xref: /linux-6.15/kernel/trace/bpf_trace.c (revision 8a0cfd8a)
1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2011-2015 PLUMgrid, http://plumgrid.com
3  * Copyright (c) 2016 Facebook
4  */
5 #include <linux/kernel.h>
6 #include <linux/types.h>
7 #include <linux/slab.h>
8 #include <linux/bpf.h>
9 #include <linux/bpf_verifier.h>
10 #include <linux/bpf_perf_event.h>
11 #include <linux/btf.h>
12 #include <linux/filter.h>
13 #include <linux/uaccess.h>
14 #include <linux/ctype.h>
15 #include <linux/kprobes.h>
16 #include <linux/spinlock.h>
17 #include <linux/syscalls.h>
18 #include <linux/error-injection.h>
19 #include <linux/btf_ids.h>
20 #include <linux/bpf_lsm.h>
21 #include <linux/fprobe.h>
22 #include <linux/bsearch.h>
23 #include <linux/sort.h>
24 #include <linux/key.h>
25 #include <linux/verification.h>
26 #include <linux/namei.h>
27 
28 #include <net/bpf_sk_storage.h>
29 
30 #include <uapi/linux/bpf.h>
31 #include <uapi/linux/btf.h>
32 
33 #include <asm/tlb.h>
34 
35 #include "trace_probe.h"
36 #include "trace.h"
37 
38 #define CREATE_TRACE_POINTS
39 #include "bpf_trace.h"
40 
41 #define bpf_event_rcu_dereference(p)					\
42 	rcu_dereference_protected(p, lockdep_is_held(&bpf_event_mutex))
43 
44 #define MAX_UPROBE_MULTI_CNT (1U << 20)
45 #define MAX_KPROBE_MULTI_CNT (1U << 20)
46 
47 #ifdef CONFIG_MODULES
48 struct bpf_trace_module {
49 	struct module *module;
50 	struct list_head list;
51 };
52 
53 static LIST_HEAD(bpf_trace_modules);
54 static DEFINE_MUTEX(bpf_module_mutex);
55 
56 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
57 {
58 	struct bpf_raw_event_map *btp, *ret = NULL;
59 	struct bpf_trace_module *btm;
60 	unsigned int i;
61 
62 	mutex_lock(&bpf_module_mutex);
63 	list_for_each_entry(btm, &bpf_trace_modules, list) {
64 		for (i = 0; i < btm->module->num_bpf_raw_events; ++i) {
65 			btp = &btm->module->bpf_raw_events[i];
66 			if (!strcmp(btp->tp->name, name)) {
67 				if (try_module_get(btm->module))
68 					ret = btp;
69 				goto out;
70 			}
71 		}
72 	}
73 out:
74 	mutex_unlock(&bpf_module_mutex);
75 	return ret;
76 }
77 #else
78 static struct bpf_raw_event_map *bpf_get_raw_tracepoint_module(const char *name)
79 {
80 	return NULL;
81 }
82 #endif /* CONFIG_MODULES */
83 
84 u64 bpf_get_stackid(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
85 u64 bpf_get_stack(u64 r1, u64 r2, u64 r3, u64 r4, u64 r5);
86 
87 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
88 				  u64 flags, const struct btf **btf,
89 				  s32 *btf_id);
90 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx);
91 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
92 
93 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx);
94 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx);
95 
96 /**
97  * trace_call_bpf - invoke BPF program
98  * @call: tracepoint event
99  * @ctx: opaque context pointer
100  *
101  * kprobe handlers execute BPF programs via this helper.
102  * Can be used from static tracepoints in the future.
103  *
104  * Return: BPF programs always return an integer which is interpreted by
105  * kprobe handler as:
106  * 0 - return from kprobe (event is filtered out)
107  * 1 - store kprobe event into ring buffer
108  * Other values are reserved and currently alias to 1
109  */
110 unsigned int trace_call_bpf(struct trace_event_call *call, void *ctx)
111 {
112 	unsigned int ret;
113 
114 	cant_sleep();
115 
116 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
117 		/*
118 		 * since some bpf program is already running on this cpu,
119 		 * don't call into another bpf program (same or different)
120 		 * and don't send kprobe event into ring-buffer,
121 		 * so return zero here
122 		 */
123 		rcu_read_lock();
124 		bpf_prog_inc_misses_counters(rcu_dereference(call->prog_array));
125 		rcu_read_unlock();
126 		ret = 0;
127 		goto out;
128 	}
129 
130 	/*
131 	 * Instead of moving rcu_read_lock/rcu_dereference/rcu_read_unlock
132 	 * to all call sites, we did a bpf_prog_array_valid() there to check
133 	 * whether call->prog_array is empty or not, which is
134 	 * a heuristic to speed up execution.
135 	 *
136 	 * If bpf_prog_array_valid() fetched prog_array was
137 	 * non-NULL, we go into trace_call_bpf() and do the actual
138 	 * proper rcu_dereference() under RCU lock.
139 	 * If it turns out that prog_array is NULL then, we bail out.
140 	 * For the opposite, if the bpf_prog_array_valid() fetched pointer
141 	 * was NULL, you'll skip the prog_array with the risk of missing
142 	 * out of events when it was updated in between this and the
143 	 * rcu_dereference() which is accepted risk.
144 	 */
145 	rcu_read_lock();
146 	ret = bpf_prog_run_array(rcu_dereference(call->prog_array),
147 				 ctx, bpf_prog_run);
148 	rcu_read_unlock();
149 
150  out:
151 	__this_cpu_dec(bpf_prog_active);
152 
153 	return ret;
154 }
155 
156 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
157 BPF_CALL_2(bpf_override_return, struct pt_regs *, regs, unsigned long, rc)
158 {
159 	regs_set_return_value(regs, rc);
160 	override_function_with_return(regs);
161 	return 0;
162 }
163 
164 static const struct bpf_func_proto bpf_override_return_proto = {
165 	.func		= bpf_override_return,
166 	.gpl_only	= true,
167 	.ret_type	= RET_INTEGER,
168 	.arg1_type	= ARG_PTR_TO_CTX,
169 	.arg2_type	= ARG_ANYTHING,
170 };
171 #endif
172 
173 static __always_inline int
174 bpf_probe_read_user_common(void *dst, u32 size, const void __user *unsafe_ptr)
175 {
176 	int ret;
177 
178 	ret = copy_from_user_nofault(dst, unsafe_ptr, size);
179 	if (unlikely(ret < 0))
180 		memset(dst, 0, size);
181 	return ret;
182 }
183 
184 BPF_CALL_3(bpf_probe_read_user, void *, dst, u32, size,
185 	   const void __user *, unsafe_ptr)
186 {
187 	return bpf_probe_read_user_common(dst, size, unsafe_ptr);
188 }
189 
190 const struct bpf_func_proto bpf_probe_read_user_proto = {
191 	.func		= bpf_probe_read_user,
192 	.gpl_only	= true,
193 	.ret_type	= RET_INTEGER,
194 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
195 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
196 	.arg3_type	= ARG_ANYTHING,
197 };
198 
199 static __always_inline int
200 bpf_probe_read_user_str_common(void *dst, u32 size,
201 			       const void __user *unsafe_ptr)
202 {
203 	int ret;
204 
205 	/*
206 	 * NB: We rely on strncpy_from_user() not copying junk past the NUL
207 	 * terminator into `dst`.
208 	 *
209 	 * strncpy_from_user() does long-sized strides in the fast path. If the
210 	 * strncpy does not mask out the bytes after the NUL in `unsafe_ptr`,
211 	 * then there could be junk after the NUL in `dst`. If user takes `dst`
212 	 * and keys a hash map with it, then semantically identical strings can
213 	 * occupy multiple entries in the map.
214 	 */
215 	ret = strncpy_from_user_nofault(dst, unsafe_ptr, size);
216 	if (unlikely(ret < 0))
217 		memset(dst, 0, size);
218 	return ret;
219 }
220 
221 BPF_CALL_3(bpf_probe_read_user_str, void *, dst, u32, size,
222 	   const void __user *, unsafe_ptr)
223 {
224 	return bpf_probe_read_user_str_common(dst, size, unsafe_ptr);
225 }
226 
227 const struct bpf_func_proto bpf_probe_read_user_str_proto = {
228 	.func		= bpf_probe_read_user_str,
229 	.gpl_only	= true,
230 	.ret_type	= RET_INTEGER,
231 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
232 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
233 	.arg3_type	= ARG_ANYTHING,
234 };
235 
236 BPF_CALL_3(bpf_probe_read_kernel, void *, dst, u32, size,
237 	   const void *, unsafe_ptr)
238 {
239 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
240 }
241 
242 const struct bpf_func_proto bpf_probe_read_kernel_proto = {
243 	.func		= bpf_probe_read_kernel,
244 	.gpl_only	= true,
245 	.ret_type	= RET_INTEGER,
246 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
247 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
248 	.arg3_type	= ARG_ANYTHING,
249 };
250 
251 static __always_inline int
252 bpf_probe_read_kernel_str_common(void *dst, u32 size, const void *unsafe_ptr)
253 {
254 	int ret;
255 
256 	/*
257 	 * The strncpy_from_kernel_nofault() call will likely not fill the
258 	 * entire buffer, but that's okay in this circumstance as we're probing
259 	 * arbitrary memory anyway similar to bpf_probe_read_*() and might
260 	 * as well probe the stack. Thus, memory is explicitly cleared
261 	 * only in error case, so that improper users ignoring return
262 	 * code altogether don't copy garbage; otherwise length of string
263 	 * is returned that can be used for bpf_perf_event_output() et al.
264 	 */
265 	ret = strncpy_from_kernel_nofault(dst, unsafe_ptr, size);
266 	if (unlikely(ret < 0))
267 		memset(dst, 0, size);
268 	return ret;
269 }
270 
271 BPF_CALL_3(bpf_probe_read_kernel_str, void *, dst, u32, size,
272 	   const void *, unsafe_ptr)
273 {
274 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
275 }
276 
277 const struct bpf_func_proto bpf_probe_read_kernel_str_proto = {
278 	.func		= bpf_probe_read_kernel_str,
279 	.gpl_only	= true,
280 	.ret_type	= RET_INTEGER,
281 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
282 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
283 	.arg3_type	= ARG_ANYTHING,
284 };
285 
286 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
287 BPF_CALL_3(bpf_probe_read_compat, void *, dst, u32, size,
288 	   const void *, unsafe_ptr)
289 {
290 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
291 		return bpf_probe_read_user_common(dst, size,
292 				(__force void __user *)unsafe_ptr);
293 	}
294 	return bpf_probe_read_kernel_common(dst, size, unsafe_ptr);
295 }
296 
297 static const struct bpf_func_proto bpf_probe_read_compat_proto = {
298 	.func		= bpf_probe_read_compat,
299 	.gpl_only	= true,
300 	.ret_type	= RET_INTEGER,
301 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
302 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
303 	.arg3_type	= ARG_ANYTHING,
304 };
305 
306 BPF_CALL_3(bpf_probe_read_compat_str, void *, dst, u32, size,
307 	   const void *, unsafe_ptr)
308 {
309 	if ((unsigned long)unsafe_ptr < TASK_SIZE) {
310 		return bpf_probe_read_user_str_common(dst, size,
311 				(__force void __user *)unsafe_ptr);
312 	}
313 	return bpf_probe_read_kernel_str_common(dst, size, unsafe_ptr);
314 }
315 
316 static const struct bpf_func_proto bpf_probe_read_compat_str_proto = {
317 	.func		= bpf_probe_read_compat_str,
318 	.gpl_only	= true,
319 	.ret_type	= RET_INTEGER,
320 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
321 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
322 	.arg3_type	= ARG_ANYTHING,
323 };
324 #endif /* CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE */
325 
326 BPF_CALL_3(bpf_probe_write_user, void __user *, unsafe_ptr, const void *, src,
327 	   u32, size)
328 {
329 	/*
330 	 * Ensure we're in user context which is safe for the helper to
331 	 * run. This helper has no business in a kthread.
332 	 *
333 	 * access_ok() should prevent writing to non-user memory, but in
334 	 * some situations (nommu, temporary switch, etc) access_ok() does
335 	 * not provide enough validation, hence the check on KERNEL_DS.
336 	 *
337 	 * nmi_uaccess_okay() ensures the probe is not run in an interim
338 	 * state, when the task or mm are switched. This is specifically
339 	 * required to prevent the use of temporary mm.
340 	 */
341 
342 	if (unlikely(in_interrupt() ||
343 		     current->flags & (PF_KTHREAD | PF_EXITING)))
344 		return -EPERM;
345 	if (unlikely(!nmi_uaccess_okay()))
346 		return -EPERM;
347 
348 	return copy_to_user_nofault(unsafe_ptr, src, size);
349 }
350 
351 static const struct bpf_func_proto bpf_probe_write_user_proto = {
352 	.func		= bpf_probe_write_user,
353 	.gpl_only	= true,
354 	.ret_type	= RET_INTEGER,
355 	.arg1_type	= ARG_ANYTHING,
356 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
357 	.arg3_type	= ARG_CONST_SIZE,
358 };
359 
360 static const struct bpf_func_proto *bpf_get_probe_write_proto(void)
361 {
362 	if (!capable(CAP_SYS_ADMIN))
363 		return NULL;
364 
365 	pr_warn_ratelimited("%s[%d] is installing a program with bpf_probe_write_user helper that may corrupt user memory!",
366 			    current->comm, task_pid_nr(current));
367 
368 	return &bpf_probe_write_user_proto;
369 }
370 
371 #define MAX_TRACE_PRINTK_VARARGS	3
372 #define BPF_TRACE_PRINTK_SIZE		1024
373 
374 BPF_CALL_5(bpf_trace_printk, char *, fmt, u32, fmt_size, u64, arg1,
375 	   u64, arg2, u64, arg3)
376 {
377 	u64 args[MAX_TRACE_PRINTK_VARARGS] = { arg1, arg2, arg3 };
378 	struct bpf_bprintf_data data = {
379 		.get_bin_args	= true,
380 		.get_buf	= true,
381 	};
382 	int ret;
383 
384 	ret = bpf_bprintf_prepare(fmt, fmt_size, args,
385 				  MAX_TRACE_PRINTK_VARARGS, &data);
386 	if (ret < 0)
387 		return ret;
388 
389 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
390 
391 	trace_bpf_trace_printk(data.buf);
392 
393 	bpf_bprintf_cleanup(&data);
394 
395 	return ret;
396 }
397 
398 static const struct bpf_func_proto bpf_trace_printk_proto = {
399 	.func		= bpf_trace_printk,
400 	.gpl_only	= true,
401 	.ret_type	= RET_INTEGER,
402 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
403 	.arg2_type	= ARG_CONST_SIZE,
404 };
405 
406 static void __set_printk_clr_event(void)
407 {
408 	/*
409 	 * This program might be calling bpf_trace_printk,
410 	 * so enable the associated bpf_trace/bpf_trace_printk event.
411 	 * Repeat this each time as it is possible a user has
412 	 * disabled bpf_trace_printk events.  By loading a program
413 	 * calling bpf_trace_printk() however the user has expressed
414 	 * the intent to see such events.
415 	 */
416 	if (trace_set_clr_event("bpf_trace", "bpf_trace_printk", 1))
417 		pr_warn_ratelimited("could not enable bpf_trace_printk events");
418 }
419 
420 const struct bpf_func_proto *bpf_get_trace_printk_proto(void)
421 {
422 	__set_printk_clr_event();
423 	return &bpf_trace_printk_proto;
424 }
425 
426 BPF_CALL_4(bpf_trace_vprintk, char *, fmt, u32, fmt_size, const void *, args,
427 	   u32, data_len)
428 {
429 	struct bpf_bprintf_data data = {
430 		.get_bin_args	= true,
431 		.get_buf	= true,
432 	};
433 	int ret, num_args;
434 
435 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
436 	    (data_len && !args))
437 		return -EINVAL;
438 	num_args = data_len / 8;
439 
440 	ret = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
441 	if (ret < 0)
442 		return ret;
443 
444 	ret = bstr_printf(data.buf, MAX_BPRINTF_BUF, fmt, data.bin_args);
445 
446 	trace_bpf_trace_printk(data.buf);
447 
448 	bpf_bprintf_cleanup(&data);
449 
450 	return ret;
451 }
452 
453 static const struct bpf_func_proto bpf_trace_vprintk_proto = {
454 	.func		= bpf_trace_vprintk,
455 	.gpl_only	= true,
456 	.ret_type	= RET_INTEGER,
457 	.arg1_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
458 	.arg2_type	= ARG_CONST_SIZE,
459 	.arg3_type	= ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
460 	.arg4_type	= ARG_CONST_SIZE_OR_ZERO,
461 };
462 
463 const struct bpf_func_proto *bpf_get_trace_vprintk_proto(void)
464 {
465 	__set_printk_clr_event();
466 	return &bpf_trace_vprintk_proto;
467 }
468 
469 BPF_CALL_5(bpf_seq_printf, struct seq_file *, m, char *, fmt, u32, fmt_size,
470 	   const void *, args, u32, data_len)
471 {
472 	struct bpf_bprintf_data data = {
473 		.get_bin_args	= true,
474 	};
475 	int err, num_args;
476 
477 	if (data_len & 7 || data_len > MAX_BPRINTF_VARARGS * 8 ||
478 	    (data_len && !args))
479 		return -EINVAL;
480 	num_args = data_len / 8;
481 
482 	err = bpf_bprintf_prepare(fmt, fmt_size, args, num_args, &data);
483 	if (err < 0)
484 		return err;
485 
486 	seq_bprintf(m, fmt, data.bin_args);
487 
488 	bpf_bprintf_cleanup(&data);
489 
490 	return seq_has_overflowed(m) ? -EOVERFLOW : 0;
491 }
492 
493 BTF_ID_LIST_SINGLE(btf_seq_file_ids, struct, seq_file)
494 
495 static const struct bpf_func_proto bpf_seq_printf_proto = {
496 	.func		= bpf_seq_printf,
497 	.gpl_only	= true,
498 	.ret_type	= RET_INTEGER,
499 	.arg1_type	= ARG_PTR_TO_BTF_ID,
500 	.arg1_btf_id	= &btf_seq_file_ids[0],
501 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
502 	.arg3_type	= ARG_CONST_SIZE,
503 	.arg4_type      = ARG_PTR_TO_MEM | PTR_MAYBE_NULL | MEM_RDONLY,
504 	.arg5_type      = ARG_CONST_SIZE_OR_ZERO,
505 };
506 
507 BPF_CALL_3(bpf_seq_write, struct seq_file *, m, const void *, data, u32, len)
508 {
509 	return seq_write(m, data, len) ? -EOVERFLOW : 0;
510 }
511 
512 static const struct bpf_func_proto bpf_seq_write_proto = {
513 	.func		= bpf_seq_write,
514 	.gpl_only	= true,
515 	.ret_type	= RET_INTEGER,
516 	.arg1_type	= ARG_PTR_TO_BTF_ID,
517 	.arg1_btf_id	= &btf_seq_file_ids[0],
518 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
519 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
520 };
521 
522 BPF_CALL_4(bpf_seq_printf_btf, struct seq_file *, m, struct btf_ptr *, ptr,
523 	   u32, btf_ptr_size, u64, flags)
524 {
525 	const struct btf *btf;
526 	s32 btf_id;
527 	int ret;
528 
529 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
530 	if (ret)
531 		return ret;
532 
533 	return btf_type_seq_show_flags(btf, btf_id, ptr->ptr, m, flags);
534 }
535 
536 static const struct bpf_func_proto bpf_seq_printf_btf_proto = {
537 	.func		= bpf_seq_printf_btf,
538 	.gpl_only	= true,
539 	.ret_type	= RET_INTEGER,
540 	.arg1_type	= ARG_PTR_TO_BTF_ID,
541 	.arg1_btf_id	= &btf_seq_file_ids[0],
542 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
543 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
544 	.arg4_type	= ARG_ANYTHING,
545 };
546 
547 static __always_inline int
548 get_map_perf_counter(struct bpf_map *map, u64 flags,
549 		     u64 *value, u64 *enabled, u64 *running)
550 {
551 	struct bpf_array *array = container_of(map, struct bpf_array, map);
552 	unsigned int cpu = smp_processor_id();
553 	u64 index = flags & BPF_F_INDEX_MASK;
554 	struct bpf_event_entry *ee;
555 
556 	if (unlikely(flags & ~(BPF_F_INDEX_MASK)))
557 		return -EINVAL;
558 	if (index == BPF_F_CURRENT_CPU)
559 		index = cpu;
560 	if (unlikely(index >= array->map.max_entries))
561 		return -E2BIG;
562 
563 	ee = READ_ONCE(array->ptrs[index]);
564 	if (!ee)
565 		return -ENOENT;
566 
567 	return perf_event_read_local(ee->event, value, enabled, running);
568 }
569 
570 BPF_CALL_2(bpf_perf_event_read, struct bpf_map *, map, u64, flags)
571 {
572 	u64 value = 0;
573 	int err;
574 
575 	err = get_map_perf_counter(map, flags, &value, NULL, NULL);
576 	/*
577 	 * this api is ugly since we miss [-22..-2] range of valid
578 	 * counter values, but that's uapi
579 	 */
580 	if (err)
581 		return err;
582 	return value;
583 }
584 
585 static const struct bpf_func_proto bpf_perf_event_read_proto = {
586 	.func		= bpf_perf_event_read,
587 	.gpl_only	= true,
588 	.ret_type	= RET_INTEGER,
589 	.arg1_type	= ARG_CONST_MAP_PTR,
590 	.arg2_type	= ARG_ANYTHING,
591 };
592 
593 BPF_CALL_4(bpf_perf_event_read_value, struct bpf_map *, map, u64, flags,
594 	   struct bpf_perf_event_value *, buf, u32, size)
595 {
596 	int err = -EINVAL;
597 
598 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
599 		goto clear;
600 	err = get_map_perf_counter(map, flags, &buf->counter, &buf->enabled,
601 				   &buf->running);
602 	if (unlikely(err))
603 		goto clear;
604 	return 0;
605 clear:
606 	memset(buf, 0, size);
607 	return err;
608 }
609 
610 static const struct bpf_func_proto bpf_perf_event_read_value_proto = {
611 	.func		= bpf_perf_event_read_value,
612 	.gpl_only	= true,
613 	.ret_type	= RET_INTEGER,
614 	.arg1_type	= ARG_CONST_MAP_PTR,
615 	.arg2_type	= ARG_ANYTHING,
616 	.arg3_type	= ARG_PTR_TO_UNINIT_MEM,
617 	.arg4_type	= ARG_CONST_SIZE,
618 };
619 
620 static __always_inline u64
621 __bpf_perf_event_output(struct pt_regs *regs, struct bpf_map *map,
622 			u64 flags, struct perf_sample_data *sd)
623 {
624 	struct bpf_array *array = container_of(map, struct bpf_array, map);
625 	unsigned int cpu = smp_processor_id();
626 	u64 index = flags & BPF_F_INDEX_MASK;
627 	struct bpf_event_entry *ee;
628 	struct perf_event *event;
629 
630 	if (index == BPF_F_CURRENT_CPU)
631 		index = cpu;
632 	if (unlikely(index >= array->map.max_entries))
633 		return -E2BIG;
634 
635 	ee = READ_ONCE(array->ptrs[index]);
636 	if (!ee)
637 		return -ENOENT;
638 
639 	event = ee->event;
640 	if (unlikely(event->attr.type != PERF_TYPE_SOFTWARE ||
641 		     event->attr.config != PERF_COUNT_SW_BPF_OUTPUT))
642 		return -EINVAL;
643 
644 	if (unlikely(event->oncpu != cpu))
645 		return -EOPNOTSUPP;
646 
647 	return perf_event_output(event, sd, regs);
648 }
649 
650 /*
651  * Support executing tracepoints in normal, irq, and nmi context that each call
652  * bpf_perf_event_output
653  */
654 struct bpf_trace_sample_data {
655 	struct perf_sample_data sds[3];
656 };
657 
658 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_trace_sds);
659 static DEFINE_PER_CPU(int, bpf_trace_nest_level);
660 BPF_CALL_5(bpf_perf_event_output, struct pt_regs *, regs, struct bpf_map *, map,
661 	   u64, flags, void *, data, u64, size)
662 {
663 	struct bpf_trace_sample_data *sds;
664 	struct perf_raw_record raw = {
665 		.frag = {
666 			.size = size,
667 			.data = data,
668 		},
669 	};
670 	struct perf_sample_data *sd;
671 	int nest_level, err;
672 
673 	preempt_disable();
674 	sds = this_cpu_ptr(&bpf_trace_sds);
675 	nest_level = this_cpu_inc_return(bpf_trace_nest_level);
676 
677 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(sds->sds))) {
678 		err = -EBUSY;
679 		goto out;
680 	}
681 
682 	sd = &sds->sds[nest_level - 1];
683 
684 	if (unlikely(flags & ~(BPF_F_INDEX_MASK))) {
685 		err = -EINVAL;
686 		goto out;
687 	}
688 
689 	perf_sample_data_init(sd, 0, 0);
690 	perf_sample_save_raw_data(sd, &raw);
691 
692 	err = __bpf_perf_event_output(regs, map, flags, sd);
693 out:
694 	this_cpu_dec(bpf_trace_nest_level);
695 	preempt_enable();
696 	return err;
697 }
698 
699 static const struct bpf_func_proto bpf_perf_event_output_proto = {
700 	.func		= bpf_perf_event_output,
701 	.gpl_only	= true,
702 	.ret_type	= RET_INTEGER,
703 	.arg1_type	= ARG_PTR_TO_CTX,
704 	.arg2_type	= ARG_CONST_MAP_PTR,
705 	.arg3_type	= ARG_ANYTHING,
706 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
707 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
708 };
709 
710 static DEFINE_PER_CPU(int, bpf_event_output_nest_level);
711 struct bpf_nested_pt_regs {
712 	struct pt_regs regs[3];
713 };
714 static DEFINE_PER_CPU(struct bpf_nested_pt_regs, bpf_pt_regs);
715 static DEFINE_PER_CPU(struct bpf_trace_sample_data, bpf_misc_sds);
716 
717 u64 bpf_event_output(struct bpf_map *map, u64 flags, void *meta, u64 meta_size,
718 		     void *ctx, u64 ctx_size, bpf_ctx_copy_t ctx_copy)
719 {
720 	struct perf_raw_frag frag = {
721 		.copy		= ctx_copy,
722 		.size		= ctx_size,
723 		.data		= ctx,
724 	};
725 	struct perf_raw_record raw = {
726 		.frag = {
727 			{
728 				.next	= ctx_size ? &frag : NULL,
729 			},
730 			.size	= meta_size,
731 			.data	= meta,
732 		},
733 	};
734 	struct perf_sample_data *sd;
735 	struct pt_regs *regs;
736 	int nest_level;
737 	u64 ret;
738 
739 	preempt_disable();
740 	nest_level = this_cpu_inc_return(bpf_event_output_nest_level);
741 
742 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(bpf_misc_sds.sds))) {
743 		ret = -EBUSY;
744 		goto out;
745 	}
746 	sd = this_cpu_ptr(&bpf_misc_sds.sds[nest_level - 1]);
747 	regs = this_cpu_ptr(&bpf_pt_regs.regs[nest_level - 1]);
748 
749 	perf_fetch_caller_regs(regs);
750 	perf_sample_data_init(sd, 0, 0);
751 	perf_sample_save_raw_data(sd, &raw);
752 
753 	ret = __bpf_perf_event_output(regs, map, flags, sd);
754 out:
755 	this_cpu_dec(bpf_event_output_nest_level);
756 	preempt_enable();
757 	return ret;
758 }
759 
760 BPF_CALL_0(bpf_get_current_task)
761 {
762 	return (long) current;
763 }
764 
765 const struct bpf_func_proto bpf_get_current_task_proto = {
766 	.func		= bpf_get_current_task,
767 	.gpl_only	= true,
768 	.ret_type	= RET_INTEGER,
769 };
770 
771 BPF_CALL_0(bpf_get_current_task_btf)
772 {
773 	return (unsigned long) current;
774 }
775 
776 const struct bpf_func_proto bpf_get_current_task_btf_proto = {
777 	.func		= bpf_get_current_task_btf,
778 	.gpl_only	= true,
779 	.ret_type	= RET_PTR_TO_BTF_ID_TRUSTED,
780 	.ret_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
781 };
782 
783 BPF_CALL_1(bpf_task_pt_regs, struct task_struct *, task)
784 {
785 	return (unsigned long) task_pt_regs(task);
786 }
787 
788 BTF_ID_LIST(bpf_task_pt_regs_ids)
789 BTF_ID(struct, pt_regs)
790 
791 const struct bpf_func_proto bpf_task_pt_regs_proto = {
792 	.func		= bpf_task_pt_regs,
793 	.gpl_only	= true,
794 	.arg1_type	= ARG_PTR_TO_BTF_ID,
795 	.arg1_btf_id	= &btf_tracing_ids[BTF_TRACING_TYPE_TASK],
796 	.ret_type	= RET_PTR_TO_BTF_ID,
797 	.ret_btf_id	= &bpf_task_pt_regs_ids[0],
798 };
799 
800 struct send_signal_irq_work {
801 	struct irq_work irq_work;
802 	struct task_struct *task;
803 	u32 sig;
804 	enum pid_type type;
805 	bool has_siginfo;
806 	struct kernel_siginfo info;
807 };
808 
809 static DEFINE_PER_CPU(struct send_signal_irq_work, send_signal_work);
810 
811 static void do_bpf_send_signal(struct irq_work *entry)
812 {
813 	struct send_signal_irq_work *work;
814 	struct kernel_siginfo *siginfo;
815 
816 	work = container_of(entry, struct send_signal_irq_work, irq_work);
817 	siginfo = work->has_siginfo ? &work->info : SEND_SIG_PRIV;
818 
819 	group_send_sig_info(work->sig, siginfo, work->task, work->type);
820 	put_task_struct(work->task);
821 }
822 
823 static int bpf_send_signal_common(u32 sig, enum pid_type type, struct task_struct *task, u64 value)
824 {
825 	struct send_signal_irq_work *work = NULL;
826 	struct kernel_siginfo info;
827 	struct kernel_siginfo *siginfo;
828 
829 	if (!task) {
830 		task = current;
831 		siginfo = SEND_SIG_PRIV;
832 	} else {
833 		clear_siginfo(&info);
834 		info.si_signo = sig;
835 		info.si_errno = 0;
836 		info.si_code = SI_KERNEL;
837 		info.si_pid = 0;
838 		info.si_uid = 0;
839 		info.si_value.sival_ptr = (void *)(unsigned long)value;
840 		siginfo = &info;
841 	}
842 
843 	/* Similar to bpf_probe_write_user, task needs to be
844 	 * in a sound condition and kernel memory access be
845 	 * permitted in order to send signal to the current
846 	 * task.
847 	 */
848 	if (unlikely(task->flags & (PF_KTHREAD | PF_EXITING)))
849 		return -EPERM;
850 	if (unlikely(!nmi_uaccess_okay()))
851 		return -EPERM;
852 	/* Task should not be pid=1 to avoid kernel panic. */
853 	if (unlikely(is_global_init(task)))
854 		return -EPERM;
855 
856 	if (irqs_disabled()) {
857 		/* Do an early check on signal validity. Otherwise,
858 		 * the error is lost in deferred irq_work.
859 		 */
860 		if (unlikely(!valid_signal(sig)))
861 			return -EINVAL;
862 
863 		work = this_cpu_ptr(&send_signal_work);
864 		if (irq_work_is_busy(&work->irq_work))
865 			return -EBUSY;
866 
867 		/* Add the current task, which is the target of sending signal,
868 		 * to the irq_work. The current task may change when queued
869 		 * irq works get executed.
870 		 */
871 		work->task = get_task_struct(task);
872 		work->has_siginfo = siginfo == &info;
873 		if (work->has_siginfo)
874 			copy_siginfo(&work->info, &info);
875 		work->sig = sig;
876 		work->type = type;
877 		irq_work_queue(&work->irq_work);
878 		return 0;
879 	}
880 
881 	return group_send_sig_info(sig, siginfo, task, type);
882 }
883 
884 BPF_CALL_1(bpf_send_signal, u32, sig)
885 {
886 	return bpf_send_signal_common(sig, PIDTYPE_TGID, NULL, 0);
887 }
888 
889 static const struct bpf_func_proto bpf_send_signal_proto = {
890 	.func		= bpf_send_signal,
891 	.gpl_only	= false,
892 	.ret_type	= RET_INTEGER,
893 	.arg1_type	= ARG_ANYTHING,
894 };
895 
896 BPF_CALL_1(bpf_send_signal_thread, u32, sig)
897 {
898 	return bpf_send_signal_common(sig, PIDTYPE_PID, NULL, 0);
899 }
900 
901 static const struct bpf_func_proto bpf_send_signal_thread_proto = {
902 	.func		= bpf_send_signal_thread,
903 	.gpl_only	= false,
904 	.ret_type	= RET_INTEGER,
905 	.arg1_type	= ARG_ANYTHING,
906 };
907 
908 BPF_CALL_3(bpf_d_path, struct path *, path, char *, buf, u32, sz)
909 {
910 	struct path copy;
911 	long len;
912 	char *p;
913 
914 	if (!sz)
915 		return 0;
916 
917 	/*
918 	 * The path pointer is verified as trusted and safe to use,
919 	 * but let's double check it's valid anyway to workaround
920 	 * potentially broken verifier.
921 	 */
922 	len = copy_from_kernel_nofault(&copy, path, sizeof(*path));
923 	if (len < 0)
924 		return len;
925 
926 	p = d_path(&copy, buf, sz);
927 	if (IS_ERR(p)) {
928 		len = PTR_ERR(p);
929 	} else {
930 		len = buf + sz - p;
931 		memmove(buf, p, len);
932 	}
933 
934 	return len;
935 }
936 
937 BTF_SET_START(btf_allowlist_d_path)
938 #ifdef CONFIG_SECURITY
939 BTF_ID(func, security_file_permission)
940 BTF_ID(func, security_inode_getattr)
941 BTF_ID(func, security_file_open)
942 #endif
943 #ifdef CONFIG_SECURITY_PATH
944 BTF_ID(func, security_path_truncate)
945 #endif
946 BTF_ID(func, vfs_truncate)
947 BTF_ID(func, vfs_fallocate)
948 BTF_ID(func, dentry_open)
949 BTF_ID(func, vfs_getattr)
950 BTF_ID(func, filp_close)
951 BTF_SET_END(btf_allowlist_d_path)
952 
953 static bool bpf_d_path_allowed(const struct bpf_prog *prog)
954 {
955 	if (prog->type == BPF_PROG_TYPE_TRACING &&
956 	    prog->expected_attach_type == BPF_TRACE_ITER)
957 		return true;
958 
959 	if (prog->type == BPF_PROG_TYPE_LSM)
960 		return bpf_lsm_is_sleepable_hook(prog->aux->attach_btf_id);
961 
962 	return btf_id_set_contains(&btf_allowlist_d_path,
963 				   prog->aux->attach_btf_id);
964 }
965 
966 BTF_ID_LIST_SINGLE(bpf_d_path_btf_ids, struct, path)
967 
968 static const struct bpf_func_proto bpf_d_path_proto = {
969 	.func		= bpf_d_path,
970 	.gpl_only	= false,
971 	.ret_type	= RET_INTEGER,
972 	.arg1_type	= ARG_PTR_TO_BTF_ID,
973 	.arg1_btf_id	= &bpf_d_path_btf_ids[0],
974 	.arg2_type	= ARG_PTR_TO_MEM,
975 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
976 	.allowed	= bpf_d_path_allowed,
977 };
978 
979 #define BTF_F_ALL	(BTF_F_COMPACT  | BTF_F_NONAME | \
980 			 BTF_F_PTR_RAW | BTF_F_ZERO)
981 
982 static int bpf_btf_printf_prepare(struct btf_ptr *ptr, u32 btf_ptr_size,
983 				  u64 flags, const struct btf **btf,
984 				  s32 *btf_id)
985 {
986 	const struct btf_type *t;
987 
988 	if (unlikely(flags & ~(BTF_F_ALL)))
989 		return -EINVAL;
990 
991 	if (btf_ptr_size != sizeof(struct btf_ptr))
992 		return -EINVAL;
993 
994 	*btf = bpf_get_btf_vmlinux();
995 
996 	if (IS_ERR_OR_NULL(*btf))
997 		return IS_ERR(*btf) ? PTR_ERR(*btf) : -EINVAL;
998 
999 	if (ptr->type_id > 0)
1000 		*btf_id = ptr->type_id;
1001 	else
1002 		return -EINVAL;
1003 
1004 	if (*btf_id > 0)
1005 		t = btf_type_by_id(*btf, *btf_id);
1006 	if (*btf_id <= 0 || !t)
1007 		return -ENOENT;
1008 
1009 	return 0;
1010 }
1011 
1012 BPF_CALL_5(bpf_snprintf_btf, char *, str, u32, str_size, struct btf_ptr *, ptr,
1013 	   u32, btf_ptr_size, u64, flags)
1014 {
1015 	const struct btf *btf;
1016 	s32 btf_id;
1017 	int ret;
1018 
1019 	ret = bpf_btf_printf_prepare(ptr, btf_ptr_size, flags, &btf, &btf_id);
1020 	if (ret)
1021 		return ret;
1022 
1023 	return btf_type_snprintf_show(btf, btf_id, ptr->ptr, str, str_size,
1024 				      flags);
1025 }
1026 
1027 const struct bpf_func_proto bpf_snprintf_btf_proto = {
1028 	.func		= bpf_snprintf_btf,
1029 	.gpl_only	= false,
1030 	.ret_type	= RET_INTEGER,
1031 	.arg1_type	= ARG_PTR_TO_MEM,
1032 	.arg2_type	= ARG_CONST_SIZE,
1033 	.arg3_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1034 	.arg4_type	= ARG_CONST_SIZE,
1035 	.arg5_type	= ARG_ANYTHING,
1036 };
1037 
1038 BPF_CALL_1(bpf_get_func_ip_tracing, void *, ctx)
1039 {
1040 	/* This helper call is inlined by verifier. */
1041 	return ((u64 *)ctx)[-2];
1042 }
1043 
1044 static const struct bpf_func_proto bpf_get_func_ip_proto_tracing = {
1045 	.func		= bpf_get_func_ip_tracing,
1046 	.gpl_only	= true,
1047 	.ret_type	= RET_INTEGER,
1048 	.arg1_type	= ARG_PTR_TO_CTX,
1049 };
1050 
1051 #ifdef CONFIG_X86_KERNEL_IBT
1052 static unsigned long get_entry_ip(unsigned long fentry_ip)
1053 {
1054 	u32 instr;
1055 
1056 	/* We want to be extra safe in case entry ip is on the page edge,
1057 	 * but otherwise we need to avoid get_kernel_nofault()'s overhead.
1058 	 */
1059 	if ((fentry_ip & ~PAGE_MASK) < ENDBR_INSN_SIZE) {
1060 		if (get_kernel_nofault(instr, (u32 *)(fentry_ip - ENDBR_INSN_SIZE)))
1061 			return fentry_ip;
1062 	} else {
1063 		instr = *(u32 *)(fentry_ip - ENDBR_INSN_SIZE);
1064 	}
1065 	if (is_endbr(instr))
1066 		fentry_ip -= ENDBR_INSN_SIZE;
1067 	return fentry_ip;
1068 }
1069 #else
1070 #define get_entry_ip(fentry_ip) fentry_ip
1071 #endif
1072 
1073 BPF_CALL_1(bpf_get_func_ip_kprobe, struct pt_regs *, regs)
1074 {
1075 	struct bpf_trace_run_ctx *run_ctx __maybe_unused;
1076 	struct kprobe *kp;
1077 
1078 #ifdef CONFIG_UPROBES
1079 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1080 	if (run_ctx->is_uprobe)
1081 		return ((struct uprobe_dispatch_data *)current->utask->vaddr)->bp_addr;
1082 #endif
1083 
1084 	kp = kprobe_running();
1085 
1086 	if (!kp || !(kp->flags & KPROBE_FLAG_ON_FUNC_ENTRY))
1087 		return 0;
1088 
1089 	return get_entry_ip((uintptr_t)kp->addr);
1090 }
1091 
1092 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe = {
1093 	.func		= bpf_get_func_ip_kprobe,
1094 	.gpl_only	= true,
1095 	.ret_type	= RET_INTEGER,
1096 	.arg1_type	= ARG_PTR_TO_CTX,
1097 };
1098 
1099 BPF_CALL_1(bpf_get_func_ip_kprobe_multi, struct pt_regs *, regs)
1100 {
1101 	return bpf_kprobe_multi_entry_ip(current->bpf_ctx);
1102 }
1103 
1104 static const struct bpf_func_proto bpf_get_func_ip_proto_kprobe_multi = {
1105 	.func		= bpf_get_func_ip_kprobe_multi,
1106 	.gpl_only	= false,
1107 	.ret_type	= RET_INTEGER,
1108 	.arg1_type	= ARG_PTR_TO_CTX,
1109 };
1110 
1111 BPF_CALL_1(bpf_get_attach_cookie_kprobe_multi, struct pt_regs *, regs)
1112 {
1113 	return bpf_kprobe_multi_cookie(current->bpf_ctx);
1114 }
1115 
1116 static const struct bpf_func_proto bpf_get_attach_cookie_proto_kmulti = {
1117 	.func		= bpf_get_attach_cookie_kprobe_multi,
1118 	.gpl_only	= false,
1119 	.ret_type	= RET_INTEGER,
1120 	.arg1_type	= ARG_PTR_TO_CTX,
1121 };
1122 
1123 BPF_CALL_1(bpf_get_func_ip_uprobe_multi, struct pt_regs *, regs)
1124 {
1125 	return bpf_uprobe_multi_entry_ip(current->bpf_ctx);
1126 }
1127 
1128 static const struct bpf_func_proto bpf_get_func_ip_proto_uprobe_multi = {
1129 	.func		= bpf_get_func_ip_uprobe_multi,
1130 	.gpl_only	= false,
1131 	.ret_type	= RET_INTEGER,
1132 	.arg1_type	= ARG_PTR_TO_CTX,
1133 };
1134 
1135 BPF_CALL_1(bpf_get_attach_cookie_uprobe_multi, struct pt_regs *, regs)
1136 {
1137 	return bpf_uprobe_multi_cookie(current->bpf_ctx);
1138 }
1139 
1140 static const struct bpf_func_proto bpf_get_attach_cookie_proto_umulti = {
1141 	.func		= bpf_get_attach_cookie_uprobe_multi,
1142 	.gpl_only	= false,
1143 	.ret_type	= RET_INTEGER,
1144 	.arg1_type	= ARG_PTR_TO_CTX,
1145 };
1146 
1147 BPF_CALL_1(bpf_get_attach_cookie_trace, void *, ctx)
1148 {
1149 	struct bpf_trace_run_ctx *run_ctx;
1150 
1151 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1152 	return run_ctx->bpf_cookie;
1153 }
1154 
1155 static const struct bpf_func_proto bpf_get_attach_cookie_proto_trace = {
1156 	.func		= bpf_get_attach_cookie_trace,
1157 	.gpl_only	= false,
1158 	.ret_type	= RET_INTEGER,
1159 	.arg1_type	= ARG_PTR_TO_CTX,
1160 };
1161 
1162 BPF_CALL_1(bpf_get_attach_cookie_pe, struct bpf_perf_event_data_kern *, ctx)
1163 {
1164 	return ctx->event->bpf_cookie;
1165 }
1166 
1167 static const struct bpf_func_proto bpf_get_attach_cookie_proto_pe = {
1168 	.func		= bpf_get_attach_cookie_pe,
1169 	.gpl_only	= false,
1170 	.ret_type	= RET_INTEGER,
1171 	.arg1_type	= ARG_PTR_TO_CTX,
1172 };
1173 
1174 BPF_CALL_1(bpf_get_attach_cookie_tracing, void *, ctx)
1175 {
1176 	struct bpf_trace_run_ctx *run_ctx;
1177 
1178 	run_ctx = container_of(current->bpf_ctx, struct bpf_trace_run_ctx, run_ctx);
1179 	return run_ctx->bpf_cookie;
1180 }
1181 
1182 static const struct bpf_func_proto bpf_get_attach_cookie_proto_tracing = {
1183 	.func		= bpf_get_attach_cookie_tracing,
1184 	.gpl_only	= false,
1185 	.ret_type	= RET_INTEGER,
1186 	.arg1_type	= ARG_PTR_TO_CTX,
1187 };
1188 
1189 BPF_CALL_3(bpf_get_branch_snapshot, void *, buf, u32, size, u64, flags)
1190 {
1191 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1192 	u32 entry_cnt = size / br_entry_size;
1193 
1194 	entry_cnt = static_call(perf_snapshot_branch_stack)(buf, entry_cnt);
1195 
1196 	if (unlikely(flags))
1197 		return -EINVAL;
1198 
1199 	if (!entry_cnt)
1200 		return -ENOENT;
1201 
1202 	return entry_cnt * br_entry_size;
1203 }
1204 
1205 static const struct bpf_func_proto bpf_get_branch_snapshot_proto = {
1206 	.func		= bpf_get_branch_snapshot,
1207 	.gpl_only	= true,
1208 	.ret_type	= RET_INTEGER,
1209 	.arg1_type	= ARG_PTR_TO_UNINIT_MEM,
1210 	.arg2_type	= ARG_CONST_SIZE_OR_ZERO,
1211 };
1212 
1213 BPF_CALL_3(get_func_arg, void *, ctx, u32, n, u64 *, value)
1214 {
1215 	/* This helper call is inlined by verifier. */
1216 	u64 nr_args = ((u64 *)ctx)[-1];
1217 
1218 	if ((u64) n >= nr_args)
1219 		return -EINVAL;
1220 	*value = ((u64 *)ctx)[n];
1221 	return 0;
1222 }
1223 
1224 static const struct bpf_func_proto bpf_get_func_arg_proto = {
1225 	.func		= get_func_arg,
1226 	.ret_type	= RET_INTEGER,
1227 	.arg1_type	= ARG_PTR_TO_CTX,
1228 	.arg2_type	= ARG_ANYTHING,
1229 	.arg3_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1230 	.arg3_size	= sizeof(u64),
1231 };
1232 
1233 BPF_CALL_2(get_func_ret, void *, ctx, u64 *, value)
1234 {
1235 	/* This helper call is inlined by verifier. */
1236 	u64 nr_args = ((u64 *)ctx)[-1];
1237 
1238 	*value = ((u64 *)ctx)[nr_args];
1239 	return 0;
1240 }
1241 
1242 static const struct bpf_func_proto bpf_get_func_ret_proto = {
1243 	.func		= get_func_ret,
1244 	.ret_type	= RET_INTEGER,
1245 	.arg1_type	= ARG_PTR_TO_CTX,
1246 	.arg2_type	= ARG_PTR_TO_FIXED_SIZE_MEM | MEM_UNINIT | MEM_WRITE | MEM_ALIGNED,
1247 	.arg2_size	= sizeof(u64),
1248 };
1249 
1250 BPF_CALL_1(get_func_arg_cnt, void *, ctx)
1251 {
1252 	/* This helper call is inlined by verifier. */
1253 	return ((u64 *)ctx)[-1];
1254 }
1255 
1256 static const struct bpf_func_proto bpf_get_func_arg_cnt_proto = {
1257 	.func		= get_func_arg_cnt,
1258 	.ret_type	= RET_INTEGER,
1259 	.arg1_type	= ARG_PTR_TO_CTX,
1260 };
1261 
1262 #ifdef CONFIG_KEYS
1263 __bpf_kfunc_start_defs();
1264 
1265 /**
1266  * bpf_lookup_user_key - lookup a key by its serial
1267  * @serial: key handle serial number
1268  * @flags: lookup-specific flags
1269  *
1270  * Search a key with a given *serial* and the provided *flags*.
1271  * If found, increment the reference count of the key by one, and
1272  * return it in the bpf_key structure.
1273  *
1274  * The bpf_key structure must be passed to bpf_key_put() when done
1275  * with it, so that the key reference count is decremented and the
1276  * bpf_key structure is freed.
1277  *
1278  * Permission checks are deferred to the time the key is used by
1279  * one of the available key-specific kfuncs.
1280  *
1281  * Set *flags* with KEY_LOOKUP_CREATE, to attempt creating a requested
1282  * special keyring (e.g. session keyring), if it doesn't yet exist.
1283  * Set *flags* with KEY_LOOKUP_PARTIAL, to lookup a key without waiting
1284  * for the key construction, and to retrieve uninstantiated keys (keys
1285  * without data attached to them).
1286  *
1287  * Return: a bpf_key pointer with a valid key pointer if the key is found, a
1288  *         NULL pointer otherwise.
1289  */
1290 __bpf_kfunc struct bpf_key *bpf_lookup_user_key(u32 serial, u64 flags)
1291 {
1292 	key_ref_t key_ref;
1293 	struct bpf_key *bkey;
1294 
1295 	if (flags & ~KEY_LOOKUP_ALL)
1296 		return NULL;
1297 
1298 	/*
1299 	 * Permission check is deferred until the key is used, as the
1300 	 * intent of the caller is unknown here.
1301 	 */
1302 	key_ref = lookup_user_key(serial, flags, KEY_DEFER_PERM_CHECK);
1303 	if (IS_ERR(key_ref))
1304 		return NULL;
1305 
1306 	bkey = kmalloc(sizeof(*bkey), GFP_KERNEL);
1307 	if (!bkey) {
1308 		key_put(key_ref_to_ptr(key_ref));
1309 		return NULL;
1310 	}
1311 
1312 	bkey->key = key_ref_to_ptr(key_ref);
1313 	bkey->has_ref = true;
1314 
1315 	return bkey;
1316 }
1317 
1318 /**
1319  * bpf_lookup_system_key - lookup a key by a system-defined ID
1320  * @id: key ID
1321  *
1322  * Obtain a bpf_key structure with a key pointer set to the passed key ID.
1323  * The key pointer is marked as invalid, to prevent bpf_key_put() from
1324  * attempting to decrement the key reference count on that pointer. The key
1325  * pointer set in such way is currently understood only by
1326  * verify_pkcs7_signature().
1327  *
1328  * Set *id* to one of the values defined in include/linux/verification.h:
1329  * 0 for the primary keyring (immutable keyring of system keys);
1330  * VERIFY_USE_SECONDARY_KEYRING for both the primary and secondary keyring
1331  * (where keys can be added only if they are vouched for by existing keys
1332  * in those keyrings); VERIFY_USE_PLATFORM_KEYRING for the platform
1333  * keyring (primarily used by the integrity subsystem to verify a kexec'ed
1334  * kerned image and, possibly, the initramfs signature).
1335  *
1336  * Return: a bpf_key pointer with an invalid key pointer set from the
1337  *         pre-determined ID on success, a NULL pointer otherwise
1338  */
1339 __bpf_kfunc struct bpf_key *bpf_lookup_system_key(u64 id)
1340 {
1341 	struct bpf_key *bkey;
1342 
1343 	if (system_keyring_id_check(id) < 0)
1344 		return NULL;
1345 
1346 	bkey = kmalloc(sizeof(*bkey), GFP_ATOMIC);
1347 	if (!bkey)
1348 		return NULL;
1349 
1350 	bkey->key = (struct key *)(unsigned long)id;
1351 	bkey->has_ref = false;
1352 
1353 	return bkey;
1354 }
1355 
1356 /**
1357  * bpf_key_put - decrement key reference count if key is valid and free bpf_key
1358  * @bkey: bpf_key structure
1359  *
1360  * Decrement the reference count of the key inside *bkey*, if the pointer
1361  * is valid, and free *bkey*.
1362  */
1363 __bpf_kfunc void bpf_key_put(struct bpf_key *bkey)
1364 {
1365 	if (bkey->has_ref)
1366 		key_put(bkey->key);
1367 
1368 	kfree(bkey);
1369 }
1370 
1371 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1372 /**
1373  * bpf_verify_pkcs7_signature - verify a PKCS#7 signature
1374  * @data_p: data to verify
1375  * @sig_p: signature of the data
1376  * @trusted_keyring: keyring with keys trusted for signature verification
1377  *
1378  * Verify the PKCS#7 signature *sig_ptr* against the supplied *data_ptr*
1379  * with keys in a keyring referenced by *trusted_keyring*.
1380  *
1381  * Return: 0 on success, a negative value on error.
1382  */
1383 __bpf_kfunc int bpf_verify_pkcs7_signature(struct bpf_dynptr *data_p,
1384 			       struct bpf_dynptr *sig_p,
1385 			       struct bpf_key *trusted_keyring)
1386 {
1387 	struct bpf_dynptr_kern *data_ptr = (struct bpf_dynptr_kern *)data_p;
1388 	struct bpf_dynptr_kern *sig_ptr = (struct bpf_dynptr_kern *)sig_p;
1389 	const void *data, *sig;
1390 	u32 data_len, sig_len;
1391 	int ret;
1392 
1393 	if (trusted_keyring->has_ref) {
1394 		/*
1395 		 * Do the permission check deferred in bpf_lookup_user_key().
1396 		 * See bpf_lookup_user_key() for more details.
1397 		 *
1398 		 * A call to key_task_permission() here would be redundant, as
1399 		 * it is already done by keyring_search() called by
1400 		 * find_asymmetric_key().
1401 		 */
1402 		ret = key_validate(trusted_keyring->key);
1403 		if (ret < 0)
1404 			return ret;
1405 	}
1406 
1407 	data_len = __bpf_dynptr_size(data_ptr);
1408 	data = __bpf_dynptr_data(data_ptr, data_len);
1409 	sig_len = __bpf_dynptr_size(sig_ptr);
1410 	sig = __bpf_dynptr_data(sig_ptr, sig_len);
1411 
1412 	return verify_pkcs7_signature(data, data_len, sig, sig_len,
1413 				      trusted_keyring->key,
1414 				      VERIFYING_UNSPECIFIED_SIGNATURE, NULL,
1415 				      NULL);
1416 }
1417 #endif /* CONFIG_SYSTEM_DATA_VERIFICATION */
1418 
1419 __bpf_kfunc_end_defs();
1420 
1421 BTF_KFUNCS_START(key_sig_kfunc_set)
1422 BTF_ID_FLAGS(func, bpf_lookup_user_key, KF_ACQUIRE | KF_RET_NULL | KF_SLEEPABLE)
1423 BTF_ID_FLAGS(func, bpf_lookup_system_key, KF_ACQUIRE | KF_RET_NULL)
1424 BTF_ID_FLAGS(func, bpf_key_put, KF_RELEASE)
1425 #ifdef CONFIG_SYSTEM_DATA_VERIFICATION
1426 BTF_ID_FLAGS(func, bpf_verify_pkcs7_signature, KF_SLEEPABLE)
1427 #endif
1428 BTF_KFUNCS_END(key_sig_kfunc_set)
1429 
1430 static const struct btf_kfunc_id_set bpf_key_sig_kfunc_set = {
1431 	.owner = THIS_MODULE,
1432 	.set = &key_sig_kfunc_set,
1433 };
1434 
1435 static int __init bpf_key_sig_kfuncs_init(void)
1436 {
1437 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING,
1438 					 &bpf_key_sig_kfunc_set);
1439 }
1440 
1441 late_initcall(bpf_key_sig_kfuncs_init);
1442 #endif /* CONFIG_KEYS */
1443 
1444 static const struct bpf_func_proto *
1445 bpf_tracing_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1446 {
1447 	switch (func_id) {
1448 	case BPF_FUNC_map_lookup_elem:
1449 		return &bpf_map_lookup_elem_proto;
1450 	case BPF_FUNC_map_update_elem:
1451 		return &bpf_map_update_elem_proto;
1452 	case BPF_FUNC_map_delete_elem:
1453 		return &bpf_map_delete_elem_proto;
1454 	case BPF_FUNC_map_push_elem:
1455 		return &bpf_map_push_elem_proto;
1456 	case BPF_FUNC_map_pop_elem:
1457 		return &bpf_map_pop_elem_proto;
1458 	case BPF_FUNC_map_peek_elem:
1459 		return &bpf_map_peek_elem_proto;
1460 	case BPF_FUNC_map_lookup_percpu_elem:
1461 		return &bpf_map_lookup_percpu_elem_proto;
1462 	case BPF_FUNC_ktime_get_ns:
1463 		return &bpf_ktime_get_ns_proto;
1464 	case BPF_FUNC_ktime_get_boot_ns:
1465 		return &bpf_ktime_get_boot_ns_proto;
1466 	case BPF_FUNC_tail_call:
1467 		return &bpf_tail_call_proto;
1468 	case BPF_FUNC_get_current_task:
1469 		return &bpf_get_current_task_proto;
1470 	case BPF_FUNC_get_current_task_btf:
1471 		return &bpf_get_current_task_btf_proto;
1472 	case BPF_FUNC_task_pt_regs:
1473 		return &bpf_task_pt_regs_proto;
1474 	case BPF_FUNC_get_current_uid_gid:
1475 		return &bpf_get_current_uid_gid_proto;
1476 	case BPF_FUNC_get_current_comm:
1477 		return &bpf_get_current_comm_proto;
1478 	case BPF_FUNC_trace_printk:
1479 		return bpf_get_trace_printk_proto();
1480 	case BPF_FUNC_get_smp_processor_id:
1481 		return &bpf_get_smp_processor_id_proto;
1482 	case BPF_FUNC_get_numa_node_id:
1483 		return &bpf_get_numa_node_id_proto;
1484 	case BPF_FUNC_perf_event_read:
1485 		return &bpf_perf_event_read_proto;
1486 	case BPF_FUNC_get_prandom_u32:
1487 		return &bpf_get_prandom_u32_proto;
1488 	case BPF_FUNC_probe_write_user:
1489 		return security_locked_down(LOCKDOWN_BPF_WRITE_USER) < 0 ?
1490 		       NULL : bpf_get_probe_write_proto();
1491 	case BPF_FUNC_probe_read_user:
1492 		return &bpf_probe_read_user_proto;
1493 	case BPF_FUNC_probe_read_kernel:
1494 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1495 		       NULL : &bpf_probe_read_kernel_proto;
1496 	case BPF_FUNC_probe_read_user_str:
1497 		return &bpf_probe_read_user_str_proto;
1498 	case BPF_FUNC_probe_read_kernel_str:
1499 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1500 		       NULL : &bpf_probe_read_kernel_str_proto;
1501 #ifdef CONFIG_ARCH_HAS_NON_OVERLAPPING_ADDRESS_SPACE
1502 	case BPF_FUNC_probe_read:
1503 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1504 		       NULL : &bpf_probe_read_compat_proto;
1505 	case BPF_FUNC_probe_read_str:
1506 		return security_locked_down(LOCKDOWN_BPF_READ_KERNEL) < 0 ?
1507 		       NULL : &bpf_probe_read_compat_str_proto;
1508 #endif
1509 #ifdef CONFIG_CGROUPS
1510 	case BPF_FUNC_cgrp_storage_get:
1511 		return &bpf_cgrp_storage_get_proto;
1512 	case BPF_FUNC_cgrp_storage_delete:
1513 		return &bpf_cgrp_storage_delete_proto;
1514 	case BPF_FUNC_current_task_under_cgroup:
1515 		return &bpf_current_task_under_cgroup_proto;
1516 #endif
1517 	case BPF_FUNC_send_signal:
1518 		return &bpf_send_signal_proto;
1519 	case BPF_FUNC_send_signal_thread:
1520 		return &bpf_send_signal_thread_proto;
1521 	case BPF_FUNC_perf_event_read_value:
1522 		return &bpf_perf_event_read_value_proto;
1523 	case BPF_FUNC_ringbuf_output:
1524 		return &bpf_ringbuf_output_proto;
1525 	case BPF_FUNC_ringbuf_reserve:
1526 		return &bpf_ringbuf_reserve_proto;
1527 	case BPF_FUNC_ringbuf_submit:
1528 		return &bpf_ringbuf_submit_proto;
1529 	case BPF_FUNC_ringbuf_discard:
1530 		return &bpf_ringbuf_discard_proto;
1531 	case BPF_FUNC_ringbuf_query:
1532 		return &bpf_ringbuf_query_proto;
1533 	case BPF_FUNC_jiffies64:
1534 		return &bpf_jiffies64_proto;
1535 	case BPF_FUNC_get_task_stack:
1536 		return prog->sleepable ? &bpf_get_task_stack_sleepable_proto
1537 				       : &bpf_get_task_stack_proto;
1538 	case BPF_FUNC_copy_from_user:
1539 		return &bpf_copy_from_user_proto;
1540 	case BPF_FUNC_copy_from_user_task:
1541 		return &bpf_copy_from_user_task_proto;
1542 	case BPF_FUNC_snprintf_btf:
1543 		return &bpf_snprintf_btf_proto;
1544 	case BPF_FUNC_per_cpu_ptr:
1545 		return &bpf_per_cpu_ptr_proto;
1546 	case BPF_FUNC_this_cpu_ptr:
1547 		return &bpf_this_cpu_ptr_proto;
1548 	case BPF_FUNC_task_storage_get:
1549 		if (bpf_prog_check_recur(prog))
1550 			return &bpf_task_storage_get_recur_proto;
1551 		return &bpf_task_storage_get_proto;
1552 	case BPF_FUNC_task_storage_delete:
1553 		if (bpf_prog_check_recur(prog))
1554 			return &bpf_task_storage_delete_recur_proto;
1555 		return &bpf_task_storage_delete_proto;
1556 	case BPF_FUNC_for_each_map_elem:
1557 		return &bpf_for_each_map_elem_proto;
1558 	case BPF_FUNC_snprintf:
1559 		return &bpf_snprintf_proto;
1560 	case BPF_FUNC_get_func_ip:
1561 		return &bpf_get_func_ip_proto_tracing;
1562 	case BPF_FUNC_get_branch_snapshot:
1563 		return &bpf_get_branch_snapshot_proto;
1564 	case BPF_FUNC_find_vma:
1565 		return &bpf_find_vma_proto;
1566 	case BPF_FUNC_trace_vprintk:
1567 		return bpf_get_trace_vprintk_proto();
1568 	default:
1569 		return bpf_base_func_proto(func_id, prog);
1570 	}
1571 }
1572 
1573 static bool is_kprobe_multi(const struct bpf_prog *prog)
1574 {
1575 	return prog->expected_attach_type == BPF_TRACE_KPROBE_MULTI ||
1576 	       prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1577 }
1578 
1579 static inline bool is_kprobe_session(const struct bpf_prog *prog)
1580 {
1581 	return prog->expected_attach_type == BPF_TRACE_KPROBE_SESSION;
1582 }
1583 
1584 static const struct bpf_func_proto *
1585 kprobe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1586 {
1587 	switch (func_id) {
1588 	case BPF_FUNC_perf_event_output:
1589 		return &bpf_perf_event_output_proto;
1590 	case BPF_FUNC_get_stackid:
1591 		return &bpf_get_stackid_proto;
1592 	case BPF_FUNC_get_stack:
1593 		return prog->sleepable ? &bpf_get_stack_sleepable_proto : &bpf_get_stack_proto;
1594 #ifdef CONFIG_BPF_KPROBE_OVERRIDE
1595 	case BPF_FUNC_override_return:
1596 		return &bpf_override_return_proto;
1597 #endif
1598 	case BPF_FUNC_get_func_ip:
1599 		if (is_kprobe_multi(prog))
1600 			return &bpf_get_func_ip_proto_kprobe_multi;
1601 		if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
1602 			return &bpf_get_func_ip_proto_uprobe_multi;
1603 		return &bpf_get_func_ip_proto_kprobe;
1604 	case BPF_FUNC_get_attach_cookie:
1605 		if (is_kprobe_multi(prog))
1606 			return &bpf_get_attach_cookie_proto_kmulti;
1607 		if (prog->expected_attach_type == BPF_TRACE_UPROBE_MULTI)
1608 			return &bpf_get_attach_cookie_proto_umulti;
1609 		return &bpf_get_attach_cookie_proto_trace;
1610 	default:
1611 		return bpf_tracing_func_proto(func_id, prog);
1612 	}
1613 }
1614 
1615 /* bpf+kprobe programs can access fields of 'struct pt_regs' */
1616 static bool kprobe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1617 					const struct bpf_prog *prog,
1618 					struct bpf_insn_access_aux *info)
1619 {
1620 	if (off < 0 || off >= sizeof(struct pt_regs))
1621 		return false;
1622 	if (type != BPF_READ)
1623 		return false;
1624 	if (off % size != 0)
1625 		return false;
1626 	/*
1627 	 * Assertion for 32 bit to make sure last 8 byte access
1628 	 * (BPF_DW) to the last 4 byte member is disallowed.
1629 	 */
1630 	if (off + size > sizeof(struct pt_regs))
1631 		return false;
1632 
1633 	return true;
1634 }
1635 
1636 const struct bpf_verifier_ops kprobe_verifier_ops = {
1637 	.get_func_proto  = kprobe_prog_func_proto,
1638 	.is_valid_access = kprobe_prog_is_valid_access,
1639 };
1640 
1641 const struct bpf_prog_ops kprobe_prog_ops = {
1642 };
1643 
1644 BPF_CALL_5(bpf_perf_event_output_tp, void *, tp_buff, struct bpf_map *, map,
1645 	   u64, flags, void *, data, u64, size)
1646 {
1647 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1648 
1649 	/*
1650 	 * r1 points to perf tracepoint buffer where first 8 bytes are hidden
1651 	 * from bpf program and contain a pointer to 'struct pt_regs'. Fetch it
1652 	 * from there and call the same bpf_perf_event_output() helper inline.
1653 	 */
1654 	return ____bpf_perf_event_output(regs, map, flags, data, size);
1655 }
1656 
1657 static const struct bpf_func_proto bpf_perf_event_output_proto_tp = {
1658 	.func		= bpf_perf_event_output_tp,
1659 	.gpl_only	= true,
1660 	.ret_type	= RET_INTEGER,
1661 	.arg1_type	= ARG_PTR_TO_CTX,
1662 	.arg2_type	= ARG_CONST_MAP_PTR,
1663 	.arg3_type	= ARG_ANYTHING,
1664 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1665 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1666 };
1667 
1668 BPF_CALL_3(bpf_get_stackid_tp, void *, tp_buff, struct bpf_map *, map,
1669 	   u64, flags)
1670 {
1671 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1672 
1673 	/*
1674 	 * Same comment as in bpf_perf_event_output_tp(), only that this time
1675 	 * the other helper's function body cannot be inlined due to being
1676 	 * external, thus we need to call raw helper function.
1677 	 */
1678 	return bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1679 			       flags, 0, 0);
1680 }
1681 
1682 static const struct bpf_func_proto bpf_get_stackid_proto_tp = {
1683 	.func		= bpf_get_stackid_tp,
1684 	.gpl_only	= true,
1685 	.ret_type	= RET_INTEGER,
1686 	.arg1_type	= ARG_PTR_TO_CTX,
1687 	.arg2_type	= ARG_CONST_MAP_PTR,
1688 	.arg3_type	= ARG_ANYTHING,
1689 };
1690 
1691 BPF_CALL_4(bpf_get_stack_tp, void *, tp_buff, void *, buf, u32, size,
1692 	   u64, flags)
1693 {
1694 	struct pt_regs *regs = *(struct pt_regs **)tp_buff;
1695 
1696 	return bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1697 			     (unsigned long) size, flags, 0);
1698 }
1699 
1700 static const struct bpf_func_proto bpf_get_stack_proto_tp = {
1701 	.func		= bpf_get_stack_tp,
1702 	.gpl_only	= true,
1703 	.ret_type	= RET_INTEGER,
1704 	.arg1_type	= ARG_PTR_TO_CTX,
1705 	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1706 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1707 	.arg4_type	= ARG_ANYTHING,
1708 };
1709 
1710 static const struct bpf_func_proto *
1711 tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1712 {
1713 	switch (func_id) {
1714 	case BPF_FUNC_perf_event_output:
1715 		return &bpf_perf_event_output_proto_tp;
1716 	case BPF_FUNC_get_stackid:
1717 		return &bpf_get_stackid_proto_tp;
1718 	case BPF_FUNC_get_stack:
1719 		return &bpf_get_stack_proto_tp;
1720 	case BPF_FUNC_get_attach_cookie:
1721 		return &bpf_get_attach_cookie_proto_trace;
1722 	default:
1723 		return bpf_tracing_func_proto(func_id, prog);
1724 	}
1725 }
1726 
1727 static bool tp_prog_is_valid_access(int off, int size, enum bpf_access_type type,
1728 				    const struct bpf_prog *prog,
1729 				    struct bpf_insn_access_aux *info)
1730 {
1731 	if (off < sizeof(void *) || off >= PERF_MAX_TRACE_SIZE)
1732 		return false;
1733 	if (type != BPF_READ)
1734 		return false;
1735 	if (off % size != 0)
1736 		return false;
1737 
1738 	BUILD_BUG_ON(PERF_MAX_TRACE_SIZE % sizeof(__u64));
1739 	return true;
1740 }
1741 
1742 const struct bpf_verifier_ops tracepoint_verifier_ops = {
1743 	.get_func_proto  = tp_prog_func_proto,
1744 	.is_valid_access = tp_prog_is_valid_access,
1745 };
1746 
1747 const struct bpf_prog_ops tracepoint_prog_ops = {
1748 };
1749 
1750 BPF_CALL_3(bpf_perf_prog_read_value, struct bpf_perf_event_data_kern *, ctx,
1751 	   struct bpf_perf_event_value *, buf, u32, size)
1752 {
1753 	int err = -EINVAL;
1754 
1755 	if (unlikely(size != sizeof(struct bpf_perf_event_value)))
1756 		goto clear;
1757 	err = perf_event_read_local(ctx->event, &buf->counter, &buf->enabled,
1758 				    &buf->running);
1759 	if (unlikely(err))
1760 		goto clear;
1761 	return 0;
1762 clear:
1763 	memset(buf, 0, size);
1764 	return err;
1765 }
1766 
1767 static const struct bpf_func_proto bpf_perf_prog_read_value_proto = {
1768          .func           = bpf_perf_prog_read_value,
1769          .gpl_only       = true,
1770          .ret_type       = RET_INTEGER,
1771          .arg1_type      = ARG_PTR_TO_CTX,
1772          .arg2_type      = ARG_PTR_TO_UNINIT_MEM,
1773          .arg3_type      = ARG_CONST_SIZE,
1774 };
1775 
1776 BPF_CALL_4(bpf_read_branch_records, struct bpf_perf_event_data_kern *, ctx,
1777 	   void *, buf, u32, size, u64, flags)
1778 {
1779 	static const u32 br_entry_size = sizeof(struct perf_branch_entry);
1780 	struct perf_branch_stack *br_stack = ctx->data->br_stack;
1781 	u32 to_copy;
1782 
1783 	if (unlikely(flags & ~BPF_F_GET_BRANCH_RECORDS_SIZE))
1784 		return -EINVAL;
1785 
1786 	if (unlikely(!(ctx->data->sample_flags & PERF_SAMPLE_BRANCH_STACK)))
1787 		return -ENOENT;
1788 
1789 	if (unlikely(!br_stack))
1790 		return -ENOENT;
1791 
1792 	if (flags & BPF_F_GET_BRANCH_RECORDS_SIZE)
1793 		return br_stack->nr * br_entry_size;
1794 
1795 	if (!buf || (size % br_entry_size != 0))
1796 		return -EINVAL;
1797 
1798 	to_copy = min_t(u32, br_stack->nr * br_entry_size, size);
1799 	memcpy(buf, br_stack->entries, to_copy);
1800 
1801 	return to_copy;
1802 }
1803 
1804 static const struct bpf_func_proto bpf_read_branch_records_proto = {
1805 	.func           = bpf_read_branch_records,
1806 	.gpl_only       = true,
1807 	.ret_type       = RET_INTEGER,
1808 	.arg1_type      = ARG_PTR_TO_CTX,
1809 	.arg2_type      = ARG_PTR_TO_MEM_OR_NULL,
1810 	.arg3_type      = ARG_CONST_SIZE_OR_ZERO,
1811 	.arg4_type      = ARG_ANYTHING,
1812 };
1813 
1814 static const struct bpf_func_proto *
1815 pe_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1816 {
1817 	switch (func_id) {
1818 	case BPF_FUNC_perf_event_output:
1819 		return &bpf_perf_event_output_proto_tp;
1820 	case BPF_FUNC_get_stackid:
1821 		return &bpf_get_stackid_proto_pe;
1822 	case BPF_FUNC_get_stack:
1823 		return &bpf_get_stack_proto_pe;
1824 	case BPF_FUNC_perf_prog_read_value:
1825 		return &bpf_perf_prog_read_value_proto;
1826 	case BPF_FUNC_read_branch_records:
1827 		return &bpf_read_branch_records_proto;
1828 	case BPF_FUNC_get_attach_cookie:
1829 		return &bpf_get_attach_cookie_proto_pe;
1830 	default:
1831 		return bpf_tracing_func_proto(func_id, prog);
1832 	}
1833 }
1834 
1835 /*
1836  * bpf_raw_tp_regs are separate from bpf_pt_regs used from skb/xdp
1837  * to avoid potential recursive reuse issue when/if tracepoints are added
1838  * inside bpf_*_event_output, bpf_get_stackid and/or bpf_get_stack.
1839  *
1840  * Since raw tracepoints run despite bpf_prog_active, support concurrent usage
1841  * in normal, irq, and nmi context.
1842  */
1843 struct bpf_raw_tp_regs {
1844 	struct pt_regs regs[3];
1845 };
1846 static DEFINE_PER_CPU(struct bpf_raw_tp_regs, bpf_raw_tp_regs);
1847 static DEFINE_PER_CPU(int, bpf_raw_tp_nest_level);
1848 static struct pt_regs *get_bpf_raw_tp_regs(void)
1849 {
1850 	struct bpf_raw_tp_regs *tp_regs = this_cpu_ptr(&bpf_raw_tp_regs);
1851 	int nest_level = this_cpu_inc_return(bpf_raw_tp_nest_level);
1852 
1853 	if (WARN_ON_ONCE(nest_level > ARRAY_SIZE(tp_regs->regs))) {
1854 		this_cpu_dec(bpf_raw_tp_nest_level);
1855 		return ERR_PTR(-EBUSY);
1856 	}
1857 
1858 	return &tp_regs->regs[nest_level - 1];
1859 }
1860 
1861 static void put_bpf_raw_tp_regs(void)
1862 {
1863 	this_cpu_dec(bpf_raw_tp_nest_level);
1864 }
1865 
1866 BPF_CALL_5(bpf_perf_event_output_raw_tp, struct bpf_raw_tracepoint_args *, args,
1867 	   struct bpf_map *, map, u64, flags, void *, data, u64, size)
1868 {
1869 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1870 	int ret;
1871 
1872 	if (IS_ERR(regs))
1873 		return PTR_ERR(regs);
1874 
1875 	perf_fetch_caller_regs(regs);
1876 	ret = ____bpf_perf_event_output(regs, map, flags, data, size);
1877 
1878 	put_bpf_raw_tp_regs();
1879 	return ret;
1880 }
1881 
1882 static const struct bpf_func_proto bpf_perf_event_output_proto_raw_tp = {
1883 	.func		= bpf_perf_event_output_raw_tp,
1884 	.gpl_only	= true,
1885 	.ret_type	= RET_INTEGER,
1886 	.arg1_type	= ARG_PTR_TO_CTX,
1887 	.arg2_type	= ARG_CONST_MAP_PTR,
1888 	.arg3_type	= ARG_ANYTHING,
1889 	.arg4_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1890 	.arg5_type	= ARG_CONST_SIZE_OR_ZERO,
1891 };
1892 
1893 extern const struct bpf_func_proto bpf_skb_output_proto;
1894 extern const struct bpf_func_proto bpf_xdp_output_proto;
1895 extern const struct bpf_func_proto bpf_xdp_get_buff_len_trace_proto;
1896 
1897 BPF_CALL_3(bpf_get_stackid_raw_tp, struct bpf_raw_tracepoint_args *, args,
1898 	   struct bpf_map *, map, u64, flags)
1899 {
1900 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1901 	int ret;
1902 
1903 	if (IS_ERR(regs))
1904 		return PTR_ERR(regs);
1905 
1906 	perf_fetch_caller_regs(regs);
1907 	/* similar to bpf_perf_event_output_tp, but pt_regs fetched differently */
1908 	ret = bpf_get_stackid((unsigned long) regs, (unsigned long) map,
1909 			      flags, 0, 0);
1910 	put_bpf_raw_tp_regs();
1911 	return ret;
1912 }
1913 
1914 static const struct bpf_func_proto bpf_get_stackid_proto_raw_tp = {
1915 	.func		= bpf_get_stackid_raw_tp,
1916 	.gpl_only	= true,
1917 	.ret_type	= RET_INTEGER,
1918 	.arg1_type	= ARG_PTR_TO_CTX,
1919 	.arg2_type	= ARG_CONST_MAP_PTR,
1920 	.arg3_type	= ARG_ANYTHING,
1921 };
1922 
1923 BPF_CALL_4(bpf_get_stack_raw_tp, struct bpf_raw_tracepoint_args *, args,
1924 	   void *, buf, u32, size, u64, flags)
1925 {
1926 	struct pt_regs *regs = get_bpf_raw_tp_regs();
1927 	int ret;
1928 
1929 	if (IS_ERR(regs))
1930 		return PTR_ERR(regs);
1931 
1932 	perf_fetch_caller_regs(regs);
1933 	ret = bpf_get_stack((unsigned long) regs, (unsigned long) buf,
1934 			    (unsigned long) size, flags, 0);
1935 	put_bpf_raw_tp_regs();
1936 	return ret;
1937 }
1938 
1939 static const struct bpf_func_proto bpf_get_stack_proto_raw_tp = {
1940 	.func		= bpf_get_stack_raw_tp,
1941 	.gpl_only	= true,
1942 	.ret_type	= RET_INTEGER,
1943 	.arg1_type	= ARG_PTR_TO_CTX,
1944 	.arg2_type	= ARG_PTR_TO_MEM | MEM_RDONLY,
1945 	.arg3_type	= ARG_CONST_SIZE_OR_ZERO,
1946 	.arg4_type	= ARG_ANYTHING,
1947 };
1948 
1949 static const struct bpf_func_proto *
1950 raw_tp_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1951 {
1952 	switch (func_id) {
1953 	case BPF_FUNC_perf_event_output:
1954 		return &bpf_perf_event_output_proto_raw_tp;
1955 	case BPF_FUNC_get_stackid:
1956 		return &bpf_get_stackid_proto_raw_tp;
1957 	case BPF_FUNC_get_stack:
1958 		return &bpf_get_stack_proto_raw_tp;
1959 	case BPF_FUNC_get_attach_cookie:
1960 		return &bpf_get_attach_cookie_proto_tracing;
1961 	default:
1962 		return bpf_tracing_func_proto(func_id, prog);
1963 	}
1964 }
1965 
1966 const struct bpf_func_proto *
1967 tracing_prog_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1968 {
1969 	const struct bpf_func_proto *fn;
1970 
1971 	switch (func_id) {
1972 #ifdef CONFIG_NET
1973 	case BPF_FUNC_skb_output:
1974 		return &bpf_skb_output_proto;
1975 	case BPF_FUNC_xdp_output:
1976 		return &bpf_xdp_output_proto;
1977 	case BPF_FUNC_skc_to_tcp6_sock:
1978 		return &bpf_skc_to_tcp6_sock_proto;
1979 	case BPF_FUNC_skc_to_tcp_sock:
1980 		return &bpf_skc_to_tcp_sock_proto;
1981 	case BPF_FUNC_skc_to_tcp_timewait_sock:
1982 		return &bpf_skc_to_tcp_timewait_sock_proto;
1983 	case BPF_FUNC_skc_to_tcp_request_sock:
1984 		return &bpf_skc_to_tcp_request_sock_proto;
1985 	case BPF_FUNC_skc_to_udp6_sock:
1986 		return &bpf_skc_to_udp6_sock_proto;
1987 	case BPF_FUNC_skc_to_unix_sock:
1988 		return &bpf_skc_to_unix_sock_proto;
1989 	case BPF_FUNC_skc_to_mptcp_sock:
1990 		return &bpf_skc_to_mptcp_sock_proto;
1991 	case BPF_FUNC_sk_storage_get:
1992 		return &bpf_sk_storage_get_tracing_proto;
1993 	case BPF_FUNC_sk_storage_delete:
1994 		return &bpf_sk_storage_delete_tracing_proto;
1995 	case BPF_FUNC_sock_from_file:
1996 		return &bpf_sock_from_file_proto;
1997 	case BPF_FUNC_get_socket_cookie:
1998 		return &bpf_get_socket_ptr_cookie_proto;
1999 	case BPF_FUNC_xdp_get_buff_len:
2000 		return &bpf_xdp_get_buff_len_trace_proto;
2001 #endif
2002 	case BPF_FUNC_seq_printf:
2003 		return prog->expected_attach_type == BPF_TRACE_ITER ?
2004 		       &bpf_seq_printf_proto :
2005 		       NULL;
2006 	case BPF_FUNC_seq_write:
2007 		return prog->expected_attach_type == BPF_TRACE_ITER ?
2008 		       &bpf_seq_write_proto :
2009 		       NULL;
2010 	case BPF_FUNC_seq_printf_btf:
2011 		return prog->expected_attach_type == BPF_TRACE_ITER ?
2012 		       &bpf_seq_printf_btf_proto :
2013 		       NULL;
2014 	case BPF_FUNC_d_path:
2015 		return &bpf_d_path_proto;
2016 	case BPF_FUNC_get_func_arg:
2017 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_proto : NULL;
2018 	case BPF_FUNC_get_func_ret:
2019 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_ret_proto : NULL;
2020 	case BPF_FUNC_get_func_arg_cnt:
2021 		return bpf_prog_has_trampoline(prog) ? &bpf_get_func_arg_cnt_proto : NULL;
2022 	case BPF_FUNC_get_attach_cookie:
2023 		if (prog->type == BPF_PROG_TYPE_TRACING &&
2024 		    prog->expected_attach_type == BPF_TRACE_RAW_TP)
2025 			return &bpf_get_attach_cookie_proto_tracing;
2026 		return bpf_prog_has_trampoline(prog) ? &bpf_get_attach_cookie_proto_tracing : NULL;
2027 	default:
2028 		fn = raw_tp_prog_func_proto(func_id, prog);
2029 		if (!fn && prog->expected_attach_type == BPF_TRACE_ITER)
2030 			fn = bpf_iter_get_func_proto(func_id, prog);
2031 		return fn;
2032 	}
2033 }
2034 
2035 static bool raw_tp_prog_is_valid_access(int off, int size,
2036 					enum bpf_access_type type,
2037 					const struct bpf_prog *prog,
2038 					struct bpf_insn_access_aux *info)
2039 {
2040 	return bpf_tracing_ctx_access(off, size, type);
2041 }
2042 
2043 static bool tracing_prog_is_valid_access(int off, int size,
2044 					 enum bpf_access_type type,
2045 					 const struct bpf_prog *prog,
2046 					 struct bpf_insn_access_aux *info)
2047 {
2048 	return bpf_tracing_btf_ctx_access(off, size, type, prog, info);
2049 }
2050 
2051 int __weak bpf_prog_test_run_tracing(struct bpf_prog *prog,
2052 				     const union bpf_attr *kattr,
2053 				     union bpf_attr __user *uattr)
2054 {
2055 	return -ENOTSUPP;
2056 }
2057 
2058 const struct bpf_verifier_ops raw_tracepoint_verifier_ops = {
2059 	.get_func_proto  = raw_tp_prog_func_proto,
2060 	.is_valid_access = raw_tp_prog_is_valid_access,
2061 };
2062 
2063 const struct bpf_prog_ops raw_tracepoint_prog_ops = {
2064 #ifdef CONFIG_NET
2065 	.test_run = bpf_prog_test_run_raw_tp,
2066 #endif
2067 };
2068 
2069 const struct bpf_verifier_ops tracing_verifier_ops = {
2070 	.get_func_proto  = tracing_prog_func_proto,
2071 	.is_valid_access = tracing_prog_is_valid_access,
2072 };
2073 
2074 const struct bpf_prog_ops tracing_prog_ops = {
2075 	.test_run = bpf_prog_test_run_tracing,
2076 };
2077 
2078 static bool raw_tp_writable_prog_is_valid_access(int off, int size,
2079 						 enum bpf_access_type type,
2080 						 const struct bpf_prog *prog,
2081 						 struct bpf_insn_access_aux *info)
2082 {
2083 	if (off == 0) {
2084 		if (size != sizeof(u64) || type != BPF_READ)
2085 			return false;
2086 		info->reg_type = PTR_TO_TP_BUFFER;
2087 	}
2088 	return raw_tp_prog_is_valid_access(off, size, type, prog, info);
2089 }
2090 
2091 const struct bpf_verifier_ops raw_tracepoint_writable_verifier_ops = {
2092 	.get_func_proto  = raw_tp_prog_func_proto,
2093 	.is_valid_access = raw_tp_writable_prog_is_valid_access,
2094 };
2095 
2096 const struct bpf_prog_ops raw_tracepoint_writable_prog_ops = {
2097 };
2098 
2099 static bool pe_prog_is_valid_access(int off, int size, enum bpf_access_type type,
2100 				    const struct bpf_prog *prog,
2101 				    struct bpf_insn_access_aux *info)
2102 {
2103 	const int size_u64 = sizeof(u64);
2104 
2105 	if (off < 0 || off >= sizeof(struct bpf_perf_event_data))
2106 		return false;
2107 	if (type != BPF_READ)
2108 		return false;
2109 	if (off % size != 0) {
2110 		if (sizeof(unsigned long) != 4)
2111 			return false;
2112 		if (size != 8)
2113 			return false;
2114 		if (off % size != 4)
2115 			return false;
2116 	}
2117 
2118 	switch (off) {
2119 	case bpf_ctx_range(struct bpf_perf_event_data, sample_period):
2120 		bpf_ctx_record_field_size(info, size_u64);
2121 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2122 			return false;
2123 		break;
2124 	case bpf_ctx_range(struct bpf_perf_event_data, addr):
2125 		bpf_ctx_record_field_size(info, size_u64);
2126 		if (!bpf_ctx_narrow_access_ok(off, size, size_u64))
2127 			return false;
2128 		break;
2129 	default:
2130 		if (size != sizeof(long))
2131 			return false;
2132 	}
2133 
2134 	return true;
2135 }
2136 
2137 static u32 pe_prog_convert_ctx_access(enum bpf_access_type type,
2138 				      const struct bpf_insn *si,
2139 				      struct bpf_insn *insn_buf,
2140 				      struct bpf_prog *prog, u32 *target_size)
2141 {
2142 	struct bpf_insn *insn = insn_buf;
2143 
2144 	switch (si->off) {
2145 	case offsetof(struct bpf_perf_event_data, sample_period):
2146 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2147 						       data), si->dst_reg, si->src_reg,
2148 				      offsetof(struct bpf_perf_event_data_kern, data));
2149 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2150 				      bpf_target_off(struct perf_sample_data, period, 8,
2151 						     target_size));
2152 		break;
2153 	case offsetof(struct bpf_perf_event_data, addr):
2154 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2155 						       data), si->dst_reg, si->src_reg,
2156 				      offsetof(struct bpf_perf_event_data_kern, data));
2157 		*insn++ = BPF_LDX_MEM(BPF_DW, si->dst_reg, si->dst_reg,
2158 				      bpf_target_off(struct perf_sample_data, addr, 8,
2159 						     target_size));
2160 		break;
2161 	default:
2162 		*insn++ = BPF_LDX_MEM(BPF_FIELD_SIZEOF(struct bpf_perf_event_data_kern,
2163 						       regs), si->dst_reg, si->src_reg,
2164 				      offsetof(struct bpf_perf_event_data_kern, regs));
2165 		*insn++ = BPF_LDX_MEM(BPF_SIZEOF(long), si->dst_reg, si->dst_reg,
2166 				      si->off);
2167 		break;
2168 	}
2169 
2170 	return insn - insn_buf;
2171 }
2172 
2173 const struct bpf_verifier_ops perf_event_verifier_ops = {
2174 	.get_func_proto		= pe_prog_func_proto,
2175 	.is_valid_access	= pe_prog_is_valid_access,
2176 	.convert_ctx_access	= pe_prog_convert_ctx_access,
2177 };
2178 
2179 const struct bpf_prog_ops perf_event_prog_ops = {
2180 };
2181 
2182 static DEFINE_MUTEX(bpf_event_mutex);
2183 
2184 #define BPF_TRACE_MAX_PROGS 64
2185 
2186 int perf_event_attach_bpf_prog(struct perf_event *event,
2187 			       struct bpf_prog *prog,
2188 			       u64 bpf_cookie)
2189 {
2190 	struct bpf_prog_array *old_array;
2191 	struct bpf_prog_array *new_array;
2192 	int ret = -EEXIST;
2193 
2194 	/*
2195 	 * Kprobe override only works if they are on the function entry,
2196 	 * and only if they are on the opt-in list.
2197 	 */
2198 	if (prog->kprobe_override &&
2199 	    (!trace_kprobe_on_func_entry(event->tp_event) ||
2200 	     !trace_kprobe_error_injectable(event->tp_event)))
2201 		return -EINVAL;
2202 
2203 	mutex_lock(&bpf_event_mutex);
2204 
2205 	if (event->prog)
2206 		goto unlock;
2207 
2208 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2209 	if (old_array &&
2210 	    bpf_prog_array_length(old_array) >= BPF_TRACE_MAX_PROGS) {
2211 		ret = -E2BIG;
2212 		goto unlock;
2213 	}
2214 
2215 	ret = bpf_prog_array_copy(old_array, NULL, prog, bpf_cookie, &new_array);
2216 	if (ret < 0)
2217 		goto unlock;
2218 
2219 	/* set the new array to event->tp_event and set event->prog */
2220 	event->prog = prog;
2221 	event->bpf_cookie = bpf_cookie;
2222 	rcu_assign_pointer(event->tp_event->prog_array, new_array);
2223 	bpf_prog_array_free_sleepable(old_array);
2224 
2225 unlock:
2226 	mutex_unlock(&bpf_event_mutex);
2227 	return ret;
2228 }
2229 
2230 void perf_event_detach_bpf_prog(struct perf_event *event)
2231 {
2232 	struct bpf_prog_array *old_array;
2233 	struct bpf_prog_array *new_array;
2234 	int ret;
2235 
2236 	mutex_lock(&bpf_event_mutex);
2237 
2238 	if (!event->prog)
2239 		goto unlock;
2240 
2241 	old_array = bpf_event_rcu_dereference(event->tp_event->prog_array);
2242 	ret = bpf_prog_array_copy(old_array, event->prog, NULL, 0, &new_array);
2243 	if (ret < 0) {
2244 		bpf_prog_array_delete_safe(old_array, event->prog);
2245 	} else {
2246 		rcu_assign_pointer(event->tp_event->prog_array, new_array);
2247 		bpf_prog_array_free_sleepable(old_array);
2248 	}
2249 
2250 	bpf_prog_put(event->prog);
2251 	event->prog = NULL;
2252 
2253 unlock:
2254 	mutex_unlock(&bpf_event_mutex);
2255 }
2256 
2257 int perf_event_query_prog_array(struct perf_event *event, void __user *info)
2258 {
2259 	struct perf_event_query_bpf __user *uquery = info;
2260 	struct perf_event_query_bpf query = {};
2261 	struct bpf_prog_array *progs;
2262 	u32 *ids, prog_cnt, ids_len;
2263 	int ret;
2264 
2265 	if (!perfmon_capable())
2266 		return -EPERM;
2267 	if (event->attr.type != PERF_TYPE_TRACEPOINT)
2268 		return -EINVAL;
2269 	if (copy_from_user(&query, uquery, sizeof(query)))
2270 		return -EFAULT;
2271 
2272 	ids_len = query.ids_len;
2273 	if (ids_len > BPF_TRACE_MAX_PROGS)
2274 		return -E2BIG;
2275 	ids = kcalloc(ids_len, sizeof(u32), GFP_USER | __GFP_NOWARN);
2276 	if (!ids)
2277 		return -ENOMEM;
2278 	/*
2279 	 * The above kcalloc returns ZERO_SIZE_PTR when ids_len = 0, which
2280 	 * is required when user only wants to check for uquery->prog_cnt.
2281 	 * There is no need to check for it since the case is handled
2282 	 * gracefully in bpf_prog_array_copy_info.
2283 	 */
2284 
2285 	mutex_lock(&bpf_event_mutex);
2286 	progs = bpf_event_rcu_dereference(event->tp_event->prog_array);
2287 	ret = bpf_prog_array_copy_info(progs, ids, ids_len, &prog_cnt);
2288 	mutex_unlock(&bpf_event_mutex);
2289 
2290 	if (copy_to_user(&uquery->prog_cnt, &prog_cnt, sizeof(prog_cnt)) ||
2291 	    copy_to_user(uquery->ids, ids, ids_len * sizeof(u32)))
2292 		ret = -EFAULT;
2293 
2294 	kfree(ids);
2295 	return ret;
2296 }
2297 
2298 extern struct bpf_raw_event_map __start__bpf_raw_tp[];
2299 extern struct bpf_raw_event_map __stop__bpf_raw_tp[];
2300 
2301 struct bpf_raw_event_map *bpf_get_raw_tracepoint(const char *name)
2302 {
2303 	struct bpf_raw_event_map *btp = __start__bpf_raw_tp;
2304 
2305 	for (; btp < __stop__bpf_raw_tp; btp++) {
2306 		if (!strcmp(btp->tp->name, name))
2307 			return btp;
2308 	}
2309 
2310 	return bpf_get_raw_tracepoint_module(name);
2311 }
2312 
2313 void bpf_put_raw_tracepoint(struct bpf_raw_event_map *btp)
2314 {
2315 	struct module *mod;
2316 
2317 	preempt_disable();
2318 	mod = __module_address((unsigned long)btp);
2319 	module_put(mod);
2320 	preempt_enable();
2321 }
2322 
2323 static __always_inline
2324 void __bpf_trace_run(struct bpf_raw_tp_link *link, u64 *args)
2325 {
2326 	struct bpf_prog *prog = link->link.prog;
2327 	struct bpf_run_ctx *old_run_ctx;
2328 	struct bpf_trace_run_ctx run_ctx;
2329 
2330 	cant_sleep();
2331 	if (unlikely(this_cpu_inc_return(*(prog->active)) != 1)) {
2332 		bpf_prog_inc_misses_counter(prog);
2333 		goto out;
2334 	}
2335 
2336 	run_ctx.bpf_cookie = link->cookie;
2337 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
2338 
2339 	rcu_read_lock();
2340 	(void) bpf_prog_run(prog, args);
2341 	rcu_read_unlock();
2342 
2343 	bpf_reset_run_ctx(old_run_ctx);
2344 out:
2345 	this_cpu_dec(*(prog->active));
2346 }
2347 
2348 #define UNPACK(...)			__VA_ARGS__
2349 #define REPEAT_1(FN, DL, X, ...)	FN(X)
2350 #define REPEAT_2(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_1(FN, DL, __VA_ARGS__)
2351 #define REPEAT_3(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_2(FN, DL, __VA_ARGS__)
2352 #define REPEAT_4(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_3(FN, DL, __VA_ARGS__)
2353 #define REPEAT_5(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_4(FN, DL, __VA_ARGS__)
2354 #define REPEAT_6(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_5(FN, DL, __VA_ARGS__)
2355 #define REPEAT_7(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_6(FN, DL, __VA_ARGS__)
2356 #define REPEAT_8(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_7(FN, DL, __VA_ARGS__)
2357 #define REPEAT_9(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_8(FN, DL, __VA_ARGS__)
2358 #define REPEAT_10(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_9(FN, DL, __VA_ARGS__)
2359 #define REPEAT_11(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_10(FN, DL, __VA_ARGS__)
2360 #define REPEAT_12(FN, DL, X, ...)	FN(X) UNPACK DL REPEAT_11(FN, DL, __VA_ARGS__)
2361 #define REPEAT(X, FN, DL, ...)		REPEAT_##X(FN, DL, __VA_ARGS__)
2362 
2363 #define SARG(X)		u64 arg##X
2364 #define COPY(X)		args[X] = arg##X
2365 
2366 #define __DL_COM	(,)
2367 #define __DL_SEM	(;)
2368 
2369 #define __SEQ_0_11	0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11
2370 
2371 #define BPF_TRACE_DEFN_x(x)						\
2372 	void bpf_trace_run##x(struct bpf_raw_tp_link *link,		\
2373 			      REPEAT(x, SARG, __DL_COM, __SEQ_0_11))	\
2374 	{								\
2375 		u64 args[x];						\
2376 		REPEAT(x, COPY, __DL_SEM, __SEQ_0_11);			\
2377 		__bpf_trace_run(link, args);				\
2378 	}								\
2379 	EXPORT_SYMBOL_GPL(bpf_trace_run##x)
2380 BPF_TRACE_DEFN_x(1);
2381 BPF_TRACE_DEFN_x(2);
2382 BPF_TRACE_DEFN_x(3);
2383 BPF_TRACE_DEFN_x(4);
2384 BPF_TRACE_DEFN_x(5);
2385 BPF_TRACE_DEFN_x(6);
2386 BPF_TRACE_DEFN_x(7);
2387 BPF_TRACE_DEFN_x(8);
2388 BPF_TRACE_DEFN_x(9);
2389 BPF_TRACE_DEFN_x(10);
2390 BPF_TRACE_DEFN_x(11);
2391 BPF_TRACE_DEFN_x(12);
2392 
2393 int bpf_probe_register(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2394 {
2395 	struct tracepoint *tp = btp->tp;
2396 	struct bpf_prog *prog = link->link.prog;
2397 
2398 	/*
2399 	 * check that program doesn't access arguments beyond what's
2400 	 * available in this tracepoint
2401 	 */
2402 	if (prog->aux->max_ctx_offset > btp->num_args * sizeof(u64))
2403 		return -EINVAL;
2404 
2405 	if (prog->aux->max_tp_access > btp->writable_size)
2406 		return -EINVAL;
2407 
2408 	return tracepoint_probe_register_may_exist(tp, (void *)btp->bpf_func, link);
2409 }
2410 
2411 int bpf_probe_unregister(struct bpf_raw_event_map *btp, struct bpf_raw_tp_link *link)
2412 {
2413 	return tracepoint_probe_unregister(btp->tp, (void *)btp->bpf_func, link);
2414 }
2415 
2416 int bpf_get_perf_event_info(const struct perf_event *event, u32 *prog_id,
2417 			    u32 *fd_type, const char **buf,
2418 			    u64 *probe_offset, u64 *probe_addr,
2419 			    unsigned long *missed)
2420 {
2421 	bool is_tracepoint, is_syscall_tp;
2422 	struct bpf_prog *prog;
2423 	int flags, err = 0;
2424 
2425 	prog = event->prog;
2426 	if (!prog)
2427 		return -ENOENT;
2428 
2429 	/* not supporting BPF_PROG_TYPE_PERF_EVENT yet */
2430 	if (prog->type == BPF_PROG_TYPE_PERF_EVENT)
2431 		return -EOPNOTSUPP;
2432 
2433 	*prog_id = prog->aux->id;
2434 	flags = event->tp_event->flags;
2435 	is_tracepoint = flags & TRACE_EVENT_FL_TRACEPOINT;
2436 	is_syscall_tp = is_syscall_trace_event(event->tp_event);
2437 
2438 	if (is_tracepoint || is_syscall_tp) {
2439 		*buf = is_tracepoint ? event->tp_event->tp->name
2440 				     : event->tp_event->name;
2441 		/* We allow NULL pointer for tracepoint */
2442 		if (fd_type)
2443 			*fd_type = BPF_FD_TYPE_TRACEPOINT;
2444 		if (probe_offset)
2445 			*probe_offset = 0x0;
2446 		if (probe_addr)
2447 			*probe_addr = 0x0;
2448 	} else {
2449 		/* kprobe/uprobe */
2450 		err = -EOPNOTSUPP;
2451 #ifdef CONFIG_KPROBE_EVENTS
2452 		if (flags & TRACE_EVENT_FL_KPROBE)
2453 			err = bpf_get_kprobe_info(event, fd_type, buf,
2454 						  probe_offset, probe_addr, missed,
2455 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2456 #endif
2457 #ifdef CONFIG_UPROBE_EVENTS
2458 		if (flags & TRACE_EVENT_FL_UPROBE)
2459 			err = bpf_get_uprobe_info(event, fd_type, buf,
2460 						  probe_offset, probe_addr,
2461 						  event->attr.type == PERF_TYPE_TRACEPOINT);
2462 #endif
2463 	}
2464 
2465 	return err;
2466 }
2467 
2468 static int __init send_signal_irq_work_init(void)
2469 {
2470 	int cpu;
2471 	struct send_signal_irq_work *work;
2472 
2473 	for_each_possible_cpu(cpu) {
2474 		work = per_cpu_ptr(&send_signal_work, cpu);
2475 		init_irq_work(&work->irq_work, do_bpf_send_signal);
2476 	}
2477 	return 0;
2478 }
2479 
2480 subsys_initcall(send_signal_irq_work_init);
2481 
2482 #ifdef CONFIG_MODULES
2483 static int bpf_event_notify(struct notifier_block *nb, unsigned long op,
2484 			    void *module)
2485 {
2486 	struct bpf_trace_module *btm, *tmp;
2487 	struct module *mod = module;
2488 	int ret = 0;
2489 
2490 	if (mod->num_bpf_raw_events == 0 ||
2491 	    (op != MODULE_STATE_COMING && op != MODULE_STATE_GOING))
2492 		goto out;
2493 
2494 	mutex_lock(&bpf_module_mutex);
2495 
2496 	switch (op) {
2497 	case MODULE_STATE_COMING:
2498 		btm = kzalloc(sizeof(*btm), GFP_KERNEL);
2499 		if (btm) {
2500 			btm->module = module;
2501 			list_add(&btm->list, &bpf_trace_modules);
2502 		} else {
2503 			ret = -ENOMEM;
2504 		}
2505 		break;
2506 	case MODULE_STATE_GOING:
2507 		list_for_each_entry_safe(btm, tmp, &bpf_trace_modules, list) {
2508 			if (btm->module == module) {
2509 				list_del(&btm->list);
2510 				kfree(btm);
2511 				break;
2512 			}
2513 		}
2514 		break;
2515 	}
2516 
2517 	mutex_unlock(&bpf_module_mutex);
2518 
2519 out:
2520 	return notifier_from_errno(ret);
2521 }
2522 
2523 static struct notifier_block bpf_module_nb = {
2524 	.notifier_call = bpf_event_notify,
2525 };
2526 
2527 static int __init bpf_event_init(void)
2528 {
2529 	register_module_notifier(&bpf_module_nb);
2530 	return 0;
2531 }
2532 
2533 fs_initcall(bpf_event_init);
2534 #endif /* CONFIG_MODULES */
2535 
2536 struct bpf_session_run_ctx {
2537 	struct bpf_run_ctx run_ctx;
2538 	bool is_return;
2539 	void *data;
2540 };
2541 
2542 #ifdef CONFIG_FPROBE
2543 struct bpf_kprobe_multi_link {
2544 	struct bpf_link link;
2545 	struct fprobe fp;
2546 	unsigned long *addrs;
2547 	u64 *cookies;
2548 	u32 cnt;
2549 	u32 mods_cnt;
2550 	struct module **mods;
2551 	u32 flags;
2552 };
2553 
2554 struct bpf_kprobe_multi_run_ctx {
2555 	struct bpf_session_run_ctx session_ctx;
2556 	struct bpf_kprobe_multi_link *link;
2557 	unsigned long entry_ip;
2558 };
2559 
2560 struct user_syms {
2561 	const char **syms;
2562 	char *buf;
2563 };
2564 
2565 static int copy_user_syms(struct user_syms *us, unsigned long __user *usyms, u32 cnt)
2566 {
2567 	unsigned long __user usymbol;
2568 	const char **syms = NULL;
2569 	char *buf = NULL, *p;
2570 	int err = -ENOMEM;
2571 	unsigned int i;
2572 
2573 	syms = kvmalloc_array(cnt, sizeof(*syms), GFP_KERNEL);
2574 	if (!syms)
2575 		goto error;
2576 
2577 	buf = kvmalloc_array(cnt, KSYM_NAME_LEN, GFP_KERNEL);
2578 	if (!buf)
2579 		goto error;
2580 
2581 	for (p = buf, i = 0; i < cnt; i++) {
2582 		if (__get_user(usymbol, usyms + i)) {
2583 			err = -EFAULT;
2584 			goto error;
2585 		}
2586 		err = strncpy_from_user(p, (const char __user *) usymbol, KSYM_NAME_LEN);
2587 		if (err == KSYM_NAME_LEN)
2588 			err = -E2BIG;
2589 		if (err < 0)
2590 			goto error;
2591 		syms[i] = p;
2592 		p += err + 1;
2593 	}
2594 
2595 	us->syms = syms;
2596 	us->buf = buf;
2597 	return 0;
2598 
2599 error:
2600 	if (err) {
2601 		kvfree(syms);
2602 		kvfree(buf);
2603 	}
2604 	return err;
2605 }
2606 
2607 static void kprobe_multi_put_modules(struct module **mods, u32 cnt)
2608 {
2609 	u32 i;
2610 
2611 	for (i = 0; i < cnt; i++)
2612 		module_put(mods[i]);
2613 }
2614 
2615 static void free_user_syms(struct user_syms *us)
2616 {
2617 	kvfree(us->syms);
2618 	kvfree(us->buf);
2619 }
2620 
2621 static void bpf_kprobe_multi_link_release(struct bpf_link *link)
2622 {
2623 	struct bpf_kprobe_multi_link *kmulti_link;
2624 
2625 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2626 	unregister_fprobe(&kmulti_link->fp);
2627 	kprobe_multi_put_modules(kmulti_link->mods, kmulti_link->mods_cnt);
2628 }
2629 
2630 static void bpf_kprobe_multi_link_dealloc(struct bpf_link *link)
2631 {
2632 	struct bpf_kprobe_multi_link *kmulti_link;
2633 
2634 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2635 	kvfree(kmulti_link->addrs);
2636 	kvfree(kmulti_link->cookies);
2637 	kfree(kmulti_link->mods);
2638 	kfree(kmulti_link);
2639 }
2640 
2641 static int bpf_kprobe_multi_link_fill_link_info(const struct bpf_link *link,
2642 						struct bpf_link_info *info)
2643 {
2644 	u64 __user *ucookies = u64_to_user_ptr(info->kprobe_multi.cookies);
2645 	u64 __user *uaddrs = u64_to_user_ptr(info->kprobe_multi.addrs);
2646 	struct bpf_kprobe_multi_link *kmulti_link;
2647 	u32 ucount = info->kprobe_multi.count;
2648 	int err = 0, i;
2649 
2650 	if (!uaddrs ^ !ucount)
2651 		return -EINVAL;
2652 	if (ucookies && !ucount)
2653 		return -EINVAL;
2654 
2655 	kmulti_link = container_of(link, struct bpf_kprobe_multi_link, link);
2656 	info->kprobe_multi.count = kmulti_link->cnt;
2657 	info->kprobe_multi.flags = kmulti_link->flags;
2658 	info->kprobe_multi.missed = kmulti_link->fp.nmissed;
2659 
2660 	if (!uaddrs)
2661 		return 0;
2662 	if (ucount < kmulti_link->cnt)
2663 		err = -ENOSPC;
2664 	else
2665 		ucount = kmulti_link->cnt;
2666 
2667 	if (ucookies) {
2668 		if (kmulti_link->cookies) {
2669 			if (copy_to_user(ucookies, kmulti_link->cookies, ucount * sizeof(u64)))
2670 				return -EFAULT;
2671 		} else {
2672 			for (i = 0; i < ucount; i++) {
2673 				if (put_user(0, ucookies + i))
2674 					return -EFAULT;
2675 			}
2676 		}
2677 	}
2678 
2679 	if (kallsyms_show_value(current_cred())) {
2680 		if (copy_to_user(uaddrs, kmulti_link->addrs, ucount * sizeof(u64)))
2681 			return -EFAULT;
2682 	} else {
2683 		for (i = 0; i < ucount; i++) {
2684 			if (put_user(0, uaddrs + i))
2685 				return -EFAULT;
2686 		}
2687 	}
2688 	return err;
2689 }
2690 
2691 static const struct bpf_link_ops bpf_kprobe_multi_link_lops = {
2692 	.release = bpf_kprobe_multi_link_release,
2693 	.dealloc_deferred = bpf_kprobe_multi_link_dealloc,
2694 	.fill_link_info = bpf_kprobe_multi_link_fill_link_info,
2695 };
2696 
2697 static void bpf_kprobe_multi_cookie_swap(void *a, void *b, int size, const void *priv)
2698 {
2699 	const struct bpf_kprobe_multi_link *link = priv;
2700 	unsigned long *addr_a = a, *addr_b = b;
2701 	u64 *cookie_a, *cookie_b;
2702 
2703 	cookie_a = link->cookies + (addr_a - link->addrs);
2704 	cookie_b = link->cookies + (addr_b - link->addrs);
2705 
2706 	/* swap addr_a/addr_b and cookie_a/cookie_b values */
2707 	swap(*addr_a, *addr_b);
2708 	swap(*cookie_a, *cookie_b);
2709 }
2710 
2711 static int bpf_kprobe_multi_addrs_cmp(const void *a, const void *b)
2712 {
2713 	const unsigned long *addr_a = a, *addr_b = b;
2714 
2715 	if (*addr_a == *addr_b)
2716 		return 0;
2717 	return *addr_a < *addr_b ? -1 : 1;
2718 }
2719 
2720 static int bpf_kprobe_multi_cookie_cmp(const void *a, const void *b, const void *priv)
2721 {
2722 	return bpf_kprobe_multi_addrs_cmp(a, b);
2723 }
2724 
2725 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
2726 {
2727 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2728 	struct bpf_kprobe_multi_link *link;
2729 	u64 *cookie, entry_ip;
2730 	unsigned long *addr;
2731 
2732 	if (WARN_ON_ONCE(!ctx))
2733 		return 0;
2734 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2735 			       session_ctx.run_ctx);
2736 	link = run_ctx->link;
2737 	if (!link->cookies)
2738 		return 0;
2739 	entry_ip = run_ctx->entry_ip;
2740 	addr = bsearch(&entry_ip, link->addrs, link->cnt, sizeof(entry_ip),
2741 		       bpf_kprobe_multi_addrs_cmp);
2742 	if (!addr)
2743 		return 0;
2744 	cookie = link->cookies + (addr - link->addrs);
2745 	return *cookie;
2746 }
2747 
2748 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
2749 {
2750 	struct bpf_kprobe_multi_run_ctx *run_ctx;
2751 
2752 	run_ctx = container_of(current->bpf_ctx, struct bpf_kprobe_multi_run_ctx,
2753 			       session_ctx.run_ctx);
2754 	return run_ctx->entry_ip;
2755 }
2756 
2757 static int
2758 kprobe_multi_link_prog_run(struct bpf_kprobe_multi_link *link,
2759 			   unsigned long entry_ip, struct pt_regs *regs,
2760 			   bool is_return, void *data)
2761 {
2762 	struct bpf_kprobe_multi_run_ctx run_ctx = {
2763 		.session_ctx = {
2764 			.is_return = is_return,
2765 			.data = data,
2766 		},
2767 		.link = link,
2768 		.entry_ip = entry_ip,
2769 	};
2770 	struct bpf_run_ctx *old_run_ctx;
2771 	int err;
2772 
2773 	if (unlikely(__this_cpu_inc_return(bpf_prog_active) != 1)) {
2774 		bpf_prog_inc_misses_counter(link->link.prog);
2775 		err = 0;
2776 		goto out;
2777 	}
2778 
2779 	migrate_disable();
2780 	rcu_read_lock();
2781 	old_run_ctx = bpf_set_run_ctx(&run_ctx.session_ctx.run_ctx);
2782 	err = bpf_prog_run(link->link.prog, regs);
2783 	bpf_reset_run_ctx(old_run_ctx);
2784 	rcu_read_unlock();
2785 	migrate_enable();
2786 
2787  out:
2788 	__this_cpu_dec(bpf_prog_active);
2789 	return err;
2790 }
2791 
2792 static int
2793 kprobe_multi_link_handler(struct fprobe *fp, unsigned long fentry_ip,
2794 			  unsigned long ret_ip, struct pt_regs *regs,
2795 			  void *data)
2796 {
2797 	struct bpf_kprobe_multi_link *link;
2798 	int err;
2799 
2800 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2801 	err = kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs, false, data);
2802 	return is_kprobe_session(link->link.prog) ? err : 0;
2803 }
2804 
2805 static void
2806 kprobe_multi_link_exit_handler(struct fprobe *fp, unsigned long fentry_ip,
2807 			       unsigned long ret_ip, struct pt_regs *regs,
2808 			       void *data)
2809 {
2810 	struct bpf_kprobe_multi_link *link;
2811 
2812 	link = container_of(fp, struct bpf_kprobe_multi_link, fp);
2813 	kprobe_multi_link_prog_run(link, get_entry_ip(fentry_ip), regs, true, data);
2814 }
2815 
2816 static int symbols_cmp_r(const void *a, const void *b, const void *priv)
2817 {
2818 	const char **str_a = (const char **) a;
2819 	const char **str_b = (const char **) b;
2820 
2821 	return strcmp(*str_a, *str_b);
2822 }
2823 
2824 struct multi_symbols_sort {
2825 	const char **funcs;
2826 	u64 *cookies;
2827 };
2828 
2829 static void symbols_swap_r(void *a, void *b, int size, const void *priv)
2830 {
2831 	const struct multi_symbols_sort *data = priv;
2832 	const char **name_a = a, **name_b = b;
2833 
2834 	swap(*name_a, *name_b);
2835 
2836 	/* If defined, swap also related cookies. */
2837 	if (data->cookies) {
2838 		u64 *cookie_a, *cookie_b;
2839 
2840 		cookie_a = data->cookies + (name_a - data->funcs);
2841 		cookie_b = data->cookies + (name_b - data->funcs);
2842 		swap(*cookie_a, *cookie_b);
2843 	}
2844 }
2845 
2846 struct modules_array {
2847 	struct module **mods;
2848 	int mods_cnt;
2849 	int mods_cap;
2850 };
2851 
2852 static int add_module(struct modules_array *arr, struct module *mod)
2853 {
2854 	struct module **mods;
2855 
2856 	if (arr->mods_cnt == arr->mods_cap) {
2857 		arr->mods_cap = max(16, arr->mods_cap * 3 / 2);
2858 		mods = krealloc_array(arr->mods, arr->mods_cap, sizeof(*mods), GFP_KERNEL);
2859 		if (!mods)
2860 			return -ENOMEM;
2861 		arr->mods = mods;
2862 	}
2863 
2864 	arr->mods[arr->mods_cnt] = mod;
2865 	arr->mods_cnt++;
2866 	return 0;
2867 }
2868 
2869 static bool has_module(struct modules_array *arr, struct module *mod)
2870 {
2871 	int i;
2872 
2873 	for (i = arr->mods_cnt - 1; i >= 0; i--) {
2874 		if (arr->mods[i] == mod)
2875 			return true;
2876 	}
2877 	return false;
2878 }
2879 
2880 static int get_modules_for_addrs(struct module ***mods, unsigned long *addrs, u32 addrs_cnt)
2881 {
2882 	struct modules_array arr = {};
2883 	u32 i, err = 0;
2884 
2885 	for (i = 0; i < addrs_cnt; i++) {
2886 		struct module *mod;
2887 
2888 		preempt_disable();
2889 		mod = __module_address(addrs[i]);
2890 		/* Either no module or we it's already stored  */
2891 		if (!mod || has_module(&arr, mod)) {
2892 			preempt_enable();
2893 			continue;
2894 		}
2895 		if (!try_module_get(mod))
2896 			err = -EINVAL;
2897 		preempt_enable();
2898 		if (err)
2899 			break;
2900 		err = add_module(&arr, mod);
2901 		if (err) {
2902 			module_put(mod);
2903 			break;
2904 		}
2905 	}
2906 
2907 	/* We return either err < 0 in case of error, ... */
2908 	if (err) {
2909 		kprobe_multi_put_modules(arr.mods, arr.mods_cnt);
2910 		kfree(arr.mods);
2911 		return err;
2912 	}
2913 
2914 	/* or number of modules found if everything is ok. */
2915 	*mods = arr.mods;
2916 	return arr.mods_cnt;
2917 }
2918 
2919 static int addrs_check_error_injection_list(unsigned long *addrs, u32 cnt)
2920 {
2921 	u32 i;
2922 
2923 	for (i = 0; i < cnt; i++) {
2924 		if (!within_error_injection_list(addrs[i]))
2925 			return -EINVAL;
2926 	}
2927 	return 0;
2928 }
2929 
2930 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
2931 {
2932 	struct bpf_kprobe_multi_link *link = NULL;
2933 	struct bpf_link_primer link_primer;
2934 	void __user *ucookies;
2935 	unsigned long *addrs;
2936 	u32 flags, cnt, size;
2937 	void __user *uaddrs;
2938 	u64 *cookies = NULL;
2939 	void __user *usyms;
2940 	int err;
2941 
2942 	/* no support for 32bit archs yet */
2943 	if (sizeof(u64) != sizeof(void *))
2944 		return -EOPNOTSUPP;
2945 
2946 	if (!is_kprobe_multi(prog))
2947 		return -EINVAL;
2948 
2949 	flags = attr->link_create.kprobe_multi.flags;
2950 	if (flags & ~BPF_F_KPROBE_MULTI_RETURN)
2951 		return -EINVAL;
2952 
2953 	uaddrs = u64_to_user_ptr(attr->link_create.kprobe_multi.addrs);
2954 	usyms = u64_to_user_ptr(attr->link_create.kprobe_multi.syms);
2955 	if (!!uaddrs == !!usyms)
2956 		return -EINVAL;
2957 
2958 	cnt = attr->link_create.kprobe_multi.cnt;
2959 	if (!cnt)
2960 		return -EINVAL;
2961 	if (cnt > MAX_KPROBE_MULTI_CNT)
2962 		return -E2BIG;
2963 
2964 	size = cnt * sizeof(*addrs);
2965 	addrs = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2966 	if (!addrs)
2967 		return -ENOMEM;
2968 
2969 	ucookies = u64_to_user_ptr(attr->link_create.kprobe_multi.cookies);
2970 	if (ucookies) {
2971 		cookies = kvmalloc_array(cnt, sizeof(*addrs), GFP_KERNEL);
2972 		if (!cookies) {
2973 			err = -ENOMEM;
2974 			goto error;
2975 		}
2976 		if (copy_from_user(cookies, ucookies, size)) {
2977 			err = -EFAULT;
2978 			goto error;
2979 		}
2980 	}
2981 
2982 	if (uaddrs) {
2983 		if (copy_from_user(addrs, uaddrs, size)) {
2984 			err = -EFAULT;
2985 			goto error;
2986 		}
2987 	} else {
2988 		struct multi_symbols_sort data = {
2989 			.cookies = cookies,
2990 		};
2991 		struct user_syms us;
2992 
2993 		err = copy_user_syms(&us, usyms, cnt);
2994 		if (err)
2995 			goto error;
2996 
2997 		if (cookies)
2998 			data.funcs = us.syms;
2999 
3000 		sort_r(us.syms, cnt, sizeof(*us.syms), symbols_cmp_r,
3001 		       symbols_swap_r, &data);
3002 
3003 		err = ftrace_lookup_symbols(us.syms, cnt, addrs);
3004 		free_user_syms(&us);
3005 		if (err)
3006 			goto error;
3007 	}
3008 
3009 	if (prog->kprobe_override && addrs_check_error_injection_list(addrs, cnt)) {
3010 		err = -EINVAL;
3011 		goto error;
3012 	}
3013 
3014 	link = kzalloc(sizeof(*link), GFP_KERNEL);
3015 	if (!link) {
3016 		err = -ENOMEM;
3017 		goto error;
3018 	}
3019 
3020 	bpf_link_init(&link->link, BPF_LINK_TYPE_KPROBE_MULTI,
3021 		      &bpf_kprobe_multi_link_lops, prog);
3022 
3023 	err = bpf_link_prime(&link->link, &link_primer);
3024 	if (err)
3025 		goto error;
3026 
3027 	if (!(flags & BPF_F_KPROBE_MULTI_RETURN))
3028 		link->fp.entry_handler = kprobe_multi_link_handler;
3029 	if ((flags & BPF_F_KPROBE_MULTI_RETURN) || is_kprobe_session(prog))
3030 		link->fp.exit_handler = kprobe_multi_link_exit_handler;
3031 	if (is_kprobe_session(prog))
3032 		link->fp.entry_data_size = sizeof(u64);
3033 
3034 	link->addrs = addrs;
3035 	link->cookies = cookies;
3036 	link->cnt = cnt;
3037 	link->flags = flags;
3038 
3039 	if (cookies) {
3040 		/*
3041 		 * Sorting addresses will trigger sorting cookies as well
3042 		 * (check bpf_kprobe_multi_cookie_swap). This way we can
3043 		 * find cookie based on the address in bpf_get_attach_cookie
3044 		 * helper.
3045 		 */
3046 		sort_r(addrs, cnt, sizeof(*addrs),
3047 		       bpf_kprobe_multi_cookie_cmp,
3048 		       bpf_kprobe_multi_cookie_swap,
3049 		       link);
3050 	}
3051 
3052 	err = get_modules_for_addrs(&link->mods, addrs, cnt);
3053 	if (err < 0) {
3054 		bpf_link_cleanup(&link_primer);
3055 		return err;
3056 	}
3057 	link->mods_cnt = err;
3058 
3059 	err = register_fprobe_ips(&link->fp, addrs, cnt);
3060 	if (err) {
3061 		kprobe_multi_put_modules(link->mods, link->mods_cnt);
3062 		bpf_link_cleanup(&link_primer);
3063 		return err;
3064 	}
3065 
3066 	return bpf_link_settle(&link_primer);
3067 
3068 error:
3069 	kfree(link);
3070 	kvfree(addrs);
3071 	kvfree(cookies);
3072 	return err;
3073 }
3074 #else /* !CONFIG_FPROBE */
3075 int bpf_kprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3076 {
3077 	return -EOPNOTSUPP;
3078 }
3079 static u64 bpf_kprobe_multi_cookie(struct bpf_run_ctx *ctx)
3080 {
3081 	return 0;
3082 }
3083 static u64 bpf_kprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3084 {
3085 	return 0;
3086 }
3087 #endif
3088 
3089 #ifdef CONFIG_UPROBES
3090 struct bpf_uprobe_multi_link;
3091 
3092 struct bpf_uprobe {
3093 	struct bpf_uprobe_multi_link *link;
3094 	loff_t offset;
3095 	unsigned long ref_ctr_offset;
3096 	u64 cookie;
3097 	struct uprobe *uprobe;
3098 	struct uprobe_consumer consumer;
3099 };
3100 
3101 struct bpf_uprobe_multi_link {
3102 	struct path path;
3103 	struct bpf_link link;
3104 	u32 cnt;
3105 	u32 flags;
3106 	struct bpf_uprobe *uprobes;
3107 	struct task_struct *task;
3108 };
3109 
3110 struct bpf_uprobe_multi_run_ctx {
3111 	struct bpf_run_ctx run_ctx;
3112 	unsigned long entry_ip;
3113 	struct bpf_uprobe *uprobe;
3114 };
3115 
3116 static void bpf_uprobe_unregister(struct bpf_uprobe *uprobes, u32 cnt)
3117 {
3118 	u32 i;
3119 
3120 	for (i = 0; i < cnt; i++)
3121 		uprobe_unregister_nosync(uprobes[i].uprobe, &uprobes[i].consumer);
3122 
3123 	if (cnt)
3124 		uprobe_unregister_sync();
3125 }
3126 
3127 static void bpf_uprobe_multi_link_release(struct bpf_link *link)
3128 {
3129 	struct bpf_uprobe_multi_link *umulti_link;
3130 
3131 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3132 	bpf_uprobe_unregister(umulti_link->uprobes, umulti_link->cnt);
3133 	if (umulti_link->task)
3134 		put_task_struct(umulti_link->task);
3135 	path_put(&umulti_link->path);
3136 }
3137 
3138 static void bpf_uprobe_multi_link_dealloc(struct bpf_link *link)
3139 {
3140 	struct bpf_uprobe_multi_link *umulti_link;
3141 
3142 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3143 	kvfree(umulti_link->uprobes);
3144 	kfree(umulti_link);
3145 }
3146 
3147 static int bpf_uprobe_multi_link_fill_link_info(const struct bpf_link *link,
3148 						struct bpf_link_info *info)
3149 {
3150 	u64 __user *uref_ctr_offsets = u64_to_user_ptr(info->uprobe_multi.ref_ctr_offsets);
3151 	u64 __user *ucookies = u64_to_user_ptr(info->uprobe_multi.cookies);
3152 	u64 __user *uoffsets = u64_to_user_ptr(info->uprobe_multi.offsets);
3153 	u64 __user *upath = u64_to_user_ptr(info->uprobe_multi.path);
3154 	u32 upath_size = info->uprobe_multi.path_size;
3155 	struct bpf_uprobe_multi_link *umulti_link;
3156 	u32 ucount = info->uprobe_multi.count;
3157 	int err = 0, i;
3158 	char *p, *buf;
3159 	long left = 0;
3160 
3161 	if (!upath ^ !upath_size)
3162 		return -EINVAL;
3163 
3164 	if ((uoffsets || uref_ctr_offsets || ucookies) && !ucount)
3165 		return -EINVAL;
3166 
3167 	umulti_link = container_of(link, struct bpf_uprobe_multi_link, link);
3168 	info->uprobe_multi.count = umulti_link->cnt;
3169 	info->uprobe_multi.flags = umulti_link->flags;
3170 	info->uprobe_multi.pid = umulti_link->task ?
3171 				 task_pid_nr_ns(umulti_link->task, task_active_pid_ns(current)) : 0;
3172 
3173 	upath_size = upath_size ? min_t(u32, upath_size, PATH_MAX) : PATH_MAX;
3174 	buf = kmalloc(upath_size, GFP_KERNEL);
3175 	if (!buf)
3176 		return -ENOMEM;
3177 	p = d_path(&umulti_link->path, buf, upath_size);
3178 	if (IS_ERR(p)) {
3179 		kfree(buf);
3180 		return PTR_ERR(p);
3181 	}
3182 	upath_size = buf + upath_size - p;
3183 
3184 	if (upath)
3185 		left = copy_to_user(upath, p, upath_size);
3186 	kfree(buf);
3187 	if (left)
3188 		return -EFAULT;
3189 	info->uprobe_multi.path_size = upath_size;
3190 
3191 	if (!uoffsets && !ucookies && !uref_ctr_offsets)
3192 		return 0;
3193 
3194 	if (ucount < umulti_link->cnt)
3195 		err = -ENOSPC;
3196 	else
3197 		ucount = umulti_link->cnt;
3198 
3199 	for (i = 0; i < ucount; i++) {
3200 		if (uoffsets &&
3201 		    put_user(umulti_link->uprobes[i].offset, uoffsets + i))
3202 			return -EFAULT;
3203 		if (uref_ctr_offsets &&
3204 		    put_user(umulti_link->uprobes[i].ref_ctr_offset, uref_ctr_offsets + i))
3205 			return -EFAULT;
3206 		if (ucookies &&
3207 		    put_user(umulti_link->uprobes[i].cookie, ucookies + i))
3208 			return -EFAULT;
3209 	}
3210 
3211 	return err;
3212 }
3213 
3214 static const struct bpf_link_ops bpf_uprobe_multi_link_lops = {
3215 	.release = bpf_uprobe_multi_link_release,
3216 	.dealloc_deferred = bpf_uprobe_multi_link_dealloc,
3217 	.fill_link_info = bpf_uprobe_multi_link_fill_link_info,
3218 };
3219 
3220 static int uprobe_prog_run(struct bpf_uprobe *uprobe,
3221 			   unsigned long entry_ip,
3222 			   struct pt_regs *regs)
3223 {
3224 	struct bpf_uprobe_multi_link *link = uprobe->link;
3225 	struct bpf_uprobe_multi_run_ctx run_ctx = {
3226 		.entry_ip = entry_ip,
3227 		.uprobe = uprobe,
3228 	};
3229 	struct bpf_prog *prog = link->link.prog;
3230 	bool sleepable = prog->sleepable;
3231 	struct bpf_run_ctx *old_run_ctx;
3232 	int err = 0;
3233 
3234 	if (link->task && !same_thread_group(current, link->task))
3235 		return 0;
3236 
3237 	if (sleepable)
3238 		rcu_read_lock_trace();
3239 	else
3240 		rcu_read_lock();
3241 
3242 	migrate_disable();
3243 
3244 	old_run_ctx = bpf_set_run_ctx(&run_ctx.run_ctx);
3245 	err = bpf_prog_run(link->link.prog, regs);
3246 	bpf_reset_run_ctx(old_run_ctx);
3247 
3248 	migrate_enable();
3249 
3250 	if (sleepable)
3251 		rcu_read_unlock_trace();
3252 	else
3253 		rcu_read_unlock();
3254 	return err;
3255 }
3256 
3257 static bool
3258 uprobe_multi_link_filter(struct uprobe_consumer *con, struct mm_struct *mm)
3259 {
3260 	struct bpf_uprobe *uprobe;
3261 
3262 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3263 	return uprobe->link->task->mm == mm;
3264 }
3265 
3266 static int
3267 uprobe_multi_link_handler(struct uprobe_consumer *con, struct pt_regs *regs)
3268 {
3269 	struct bpf_uprobe *uprobe;
3270 
3271 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3272 	return uprobe_prog_run(uprobe, instruction_pointer(regs), regs);
3273 }
3274 
3275 static int
3276 uprobe_multi_link_ret_handler(struct uprobe_consumer *con, unsigned long func, struct pt_regs *regs)
3277 {
3278 	struct bpf_uprobe *uprobe;
3279 
3280 	uprobe = container_of(con, struct bpf_uprobe, consumer);
3281 	return uprobe_prog_run(uprobe, func, regs);
3282 }
3283 
3284 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3285 {
3286 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3287 
3288 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx);
3289 	return run_ctx->entry_ip;
3290 }
3291 
3292 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3293 {
3294 	struct bpf_uprobe_multi_run_ctx *run_ctx;
3295 
3296 	run_ctx = container_of(current->bpf_ctx, struct bpf_uprobe_multi_run_ctx, run_ctx);
3297 	return run_ctx->uprobe->cookie;
3298 }
3299 
3300 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3301 {
3302 	struct bpf_uprobe_multi_link *link = NULL;
3303 	unsigned long __user *uref_ctr_offsets;
3304 	struct bpf_link_primer link_primer;
3305 	struct bpf_uprobe *uprobes = NULL;
3306 	struct task_struct *task = NULL;
3307 	unsigned long __user *uoffsets;
3308 	u64 __user *ucookies;
3309 	void __user *upath;
3310 	u32 flags, cnt, i;
3311 	struct path path;
3312 	char *name;
3313 	pid_t pid;
3314 	int err;
3315 
3316 	/* no support for 32bit archs yet */
3317 	if (sizeof(u64) != sizeof(void *))
3318 		return -EOPNOTSUPP;
3319 
3320 	if (prog->expected_attach_type != BPF_TRACE_UPROBE_MULTI)
3321 		return -EINVAL;
3322 
3323 	flags = attr->link_create.uprobe_multi.flags;
3324 	if (flags & ~BPF_F_UPROBE_MULTI_RETURN)
3325 		return -EINVAL;
3326 
3327 	/*
3328 	 * path, offsets and cnt are mandatory,
3329 	 * ref_ctr_offsets and cookies are optional
3330 	 */
3331 	upath = u64_to_user_ptr(attr->link_create.uprobe_multi.path);
3332 	uoffsets = u64_to_user_ptr(attr->link_create.uprobe_multi.offsets);
3333 	cnt = attr->link_create.uprobe_multi.cnt;
3334 	pid = attr->link_create.uprobe_multi.pid;
3335 
3336 	if (!upath || !uoffsets || !cnt || pid < 0)
3337 		return -EINVAL;
3338 	if (cnt > MAX_UPROBE_MULTI_CNT)
3339 		return -E2BIG;
3340 
3341 	uref_ctr_offsets = u64_to_user_ptr(attr->link_create.uprobe_multi.ref_ctr_offsets);
3342 	ucookies = u64_to_user_ptr(attr->link_create.uprobe_multi.cookies);
3343 
3344 	name = strndup_user(upath, PATH_MAX);
3345 	if (IS_ERR(name)) {
3346 		err = PTR_ERR(name);
3347 		return err;
3348 	}
3349 
3350 	err = kern_path(name, LOOKUP_FOLLOW, &path);
3351 	kfree(name);
3352 	if (err)
3353 		return err;
3354 
3355 	if (!d_is_reg(path.dentry)) {
3356 		err = -EBADF;
3357 		goto error_path_put;
3358 	}
3359 
3360 	if (pid) {
3361 		task = get_pid_task(find_vpid(pid), PIDTYPE_TGID);
3362 		if (!task) {
3363 			err = -ESRCH;
3364 			goto error_path_put;
3365 		}
3366 	}
3367 
3368 	err = -ENOMEM;
3369 
3370 	link = kzalloc(sizeof(*link), GFP_KERNEL);
3371 	uprobes = kvcalloc(cnt, sizeof(*uprobes), GFP_KERNEL);
3372 
3373 	if (!uprobes || !link)
3374 		goto error_free;
3375 
3376 	for (i = 0; i < cnt; i++) {
3377 		if (__get_user(uprobes[i].offset, uoffsets + i)) {
3378 			err = -EFAULT;
3379 			goto error_free;
3380 		}
3381 		if (uprobes[i].offset < 0) {
3382 			err = -EINVAL;
3383 			goto error_free;
3384 		}
3385 		if (uref_ctr_offsets && __get_user(uprobes[i].ref_ctr_offset, uref_ctr_offsets + i)) {
3386 			err = -EFAULT;
3387 			goto error_free;
3388 		}
3389 		if (ucookies && __get_user(uprobes[i].cookie, ucookies + i)) {
3390 			err = -EFAULT;
3391 			goto error_free;
3392 		}
3393 
3394 		uprobes[i].link = link;
3395 
3396 		if (flags & BPF_F_UPROBE_MULTI_RETURN)
3397 			uprobes[i].consumer.ret_handler = uprobe_multi_link_ret_handler;
3398 		else
3399 			uprobes[i].consumer.handler = uprobe_multi_link_handler;
3400 
3401 		if (pid)
3402 			uprobes[i].consumer.filter = uprobe_multi_link_filter;
3403 	}
3404 
3405 	link->cnt = cnt;
3406 	link->uprobes = uprobes;
3407 	link->path = path;
3408 	link->task = task;
3409 	link->flags = flags;
3410 
3411 	bpf_link_init(&link->link, BPF_LINK_TYPE_UPROBE_MULTI,
3412 		      &bpf_uprobe_multi_link_lops, prog);
3413 
3414 	for (i = 0; i < cnt; i++) {
3415 		uprobes[i].uprobe = uprobe_register(d_real_inode(link->path.dentry),
3416 						    uprobes[i].offset,
3417 						    uprobes[i].ref_ctr_offset,
3418 						    &uprobes[i].consumer);
3419 		if (IS_ERR(uprobes[i].uprobe)) {
3420 			err = PTR_ERR(uprobes[i].uprobe);
3421 			link->cnt = i;
3422 			goto error_unregister;
3423 		}
3424 	}
3425 
3426 	err = bpf_link_prime(&link->link, &link_primer);
3427 	if (err)
3428 		goto error_unregister;
3429 
3430 	return bpf_link_settle(&link_primer);
3431 
3432 error_unregister:
3433 	bpf_uprobe_unregister(uprobes, link->cnt);
3434 
3435 error_free:
3436 	kvfree(uprobes);
3437 	kfree(link);
3438 	if (task)
3439 		put_task_struct(task);
3440 error_path_put:
3441 	path_put(&path);
3442 	return err;
3443 }
3444 #else /* !CONFIG_UPROBES */
3445 int bpf_uprobe_multi_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
3446 {
3447 	return -EOPNOTSUPP;
3448 }
3449 static u64 bpf_uprobe_multi_cookie(struct bpf_run_ctx *ctx)
3450 {
3451 	return 0;
3452 }
3453 static u64 bpf_uprobe_multi_entry_ip(struct bpf_run_ctx *ctx)
3454 {
3455 	return 0;
3456 }
3457 #endif /* CONFIG_UPROBES */
3458 
3459 __bpf_kfunc_start_defs();
3460 
3461 __bpf_kfunc bool bpf_session_is_return(void)
3462 {
3463 	struct bpf_session_run_ctx *session_ctx;
3464 
3465 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3466 	return session_ctx->is_return;
3467 }
3468 
3469 __bpf_kfunc __u64 *bpf_session_cookie(void)
3470 {
3471 	struct bpf_session_run_ctx *session_ctx;
3472 
3473 	session_ctx = container_of(current->bpf_ctx, struct bpf_session_run_ctx, run_ctx);
3474 	return session_ctx->data;
3475 }
3476 
3477 __bpf_kfunc_end_defs();
3478 
3479 BTF_KFUNCS_START(kprobe_multi_kfunc_set_ids)
3480 BTF_ID_FLAGS(func, bpf_session_is_return)
3481 BTF_ID_FLAGS(func, bpf_session_cookie)
3482 BTF_KFUNCS_END(kprobe_multi_kfunc_set_ids)
3483 
3484 static int bpf_kprobe_multi_filter(const struct bpf_prog *prog, u32 kfunc_id)
3485 {
3486 	if (!btf_id_set8_contains(&kprobe_multi_kfunc_set_ids, kfunc_id))
3487 		return 0;
3488 
3489 	if (!is_kprobe_session(prog))
3490 		return -EACCES;
3491 
3492 	return 0;
3493 }
3494 
3495 static const struct btf_kfunc_id_set bpf_kprobe_multi_kfunc_set = {
3496 	.owner = THIS_MODULE,
3497 	.set = &kprobe_multi_kfunc_set_ids,
3498 	.filter = bpf_kprobe_multi_filter,
3499 };
3500 
3501 static int __init bpf_kprobe_multi_kfuncs_init(void)
3502 {
3503 	return register_btf_kfunc_id_set(BPF_PROG_TYPE_KPROBE, &bpf_kprobe_multi_kfunc_set);
3504 }
3505 
3506 late_initcall(bpf_kprobe_multi_kfuncs_init);
3507 
3508 __bpf_kfunc_start_defs();
3509 
3510 __bpf_kfunc int bpf_send_signal_task(struct task_struct *task, int sig, enum pid_type type,
3511 				     u64 value)
3512 {
3513 	if (type != PIDTYPE_PID && type != PIDTYPE_TGID)
3514 		return -EINVAL;
3515 
3516 	return bpf_send_signal_common(sig, type, task, value);
3517 }
3518 
3519 __bpf_kfunc_end_defs();
3520