xref: /linux-6.15/kernel/trace/ring_buffer.c (revision 1ae4a971)
1 /*
2  * Generic ring buffer
3  *
4  * Copyright (C) 2008 Steven Rostedt <[email protected]>
5  */
6 #include <linux/ring_buffer.h>
7 #include <linux/trace_clock.h>
8 #include <linux/ftrace_irq.h>
9 #include <linux/spinlock.h>
10 #include <linux/debugfs.h>
11 #include <linux/uaccess.h>
12 #include <linux/hardirq.h>
13 #include <linux/kmemcheck.h>
14 #include <linux/module.h>
15 #include <linux/percpu.h>
16 #include <linux/mutex.h>
17 #include <linux/init.h>
18 #include <linux/hash.h>
19 #include <linux/list.h>
20 #include <linux/cpu.h>
21 #include <linux/fs.h>
22 
23 #include "trace.h"
24 
25 /*
26  * The ring buffer header is special. We must manually up keep it.
27  */
28 int ring_buffer_print_entry_header(struct trace_seq *s)
29 {
30 	int ret;
31 
32 	ret = trace_seq_printf(s, "# compressed entry header\n");
33 	ret = trace_seq_printf(s, "\ttype_len    :    5 bits\n");
34 	ret = trace_seq_printf(s, "\ttime_delta  :   27 bits\n");
35 	ret = trace_seq_printf(s, "\tarray       :   32 bits\n");
36 	ret = trace_seq_printf(s, "\n");
37 	ret = trace_seq_printf(s, "\tpadding     : type == %d\n",
38 			       RINGBUF_TYPE_PADDING);
39 	ret = trace_seq_printf(s, "\ttime_extend : type == %d\n",
40 			       RINGBUF_TYPE_TIME_EXTEND);
41 	ret = trace_seq_printf(s, "\tdata max type_len  == %d\n",
42 			       RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
43 
44 	return ret;
45 }
46 
47 /*
48  * The ring buffer is made up of a list of pages. A separate list of pages is
49  * allocated for each CPU. A writer may only write to a buffer that is
50  * associated with the CPU it is currently executing on.  A reader may read
51  * from any per cpu buffer.
52  *
53  * The reader is special. For each per cpu buffer, the reader has its own
54  * reader page. When a reader has read the entire reader page, this reader
55  * page is swapped with another page in the ring buffer.
56  *
57  * Now, as long as the writer is off the reader page, the reader can do what
58  * ever it wants with that page. The writer will never write to that page
59  * again (as long as it is out of the ring buffer).
60  *
61  * Here's some silly ASCII art.
62  *
63  *   +------+
64  *   |reader|          RING BUFFER
65  *   |page  |
66  *   +------+        +---+   +---+   +---+
67  *                   |   |-->|   |-->|   |
68  *                   +---+   +---+   +---+
69  *                     ^               |
70  *                     |               |
71  *                     +---------------+
72  *
73  *
74  *   +------+
75  *   |reader|          RING BUFFER
76  *   |page  |------------------v
77  *   +------+        +---+   +---+   +---+
78  *                   |   |-->|   |-->|   |
79  *                   +---+   +---+   +---+
80  *                     ^               |
81  *                     |               |
82  *                     +---------------+
83  *
84  *
85  *   +------+
86  *   |reader|          RING BUFFER
87  *   |page  |------------------v
88  *   +------+        +---+   +---+   +---+
89  *      ^            |   |-->|   |-->|   |
90  *      |            +---+   +---+   +---+
91  *      |                              |
92  *      |                              |
93  *      +------------------------------+
94  *
95  *
96  *   +------+
97  *   |buffer|          RING BUFFER
98  *   |page  |------------------v
99  *   +------+        +---+   +---+   +---+
100  *      ^            |   |   |   |-->|   |
101  *      |   New      +---+   +---+   +---+
102  *      |  Reader------^               |
103  *      |   page                       |
104  *      +------------------------------+
105  *
106  *
107  * After we make this swap, the reader can hand this page off to the splice
108  * code and be done with it. It can even allocate a new page if it needs to
109  * and swap that into the ring buffer.
110  *
111  * We will be using cmpxchg soon to make all this lockless.
112  *
113  */
114 
115 /*
116  * A fast way to enable or disable all ring buffers is to
117  * call tracing_on or tracing_off. Turning off the ring buffers
118  * prevents all ring buffers from being recorded to.
119  * Turning this switch on, makes it OK to write to the
120  * ring buffer, if the ring buffer is enabled itself.
121  *
122  * There's three layers that must be on in order to write
123  * to the ring buffer.
124  *
125  * 1) This global flag must be set.
126  * 2) The ring buffer must be enabled for recording.
127  * 3) The per cpu buffer must be enabled for recording.
128  *
129  * In case of an anomaly, this global flag has a bit set that
130  * will permantly disable all ring buffers.
131  */
132 
133 /*
134  * Global flag to disable all recording to ring buffers
135  *  This has two bits: ON, DISABLED
136  *
137  *  ON   DISABLED
138  * ---- ----------
139  *   0      0        : ring buffers are off
140  *   1      0        : ring buffers are on
141  *   X      1        : ring buffers are permanently disabled
142  */
143 
144 enum {
145 	RB_BUFFERS_ON_BIT	= 0,
146 	RB_BUFFERS_DISABLED_BIT	= 1,
147 };
148 
149 enum {
150 	RB_BUFFERS_ON		= 1 << RB_BUFFERS_ON_BIT,
151 	RB_BUFFERS_DISABLED	= 1 << RB_BUFFERS_DISABLED_BIT,
152 };
153 
154 static unsigned long ring_buffer_flags __read_mostly = RB_BUFFERS_ON;
155 
156 #define BUF_PAGE_HDR_SIZE offsetof(struct buffer_data_page, data)
157 
158 /**
159  * tracing_on - enable all tracing buffers
160  *
161  * This function enables all tracing buffers that may have been
162  * disabled with tracing_off.
163  */
164 void tracing_on(void)
165 {
166 	set_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
167 }
168 EXPORT_SYMBOL_GPL(tracing_on);
169 
170 /**
171  * tracing_off - turn off all tracing buffers
172  *
173  * This function stops all tracing buffers from recording data.
174  * It does not disable any overhead the tracers themselves may
175  * be causing. This function simply causes all recording to
176  * the ring buffers to fail.
177  */
178 void tracing_off(void)
179 {
180 	clear_bit(RB_BUFFERS_ON_BIT, &ring_buffer_flags);
181 }
182 EXPORT_SYMBOL_GPL(tracing_off);
183 
184 /**
185  * tracing_off_permanent - permanently disable ring buffers
186  *
187  * This function, once called, will disable all ring buffers
188  * permanently.
189  */
190 void tracing_off_permanent(void)
191 {
192 	set_bit(RB_BUFFERS_DISABLED_BIT, &ring_buffer_flags);
193 }
194 
195 /**
196  * tracing_is_on - show state of ring buffers enabled
197  */
198 int tracing_is_on(void)
199 {
200 	return ring_buffer_flags == RB_BUFFERS_ON;
201 }
202 EXPORT_SYMBOL_GPL(tracing_is_on);
203 
204 #define RB_EVNT_HDR_SIZE (offsetof(struct ring_buffer_event, array))
205 #define RB_ALIGNMENT		4U
206 #define RB_MAX_SMALL_DATA	(RB_ALIGNMENT * RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
207 #define RB_EVNT_MIN_SIZE	8U	/* two 32bit words */
208 
209 /* define RINGBUF_TYPE_DATA for 'case RINGBUF_TYPE_DATA:' */
210 #define RINGBUF_TYPE_DATA 0 ... RINGBUF_TYPE_DATA_TYPE_LEN_MAX
211 
212 enum {
213 	RB_LEN_TIME_EXTEND = 8,
214 	RB_LEN_TIME_STAMP = 16,
215 };
216 
217 static inline int rb_null_event(struct ring_buffer_event *event)
218 {
219 	return event->type_len == RINGBUF_TYPE_PADDING && !event->time_delta;
220 }
221 
222 static void rb_event_set_padding(struct ring_buffer_event *event)
223 {
224 	/* padding has a NULL time_delta */
225 	event->type_len = RINGBUF_TYPE_PADDING;
226 	event->time_delta = 0;
227 }
228 
229 static unsigned
230 rb_event_data_length(struct ring_buffer_event *event)
231 {
232 	unsigned length;
233 
234 	if (event->type_len)
235 		length = event->type_len * RB_ALIGNMENT;
236 	else
237 		length = event->array[0];
238 	return length + RB_EVNT_HDR_SIZE;
239 }
240 
241 /* inline for ring buffer fast paths */
242 static unsigned
243 rb_event_length(struct ring_buffer_event *event)
244 {
245 	switch (event->type_len) {
246 	case RINGBUF_TYPE_PADDING:
247 		if (rb_null_event(event))
248 			/* undefined */
249 			return -1;
250 		return  event->array[0] + RB_EVNT_HDR_SIZE;
251 
252 	case RINGBUF_TYPE_TIME_EXTEND:
253 		return RB_LEN_TIME_EXTEND;
254 
255 	case RINGBUF_TYPE_TIME_STAMP:
256 		return RB_LEN_TIME_STAMP;
257 
258 	case RINGBUF_TYPE_DATA:
259 		return rb_event_data_length(event);
260 	default:
261 		BUG();
262 	}
263 	/* not hit */
264 	return 0;
265 }
266 
267 /**
268  * ring_buffer_event_length - return the length of the event
269  * @event: the event to get the length of
270  */
271 unsigned ring_buffer_event_length(struct ring_buffer_event *event)
272 {
273 	unsigned length = rb_event_length(event);
274 	if (event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
275 		return length;
276 	length -= RB_EVNT_HDR_SIZE;
277 	if (length > RB_MAX_SMALL_DATA + sizeof(event->array[0]))
278                 length -= sizeof(event->array[0]);
279 	return length;
280 }
281 EXPORT_SYMBOL_GPL(ring_buffer_event_length);
282 
283 /* inline for ring buffer fast paths */
284 static void *
285 rb_event_data(struct ring_buffer_event *event)
286 {
287 	BUG_ON(event->type_len > RINGBUF_TYPE_DATA_TYPE_LEN_MAX);
288 	/* If length is in len field, then array[0] has the data */
289 	if (event->type_len)
290 		return (void *)&event->array[0];
291 	/* Otherwise length is in array[0] and array[1] has the data */
292 	return (void *)&event->array[1];
293 }
294 
295 /**
296  * ring_buffer_event_data - return the data of the event
297  * @event: the event to get the data from
298  */
299 void *ring_buffer_event_data(struct ring_buffer_event *event)
300 {
301 	return rb_event_data(event);
302 }
303 EXPORT_SYMBOL_GPL(ring_buffer_event_data);
304 
305 #define for_each_buffer_cpu(buffer, cpu)		\
306 	for_each_cpu(cpu, buffer->cpumask)
307 
308 #define TS_SHIFT	27
309 #define TS_MASK		((1ULL << TS_SHIFT) - 1)
310 #define TS_DELTA_TEST	(~TS_MASK)
311 
312 struct buffer_data_page {
313 	u64		 time_stamp;	/* page time stamp */
314 	local_t		 commit;	/* write committed index */
315 	unsigned char	 data[];	/* data of buffer page */
316 };
317 
318 /*
319  * Note, the buffer_page list must be first. The buffer pages
320  * are allocated in cache lines, which means that each buffer
321  * page will be at the beginning of a cache line, and thus
322  * the least significant bits will be zero. We use this to
323  * add flags in the list struct pointers, to make the ring buffer
324  * lockless.
325  */
326 struct buffer_page {
327 	struct list_head list;		/* list of buffer pages */
328 	local_t		 write;		/* index for next write */
329 	unsigned	 read;		/* index for next read */
330 	local_t		 entries;	/* entries on this page */
331 	struct buffer_data_page *page;	/* Actual data page */
332 };
333 
334 /*
335  * The buffer page counters, write and entries, must be reset
336  * atomically when crossing page boundaries. To synchronize this
337  * update, two counters are inserted into the number. One is
338  * the actual counter for the write position or count on the page.
339  *
340  * The other is a counter of updaters. Before an update happens
341  * the update partition of the counter is incremented. This will
342  * allow the updater to update the counter atomically.
343  *
344  * The counter is 20 bits, and the state data is 12.
345  */
346 #define RB_WRITE_MASK		0xfffff
347 #define RB_WRITE_INTCNT		(1 << 20)
348 
349 static void rb_init_page(struct buffer_data_page *bpage)
350 {
351 	local_set(&bpage->commit, 0);
352 }
353 
354 /**
355  * ring_buffer_page_len - the size of data on the page.
356  * @page: The page to read
357  *
358  * Returns the amount of data on the page, including buffer page header.
359  */
360 size_t ring_buffer_page_len(void *page)
361 {
362 	return local_read(&((struct buffer_data_page *)page)->commit)
363 		+ BUF_PAGE_HDR_SIZE;
364 }
365 
366 /*
367  * Also stolen from mm/slob.c. Thanks to Mathieu Desnoyers for pointing
368  * this issue out.
369  */
370 static void free_buffer_page(struct buffer_page *bpage)
371 {
372 	free_page((unsigned long)bpage->page);
373 	kfree(bpage);
374 }
375 
376 /*
377  * We need to fit the time_stamp delta into 27 bits.
378  */
379 static inline int test_time_stamp(u64 delta)
380 {
381 	if (delta & TS_DELTA_TEST)
382 		return 1;
383 	return 0;
384 }
385 
386 #define BUF_PAGE_SIZE (PAGE_SIZE - BUF_PAGE_HDR_SIZE)
387 
388 /* Max payload is BUF_PAGE_SIZE - header (8bytes) */
389 #define BUF_MAX_DATA_SIZE (BUF_PAGE_SIZE - (sizeof(u32) * 2))
390 
391 /* Max number of timestamps that can fit on a page */
392 #define RB_TIMESTAMPS_PER_PAGE	(BUF_PAGE_SIZE / RB_LEN_TIME_STAMP)
393 
394 int ring_buffer_print_page_header(struct trace_seq *s)
395 {
396 	struct buffer_data_page field;
397 	int ret;
398 
399 	ret = trace_seq_printf(s, "\tfield: u64 timestamp;\t"
400 			       "offset:0;\tsize:%u;\tsigned:%u;\n",
401 			       (unsigned int)sizeof(field.time_stamp),
402 			       (unsigned int)is_signed_type(u64));
403 
404 	ret = trace_seq_printf(s, "\tfield: local_t commit;\t"
405 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
406 			       (unsigned int)offsetof(typeof(field), commit),
407 			       (unsigned int)sizeof(field.commit),
408 			       (unsigned int)is_signed_type(long));
409 
410 	ret = trace_seq_printf(s, "\tfield: char data;\t"
411 			       "offset:%u;\tsize:%u;\tsigned:%u;\n",
412 			       (unsigned int)offsetof(typeof(field), data),
413 			       (unsigned int)BUF_PAGE_SIZE,
414 			       (unsigned int)is_signed_type(char));
415 
416 	return ret;
417 }
418 
419 /*
420  * head_page == tail_page && head == tail then buffer is empty.
421  */
422 struct ring_buffer_per_cpu {
423 	int				cpu;
424 	struct ring_buffer		*buffer;
425 	spinlock_t			reader_lock;	/* serialize readers */
426 	raw_spinlock_t			lock;
427 	struct lock_class_key		lock_key;
428 	struct list_head		*pages;
429 	struct buffer_page		*head_page;	/* read from head */
430 	struct buffer_page		*tail_page;	/* write to tail */
431 	struct buffer_page		*commit_page;	/* committed pages */
432 	struct buffer_page		*reader_page;
433 	local_t				commit_overrun;
434 	local_t				overrun;
435 	local_t				entries;
436 	local_t				committing;
437 	local_t				commits;
438 	unsigned long			read;
439 	u64				write_stamp;
440 	u64				read_stamp;
441 	atomic_t			record_disabled;
442 };
443 
444 struct ring_buffer {
445 	unsigned			pages;
446 	unsigned			flags;
447 	int				cpus;
448 	atomic_t			record_disabled;
449 	cpumask_var_t			cpumask;
450 
451 	struct lock_class_key		*reader_lock_key;
452 
453 	struct mutex			mutex;
454 
455 	struct ring_buffer_per_cpu	**buffers;
456 
457 #ifdef CONFIG_HOTPLUG_CPU
458 	struct notifier_block		cpu_notify;
459 #endif
460 	u64				(*clock)(void);
461 };
462 
463 struct ring_buffer_iter {
464 	struct ring_buffer_per_cpu	*cpu_buffer;
465 	unsigned long			head;
466 	struct buffer_page		*head_page;
467 	u64				read_stamp;
468 };
469 
470 /* buffer may be either ring_buffer or ring_buffer_per_cpu */
471 #define RB_WARN_ON(b, cond)						\
472 	({								\
473 		int _____ret = unlikely(cond);				\
474 		if (_____ret) {						\
475 			if (__same_type(*(b), struct ring_buffer_per_cpu)) { \
476 				struct ring_buffer_per_cpu *__b =	\
477 					(void *)b;			\
478 				atomic_inc(&__b->buffer->record_disabled); \
479 			} else						\
480 				atomic_inc(&b->record_disabled);	\
481 			WARN_ON(1);					\
482 		}							\
483 		_____ret;						\
484 	})
485 
486 /* Up this if you want to test the TIME_EXTENTS and normalization */
487 #define DEBUG_SHIFT 0
488 
489 static inline u64 rb_time_stamp(struct ring_buffer *buffer)
490 {
491 	/* shift to debug/test normalization and TIME_EXTENTS */
492 	return buffer->clock() << DEBUG_SHIFT;
493 }
494 
495 u64 ring_buffer_time_stamp(struct ring_buffer *buffer, int cpu)
496 {
497 	u64 time;
498 
499 	preempt_disable_notrace();
500 	time = rb_time_stamp(buffer);
501 	preempt_enable_no_resched_notrace();
502 
503 	return time;
504 }
505 EXPORT_SYMBOL_GPL(ring_buffer_time_stamp);
506 
507 void ring_buffer_normalize_time_stamp(struct ring_buffer *buffer,
508 				      int cpu, u64 *ts)
509 {
510 	/* Just stupid testing the normalize function and deltas */
511 	*ts >>= DEBUG_SHIFT;
512 }
513 EXPORT_SYMBOL_GPL(ring_buffer_normalize_time_stamp);
514 
515 /*
516  * Making the ring buffer lockless makes things tricky.
517  * Although writes only happen on the CPU that they are on,
518  * and they only need to worry about interrupts. Reads can
519  * happen on any CPU.
520  *
521  * The reader page is always off the ring buffer, but when the
522  * reader finishes with a page, it needs to swap its page with
523  * a new one from the buffer. The reader needs to take from
524  * the head (writes go to the tail). But if a writer is in overwrite
525  * mode and wraps, it must push the head page forward.
526  *
527  * Here lies the problem.
528  *
529  * The reader must be careful to replace only the head page, and
530  * not another one. As described at the top of the file in the
531  * ASCII art, the reader sets its old page to point to the next
532  * page after head. It then sets the page after head to point to
533  * the old reader page. But if the writer moves the head page
534  * during this operation, the reader could end up with the tail.
535  *
536  * We use cmpxchg to help prevent this race. We also do something
537  * special with the page before head. We set the LSB to 1.
538  *
539  * When the writer must push the page forward, it will clear the
540  * bit that points to the head page, move the head, and then set
541  * the bit that points to the new head page.
542  *
543  * We also don't want an interrupt coming in and moving the head
544  * page on another writer. Thus we use the second LSB to catch
545  * that too. Thus:
546  *
547  * head->list->prev->next        bit 1          bit 0
548  *                              -------        -------
549  * Normal page                     0              0
550  * Points to head page             0              1
551  * New head page                   1              0
552  *
553  * Note we can not trust the prev pointer of the head page, because:
554  *
555  * +----+       +-----+        +-----+
556  * |    |------>|  T  |---X--->|  N  |
557  * |    |<------|     |        |     |
558  * +----+       +-----+        +-----+
559  *   ^                           ^ |
560  *   |          +-----+          | |
561  *   +----------|  R  |----------+ |
562  *              |     |<-----------+
563  *              +-----+
564  *
565  * Key:  ---X-->  HEAD flag set in pointer
566  *         T      Tail page
567  *         R      Reader page
568  *         N      Next page
569  *
570  * (see __rb_reserve_next() to see where this happens)
571  *
572  *  What the above shows is that the reader just swapped out
573  *  the reader page with a page in the buffer, but before it
574  *  could make the new header point back to the new page added
575  *  it was preempted by a writer. The writer moved forward onto
576  *  the new page added by the reader and is about to move forward
577  *  again.
578  *
579  *  You can see, it is legitimate for the previous pointer of
580  *  the head (or any page) not to point back to itself. But only
581  *  temporarially.
582  */
583 
584 #define RB_PAGE_NORMAL		0UL
585 #define RB_PAGE_HEAD		1UL
586 #define RB_PAGE_UPDATE		2UL
587 
588 
589 #define RB_FLAG_MASK		3UL
590 
591 /* PAGE_MOVED is not part of the mask */
592 #define RB_PAGE_MOVED		4UL
593 
594 /*
595  * rb_list_head - remove any bit
596  */
597 static struct list_head *rb_list_head(struct list_head *list)
598 {
599 	unsigned long val = (unsigned long)list;
600 
601 	return (struct list_head *)(val & ~RB_FLAG_MASK);
602 }
603 
604 /*
605  * rb_is_head_page - test if the given page is the head page
606  *
607  * Because the reader may move the head_page pointer, we can
608  * not trust what the head page is (it may be pointing to
609  * the reader page). But if the next page is a header page,
610  * its flags will be non zero.
611  */
612 static int inline
613 rb_is_head_page(struct ring_buffer_per_cpu *cpu_buffer,
614 		struct buffer_page *page, struct list_head *list)
615 {
616 	unsigned long val;
617 
618 	val = (unsigned long)list->next;
619 
620 	if ((val & ~RB_FLAG_MASK) != (unsigned long)&page->list)
621 		return RB_PAGE_MOVED;
622 
623 	return val & RB_FLAG_MASK;
624 }
625 
626 /*
627  * rb_is_reader_page
628  *
629  * The unique thing about the reader page, is that, if the
630  * writer is ever on it, the previous pointer never points
631  * back to the reader page.
632  */
633 static int rb_is_reader_page(struct buffer_page *page)
634 {
635 	struct list_head *list = page->list.prev;
636 
637 	return rb_list_head(list->next) != &page->list;
638 }
639 
640 /*
641  * rb_set_list_to_head - set a list_head to be pointing to head.
642  */
643 static void rb_set_list_to_head(struct ring_buffer_per_cpu *cpu_buffer,
644 				struct list_head *list)
645 {
646 	unsigned long *ptr;
647 
648 	ptr = (unsigned long *)&list->next;
649 	*ptr |= RB_PAGE_HEAD;
650 	*ptr &= ~RB_PAGE_UPDATE;
651 }
652 
653 /*
654  * rb_head_page_activate - sets up head page
655  */
656 static void rb_head_page_activate(struct ring_buffer_per_cpu *cpu_buffer)
657 {
658 	struct buffer_page *head;
659 
660 	head = cpu_buffer->head_page;
661 	if (!head)
662 		return;
663 
664 	/*
665 	 * Set the previous list pointer to have the HEAD flag.
666 	 */
667 	rb_set_list_to_head(cpu_buffer, head->list.prev);
668 }
669 
670 static void rb_list_head_clear(struct list_head *list)
671 {
672 	unsigned long *ptr = (unsigned long *)&list->next;
673 
674 	*ptr &= ~RB_FLAG_MASK;
675 }
676 
677 /*
678  * rb_head_page_dactivate - clears head page ptr (for free list)
679  */
680 static void
681 rb_head_page_deactivate(struct ring_buffer_per_cpu *cpu_buffer)
682 {
683 	struct list_head *hd;
684 
685 	/* Go through the whole list and clear any pointers found. */
686 	rb_list_head_clear(cpu_buffer->pages);
687 
688 	list_for_each(hd, cpu_buffer->pages)
689 		rb_list_head_clear(hd);
690 }
691 
692 static int rb_head_page_set(struct ring_buffer_per_cpu *cpu_buffer,
693 			    struct buffer_page *head,
694 			    struct buffer_page *prev,
695 			    int old_flag, int new_flag)
696 {
697 	struct list_head *list;
698 	unsigned long val = (unsigned long)&head->list;
699 	unsigned long ret;
700 
701 	list = &prev->list;
702 
703 	val &= ~RB_FLAG_MASK;
704 
705 	ret = cmpxchg((unsigned long *)&list->next,
706 		      val | old_flag, val | new_flag);
707 
708 	/* check if the reader took the page */
709 	if ((ret & ~RB_FLAG_MASK) != val)
710 		return RB_PAGE_MOVED;
711 
712 	return ret & RB_FLAG_MASK;
713 }
714 
715 static int rb_head_page_set_update(struct ring_buffer_per_cpu *cpu_buffer,
716 				   struct buffer_page *head,
717 				   struct buffer_page *prev,
718 				   int old_flag)
719 {
720 	return rb_head_page_set(cpu_buffer, head, prev,
721 				old_flag, RB_PAGE_UPDATE);
722 }
723 
724 static int rb_head_page_set_head(struct ring_buffer_per_cpu *cpu_buffer,
725 				 struct buffer_page *head,
726 				 struct buffer_page *prev,
727 				 int old_flag)
728 {
729 	return rb_head_page_set(cpu_buffer, head, prev,
730 				old_flag, RB_PAGE_HEAD);
731 }
732 
733 static int rb_head_page_set_normal(struct ring_buffer_per_cpu *cpu_buffer,
734 				   struct buffer_page *head,
735 				   struct buffer_page *prev,
736 				   int old_flag)
737 {
738 	return rb_head_page_set(cpu_buffer, head, prev,
739 				old_flag, RB_PAGE_NORMAL);
740 }
741 
742 static inline void rb_inc_page(struct ring_buffer_per_cpu *cpu_buffer,
743 			       struct buffer_page **bpage)
744 {
745 	struct list_head *p = rb_list_head((*bpage)->list.next);
746 
747 	*bpage = list_entry(p, struct buffer_page, list);
748 }
749 
750 static struct buffer_page *
751 rb_set_head_page(struct ring_buffer_per_cpu *cpu_buffer)
752 {
753 	struct buffer_page *head;
754 	struct buffer_page *page;
755 	struct list_head *list;
756 	int i;
757 
758 	if (RB_WARN_ON(cpu_buffer, !cpu_buffer->head_page))
759 		return NULL;
760 
761 	/* sanity check */
762 	list = cpu_buffer->pages;
763 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev->next) != list))
764 		return NULL;
765 
766 	page = head = cpu_buffer->head_page;
767 	/*
768 	 * It is possible that the writer moves the header behind
769 	 * where we started, and we miss in one loop.
770 	 * A second loop should grab the header, but we'll do
771 	 * three loops just because I'm paranoid.
772 	 */
773 	for (i = 0; i < 3; i++) {
774 		do {
775 			if (rb_is_head_page(cpu_buffer, page, page->list.prev)) {
776 				cpu_buffer->head_page = page;
777 				return page;
778 			}
779 			rb_inc_page(cpu_buffer, &page);
780 		} while (page != head);
781 	}
782 
783 	RB_WARN_ON(cpu_buffer, 1);
784 
785 	return NULL;
786 }
787 
788 static int rb_head_page_replace(struct buffer_page *old,
789 				struct buffer_page *new)
790 {
791 	unsigned long *ptr = (unsigned long *)&old->list.prev->next;
792 	unsigned long val;
793 	unsigned long ret;
794 
795 	val = *ptr & ~RB_FLAG_MASK;
796 	val |= RB_PAGE_HEAD;
797 
798 	ret = cmpxchg(ptr, val, (unsigned long)&new->list);
799 
800 	return ret == val;
801 }
802 
803 /*
804  * rb_tail_page_update - move the tail page forward
805  *
806  * Returns 1 if moved tail page, 0 if someone else did.
807  */
808 static int rb_tail_page_update(struct ring_buffer_per_cpu *cpu_buffer,
809 			       struct buffer_page *tail_page,
810 			       struct buffer_page *next_page)
811 {
812 	struct buffer_page *old_tail;
813 	unsigned long old_entries;
814 	unsigned long old_write;
815 	int ret = 0;
816 
817 	/*
818 	 * The tail page now needs to be moved forward.
819 	 *
820 	 * We need to reset the tail page, but without messing
821 	 * with possible erasing of data brought in by interrupts
822 	 * that have moved the tail page and are currently on it.
823 	 *
824 	 * We add a counter to the write field to denote this.
825 	 */
826 	old_write = local_add_return(RB_WRITE_INTCNT, &next_page->write);
827 	old_entries = local_add_return(RB_WRITE_INTCNT, &next_page->entries);
828 
829 	/*
830 	 * Just make sure we have seen our old_write and synchronize
831 	 * with any interrupts that come in.
832 	 */
833 	barrier();
834 
835 	/*
836 	 * If the tail page is still the same as what we think
837 	 * it is, then it is up to us to update the tail
838 	 * pointer.
839 	 */
840 	if (tail_page == cpu_buffer->tail_page) {
841 		/* Zero the write counter */
842 		unsigned long val = old_write & ~RB_WRITE_MASK;
843 		unsigned long eval = old_entries & ~RB_WRITE_MASK;
844 
845 		/*
846 		 * This will only succeed if an interrupt did
847 		 * not come in and change it. In which case, we
848 		 * do not want to modify it.
849 		 *
850 		 * We add (void) to let the compiler know that we do not care
851 		 * about the return value of these functions. We use the
852 		 * cmpxchg to only update if an interrupt did not already
853 		 * do it for us. If the cmpxchg fails, we don't care.
854 		 */
855 		(void)local_cmpxchg(&next_page->write, old_write, val);
856 		(void)local_cmpxchg(&next_page->entries, old_entries, eval);
857 
858 		/*
859 		 * No need to worry about races with clearing out the commit.
860 		 * it only can increment when a commit takes place. But that
861 		 * only happens in the outer most nested commit.
862 		 */
863 		local_set(&next_page->page->commit, 0);
864 
865 		old_tail = cmpxchg(&cpu_buffer->tail_page,
866 				   tail_page, next_page);
867 
868 		if (old_tail == tail_page)
869 			ret = 1;
870 	}
871 
872 	return ret;
873 }
874 
875 static int rb_check_bpage(struct ring_buffer_per_cpu *cpu_buffer,
876 			  struct buffer_page *bpage)
877 {
878 	unsigned long val = (unsigned long)bpage;
879 
880 	if (RB_WARN_ON(cpu_buffer, val & RB_FLAG_MASK))
881 		return 1;
882 
883 	return 0;
884 }
885 
886 /**
887  * rb_check_list - make sure a pointer to a list has the last bits zero
888  */
889 static int rb_check_list(struct ring_buffer_per_cpu *cpu_buffer,
890 			 struct list_head *list)
891 {
892 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->prev) != list->prev))
893 		return 1;
894 	if (RB_WARN_ON(cpu_buffer, rb_list_head(list->next) != list->next))
895 		return 1;
896 	return 0;
897 }
898 
899 /**
900  * check_pages - integrity check of buffer pages
901  * @cpu_buffer: CPU buffer with pages to test
902  *
903  * As a safety measure we check to make sure the data pages have not
904  * been corrupted.
905  */
906 static int rb_check_pages(struct ring_buffer_per_cpu *cpu_buffer)
907 {
908 	struct list_head *head = cpu_buffer->pages;
909 	struct buffer_page *bpage, *tmp;
910 
911 	rb_head_page_deactivate(cpu_buffer);
912 
913 	if (RB_WARN_ON(cpu_buffer, head->next->prev != head))
914 		return -1;
915 	if (RB_WARN_ON(cpu_buffer, head->prev->next != head))
916 		return -1;
917 
918 	if (rb_check_list(cpu_buffer, head))
919 		return -1;
920 
921 	list_for_each_entry_safe(bpage, tmp, head, list) {
922 		if (RB_WARN_ON(cpu_buffer,
923 			       bpage->list.next->prev != &bpage->list))
924 			return -1;
925 		if (RB_WARN_ON(cpu_buffer,
926 			       bpage->list.prev->next != &bpage->list))
927 			return -1;
928 		if (rb_check_list(cpu_buffer, &bpage->list))
929 			return -1;
930 	}
931 
932 	rb_head_page_activate(cpu_buffer);
933 
934 	return 0;
935 }
936 
937 static int rb_allocate_pages(struct ring_buffer_per_cpu *cpu_buffer,
938 			     unsigned nr_pages)
939 {
940 	struct buffer_page *bpage, *tmp;
941 	unsigned long addr;
942 	LIST_HEAD(pages);
943 	unsigned i;
944 
945 	WARN_ON(!nr_pages);
946 
947 	for (i = 0; i < nr_pages; i++) {
948 		bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
949 				    GFP_KERNEL, cpu_to_node(cpu_buffer->cpu));
950 		if (!bpage)
951 			goto free_pages;
952 
953 		rb_check_bpage(cpu_buffer, bpage);
954 
955 		list_add(&bpage->list, &pages);
956 
957 		addr = __get_free_page(GFP_KERNEL);
958 		if (!addr)
959 			goto free_pages;
960 		bpage->page = (void *)addr;
961 		rb_init_page(bpage->page);
962 	}
963 
964 	/*
965 	 * The ring buffer page list is a circular list that does not
966 	 * start and end with a list head. All page list items point to
967 	 * other pages.
968 	 */
969 	cpu_buffer->pages = pages.next;
970 	list_del(&pages);
971 
972 	rb_check_pages(cpu_buffer);
973 
974 	return 0;
975 
976  free_pages:
977 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
978 		list_del_init(&bpage->list);
979 		free_buffer_page(bpage);
980 	}
981 	return -ENOMEM;
982 }
983 
984 static struct ring_buffer_per_cpu *
985 rb_allocate_cpu_buffer(struct ring_buffer *buffer, int cpu)
986 {
987 	struct ring_buffer_per_cpu *cpu_buffer;
988 	struct buffer_page *bpage;
989 	unsigned long addr;
990 	int ret;
991 
992 	cpu_buffer = kzalloc_node(ALIGN(sizeof(*cpu_buffer), cache_line_size()),
993 				  GFP_KERNEL, cpu_to_node(cpu));
994 	if (!cpu_buffer)
995 		return NULL;
996 
997 	cpu_buffer->cpu = cpu;
998 	cpu_buffer->buffer = buffer;
999 	spin_lock_init(&cpu_buffer->reader_lock);
1000 	lockdep_set_class(&cpu_buffer->reader_lock, buffer->reader_lock_key);
1001 	cpu_buffer->lock = (raw_spinlock_t)__RAW_SPIN_LOCK_UNLOCKED;
1002 
1003 	bpage = kzalloc_node(ALIGN(sizeof(*bpage), cache_line_size()),
1004 			    GFP_KERNEL, cpu_to_node(cpu));
1005 	if (!bpage)
1006 		goto fail_free_buffer;
1007 
1008 	rb_check_bpage(cpu_buffer, bpage);
1009 
1010 	cpu_buffer->reader_page = bpage;
1011 	addr = __get_free_page(GFP_KERNEL);
1012 	if (!addr)
1013 		goto fail_free_reader;
1014 	bpage->page = (void *)addr;
1015 	rb_init_page(bpage->page);
1016 
1017 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
1018 
1019 	ret = rb_allocate_pages(cpu_buffer, buffer->pages);
1020 	if (ret < 0)
1021 		goto fail_free_reader;
1022 
1023 	cpu_buffer->head_page
1024 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
1025 	cpu_buffer->tail_page = cpu_buffer->commit_page = cpu_buffer->head_page;
1026 
1027 	rb_head_page_activate(cpu_buffer);
1028 
1029 	return cpu_buffer;
1030 
1031  fail_free_reader:
1032 	free_buffer_page(cpu_buffer->reader_page);
1033 
1034  fail_free_buffer:
1035 	kfree(cpu_buffer);
1036 	return NULL;
1037 }
1038 
1039 static void rb_free_cpu_buffer(struct ring_buffer_per_cpu *cpu_buffer)
1040 {
1041 	struct list_head *head = cpu_buffer->pages;
1042 	struct buffer_page *bpage, *tmp;
1043 
1044 	free_buffer_page(cpu_buffer->reader_page);
1045 
1046 	rb_head_page_deactivate(cpu_buffer);
1047 
1048 	if (head) {
1049 		list_for_each_entry_safe(bpage, tmp, head, list) {
1050 			list_del_init(&bpage->list);
1051 			free_buffer_page(bpage);
1052 		}
1053 		bpage = list_entry(head, struct buffer_page, list);
1054 		free_buffer_page(bpage);
1055 	}
1056 
1057 	kfree(cpu_buffer);
1058 }
1059 
1060 #ifdef CONFIG_HOTPLUG_CPU
1061 static int rb_cpu_notify(struct notifier_block *self,
1062 			 unsigned long action, void *hcpu);
1063 #endif
1064 
1065 /**
1066  * ring_buffer_alloc - allocate a new ring_buffer
1067  * @size: the size in bytes per cpu that is needed.
1068  * @flags: attributes to set for the ring buffer.
1069  *
1070  * Currently the only flag that is available is the RB_FL_OVERWRITE
1071  * flag. This flag means that the buffer will overwrite old data
1072  * when the buffer wraps. If this flag is not set, the buffer will
1073  * drop data when the tail hits the head.
1074  */
1075 struct ring_buffer *__ring_buffer_alloc(unsigned long size, unsigned flags,
1076 					struct lock_class_key *key)
1077 {
1078 	struct ring_buffer *buffer;
1079 	int bsize;
1080 	int cpu;
1081 
1082 	/* keep it in its own cache line */
1083 	buffer = kzalloc(ALIGN(sizeof(*buffer), cache_line_size()),
1084 			 GFP_KERNEL);
1085 	if (!buffer)
1086 		return NULL;
1087 
1088 	if (!alloc_cpumask_var(&buffer->cpumask, GFP_KERNEL))
1089 		goto fail_free_buffer;
1090 
1091 	buffer->pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1092 	buffer->flags = flags;
1093 	buffer->clock = trace_clock_local;
1094 	buffer->reader_lock_key = key;
1095 
1096 	/* need at least two pages */
1097 	if (buffer->pages < 2)
1098 		buffer->pages = 2;
1099 
1100 	/*
1101 	 * In case of non-hotplug cpu, if the ring-buffer is allocated
1102 	 * in early initcall, it will not be notified of secondary cpus.
1103 	 * In that off case, we need to allocate for all possible cpus.
1104 	 */
1105 #ifdef CONFIG_HOTPLUG_CPU
1106 	get_online_cpus();
1107 	cpumask_copy(buffer->cpumask, cpu_online_mask);
1108 #else
1109 	cpumask_copy(buffer->cpumask, cpu_possible_mask);
1110 #endif
1111 	buffer->cpus = nr_cpu_ids;
1112 
1113 	bsize = sizeof(void *) * nr_cpu_ids;
1114 	buffer->buffers = kzalloc(ALIGN(bsize, cache_line_size()),
1115 				  GFP_KERNEL);
1116 	if (!buffer->buffers)
1117 		goto fail_free_cpumask;
1118 
1119 	for_each_buffer_cpu(buffer, cpu) {
1120 		buffer->buffers[cpu] =
1121 			rb_allocate_cpu_buffer(buffer, cpu);
1122 		if (!buffer->buffers[cpu])
1123 			goto fail_free_buffers;
1124 	}
1125 
1126 #ifdef CONFIG_HOTPLUG_CPU
1127 	buffer->cpu_notify.notifier_call = rb_cpu_notify;
1128 	buffer->cpu_notify.priority = 0;
1129 	register_cpu_notifier(&buffer->cpu_notify);
1130 #endif
1131 
1132 	put_online_cpus();
1133 	mutex_init(&buffer->mutex);
1134 
1135 	return buffer;
1136 
1137  fail_free_buffers:
1138 	for_each_buffer_cpu(buffer, cpu) {
1139 		if (buffer->buffers[cpu])
1140 			rb_free_cpu_buffer(buffer->buffers[cpu]);
1141 	}
1142 	kfree(buffer->buffers);
1143 
1144  fail_free_cpumask:
1145 	free_cpumask_var(buffer->cpumask);
1146 	put_online_cpus();
1147 
1148  fail_free_buffer:
1149 	kfree(buffer);
1150 	return NULL;
1151 }
1152 EXPORT_SYMBOL_GPL(__ring_buffer_alloc);
1153 
1154 /**
1155  * ring_buffer_free - free a ring buffer.
1156  * @buffer: the buffer to free.
1157  */
1158 void
1159 ring_buffer_free(struct ring_buffer *buffer)
1160 {
1161 	int cpu;
1162 
1163 	get_online_cpus();
1164 
1165 #ifdef CONFIG_HOTPLUG_CPU
1166 	unregister_cpu_notifier(&buffer->cpu_notify);
1167 #endif
1168 
1169 	for_each_buffer_cpu(buffer, cpu)
1170 		rb_free_cpu_buffer(buffer->buffers[cpu]);
1171 
1172 	put_online_cpus();
1173 
1174 	kfree(buffer->buffers);
1175 	free_cpumask_var(buffer->cpumask);
1176 
1177 	kfree(buffer);
1178 }
1179 EXPORT_SYMBOL_GPL(ring_buffer_free);
1180 
1181 void ring_buffer_set_clock(struct ring_buffer *buffer,
1182 			   u64 (*clock)(void))
1183 {
1184 	buffer->clock = clock;
1185 }
1186 
1187 static void rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer);
1188 
1189 static void
1190 rb_remove_pages(struct ring_buffer_per_cpu *cpu_buffer, unsigned nr_pages)
1191 {
1192 	struct buffer_page *bpage;
1193 	struct list_head *p;
1194 	unsigned i;
1195 
1196 	atomic_inc(&cpu_buffer->record_disabled);
1197 	synchronize_sched();
1198 
1199 	spin_lock_irq(&cpu_buffer->reader_lock);
1200 	rb_head_page_deactivate(cpu_buffer);
1201 
1202 	for (i = 0; i < nr_pages; i++) {
1203 		if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1204 			return;
1205 		p = cpu_buffer->pages->next;
1206 		bpage = list_entry(p, struct buffer_page, list);
1207 		list_del_init(&bpage->list);
1208 		free_buffer_page(bpage);
1209 	}
1210 	if (RB_WARN_ON(cpu_buffer, list_empty(cpu_buffer->pages)))
1211 		return;
1212 
1213 	rb_reset_cpu(cpu_buffer);
1214 	spin_unlock_irq(&cpu_buffer->reader_lock);
1215 
1216 	rb_check_pages(cpu_buffer);
1217 
1218 	atomic_dec(&cpu_buffer->record_disabled);
1219 
1220 }
1221 
1222 static void
1223 rb_insert_pages(struct ring_buffer_per_cpu *cpu_buffer,
1224 		struct list_head *pages, unsigned nr_pages)
1225 {
1226 	struct buffer_page *bpage;
1227 	struct list_head *p;
1228 	unsigned i;
1229 
1230 	atomic_inc(&cpu_buffer->record_disabled);
1231 	synchronize_sched();
1232 
1233 	spin_lock_irq(&cpu_buffer->reader_lock);
1234 	rb_head_page_deactivate(cpu_buffer);
1235 
1236 	for (i = 0; i < nr_pages; i++) {
1237 		if (RB_WARN_ON(cpu_buffer, list_empty(pages)))
1238 			return;
1239 		p = pages->next;
1240 		bpage = list_entry(p, struct buffer_page, list);
1241 		list_del_init(&bpage->list);
1242 		list_add_tail(&bpage->list, cpu_buffer->pages);
1243 	}
1244 	rb_reset_cpu(cpu_buffer);
1245 	spin_unlock_irq(&cpu_buffer->reader_lock);
1246 
1247 	rb_check_pages(cpu_buffer);
1248 
1249 	atomic_dec(&cpu_buffer->record_disabled);
1250 }
1251 
1252 /**
1253  * ring_buffer_resize - resize the ring buffer
1254  * @buffer: the buffer to resize.
1255  * @size: the new size.
1256  *
1257  * The tracer is responsible for making sure that the buffer is
1258  * not being used while changing the size.
1259  * Note: We may be able to change the above requirement by using
1260  *  RCU synchronizations.
1261  *
1262  * Minimum size is 2 * BUF_PAGE_SIZE.
1263  *
1264  * Returns -1 on failure.
1265  */
1266 int ring_buffer_resize(struct ring_buffer *buffer, unsigned long size)
1267 {
1268 	struct ring_buffer_per_cpu *cpu_buffer;
1269 	unsigned nr_pages, rm_pages, new_pages;
1270 	struct buffer_page *bpage, *tmp;
1271 	unsigned long buffer_size;
1272 	unsigned long addr;
1273 	LIST_HEAD(pages);
1274 	int i, cpu;
1275 
1276 	/*
1277 	 * Always succeed at resizing a non-existent buffer:
1278 	 */
1279 	if (!buffer)
1280 		return size;
1281 
1282 	size = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1283 	size *= BUF_PAGE_SIZE;
1284 	buffer_size = buffer->pages * BUF_PAGE_SIZE;
1285 
1286 	/* we need a minimum of two pages */
1287 	if (size < BUF_PAGE_SIZE * 2)
1288 		size = BUF_PAGE_SIZE * 2;
1289 
1290 	if (size == buffer_size)
1291 		return size;
1292 
1293 	mutex_lock(&buffer->mutex);
1294 	get_online_cpus();
1295 
1296 	nr_pages = DIV_ROUND_UP(size, BUF_PAGE_SIZE);
1297 
1298 	if (size < buffer_size) {
1299 
1300 		/* easy case, just free pages */
1301 		if (RB_WARN_ON(buffer, nr_pages >= buffer->pages))
1302 			goto out_fail;
1303 
1304 		rm_pages = buffer->pages - nr_pages;
1305 
1306 		for_each_buffer_cpu(buffer, cpu) {
1307 			cpu_buffer = buffer->buffers[cpu];
1308 			rb_remove_pages(cpu_buffer, rm_pages);
1309 		}
1310 		goto out;
1311 	}
1312 
1313 	/*
1314 	 * This is a bit more difficult. We only want to add pages
1315 	 * when we can allocate enough for all CPUs. We do this
1316 	 * by allocating all the pages and storing them on a local
1317 	 * link list. If we succeed in our allocation, then we
1318 	 * add these pages to the cpu_buffers. Otherwise we just free
1319 	 * them all and return -ENOMEM;
1320 	 */
1321 	if (RB_WARN_ON(buffer, nr_pages <= buffer->pages))
1322 		goto out_fail;
1323 
1324 	new_pages = nr_pages - buffer->pages;
1325 
1326 	for_each_buffer_cpu(buffer, cpu) {
1327 		for (i = 0; i < new_pages; i++) {
1328 			bpage = kzalloc_node(ALIGN(sizeof(*bpage),
1329 						  cache_line_size()),
1330 					    GFP_KERNEL, cpu_to_node(cpu));
1331 			if (!bpage)
1332 				goto free_pages;
1333 			list_add(&bpage->list, &pages);
1334 			addr = __get_free_page(GFP_KERNEL);
1335 			if (!addr)
1336 				goto free_pages;
1337 			bpage->page = (void *)addr;
1338 			rb_init_page(bpage->page);
1339 		}
1340 	}
1341 
1342 	for_each_buffer_cpu(buffer, cpu) {
1343 		cpu_buffer = buffer->buffers[cpu];
1344 		rb_insert_pages(cpu_buffer, &pages, new_pages);
1345 	}
1346 
1347 	if (RB_WARN_ON(buffer, !list_empty(&pages)))
1348 		goto out_fail;
1349 
1350  out:
1351 	buffer->pages = nr_pages;
1352 	put_online_cpus();
1353 	mutex_unlock(&buffer->mutex);
1354 
1355 	return size;
1356 
1357  free_pages:
1358 	list_for_each_entry_safe(bpage, tmp, &pages, list) {
1359 		list_del_init(&bpage->list);
1360 		free_buffer_page(bpage);
1361 	}
1362 	put_online_cpus();
1363 	mutex_unlock(&buffer->mutex);
1364 	return -ENOMEM;
1365 
1366 	/*
1367 	 * Something went totally wrong, and we are too paranoid
1368 	 * to even clean up the mess.
1369 	 */
1370  out_fail:
1371 	put_online_cpus();
1372 	mutex_unlock(&buffer->mutex);
1373 	return -1;
1374 }
1375 EXPORT_SYMBOL_GPL(ring_buffer_resize);
1376 
1377 static inline void *
1378 __rb_data_page_index(struct buffer_data_page *bpage, unsigned index)
1379 {
1380 	return bpage->data + index;
1381 }
1382 
1383 static inline void *__rb_page_index(struct buffer_page *bpage, unsigned index)
1384 {
1385 	return bpage->page->data + index;
1386 }
1387 
1388 static inline struct ring_buffer_event *
1389 rb_reader_event(struct ring_buffer_per_cpu *cpu_buffer)
1390 {
1391 	return __rb_page_index(cpu_buffer->reader_page,
1392 			       cpu_buffer->reader_page->read);
1393 }
1394 
1395 static inline struct ring_buffer_event *
1396 rb_iter_head_event(struct ring_buffer_iter *iter)
1397 {
1398 	return __rb_page_index(iter->head_page, iter->head);
1399 }
1400 
1401 static inline unsigned long rb_page_write(struct buffer_page *bpage)
1402 {
1403 	return local_read(&bpage->write) & RB_WRITE_MASK;
1404 }
1405 
1406 static inline unsigned rb_page_commit(struct buffer_page *bpage)
1407 {
1408 	return local_read(&bpage->page->commit);
1409 }
1410 
1411 static inline unsigned long rb_page_entries(struct buffer_page *bpage)
1412 {
1413 	return local_read(&bpage->entries) & RB_WRITE_MASK;
1414 }
1415 
1416 /* Size is determined by what has been commited */
1417 static inline unsigned rb_page_size(struct buffer_page *bpage)
1418 {
1419 	return rb_page_commit(bpage);
1420 }
1421 
1422 static inline unsigned
1423 rb_commit_index(struct ring_buffer_per_cpu *cpu_buffer)
1424 {
1425 	return rb_page_commit(cpu_buffer->commit_page);
1426 }
1427 
1428 static inline unsigned
1429 rb_event_index(struct ring_buffer_event *event)
1430 {
1431 	unsigned long addr = (unsigned long)event;
1432 
1433 	return (addr & ~PAGE_MASK) - BUF_PAGE_HDR_SIZE;
1434 }
1435 
1436 static inline int
1437 rb_event_is_commit(struct ring_buffer_per_cpu *cpu_buffer,
1438 		   struct ring_buffer_event *event)
1439 {
1440 	unsigned long addr = (unsigned long)event;
1441 	unsigned long index;
1442 
1443 	index = rb_event_index(event);
1444 	addr &= PAGE_MASK;
1445 
1446 	return cpu_buffer->commit_page->page == (void *)addr &&
1447 		rb_commit_index(cpu_buffer) == index;
1448 }
1449 
1450 static void
1451 rb_set_commit_to_write(struct ring_buffer_per_cpu *cpu_buffer)
1452 {
1453 	unsigned long max_count;
1454 
1455 	/*
1456 	 * We only race with interrupts and NMIs on this CPU.
1457 	 * If we own the commit event, then we can commit
1458 	 * all others that interrupted us, since the interruptions
1459 	 * are in stack format (they finish before they come
1460 	 * back to us). This allows us to do a simple loop to
1461 	 * assign the commit to the tail.
1462 	 */
1463  again:
1464 	max_count = cpu_buffer->buffer->pages * 100;
1465 
1466 	while (cpu_buffer->commit_page != cpu_buffer->tail_page) {
1467 		if (RB_WARN_ON(cpu_buffer, !(--max_count)))
1468 			return;
1469 		if (RB_WARN_ON(cpu_buffer,
1470 			       rb_is_reader_page(cpu_buffer->tail_page)))
1471 			return;
1472 		local_set(&cpu_buffer->commit_page->page->commit,
1473 			  rb_page_write(cpu_buffer->commit_page));
1474 		rb_inc_page(cpu_buffer, &cpu_buffer->commit_page);
1475 		cpu_buffer->write_stamp =
1476 			cpu_buffer->commit_page->page->time_stamp;
1477 		/* add barrier to keep gcc from optimizing too much */
1478 		barrier();
1479 	}
1480 	while (rb_commit_index(cpu_buffer) !=
1481 	       rb_page_write(cpu_buffer->commit_page)) {
1482 
1483 		local_set(&cpu_buffer->commit_page->page->commit,
1484 			  rb_page_write(cpu_buffer->commit_page));
1485 		RB_WARN_ON(cpu_buffer,
1486 			   local_read(&cpu_buffer->commit_page->page->commit) &
1487 			   ~RB_WRITE_MASK);
1488 		barrier();
1489 	}
1490 
1491 	/* again, keep gcc from optimizing */
1492 	barrier();
1493 
1494 	/*
1495 	 * If an interrupt came in just after the first while loop
1496 	 * and pushed the tail page forward, we will be left with
1497 	 * a dangling commit that will never go forward.
1498 	 */
1499 	if (unlikely(cpu_buffer->commit_page != cpu_buffer->tail_page))
1500 		goto again;
1501 }
1502 
1503 static void rb_reset_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
1504 {
1505 	cpu_buffer->read_stamp = cpu_buffer->reader_page->page->time_stamp;
1506 	cpu_buffer->reader_page->read = 0;
1507 }
1508 
1509 static void rb_inc_iter(struct ring_buffer_iter *iter)
1510 {
1511 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
1512 
1513 	/*
1514 	 * The iterator could be on the reader page (it starts there).
1515 	 * But the head could have moved, since the reader was
1516 	 * found. Check for this case and assign the iterator
1517 	 * to the head page instead of next.
1518 	 */
1519 	if (iter->head_page == cpu_buffer->reader_page)
1520 		iter->head_page = rb_set_head_page(cpu_buffer);
1521 	else
1522 		rb_inc_page(cpu_buffer, &iter->head_page);
1523 
1524 	iter->read_stamp = iter->head_page->page->time_stamp;
1525 	iter->head = 0;
1526 }
1527 
1528 /**
1529  * ring_buffer_update_event - update event type and data
1530  * @event: the even to update
1531  * @type: the type of event
1532  * @length: the size of the event field in the ring buffer
1533  *
1534  * Update the type and data fields of the event. The length
1535  * is the actual size that is written to the ring buffer,
1536  * and with this, we can determine what to place into the
1537  * data field.
1538  */
1539 static void
1540 rb_update_event(struct ring_buffer_event *event,
1541 			 unsigned type, unsigned length)
1542 {
1543 	event->type_len = type;
1544 
1545 	switch (type) {
1546 
1547 	case RINGBUF_TYPE_PADDING:
1548 	case RINGBUF_TYPE_TIME_EXTEND:
1549 	case RINGBUF_TYPE_TIME_STAMP:
1550 		break;
1551 
1552 	case 0:
1553 		length -= RB_EVNT_HDR_SIZE;
1554 		if (length > RB_MAX_SMALL_DATA)
1555 			event->array[0] = length;
1556 		else
1557 			event->type_len = DIV_ROUND_UP(length, RB_ALIGNMENT);
1558 		break;
1559 	default:
1560 		BUG();
1561 	}
1562 }
1563 
1564 /*
1565  * rb_handle_head_page - writer hit the head page
1566  *
1567  * Returns: +1 to retry page
1568  *           0 to continue
1569  *          -1 on error
1570  */
1571 static int
1572 rb_handle_head_page(struct ring_buffer_per_cpu *cpu_buffer,
1573 		    struct buffer_page *tail_page,
1574 		    struct buffer_page *next_page)
1575 {
1576 	struct buffer_page *new_head;
1577 	int entries;
1578 	int type;
1579 	int ret;
1580 
1581 	entries = rb_page_entries(next_page);
1582 
1583 	/*
1584 	 * The hard part is here. We need to move the head
1585 	 * forward, and protect against both readers on
1586 	 * other CPUs and writers coming in via interrupts.
1587 	 */
1588 	type = rb_head_page_set_update(cpu_buffer, next_page, tail_page,
1589 				       RB_PAGE_HEAD);
1590 
1591 	/*
1592 	 * type can be one of four:
1593 	 *  NORMAL - an interrupt already moved it for us
1594 	 *  HEAD   - we are the first to get here.
1595 	 *  UPDATE - we are the interrupt interrupting
1596 	 *           a current move.
1597 	 *  MOVED  - a reader on another CPU moved the next
1598 	 *           pointer to its reader page. Give up
1599 	 *           and try again.
1600 	 */
1601 
1602 	switch (type) {
1603 	case RB_PAGE_HEAD:
1604 		/*
1605 		 * We changed the head to UPDATE, thus
1606 		 * it is our responsibility to update
1607 		 * the counters.
1608 		 */
1609 		local_add(entries, &cpu_buffer->overrun);
1610 
1611 		/*
1612 		 * The entries will be zeroed out when we move the
1613 		 * tail page.
1614 		 */
1615 
1616 		/* still more to do */
1617 		break;
1618 
1619 	case RB_PAGE_UPDATE:
1620 		/*
1621 		 * This is an interrupt that interrupt the
1622 		 * previous update. Still more to do.
1623 		 */
1624 		break;
1625 	case RB_PAGE_NORMAL:
1626 		/*
1627 		 * An interrupt came in before the update
1628 		 * and processed this for us.
1629 		 * Nothing left to do.
1630 		 */
1631 		return 1;
1632 	case RB_PAGE_MOVED:
1633 		/*
1634 		 * The reader is on another CPU and just did
1635 		 * a swap with our next_page.
1636 		 * Try again.
1637 		 */
1638 		return 1;
1639 	default:
1640 		RB_WARN_ON(cpu_buffer, 1); /* WTF??? */
1641 		return -1;
1642 	}
1643 
1644 	/*
1645 	 * Now that we are here, the old head pointer is
1646 	 * set to UPDATE. This will keep the reader from
1647 	 * swapping the head page with the reader page.
1648 	 * The reader (on another CPU) will spin till
1649 	 * we are finished.
1650 	 *
1651 	 * We just need to protect against interrupts
1652 	 * doing the job. We will set the next pointer
1653 	 * to HEAD. After that, we set the old pointer
1654 	 * to NORMAL, but only if it was HEAD before.
1655 	 * otherwise we are an interrupt, and only
1656 	 * want the outer most commit to reset it.
1657 	 */
1658 	new_head = next_page;
1659 	rb_inc_page(cpu_buffer, &new_head);
1660 
1661 	ret = rb_head_page_set_head(cpu_buffer, new_head, next_page,
1662 				    RB_PAGE_NORMAL);
1663 
1664 	/*
1665 	 * Valid returns are:
1666 	 *  HEAD   - an interrupt came in and already set it.
1667 	 *  NORMAL - One of two things:
1668 	 *            1) We really set it.
1669 	 *            2) A bunch of interrupts came in and moved
1670 	 *               the page forward again.
1671 	 */
1672 	switch (ret) {
1673 	case RB_PAGE_HEAD:
1674 	case RB_PAGE_NORMAL:
1675 		/* OK */
1676 		break;
1677 	default:
1678 		RB_WARN_ON(cpu_buffer, 1);
1679 		return -1;
1680 	}
1681 
1682 	/*
1683 	 * It is possible that an interrupt came in,
1684 	 * set the head up, then more interrupts came in
1685 	 * and moved it again. When we get back here,
1686 	 * the page would have been set to NORMAL but we
1687 	 * just set it back to HEAD.
1688 	 *
1689 	 * How do you detect this? Well, if that happened
1690 	 * the tail page would have moved.
1691 	 */
1692 	if (ret == RB_PAGE_NORMAL) {
1693 		/*
1694 		 * If the tail had moved passed next, then we need
1695 		 * to reset the pointer.
1696 		 */
1697 		if (cpu_buffer->tail_page != tail_page &&
1698 		    cpu_buffer->tail_page != next_page)
1699 			rb_head_page_set_normal(cpu_buffer, new_head,
1700 						next_page,
1701 						RB_PAGE_HEAD);
1702 	}
1703 
1704 	/*
1705 	 * If this was the outer most commit (the one that
1706 	 * changed the original pointer from HEAD to UPDATE),
1707 	 * then it is up to us to reset it to NORMAL.
1708 	 */
1709 	if (type == RB_PAGE_HEAD) {
1710 		ret = rb_head_page_set_normal(cpu_buffer, next_page,
1711 					      tail_page,
1712 					      RB_PAGE_UPDATE);
1713 		if (RB_WARN_ON(cpu_buffer,
1714 			       ret != RB_PAGE_UPDATE))
1715 			return -1;
1716 	}
1717 
1718 	return 0;
1719 }
1720 
1721 static unsigned rb_calculate_event_length(unsigned length)
1722 {
1723 	struct ring_buffer_event event; /* Used only for sizeof array */
1724 
1725 	/* zero length can cause confusions */
1726 	if (!length)
1727 		length = 1;
1728 
1729 	if (length > RB_MAX_SMALL_DATA)
1730 		length += sizeof(event.array[0]);
1731 
1732 	length += RB_EVNT_HDR_SIZE;
1733 	length = ALIGN(length, RB_ALIGNMENT);
1734 
1735 	return length;
1736 }
1737 
1738 static inline void
1739 rb_reset_tail(struct ring_buffer_per_cpu *cpu_buffer,
1740 	      struct buffer_page *tail_page,
1741 	      unsigned long tail, unsigned long length)
1742 {
1743 	struct ring_buffer_event *event;
1744 
1745 	/*
1746 	 * Only the event that crossed the page boundary
1747 	 * must fill the old tail_page with padding.
1748 	 */
1749 	if (tail >= BUF_PAGE_SIZE) {
1750 		local_sub(length, &tail_page->write);
1751 		return;
1752 	}
1753 
1754 	event = __rb_page_index(tail_page, tail);
1755 	kmemcheck_annotate_bitfield(event, bitfield);
1756 
1757 	/*
1758 	 * If this event is bigger than the minimum size, then
1759 	 * we need to be careful that we don't subtract the
1760 	 * write counter enough to allow another writer to slip
1761 	 * in on this page.
1762 	 * We put in a discarded commit instead, to make sure
1763 	 * that this space is not used again.
1764 	 *
1765 	 * If we are less than the minimum size, we don't need to
1766 	 * worry about it.
1767 	 */
1768 	if (tail > (BUF_PAGE_SIZE - RB_EVNT_MIN_SIZE)) {
1769 		/* No room for any events */
1770 
1771 		/* Mark the rest of the page with padding */
1772 		rb_event_set_padding(event);
1773 
1774 		/* Set the write back to the previous setting */
1775 		local_sub(length, &tail_page->write);
1776 		return;
1777 	}
1778 
1779 	/* Put in a discarded event */
1780 	event->array[0] = (BUF_PAGE_SIZE - tail) - RB_EVNT_HDR_SIZE;
1781 	event->type_len = RINGBUF_TYPE_PADDING;
1782 	/* time delta must be non zero */
1783 	event->time_delta = 1;
1784 
1785 	/* Set write to end of buffer */
1786 	length = (tail + length) - BUF_PAGE_SIZE;
1787 	local_sub(length, &tail_page->write);
1788 }
1789 
1790 static struct ring_buffer_event *
1791 rb_move_tail(struct ring_buffer_per_cpu *cpu_buffer,
1792 	     unsigned long length, unsigned long tail,
1793 	     struct buffer_page *commit_page,
1794 	     struct buffer_page *tail_page, u64 *ts)
1795 {
1796 	struct ring_buffer *buffer = cpu_buffer->buffer;
1797 	struct buffer_page *next_page;
1798 	int ret;
1799 
1800 	next_page = tail_page;
1801 
1802 	rb_inc_page(cpu_buffer, &next_page);
1803 
1804 	/*
1805 	 * If for some reason, we had an interrupt storm that made
1806 	 * it all the way around the buffer, bail, and warn
1807 	 * about it.
1808 	 */
1809 	if (unlikely(next_page == commit_page)) {
1810 		local_inc(&cpu_buffer->commit_overrun);
1811 		goto out_reset;
1812 	}
1813 
1814 	/*
1815 	 * This is where the fun begins!
1816 	 *
1817 	 * We are fighting against races between a reader that
1818 	 * could be on another CPU trying to swap its reader
1819 	 * page with the buffer head.
1820 	 *
1821 	 * We are also fighting against interrupts coming in and
1822 	 * moving the head or tail on us as well.
1823 	 *
1824 	 * If the next page is the head page then we have filled
1825 	 * the buffer, unless the commit page is still on the
1826 	 * reader page.
1827 	 */
1828 	if (rb_is_head_page(cpu_buffer, next_page, &tail_page->list)) {
1829 
1830 		/*
1831 		 * If the commit is not on the reader page, then
1832 		 * move the header page.
1833 		 */
1834 		if (!rb_is_reader_page(cpu_buffer->commit_page)) {
1835 			/*
1836 			 * If we are not in overwrite mode,
1837 			 * this is easy, just stop here.
1838 			 */
1839 			if (!(buffer->flags & RB_FL_OVERWRITE))
1840 				goto out_reset;
1841 
1842 			ret = rb_handle_head_page(cpu_buffer,
1843 						  tail_page,
1844 						  next_page);
1845 			if (ret < 0)
1846 				goto out_reset;
1847 			if (ret)
1848 				goto out_again;
1849 		} else {
1850 			/*
1851 			 * We need to be careful here too. The
1852 			 * commit page could still be on the reader
1853 			 * page. We could have a small buffer, and
1854 			 * have filled up the buffer with events
1855 			 * from interrupts and such, and wrapped.
1856 			 *
1857 			 * Note, if the tail page is also the on the
1858 			 * reader_page, we let it move out.
1859 			 */
1860 			if (unlikely((cpu_buffer->commit_page !=
1861 				      cpu_buffer->tail_page) &&
1862 				     (cpu_buffer->commit_page ==
1863 				      cpu_buffer->reader_page))) {
1864 				local_inc(&cpu_buffer->commit_overrun);
1865 				goto out_reset;
1866 			}
1867 		}
1868 	}
1869 
1870 	ret = rb_tail_page_update(cpu_buffer, tail_page, next_page);
1871 	if (ret) {
1872 		/*
1873 		 * Nested commits always have zero deltas, so
1874 		 * just reread the time stamp
1875 		 */
1876 		*ts = rb_time_stamp(buffer);
1877 		next_page->page->time_stamp = *ts;
1878 	}
1879 
1880  out_again:
1881 
1882 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1883 
1884 	/* fail and let the caller try again */
1885 	return ERR_PTR(-EAGAIN);
1886 
1887  out_reset:
1888 	/* reset write */
1889 	rb_reset_tail(cpu_buffer, tail_page, tail, length);
1890 
1891 	return NULL;
1892 }
1893 
1894 static struct ring_buffer_event *
1895 __rb_reserve_next(struct ring_buffer_per_cpu *cpu_buffer,
1896 		  unsigned type, unsigned long length, u64 *ts)
1897 {
1898 	struct buffer_page *tail_page, *commit_page;
1899 	struct ring_buffer_event *event;
1900 	unsigned long tail, write;
1901 
1902 	commit_page = cpu_buffer->commit_page;
1903 	/* we just need to protect against interrupts */
1904 	barrier();
1905 	tail_page = cpu_buffer->tail_page;
1906 	write = local_add_return(length, &tail_page->write);
1907 
1908 	/* set write to only the index of the write */
1909 	write &= RB_WRITE_MASK;
1910 	tail = write - length;
1911 
1912 	/* See if we shot pass the end of this buffer page */
1913 	if (write > BUF_PAGE_SIZE)
1914 		return rb_move_tail(cpu_buffer, length, tail,
1915 				    commit_page, tail_page, ts);
1916 
1917 	/* We reserved something on the buffer */
1918 
1919 	event = __rb_page_index(tail_page, tail);
1920 	kmemcheck_annotate_bitfield(event, bitfield);
1921 	rb_update_event(event, type, length);
1922 
1923 	/* The passed in type is zero for DATA */
1924 	if (likely(!type))
1925 		local_inc(&tail_page->entries);
1926 
1927 	/*
1928 	 * If this is the first commit on the page, then update
1929 	 * its timestamp.
1930 	 */
1931 	if (!tail)
1932 		tail_page->page->time_stamp = *ts;
1933 
1934 	return event;
1935 }
1936 
1937 static inline int
1938 rb_try_to_discard(struct ring_buffer_per_cpu *cpu_buffer,
1939 		  struct ring_buffer_event *event)
1940 {
1941 	unsigned long new_index, old_index;
1942 	struct buffer_page *bpage;
1943 	unsigned long index;
1944 	unsigned long addr;
1945 
1946 	new_index = rb_event_index(event);
1947 	old_index = new_index + rb_event_length(event);
1948 	addr = (unsigned long)event;
1949 	addr &= PAGE_MASK;
1950 
1951 	bpage = cpu_buffer->tail_page;
1952 
1953 	if (bpage->page == (void *)addr && rb_page_write(bpage) == old_index) {
1954 		unsigned long write_mask =
1955 			local_read(&bpage->write) & ~RB_WRITE_MASK;
1956 		/*
1957 		 * This is on the tail page. It is possible that
1958 		 * a write could come in and move the tail page
1959 		 * and write to the next page. That is fine
1960 		 * because we just shorten what is on this page.
1961 		 */
1962 		old_index += write_mask;
1963 		new_index += write_mask;
1964 		index = local_cmpxchg(&bpage->write, old_index, new_index);
1965 		if (index == old_index)
1966 			return 1;
1967 	}
1968 
1969 	/* could not discard */
1970 	return 0;
1971 }
1972 
1973 static int
1974 rb_add_time_stamp(struct ring_buffer_per_cpu *cpu_buffer,
1975 		  u64 *ts, u64 *delta)
1976 {
1977 	struct ring_buffer_event *event;
1978 	static int once;
1979 	int ret;
1980 
1981 	if (unlikely(*delta > (1ULL << 59) && !once++)) {
1982 		printk(KERN_WARNING "Delta way too big! %llu"
1983 		       " ts=%llu write stamp = %llu\n",
1984 		       (unsigned long long)*delta,
1985 		       (unsigned long long)*ts,
1986 		       (unsigned long long)cpu_buffer->write_stamp);
1987 		WARN_ON(1);
1988 	}
1989 
1990 	/*
1991 	 * The delta is too big, we to add a
1992 	 * new timestamp.
1993 	 */
1994 	event = __rb_reserve_next(cpu_buffer,
1995 				  RINGBUF_TYPE_TIME_EXTEND,
1996 				  RB_LEN_TIME_EXTEND,
1997 				  ts);
1998 	if (!event)
1999 		return -EBUSY;
2000 
2001 	if (PTR_ERR(event) == -EAGAIN)
2002 		return -EAGAIN;
2003 
2004 	/* Only a commited time event can update the write stamp */
2005 	if (rb_event_is_commit(cpu_buffer, event)) {
2006 		/*
2007 		 * If this is the first on the page, then it was
2008 		 * updated with the page itself. Try to discard it
2009 		 * and if we can't just make it zero.
2010 		 */
2011 		if (rb_event_index(event)) {
2012 			event->time_delta = *delta & TS_MASK;
2013 			event->array[0] = *delta >> TS_SHIFT;
2014 		} else {
2015 			/* try to discard, since we do not need this */
2016 			if (!rb_try_to_discard(cpu_buffer, event)) {
2017 				/* nope, just zero it */
2018 				event->time_delta = 0;
2019 				event->array[0] = 0;
2020 			}
2021 		}
2022 		cpu_buffer->write_stamp = *ts;
2023 		/* let the caller know this was the commit */
2024 		ret = 1;
2025 	} else {
2026 		/* Try to discard the event */
2027 		if (!rb_try_to_discard(cpu_buffer, event)) {
2028 			/* Darn, this is just wasted space */
2029 			event->time_delta = 0;
2030 			event->array[0] = 0;
2031 		}
2032 		ret = 0;
2033 	}
2034 
2035 	*delta = 0;
2036 
2037 	return ret;
2038 }
2039 
2040 static void rb_start_commit(struct ring_buffer_per_cpu *cpu_buffer)
2041 {
2042 	local_inc(&cpu_buffer->committing);
2043 	local_inc(&cpu_buffer->commits);
2044 }
2045 
2046 static void rb_end_commit(struct ring_buffer_per_cpu *cpu_buffer)
2047 {
2048 	unsigned long commits;
2049 
2050 	if (RB_WARN_ON(cpu_buffer,
2051 		       !local_read(&cpu_buffer->committing)))
2052 		return;
2053 
2054  again:
2055 	commits = local_read(&cpu_buffer->commits);
2056 	/* synchronize with interrupts */
2057 	barrier();
2058 	if (local_read(&cpu_buffer->committing) == 1)
2059 		rb_set_commit_to_write(cpu_buffer);
2060 
2061 	local_dec(&cpu_buffer->committing);
2062 
2063 	/* synchronize with interrupts */
2064 	barrier();
2065 
2066 	/*
2067 	 * Need to account for interrupts coming in between the
2068 	 * updating of the commit page and the clearing of the
2069 	 * committing counter.
2070 	 */
2071 	if (unlikely(local_read(&cpu_buffer->commits) != commits) &&
2072 	    !local_read(&cpu_buffer->committing)) {
2073 		local_inc(&cpu_buffer->committing);
2074 		goto again;
2075 	}
2076 }
2077 
2078 static struct ring_buffer_event *
2079 rb_reserve_next_event(struct ring_buffer *buffer,
2080 		      struct ring_buffer_per_cpu *cpu_buffer,
2081 		      unsigned long length)
2082 {
2083 	struct ring_buffer_event *event;
2084 	u64 ts, delta = 0;
2085 	int commit = 0;
2086 	int nr_loops = 0;
2087 
2088 	rb_start_commit(cpu_buffer);
2089 
2090 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
2091 	/*
2092 	 * Due to the ability to swap a cpu buffer from a buffer
2093 	 * it is possible it was swapped before we committed.
2094 	 * (committing stops a swap). We check for it here and
2095 	 * if it happened, we have to fail the write.
2096 	 */
2097 	barrier();
2098 	if (unlikely(ACCESS_ONCE(cpu_buffer->buffer) != buffer)) {
2099 		local_dec(&cpu_buffer->committing);
2100 		local_dec(&cpu_buffer->commits);
2101 		return NULL;
2102 	}
2103 #endif
2104 
2105 	length = rb_calculate_event_length(length);
2106  again:
2107 	/*
2108 	 * We allow for interrupts to reenter here and do a trace.
2109 	 * If one does, it will cause this original code to loop
2110 	 * back here. Even with heavy interrupts happening, this
2111 	 * should only happen a few times in a row. If this happens
2112 	 * 1000 times in a row, there must be either an interrupt
2113 	 * storm or we have something buggy.
2114 	 * Bail!
2115 	 */
2116 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 1000))
2117 		goto out_fail;
2118 
2119 	ts = rb_time_stamp(cpu_buffer->buffer);
2120 
2121 	/*
2122 	 * Only the first commit can update the timestamp.
2123 	 * Yes there is a race here. If an interrupt comes in
2124 	 * just after the conditional and it traces too, then it
2125 	 * will also check the deltas. More than one timestamp may
2126 	 * also be made. But only the entry that did the actual
2127 	 * commit will be something other than zero.
2128 	 */
2129 	if (likely(cpu_buffer->tail_page == cpu_buffer->commit_page &&
2130 		   rb_page_write(cpu_buffer->tail_page) ==
2131 		   rb_commit_index(cpu_buffer))) {
2132 		u64 diff;
2133 
2134 		diff = ts - cpu_buffer->write_stamp;
2135 
2136 		/* make sure this diff is calculated here */
2137 		barrier();
2138 
2139 		/* Did the write stamp get updated already? */
2140 		if (unlikely(ts < cpu_buffer->write_stamp))
2141 			goto get_event;
2142 
2143 		delta = diff;
2144 		if (unlikely(test_time_stamp(delta))) {
2145 
2146 			commit = rb_add_time_stamp(cpu_buffer, &ts, &delta);
2147 			if (commit == -EBUSY)
2148 				goto out_fail;
2149 
2150 			if (commit == -EAGAIN)
2151 				goto again;
2152 
2153 			RB_WARN_ON(cpu_buffer, commit < 0);
2154 		}
2155 	}
2156 
2157  get_event:
2158 	event = __rb_reserve_next(cpu_buffer, 0, length, &ts);
2159 	if (unlikely(PTR_ERR(event) == -EAGAIN))
2160 		goto again;
2161 
2162 	if (!event)
2163 		goto out_fail;
2164 
2165 	if (!rb_event_is_commit(cpu_buffer, event))
2166 		delta = 0;
2167 
2168 	event->time_delta = delta;
2169 
2170 	return event;
2171 
2172  out_fail:
2173 	rb_end_commit(cpu_buffer);
2174 	return NULL;
2175 }
2176 
2177 #ifdef CONFIG_TRACING
2178 
2179 #define TRACE_RECURSIVE_DEPTH 16
2180 
2181 static int trace_recursive_lock(void)
2182 {
2183 	current->trace_recursion++;
2184 
2185 	if (likely(current->trace_recursion < TRACE_RECURSIVE_DEPTH))
2186 		return 0;
2187 
2188 	/* Disable all tracing before we do anything else */
2189 	tracing_off_permanent();
2190 
2191 	printk_once(KERN_WARNING "Tracing recursion: depth[%ld]:"
2192 		    "HC[%lu]:SC[%lu]:NMI[%lu]\n",
2193 		    current->trace_recursion,
2194 		    hardirq_count() >> HARDIRQ_SHIFT,
2195 		    softirq_count() >> SOFTIRQ_SHIFT,
2196 		    in_nmi());
2197 
2198 	WARN_ON_ONCE(1);
2199 	return -1;
2200 }
2201 
2202 static void trace_recursive_unlock(void)
2203 {
2204 	WARN_ON_ONCE(!current->trace_recursion);
2205 
2206 	current->trace_recursion--;
2207 }
2208 
2209 #else
2210 
2211 #define trace_recursive_lock()		(0)
2212 #define trace_recursive_unlock()	do { } while (0)
2213 
2214 #endif
2215 
2216 static DEFINE_PER_CPU(int, rb_need_resched);
2217 
2218 /**
2219  * ring_buffer_lock_reserve - reserve a part of the buffer
2220  * @buffer: the ring buffer to reserve from
2221  * @length: the length of the data to reserve (excluding event header)
2222  *
2223  * Returns a reseverd event on the ring buffer to copy directly to.
2224  * The user of this interface will need to get the body to write into
2225  * and can use the ring_buffer_event_data() interface.
2226  *
2227  * The length is the length of the data needed, not the event length
2228  * which also includes the event header.
2229  *
2230  * Must be paired with ring_buffer_unlock_commit, unless NULL is returned.
2231  * If NULL is returned, then nothing has been allocated or locked.
2232  */
2233 struct ring_buffer_event *
2234 ring_buffer_lock_reserve(struct ring_buffer *buffer, unsigned long length)
2235 {
2236 	struct ring_buffer_per_cpu *cpu_buffer;
2237 	struct ring_buffer_event *event;
2238 	int cpu, resched;
2239 
2240 	if (ring_buffer_flags != RB_BUFFERS_ON)
2241 		return NULL;
2242 
2243 	if (atomic_read(&buffer->record_disabled))
2244 		return NULL;
2245 
2246 	/* If we are tracing schedule, we don't want to recurse */
2247 	resched = ftrace_preempt_disable();
2248 
2249 	if (trace_recursive_lock())
2250 		goto out_nocheck;
2251 
2252 	cpu = raw_smp_processor_id();
2253 
2254 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2255 		goto out;
2256 
2257 	cpu_buffer = buffer->buffers[cpu];
2258 
2259 	if (atomic_read(&cpu_buffer->record_disabled))
2260 		goto out;
2261 
2262 	if (length > BUF_MAX_DATA_SIZE)
2263 		goto out;
2264 
2265 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2266 	if (!event)
2267 		goto out;
2268 
2269 	/*
2270 	 * Need to store resched state on this cpu.
2271 	 * Only the first needs to.
2272 	 */
2273 
2274 	if (preempt_count() == 1)
2275 		per_cpu(rb_need_resched, cpu) = resched;
2276 
2277 	return event;
2278 
2279  out:
2280 	trace_recursive_unlock();
2281 
2282  out_nocheck:
2283 	ftrace_preempt_enable(resched);
2284 	return NULL;
2285 }
2286 EXPORT_SYMBOL_GPL(ring_buffer_lock_reserve);
2287 
2288 static void
2289 rb_update_write_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2290 		      struct ring_buffer_event *event)
2291 {
2292 	/*
2293 	 * The event first in the commit queue updates the
2294 	 * time stamp.
2295 	 */
2296 	if (rb_event_is_commit(cpu_buffer, event))
2297 		cpu_buffer->write_stamp += event->time_delta;
2298 }
2299 
2300 static void rb_commit(struct ring_buffer_per_cpu *cpu_buffer,
2301 		      struct ring_buffer_event *event)
2302 {
2303 	local_inc(&cpu_buffer->entries);
2304 	rb_update_write_stamp(cpu_buffer, event);
2305 	rb_end_commit(cpu_buffer);
2306 }
2307 
2308 /**
2309  * ring_buffer_unlock_commit - commit a reserved
2310  * @buffer: The buffer to commit to
2311  * @event: The event pointer to commit.
2312  *
2313  * This commits the data to the ring buffer, and releases any locks held.
2314  *
2315  * Must be paired with ring_buffer_lock_reserve.
2316  */
2317 int ring_buffer_unlock_commit(struct ring_buffer *buffer,
2318 			      struct ring_buffer_event *event)
2319 {
2320 	struct ring_buffer_per_cpu *cpu_buffer;
2321 	int cpu = raw_smp_processor_id();
2322 
2323 	cpu_buffer = buffer->buffers[cpu];
2324 
2325 	rb_commit(cpu_buffer, event);
2326 
2327 	trace_recursive_unlock();
2328 
2329 	/*
2330 	 * Only the last preempt count needs to restore preemption.
2331 	 */
2332 	if (preempt_count() == 1)
2333 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2334 	else
2335 		preempt_enable_no_resched_notrace();
2336 
2337 	return 0;
2338 }
2339 EXPORT_SYMBOL_GPL(ring_buffer_unlock_commit);
2340 
2341 static inline void rb_event_discard(struct ring_buffer_event *event)
2342 {
2343 	/* array[0] holds the actual length for the discarded event */
2344 	event->array[0] = rb_event_data_length(event) - RB_EVNT_HDR_SIZE;
2345 	event->type_len = RINGBUF_TYPE_PADDING;
2346 	/* time delta must be non zero */
2347 	if (!event->time_delta)
2348 		event->time_delta = 1;
2349 }
2350 
2351 /*
2352  * Decrement the entries to the page that an event is on.
2353  * The event does not even need to exist, only the pointer
2354  * to the page it is on. This may only be called before the commit
2355  * takes place.
2356  */
2357 static inline void
2358 rb_decrement_entry(struct ring_buffer_per_cpu *cpu_buffer,
2359 		   struct ring_buffer_event *event)
2360 {
2361 	unsigned long addr = (unsigned long)event;
2362 	struct buffer_page *bpage = cpu_buffer->commit_page;
2363 	struct buffer_page *start;
2364 
2365 	addr &= PAGE_MASK;
2366 
2367 	/* Do the likely case first */
2368 	if (likely(bpage->page == (void *)addr)) {
2369 		local_dec(&bpage->entries);
2370 		return;
2371 	}
2372 
2373 	/*
2374 	 * Because the commit page may be on the reader page we
2375 	 * start with the next page and check the end loop there.
2376 	 */
2377 	rb_inc_page(cpu_buffer, &bpage);
2378 	start = bpage;
2379 	do {
2380 		if (bpage->page == (void *)addr) {
2381 			local_dec(&bpage->entries);
2382 			return;
2383 		}
2384 		rb_inc_page(cpu_buffer, &bpage);
2385 	} while (bpage != start);
2386 
2387 	/* commit not part of this buffer?? */
2388 	RB_WARN_ON(cpu_buffer, 1);
2389 }
2390 
2391 /**
2392  * ring_buffer_commit_discard - discard an event that has not been committed
2393  * @buffer: the ring buffer
2394  * @event: non committed event to discard
2395  *
2396  * Sometimes an event that is in the ring buffer needs to be ignored.
2397  * This function lets the user discard an event in the ring buffer
2398  * and then that event will not be read later.
2399  *
2400  * This function only works if it is called before the the item has been
2401  * committed. It will try to free the event from the ring buffer
2402  * if another event has not been added behind it.
2403  *
2404  * If another event has been added behind it, it will set the event
2405  * up as discarded, and perform the commit.
2406  *
2407  * If this function is called, do not call ring_buffer_unlock_commit on
2408  * the event.
2409  */
2410 void ring_buffer_discard_commit(struct ring_buffer *buffer,
2411 				struct ring_buffer_event *event)
2412 {
2413 	struct ring_buffer_per_cpu *cpu_buffer;
2414 	int cpu;
2415 
2416 	/* The event is discarded regardless */
2417 	rb_event_discard(event);
2418 
2419 	cpu = smp_processor_id();
2420 	cpu_buffer = buffer->buffers[cpu];
2421 
2422 	/*
2423 	 * This must only be called if the event has not been
2424 	 * committed yet. Thus we can assume that preemption
2425 	 * is still disabled.
2426 	 */
2427 	RB_WARN_ON(buffer, !local_read(&cpu_buffer->committing));
2428 
2429 	rb_decrement_entry(cpu_buffer, event);
2430 	if (rb_try_to_discard(cpu_buffer, event))
2431 		goto out;
2432 
2433 	/*
2434 	 * The commit is still visible by the reader, so we
2435 	 * must still update the timestamp.
2436 	 */
2437 	rb_update_write_stamp(cpu_buffer, event);
2438  out:
2439 	rb_end_commit(cpu_buffer);
2440 
2441 	trace_recursive_unlock();
2442 
2443 	/*
2444 	 * Only the last preempt count needs to restore preemption.
2445 	 */
2446 	if (preempt_count() == 1)
2447 		ftrace_preempt_enable(per_cpu(rb_need_resched, cpu));
2448 	else
2449 		preempt_enable_no_resched_notrace();
2450 
2451 }
2452 EXPORT_SYMBOL_GPL(ring_buffer_discard_commit);
2453 
2454 /**
2455  * ring_buffer_write - write data to the buffer without reserving
2456  * @buffer: The ring buffer to write to.
2457  * @length: The length of the data being written (excluding the event header)
2458  * @data: The data to write to the buffer.
2459  *
2460  * This is like ring_buffer_lock_reserve and ring_buffer_unlock_commit as
2461  * one function. If you already have the data to write to the buffer, it
2462  * may be easier to simply call this function.
2463  *
2464  * Note, like ring_buffer_lock_reserve, the length is the length of the data
2465  * and not the length of the event which would hold the header.
2466  */
2467 int ring_buffer_write(struct ring_buffer *buffer,
2468 			unsigned long length,
2469 			void *data)
2470 {
2471 	struct ring_buffer_per_cpu *cpu_buffer;
2472 	struct ring_buffer_event *event;
2473 	void *body;
2474 	int ret = -EBUSY;
2475 	int cpu, resched;
2476 
2477 	if (ring_buffer_flags != RB_BUFFERS_ON)
2478 		return -EBUSY;
2479 
2480 	if (atomic_read(&buffer->record_disabled))
2481 		return -EBUSY;
2482 
2483 	resched = ftrace_preempt_disable();
2484 
2485 	cpu = raw_smp_processor_id();
2486 
2487 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2488 		goto out;
2489 
2490 	cpu_buffer = buffer->buffers[cpu];
2491 
2492 	if (atomic_read(&cpu_buffer->record_disabled))
2493 		goto out;
2494 
2495 	if (length > BUF_MAX_DATA_SIZE)
2496 		goto out;
2497 
2498 	event = rb_reserve_next_event(buffer, cpu_buffer, length);
2499 	if (!event)
2500 		goto out;
2501 
2502 	body = rb_event_data(event);
2503 
2504 	memcpy(body, data, length);
2505 
2506 	rb_commit(cpu_buffer, event);
2507 
2508 	ret = 0;
2509  out:
2510 	ftrace_preempt_enable(resched);
2511 
2512 	return ret;
2513 }
2514 EXPORT_SYMBOL_GPL(ring_buffer_write);
2515 
2516 static int rb_per_cpu_empty(struct ring_buffer_per_cpu *cpu_buffer)
2517 {
2518 	struct buffer_page *reader = cpu_buffer->reader_page;
2519 	struct buffer_page *head = rb_set_head_page(cpu_buffer);
2520 	struct buffer_page *commit = cpu_buffer->commit_page;
2521 
2522 	/* In case of error, head will be NULL */
2523 	if (unlikely(!head))
2524 		return 1;
2525 
2526 	return reader->read == rb_page_commit(reader) &&
2527 		(commit == reader ||
2528 		 (commit == head &&
2529 		  head->read == rb_page_commit(commit)));
2530 }
2531 
2532 /**
2533  * ring_buffer_record_disable - stop all writes into the buffer
2534  * @buffer: The ring buffer to stop writes to.
2535  *
2536  * This prevents all writes to the buffer. Any attempt to write
2537  * to the buffer after this will fail and return NULL.
2538  *
2539  * The caller should call synchronize_sched() after this.
2540  */
2541 void ring_buffer_record_disable(struct ring_buffer *buffer)
2542 {
2543 	atomic_inc(&buffer->record_disabled);
2544 }
2545 EXPORT_SYMBOL_GPL(ring_buffer_record_disable);
2546 
2547 /**
2548  * ring_buffer_record_enable - enable writes to the buffer
2549  * @buffer: The ring buffer to enable writes
2550  *
2551  * Note, multiple disables will need the same number of enables
2552  * to truely enable the writing (much like preempt_disable).
2553  */
2554 void ring_buffer_record_enable(struct ring_buffer *buffer)
2555 {
2556 	atomic_dec(&buffer->record_disabled);
2557 }
2558 EXPORT_SYMBOL_GPL(ring_buffer_record_enable);
2559 
2560 /**
2561  * ring_buffer_record_disable_cpu - stop all writes into the cpu_buffer
2562  * @buffer: The ring buffer to stop writes to.
2563  * @cpu: The CPU buffer to stop
2564  *
2565  * This prevents all writes to the buffer. Any attempt to write
2566  * to the buffer after this will fail and return NULL.
2567  *
2568  * The caller should call synchronize_sched() after this.
2569  */
2570 void ring_buffer_record_disable_cpu(struct ring_buffer *buffer, int cpu)
2571 {
2572 	struct ring_buffer_per_cpu *cpu_buffer;
2573 
2574 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2575 		return;
2576 
2577 	cpu_buffer = buffer->buffers[cpu];
2578 	atomic_inc(&cpu_buffer->record_disabled);
2579 }
2580 EXPORT_SYMBOL_GPL(ring_buffer_record_disable_cpu);
2581 
2582 /**
2583  * ring_buffer_record_enable_cpu - enable writes to the buffer
2584  * @buffer: The ring buffer to enable writes
2585  * @cpu: The CPU to enable.
2586  *
2587  * Note, multiple disables will need the same number of enables
2588  * to truely enable the writing (much like preempt_disable).
2589  */
2590 void ring_buffer_record_enable_cpu(struct ring_buffer *buffer, int cpu)
2591 {
2592 	struct ring_buffer_per_cpu *cpu_buffer;
2593 
2594 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2595 		return;
2596 
2597 	cpu_buffer = buffer->buffers[cpu];
2598 	atomic_dec(&cpu_buffer->record_disabled);
2599 }
2600 EXPORT_SYMBOL_GPL(ring_buffer_record_enable_cpu);
2601 
2602 /**
2603  * ring_buffer_entries_cpu - get the number of entries in a cpu buffer
2604  * @buffer: The ring buffer
2605  * @cpu: The per CPU buffer to get the entries from.
2606  */
2607 unsigned long ring_buffer_entries_cpu(struct ring_buffer *buffer, int cpu)
2608 {
2609 	struct ring_buffer_per_cpu *cpu_buffer;
2610 	unsigned long ret;
2611 
2612 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2613 		return 0;
2614 
2615 	cpu_buffer = buffer->buffers[cpu];
2616 	ret = (local_read(&cpu_buffer->entries) - local_read(&cpu_buffer->overrun))
2617 		- cpu_buffer->read;
2618 
2619 	return ret;
2620 }
2621 EXPORT_SYMBOL_GPL(ring_buffer_entries_cpu);
2622 
2623 /**
2624  * ring_buffer_overrun_cpu - get the number of overruns in a cpu_buffer
2625  * @buffer: The ring buffer
2626  * @cpu: The per CPU buffer to get the number of overruns from
2627  */
2628 unsigned long ring_buffer_overrun_cpu(struct ring_buffer *buffer, int cpu)
2629 {
2630 	struct ring_buffer_per_cpu *cpu_buffer;
2631 	unsigned long ret;
2632 
2633 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2634 		return 0;
2635 
2636 	cpu_buffer = buffer->buffers[cpu];
2637 	ret = local_read(&cpu_buffer->overrun);
2638 
2639 	return ret;
2640 }
2641 EXPORT_SYMBOL_GPL(ring_buffer_overrun_cpu);
2642 
2643 /**
2644  * ring_buffer_commit_overrun_cpu - get the number of overruns caused by commits
2645  * @buffer: The ring buffer
2646  * @cpu: The per CPU buffer to get the number of overruns from
2647  */
2648 unsigned long
2649 ring_buffer_commit_overrun_cpu(struct ring_buffer *buffer, int cpu)
2650 {
2651 	struct ring_buffer_per_cpu *cpu_buffer;
2652 	unsigned long ret;
2653 
2654 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
2655 		return 0;
2656 
2657 	cpu_buffer = buffer->buffers[cpu];
2658 	ret = local_read(&cpu_buffer->commit_overrun);
2659 
2660 	return ret;
2661 }
2662 EXPORT_SYMBOL_GPL(ring_buffer_commit_overrun_cpu);
2663 
2664 /**
2665  * ring_buffer_entries - get the number of entries in a buffer
2666  * @buffer: The ring buffer
2667  *
2668  * Returns the total number of entries in the ring buffer
2669  * (all CPU entries)
2670  */
2671 unsigned long ring_buffer_entries(struct ring_buffer *buffer)
2672 {
2673 	struct ring_buffer_per_cpu *cpu_buffer;
2674 	unsigned long entries = 0;
2675 	int cpu;
2676 
2677 	/* if you care about this being correct, lock the buffer */
2678 	for_each_buffer_cpu(buffer, cpu) {
2679 		cpu_buffer = buffer->buffers[cpu];
2680 		entries += (local_read(&cpu_buffer->entries) -
2681 			    local_read(&cpu_buffer->overrun)) - cpu_buffer->read;
2682 	}
2683 
2684 	return entries;
2685 }
2686 EXPORT_SYMBOL_GPL(ring_buffer_entries);
2687 
2688 /**
2689  * ring_buffer_overruns - get the number of overruns in buffer
2690  * @buffer: The ring buffer
2691  *
2692  * Returns the total number of overruns in the ring buffer
2693  * (all CPU entries)
2694  */
2695 unsigned long ring_buffer_overruns(struct ring_buffer *buffer)
2696 {
2697 	struct ring_buffer_per_cpu *cpu_buffer;
2698 	unsigned long overruns = 0;
2699 	int cpu;
2700 
2701 	/* if you care about this being correct, lock the buffer */
2702 	for_each_buffer_cpu(buffer, cpu) {
2703 		cpu_buffer = buffer->buffers[cpu];
2704 		overruns += local_read(&cpu_buffer->overrun);
2705 	}
2706 
2707 	return overruns;
2708 }
2709 EXPORT_SYMBOL_GPL(ring_buffer_overruns);
2710 
2711 static void rb_iter_reset(struct ring_buffer_iter *iter)
2712 {
2713 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
2714 
2715 	/* Iterator usage is expected to have record disabled */
2716 	if (list_empty(&cpu_buffer->reader_page->list)) {
2717 		iter->head_page = rb_set_head_page(cpu_buffer);
2718 		if (unlikely(!iter->head_page))
2719 			return;
2720 		iter->head = iter->head_page->read;
2721 	} else {
2722 		iter->head_page = cpu_buffer->reader_page;
2723 		iter->head = cpu_buffer->reader_page->read;
2724 	}
2725 	if (iter->head)
2726 		iter->read_stamp = cpu_buffer->read_stamp;
2727 	else
2728 		iter->read_stamp = iter->head_page->page->time_stamp;
2729 }
2730 
2731 /**
2732  * ring_buffer_iter_reset - reset an iterator
2733  * @iter: The iterator to reset
2734  *
2735  * Resets the iterator, so that it will start from the beginning
2736  * again.
2737  */
2738 void ring_buffer_iter_reset(struct ring_buffer_iter *iter)
2739 {
2740 	struct ring_buffer_per_cpu *cpu_buffer;
2741 	unsigned long flags;
2742 
2743 	if (!iter)
2744 		return;
2745 
2746 	cpu_buffer = iter->cpu_buffer;
2747 
2748 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
2749 	rb_iter_reset(iter);
2750 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
2751 }
2752 EXPORT_SYMBOL_GPL(ring_buffer_iter_reset);
2753 
2754 /**
2755  * ring_buffer_iter_empty - check if an iterator has no more to read
2756  * @iter: The iterator to check
2757  */
2758 int ring_buffer_iter_empty(struct ring_buffer_iter *iter)
2759 {
2760 	struct ring_buffer_per_cpu *cpu_buffer;
2761 
2762 	cpu_buffer = iter->cpu_buffer;
2763 
2764 	return iter->head_page == cpu_buffer->commit_page &&
2765 		iter->head == rb_commit_index(cpu_buffer);
2766 }
2767 EXPORT_SYMBOL_GPL(ring_buffer_iter_empty);
2768 
2769 static void
2770 rb_update_read_stamp(struct ring_buffer_per_cpu *cpu_buffer,
2771 		     struct ring_buffer_event *event)
2772 {
2773 	u64 delta;
2774 
2775 	switch (event->type_len) {
2776 	case RINGBUF_TYPE_PADDING:
2777 		return;
2778 
2779 	case RINGBUF_TYPE_TIME_EXTEND:
2780 		delta = event->array[0];
2781 		delta <<= TS_SHIFT;
2782 		delta += event->time_delta;
2783 		cpu_buffer->read_stamp += delta;
2784 		return;
2785 
2786 	case RINGBUF_TYPE_TIME_STAMP:
2787 		/* FIXME: not implemented */
2788 		return;
2789 
2790 	case RINGBUF_TYPE_DATA:
2791 		cpu_buffer->read_stamp += event->time_delta;
2792 		return;
2793 
2794 	default:
2795 		BUG();
2796 	}
2797 	return;
2798 }
2799 
2800 static void
2801 rb_update_iter_read_stamp(struct ring_buffer_iter *iter,
2802 			  struct ring_buffer_event *event)
2803 {
2804 	u64 delta;
2805 
2806 	switch (event->type_len) {
2807 	case RINGBUF_TYPE_PADDING:
2808 		return;
2809 
2810 	case RINGBUF_TYPE_TIME_EXTEND:
2811 		delta = event->array[0];
2812 		delta <<= TS_SHIFT;
2813 		delta += event->time_delta;
2814 		iter->read_stamp += delta;
2815 		return;
2816 
2817 	case RINGBUF_TYPE_TIME_STAMP:
2818 		/* FIXME: not implemented */
2819 		return;
2820 
2821 	case RINGBUF_TYPE_DATA:
2822 		iter->read_stamp += event->time_delta;
2823 		return;
2824 
2825 	default:
2826 		BUG();
2827 	}
2828 	return;
2829 }
2830 
2831 static struct buffer_page *
2832 rb_get_reader_page(struct ring_buffer_per_cpu *cpu_buffer)
2833 {
2834 	struct buffer_page *reader = NULL;
2835 	unsigned long flags;
2836 	int nr_loops = 0;
2837 	int ret;
2838 
2839 	local_irq_save(flags);
2840 	__raw_spin_lock(&cpu_buffer->lock);
2841 
2842  again:
2843 	/*
2844 	 * This should normally only loop twice. But because the
2845 	 * start of the reader inserts an empty page, it causes
2846 	 * a case where we will loop three times. There should be no
2847 	 * reason to loop four times (that I know of).
2848 	 */
2849 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > 3)) {
2850 		reader = NULL;
2851 		goto out;
2852 	}
2853 
2854 	reader = cpu_buffer->reader_page;
2855 
2856 	/* If there's more to read, return this page */
2857 	if (cpu_buffer->reader_page->read < rb_page_size(reader))
2858 		goto out;
2859 
2860 	/* Never should we have an index greater than the size */
2861 	if (RB_WARN_ON(cpu_buffer,
2862 		       cpu_buffer->reader_page->read > rb_page_size(reader)))
2863 		goto out;
2864 
2865 	/* check if we caught up to the tail */
2866 	reader = NULL;
2867 	if (cpu_buffer->commit_page == cpu_buffer->reader_page)
2868 		goto out;
2869 
2870 	/*
2871 	 * Reset the reader page to size zero.
2872 	 */
2873 	local_set(&cpu_buffer->reader_page->write, 0);
2874 	local_set(&cpu_buffer->reader_page->entries, 0);
2875 	local_set(&cpu_buffer->reader_page->page->commit, 0);
2876 
2877  spin:
2878 	/*
2879 	 * Splice the empty reader page into the list around the head.
2880 	 */
2881 	reader = rb_set_head_page(cpu_buffer);
2882 	cpu_buffer->reader_page->list.next = reader->list.next;
2883 	cpu_buffer->reader_page->list.prev = reader->list.prev;
2884 
2885 	/*
2886 	 * cpu_buffer->pages just needs to point to the buffer, it
2887 	 *  has no specific buffer page to point to. Lets move it out
2888 	 *  of our way so we don't accidently swap it.
2889 	 */
2890 	cpu_buffer->pages = reader->list.prev;
2891 
2892 	/* The reader page will be pointing to the new head */
2893 	rb_set_list_to_head(cpu_buffer, &cpu_buffer->reader_page->list);
2894 
2895 	/*
2896 	 * Here's the tricky part.
2897 	 *
2898 	 * We need to move the pointer past the header page.
2899 	 * But we can only do that if a writer is not currently
2900 	 * moving it. The page before the header page has the
2901 	 * flag bit '1' set if it is pointing to the page we want.
2902 	 * but if the writer is in the process of moving it
2903 	 * than it will be '2' or already moved '0'.
2904 	 */
2905 
2906 	ret = rb_head_page_replace(reader, cpu_buffer->reader_page);
2907 
2908 	/*
2909 	 * If we did not convert it, then we must try again.
2910 	 */
2911 	if (!ret)
2912 		goto spin;
2913 
2914 	/*
2915 	 * Yeah! We succeeded in replacing the page.
2916 	 *
2917 	 * Now make the new head point back to the reader page.
2918 	 */
2919 	reader->list.next->prev = &cpu_buffer->reader_page->list;
2920 	rb_inc_page(cpu_buffer, &cpu_buffer->head_page);
2921 
2922 	/* Finally update the reader page to the new head */
2923 	cpu_buffer->reader_page = reader;
2924 	rb_reset_reader_page(cpu_buffer);
2925 
2926 	goto again;
2927 
2928  out:
2929 	__raw_spin_unlock(&cpu_buffer->lock);
2930 	local_irq_restore(flags);
2931 
2932 	return reader;
2933 }
2934 
2935 static void rb_advance_reader(struct ring_buffer_per_cpu *cpu_buffer)
2936 {
2937 	struct ring_buffer_event *event;
2938 	struct buffer_page *reader;
2939 	unsigned length;
2940 
2941 	reader = rb_get_reader_page(cpu_buffer);
2942 
2943 	/* This function should not be called when buffer is empty */
2944 	if (RB_WARN_ON(cpu_buffer, !reader))
2945 		return;
2946 
2947 	event = rb_reader_event(cpu_buffer);
2948 
2949 	if (event->type_len <= RINGBUF_TYPE_DATA_TYPE_LEN_MAX)
2950 		cpu_buffer->read++;
2951 
2952 	rb_update_read_stamp(cpu_buffer, event);
2953 
2954 	length = rb_event_length(event);
2955 	cpu_buffer->reader_page->read += length;
2956 }
2957 
2958 static void rb_advance_iter(struct ring_buffer_iter *iter)
2959 {
2960 	struct ring_buffer *buffer;
2961 	struct ring_buffer_per_cpu *cpu_buffer;
2962 	struct ring_buffer_event *event;
2963 	unsigned length;
2964 
2965 	cpu_buffer = iter->cpu_buffer;
2966 	buffer = cpu_buffer->buffer;
2967 
2968 	/*
2969 	 * Check if we are at the end of the buffer.
2970 	 */
2971 	if (iter->head >= rb_page_size(iter->head_page)) {
2972 		/* discarded commits can make the page empty */
2973 		if (iter->head_page == cpu_buffer->commit_page)
2974 			return;
2975 		rb_inc_iter(iter);
2976 		return;
2977 	}
2978 
2979 	event = rb_iter_head_event(iter);
2980 
2981 	length = rb_event_length(event);
2982 
2983 	/*
2984 	 * This should not be called to advance the header if we are
2985 	 * at the tail of the buffer.
2986 	 */
2987 	if (RB_WARN_ON(cpu_buffer,
2988 		       (iter->head_page == cpu_buffer->commit_page) &&
2989 		       (iter->head + length > rb_commit_index(cpu_buffer))))
2990 		return;
2991 
2992 	rb_update_iter_read_stamp(iter, event);
2993 
2994 	iter->head += length;
2995 
2996 	/* check for end of page padding */
2997 	if ((iter->head >= rb_page_size(iter->head_page)) &&
2998 	    (iter->head_page != cpu_buffer->commit_page))
2999 		rb_advance_iter(iter);
3000 }
3001 
3002 static struct ring_buffer_event *
3003 rb_buffer_peek(struct ring_buffer_per_cpu *cpu_buffer, u64 *ts)
3004 {
3005 	struct ring_buffer_event *event;
3006 	struct buffer_page *reader;
3007 	int nr_loops = 0;
3008 
3009  again:
3010 	/*
3011 	 * We repeat when a timestamp is encountered. It is possible
3012 	 * to get multiple timestamps from an interrupt entering just
3013 	 * as one timestamp is about to be written, or from discarded
3014 	 * commits. The most that we can have is the number on a single page.
3015 	 */
3016 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3017 		return NULL;
3018 
3019 	reader = rb_get_reader_page(cpu_buffer);
3020 	if (!reader)
3021 		return NULL;
3022 
3023 	event = rb_reader_event(cpu_buffer);
3024 
3025 	switch (event->type_len) {
3026 	case RINGBUF_TYPE_PADDING:
3027 		if (rb_null_event(event))
3028 			RB_WARN_ON(cpu_buffer, 1);
3029 		/*
3030 		 * Because the writer could be discarding every
3031 		 * event it creates (which would probably be bad)
3032 		 * if we were to go back to "again" then we may never
3033 		 * catch up, and will trigger the warn on, or lock
3034 		 * the box. Return the padding, and we will release
3035 		 * the current locks, and try again.
3036 		 */
3037 		return event;
3038 
3039 	case RINGBUF_TYPE_TIME_EXTEND:
3040 		/* Internal data, OK to advance */
3041 		rb_advance_reader(cpu_buffer);
3042 		goto again;
3043 
3044 	case RINGBUF_TYPE_TIME_STAMP:
3045 		/* FIXME: not implemented */
3046 		rb_advance_reader(cpu_buffer);
3047 		goto again;
3048 
3049 	case RINGBUF_TYPE_DATA:
3050 		if (ts) {
3051 			*ts = cpu_buffer->read_stamp + event->time_delta;
3052 			ring_buffer_normalize_time_stamp(cpu_buffer->buffer,
3053 							 cpu_buffer->cpu, ts);
3054 		}
3055 		return event;
3056 
3057 	default:
3058 		BUG();
3059 	}
3060 
3061 	return NULL;
3062 }
3063 EXPORT_SYMBOL_GPL(ring_buffer_peek);
3064 
3065 static struct ring_buffer_event *
3066 rb_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3067 {
3068 	struct ring_buffer *buffer;
3069 	struct ring_buffer_per_cpu *cpu_buffer;
3070 	struct ring_buffer_event *event;
3071 	int nr_loops = 0;
3072 
3073 	if (ring_buffer_iter_empty(iter))
3074 		return NULL;
3075 
3076 	cpu_buffer = iter->cpu_buffer;
3077 	buffer = cpu_buffer->buffer;
3078 
3079  again:
3080 	/*
3081 	 * We repeat when a timestamp is encountered.
3082 	 * We can get multiple timestamps by nested interrupts or also
3083 	 * if filtering is on (discarding commits). Since discarding
3084 	 * commits can be frequent we can get a lot of timestamps.
3085 	 * But we limit them by not adding timestamps if they begin
3086 	 * at the start of a page.
3087 	 */
3088 	if (RB_WARN_ON(cpu_buffer, ++nr_loops > RB_TIMESTAMPS_PER_PAGE))
3089 		return NULL;
3090 
3091 	if (rb_per_cpu_empty(cpu_buffer))
3092 		return NULL;
3093 
3094 	event = rb_iter_head_event(iter);
3095 
3096 	switch (event->type_len) {
3097 	case RINGBUF_TYPE_PADDING:
3098 		if (rb_null_event(event)) {
3099 			rb_inc_iter(iter);
3100 			goto again;
3101 		}
3102 		rb_advance_iter(iter);
3103 		return event;
3104 
3105 	case RINGBUF_TYPE_TIME_EXTEND:
3106 		/* Internal data, OK to advance */
3107 		rb_advance_iter(iter);
3108 		goto again;
3109 
3110 	case RINGBUF_TYPE_TIME_STAMP:
3111 		/* FIXME: not implemented */
3112 		rb_advance_iter(iter);
3113 		goto again;
3114 
3115 	case RINGBUF_TYPE_DATA:
3116 		if (ts) {
3117 			*ts = iter->read_stamp + event->time_delta;
3118 			ring_buffer_normalize_time_stamp(buffer,
3119 							 cpu_buffer->cpu, ts);
3120 		}
3121 		return event;
3122 
3123 	default:
3124 		BUG();
3125 	}
3126 
3127 	return NULL;
3128 }
3129 EXPORT_SYMBOL_GPL(ring_buffer_iter_peek);
3130 
3131 static inline int rb_ok_to_lock(void)
3132 {
3133 	/*
3134 	 * If an NMI die dumps out the content of the ring buffer
3135 	 * do not grab locks. We also permanently disable the ring
3136 	 * buffer too. A one time deal is all you get from reading
3137 	 * the ring buffer from an NMI.
3138 	 */
3139 	if (likely(!in_nmi()))
3140 		return 1;
3141 
3142 	tracing_off_permanent();
3143 	return 0;
3144 }
3145 
3146 /**
3147  * ring_buffer_peek - peek at the next event to be read
3148  * @buffer: The ring buffer to read
3149  * @cpu: The cpu to peak at
3150  * @ts: The timestamp counter of this event.
3151  *
3152  * This will return the event that will be read next, but does
3153  * not consume the data.
3154  */
3155 struct ring_buffer_event *
3156 ring_buffer_peek(struct ring_buffer *buffer, int cpu, u64 *ts)
3157 {
3158 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3159 	struct ring_buffer_event *event;
3160 	unsigned long flags;
3161 	int dolock;
3162 
3163 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3164 		return NULL;
3165 
3166 	dolock = rb_ok_to_lock();
3167  again:
3168 	local_irq_save(flags);
3169 	if (dolock)
3170 		spin_lock(&cpu_buffer->reader_lock);
3171 	event = rb_buffer_peek(cpu_buffer, ts);
3172 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3173 		rb_advance_reader(cpu_buffer);
3174 	if (dolock)
3175 		spin_unlock(&cpu_buffer->reader_lock);
3176 	local_irq_restore(flags);
3177 
3178 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3179 		goto again;
3180 
3181 	return event;
3182 }
3183 
3184 /**
3185  * ring_buffer_iter_peek - peek at the next event to be read
3186  * @iter: The ring buffer iterator
3187  * @ts: The timestamp counter of this event.
3188  *
3189  * This will return the event that will be read next, but does
3190  * not increment the iterator.
3191  */
3192 struct ring_buffer_event *
3193 ring_buffer_iter_peek(struct ring_buffer_iter *iter, u64 *ts)
3194 {
3195 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3196 	struct ring_buffer_event *event;
3197 	unsigned long flags;
3198 
3199  again:
3200 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3201 	event = rb_iter_peek(iter, ts);
3202 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3203 
3204 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3205 		goto again;
3206 
3207 	return event;
3208 }
3209 
3210 /**
3211  * ring_buffer_consume - return an event and consume it
3212  * @buffer: The ring buffer to get the next event from
3213  *
3214  * Returns the next event in the ring buffer, and that event is consumed.
3215  * Meaning, that sequential reads will keep returning a different event,
3216  * and eventually empty the ring buffer if the producer is slower.
3217  */
3218 struct ring_buffer_event *
3219 ring_buffer_consume(struct ring_buffer *buffer, int cpu, u64 *ts)
3220 {
3221 	struct ring_buffer_per_cpu *cpu_buffer;
3222 	struct ring_buffer_event *event = NULL;
3223 	unsigned long flags;
3224 	int dolock;
3225 
3226 	dolock = rb_ok_to_lock();
3227 
3228  again:
3229 	/* might be called in atomic */
3230 	preempt_disable();
3231 
3232 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3233 		goto out;
3234 
3235 	cpu_buffer = buffer->buffers[cpu];
3236 	local_irq_save(flags);
3237 	if (dolock)
3238 		spin_lock(&cpu_buffer->reader_lock);
3239 
3240 	event = rb_buffer_peek(cpu_buffer, ts);
3241 	if (event)
3242 		rb_advance_reader(cpu_buffer);
3243 
3244 	if (dolock)
3245 		spin_unlock(&cpu_buffer->reader_lock);
3246 	local_irq_restore(flags);
3247 
3248  out:
3249 	preempt_enable();
3250 
3251 	if (event && event->type_len == RINGBUF_TYPE_PADDING)
3252 		goto again;
3253 
3254 	return event;
3255 }
3256 EXPORT_SYMBOL_GPL(ring_buffer_consume);
3257 
3258 /**
3259  * ring_buffer_read_start - start a non consuming read of the buffer
3260  * @buffer: The ring buffer to read from
3261  * @cpu: The cpu buffer to iterate over
3262  *
3263  * This starts up an iteration through the buffer. It also disables
3264  * the recording to the buffer until the reading is finished.
3265  * This prevents the reading from being corrupted. This is not
3266  * a consuming read, so a producer is not expected.
3267  *
3268  * Must be paired with ring_buffer_finish.
3269  */
3270 struct ring_buffer_iter *
3271 ring_buffer_read_start(struct ring_buffer *buffer, int cpu)
3272 {
3273 	struct ring_buffer_per_cpu *cpu_buffer;
3274 	struct ring_buffer_iter *iter;
3275 	unsigned long flags;
3276 
3277 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3278 		return NULL;
3279 
3280 	iter = kmalloc(sizeof(*iter), GFP_KERNEL);
3281 	if (!iter)
3282 		return NULL;
3283 
3284 	cpu_buffer = buffer->buffers[cpu];
3285 
3286 	iter->cpu_buffer = cpu_buffer;
3287 
3288 	atomic_inc(&cpu_buffer->record_disabled);
3289 	synchronize_sched();
3290 
3291 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3292 	__raw_spin_lock(&cpu_buffer->lock);
3293 	rb_iter_reset(iter);
3294 	__raw_spin_unlock(&cpu_buffer->lock);
3295 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3296 
3297 	return iter;
3298 }
3299 EXPORT_SYMBOL_GPL(ring_buffer_read_start);
3300 
3301 /**
3302  * ring_buffer_finish - finish reading the iterator of the buffer
3303  * @iter: The iterator retrieved by ring_buffer_start
3304  *
3305  * This re-enables the recording to the buffer, and frees the
3306  * iterator.
3307  */
3308 void
3309 ring_buffer_read_finish(struct ring_buffer_iter *iter)
3310 {
3311 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3312 
3313 	atomic_dec(&cpu_buffer->record_disabled);
3314 	kfree(iter);
3315 }
3316 EXPORT_SYMBOL_GPL(ring_buffer_read_finish);
3317 
3318 /**
3319  * ring_buffer_read - read the next item in the ring buffer by the iterator
3320  * @iter: The ring buffer iterator
3321  * @ts: The time stamp of the event read.
3322  *
3323  * This reads the next event in the ring buffer and increments the iterator.
3324  */
3325 struct ring_buffer_event *
3326 ring_buffer_read(struct ring_buffer_iter *iter, u64 *ts)
3327 {
3328 	struct ring_buffer_event *event;
3329 	struct ring_buffer_per_cpu *cpu_buffer = iter->cpu_buffer;
3330 	unsigned long flags;
3331 
3332 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3333  again:
3334 	event = rb_iter_peek(iter, ts);
3335 	if (!event)
3336 		goto out;
3337 
3338 	if (event->type_len == RINGBUF_TYPE_PADDING)
3339 		goto again;
3340 
3341 	rb_advance_iter(iter);
3342  out:
3343 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3344 
3345 	return event;
3346 }
3347 EXPORT_SYMBOL_GPL(ring_buffer_read);
3348 
3349 /**
3350  * ring_buffer_size - return the size of the ring buffer (in bytes)
3351  * @buffer: The ring buffer.
3352  */
3353 unsigned long ring_buffer_size(struct ring_buffer *buffer)
3354 {
3355 	return BUF_PAGE_SIZE * buffer->pages;
3356 }
3357 EXPORT_SYMBOL_GPL(ring_buffer_size);
3358 
3359 static void
3360 rb_reset_cpu(struct ring_buffer_per_cpu *cpu_buffer)
3361 {
3362 	rb_head_page_deactivate(cpu_buffer);
3363 
3364 	cpu_buffer->head_page
3365 		= list_entry(cpu_buffer->pages, struct buffer_page, list);
3366 	local_set(&cpu_buffer->head_page->write, 0);
3367 	local_set(&cpu_buffer->head_page->entries, 0);
3368 	local_set(&cpu_buffer->head_page->page->commit, 0);
3369 
3370 	cpu_buffer->head_page->read = 0;
3371 
3372 	cpu_buffer->tail_page = cpu_buffer->head_page;
3373 	cpu_buffer->commit_page = cpu_buffer->head_page;
3374 
3375 	INIT_LIST_HEAD(&cpu_buffer->reader_page->list);
3376 	local_set(&cpu_buffer->reader_page->write, 0);
3377 	local_set(&cpu_buffer->reader_page->entries, 0);
3378 	local_set(&cpu_buffer->reader_page->page->commit, 0);
3379 	cpu_buffer->reader_page->read = 0;
3380 
3381 	local_set(&cpu_buffer->commit_overrun, 0);
3382 	local_set(&cpu_buffer->overrun, 0);
3383 	local_set(&cpu_buffer->entries, 0);
3384 	local_set(&cpu_buffer->committing, 0);
3385 	local_set(&cpu_buffer->commits, 0);
3386 	cpu_buffer->read = 0;
3387 
3388 	cpu_buffer->write_stamp = 0;
3389 	cpu_buffer->read_stamp = 0;
3390 
3391 	rb_head_page_activate(cpu_buffer);
3392 }
3393 
3394 /**
3395  * ring_buffer_reset_cpu - reset a ring buffer per CPU buffer
3396  * @buffer: The ring buffer to reset a per cpu buffer of
3397  * @cpu: The CPU buffer to be reset
3398  */
3399 void ring_buffer_reset_cpu(struct ring_buffer *buffer, int cpu)
3400 {
3401 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3402 	unsigned long flags;
3403 
3404 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3405 		return;
3406 
3407 	atomic_inc(&cpu_buffer->record_disabled);
3408 
3409 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3410 
3411 	if (RB_WARN_ON(cpu_buffer, local_read(&cpu_buffer->committing)))
3412 		goto out;
3413 
3414 	__raw_spin_lock(&cpu_buffer->lock);
3415 
3416 	rb_reset_cpu(cpu_buffer);
3417 
3418 	__raw_spin_unlock(&cpu_buffer->lock);
3419 
3420  out:
3421 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3422 
3423 	atomic_dec(&cpu_buffer->record_disabled);
3424 }
3425 EXPORT_SYMBOL_GPL(ring_buffer_reset_cpu);
3426 
3427 /**
3428  * ring_buffer_reset - reset a ring buffer
3429  * @buffer: The ring buffer to reset all cpu buffers
3430  */
3431 void ring_buffer_reset(struct ring_buffer *buffer)
3432 {
3433 	int cpu;
3434 
3435 	for_each_buffer_cpu(buffer, cpu)
3436 		ring_buffer_reset_cpu(buffer, cpu);
3437 }
3438 EXPORT_SYMBOL_GPL(ring_buffer_reset);
3439 
3440 /**
3441  * rind_buffer_empty - is the ring buffer empty?
3442  * @buffer: The ring buffer to test
3443  */
3444 int ring_buffer_empty(struct ring_buffer *buffer)
3445 {
3446 	struct ring_buffer_per_cpu *cpu_buffer;
3447 	unsigned long flags;
3448 	int dolock;
3449 	int cpu;
3450 	int ret;
3451 
3452 	dolock = rb_ok_to_lock();
3453 
3454 	/* yes this is racy, but if you don't like the race, lock the buffer */
3455 	for_each_buffer_cpu(buffer, cpu) {
3456 		cpu_buffer = buffer->buffers[cpu];
3457 		local_irq_save(flags);
3458 		if (dolock)
3459 			spin_lock(&cpu_buffer->reader_lock);
3460 		ret = rb_per_cpu_empty(cpu_buffer);
3461 		if (dolock)
3462 			spin_unlock(&cpu_buffer->reader_lock);
3463 		local_irq_restore(flags);
3464 
3465 		if (!ret)
3466 			return 0;
3467 	}
3468 
3469 	return 1;
3470 }
3471 EXPORT_SYMBOL_GPL(ring_buffer_empty);
3472 
3473 /**
3474  * ring_buffer_empty_cpu - is a cpu buffer of a ring buffer empty?
3475  * @buffer: The ring buffer
3476  * @cpu: The CPU buffer to test
3477  */
3478 int ring_buffer_empty_cpu(struct ring_buffer *buffer, int cpu)
3479 {
3480 	struct ring_buffer_per_cpu *cpu_buffer;
3481 	unsigned long flags;
3482 	int dolock;
3483 	int ret;
3484 
3485 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3486 		return 1;
3487 
3488 	dolock = rb_ok_to_lock();
3489 
3490 	cpu_buffer = buffer->buffers[cpu];
3491 	local_irq_save(flags);
3492 	if (dolock)
3493 		spin_lock(&cpu_buffer->reader_lock);
3494 	ret = rb_per_cpu_empty(cpu_buffer);
3495 	if (dolock)
3496 		spin_unlock(&cpu_buffer->reader_lock);
3497 	local_irq_restore(flags);
3498 
3499 	return ret;
3500 }
3501 EXPORT_SYMBOL_GPL(ring_buffer_empty_cpu);
3502 
3503 #ifdef CONFIG_RING_BUFFER_ALLOW_SWAP
3504 /**
3505  * ring_buffer_swap_cpu - swap a CPU buffer between two ring buffers
3506  * @buffer_a: One buffer to swap with
3507  * @buffer_b: The other buffer to swap with
3508  *
3509  * This function is useful for tracers that want to take a "snapshot"
3510  * of a CPU buffer and has another back up buffer lying around.
3511  * it is expected that the tracer handles the cpu buffer not being
3512  * used at the moment.
3513  */
3514 int ring_buffer_swap_cpu(struct ring_buffer *buffer_a,
3515 			 struct ring_buffer *buffer_b, int cpu)
3516 {
3517 	struct ring_buffer_per_cpu *cpu_buffer_a;
3518 	struct ring_buffer_per_cpu *cpu_buffer_b;
3519 	int ret = -EINVAL;
3520 
3521 	if (!cpumask_test_cpu(cpu, buffer_a->cpumask) ||
3522 	    !cpumask_test_cpu(cpu, buffer_b->cpumask))
3523 		goto out;
3524 
3525 	/* At least make sure the two buffers are somewhat the same */
3526 	if (buffer_a->pages != buffer_b->pages)
3527 		goto out;
3528 
3529 	ret = -EAGAIN;
3530 
3531 	if (ring_buffer_flags != RB_BUFFERS_ON)
3532 		goto out;
3533 
3534 	if (atomic_read(&buffer_a->record_disabled))
3535 		goto out;
3536 
3537 	if (atomic_read(&buffer_b->record_disabled))
3538 		goto out;
3539 
3540 	cpu_buffer_a = buffer_a->buffers[cpu];
3541 	cpu_buffer_b = buffer_b->buffers[cpu];
3542 
3543 	if (atomic_read(&cpu_buffer_a->record_disabled))
3544 		goto out;
3545 
3546 	if (atomic_read(&cpu_buffer_b->record_disabled))
3547 		goto out;
3548 
3549 	/*
3550 	 * We can't do a synchronize_sched here because this
3551 	 * function can be called in atomic context.
3552 	 * Normally this will be called from the same CPU as cpu.
3553 	 * If not it's up to the caller to protect this.
3554 	 */
3555 	atomic_inc(&cpu_buffer_a->record_disabled);
3556 	atomic_inc(&cpu_buffer_b->record_disabled);
3557 
3558 	ret = -EBUSY;
3559 	if (local_read(&cpu_buffer_a->committing))
3560 		goto out_dec;
3561 	if (local_read(&cpu_buffer_b->committing))
3562 		goto out_dec;
3563 
3564 	buffer_a->buffers[cpu] = cpu_buffer_b;
3565 	buffer_b->buffers[cpu] = cpu_buffer_a;
3566 
3567 	cpu_buffer_b->buffer = buffer_a;
3568 	cpu_buffer_a->buffer = buffer_b;
3569 
3570 	ret = 0;
3571 
3572 out_dec:
3573 	atomic_dec(&cpu_buffer_a->record_disabled);
3574 	atomic_dec(&cpu_buffer_b->record_disabled);
3575 out:
3576 	return ret;
3577 }
3578 EXPORT_SYMBOL_GPL(ring_buffer_swap_cpu);
3579 #endif /* CONFIG_RING_BUFFER_ALLOW_SWAP */
3580 
3581 /**
3582  * ring_buffer_alloc_read_page - allocate a page to read from buffer
3583  * @buffer: the buffer to allocate for.
3584  *
3585  * This function is used in conjunction with ring_buffer_read_page.
3586  * When reading a full page from the ring buffer, these functions
3587  * can be used to speed up the process. The calling function should
3588  * allocate a few pages first with this function. Then when it
3589  * needs to get pages from the ring buffer, it passes the result
3590  * of this function into ring_buffer_read_page, which will swap
3591  * the page that was allocated, with the read page of the buffer.
3592  *
3593  * Returns:
3594  *  The page allocated, or NULL on error.
3595  */
3596 void *ring_buffer_alloc_read_page(struct ring_buffer *buffer)
3597 {
3598 	struct buffer_data_page *bpage;
3599 	unsigned long addr;
3600 
3601 	addr = __get_free_page(GFP_KERNEL);
3602 	if (!addr)
3603 		return NULL;
3604 
3605 	bpage = (void *)addr;
3606 
3607 	rb_init_page(bpage);
3608 
3609 	return bpage;
3610 }
3611 EXPORT_SYMBOL_GPL(ring_buffer_alloc_read_page);
3612 
3613 /**
3614  * ring_buffer_free_read_page - free an allocated read page
3615  * @buffer: the buffer the page was allocate for
3616  * @data: the page to free
3617  *
3618  * Free a page allocated from ring_buffer_alloc_read_page.
3619  */
3620 void ring_buffer_free_read_page(struct ring_buffer *buffer, void *data)
3621 {
3622 	free_page((unsigned long)data);
3623 }
3624 EXPORT_SYMBOL_GPL(ring_buffer_free_read_page);
3625 
3626 /**
3627  * ring_buffer_read_page - extract a page from the ring buffer
3628  * @buffer: buffer to extract from
3629  * @data_page: the page to use allocated from ring_buffer_alloc_read_page
3630  * @len: amount to extract
3631  * @cpu: the cpu of the buffer to extract
3632  * @full: should the extraction only happen when the page is full.
3633  *
3634  * This function will pull out a page from the ring buffer and consume it.
3635  * @data_page must be the address of the variable that was returned
3636  * from ring_buffer_alloc_read_page. This is because the page might be used
3637  * to swap with a page in the ring buffer.
3638  *
3639  * for example:
3640  *	rpage = ring_buffer_alloc_read_page(buffer);
3641  *	if (!rpage)
3642  *		return error;
3643  *	ret = ring_buffer_read_page(buffer, &rpage, len, cpu, 0);
3644  *	if (ret >= 0)
3645  *		process_page(rpage, ret);
3646  *
3647  * When @full is set, the function will not return true unless
3648  * the writer is off the reader page.
3649  *
3650  * Note: it is up to the calling functions to handle sleeps and wakeups.
3651  *  The ring buffer can be used anywhere in the kernel and can not
3652  *  blindly call wake_up. The layer that uses the ring buffer must be
3653  *  responsible for that.
3654  *
3655  * Returns:
3656  *  >=0 if data has been transferred, returns the offset of consumed data.
3657  *  <0 if no data has been transferred.
3658  */
3659 int ring_buffer_read_page(struct ring_buffer *buffer,
3660 			  void **data_page, size_t len, int cpu, int full)
3661 {
3662 	struct ring_buffer_per_cpu *cpu_buffer = buffer->buffers[cpu];
3663 	struct ring_buffer_event *event;
3664 	struct buffer_data_page *bpage;
3665 	struct buffer_page *reader;
3666 	unsigned long flags;
3667 	unsigned int commit;
3668 	unsigned int read;
3669 	u64 save_timestamp;
3670 	int ret = -1;
3671 
3672 	if (!cpumask_test_cpu(cpu, buffer->cpumask))
3673 		goto out;
3674 
3675 	/*
3676 	 * If len is not big enough to hold the page header, then
3677 	 * we can not copy anything.
3678 	 */
3679 	if (len <= BUF_PAGE_HDR_SIZE)
3680 		goto out;
3681 
3682 	len -= BUF_PAGE_HDR_SIZE;
3683 
3684 	if (!data_page)
3685 		goto out;
3686 
3687 	bpage = *data_page;
3688 	if (!bpage)
3689 		goto out;
3690 
3691 	spin_lock_irqsave(&cpu_buffer->reader_lock, flags);
3692 
3693 	reader = rb_get_reader_page(cpu_buffer);
3694 	if (!reader)
3695 		goto out_unlock;
3696 
3697 	event = rb_reader_event(cpu_buffer);
3698 
3699 	read = reader->read;
3700 	commit = rb_page_commit(reader);
3701 
3702 	/*
3703 	 * If this page has been partially read or
3704 	 * if len is not big enough to read the rest of the page or
3705 	 * a writer is still on the page, then
3706 	 * we must copy the data from the page to the buffer.
3707 	 * Otherwise, we can simply swap the page with the one passed in.
3708 	 */
3709 	if (read || (len < (commit - read)) ||
3710 	    cpu_buffer->reader_page == cpu_buffer->commit_page) {
3711 		struct buffer_data_page *rpage = cpu_buffer->reader_page->page;
3712 		unsigned int rpos = read;
3713 		unsigned int pos = 0;
3714 		unsigned int size;
3715 
3716 		if (full)
3717 			goto out_unlock;
3718 
3719 		if (len > (commit - read))
3720 			len = (commit - read);
3721 
3722 		size = rb_event_length(event);
3723 
3724 		if (len < size)
3725 			goto out_unlock;
3726 
3727 		/* save the current timestamp, since the user will need it */
3728 		save_timestamp = cpu_buffer->read_stamp;
3729 
3730 		/* Need to copy one event at a time */
3731 		do {
3732 			memcpy(bpage->data + pos, rpage->data + rpos, size);
3733 
3734 			len -= size;
3735 
3736 			rb_advance_reader(cpu_buffer);
3737 			rpos = reader->read;
3738 			pos += size;
3739 
3740 			event = rb_reader_event(cpu_buffer);
3741 			size = rb_event_length(event);
3742 		} while (len > size);
3743 
3744 		/* update bpage */
3745 		local_set(&bpage->commit, pos);
3746 		bpage->time_stamp = save_timestamp;
3747 
3748 		/* we copied everything to the beginning */
3749 		read = 0;
3750 	} else {
3751 		/* update the entry counter */
3752 		cpu_buffer->read += rb_page_entries(reader);
3753 
3754 		/* swap the pages */
3755 		rb_init_page(bpage);
3756 		bpage = reader->page;
3757 		reader->page = *data_page;
3758 		local_set(&reader->write, 0);
3759 		local_set(&reader->entries, 0);
3760 		reader->read = 0;
3761 		*data_page = bpage;
3762 	}
3763 	ret = read;
3764 
3765  out_unlock:
3766 	spin_unlock_irqrestore(&cpu_buffer->reader_lock, flags);
3767 
3768  out:
3769 	return ret;
3770 }
3771 EXPORT_SYMBOL_GPL(ring_buffer_read_page);
3772 
3773 #ifdef CONFIG_TRACING
3774 static ssize_t
3775 rb_simple_read(struct file *filp, char __user *ubuf,
3776 	       size_t cnt, loff_t *ppos)
3777 {
3778 	unsigned long *p = filp->private_data;
3779 	char buf[64];
3780 	int r;
3781 
3782 	if (test_bit(RB_BUFFERS_DISABLED_BIT, p))
3783 		r = sprintf(buf, "permanently disabled\n");
3784 	else
3785 		r = sprintf(buf, "%d\n", test_bit(RB_BUFFERS_ON_BIT, p));
3786 
3787 	return simple_read_from_buffer(ubuf, cnt, ppos, buf, r);
3788 }
3789 
3790 static ssize_t
3791 rb_simple_write(struct file *filp, const char __user *ubuf,
3792 		size_t cnt, loff_t *ppos)
3793 {
3794 	unsigned long *p = filp->private_data;
3795 	char buf[64];
3796 	unsigned long val;
3797 	int ret;
3798 
3799 	if (cnt >= sizeof(buf))
3800 		return -EINVAL;
3801 
3802 	if (copy_from_user(&buf, ubuf, cnt))
3803 		return -EFAULT;
3804 
3805 	buf[cnt] = 0;
3806 
3807 	ret = strict_strtoul(buf, 10, &val);
3808 	if (ret < 0)
3809 		return ret;
3810 
3811 	if (val)
3812 		set_bit(RB_BUFFERS_ON_BIT, p);
3813 	else
3814 		clear_bit(RB_BUFFERS_ON_BIT, p);
3815 
3816 	(*ppos)++;
3817 
3818 	return cnt;
3819 }
3820 
3821 static const struct file_operations rb_simple_fops = {
3822 	.open		= tracing_open_generic,
3823 	.read		= rb_simple_read,
3824 	.write		= rb_simple_write,
3825 };
3826 
3827 
3828 static __init int rb_init_debugfs(void)
3829 {
3830 	struct dentry *d_tracer;
3831 
3832 	d_tracer = tracing_init_dentry();
3833 
3834 	trace_create_file("tracing_on", 0644, d_tracer,
3835 			    &ring_buffer_flags, &rb_simple_fops);
3836 
3837 	return 0;
3838 }
3839 
3840 fs_initcall(rb_init_debugfs);
3841 #endif
3842 
3843 #ifdef CONFIG_HOTPLUG_CPU
3844 static int rb_cpu_notify(struct notifier_block *self,
3845 			 unsigned long action, void *hcpu)
3846 {
3847 	struct ring_buffer *buffer =
3848 		container_of(self, struct ring_buffer, cpu_notify);
3849 	long cpu = (long)hcpu;
3850 
3851 	switch (action) {
3852 	case CPU_UP_PREPARE:
3853 	case CPU_UP_PREPARE_FROZEN:
3854 		if (cpumask_test_cpu(cpu, buffer->cpumask))
3855 			return NOTIFY_OK;
3856 
3857 		buffer->buffers[cpu] =
3858 			rb_allocate_cpu_buffer(buffer, cpu);
3859 		if (!buffer->buffers[cpu]) {
3860 			WARN(1, "failed to allocate ring buffer on CPU %ld\n",
3861 			     cpu);
3862 			return NOTIFY_OK;
3863 		}
3864 		smp_wmb();
3865 		cpumask_set_cpu(cpu, buffer->cpumask);
3866 		break;
3867 	case CPU_DOWN_PREPARE:
3868 	case CPU_DOWN_PREPARE_FROZEN:
3869 		/*
3870 		 * Do nothing.
3871 		 *  If we were to free the buffer, then the user would
3872 		 *  lose any trace that was in the buffer.
3873 		 */
3874 		break;
3875 	default:
3876 		break;
3877 	}
3878 	return NOTIFY_OK;
3879 }
3880 #endif
3881