xref: /linux-6.15/kernel/time/timer_migration.c (revision facd40aa)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Infrastructure for migratable timers
4  *
5  * Copyright(C) 2022 linutronix GmbH
6  */
7 #include <linux/cpuhotplug.h>
8 #include <linux/slab.h>
9 #include <linux/smp.h>
10 #include <linux/spinlock.h>
11 #include <linux/timerqueue.h>
12 #include <trace/events/ipi.h>
13 
14 #include "timer_migration.h"
15 #include "tick-internal.h"
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/timer_migration.h>
19 
20 /*
21  * The timer migration mechanism is built on a hierarchy of groups. The
22  * lowest level group contains CPUs, the next level groups of CPU groups
23  * and so forth. The CPU groups are kept per node so for the normal case
24  * lock contention won't happen across nodes. Depending on the number of
25  * CPUs per node even the next level might be kept as groups of CPU groups
26  * per node and only the levels above cross the node topology.
27  *
28  * Example topology for a two node system with 24 CPUs each.
29  *
30  * LVL 2                           [GRP2:0]
31  *                              GRP1:0 = GRP1:M
32  *
33  * LVL 1            [GRP1:0]                      [GRP1:1]
34  *               GRP0:0 - GRP0:2               GRP0:3 - GRP0:5
35  *
36  * LVL 0  [GRP0:0]  [GRP0:1]  [GRP0:2]  [GRP0:3]  [GRP0:4]  [GRP0:5]
37  * CPUS     0-7       8-15      16-23     24-31     32-39     40-47
38  *
39  * The groups hold a timer queue of events sorted by expiry time. These
40  * queues are updated when CPUs go in idle. When they come out of idle
41  * ignore flag of events is set.
42  *
43  * Each group has a designated migrator CPU/group as long as a CPU/group is
44  * active in the group. This designated role is necessary to avoid that all
45  * active CPUs in a group try to migrate expired timers from other CPUs,
46  * which would result in massive lock bouncing.
47  *
48  * When a CPU is awake, it checks in it's own timer tick the group
49  * hierarchy up to the point where it is assigned the migrator role or if
50  * no CPU is active, it also checks the groups where no migrator is set
51  * (TMIGR_NONE).
52  *
53  * If it finds expired timers in one of the group queues it pulls them over
54  * from the idle CPU and runs the timer function. After that it updates the
55  * group and the parent groups if required.
56  *
57  * CPUs which go idle arm their CPU local timer hardware for the next local
58  * (pinned) timer event. If the next migratable timer expires after the
59  * next local timer or the CPU has no migratable timer pending then the
60  * CPU does not queue an event in the LVL0 group. If the next migratable
61  * timer expires before the next local timer then the CPU queues that timer
62  * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0
63  * group.
64  *
65  * When CPU comes out of idle and when a group has at least a single active
66  * child, the ignore flag of the tmigr_event is set. This indicates, that
67  * the event is ignored even if it is still enqueued in the parent groups
68  * timer queue. It will be removed when touching the timer queue the next
69  * time. This spares locking in active path as the lock protects (after
70  * setup) only event information. For more information about locking,
71  * please read the section "Locking rules".
72  *
73  * If the CPU is the migrator of the group then it delegates that role to
74  * the next active CPU in the group or sets migrator to TMIGR_NONE when
75  * there is no active CPU in the group. This delegation needs to be
76  * propagated up the hierarchy so hand over from other leaves can happen at
77  * all hierarchy levels w/o doing a search.
78  *
79  * When the last CPU in the system goes idle, then it drops all migrator
80  * duties up to the top level of the hierarchy (LVL2 in the example). It
81  * then has to make sure, that it arms it's own local hardware timer for
82  * the earliest event in the system.
83  *
84  *
85  * Lifetime rules:
86  * ---------------
87  *
88  * The groups are built up at init time or when CPUs come online. They are
89  * not destroyed when a group becomes empty due to offlining. The group
90  * just won't participate in the hierarchy management anymore. Destroying
91  * groups would result in interesting race conditions which would just make
92  * the whole mechanism slow and complex.
93  *
94  *
95  * Locking rules:
96  * --------------
97  *
98  * For setting up new groups and handling events it's required to lock both
99  * child and parent group. The lock ordering is always bottom up. This also
100  * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and
101  * active CPU/group information atomic_try_cmpxchg() is used instead and only
102  * the per CPU tmigr_cpu->lock is held.
103  *
104  * During the setup of groups tmigr_level_list is required. It is protected by
105  * @tmigr_mutex.
106  *
107  * When @timer_base->lock as well as tmigr related locks are required, the lock
108  * ordering is: first @timer_base->lock, afterwards tmigr related locks.
109  *
110  *
111  * Protection of the tmigr group state information:
112  * ------------------------------------------------
113  *
114  * The state information with the list of active children and migrator needs to
115  * be protected by a sequence counter. It prevents a race when updates in child
116  * groups are propagated in changed order. The state update is performed
117  * lockless and group wise. The following scenario describes what happens
118  * without updating the sequence counter:
119  *
120  * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well
121  * as GRP0:1 will not change during the scenario):
122  *
123  *    LVL 1            [GRP1:0]
124  *                     migrator = GRP0:1
125  *                     active   = GRP0:0, GRP0:1
126  *                   /                \
127  *    LVL 0  [GRP0:0]                  [GRP0:1]
128  *           migrator = CPU0           migrator = CPU2
129  *           active   = CPU0           active   = CPU2
130  *              /         \                /         \
131  *    CPUs     0           1              2           3
132  *             active      idle           active      idle
133  *
134  *
135  * 1. CPU0 goes idle. As the update is performed group wise, in the first step
136  *    only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to
137  *    walk the hierarchy.
138  *
139  *    LVL 1            [GRP1:0]
140  *                     migrator = GRP0:1
141  *                     active   = GRP0:0, GRP0:1
142  *                   /                \
143  *    LVL 0  [GRP0:0]                  [GRP0:1]
144  *       --> migrator = TMIGR_NONE     migrator = CPU2
145  *       --> active   =                active   = CPU2
146  *              /         \                /         \
147  *    CPUs     0           1              2           3
148  *         --> idle        idle           active      idle
149  *
150  * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of
151  *    idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also
152  *    has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the
153  *    hierarchy to perform the needed update from their point of view. The
154  *    currently visible state looks the following:
155  *
156  *    LVL 1            [GRP1:0]
157  *                     migrator = GRP0:1
158  *                     active   = GRP0:0, GRP0:1
159  *                   /                \
160  *    LVL 0  [GRP0:0]                  [GRP0:1]
161  *       --> migrator = CPU1           migrator = CPU2
162  *       --> active   = CPU1           active   = CPU2
163  *              /         \                /         \
164  *    CPUs     0           1              2           3
165  *             idle    --> active         active      idle
166  *
167  * 3. Here is the race condition: CPU1 managed to propagate its changes (from
168  *    step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The
169  *    active members of GRP1:0 remain unchanged after the update since it is
170  *    still valid from CPU1 current point of view:
171  *
172  *    LVL 1            [GRP1:0]
173  *                 --> migrator = GRP0:1
174  *                 --> active   = GRP0:0, GRP0:1
175  *                   /                \
176  *    LVL 0  [GRP0:0]                  [GRP0:1]
177  *           migrator = CPU1           migrator = CPU2
178  *           active   = CPU1           active   = CPU2
179  *              /         \                /         \
180  *    CPUs     0           1              2           3
181  *             idle        active         active      idle
182  *
183  * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0.
184  *
185  *    LVL 1            [GRP1:0]
186  *                 --> migrator = GRP0:1
187  *                 --> active   = GRP0:1
188  *                   /                \
189  *    LVL 0  [GRP0:0]                  [GRP0:1]
190  *           migrator = CPU1           migrator = CPU2
191  *           active   = CPU1           active   = CPU2
192  *              /         \                /         \
193  *    CPUs     0           1              2           3
194  *             idle        active         active      idle
195  *
196  *
197  * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is
198  * active and is correctly listed as active in GRP0:0. However GRP1:0 does not
199  * have GRP0:0 listed as active, which is wrong. The sequence counter has been
200  * added to avoid inconsistent states during updates. The state is updated
201  * atomically only if all members, including the sequence counter, match the
202  * expected value (compare-and-exchange).
203  *
204  * Looking back at the previous example with the addition of the sequence
205  * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed
206  * the sequence number during the update in step 3 so the expected old value (as
207  * seen by CPU0 before starting the walk) does not match.
208  *
209  * Prevent race between new event and last CPU going inactive
210  * ----------------------------------------------------------
211  *
212  * When the last CPU is going idle and there is a concurrent update of a new
213  * first global timer of an idle CPU, the group and child states have to be read
214  * while holding the lock in tmigr_update_events(). The following scenario shows
215  * what happens, when this is not done.
216  *
217  * 1. Only CPU2 is active:
218  *
219  *    LVL 1            [GRP1:0]
220  *                     migrator = GRP0:1
221  *                     active   = GRP0:1
222  *                     next_expiry = KTIME_MAX
223  *                   /                \
224  *    LVL 0  [GRP0:0]                  [GRP0:1]
225  *           migrator = TMIGR_NONE     migrator = CPU2
226  *           active   =                active   = CPU2
227  *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
228  *              /         \                /         \
229  *    CPUs     0           1              2           3
230  *             idle        idle           active      idle
231  *
232  * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and
233  *    propagates that to GRP0:1:
234  *
235  *    LVL 1            [GRP1:0]
236  *                     migrator = GRP0:1
237  *                     active   = GRP0:1
238  *                     next_expiry = KTIME_MAX
239  *                   /                \
240  *    LVL 0  [GRP0:0]                  [GRP0:1]
241  *           migrator = TMIGR_NONE --> migrator = TMIGR_NONE
242  *           active   =            --> active   =
243  *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
244  *              /         \                /         \
245  *    CPUs     0           1              2           3
246  *             idle        idle       --> idle        idle
247  *
248  * 3. Now the idle state is propagated up to GRP1:0. As this is now the last
249  *    child going idle in top level group, the expiry of the next group event
250  *    has to be handed back to make sure no event is lost. As there is no event
251  *    enqueued, KTIME_MAX is handed back to CPU2.
252  *
253  *    LVL 1            [GRP1:0]
254  *                 --> migrator = TMIGR_NONE
255  *                 --> active   =
256  *                     next_expiry = KTIME_MAX
257  *                   /                \
258  *    LVL 0  [GRP0:0]                  [GRP0:1]
259  *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
260  *           active   =                active   =
261  *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
262  *              /         \                /         \
263  *    CPUs     0           1              2           3
264  *             idle        idle       --> idle        idle
265  *
266  * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0
267  *    propagates that to GRP0:0:
268  *
269  *    LVL 1            [GRP1:0]
270  *                     migrator = TMIGR_NONE
271  *                     active   =
272  *                     next_expiry = KTIME_MAX
273  *                   /                \
274  *    LVL 0  [GRP0:0]                  [GRP0:1]
275  *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
276  *           active   =                active   =
277  *       --> next_expiry = TIMER0      next_expiry  = KTIME_MAX
278  *              /         \                /         \
279  *    CPUs     0           1              2           3
280  *             idle        idle           idle        idle
281  *
282  * 5. GRP0:0 is not active, so the new timer has to be propagated to
283  *    GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value
284  *    (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is
285  *    handed back to CPU0, as it seems that there is still an active child in
286  *    top level group.
287  *
288  *    LVL 1            [GRP1:0]
289  *                     migrator = TMIGR_NONE
290  *                     active   =
291  *                 --> next_expiry = TIMER0
292  *                   /                \
293  *    LVL 0  [GRP0:0]                  [GRP0:1]
294  *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
295  *           active   =                active   =
296  *           next_expiry = TIMER0      next_expiry  = KTIME_MAX
297  *              /         \                /         \
298  *    CPUs     0           1              2           3
299  *             idle        idle           idle        idle
300  *
301  * This is prevented by reading the state when holding the lock (when a new
302  * timer has to be propagated from idle path)::
303  *
304  *   CPU2 (tmigr_inactive_up())          CPU0 (tmigr_new_timer_up())
305  *   --------------------------          ---------------------------
306  *   // step 3:
307  *   cmpxchg(&GRP1:0->state);
308  *   tmigr_update_events() {
309  *       spin_lock(&GRP1:0->lock);
310  *       // ... update events ...
311  *       // hand back first expiry when GRP1:0 is idle
312  *       spin_unlock(&GRP1:0->lock);
313  *       // ^^^ release state modification
314  *   }
315  *                                       tmigr_update_events() {
316  *                                           spin_lock(&GRP1:0->lock)
317  *                                           // ^^^ acquire state modification
318  *                                           group_state = atomic_read(&GRP1:0->state)
319  *                                           // .... update events ...
320  *                                           // hand back first expiry when GRP1:0 is idle
321  *                                           spin_unlock(&GRP1:0->lock) <3>
322  *                                           // ^^^ makes state visible for other
323  *                                           // callers of tmigr_new_timer_up()
324  *                                       }
325  *
326  * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported
327  * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent
328  * update of the group state from active path is no problem, as the upcoming CPU
329  * will take care of the group events.
330  *
331  * Required event and timerqueue update after a remote expiry:
332  * -----------------------------------------------------------
333  *
334  * After expiring timers of a remote CPU, a walk through the hierarchy and
335  * update of events and timerqueues is required. It is obviously needed if there
336  * is a 'new' global timer but also if there is no new global timer but the
337  * remote CPU is still idle.
338  *
339  * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same
340  *    time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is
341  *    also idle and has no global timer pending. CPU2 is the only active CPU and
342  *    thus also the migrator:
343  *
344  *    LVL 1            [GRP1:0]
345  *                     migrator = GRP0:1
346  *                     active   = GRP0:1
347  *                 --> timerqueue = evt-GRP0:0
348  *                   /                \
349  *    LVL 0  [GRP0:0]                  [GRP0:1]
350  *           migrator = TMIGR_NONE     migrator = CPU2
351  *           active   =                active   = CPU2
352  *           groupevt.ignore = false   groupevt.ignore = true
353  *           groupevt.cpu = CPU0       groupevt.cpu =
354  *           timerqueue = evt-CPU0,    timerqueue =
355  *                        evt-CPU1
356  *              /         \                /         \
357  *    CPUs     0           1              2           3
358  *             idle        idle           active      idle
359  *
360  * 2. CPU2 starts to expire remote timers. It starts with LVL0 group
361  *    GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with
362  *    the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It
363  *    looks at tmigr_event::cpu struct member and expires the pending timer(s)
364  *    of CPU0.
365  *
366  *    LVL 1            [GRP1:0]
367  *                     migrator = GRP0:1
368  *                     active   = GRP0:1
369  *                 --> timerqueue =
370  *                   /                \
371  *    LVL 0  [GRP0:0]                  [GRP0:1]
372  *           migrator = TMIGR_NONE     migrator = CPU2
373  *           active   =                active   = CPU2
374  *           groupevt.ignore = false   groupevt.ignore = true
375  *       --> groupevt.cpu = CPU0       groupevt.cpu =
376  *           timerqueue = evt-CPU0,    timerqueue =
377  *                        evt-CPU1
378  *              /         \                /         \
379  *    CPUs     0           1              2           3
380  *             idle        idle           active      idle
381  *
382  * 3. Some work has to be done after expiring the timers of CPU0. If we stop
383  *    here, then CPU1's pending global timer(s) will not expire in time and the
384  *    timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just
385  *    been processed. So it is required to walk the hierarchy from CPU0's point
386  *    of view and update it accordingly. CPU0's event will be removed from the
387  *    timerqueue because it has no pending timer. If CPU0 would have a timer
388  *    pending then it has to expire after CPU1's first timer because all timers
389  *    from this period were just expired. Either way CPU1's event will be first
390  *    in GRP0:0's timerqueue and therefore set in the CPU field of the group
391  *    event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not
392  *    active:
393  *
394  *    LVL 1            [GRP1:0]
395  *                     migrator = GRP0:1
396  *                     active   = GRP0:1
397  *                 --> timerqueue = evt-GRP0:0
398  *                   /                \
399  *    LVL 0  [GRP0:0]                  [GRP0:1]
400  *           migrator = TMIGR_NONE     migrator = CPU2
401  *           active   =                active   = CPU2
402  *           groupevt.ignore = false   groupevt.ignore = true
403  *       --> groupevt.cpu = CPU1       groupevt.cpu =
404  *       --> timerqueue = evt-CPU1     timerqueue =
405  *              /         \                /         \
406  *    CPUs     0           1              2           3
407  *             idle        idle           active      idle
408  *
409  * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the
410  * timer(s) of CPU1.
411  *
412  * The hierarchy walk in step 3 can be skipped if the migrator notices that a
413  * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care
414  * of the group as migrator and any needed updates within the hierarchy.
415  */
416 
417 static DEFINE_MUTEX(tmigr_mutex);
418 static struct list_head *tmigr_level_list __read_mostly;
419 
420 static unsigned int tmigr_hierarchy_levels __read_mostly;
421 static unsigned int tmigr_crossnode_level __read_mostly;
422 
423 static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu);
424 
425 #define TMIGR_NONE	0xFF
426 #define BIT_CNT		8
427 
428 static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc)
429 {
430 	return !(tmc->tmgroup && tmc->online);
431 }
432 
433 /*
434  * Returns true, when @childmask corresponds to the group migrator or when the
435  * group is not active - so no migrator is set.
436  */
437 static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask)
438 {
439 	union tmigr_state s;
440 
441 	s.state = atomic_read(&group->migr_state);
442 
443 	if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
444 		return true;
445 
446 	return false;
447 }
448 
449 static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask)
450 {
451 	bool lonely, migrator = false;
452 	unsigned long active;
453 	union tmigr_state s;
454 
455 	s.state = atomic_read(&group->migr_state);
456 
457 	if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
458 		migrator = true;
459 
460 	active = s.active;
461 	lonely = bitmap_weight(&active, BIT_CNT) <= 1;
462 
463 	return (migrator && lonely);
464 }
465 
466 static bool tmigr_check_lonely(struct tmigr_group *group)
467 {
468 	unsigned long active;
469 	union tmigr_state s;
470 
471 	s.state = atomic_read(&group->migr_state);
472 
473 	active = s.active;
474 
475 	return bitmap_weight(&active, BIT_CNT) <= 1;
476 }
477 
478 typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, void *);
479 
480 static void __walk_groups(up_f up, void *data,
481 			  struct tmigr_cpu *tmc)
482 {
483 	struct tmigr_group *child = NULL, *group = tmc->tmgroup;
484 
485 	do {
486 		WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels);
487 
488 		if (up(group, child, data))
489 			break;
490 
491 		child = group;
492 		group = group->parent;
493 	} while (group);
494 }
495 
496 static void walk_groups(up_f up, void *data, struct tmigr_cpu *tmc)
497 {
498 	lockdep_assert_held(&tmc->lock);
499 
500 	__walk_groups(up, data, tmc);
501 }
502 
503 /**
504  * struct tmigr_walk - data required for walking the hierarchy
505  * @nextexp:		Next CPU event expiry information which is handed into
506  *			the timer migration code by the timer code
507  *			(get_next_timer_interrupt())
508  * @firstexp:		Contains the first event expiry information when last
509  *			active CPU of hierarchy is on the way to idle to make
510  *			sure CPU will be back in time. It is updated in top
511  *			level group only. Be aware, there could occur a new top
512  *			level of the hierarchy between the 'top level call' in
513  *			tmigr_update_events() and the check for the parent group
514  *			in walk_groups(). Then @firstexp might contain a value
515  *			!= KTIME_MAX even if it was not the final top
516  *			level. This is not a problem, as the worst outcome is a
517  *			CPU which might wake up a little early.
518  * @evt:		Pointer to tmigr_event which needs to be queued (of idle
519  *			child group)
520  * @childmask:		childmask of child group
521  * @remote:		Is set, when the new timer path is executed in
522  *			tmigr_handle_remote_cpu()
523  */
524 struct tmigr_walk {
525 	u64			nextexp;
526 	u64			firstexp;
527 	struct tmigr_event	*evt;
528 	u8			childmask;
529 	bool			remote;
530 };
531 
532 /**
533  * struct tmigr_remote_data - data required for remote expiry hierarchy walk
534  * @basej:		timer base in jiffies
535  * @now:		timer base monotonic
536  * @firstexp:		returns expiry of the first timer in the idle timer
537  *			migration hierarchy to make sure the timer is handled in
538  *			time; it is stored in the per CPU tmigr_cpu struct of
539  *			CPU which expires remote timers
540  * @childmask:		childmask of child group
541  * @check:		is set if there is the need to handle remote timers;
542  *			required in tmigr_requires_handle_remote() only
543  * @tmc_active:		this flag indicates, whether the CPU which triggers
544  *			the hierarchy walk is !idle in the timer migration
545  *			hierarchy. When the CPU is idle and the whole hierarchy is
546  *			idle, only the first event of the top level has to be
547  *			considered.
548  */
549 struct tmigr_remote_data {
550 	unsigned long	basej;
551 	u64		now;
552 	u64		firstexp;
553 	u8		childmask;
554 	bool		check;
555 	bool		tmc_active;
556 };
557 
558 /*
559  * Returns the next event of the timerqueue @group->events
560  *
561  * Removes timers with ignore flag and update next_expiry of the group. Values
562  * of the group event are updated in tmigr_update_events() only.
563  */
564 static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group)
565 {
566 	struct timerqueue_node *node = NULL;
567 	struct tmigr_event *evt = NULL;
568 
569 	lockdep_assert_held(&group->lock);
570 
571 	WRITE_ONCE(group->next_expiry, KTIME_MAX);
572 
573 	while ((node = timerqueue_getnext(&group->events))) {
574 		evt = container_of(node, struct tmigr_event, nextevt);
575 
576 		if (!evt->ignore) {
577 			WRITE_ONCE(group->next_expiry, evt->nextevt.expires);
578 			return evt;
579 		}
580 
581 		/*
582 		 * Remove next timers with ignore flag, because the group lock
583 		 * is held anyway
584 		 */
585 		if (!timerqueue_del(&group->events, node))
586 			break;
587 	}
588 
589 	return NULL;
590 }
591 
592 /*
593  * Return the next event (with the expiry equal or before @now)
594  *
595  * Event, which is returned, is also removed from the queue.
596  */
597 static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group,
598 						       u64 now)
599 {
600 	struct tmigr_event *evt = tmigr_next_groupevt(group);
601 
602 	if (!evt || now < evt->nextevt.expires)
603 		return NULL;
604 
605 	/*
606 	 * The event is ready to expire. Remove it and update next group event.
607 	 */
608 	timerqueue_del(&group->events, &evt->nextevt);
609 	tmigr_next_groupevt(group);
610 
611 	return evt;
612 }
613 
614 static u64 tmigr_next_groupevt_expires(struct tmigr_group *group)
615 {
616 	struct tmigr_event *evt;
617 
618 	evt = tmigr_next_groupevt(group);
619 
620 	if (!evt)
621 		return KTIME_MAX;
622 	else
623 		return evt->nextevt.expires;
624 }
625 
626 static bool tmigr_active_up(struct tmigr_group *group,
627 			    struct tmigr_group *child,
628 			    void *ptr)
629 {
630 	union tmigr_state curstate, newstate;
631 	struct tmigr_walk *data = ptr;
632 	bool walk_done;
633 	u8 childmask;
634 
635 	childmask = data->childmask;
636 	/*
637 	 * No memory barrier is required here in contrast to
638 	 * tmigr_inactive_up(), as the group state change does not depend on the
639 	 * child state.
640 	 */
641 	curstate.state = atomic_read(&group->migr_state);
642 
643 	do {
644 		newstate = curstate;
645 		walk_done = true;
646 
647 		if (newstate.migrator == TMIGR_NONE) {
648 			newstate.migrator = childmask;
649 
650 			/* Changes need to be propagated */
651 			walk_done = false;
652 		}
653 
654 		newstate.active |= childmask;
655 		newstate.seq++;
656 
657 	} while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state));
658 
659 	if (walk_done == false)
660 		data->childmask = group->childmask;
661 
662 	/*
663 	 * The group is active (again). The group event might be still queued
664 	 * into the parent group's timerqueue but can now be handled by the
665 	 * migrator of this group. Therefore the ignore flag for the group event
666 	 * is updated to reflect this.
667 	 *
668 	 * The update of the ignore flag in the active path is done lockless. In
669 	 * worst case the migrator of the parent group observes the change too
670 	 * late and expires remotely all events belonging to this group. The
671 	 * lock is held while updating the ignore flag in idle path. So this
672 	 * state change will not be lost.
673 	 */
674 	group->groupevt.ignore = true;
675 
676 	trace_tmigr_group_set_cpu_active(group, newstate, childmask);
677 
678 	return walk_done;
679 }
680 
681 static void __tmigr_cpu_activate(struct tmigr_cpu *tmc)
682 {
683 	struct tmigr_walk data;
684 
685 	data.childmask = tmc->childmask;
686 
687 	trace_tmigr_cpu_active(tmc);
688 
689 	tmc->cpuevt.ignore = true;
690 	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
691 
692 	walk_groups(&tmigr_active_up, &data, tmc);
693 }
694 
695 /**
696  * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy
697  *
698  * Call site timer_clear_idle() is called with interrupts disabled.
699  */
700 void tmigr_cpu_activate(void)
701 {
702 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
703 
704 	if (tmigr_is_not_available(tmc))
705 		return;
706 
707 	if (WARN_ON_ONCE(!tmc->idle))
708 		return;
709 
710 	raw_spin_lock(&tmc->lock);
711 	tmc->idle = false;
712 	__tmigr_cpu_activate(tmc);
713 	raw_spin_unlock(&tmc->lock);
714 }
715 
716 /*
717  * Returns true, if there is nothing to be propagated to the next level
718  *
719  * @data->firstexp is set to expiry of first gobal event of the (top level of
720  * the) hierarchy, but only when hierarchy is completely idle.
721  *
722  * The child and group states need to be read under the lock, to prevent a race
723  * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See
724  * also section "Prevent race between new event and last CPU going inactive" in
725  * the documentation at the top.
726  *
727  * This is the only place where the group event expiry value is set.
728  */
729 static
730 bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child,
731 			 struct tmigr_walk *data)
732 {
733 	struct tmigr_event *evt, *first_childevt;
734 	union tmigr_state childstate, groupstate;
735 	bool remote = data->remote;
736 	bool walk_done = false;
737 	u64 nextexp;
738 
739 	if (child) {
740 		raw_spin_lock(&child->lock);
741 		raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING);
742 
743 		childstate.state = atomic_read(&child->migr_state);
744 		groupstate.state = atomic_read(&group->migr_state);
745 
746 		if (childstate.active) {
747 			walk_done = true;
748 			goto unlock;
749 		}
750 
751 		first_childevt = tmigr_next_groupevt(child);
752 		nextexp = child->next_expiry;
753 		evt = &child->groupevt;
754 
755 		evt->ignore = (nextexp == KTIME_MAX) ? true : false;
756 	} else {
757 		nextexp = data->nextexp;
758 
759 		first_childevt = evt = data->evt;
760 
761 		/*
762 		 * Walking the hierarchy is required in any case when a
763 		 * remote expiry was done before. This ensures to not lose
764 		 * already queued events in non active groups (see section
765 		 * "Required event and timerqueue update after a remote
766 		 * expiry" in the documentation at the top).
767 		 *
768 		 * The two call sites which are executed without a remote expiry
769 		 * before, are not prevented from propagating changes through
770 		 * the hierarchy by the return:
771 		 *  - When entering this path by tmigr_new_timer(), @evt->ignore
772 		 *    is never set.
773 		 *  - tmigr_inactive_up() takes care of the propagation by
774 		 *    itself and ignores the return value. But an immediate
775 		 *    return is possible if there is a parent, sparing group
776 		 *    locking at this level, because the upper walking call to
777 		 *    the parent will take care about removing this event from
778 		 *    within the group and update next_expiry accordingly.
779 		 *
780 		 * However if there is no parent, ie: the hierarchy has only a
781 		 * single level so @group is the top level group, make sure the
782 		 * first event information of the group is updated properly and
783 		 * also handled properly, so skip this fast return path.
784 		 */
785 		if (evt->ignore && !remote && group->parent)
786 			return true;
787 
788 		raw_spin_lock(&group->lock);
789 
790 		childstate.state = 0;
791 		groupstate.state = atomic_read(&group->migr_state);
792 	}
793 
794 	/*
795 	 * If the child event is already queued in the group, remove it from the
796 	 * queue when the expiry time changed only or when it could be ignored.
797 	 */
798 	if (timerqueue_node_queued(&evt->nextevt)) {
799 		if ((evt->nextevt.expires == nextexp) && !evt->ignore) {
800 			/* Make sure not to miss a new CPU event with the same expiry */
801 			evt->cpu = first_childevt->cpu;
802 			goto check_toplvl;
803 		}
804 
805 		if (!timerqueue_del(&group->events, &evt->nextevt))
806 			WRITE_ONCE(group->next_expiry, KTIME_MAX);
807 	}
808 
809 	if (evt->ignore) {
810 		/*
811 		 * When the next child event could be ignored (nextexp is
812 		 * KTIME_MAX) and there was no remote timer handling before or
813 		 * the group is already active, there is no need to walk the
814 		 * hierarchy even if there is a parent group.
815 		 *
816 		 * The other way round: even if the event could be ignored, but
817 		 * if a remote timer handling was executed before and the group
818 		 * is not active, walking the hierarchy is required to not miss
819 		 * an enqueued timer in the non active group. The enqueued timer
820 		 * of the group needs to be propagated to a higher level to
821 		 * ensure it is handled.
822 		 */
823 		if (!remote || groupstate.active)
824 			walk_done = true;
825 	} else {
826 		evt->nextevt.expires = nextexp;
827 		evt->cpu = first_childevt->cpu;
828 
829 		if (timerqueue_add(&group->events, &evt->nextevt))
830 			WRITE_ONCE(group->next_expiry, nextexp);
831 	}
832 
833 check_toplvl:
834 	if (!group->parent && (groupstate.migrator == TMIGR_NONE)) {
835 		walk_done = true;
836 
837 		/*
838 		 * Nothing to do when update was done during remote timer
839 		 * handling. First timer in top level group which needs to be
840 		 * handled when top level group is not active, is calculated
841 		 * directly in tmigr_handle_remote_up().
842 		 */
843 		if (remote)
844 			goto unlock;
845 
846 		/*
847 		 * The top level group is idle and it has to be ensured the
848 		 * global timers are handled in time. (This could be optimized
849 		 * by keeping track of the last global scheduled event and only
850 		 * arming it on the CPU if the new event is earlier. Not sure if
851 		 * its worth the complexity.)
852 		 */
853 		data->firstexp = tmigr_next_groupevt_expires(group);
854 	}
855 
856 	trace_tmigr_update_events(child, group, childstate, groupstate,
857 				  nextexp);
858 
859 unlock:
860 	raw_spin_unlock(&group->lock);
861 
862 	if (child)
863 		raw_spin_unlock(&child->lock);
864 
865 	return walk_done;
866 }
867 
868 static bool tmigr_new_timer_up(struct tmigr_group *group,
869 			       struct tmigr_group *child,
870 			       void *ptr)
871 {
872 	struct tmigr_walk *data = ptr;
873 
874 	return tmigr_update_events(group, child, data);
875 }
876 
877 /*
878  * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is
879  * returned, if an active CPU will handle all the timer migration hierarchy
880  * timers.
881  */
882 static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp)
883 {
884 	struct tmigr_walk data = { .nextexp = nextexp,
885 				   .firstexp = KTIME_MAX,
886 				   .evt = &tmc->cpuevt };
887 
888 	lockdep_assert_held(&tmc->lock);
889 
890 	if (tmc->remote)
891 		return KTIME_MAX;
892 
893 	trace_tmigr_cpu_new_timer(tmc);
894 
895 	tmc->cpuevt.ignore = false;
896 	data.remote = false;
897 
898 	walk_groups(&tmigr_new_timer_up, &data, tmc);
899 
900 	/* If there is a new first global event, make sure it is handled */
901 	return data.firstexp;
902 }
903 
904 static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now,
905 				    unsigned long jif)
906 {
907 	struct timer_events tevt;
908 	struct tmigr_walk data;
909 	struct tmigr_cpu *tmc;
910 
911 	tmc = per_cpu_ptr(&tmigr_cpu, cpu);
912 
913 	raw_spin_lock_irq(&tmc->lock);
914 
915 	/*
916 	 * If the remote CPU is offline then the timers have been migrated to
917 	 * another CPU.
918 	 *
919 	 * If tmigr_cpu::remote is set, at the moment another CPU already
920 	 * expires the timers of the remote CPU.
921 	 *
922 	 * If tmigr_event::ignore is set, then the CPU returns from idle and
923 	 * takes care of its timers.
924 	 *
925 	 * If the next event expires in the future, then the event has been
926 	 * updated and there are no timers to expire right now. The CPU which
927 	 * updated the event takes care when hierarchy is completely
928 	 * idle. Otherwise the migrator does it as the event is enqueued.
929 	 */
930 	if (!tmc->online || tmc->remote || tmc->cpuevt.ignore ||
931 	    now < tmc->cpuevt.nextevt.expires) {
932 		raw_spin_unlock_irq(&tmc->lock);
933 		return;
934 	}
935 
936 	trace_tmigr_handle_remote_cpu(tmc);
937 
938 	tmc->remote = true;
939 	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
940 
941 	/* Drop the lock to allow the remote CPU to exit idle */
942 	raw_spin_unlock_irq(&tmc->lock);
943 
944 	if (cpu != smp_processor_id())
945 		timer_expire_remote(cpu);
946 
947 	/*
948 	 * Lock ordering needs to be preserved - timer_base locks before tmigr
949 	 * related locks (see section "Locking rules" in the documentation at
950 	 * the top). During fetching the next timer interrupt, also tmc->lock
951 	 * needs to be held. Otherwise there is a possible race window against
952 	 * the CPU itself when it comes out of idle, updates the first timer in
953 	 * the hierarchy and goes back to idle.
954 	 *
955 	 * timer base locks are dropped as fast as possible: After checking
956 	 * whether the remote CPU went offline in the meantime and after
957 	 * fetching the next remote timer interrupt. Dropping the locks as fast
958 	 * as possible keeps the locking region small and prevents holding
959 	 * several (unnecessary) locks during walking the hierarchy for updating
960 	 * the timerqueue and group events.
961 	 */
962 	local_irq_disable();
963 	timer_lock_remote_bases(cpu);
964 	raw_spin_lock(&tmc->lock);
965 
966 	/*
967 	 * When the CPU went offline in the meantime, no hierarchy walk has to
968 	 * be done for updating the queued events, because the walk was
969 	 * already done during marking the CPU offline in the hierarchy.
970 	 *
971 	 * When the CPU is no longer idle, the CPU takes care of the timers and
972 	 * also of the timers in the hierarchy.
973 	 *
974 	 * (See also section "Required event and timerqueue update after a
975 	 * remote expiry" in the documentation at the top)
976 	 */
977 	if (!tmc->online || !tmc->idle) {
978 		timer_unlock_remote_bases(cpu);
979 		goto unlock;
980 	}
981 
982 	/* next	event of CPU */
983 	fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu);
984 	timer_unlock_remote_bases(cpu);
985 
986 	data.nextexp = tevt.global;
987 	data.firstexp = KTIME_MAX;
988 	data.evt = &tmc->cpuevt;
989 	data.remote = true;
990 
991 	/*
992 	 * The update is done even when there is no 'new' global timer pending
993 	 * on the remote CPU (see section "Required event and timerqueue update
994 	 * after a remote expiry" in the documentation at the top)
995 	 */
996 	walk_groups(&tmigr_new_timer_up, &data, tmc);
997 
998 unlock:
999 	tmc->remote = false;
1000 	raw_spin_unlock_irq(&tmc->lock);
1001 }
1002 
1003 static bool tmigr_handle_remote_up(struct tmigr_group *group,
1004 				   struct tmigr_group *child,
1005 				   void *ptr)
1006 {
1007 	struct tmigr_remote_data *data = ptr;
1008 	struct tmigr_event *evt;
1009 	unsigned long jif;
1010 	u8 childmask;
1011 	u64 now;
1012 
1013 	jif = data->basej;
1014 	now = data->now;
1015 
1016 	childmask = data->childmask;
1017 
1018 	trace_tmigr_handle_remote(group);
1019 again:
1020 	/*
1021 	 * Handle the group only if @childmask is the migrator or if the
1022 	 * group has no migrator. Otherwise the group is active and is
1023 	 * handled by its own migrator.
1024 	 */
1025 	if (!tmigr_check_migrator(group, childmask))
1026 		return true;
1027 
1028 	raw_spin_lock_irq(&group->lock);
1029 
1030 	evt = tmigr_next_expired_groupevt(group, now);
1031 
1032 	if (evt) {
1033 		unsigned int remote_cpu = evt->cpu;
1034 
1035 		raw_spin_unlock_irq(&group->lock);
1036 
1037 		tmigr_handle_remote_cpu(remote_cpu, now, jif);
1038 
1039 		/* check if there is another event, that needs to be handled */
1040 		goto again;
1041 	}
1042 
1043 	/*
1044 	 * Update of childmask for the next level and keep track of the expiry
1045 	 * of the first event that needs to be handled (group->next_expiry was
1046 	 * updated by tmigr_next_expired_groupevt(), next was set by
1047 	 * tmigr_handle_remote_cpu()).
1048 	 */
1049 	data->childmask = group->childmask;
1050 	data->firstexp = group->next_expiry;
1051 
1052 	raw_spin_unlock_irq(&group->lock);
1053 
1054 	return false;
1055 }
1056 
1057 /**
1058  * tmigr_handle_remote() - Handle global timers of remote idle CPUs
1059  *
1060  * Called from the timer soft interrupt with interrupts enabled.
1061  */
1062 void tmigr_handle_remote(void)
1063 {
1064 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1065 	struct tmigr_remote_data data;
1066 
1067 	if (tmigr_is_not_available(tmc))
1068 		return;
1069 
1070 	data.childmask = tmc->childmask;
1071 	data.firstexp = KTIME_MAX;
1072 
1073 	/*
1074 	 * NOTE: This is a doubled check because the migrator test will be done
1075 	 * in tmigr_handle_remote_up() anyway. Keep this check to speed up the
1076 	 * return when nothing has to be done.
1077 	 */
1078 	if (!tmigr_check_migrator(tmc->tmgroup, tmc->childmask)) {
1079 		/*
1080 		 * If this CPU was an idle migrator, make sure to clear its wakeup
1081 		 * value so it won't chase timers that have already expired elsewhere.
1082 		 * This avoids endless requeue from tmigr_new_timer().
1083 		 */
1084 		if (READ_ONCE(tmc->wakeup) == KTIME_MAX)
1085 			return;
1086 	}
1087 
1088 	data.now = get_jiffies_update(&data.basej);
1089 
1090 	/*
1091 	 * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to
1092 	 * KTIME_MAX. Even if tmc->lock is not held during the whole remote
1093 	 * handling, tmc->wakeup is fine to be stale as it is called in
1094 	 * interrupt context and tick_nohz_next_event() is executed in interrupt
1095 	 * exit path only after processing the last pending interrupt.
1096 	 */
1097 
1098 	__walk_groups(&tmigr_handle_remote_up, &data, tmc);
1099 
1100 	raw_spin_lock_irq(&tmc->lock);
1101 	WRITE_ONCE(tmc->wakeup, data.firstexp);
1102 	raw_spin_unlock_irq(&tmc->lock);
1103 }
1104 
1105 static bool tmigr_requires_handle_remote_up(struct tmigr_group *group,
1106 					    struct tmigr_group *child,
1107 					    void *ptr)
1108 {
1109 	struct tmigr_remote_data *data = ptr;
1110 	u8 childmask;
1111 
1112 	childmask = data->childmask;
1113 
1114 	/*
1115 	 * Handle the group only if the child is the migrator or if the group
1116 	 * has no migrator. Otherwise the group is active and is handled by its
1117 	 * own migrator.
1118 	 */
1119 	if (!tmigr_check_migrator(group, childmask))
1120 		return true;
1121 
1122 	/*
1123 	 * When there is a parent group and the CPU which triggered the
1124 	 * hierarchy walk is not active, proceed the walk to reach the top level
1125 	 * group before reading the next_expiry value.
1126 	 */
1127 	if (group->parent && !data->tmc_active)
1128 		goto out;
1129 
1130 	/*
1131 	 * The lock is required on 32bit architectures to read the variable
1132 	 * consistently with a concurrent writer. On 64bit the lock is not
1133 	 * required because the read operation is not split and so it is always
1134 	 * consistent.
1135 	 */
1136 	if (IS_ENABLED(CONFIG_64BIT)) {
1137 		data->firstexp = READ_ONCE(group->next_expiry);
1138 		if (data->now >= data->firstexp) {
1139 			data->check = true;
1140 			return true;
1141 		}
1142 	} else {
1143 		raw_spin_lock(&group->lock);
1144 		data->firstexp = group->next_expiry;
1145 		if (data->now >= group->next_expiry) {
1146 			data->check = true;
1147 			raw_spin_unlock(&group->lock);
1148 			return true;
1149 		}
1150 		raw_spin_unlock(&group->lock);
1151 	}
1152 
1153 out:
1154 	/* Update of childmask for the next level */
1155 	data->childmask = group->childmask;
1156 	return false;
1157 }
1158 
1159 /**
1160  * tmigr_requires_handle_remote() - Check the need of remote timer handling
1161  *
1162  * Must be called with interrupts disabled.
1163  */
1164 bool tmigr_requires_handle_remote(void)
1165 {
1166 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1167 	struct tmigr_remote_data data;
1168 	unsigned long jif;
1169 	bool ret = false;
1170 
1171 	if (tmigr_is_not_available(tmc))
1172 		return ret;
1173 
1174 	data.now = get_jiffies_update(&jif);
1175 	data.childmask = tmc->childmask;
1176 	data.firstexp = KTIME_MAX;
1177 	data.tmc_active = !tmc->idle;
1178 	data.check = false;
1179 
1180 	/*
1181 	 * If the CPU is active, walk the hierarchy to check whether a remote
1182 	 * expiry is required.
1183 	 *
1184 	 * Check is done lockless as interrupts are disabled and @tmc->idle is
1185 	 * set only by the local CPU.
1186 	 */
1187 	if (!tmc->idle) {
1188 		__walk_groups(&tmigr_requires_handle_remote_up, &data, tmc);
1189 
1190 		return data.check;
1191 	}
1192 
1193 	/*
1194 	 * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock
1195 	 * is required on 32bit architectures to read the variable consistently
1196 	 * with a concurrent writer. On 64bit the lock is not required because
1197 	 * the read operation is not split and so it is always consistent.
1198 	 */
1199 	if (IS_ENABLED(CONFIG_64BIT)) {
1200 		if (data.now >= READ_ONCE(tmc->wakeup))
1201 			return true;
1202 	} else {
1203 		raw_spin_lock(&tmc->lock);
1204 		if (data.now >= tmc->wakeup)
1205 			ret = true;
1206 		raw_spin_unlock(&tmc->lock);
1207 	}
1208 
1209 	return ret;
1210 }
1211 
1212 /**
1213  * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc)
1214  * @nextexp:	Next expiry of global timer (or KTIME_MAX if not)
1215  *
1216  * The CPU is already deactivated in the timer migration
1217  * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event()
1218  * and thereby the timer idle path is executed once more. @tmc->wakeup
1219  * holds the first timer, when the timer migration hierarchy is
1220  * completely idle.
1221  *
1222  * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if
1223  * nothing needs to be done.
1224  */
1225 u64 tmigr_cpu_new_timer(u64 nextexp)
1226 {
1227 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1228 	u64 ret;
1229 
1230 	if (tmigr_is_not_available(tmc))
1231 		return nextexp;
1232 
1233 	raw_spin_lock(&tmc->lock);
1234 
1235 	ret = READ_ONCE(tmc->wakeup);
1236 	if (nextexp != KTIME_MAX) {
1237 		if (nextexp != tmc->cpuevt.nextevt.expires ||
1238 		    tmc->cpuevt.ignore) {
1239 			ret = tmigr_new_timer(tmc, nextexp);
1240 		}
1241 	}
1242 	/*
1243 	 * Make sure the reevaluation of timers in idle path will not miss an
1244 	 * event.
1245 	 */
1246 	WRITE_ONCE(tmc->wakeup, ret);
1247 
1248 	trace_tmigr_cpu_new_timer_idle(tmc, nextexp);
1249 	raw_spin_unlock(&tmc->lock);
1250 	return ret;
1251 }
1252 
1253 static bool tmigr_inactive_up(struct tmigr_group *group,
1254 			      struct tmigr_group *child,
1255 			      void *ptr)
1256 {
1257 	union tmigr_state curstate, newstate, childstate;
1258 	struct tmigr_walk *data = ptr;
1259 	bool walk_done;
1260 	u8 childmask;
1261 
1262 	childmask = data->childmask;
1263 	childstate.state = 0;
1264 
1265 	/*
1266 	 * The memory barrier is paired with the cmpxchg() in tmigr_active_up()
1267 	 * to make sure the updates of child and group states are ordered. The
1268 	 * ordering is mandatory, as the group state change depends on the child
1269 	 * state.
1270 	 */
1271 	curstate.state = atomic_read_acquire(&group->migr_state);
1272 
1273 	for (;;) {
1274 		if (child)
1275 			childstate.state = atomic_read(&child->migr_state);
1276 
1277 		newstate = curstate;
1278 		walk_done = true;
1279 
1280 		/* Reset active bit when the child is no longer active */
1281 		if (!childstate.active)
1282 			newstate.active &= ~childmask;
1283 
1284 		if (newstate.migrator == childmask) {
1285 			/*
1286 			 * Find a new migrator for the group, because the child
1287 			 * group is idle!
1288 			 */
1289 			if (!childstate.active) {
1290 				unsigned long new_migr_bit, active = newstate.active;
1291 
1292 				new_migr_bit = find_first_bit(&active, BIT_CNT);
1293 
1294 				if (new_migr_bit != BIT_CNT) {
1295 					newstate.migrator = BIT(new_migr_bit);
1296 				} else {
1297 					newstate.migrator = TMIGR_NONE;
1298 
1299 					/* Changes need to be propagated */
1300 					walk_done = false;
1301 				}
1302 			}
1303 		}
1304 
1305 		newstate.seq++;
1306 
1307 		WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active));
1308 
1309 		if (atomic_try_cmpxchg(&group->migr_state, &curstate.state,
1310 				       newstate.state))
1311 			break;
1312 
1313 		/*
1314 		 * The memory barrier is paired with the cmpxchg() in
1315 		 * tmigr_active_up() to make sure the updates of child and group
1316 		 * states are ordered. It is required only when the above
1317 		 * try_cmpxchg() fails.
1318 		 */
1319 		smp_mb__after_atomic();
1320 	}
1321 
1322 	data->remote = false;
1323 
1324 	/* Event Handling */
1325 	tmigr_update_events(group, child, data);
1326 
1327 	if (walk_done == false)
1328 		data->childmask = group->childmask;
1329 
1330 	trace_tmigr_group_set_cpu_inactive(group, newstate, childmask);
1331 
1332 	return walk_done;
1333 }
1334 
1335 static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp)
1336 {
1337 	struct tmigr_walk data = { .nextexp = nextexp,
1338 				   .firstexp = KTIME_MAX,
1339 				   .evt = &tmc->cpuevt,
1340 				   .childmask = tmc->childmask };
1341 
1342 	/*
1343 	 * If nextexp is KTIME_MAX, the CPU event will be ignored because the
1344 	 * local timer expires before the global timer, no global timer is set
1345 	 * or CPU goes offline.
1346 	 */
1347 	if (nextexp != KTIME_MAX)
1348 		tmc->cpuevt.ignore = false;
1349 
1350 	walk_groups(&tmigr_inactive_up, &data, tmc);
1351 	return data.firstexp;
1352 }
1353 
1354 /**
1355  * tmigr_cpu_deactivate() - Put current CPU into inactive state
1356  * @nextexp:	The next global timer expiry of the current CPU
1357  *
1358  * Must be called with interrupts disabled.
1359  *
1360  * Return: the next event expiry of the current CPU or the next event expiry
1361  * from the hierarchy if this CPU is the top level migrator or the hierarchy is
1362  * completely idle.
1363  */
1364 u64 tmigr_cpu_deactivate(u64 nextexp)
1365 {
1366 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1367 	u64 ret;
1368 
1369 	if (tmigr_is_not_available(tmc))
1370 		return nextexp;
1371 
1372 	raw_spin_lock(&tmc->lock);
1373 
1374 	ret = __tmigr_cpu_deactivate(tmc, nextexp);
1375 
1376 	tmc->idle = true;
1377 
1378 	/*
1379 	 * Make sure the reevaluation of timers in idle path will not miss an
1380 	 * event.
1381 	 */
1382 	WRITE_ONCE(tmc->wakeup, ret);
1383 
1384 	trace_tmigr_cpu_idle(tmc, nextexp);
1385 	raw_spin_unlock(&tmc->lock);
1386 	return ret;
1387 }
1388 
1389 /**
1390  * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to
1391  *			 go idle
1392  * @nextevt:	The next global timer expiry of the current CPU
1393  *
1394  * Return:
1395  * * KTIME_MAX		- when it is probable that nothing has to be done (not
1396  *			  the only one in the level 0 group; and if it is the
1397  *			  only one in level 0 group, but there are more than a
1398  *			  single group active on the way to top level)
1399  * * nextevt		- when CPU is offline and has to handle timer on his own
1400  *			  or when on the way to top in every group only a single
1401  *			  child is active but @nextevt is before the lowest
1402  *			  next_expiry encountered while walking up to top level.
1403  * * next_expiry	- value of lowest expiry encountered while walking groups
1404  *			  if only a single child is active on each and @nextevt
1405  *			  is after this lowest expiry.
1406  */
1407 u64 tmigr_quick_check(u64 nextevt)
1408 {
1409 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1410 	struct tmigr_group *group = tmc->tmgroup;
1411 
1412 	if (tmigr_is_not_available(tmc))
1413 		return nextevt;
1414 
1415 	if (WARN_ON_ONCE(tmc->idle))
1416 		return nextevt;
1417 
1418 	if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->childmask))
1419 		return KTIME_MAX;
1420 
1421 	do {
1422 		if (!tmigr_check_lonely(group)) {
1423 			return KTIME_MAX;
1424 		} else {
1425 			/*
1426 			 * Since current CPU is active, events may not be sorted
1427 			 * from bottom to the top because the CPU's event is ignored
1428 			 * up to the top and its sibling's events not propagated upwards.
1429 			 * Thus keep track of the lowest observed expiry.
1430 			 */
1431 			nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry));
1432 			if (!group->parent)
1433 				return nextevt;
1434 		}
1435 		group = group->parent;
1436 	} while (group);
1437 
1438 	return KTIME_MAX;
1439 }
1440 
1441 static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl,
1442 			     int node)
1443 {
1444 	union tmigr_state s;
1445 
1446 	raw_spin_lock_init(&group->lock);
1447 
1448 	group->level = lvl;
1449 	group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE;
1450 
1451 	group->num_children = 0;
1452 
1453 	s.migrator = TMIGR_NONE;
1454 	s.active = 0;
1455 	s.seq = 0;
1456 	atomic_set(&group->migr_state, s.state);
1457 
1458 	timerqueue_init_head(&group->events);
1459 	timerqueue_init(&group->groupevt.nextevt);
1460 	group->groupevt.nextevt.expires = KTIME_MAX;
1461 	WRITE_ONCE(group->next_expiry, KTIME_MAX);
1462 	group->groupevt.ignore = true;
1463 }
1464 
1465 static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node,
1466 					   unsigned int lvl)
1467 {
1468 	struct tmigr_group *tmp, *group = NULL;
1469 
1470 	lockdep_assert_held(&tmigr_mutex);
1471 
1472 	/* Try to attach to an existing group first */
1473 	list_for_each_entry(tmp, &tmigr_level_list[lvl], list) {
1474 		/*
1475 		 * If @lvl is below the cross NUMA node level, check whether
1476 		 * this group belongs to the same NUMA node.
1477 		 */
1478 		if (lvl < tmigr_crossnode_level && tmp->numa_node != node)
1479 			continue;
1480 
1481 		/* Capacity left? */
1482 		if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP)
1483 			continue;
1484 
1485 		/*
1486 		 * TODO: A possible further improvement: Make sure that all CPU
1487 		 * siblings end up in the same group of the lowest level of the
1488 		 * hierarchy. Rely on the topology sibling mask would be a
1489 		 * reasonable solution.
1490 		 */
1491 
1492 		group = tmp;
1493 		break;
1494 	}
1495 
1496 	if (group)
1497 		return group;
1498 
1499 	/* Allocate and	set up a new group */
1500 	group = kzalloc_node(sizeof(*group), GFP_KERNEL, node);
1501 	if (!group)
1502 		return ERR_PTR(-ENOMEM);
1503 
1504 	tmigr_init_group(group, lvl, node);
1505 
1506 	/* Setup successful. Add it to the hierarchy */
1507 	list_add(&group->list, &tmigr_level_list[lvl]);
1508 	trace_tmigr_group_set(group);
1509 	return group;
1510 }
1511 
1512 static void tmigr_connect_child_parent(struct tmigr_group *child,
1513 				       struct tmigr_group *parent)
1514 {
1515 	union tmigr_state childstate;
1516 
1517 	raw_spin_lock_irq(&child->lock);
1518 	raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING);
1519 
1520 	child->parent = parent;
1521 	child->childmask = BIT(parent->num_children++);
1522 
1523 	raw_spin_unlock(&parent->lock);
1524 	raw_spin_unlock_irq(&child->lock);
1525 
1526 	trace_tmigr_connect_child_parent(child);
1527 
1528 	/*
1529 	 * To prevent inconsistent states, active children need to be active in
1530 	 * the new parent as well. Inactive children are already marked inactive
1531 	 * in the parent group:
1532 	 *
1533 	 * * When new groups were created by tmigr_setup_groups() starting from
1534 	 *   the lowest level (and not higher then one level below the current
1535 	 *   top level), then they are not active. They will be set active when
1536 	 *   the new online CPU comes active.
1537 	 *
1538 	 * * But if a new group above the current top level is required, it is
1539 	 *   mandatory to propagate the active state of the already existing
1540 	 *   child to the new parent. So tmigr_connect_child_parent() is
1541 	 *   executed with the formerly top level group (child) and the newly
1542 	 *   created group (parent).
1543 	 */
1544 	childstate.state = atomic_read(&child->migr_state);
1545 	if (childstate.migrator != TMIGR_NONE) {
1546 		struct tmigr_walk data;
1547 
1548 		data.childmask = child->childmask;
1549 
1550 		/*
1551 		 * There is only one new level per time (which is protected by
1552 		 * tmigr_mutex). When connecting the child and the parent and
1553 		 * set the child active when the parent is inactive, the parent
1554 		 * needs to be the uppermost level. Otherwise there went
1555 		 * something wrong!
1556 		 */
1557 		WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent);
1558 	}
1559 }
1560 
1561 static int tmigr_setup_groups(unsigned int cpu, unsigned int node)
1562 {
1563 	struct tmigr_group *group, *child, **stack;
1564 	int top = 0, err = 0, i = 0;
1565 	struct list_head *lvllist;
1566 
1567 	stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL);
1568 	if (!stack)
1569 		return -ENOMEM;
1570 
1571 	do {
1572 		group = tmigr_get_group(cpu, node, i);
1573 		if (IS_ERR(group)) {
1574 			err = PTR_ERR(group);
1575 			break;
1576 		}
1577 
1578 		top = i;
1579 		stack[i++] = group;
1580 
1581 		/*
1582 		 * When booting only less CPUs of a system than CPUs are
1583 		 * available, not all calculated hierarchy levels are required.
1584 		 *
1585 		 * The loop is aborted as soon as the highest level, which might
1586 		 * be different from tmigr_hierarchy_levels, contains only a
1587 		 * single group.
1588 		 */
1589 		if (group->parent || i == tmigr_hierarchy_levels ||
1590 		    (list_empty(&tmigr_level_list[i]) &&
1591 		     list_is_singular(&tmigr_level_list[i - 1])))
1592 			break;
1593 
1594 	} while (i < tmigr_hierarchy_levels);
1595 
1596 	while (i > 0) {
1597 		group = stack[--i];
1598 
1599 		if (err < 0) {
1600 			list_del(&group->list);
1601 			kfree(group);
1602 			continue;
1603 		}
1604 
1605 		WARN_ON_ONCE(i != group->level);
1606 
1607 		/*
1608 		 * Update tmc -> group / child -> group connection
1609 		 */
1610 		if (i == 0) {
1611 			struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1612 
1613 			raw_spin_lock_irq(&group->lock);
1614 
1615 			tmc->tmgroup = group;
1616 			tmc->childmask = BIT(group->num_children++);
1617 
1618 			raw_spin_unlock_irq(&group->lock);
1619 
1620 			trace_tmigr_connect_cpu_parent(tmc);
1621 
1622 			/* There are no children that need to be connected */
1623 			continue;
1624 		} else {
1625 			child = stack[i - 1];
1626 			tmigr_connect_child_parent(child, group);
1627 		}
1628 
1629 		/* check if uppermost level was newly created */
1630 		if (top != i)
1631 			continue;
1632 
1633 		WARN_ON_ONCE(top == 0);
1634 
1635 		lvllist = &tmigr_level_list[top];
1636 		if (group->num_children == 1 && list_is_singular(lvllist)) {
1637 			lvllist = &tmigr_level_list[top - 1];
1638 			list_for_each_entry(child, lvllist, list) {
1639 				if (child->parent)
1640 					continue;
1641 
1642 				tmigr_connect_child_parent(child, group);
1643 			}
1644 		}
1645 	}
1646 
1647 	kfree(stack);
1648 
1649 	return err;
1650 }
1651 
1652 static int tmigr_add_cpu(unsigned int cpu)
1653 {
1654 	int node = cpu_to_node(cpu);
1655 	int ret;
1656 
1657 	mutex_lock(&tmigr_mutex);
1658 	ret = tmigr_setup_groups(cpu, node);
1659 	mutex_unlock(&tmigr_mutex);
1660 
1661 	return ret;
1662 }
1663 
1664 static int tmigr_cpu_online(unsigned int cpu)
1665 {
1666 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1667 	int ret;
1668 
1669 	/* First online attempt? Initialize CPU data */
1670 	if (!tmc->tmgroup) {
1671 		raw_spin_lock_init(&tmc->lock);
1672 
1673 		ret = tmigr_add_cpu(cpu);
1674 		if (ret < 0)
1675 			return ret;
1676 
1677 		if (tmc->childmask == 0)
1678 			return -EINVAL;
1679 
1680 		timerqueue_init(&tmc->cpuevt.nextevt);
1681 		tmc->cpuevt.nextevt.expires = KTIME_MAX;
1682 		tmc->cpuevt.ignore = true;
1683 		tmc->cpuevt.cpu = cpu;
1684 
1685 		tmc->remote = false;
1686 		WRITE_ONCE(tmc->wakeup, KTIME_MAX);
1687 	}
1688 	raw_spin_lock_irq(&tmc->lock);
1689 	trace_tmigr_cpu_online(tmc);
1690 	tmc->idle = timer_base_is_idle();
1691 	if (!tmc->idle)
1692 		__tmigr_cpu_activate(tmc);
1693 	tmc->online = true;
1694 	raw_spin_unlock_irq(&tmc->lock);
1695 	return 0;
1696 }
1697 
1698 /*
1699  * tmigr_trigger_active() - trigger a CPU to become active again
1700  *
1701  * This function is executed on a CPU which is part of cpu_online_mask, when the
1702  * last active CPU in the hierarchy is offlining. With this, it is ensured that
1703  * the other CPU is active and takes over the migrator duty.
1704  */
1705 static long tmigr_trigger_active(void *unused)
1706 {
1707 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1708 
1709 	WARN_ON_ONCE(!tmc->online || tmc->idle);
1710 
1711 	return 0;
1712 }
1713 
1714 static int tmigr_cpu_offline(unsigned int cpu)
1715 {
1716 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1717 	int migrator;
1718 	u64 firstexp;
1719 
1720 	raw_spin_lock_irq(&tmc->lock);
1721 	tmc->online = false;
1722 	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
1723 
1724 	/*
1725 	 * CPU has to handle the local events on his own, when on the way to
1726 	 * offline; Therefore nextevt value is set to KTIME_MAX
1727 	 */
1728 	firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX);
1729 	trace_tmigr_cpu_offline(tmc);
1730 	raw_spin_unlock_irq(&tmc->lock);
1731 
1732 	if (firstexp != KTIME_MAX) {
1733 		migrator = cpumask_any_but(cpu_online_mask, cpu);
1734 		work_on_cpu(migrator, tmigr_trigger_active, NULL);
1735 	}
1736 
1737 	return 0;
1738 }
1739 
1740 static int __init tmigr_init(void)
1741 {
1742 	unsigned int cpulvl, nodelvl, cpus_per_node, i;
1743 	unsigned int nnodes = num_possible_nodes();
1744 	unsigned int ncpus = num_possible_cpus();
1745 	int ret = -ENOMEM;
1746 
1747 	BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP);
1748 
1749 	/* Nothing to do if running on UP */
1750 	if (ncpus == 1)
1751 		return 0;
1752 
1753 	/*
1754 	 * Calculate the required hierarchy levels. Unfortunately there is no
1755 	 * reliable information available, unless all possible CPUs have been
1756 	 * brought up and all NUMA nodes are populated.
1757 	 *
1758 	 * Estimate the number of levels with the number of possible nodes and
1759 	 * the number of possible CPUs. Assume CPUs are spread evenly across
1760 	 * nodes. We cannot rely on cpumask_of_node() because it only works for
1761 	 * online CPUs.
1762 	 */
1763 	cpus_per_node = DIV_ROUND_UP(ncpus, nnodes);
1764 
1765 	/* Calc the hierarchy levels required to hold the CPUs of a node */
1766 	cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node),
1767 			      ilog2(TMIGR_CHILDREN_PER_GROUP));
1768 
1769 	/* Calculate the extra levels to connect all nodes */
1770 	nodelvl = DIV_ROUND_UP(order_base_2(nnodes),
1771 			       ilog2(TMIGR_CHILDREN_PER_GROUP));
1772 
1773 	tmigr_hierarchy_levels = cpulvl + nodelvl;
1774 
1775 	/*
1776 	 * If a NUMA node spawns more than one CPU level group then the next
1777 	 * level(s) of the hierarchy contains groups which handle all CPU groups
1778 	 * of the same NUMA node. The level above goes across NUMA nodes. Store
1779 	 * this information for the setup code to decide in which level node
1780 	 * matching is no longer required.
1781 	 */
1782 	tmigr_crossnode_level = cpulvl;
1783 
1784 	tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL);
1785 	if (!tmigr_level_list)
1786 		goto err;
1787 
1788 	for (i = 0; i < tmigr_hierarchy_levels; i++)
1789 		INIT_LIST_HEAD(&tmigr_level_list[i]);
1790 
1791 	pr_info("Timer migration: %d hierarchy levels; %d children per group;"
1792 		" %d crossnode level\n",
1793 		tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP,
1794 		tmigr_crossnode_level);
1795 
1796 	ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online",
1797 				tmigr_cpu_online, tmigr_cpu_offline);
1798 	if (ret)
1799 		goto err;
1800 
1801 	return 0;
1802 
1803 err:
1804 	pr_err("Timer migration setup failed\n");
1805 	return ret;
1806 }
1807 late_initcall(tmigr_init);
1808