS_ON_BIT, p); 3813 else 3814 clear_bit(RB_BUFFERS_ON_BIT, p); 3815 3816 (*ppos)++; 3817 3818 return cnt; 3819 } 3820 3821 static const struct file_operations rb_simple_fops = { 3822 .open = tracing_open_generic, 3823 .read = rb_simple_read, 3824 .write = rb_simple_write, 3825 }; 3826 3827 3828 static __init int rb_init_debugfs(void) 3829 { 3830 struct dentry *d_tracer; 3831 3832 d_tracer = tracing_init_dentry(); 3833 3834 trace_create_file("tracing_on", 0644, d_tracer, 3835 &ring_buffer_flags, &rb_simple_fops); 3836 3837 return 0; 3838 } 3839 3840 fs_initcall(rb_init_debugfs); 3841 #endif 3842 3843 #ifdef CONFIG_HOTPLUG_CPU 3844 static int rb_cpu_notify(struct notifier_block *self, 3845 unsigned long action, void *hcpu) 3846 { 3847 struct ring_buffer *buffer = 3848 container_of(self, struct ring_buffer, cpu_notify); 3849 long cpu = (long)hcpu; 3850 3851 switch (action) { 3852 case CPU_UP_PREPARE: 3853 case CPU_UP_PREPARE_FROZEN: 3854 if (cpumask_test_cpu(cpu, buffer->cpumask)) 3855 return NOTIFY_OK; 3856 3857 buffer->buffers[cpu] = 3858 rb_allocate_cpu_buffer(buffer, cpu); 3859 if (!buffer->buffers[cpu]) { 3860 WARN(1, "failed to allocate ring buffer on CPU %ld\n", 3861 cpu); 3862 return NOTIFY_OK; 3863 } 3864 smp_wmb(); 3865 cpumask_set_cpu(cpu, buffer->cpumask); 3866 break; 3867 case CPU_DOWN_PREPARE: 3868 case CPU_DOWN_PREPARE_FROZEN: 3869 /* 3870 * Do nothing. 3871 * If we were to free the buffer, then the user would 3872 * lose any trace that was in the buffer. 3873 */ 3874 break; 3875 default: 3876 break; 3877 } 3878 return NOTIFY_OK; 3879 } 3880 #endif 3881