1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Infrastructure for migratable timers 4 * 5 * Copyright(C) 2022 linutronix GmbH 6 */ 7 #include <linux/cpuhotplug.h> 8 #include <linux/slab.h> 9 #include <linux/smp.h> 10 #include <linux/spinlock.h> 11 #include <linux/timerqueue.h> 12 #include <trace/events/ipi.h> 13 14 #include "timer_migration.h" 15 #include "tick-internal.h" 16 17 #define CREATE_TRACE_POINTS 18 #include <trace/events/timer_migration.h> 19 20 /* 21 * The timer migration mechanism is built on a hierarchy of groups. The 22 * lowest level group contains CPUs, the next level groups of CPU groups 23 * and so forth. The CPU groups are kept per node so for the normal case 24 * lock contention won't happen across nodes. Depending on the number of 25 * CPUs per node even the next level might be kept as groups of CPU groups 26 * per node and only the levels above cross the node topology. 27 * 28 * Example topology for a two node system with 24 CPUs each. 29 * 30 * LVL 2 [GRP2:0] 31 * GRP1:0 = GRP1:M 32 * 33 * LVL 1 [GRP1:0] [GRP1:1] 34 * GRP0:0 - GRP0:2 GRP0:3 - GRP0:5 35 * 36 * LVL 0 [GRP0:0] [GRP0:1] [GRP0:2] [GRP0:3] [GRP0:4] [GRP0:5] 37 * CPUS 0-7 8-15 16-23 24-31 32-39 40-47 38 * 39 * The groups hold a timer queue of events sorted by expiry time. These 40 * queues are updated when CPUs go in idle. When they come out of idle 41 * ignore flag of events is set. 42 * 43 * Each group has a designated migrator CPU/group as long as a CPU/group is 44 * active in the group. This designated role is necessary to avoid that all 45 * active CPUs in a group try to migrate expired timers from other CPUs, 46 * which would result in massive lock bouncing. 47 * 48 * When a CPU is awake, it checks in it's own timer tick the group 49 * hierarchy up to the point where it is assigned the migrator role or if 50 * no CPU is active, it also checks the groups where no migrator is set 51 * (TMIGR_NONE). 52 * 53 * If it finds expired timers in one of the group queues it pulls them over 54 * from the idle CPU and runs the timer function. After that it updates the 55 * group and the parent groups if required. 56 * 57 * CPUs which go idle arm their CPU local timer hardware for the next local 58 * (pinned) timer event. If the next migratable timer expires after the 59 * next local timer or the CPU has no migratable timer pending then the 60 * CPU does not queue an event in the LVL0 group. If the next migratable 61 * timer expires before the next local timer then the CPU queues that timer 62 * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0 63 * group. 64 * 65 * When CPU comes out of idle and when a group has at least a single active 66 * child, the ignore flag of the tmigr_event is set. This indicates, that 67 * the event is ignored even if it is still enqueued in the parent groups 68 * timer queue. It will be removed when touching the timer queue the next 69 * time. This spares locking in active path as the lock protects (after 70 * setup) only event information. For more information about locking, 71 * please read the section "Locking rules". 72 * 73 * If the CPU is the migrator of the group then it delegates that role to 74 * the next active CPU in the group or sets migrator to TMIGR_NONE when 75 * there is no active CPU in the group. This delegation needs to be 76 * propagated up the hierarchy so hand over from other leaves can happen at 77 * all hierarchy levels w/o doing a search. 78 * 79 * When the last CPU in the system goes idle, then it drops all migrator 80 * duties up to the top level of the hierarchy (LVL2 in the example). It 81 * then has to make sure, that it arms it's own local hardware timer for 82 * the earliest event in the system. 83 * 84 * 85 * Lifetime rules: 86 * --------------- 87 * 88 * The groups are built up at init time or when CPUs come online. They are 89 * not destroyed when a group becomes empty due to offlining. The group 90 * just won't participate in the hierarchy management anymore. Destroying 91 * groups would result in interesting race conditions which would just make 92 * the whole mechanism slow and complex. 93 * 94 * 95 * Locking rules: 96 * -------------- 97 * 98 * For setting up new groups and handling events it's required to lock both 99 * child and parent group. The lock ordering is always bottom up. This also 100 * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and 101 * active CPU/group information atomic_try_cmpxchg() is used instead and only 102 * the per CPU tmigr_cpu->lock is held. 103 * 104 * During the setup of groups tmigr_level_list is required. It is protected by 105 * @tmigr_mutex. 106 * 107 * When @timer_base->lock as well as tmigr related locks are required, the lock 108 * ordering is: first @timer_base->lock, afterwards tmigr related locks. 109 * 110 * 111 * Protection of the tmigr group state information: 112 * ------------------------------------------------ 113 * 114 * The state information with the list of active children and migrator needs to 115 * be protected by a sequence counter. It prevents a race when updates in child 116 * groups are propagated in changed order. The state update is performed 117 * lockless and group wise. The following scenario describes what happens 118 * without updating the sequence counter: 119 * 120 * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well 121 * as GRP0:1 will not change during the scenario): 122 * 123 * LVL 1 [GRP1:0] 124 * migrator = GRP0:1 125 * active = GRP0:0, GRP0:1 126 * / \ 127 * LVL 0 [GRP0:0] [GRP0:1] 128 * migrator = CPU0 migrator = CPU2 129 * active = CPU0 active = CPU2 130 * / \ / \ 131 * CPUs 0 1 2 3 132 * active idle active idle 133 * 134 * 135 * 1. CPU0 goes idle. As the update is performed group wise, in the first step 136 * only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to 137 * walk the hierarchy. 138 * 139 * LVL 1 [GRP1:0] 140 * migrator = GRP0:1 141 * active = GRP0:0, GRP0:1 142 * / \ 143 * LVL 0 [GRP0:0] [GRP0:1] 144 * --> migrator = TMIGR_NONE migrator = CPU2 145 * --> active = active = CPU2 146 * / \ / \ 147 * CPUs 0 1 2 3 148 * --> idle idle active idle 149 * 150 * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of 151 * idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also 152 * has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the 153 * hierarchy to perform the needed update from their point of view. The 154 * currently visible state looks the following: 155 * 156 * LVL 1 [GRP1:0] 157 * migrator = GRP0:1 158 * active = GRP0:0, GRP0:1 159 * / \ 160 * LVL 0 [GRP0:0] [GRP0:1] 161 * --> migrator = CPU1 migrator = CPU2 162 * --> active = CPU1 active = CPU2 163 * / \ / \ 164 * CPUs 0 1 2 3 165 * idle --> active active idle 166 * 167 * 3. Here is the race condition: CPU1 managed to propagate its changes (from 168 * step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The 169 * active members of GRP1:0 remain unchanged after the update since it is 170 * still valid from CPU1 current point of view: 171 * 172 * LVL 1 [GRP1:0] 173 * --> migrator = GRP0:1 174 * --> active = GRP0:0, GRP0:1 175 * / \ 176 * LVL 0 [GRP0:0] [GRP0:1] 177 * migrator = CPU1 migrator = CPU2 178 * active = CPU1 active = CPU2 179 * / \ / \ 180 * CPUs 0 1 2 3 181 * idle active active idle 182 * 183 * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0. 184 * 185 * LVL 1 [GRP1:0] 186 * --> migrator = GRP0:1 187 * --> active = GRP0:1 188 * / \ 189 * LVL 0 [GRP0:0] [GRP0:1] 190 * migrator = CPU1 migrator = CPU2 191 * active = CPU1 active = CPU2 192 * / \ / \ 193 * CPUs 0 1 2 3 194 * idle active active idle 195 * 196 * 197 * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is 198 * active and is correctly listed as active in GRP0:0. However GRP1:0 does not 199 * have GRP0:0 listed as active, which is wrong. The sequence counter has been 200 * added to avoid inconsistent states during updates. The state is updated 201 * atomically only if all members, including the sequence counter, match the 202 * expected value (compare-and-exchange). 203 * 204 * Looking back at the previous example with the addition of the sequence 205 * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed 206 * the sequence number during the update in step 3 so the expected old value (as 207 * seen by CPU0 before starting the walk) does not match. 208 * 209 * Prevent race between new event and last CPU going inactive 210 * ---------------------------------------------------------- 211 * 212 * When the last CPU is going idle and there is a concurrent update of a new 213 * first global timer of an idle CPU, the group and child states have to be read 214 * while holding the lock in tmigr_update_events(). The following scenario shows 215 * what happens, when this is not done. 216 * 217 * 1. Only CPU2 is active: 218 * 219 * LVL 1 [GRP1:0] 220 * migrator = GRP0:1 221 * active = GRP0:1 222 * next_expiry = KTIME_MAX 223 * / \ 224 * LVL 0 [GRP0:0] [GRP0:1] 225 * migrator = TMIGR_NONE migrator = CPU2 226 * active = active = CPU2 227 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 228 * / \ / \ 229 * CPUs 0 1 2 3 230 * idle idle active idle 231 * 232 * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and 233 * propagates that to GRP0:1: 234 * 235 * LVL 1 [GRP1:0] 236 * migrator = GRP0:1 237 * active = GRP0:1 238 * next_expiry = KTIME_MAX 239 * / \ 240 * LVL 0 [GRP0:0] [GRP0:1] 241 * migrator = TMIGR_NONE --> migrator = TMIGR_NONE 242 * active = --> active = 243 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 244 * / \ / \ 245 * CPUs 0 1 2 3 246 * idle idle --> idle idle 247 * 248 * 3. Now the idle state is propagated up to GRP1:0. As this is now the last 249 * child going idle in top level group, the expiry of the next group event 250 * has to be handed back to make sure no event is lost. As there is no event 251 * enqueued, KTIME_MAX is handed back to CPU2. 252 * 253 * LVL 1 [GRP1:0] 254 * --> migrator = TMIGR_NONE 255 * --> active = 256 * next_expiry = KTIME_MAX 257 * / \ 258 * LVL 0 [GRP0:0] [GRP0:1] 259 * migrator = TMIGR_NONE migrator = TMIGR_NONE 260 * active = active = 261 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 262 * / \ / \ 263 * CPUs 0 1 2 3 264 * idle idle --> idle idle 265 * 266 * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0 267 * propagates that to GRP0:0: 268 * 269 * LVL 1 [GRP1:0] 270 * migrator = TMIGR_NONE 271 * active = 272 * next_expiry = KTIME_MAX 273 * / \ 274 * LVL 0 [GRP0:0] [GRP0:1] 275 * migrator = TMIGR_NONE migrator = TMIGR_NONE 276 * active = active = 277 * --> next_expiry = TIMER0 next_expiry = KTIME_MAX 278 * / \ / \ 279 * CPUs 0 1 2 3 280 * idle idle idle idle 281 * 282 * 5. GRP0:0 is not active, so the new timer has to be propagated to 283 * GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value 284 * (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is 285 * handed back to CPU0, as it seems that there is still an active child in 286 * top level group. 287 * 288 * LVL 1 [GRP1:0] 289 * migrator = TMIGR_NONE 290 * active = 291 * --> next_expiry = TIMER0 292 * / \ 293 * LVL 0 [GRP0:0] [GRP0:1] 294 * migrator = TMIGR_NONE migrator = TMIGR_NONE 295 * active = active = 296 * next_expiry = TIMER0 next_expiry = KTIME_MAX 297 * / \ / \ 298 * CPUs 0 1 2 3 299 * idle idle idle idle 300 * 301 * This is prevented by reading the state when holding the lock (when a new 302 * timer has to be propagated from idle path):: 303 * 304 * CPU2 (tmigr_inactive_up()) CPU0 (tmigr_new_timer_up()) 305 * -------------------------- --------------------------- 306 * // step 3: 307 * cmpxchg(&GRP1:0->state); 308 * tmigr_update_events() { 309 * spin_lock(&GRP1:0->lock); 310 * // ... update events ... 311 * // hand back first expiry when GRP1:0 is idle 312 * spin_unlock(&GRP1:0->lock); 313 * // ^^^ release state modification 314 * } 315 * tmigr_update_events() { 316 * spin_lock(&GRP1:0->lock) 317 * // ^^^ acquire state modification 318 * group_state = atomic_read(&GRP1:0->state) 319 * // .... update events ... 320 * // hand back first expiry when GRP1:0 is idle 321 * spin_unlock(&GRP1:0->lock) <3> 322 * // ^^^ makes state visible for other 323 * // callers of tmigr_new_timer_up() 324 * } 325 * 326 * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported 327 * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent 328 * update of the group state from active path is no problem, as the upcoming CPU 329 * will take care of the group events. 330 * 331 * Required event and timerqueue update after a remote expiry: 332 * ----------------------------------------------------------- 333 * 334 * After expiring timers of a remote CPU, a walk through the hierarchy and 335 * update of events and timerqueues is required. It is obviously needed if there 336 * is a 'new' global timer but also if there is no new global timer but the 337 * remote CPU is still idle. 338 * 339 * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same 340 * time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is 341 * also idle and has no global timer pending. CPU2 is the only active CPU and 342 * thus also the migrator: 343 * 344 * LVL 1 [GRP1:0] 345 * migrator = GRP0:1 346 * active = GRP0:1 347 * --> timerqueue = evt-GRP0:0 348 * / \ 349 * LVL 0 [GRP0:0] [GRP0:1] 350 * migrator = TMIGR_NONE migrator = CPU2 351 * active = active = CPU2 352 * groupevt.ignore = false groupevt.ignore = true 353 * groupevt.cpu = CPU0 groupevt.cpu = 354 * timerqueue = evt-CPU0, timerqueue = 355 * evt-CPU1 356 * / \ / \ 357 * CPUs 0 1 2 3 358 * idle idle active idle 359 * 360 * 2. CPU2 starts to expire remote timers. It starts with LVL0 group 361 * GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with 362 * the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It 363 * looks at tmigr_event::cpu struct member and expires the pending timer(s) 364 * of CPU0. 365 * 366 * LVL 1 [GRP1:0] 367 * migrator = GRP0:1 368 * active = GRP0:1 369 * --> timerqueue = 370 * / \ 371 * LVL 0 [GRP0:0] [GRP0:1] 372 * migrator = TMIGR_NONE migrator = CPU2 373 * active = active = CPU2 374 * groupevt.ignore = false groupevt.ignore = true 375 * --> groupevt.cpu = CPU0 groupevt.cpu = 376 * timerqueue = evt-CPU0, timerqueue = 377 * evt-CPU1 378 * / \ / \ 379 * CPUs 0 1 2 3 380 * idle idle active idle 381 * 382 * 3. Some work has to be done after expiring the timers of CPU0. If we stop 383 * here, then CPU1's pending global timer(s) will not expire in time and the 384 * timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just 385 * been processed. So it is required to walk the hierarchy from CPU0's point 386 * of view and update it accordingly. CPU0's event will be removed from the 387 * timerqueue because it has no pending timer. If CPU0 would have a timer 388 * pending then it has to expire after CPU1's first timer because all timers 389 * from this period were just expired. Either way CPU1's event will be first 390 * in GRP0:0's timerqueue and therefore set in the CPU field of the group 391 * event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not 392 * active: 393 * 394 * LVL 1 [GRP1:0] 395 * migrator = GRP0:1 396 * active = GRP0:1 397 * --> timerqueue = evt-GRP0:0 398 * / \ 399 * LVL 0 [GRP0:0] [GRP0:1] 400 * migrator = TMIGR_NONE migrator = CPU2 401 * active = active = CPU2 402 * groupevt.ignore = false groupevt.ignore = true 403 * --> groupevt.cpu = CPU1 groupevt.cpu = 404 * --> timerqueue = evt-CPU1 timerqueue = 405 * / \ / \ 406 * CPUs 0 1 2 3 407 * idle idle active idle 408 * 409 * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the 410 * timer(s) of CPU1. 411 * 412 * The hierarchy walk in step 3 can be skipped if the migrator notices that a 413 * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care 414 * of the group as migrator and any needed updates within the hierarchy. 415 */ 416 417 static DEFINE_MUTEX(tmigr_mutex); 418 static struct list_head *tmigr_level_list __read_mostly; 419 420 static unsigned int tmigr_hierarchy_levels __read_mostly; 421 static unsigned int tmigr_crossnode_level __read_mostly; 422 423 static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu); 424 425 #define TMIGR_NONE 0xFF 426 #define BIT_CNT 8 427 428 static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc) 429 { 430 return !(tmc->tmgroup && tmc->online); 431 } 432 433 /* 434 * Returns true, when @childmask corresponds to the group migrator or when the 435 * group is not active - so no migrator is set. 436 */ 437 static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask) 438 { 439 union tmigr_state s; 440 441 s.state = atomic_read(&group->migr_state); 442 443 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) 444 return true; 445 446 return false; 447 } 448 449 static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask) 450 { 451 bool lonely, migrator = false; 452 unsigned long active; 453 union tmigr_state s; 454 455 s.state = atomic_read(&group->migr_state); 456 457 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) 458 migrator = true; 459 460 active = s.active; 461 lonely = bitmap_weight(&active, BIT_CNT) <= 1; 462 463 return (migrator && lonely); 464 } 465 466 static bool tmigr_check_lonely(struct tmigr_group *group) 467 { 468 unsigned long active; 469 union tmigr_state s; 470 471 s.state = atomic_read(&group->migr_state); 472 473 active = s.active; 474 475 return bitmap_weight(&active, BIT_CNT) <= 1; 476 } 477 478 typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, void *); 479 480 static void __walk_groups(up_f up, void *data, 481 struct tmigr_cpu *tmc) 482 { 483 struct tmigr_group *child = NULL, *group = tmc->tmgroup; 484 485 do { 486 WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels); 487 488 if (up(group, child, data)) 489 break; 490 491 child = group; 492 group = group->parent; 493 } while (group); 494 } 495 496 static void walk_groups(up_f up, void *data, struct tmigr_cpu *tmc) 497 { 498 lockdep_assert_held(&tmc->lock); 499 500 __walk_groups(up, data, tmc); 501 } 502 503 /** 504 * struct tmigr_walk - data required for walking the hierarchy 505 * @nextexp: Next CPU event expiry information which is handed into 506 * the timer migration code by the timer code 507 * (get_next_timer_interrupt()) 508 * @firstexp: Contains the first event expiry information when last 509 * active CPU of hierarchy is on the way to idle to make 510 * sure CPU will be back in time. It is updated in top 511 * level group only. Be aware, there could occur a new top 512 * level of the hierarchy between the 'top level call' in 513 * tmigr_update_events() and the check for the parent group 514 * in walk_groups(). Then @firstexp might contain a value 515 * != KTIME_MAX even if it was not the final top 516 * level. This is not a problem, as the worst outcome is a 517 * CPU which might wake up a little early. 518 * @evt: Pointer to tmigr_event which needs to be queued (of idle 519 * child group) 520 * @childmask: childmask of child group 521 * @remote: Is set, when the new timer path is executed in 522 * tmigr_handle_remote_cpu() 523 */ 524 struct tmigr_walk { 525 u64 nextexp; 526 u64 firstexp; 527 struct tmigr_event *evt; 528 u8 childmask; 529 bool remote; 530 }; 531 532 /** 533 * struct tmigr_remote_data - data required for remote expiry hierarchy walk 534 * @basej: timer base in jiffies 535 * @now: timer base monotonic 536 * @firstexp: returns expiry of the first timer in the idle timer 537 * migration hierarchy to make sure the timer is handled in 538 * time; it is stored in the per CPU tmigr_cpu struct of 539 * CPU which expires remote timers 540 * @childmask: childmask of child group 541 * @check: is set if there is the need to handle remote timers; 542 * required in tmigr_requires_handle_remote() only 543 * @tmc_active: this flag indicates, whether the CPU which triggers 544 * the hierarchy walk is !idle in the timer migration 545 * hierarchy. When the CPU is idle and the whole hierarchy is 546 * idle, only the first event of the top level has to be 547 * considered. 548 */ 549 struct tmigr_remote_data { 550 unsigned long basej; 551 u64 now; 552 u64 firstexp; 553 u8 childmask; 554 bool check; 555 bool tmc_active; 556 }; 557 558 /* 559 * Returns the next event of the timerqueue @group->events 560 * 561 * Removes timers with ignore flag and update next_expiry of the group. Values 562 * of the group event are updated in tmigr_update_events() only. 563 */ 564 static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group) 565 { 566 struct timerqueue_node *node = NULL; 567 struct tmigr_event *evt = NULL; 568 569 lockdep_assert_held(&group->lock); 570 571 WRITE_ONCE(group->next_expiry, KTIME_MAX); 572 573 while ((node = timerqueue_getnext(&group->events))) { 574 evt = container_of(node, struct tmigr_event, nextevt); 575 576 if (!evt->ignore) { 577 WRITE_ONCE(group->next_expiry, evt->nextevt.expires); 578 return evt; 579 } 580 581 /* 582 * Remove next timers with ignore flag, because the group lock 583 * is held anyway 584 */ 585 if (!timerqueue_del(&group->events, node)) 586 break; 587 } 588 589 return NULL; 590 } 591 592 /* 593 * Return the next event (with the expiry equal or before @now) 594 * 595 * Event, which is returned, is also removed from the queue. 596 */ 597 static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group, 598 u64 now) 599 { 600 struct tmigr_event *evt = tmigr_next_groupevt(group); 601 602 if (!evt || now < evt->nextevt.expires) 603 return NULL; 604 605 /* 606 * The event is ready to expire. Remove it and update next group event. 607 */ 608 timerqueue_del(&group->events, &evt->nextevt); 609 tmigr_next_groupevt(group); 610 611 return evt; 612 } 613 614 static u64 tmigr_next_groupevt_expires(struct tmigr_group *group) 615 { 616 struct tmigr_event *evt; 617 618 evt = tmigr_next_groupevt(group); 619 620 if (!evt) 621 return KTIME_MAX; 622 else 623 return evt->nextevt.expires; 624 } 625 626 static bool tmigr_active_up(struct tmigr_group *group, 627 struct tmigr_group *child, 628 void *ptr) 629 { 630 union tmigr_state curstate, newstate; 631 struct tmigr_walk *data = ptr; 632 bool walk_done; 633 u8 childmask; 634 635 childmask = data->childmask; 636 /* 637 * No memory barrier is required here in contrast to 638 * tmigr_inactive_up(), as the group state change does not depend on the 639 * child state. 640 */ 641 curstate.state = atomic_read(&group->migr_state); 642 643 do { 644 newstate = curstate; 645 walk_done = true; 646 647 if (newstate.migrator == TMIGR_NONE) { 648 newstate.migrator = childmask; 649 650 /* Changes need to be propagated */ 651 walk_done = false; 652 } 653 654 newstate.active |= childmask; 655 newstate.seq++; 656 657 } while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)); 658 659 if (walk_done == false) 660 data->childmask = group->childmask; 661 662 /* 663 * The group is active (again). The group event might be still queued 664 * into the parent group's timerqueue but can now be handled by the 665 * migrator of this group. Therefore the ignore flag for the group event 666 * is updated to reflect this. 667 * 668 * The update of the ignore flag in the active path is done lockless. In 669 * worst case the migrator of the parent group observes the change too 670 * late and expires remotely all events belonging to this group. The 671 * lock is held while updating the ignore flag in idle path. So this 672 * state change will not be lost. 673 */ 674 group->groupevt.ignore = true; 675 676 trace_tmigr_group_set_cpu_active(group, newstate, childmask); 677 678 return walk_done; 679 } 680 681 static void __tmigr_cpu_activate(struct tmigr_cpu *tmc) 682 { 683 struct tmigr_walk data; 684 685 data.childmask = tmc->childmask; 686 687 trace_tmigr_cpu_active(tmc); 688 689 tmc->cpuevt.ignore = true; 690 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 691 692 walk_groups(&tmigr_active_up, &data, tmc); 693 } 694 695 /** 696 * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy 697 * 698 * Call site timer_clear_idle() is called with interrupts disabled. 699 */ 700 void tmigr_cpu_activate(void) 701 { 702 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 703 704 if (tmigr_is_not_available(tmc)) 705 return; 706 707 if (WARN_ON_ONCE(!tmc->idle)) 708 return; 709 710 raw_spin_lock(&tmc->lock); 711 tmc->idle = false; 712 __tmigr_cpu_activate(tmc); 713 raw_spin_unlock(&tmc->lock); 714 } 715 716 /* 717 * Returns true, if there is nothing to be propagated to the next level 718 * 719 * @data->firstexp is set to expiry of first gobal event of the (top level of 720 * the) hierarchy, but only when hierarchy is completely idle. 721 * 722 * The child and group states need to be read under the lock, to prevent a race 723 * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See 724 * also section "Prevent race between new event and last CPU going inactive" in 725 * the documentation at the top. 726 * 727 * This is the only place where the group event expiry value is set. 728 */ 729 static 730 bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child, 731 struct tmigr_walk *data) 732 { 733 struct tmigr_event *evt, *first_childevt; 734 union tmigr_state childstate, groupstate; 735 bool remote = data->remote; 736 bool walk_done = false; 737 u64 nextexp; 738 739 if (child) { 740 raw_spin_lock(&child->lock); 741 raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING); 742 743 childstate.state = atomic_read(&child->migr_state); 744 groupstate.state = atomic_read(&group->migr_state); 745 746 if (childstate.active) { 747 walk_done = true; 748 goto unlock; 749 } 750 751 first_childevt = tmigr_next_groupevt(child); 752 nextexp = child->next_expiry; 753 evt = &child->groupevt; 754 755 evt->ignore = (nextexp == KTIME_MAX) ? true : false; 756 } else { 757 nextexp = data->nextexp; 758 759 first_childevt = evt = data->evt; 760 761 /* 762 * Walking the hierarchy is required in any case when a 763 * remote expiry was done before. This ensures to not lose 764 * already queued events in non active groups (see section 765 * "Required event and timerqueue update after a remote 766 * expiry" in the documentation at the top). 767 * 768 * The two call sites which are executed without a remote expiry 769 * before, are not prevented from propagating changes through 770 * the hierarchy by the return: 771 * - When entering this path by tmigr_new_timer(), @evt->ignore 772 * is never set. 773 * - tmigr_inactive_up() takes care of the propagation by 774 * itself and ignores the return value. But an immediate 775 * return is possible if there is a parent, sparing group 776 * locking at this level, because the upper walking call to 777 * the parent will take care about removing this event from 778 * within the group and update next_expiry accordingly. 779 * 780 * However if there is no parent, ie: the hierarchy has only a 781 * single level so @group is the top level group, make sure the 782 * first event information of the group is updated properly and 783 * also handled properly, so skip this fast return path. 784 */ 785 if (evt->ignore && !remote && group->parent) 786 return true; 787 788 raw_spin_lock(&group->lock); 789 790 childstate.state = 0; 791 groupstate.state = atomic_read(&group->migr_state); 792 } 793 794 /* 795 * If the child event is already queued in the group, remove it from the 796 * queue when the expiry time changed only or when it could be ignored. 797 */ 798 if (timerqueue_node_queued(&evt->nextevt)) { 799 if ((evt->nextevt.expires == nextexp) && !evt->ignore) { 800 /* Make sure not to miss a new CPU event with the same expiry */ 801 evt->cpu = first_childevt->cpu; 802 goto check_toplvl; 803 } 804 805 if (!timerqueue_del(&group->events, &evt->nextevt)) 806 WRITE_ONCE(group->next_expiry, KTIME_MAX); 807 } 808 809 if (evt->ignore) { 810 /* 811 * When the next child event could be ignored (nextexp is 812 * KTIME_MAX) and there was no remote timer handling before or 813 * the group is already active, there is no need to walk the 814 * hierarchy even if there is a parent group. 815 * 816 * The other way round: even if the event could be ignored, but 817 * if a remote timer handling was executed before and the group 818 * is not active, walking the hierarchy is required to not miss 819 * an enqueued timer in the non active group. The enqueued timer 820 * of the group needs to be propagated to a higher level to 821 * ensure it is handled. 822 */ 823 if (!remote || groupstate.active) 824 walk_done = true; 825 } else { 826 evt->nextevt.expires = nextexp; 827 evt->cpu = first_childevt->cpu; 828 829 if (timerqueue_add(&group->events, &evt->nextevt)) 830 WRITE_ONCE(group->next_expiry, nextexp); 831 } 832 833 check_toplvl: 834 if (!group->parent && (groupstate.migrator == TMIGR_NONE)) { 835 walk_done = true; 836 837 /* 838 * Nothing to do when update was done during remote timer 839 * handling. First timer in top level group which needs to be 840 * handled when top level group is not active, is calculated 841 * directly in tmigr_handle_remote_up(). 842 */ 843 if (remote) 844 goto unlock; 845 846 /* 847 * The top level group is idle and it has to be ensured the 848 * global timers are handled in time. (This could be optimized 849 * by keeping track of the last global scheduled event and only 850 * arming it on the CPU if the new event is earlier. Not sure if 851 * its worth the complexity.) 852 */ 853 data->firstexp = tmigr_next_groupevt_expires(group); 854 } 855 856 trace_tmigr_update_events(child, group, childstate, groupstate, 857 nextexp); 858 859 unlock: 860 raw_spin_unlock(&group->lock); 861 862 if (child) 863 raw_spin_unlock(&child->lock); 864 865 return walk_done; 866 } 867 868 static bool tmigr_new_timer_up(struct tmigr_group *group, 869 struct tmigr_group *child, 870 void *ptr) 871 { 872 struct tmigr_walk *data = ptr; 873 874 return tmigr_update_events(group, child, data); 875 } 876 877 /* 878 * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is 879 * returned, if an active CPU will handle all the timer migration hierarchy 880 * timers. 881 */ 882 static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp) 883 { 884 struct tmigr_walk data = { .nextexp = nextexp, 885 .firstexp = KTIME_MAX, 886 .evt = &tmc->cpuevt }; 887 888 lockdep_assert_held(&tmc->lock); 889 890 if (tmc->remote) 891 return KTIME_MAX; 892 893 trace_tmigr_cpu_new_timer(tmc); 894 895 tmc->cpuevt.ignore = false; 896 data.remote = false; 897 898 walk_groups(&tmigr_new_timer_up, &data, tmc); 899 900 /* If there is a new first global event, make sure it is handled */ 901 return data.firstexp; 902 } 903 904 static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now, 905 unsigned long jif) 906 { 907 struct timer_events tevt; 908 struct tmigr_walk data; 909 struct tmigr_cpu *tmc; 910 911 tmc = per_cpu_ptr(&tmigr_cpu, cpu); 912 913 raw_spin_lock_irq(&tmc->lock); 914 915 /* 916 * If the remote CPU is offline then the timers have been migrated to 917 * another CPU. 918 * 919 * If tmigr_cpu::remote is set, at the moment another CPU already 920 * expires the timers of the remote CPU. 921 * 922 * If tmigr_event::ignore is set, then the CPU returns from idle and 923 * takes care of its timers. 924 * 925 * If the next event expires in the future, then the event has been 926 * updated and there are no timers to expire right now. The CPU which 927 * updated the event takes care when hierarchy is completely 928 * idle. Otherwise the migrator does it as the event is enqueued. 929 */ 930 if (!tmc->online || tmc->remote || tmc->cpuevt.ignore || 931 now < tmc->cpuevt.nextevt.expires) { 932 raw_spin_unlock_irq(&tmc->lock); 933 return; 934 } 935 936 trace_tmigr_handle_remote_cpu(tmc); 937 938 tmc->remote = true; 939 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 940 941 /* Drop the lock to allow the remote CPU to exit idle */ 942 raw_spin_unlock_irq(&tmc->lock); 943 944 if (cpu != smp_processor_id()) 945 timer_expire_remote(cpu); 946 947 /* 948 * Lock ordering needs to be preserved - timer_base locks before tmigr 949 * related locks (see section "Locking rules" in the documentation at 950 * the top). During fetching the next timer interrupt, also tmc->lock 951 * needs to be held. Otherwise there is a possible race window against 952 * the CPU itself when it comes out of idle, updates the first timer in 953 * the hierarchy and goes back to idle. 954 * 955 * timer base locks are dropped as fast as possible: After checking 956 * whether the remote CPU went offline in the meantime and after 957 * fetching the next remote timer interrupt. Dropping the locks as fast 958 * as possible keeps the locking region small and prevents holding 959 * several (unnecessary) locks during walking the hierarchy for updating 960 * the timerqueue and group events. 961 */ 962 local_irq_disable(); 963 timer_lock_remote_bases(cpu); 964 raw_spin_lock(&tmc->lock); 965 966 /* 967 * When the CPU went offline in the meantime, no hierarchy walk has to 968 * be done for updating the queued events, because the walk was 969 * already done during marking the CPU offline in the hierarchy. 970 * 971 * When the CPU is no longer idle, the CPU takes care of the timers and 972 * also of the timers in the hierarchy. 973 * 974 * (See also section "Required event and timerqueue update after a 975 * remote expiry" in the documentation at the top) 976 */ 977 if (!tmc->online || !tmc->idle) { 978 timer_unlock_remote_bases(cpu); 979 goto unlock; 980 } 981 982 /* next event of CPU */ 983 fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu); 984 timer_unlock_remote_bases(cpu); 985 986 data.nextexp = tevt.global; 987 data.firstexp = KTIME_MAX; 988 data.evt = &tmc->cpuevt; 989 data.remote = true; 990 991 /* 992 * The update is done even when there is no 'new' global timer pending 993 * on the remote CPU (see section "Required event and timerqueue update 994 * after a remote expiry" in the documentation at the top) 995 */ 996 walk_groups(&tmigr_new_timer_up, &data, tmc); 997 998 unlock: 999 tmc->remote = false; 1000 raw_spin_unlock_irq(&tmc->lock); 1001 } 1002 1003 static bool tmigr_handle_remote_up(struct tmigr_group *group, 1004 struct tmigr_group *child, 1005 void *ptr) 1006 { 1007 struct tmigr_remote_data *data = ptr; 1008 struct tmigr_event *evt; 1009 unsigned long jif; 1010 u8 childmask; 1011 u64 now; 1012 1013 jif = data->basej; 1014 now = data->now; 1015 1016 childmask = data->childmask; 1017 1018 trace_tmigr_handle_remote(group); 1019 again: 1020 /* 1021 * Handle the group only if @childmask is the migrator or if the 1022 * group has no migrator. Otherwise the group is active and is 1023 * handled by its own migrator. 1024 */ 1025 if (!tmigr_check_migrator(group, childmask)) 1026 return true; 1027 1028 raw_spin_lock_irq(&group->lock); 1029 1030 evt = tmigr_next_expired_groupevt(group, now); 1031 1032 if (evt) { 1033 unsigned int remote_cpu = evt->cpu; 1034 1035 raw_spin_unlock_irq(&group->lock); 1036 1037 tmigr_handle_remote_cpu(remote_cpu, now, jif); 1038 1039 /* check if there is another event, that needs to be handled */ 1040 goto again; 1041 } 1042 1043 /* 1044 * Update of childmask for the next level and keep track of the expiry 1045 * of the first event that needs to be handled (group->next_expiry was 1046 * updated by tmigr_next_expired_groupevt(), next was set by 1047 * tmigr_handle_remote_cpu()). 1048 */ 1049 data->childmask = group->childmask; 1050 data->firstexp = group->next_expiry; 1051 1052 raw_spin_unlock_irq(&group->lock); 1053 1054 return false; 1055 } 1056 1057 /** 1058 * tmigr_handle_remote() - Handle global timers of remote idle CPUs 1059 * 1060 * Called from the timer soft interrupt with interrupts enabled. 1061 */ 1062 void tmigr_handle_remote(void) 1063 { 1064 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1065 struct tmigr_remote_data data; 1066 1067 if (tmigr_is_not_available(tmc)) 1068 return; 1069 1070 data.childmask = tmc->childmask; 1071 data.firstexp = KTIME_MAX; 1072 1073 /* 1074 * NOTE: This is a doubled check because the migrator test will be done 1075 * in tmigr_handle_remote_up() anyway. Keep this check to speed up the 1076 * return when nothing has to be done. 1077 */ 1078 if (!tmigr_check_migrator(tmc->tmgroup, tmc->childmask)) { 1079 /* 1080 * If this CPU was an idle migrator, make sure to clear its wakeup 1081 * value so it won't chase timers that have already expired elsewhere. 1082 * This avoids endless requeue from tmigr_new_timer(). 1083 */ 1084 if (READ_ONCE(tmc->wakeup) == KTIME_MAX) 1085 return; 1086 } 1087 1088 data.now = get_jiffies_update(&data.basej); 1089 1090 /* 1091 * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to 1092 * KTIME_MAX. Even if tmc->lock is not held during the whole remote 1093 * handling, tmc->wakeup is fine to be stale as it is called in 1094 * interrupt context and tick_nohz_next_event() is executed in interrupt 1095 * exit path only after processing the last pending interrupt. 1096 */ 1097 1098 __walk_groups(&tmigr_handle_remote_up, &data, tmc); 1099 1100 raw_spin_lock_irq(&tmc->lock); 1101 WRITE_ONCE(tmc->wakeup, data.firstexp); 1102 raw_spin_unlock_irq(&tmc->lock); 1103 } 1104 1105 static bool tmigr_requires_handle_remote_up(struct tmigr_group *group, 1106 struct tmigr_group *child, 1107 void *ptr) 1108 { 1109 struct tmigr_remote_data *data = ptr; 1110 u8 childmask; 1111 1112 childmask = data->childmask; 1113 1114 /* 1115 * Handle the group only if the child is the migrator or if the group 1116 * has no migrator. Otherwise the group is active and is handled by its 1117 * own migrator. 1118 */ 1119 if (!tmigr_check_migrator(group, childmask)) 1120 return true; 1121 1122 /* 1123 * When there is a parent group and the CPU which triggered the 1124 * hierarchy walk is not active, proceed the walk to reach the top level 1125 * group before reading the next_expiry value. 1126 */ 1127 if (group->parent && !data->tmc_active) 1128 goto out; 1129 1130 /* 1131 * The lock is required on 32bit architectures to read the variable 1132 * consistently with a concurrent writer. On 64bit the lock is not 1133 * required because the read operation is not split and so it is always 1134 * consistent. 1135 */ 1136 if (IS_ENABLED(CONFIG_64BIT)) { 1137 data->firstexp = READ_ONCE(group->next_expiry); 1138 if (data->now >= data->firstexp) { 1139 data->check = true; 1140 return true; 1141 } 1142 } else { 1143 raw_spin_lock(&group->lock); 1144 data->firstexp = group->next_expiry; 1145 if (data->now >= group->next_expiry) { 1146 data->check = true; 1147 raw_spin_unlock(&group->lock); 1148 return true; 1149 } 1150 raw_spin_unlock(&group->lock); 1151 } 1152 1153 out: 1154 /* Update of childmask for the next level */ 1155 data->childmask = group->childmask; 1156 return false; 1157 } 1158 1159 /** 1160 * tmigr_requires_handle_remote() - Check the need of remote timer handling 1161 * 1162 * Must be called with interrupts disabled. 1163 */ 1164 bool tmigr_requires_handle_remote(void) 1165 { 1166 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1167 struct tmigr_remote_data data; 1168 unsigned long jif; 1169 bool ret = false; 1170 1171 if (tmigr_is_not_available(tmc)) 1172 return ret; 1173 1174 data.now = get_jiffies_update(&jif); 1175 data.childmask = tmc->childmask; 1176 data.firstexp = KTIME_MAX; 1177 data.tmc_active = !tmc->idle; 1178 data.check = false; 1179 1180 /* 1181 * If the CPU is active, walk the hierarchy to check whether a remote 1182 * expiry is required. 1183 * 1184 * Check is done lockless as interrupts are disabled and @tmc->idle is 1185 * set only by the local CPU. 1186 */ 1187 if (!tmc->idle) { 1188 __walk_groups(&tmigr_requires_handle_remote_up, &data, tmc); 1189 1190 return data.check; 1191 } 1192 1193 /* 1194 * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock 1195 * is required on 32bit architectures to read the variable consistently 1196 * with a concurrent writer. On 64bit the lock is not required because 1197 * the read operation is not split and so it is always consistent. 1198 */ 1199 if (IS_ENABLED(CONFIG_64BIT)) { 1200 if (data.now >= READ_ONCE(tmc->wakeup)) 1201 return true; 1202 } else { 1203 raw_spin_lock(&tmc->lock); 1204 if (data.now >= tmc->wakeup) 1205 ret = true; 1206 raw_spin_unlock(&tmc->lock); 1207 } 1208 1209 return ret; 1210 } 1211 1212 /** 1213 * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc) 1214 * @nextexp: Next expiry of global timer (or KTIME_MAX if not) 1215 * 1216 * The CPU is already deactivated in the timer migration 1217 * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event() 1218 * and thereby the timer idle path is executed once more. @tmc->wakeup 1219 * holds the first timer, when the timer migration hierarchy is 1220 * completely idle. 1221 * 1222 * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if 1223 * nothing needs to be done. 1224 */ 1225 u64 tmigr_cpu_new_timer(u64 nextexp) 1226 { 1227 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1228 u64 ret; 1229 1230 if (tmigr_is_not_available(tmc)) 1231 return nextexp; 1232 1233 raw_spin_lock(&tmc->lock); 1234 1235 ret = READ_ONCE(tmc->wakeup); 1236 if (nextexp != KTIME_MAX) { 1237 if (nextexp != tmc->cpuevt.nextevt.expires || 1238 tmc->cpuevt.ignore) { 1239 ret = tmigr_new_timer(tmc, nextexp); 1240 } 1241 } 1242 /* 1243 * Make sure the reevaluation of timers in idle path will not miss an 1244 * event. 1245 */ 1246 WRITE_ONCE(tmc->wakeup, ret); 1247 1248 trace_tmigr_cpu_new_timer_idle(tmc, nextexp); 1249 raw_spin_unlock(&tmc->lock); 1250 return ret; 1251 } 1252 1253 static bool tmigr_inactive_up(struct tmigr_group *group, 1254 struct tmigr_group *child, 1255 void *ptr) 1256 { 1257 union tmigr_state curstate, newstate, childstate; 1258 struct tmigr_walk *data = ptr; 1259 bool walk_done; 1260 u8 childmask; 1261 1262 childmask = data->childmask; 1263 childstate.state = 0; 1264 1265 /* 1266 * The memory barrier is paired with the cmpxchg() in tmigr_active_up() 1267 * to make sure the updates of child and group states are ordered. The 1268 * ordering is mandatory, as the group state change depends on the child 1269 * state. 1270 */ 1271 curstate.state = atomic_read_acquire(&group->migr_state); 1272 1273 for (;;) { 1274 if (child) 1275 childstate.state = atomic_read(&child->migr_state); 1276 1277 newstate = curstate; 1278 walk_done = true; 1279 1280 /* Reset active bit when the child is no longer active */ 1281 if (!childstate.active) 1282 newstate.active &= ~childmask; 1283 1284 if (newstate.migrator == childmask) { 1285 /* 1286 * Find a new migrator for the group, because the child 1287 * group is idle! 1288 */ 1289 if (!childstate.active) { 1290 unsigned long new_migr_bit, active = newstate.active; 1291 1292 new_migr_bit = find_first_bit(&active, BIT_CNT); 1293 1294 if (new_migr_bit != BIT_CNT) { 1295 newstate.migrator = BIT(new_migr_bit); 1296 } else { 1297 newstate.migrator = TMIGR_NONE; 1298 1299 /* Changes need to be propagated */ 1300 walk_done = false; 1301 } 1302 } 1303 } 1304 1305 newstate.seq++; 1306 1307 WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active)); 1308 1309 if (atomic_try_cmpxchg(&group->migr_state, &curstate.state, 1310 newstate.state)) 1311 break; 1312 1313 /* 1314 * The memory barrier is paired with the cmpxchg() in 1315 * tmigr_active_up() to make sure the updates of child and group 1316 * states are ordered. It is required only when the above 1317 * try_cmpxchg() fails. 1318 */ 1319 smp_mb__after_atomic(); 1320 } 1321 1322 data->remote = false; 1323 1324 /* Event Handling */ 1325 tmigr_update_events(group, child, data); 1326 1327 if (walk_done == false) 1328 data->childmask = group->childmask; 1329 1330 trace_tmigr_group_set_cpu_inactive(group, newstate, childmask); 1331 1332 return walk_done; 1333 } 1334 1335 static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp) 1336 { 1337 struct tmigr_walk data = { .nextexp = nextexp, 1338 .firstexp = KTIME_MAX, 1339 .evt = &tmc->cpuevt, 1340 .childmask = tmc->childmask }; 1341 1342 /* 1343 * If nextexp is KTIME_MAX, the CPU event will be ignored because the 1344 * local timer expires before the global timer, no global timer is set 1345 * or CPU goes offline. 1346 */ 1347 if (nextexp != KTIME_MAX) 1348 tmc->cpuevt.ignore = false; 1349 1350 walk_groups(&tmigr_inactive_up, &data, tmc); 1351 return data.firstexp; 1352 } 1353 1354 /** 1355 * tmigr_cpu_deactivate() - Put current CPU into inactive state 1356 * @nextexp: The next global timer expiry of the current CPU 1357 * 1358 * Must be called with interrupts disabled. 1359 * 1360 * Return: the next event expiry of the current CPU or the next event expiry 1361 * from the hierarchy if this CPU is the top level migrator or the hierarchy is 1362 * completely idle. 1363 */ 1364 u64 tmigr_cpu_deactivate(u64 nextexp) 1365 { 1366 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1367 u64 ret; 1368 1369 if (tmigr_is_not_available(tmc)) 1370 return nextexp; 1371 1372 raw_spin_lock(&tmc->lock); 1373 1374 ret = __tmigr_cpu_deactivate(tmc, nextexp); 1375 1376 tmc->idle = true; 1377 1378 /* 1379 * Make sure the reevaluation of timers in idle path will not miss an 1380 * event. 1381 */ 1382 WRITE_ONCE(tmc->wakeup, ret); 1383 1384 trace_tmigr_cpu_idle(tmc, nextexp); 1385 raw_spin_unlock(&tmc->lock); 1386 return ret; 1387 } 1388 1389 /** 1390 * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to 1391 * go idle 1392 * @nextevt: The next global timer expiry of the current CPU 1393 * 1394 * Return: 1395 * * KTIME_MAX - when it is probable that nothing has to be done (not 1396 * the only one in the level 0 group; and if it is the 1397 * only one in level 0 group, but there are more than a 1398 * single group active on the way to top level) 1399 * * nextevt - when CPU is offline and has to handle timer on his own 1400 * or when on the way to top in every group only a single 1401 * child is active but @nextevt is before the lowest 1402 * next_expiry encountered while walking up to top level. 1403 * * next_expiry - value of lowest expiry encountered while walking groups 1404 * if only a single child is active on each and @nextevt 1405 * is after this lowest expiry. 1406 */ 1407 u64 tmigr_quick_check(u64 nextevt) 1408 { 1409 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1410 struct tmigr_group *group = tmc->tmgroup; 1411 1412 if (tmigr_is_not_available(tmc)) 1413 return nextevt; 1414 1415 if (WARN_ON_ONCE(tmc->idle)) 1416 return nextevt; 1417 1418 if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->childmask)) 1419 return KTIME_MAX; 1420 1421 do { 1422 if (!tmigr_check_lonely(group)) { 1423 return KTIME_MAX; 1424 } else { 1425 /* 1426 * Since current CPU is active, events may not be sorted 1427 * from bottom to the top because the CPU's event is ignored 1428 * up to the top and its sibling's events not propagated upwards. 1429 * Thus keep track of the lowest observed expiry. 1430 */ 1431 nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry)); 1432 if (!group->parent) 1433 return nextevt; 1434 } 1435 group = group->parent; 1436 } while (group); 1437 1438 return KTIME_MAX; 1439 } 1440 1441 static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl, 1442 int node) 1443 { 1444 union tmigr_state s; 1445 1446 raw_spin_lock_init(&group->lock); 1447 1448 group->level = lvl; 1449 group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE; 1450 1451 group->num_children = 0; 1452 1453 s.migrator = TMIGR_NONE; 1454 s.active = 0; 1455 s.seq = 0; 1456 atomic_set(&group->migr_state, s.state); 1457 1458 timerqueue_init_head(&group->events); 1459 timerqueue_init(&group->groupevt.nextevt); 1460 group->groupevt.nextevt.expires = KTIME_MAX; 1461 WRITE_ONCE(group->next_expiry, KTIME_MAX); 1462 group->groupevt.ignore = true; 1463 } 1464 1465 static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node, 1466 unsigned int lvl) 1467 { 1468 struct tmigr_group *tmp, *group = NULL; 1469 1470 lockdep_assert_held(&tmigr_mutex); 1471 1472 /* Try to attach to an existing group first */ 1473 list_for_each_entry(tmp, &tmigr_level_list[lvl], list) { 1474 /* 1475 * If @lvl is below the cross NUMA node level, check whether 1476 * this group belongs to the same NUMA node. 1477 */ 1478 if (lvl < tmigr_crossnode_level && tmp->numa_node != node) 1479 continue; 1480 1481 /* Capacity left? */ 1482 if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP) 1483 continue; 1484 1485 /* 1486 * TODO: A possible further improvement: Make sure that all CPU 1487 * siblings end up in the same group of the lowest level of the 1488 * hierarchy. Rely on the topology sibling mask would be a 1489 * reasonable solution. 1490 */ 1491 1492 group = tmp; 1493 break; 1494 } 1495 1496 if (group) 1497 return group; 1498 1499 /* Allocate and set up a new group */ 1500 group = kzalloc_node(sizeof(*group), GFP_KERNEL, node); 1501 if (!group) 1502 return ERR_PTR(-ENOMEM); 1503 1504 tmigr_init_group(group, lvl, node); 1505 1506 /* Setup successful. Add it to the hierarchy */ 1507 list_add(&group->list, &tmigr_level_list[lvl]); 1508 trace_tmigr_group_set(group); 1509 return group; 1510 } 1511 1512 static void tmigr_connect_child_parent(struct tmigr_group *child, 1513 struct tmigr_group *parent) 1514 { 1515 union tmigr_state childstate; 1516 1517 raw_spin_lock_irq(&child->lock); 1518 raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING); 1519 1520 child->parent = parent; 1521 child->childmask = BIT(parent->num_children++); 1522 1523 raw_spin_unlock(&parent->lock); 1524 raw_spin_unlock_irq(&child->lock); 1525 1526 trace_tmigr_connect_child_parent(child); 1527 1528 /* 1529 * To prevent inconsistent states, active children need to be active in 1530 * the new parent as well. Inactive children are already marked inactive 1531 * in the parent group: 1532 * 1533 * * When new groups were created by tmigr_setup_groups() starting from 1534 * the lowest level (and not higher then one level below the current 1535 * top level), then they are not active. They will be set active when 1536 * the new online CPU comes active. 1537 * 1538 * * But if a new group above the current top level is required, it is 1539 * mandatory to propagate the active state of the already existing 1540 * child to the new parent. So tmigr_connect_child_parent() is 1541 * executed with the formerly top level group (child) and the newly 1542 * created group (parent). 1543 */ 1544 childstate.state = atomic_read(&child->migr_state); 1545 if (childstate.migrator != TMIGR_NONE) { 1546 struct tmigr_walk data; 1547 1548 data.childmask = child->childmask; 1549 1550 /* 1551 * There is only one new level per time (which is protected by 1552 * tmigr_mutex). When connecting the child and the parent and 1553 * set the child active when the parent is inactive, the parent 1554 * needs to be the uppermost level. Otherwise there went 1555 * something wrong! 1556 */ 1557 WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent); 1558 } 1559 } 1560 1561 static int tmigr_setup_groups(unsigned int cpu, unsigned int node) 1562 { 1563 struct tmigr_group *group, *child, **stack; 1564 int top = 0, err = 0, i = 0; 1565 struct list_head *lvllist; 1566 1567 stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL); 1568 if (!stack) 1569 return -ENOMEM; 1570 1571 do { 1572 group = tmigr_get_group(cpu, node, i); 1573 if (IS_ERR(group)) { 1574 err = PTR_ERR(group); 1575 break; 1576 } 1577 1578 top = i; 1579 stack[i++] = group; 1580 1581 /* 1582 * When booting only less CPUs of a system than CPUs are 1583 * available, not all calculated hierarchy levels are required. 1584 * 1585 * The loop is aborted as soon as the highest level, which might 1586 * be different from tmigr_hierarchy_levels, contains only a 1587 * single group. 1588 */ 1589 if (group->parent || i == tmigr_hierarchy_levels || 1590 (list_empty(&tmigr_level_list[i]) && 1591 list_is_singular(&tmigr_level_list[i - 1]))) 1592 break; 1593 1594 } while (i < tmigr_hierarchy_levels); 1595 1596 while (i > 0) { 1597 group = stack[--i]; 1598 1599 if (err < 0) { 1600 list_del(&group->list); 1601 kfree(group); 1602 continue; 1603 } 1604 1605 WARN_ON_ONCE(i != group->level); 1606 1607 /* 1608 * Update tmc -> group / child -> group connection 1609 */ 1610 if (i == 0) { 1611 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1612 1613 raw_spin_lock_irq(&group->lock); 1614 1615 tmc->tmgroup = group; 1616 tmc->childmask = BIT(group->num_children++); 1617 1618 raw_spin_unlock_irq(&group->lock); 1619 1620 trace_tmigr_connect_cpu_parent(tmc); 1621 1622 /* There are no children that need to be connected */ 1623 continue; 1624 } else { 1625 child = stack[i - 1]; 1626 tmigr_connect_child_parent(child, group); 1627 } 1628 1629 /* check if uppermost level was newly created */ 1630 if (top != i) 1631 continue; 1632 1633 WARN_ON_ONCE(top == 0); 1634 1635 lvllist = &tmigr_level_list[top]; 1636 if (group->num_children == 1 && list_is_singular(lvllist)) { 1637 lvllist = &tmigr_level_list[top - 1]; 1638 list_for_each_entry(child, lvllist, list) { 1639 if (child->parent) 1640 continue; 1641 1642 tmigr_connect_child_parent(child, group); 1643 } 1644 } 1645 } 1646 1647 kfree(stack); 1648 1649 return err; 1650 } 1651 1652 static int tmigr_add_cpu(unsigned int cpu) 1653 { 1654 int node = cpu_to_node(cpu); 1655 int ret; 1656 1657 mutex_lock(&tmigr_mutex); 1658 ret = tmigr_setup_groups(cpu, node); 1659 mutex_unlock(&tmigr_mutex); 1660 1661 return ret; 1662 } 1663 1664 static int tmigr_cpu_online(unsigned int cpu) 1665 { 1666 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1667 int ret; 1668 1669 /* First online attempt? Initialize CPU data */ 1670 if (!tmc->tmgroup) { 1671 raw_spin_lock_init(&tmc->lock); 1672 1673 ret = tmigr_add_cpu(cpu); 1674 if (ret < 0) 1675 return ret; 1676 1677 if (tmc->childmask == 0) 1678 return -EINVAL; 1679 1680 timerqueue_init(&tmc->cpuevt.nextevt); 1681 tmc->cpuevt.nextevt.expires = KTIME_MAX; 1682 tmc->cpuevt.ignore = true; 1683 tmc->cpuevt.cpu = cpu; 1684 1685 tmc->remote = false; 1686 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 1687 } 1688 raw_spin_lock_irq(&tmc->lock); 1689 trace_tmigr_cpu_online(tmc); 1690 tmc->idle = timer_base_is_idle(); 1691 if (!tmc->idle) 1692 __tmigr_cpu_activate(tmc); 1693 tmc->online = true; 1694 raw_spin_unlock_irq(&tmc->lock); 1695 return 0; 1696 } 1697 1698 /* 1699 * tmigr_trigger_active() - trigger a CPU to become active again 1700 * 1701 * This function is executed on a CPU which is part of cpu_online_mask, when the 1702 * last active CPU in the hierarchy is offlining. With this, it is ensured that 1703 * the other CPU is active and takes over the migrator duty. 1704 */ 1705 static long tmigr_trigger_active(void *unused) 1706 { 1707 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1708 1709 WARN_ON_ONCE(!tmc->online || tmc->idle); 1710 1711 return 0; 1712 } 1713 1714 static int tmigr_cpu_offline(unsigned int cpu) 1715 { 1716 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1717 int migrator; 1718 u64 firstexp; 1719 1720 raw_spin_lock_irq(&tmc->lock); 1721 tmc->online = false; 1722 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 1723 1724 /* 1725 * CPU has to handle the local events on his own, when on the way to 1726 * offline; Therefore nextevt value is set to KTIME_MAX 1727 */ 1728 firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX); 1729 trace_tmigr_cpu_offline(tmc); 1730 raw_spin_unlock_irq(&tmc->lock); 1731 1732 if (firstexp != KTIME_MAX) { 1733 migrator = cpumask_any_but(cpu_online_mask, cpu); 1734 work_on_cpu(migrator, tmigr_trigger_active, NULL); 1735 } 1736 1737 return 0; 1738 } 1739 1740 static int __init tmigr_init(void) 1741 { 1742 unsigned int cpulvl, nodelvl, cpus_per_node, i; 1743 unsigned int nnodes = num_possible_nodes(); 1744 unsigned int ncpus = num_possible_cpus(); 1745 int ret = -ENOMEM; 1746 1747 BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP); 1748 1749 /* Nothing to do if running on UP */ 1750 if (ncpus == 1) 1751 return 0; 1752 1753 /* 1754 * Calculate the required hierarchy levels. Unfortunately there is no 1755 * reliable information available, unless all possible CPUs have been 1756 * brought up and all NUMA nodes are populated. 1757 * 1758 * Estimate the number of levels with the number of possible nodes and 1759 * the number of possible CPUs. Assume CPUs are spread evenly across 1760 * nodes. We cannot rely on cpumask_of_node() because it only works for 1761 * online CPUs. 1762 */ 1763 cpus_per_node = DIV_ROUND_UP(ncpus, nnodes); 1764 1765 /* Calc the hierarchy levels required to hold the CPUs of a node */ 1766 cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node), 1767 ilog2(TMIGR_CHILDREN_PER_GROUP)); 1768 1769 /* Calculate the extra levels to connect all nodes */ 1770 nodelvl = DIV_ROUND_UP(order_base_2(nnodes), 1771 ilog2(TMIGR_CHILDREN_PER_GROUP)); 1772 1773 tmigr_hierarchy_levels = cpulvl + nodelvl; 1774 1775 /* 1776 * If a NUMA node spawns more than one CPU level group then the next 1777 * level(s) of the hierarchy contains groups which handle all CPU groups 1778 * of the same NUMA node. The level above goes across NUMA nodes. Store 1779 * this information for the setup code to decide in which level node 1780 * matching is no longer required. 1781 */ 1782 tmigr_crossnode_level = cpulvl; 1783 1784 tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL); 1785 if (!tmigr_level_list) 1786 goto err; 1787 1788 for (i = 0; i < tmigr_hierarchy_levels; i++) 1789 INIT_LIST_HEAD(&tmigr_level_list[i]); 1790 1791 pr_info("Timer migration: %d hierarchy levels; %d children per group;" 1792 " %d crossnode level\n", 1793 tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP, 1794 tmigr_crossnode_level); 1795 1796 ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online", 1797 tmigr_cpu_online, tmigr_cpu_offline); 1798 if (ret) 1799 goto err; 1800 1801 return 0; 1802 1803 err: 1804 pr_err("Timer migration setup failed\n"); 1805 return ret; 1806 } 1807 late_initcall(tmigr_init); 1808