1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Infrastructure for migratable timers 4 * 5 * Copyright(C) 2022 linutronix GmbH 6 */ 7 #include <linux/cpuhotplug.h> 8 #include <linux/slab.h> 9 #include <linux/smp.h> 10 #include <linux/spinlock.h> 11 #include <linux/timerqueue.h> 12 #include <trace/events/ipi.h> 13 14 #include "timer_migration.h" 15 #include "tick-internal.h" 16 17 #define CREATE_TRACE_POINTS 18 #include <trace/events/timer_migration.h> 19 20 /* 21 * The timer migration mechanism is built on a hierarchy of groups. The 22 * lowest level group contains CPUs, the next level groups of CPU groups 23 * and so forth. The CPU groups are kept per node so for the normal case 24 * lock contention won't happen across nodes. Depending on the number of 25 * CPUs per node even the next level might be kept as groups of CPU groups 26 * per node and only the levels above cross the node topology. 27 * 28 * Example topology for a two node system with 24 CPUs each. 29 * 30 * LVL 2 [GRP2:0] 31 * GRP1:0 = GRP1:M 32 * 33 * LVL 1 [GRP1:0] [GRP1:1] 34 * GRP0:0 - GRP0:2 GRP0:3 - GRP0:5 35 * 36 * LVL 0 [GRP0:0] [GRP0:1] [GRP0:2] [GRP0:3] [GRP0:4] [GRP0:5] 37 * CPUS 0-7 8-15 16-23 24-31 32-39 40-47 38 * 39 * The groups hold a timer queue of events sorted by expiry time. These 40 * queues are updated when CPUs go in idle. When they come out of idle 41 * ignore flag of events is set. 42 * 43 * Each group has a designated migrator CPU/group as long as a CPU/group is 44 * active in the group. This designated role is necessary to avoid that all 45 * active CPUs in a group try to migrate expired timers from other CPUs, 46 * which would result in massive lock bouncing. 47 * 48 * When a CPU is awake, it checks in it's own timer tick the group 49 * hierarchy up to the point where it is assigned the migrator role or if 50 * no CPU is active, it also checks the groups where no migrator is set 51 * (TMIGR_NONE). 52 * 53 * If it finds expired timers in one of the group queues it pulls them over 54 * from the idle CPU and runs the timer function. After that it updates the 55 * group and the parent groups if required. 56 * 57 * CPUs which go idle arm their CPU local timer hardware for the next local 58 * (pinned) timer event. If the next migratable timer expires after the 59 * next local timer or the CPU has no migratable timer pending then the 60 * CPU does not queue an event in the LVL0 group. If the next migratable 61 * timer expires before the next local timer then the CPU queues that timer 62 * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0 63 * group. 64 * 65 * When CPU comes out of idle and when a group has at least a single active 66 * child, the ignore flag of the tmigr_event is set. This indicates, that 67 * the event is ignored even if it is still enqueued in the parent groups 68 * timer queue. It will be removed when touching the timer queue the next 69 * time. This spares locking in active path as the lock protects (after 70 * setup) only event information. For more information about locking, 71 * please read the section "Locking rules". 72 * 73 * If the CPU is the migrator of the group then it delegates that role to 74 * the next active CPU in the group or sets migrator to TMIGR_NONE when 75 * there is no active CPU in the group. This delegation needs to be 76 * propagated up the hierarchy so hand over from other leaves can happen at 77 * all hierarchy levels w/o doing a search. 78 * 79 * When the last CPU in the system goes idle, then it drops all migrator 80 * duties up to the top level of the hierarchy (LVL2 in the example). It 81 * then has to make sure, that it arms it's own local hardware timer for 82 * the earliest event in the system. 83 * 84 * 85 * Lifetime rules: 86 * --------------- 87 * 88 * The groups are built up at init time or when CPUs come online. They are 89 * not destroyed when a group becomes empty due to offlining. The group 90 * just won't participate in the hierarchy management anymore. Destroying 91 * groups would result in interesting race conditions which would just make 92 * the whole mechanism slow and complex. 93 * 94 * 95 * Locking rules: 96 * -------------- 97 * 98 * For setting up new groups and handling events it's required to lock both 99 * child and parent group. The lock ordering is always bottom up. This also 100 * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and 101 * active CPU/group information atomic_try_cmpxchg() is used instead and only 102 * the per CPU tmigr_cpu->lock is held. 103 * 104 * During the setup of groups tmigr_level_list is required. It is protected by 105 * @tmigr_mutex. 106 * 107 * When @timer_base->lock as well as tmigr related locks are required, the lock 108 * ordering is: first @timer_base->lock, afterwards tmigr related locks. 109 * 110 * 111 * Protection of the tmigr group state information: 112 * ------------------------------------------------ 113 * 114 * The state information with the list of active children and migrator needs to 115 * be protected by a sequence counter. It prevents a race when updates in child 116 * groups are propagated in changed order. The state update is performed 117 * lockless and group wise. The following scenario describes what happens 118 * without updating the sequence counter: 119 * 120 * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well 121 * as GRP0:1 will not change during the scenario): 122 * 123 * LVL 1 [GRP1:0] 124 * migrator = GRP0:1 125 * active = GRP0:0, GRP0:1 126 * / \ 127 * LVL 0 [GRP0:0] [GRP0:1] 128 * migrator = CPU0 migrator = CPU2 129 * active = CPU0 active = CPU2 130 * / \ / \ 131 * CPUs 0 1 2 3 132 * active idle active idle 133 * 134 * 135 * 1. CPU0 goes idle. As the update is performed group wise, in the first step 136 * only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to 137 * walk the hierarchy. 138 * 139 * LVL 1 [GRP1:0] 140 * migrator = GRP0:1 141 * active = GRP0:0, GRP0:1 142 * / \ 143 * LVL 0 [GRP0:0] [GRP0:1] 144 * --> migrator = TMIGR_NONE migrator = CPU2 145 * --> active = active = CPU2 146 * / \ / \ 147 * CPUs 0 1 2 3 148 * --> idle idle active idle 149 * 150 * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of 151 * idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also 152 * has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the 153 * hierarchy to perform the needed update from their point of view. The 154 * currently visible state looks the following: 155 * 156 * LVL 1 [GRP1:0] 157 * migrator = GRP0:1 158 * active = GRP0:0, GRP0:1 159 * / \ 160 * LVL 0 [GRP0:0] [GRP0:1] 161 * --> migrator = CPU1 migrator = CPU2 162 * --> active = CPU1 active = CPU2 163 * / \ / \ 164 * CPUs 0 1 2 3 165 * idle --> active active idle 166 * 167 * 3. Here is the race condition: CPU1 managed to propagate its changes (from 168 * step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The 169 * active members of GRP1:0 remain unchanged after the update since it is 170 * still valid from CPU1 current point of view: 171 * 172 * LVL 1 [GRP1:0] 173 * --> migrator = GRP0:1 174 * --> active = GRP0:0, GRP0:1 175 * / \ 176 * LVL 0 [GRP0:0] [GRP0:1] 177 * migrator = CPU1 migrator = CPU2 178 * active = CPU1 active = CPU2 179 * / \ / \ 180 * CPUs 0 1 2 3 181 * idle active active idle 182 * 183 * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0. 184 * 185 * LVL 1 [GRP1:0] 186 * --> migrator = GRP0:1 187 * --> active = GRP0:1 188 * / \ 189 * LVL 0 [GRP0:0] [GRP0:1] 190 * migrator = CPU1 migrator = CPU2 191 * active = CPU1 active = CPU2 192 * / \ / \ 193 * CPUs 0 1 2 3 194 * idle active active idle 195 * 196 * 197 * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is 198 * active and is correctly listed as active in GRP0:0. However GRP1:0 does not 199 * have GRP0:0 listed as active, which is wrong. The sequence counter has been 200 * added to avoid inconsistent states during updates. The state is updated 201 * atomically only if all members, including the sequence counter, match the 202 * expected value (compare-and-exchange). 203 * 204 * Looking back at the previous example with the addition of the sequence 205 * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed 206 * the sequence number during the update in step 3 so the expected old value (as 207 * seen by CPU0 before starting the walk) does not match. 208 * 209 * Prevent race between new event and last CPU going inactive 210 * ---------------------------------------------------------- 211 * 212 * When the last CPU is going idle and there is a concurrent update of a new 213 * first global timer of an idle CPU, the group and child states have to be read 214 * while holding the lock in tmigr_update_events(). The following scenario shows 215 * what happens, when this is not done. 216 * 217 * 1. Only CPU2 is active: 218 * 219 * LVL 1 [GRP1:0] 220 * migrator = GRP0:1 221 * active = GRP0:1 222 * next_expiry = KTIME_MAX 223 * / \ 224 * LVL 0 [GRP0:0] [GRP0:1] 225 * migrator = TMIGR_NONE migrator = CPU2 226 * active = active = CPU2 227 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 228 * / \ / \ 229 * CPUs 0 1 2 3 230 * idle idle active idle 231 * 232 * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and 233 * propagates that to GRP0:1: 234 * 235 * LVL 1 [GRP1:0] 236 * migrator = GRP0:1 237 * active = GRP0:1 238 * next_expiry = KTIME_MAX 239 * / \ 240 * LVL 0 [GRP0:0] [GRP0:1] 241 * migrator = TMIGR_NONE --> migrator = TMIGR_NONE 242 * active = --> active = 243 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 244 * / \ / \ 245 * CPUs 0 1 2 3 246 * idle idle --> idle idle 247 * 248 * 3. Now the idle state is propagated up to GRP1:0. As this is now the last 249 * child going idle in top level group, the expiry of the next group event 250 * has to be handed back to make sure no event is lost. As there is no event 251 * enqueued, KTIME_MAX is handed back to CPU2. 252 * 253 * LVL 1 [GRP1:0] 254 * --> migrator = TMIGR_NONE 255 * --> active = 256 * next_expiry = KTIME_MAX 257 * / \ 258 * LVL 0 [GRP0:0] [GRP0:1] 259 * migrator = TMIGR_NONE migrator = TMIGR_NONE 260 * active = active = 261 * next_expiry = KTIME_MAX next_expiry = KTIME_MAX 262 * / \ / \ 263 * CPUs 0 1 2 3 264 * idle idle --> idle idle 265 * 266 * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0 267 * propagates that to GRP0:0: 268 * 269 * LVL 1 [GRP1:0] 270 * migrator = TMIGR_NONE 271 * active = 272 * next_expiry = KTIME_MAX 273 * / \ 274 * LVL 0 [GRP0:0] [GRP0:1] 275 * migrator = TMIGR_NONE migrator = TMIGR_NONE 276 * active = active = 277 * --> next_expiry = TIMER0 next_expiry = KTIME_MAX 278 * / \ / \ 279 * CPUs 0 1 2 3 280 * idle idle idle idle 281 * 282 * 5. GRP0:0 is not active, so the new timer has to be propagated to 283 * GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value 284 * (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is 285 * handed back to CPU0, as it seems that there is still an active child in 286 * top level group. 287 * 288 * LVL 1 [GRP1:0] 289 * migrator = TMIGR_NONE 290 * active = 291 * --> next_expiry = TIMER0 292 * / \ 293 * LVL 0 [GRP0:0] [GRP0:1] 294 * migrator = TMIGR_NONE migrator = TMIGR_NONE 295 * active = active = 296 * next_expiry = TIMER0 next_expiry = KTIME_MAX 297 * / \ / \ 298 * CPUs 0 1 2 3 299 * idle idle idle idle 300 * 301 * This is prevented by reading the state when holding the lock (when a new 302 * timer has to be propagated from idle path):: 303 * 304 * CPU2 (tmigr_inactive_up()) CPU0 (tmigr_new_timer_up()) 305 * -------------------------- --------------------------- 306 * // step 3: 307 * cmpxchg(&GRP1:0->state); 308 * tmigr_update_events() { 309 * spin_lock(&GRP1:0->lock); 310 * // ... update events ... 311 * // hand back first expiry when GRP1:0 is idle 312 * spin_unlock(&GRP1:0->lock); 313 * // ^^^ release state modification 314 * } 315 * tmigr_update_events() { 316 * spin_lock(&GRP1:0->lock) 317 * // ^^^ acquire state modification 318 * group_state = atomic_read(&GRP1:0->state) 319 * // .... update events ... 320 * // hand back first expiry when GRP1:0 is idle 321 * spin_unlock(&GRP1:0->lock) <3> 322 * // ^^^ makes state visible for other 323 * // callers of tmigr_new_timer_up() 324 * } 325 * 326 * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported 327 * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent 328 * update of the group state from active path is no problem, as the upcoming CPU 329 * will take care of the group events. 330 * 331 * Required event and timerqueue update after a remote expiry: 332 * ----------------------------------------------------------- 333 * 334 * After expiring timers of a remote CPU, a walk through the hierarchy and 335 * update of events and timerqueues is required. It is obviously needed if there 336 * is a 'new' global timer but also if there is no new global timer but the 337 * remote CPU is still idle. 338 * 339 * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same 340 * time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is 341 * also idle and has no global timer pending. CPU2 is the only active CPU and 342 * thus also the migrator: 343 * 344 * LVL 1 [GRP1:0] 345 * migrator = GRP0:1 346 * active = GRP0:1 347 * --> timerqueue = evt-GRP0:0 348 * / \ 349 * LVL 0 [GRP0:0] [GRP0:1] 350 * migrator = TMIGR_NONE migrator = CPU2 351 * active = active = CPU2 352 * groupevt.ignore = false groupevt.ignore = true 353 * groupevt.cpu = CPU0 groupevt.cpu = 354 * timerqueue = evt-CPU0, timerqueue = 355 * evt-CPU1 356 * / \ / \ 357 * CPUs 0 1 2 3 358 * idle idle active idle 359 * 360 * 2. CPU2 starts to expire remote timers. It starts with LVL0 group 361 * GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with 362 * the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It 363 * looks at tmigr_event::cpu struct member and expires the pending timer(s) 364 * of CPU0. 365 * 366 * LVL 1 [GRP1:0] 367 * migrator = GRP0:1 368 * active = GRP0:1 369 * --> timerqueue = 370 * / \ 371 * LVL 0 [GRP0:0] [GRP0:1] 372 * migrator = TMIGR_NONE migrator = CPU2 373 * active = active = CPU2 374 * groupevt.ignore = false groupevt.ignore = true 375 * --> groupevt.cpu = CPU0 groupevt.cpu = 376 * timerqueue = evt-CPU0, timerqueue = 377 * evt-CPU1 378 * / \ / \ 379 * CPUs 0 1 2 3 380 * idle idle active idle 381 * 382 * 3. Some work has to be done after expiring the timers of CPU0. If we stop 383 * here, then CPU1's pending global timer(s) will not expire in time and the 384 * timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just 385 * been processed. So it is required to walk the hierarchy from CPU0's point 386 * of view and update it accordingly. CPU0's event will be removed from the 387 * timerqueue because it has no pending timer. If CPU0 would have a timer 388 * pending then it has to expire after CPU1's first timer because all timers 389 * from this period were just expired. Either way CPU1's event will be first 390 * in GRP0:0's timerqueue and therefore set in the CPU field of the group 391 * event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not 392 * active: 393 * 394 * LVL 1 [GRP1:0] 395 * migrator = GRP0:1 396 * active = GRP0:1 397 * --> timerqueue = evt-GRP0:0 398 * / \ 399 * LVL 0 [GRP0:0] [GRP0:1] 400 * migrator = TMIGR_NONE migrator = CPU2 401 * active = active = CPU2 402 * groupevt.ignore = false groupevt.ignore = true 403 * --> groupevt.cpu = CPU1 groupevt.cpu = 404 * --> timerqueue = evt-CPU1 timerqueue = 405 * / \ / \ 406 * CPUs 0 1 2 3 407 * idle idle active idle 408 * 409 * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the 410 * timer(s) of CPU1. 411 * 412 * The hierarchy walk in step 3 can be skipped if the migrator notices that a 413 * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care 414 * of the group as migrator and any needed updates within the hierarchy. 415 */ 416 417 static DEFINE_MUTEX(tmigr_mutex); 418 static struct list_head *tmigr_level_list __read_mostly; 419 420 static unsigned int tmigr_hierarchy_levels __read_mostly; 421 static unsigned int tmigr_crossnode_level __read_mostly; 422 423 static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu); 424 425 #define TMIGR_NONE 0xFF 426 #define BIT_CNT 8 427 428 static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc) 429 { 430 return !(tmc->tmgroup && tmc->online); 431 } 432 433 /* 434 * Returns true, when @childmask corresponds to the group migrator or when the 435 * group is not active - so no migrator is set. 436 */ 437 static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask) 438 { 439 union tmigr_state s; 440 441 s.state = atomic_read(&group->migr_state); 442 443 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) 444 return true; 445 446 return false; 447 } 448 449 static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask) 450 { 451 bool lonely, migrator = false; 452 unsigned long active; 453 union tmigr_state s; 454 455 s.state = atomic_read(&group->migr_state); 456 457 if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE)) 458 migrator = true; 459 460 active = s.active; 461 lonely = bitmap_weight(&active, BIT_CNT) <= 1; 462 463 return (migrator && lonely); 464 } 465 466 static bool tmigr_check_lonely(struct tmigr_group *group) 467 { 468 unsigned long active; 469 union tmigr_state s; 470 471 s.state = atomic_read(&group->migr_state); 472 473 active = s.active; 474 475 return bitmap_weight(&active, BIT_CNT) <= 1; 476 } 477 478 typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, void *); 479 480 static void __walk_groups(up_f up, void *data, 481 struct tmigr_cpu *tmc) 482 { 483 struct tmigr_group *child = NULL, *group = tmc->tmgroup; 484 485 do { 486 WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels); 487 488 if (up(group, child, data)) 489 break; 490 491 child = group; 492 group = group->parent; 493 } while (group); 494 } 495 496 static void walk_groups(up_f up, void *data, struct tmigr_cpu *tmc) 497 { 498 lockdep_assert_held(&tmc->lock); 499 500 __walk_groups(up, data, tmc); 501 } 502 503 /** 504 * struct tmigr_walk - data required for walking the hierarchy 505 * @nextexp: Next CPU event expiry information which is handed into 506 * the timer migration code by the timer code 507 * (get_next_timer_interrupt()) 508 * @firstexp: Contains the first event expiry information when last 509 * active CPU of hierarchy is on the way to idle to make 510 * sure CPU will be back in time. 511 * @evt: Pointer to tmigr_event which needs to be queued (of idle 512 * child group) 513 * @childmask: childmask of child group 514 * @remote: Is set, when the new timer path is executed in 515 * tmigr_handle_remote_cpu() 516 */ 517 struct tmigr_walk { 518 u64 nextexp; 519 u64 firstexp; 520 struct tmigr_event *evt; 521 u8 childmask; 522 bool remote; 523 }; 524 525 /** 526 * struct tmigr_remote_data - data required for remote expiry hierarchy walk 527 * @basej: timer base in jiffies 528 * @now: timer base monotonic 529 * @firstexp: returns expiry of the first timer in the idle timer 530 * migration hierarchy to make sure the timer is handled in 531 * time; it is stored in the per CPU tmigr_cpu struct of 532 * CPU which expires remote timers 533 * @childmask: childmask of child group 534 * @check: is set if there is the need to handle remote timers; 535 * required in tmigr_requires_handle_remote() only 536 * @tmc_active: this flag indicates, whether the CPU which triggers 537 * the hierarchy walk is !idle in the timer migration 538 * hierarchy. When the CPU is idle and the whole hierarchy is 539 * idle, only the first event of the top level has to be 540 * considered. 541 */ 542 struct tmigr_remote_data { 543 unsigned long basej; 544 u64 now; 545 u64 firstexp; 546 u8 childmask; 547 bool check; 548 bool tmc_active; 549 }; 550 551 /* 552 * Returns the next event of the timerqueue @group->events 553 * 554 * Removes timers with ignore flag and update next_expiry of the group. Values 555 * of the group event are updated in tmigr_update_events() only. 556 */ 557 static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group) 558 { 559 struct timerqueue_node *node = NULL; 560 struct tmigr_event *evt = NULL; 561 562 lockdep_assert_held(&group->lock); 563 564 WRITE_ONCE(group->next_expiry, KTIME_MAX); 565 566 while ((node = timerqueue_getnext(&group->events))) { 567 evt = container_of(node, struct tmigr_event, nextevt); 568 569 if (!evt->ignore) { 570 WRITE_ONCE(group->next_expiry, evt->nextevt.expires); 571 return evt; 572 } 573 574 /* 575 * Remove next timers with ignore flag, because the group lock 576 * is held anyway 577 */ 578 if (!timerqueue_del(&group->events, node)) 579 break; 580 } 581 582 return NULL; 583 } 584 585 /* 586 * Return the next event (with the expiry equal or before @now) 587 * 588 * Event, which is returned, is also removed from the queue. 589 */ 590 static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group, 591 u64 now) 592 { 593 struct tmigr_event *evt = tmigr_next_groupevt(group); 594 595 if (!evt || now < evt->nextevt.expires) 596 return NULL; 597 598 /* 599 * The event is ready to expire. Remove it and update next group event. 600 */ 601 timerqueue_del(&group->events, &evt->nextevt); 602 tmigr_next_groupevt(group); 603 604 return evt; 605 } 606 607 static u64 tmigr_next_groupevt_expires(struct tmigr_group *group) 608 { 609 struct tmigr_event *evt; 610 611 evt = tmigr_next_groupevt(group); 612 613 if (!evt) 614 return KTIME_MAX; 615 else 616 return evt->nextevt.expires; 617 } 618 619 static bool tmigr_active_up(struct tmigr_group *group, 620 struct tmigr_group *child, 621 void *ptr) 622 { 623 union tmigr_state curstate, newstate; 624 struct tmigr_walk *data = ptr; 625 bool walk_done; 626 u8 childmask; 627 628 childmask = data->childmask; 629 /* 630 * No memory barrier is required here in contrast to 631 * tmigr_inactive_up(), as the group state change does not depend on the 632 * child state. 633 */ 634 curstate.state = atomic_read(&group->migr_state); 635 636 do { 637 newstate = curstate; 638 walk_done = true; 639 640 if (newstate.migrator == TMIGR_NONE) { 641 newstate.migrator = childmask; 642 643 /* Changes need to be propagated */ 644 walk_done = false; 645 } 646 647 newstate.active |= childmask; 648 newstate.seq++; 649 650 } while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)); 651 652 if ((walk_done == false) && group->parent) 653 data->childmask = group->childmask; 654 655 /* 656 * The group is active (again). The group event might be still queued 657 * into the parent group's timerqueue but can now be handled by the 658 * migrator of this group. Therefore the ignore flag for the group event 659 * is updated to reflect this. 660 * 661 * The update of the ignore flag in the active path is done lockless. In 662 * worst case the migrator of the parent group observes the change too 663 * late and expires remotely all events belonging to this group. The 664 * lock is held while updating the ignore flag in idle path. So this 665 * state change will not be lost. 666 */ 667 group->groupevt.ignore = true; 668 669 trace_tmigr_group_set_cpu_active(group, newstate, childmask); 670 671 return walk_done; 672 } 673 674 static void __tmigr_cpu_activate(struct tmigr_cpu *tmc) 675 { 676 struct tmigr_walk data; 677 678 data.childmask = tmc->childmask; 679 680 trace_tmigr_cpu_active(tmc); 681 682 tmc->cpuevt.ignore = true; 683 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 684 685 walk_groups(&tmigr_active_up, &data, tmc); 686 } 687 688 /** 689 * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy 690 * 691 * Call site timer_clear_idle() is called with interrupts disabled. 692 */ 693 void tmigr_cpu_activate(void) 694 { 695 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 696 697 if (tmigr_is_not_available(tmc)) 698 return; 699 700 if (WARN_ON_ONCE(!tmc->idle)) 701 return; 702 703 raw_spin_lock(&tmc->lock); 704 tmc->idle = false; 705 __tmigr_cpu_activate(tmc); 706 raw_spin_unlock(&tmc->lock); 707 } 708 709 /* 710 * Returns true, if there is nothing to be propagated to the next level 711 * 712 * @data->firstexp is set to expiry of first gobal event of the (top level of 713 * the) hierarchy, but only when hierarchy is completely idle. 714 * 715 * The child and group states need to be read under the lock, to prevent a race 716 * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See 717 * also section "Prevent race between new event and last CPU going inactive" in 718 * the documentation at the top. 719 * 720 * This is the only place where the group event expiry value is set. 721 */ 722 static 723 bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child, 724 struct tmigr_walk *data) 725 { 726 struct tmigr_event *evt, *first_childevt; 727 union tmigr_state childstate, groupstate; 728 bool remote = data->remote; 729 bool walk_done = false; 730 u64 nextexp; 731 732 if (child) { 733 raw_spin_lock(&child->lock); 734 raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING); 735 736 childstate.state = atomic_read(&child->migr_state); 737 groupstate.state = atomic_read(&group->migr_state); 738 739 if (childstate.active) { 740 walk_done = true; 741 goto unlock; 742 } 743 744 first_childevt = tmigr_next_groupevt(child); 745 nextexp = child->next_expiry; 746 evt = &child->groupevt; 747 748 evt->ignore = (nextexp == KTIME_MAX) ? true : false; 749 } else { 750 nextexp = data->nextexp; 751 752 first_childevt = evt = data->evt; 753 754 raw_spin_lock(&group->lock); 755 756 childstate.state = 0; 757 groupstate.state = atomic_read(&group->migr_state); 758 } 759 760 /* 761 * If the child event is already queued in the group, remove it from the 762 * queue when the expiry time changed only or when it could be ignored. 763 */ 764 if (timerqueue_node_queued(&evt->nextevt)) { 765 if ((evt->nextevt.expires == nextexp) && !evt->ignore) { 766 /* Make sure not to miss a new CPU event with the same expiry */ 767 evt->cpu = first_childevt->cpu; 768 goto check_toplvl; 769 } 770 771 if (!timerqueue_del(&group->events, &evt->nextevt)) 772 WRITE_ONCE(group->next_expiry, KTIME_MAX); 773 } 774 775 if (evt->ignore) { 776 /* 777 * When the next child event could be ignored (nextexp is 778 * KTIME_MAX) and there was no remote timer handling before or 779 * the group is already active, there is no need to walk the 780 * hierarchy even if there is a parent group. 781 * 782 * The other way round: even if the event could be ignored, but 783 * if a remote timer handling was executed before and the group 784 * is not active, walking the hierarchy is required to not miss 785 * an enqueued timer in the non active group. The enqueued timer 786 * of the group needs to be propagated to a higher level to 787 * ensure it is handled. 788 */ 789 if (!remote || groupstate.active) 790 walk_done = true; 791 } else { 792 evt->nextevt.expires = nextexp; 793 evt->cpu = first_childevt->cpu; 794 795 if (timerqueue_add(&group->events, &evt->nextevt)) 796 WRITE_ONCE(group->next_expiry, nextexp); 797 } 798 799 check_toplvl: 800 if (!group->parent && (groupstate.migrator == TMIGR_NONE)) { 801 walk_done = true; 802 803 /* 804 * Nothing to do when update was done during remote timer 805 * handling. First timer in top level group which needs to be 806 * handled when top level group is not active, is calculated 807 * directly in tmigr_handle_remote_up(). 808 */ 809 if (remote) 810 goto unlock; 811 812 /* 813 * The top level group is idle and it has to be ensured the 814 * global timers are handled in time. (This could be optimized 815 * by keeping track of the last global scheduled event and only 816 * arming it on the CPU if the new event is earlier. Not sure if 817 * its worth the complexity.) 818 */ 819 data->firstexp = tmigr_next_groupevt_expires(group); 820 } 821 822 trace_tmigr_update_events(child, group, childstate, groupstate, 823 nextexp); 824 825 unlock: 826 raw_spin_unlock(&group->lock); 827 828 if (child) 829 raw_spin_unlock(&child->lock); 830 831 return walk_done; 832 } 833 834 static bool tmigr_new_timer_up(struct tmigr_group *group, 835 struct tmigr_group *child, 836 void *ptr) 837 { 838 struct tmigr_walk *data = ptr; 839 840 return tmigr_update_events(group, child, data); 841 } 842 843 /* 844 * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is 845 * returned, if an active CPU will handle all the timer migration hierarchy 846 * timers. 847 */ 848 static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp) 849 { 850 struct tmigr_walk data = { .nextexp = nextexp, 851 .firstexp = KTIME_MAX, 852 .evt = &tmc->cpuevt }; 853 854 lockdep_assert_held(&tmc->lock); 855 856 if (tmc->remote) 857 return KTIME_MAX; 858 859 trace_tmigr_cpu_new_timer(tmc); 860 861 tmc->cpuevt.ignore = false; 862 data.remote = false; 863 864 walk_groups(&tmigr_new_timer_up, &data, tmc); 865 866 /* If there is a new first global event, make sure it is handled */ 867 return data.firstexp; 868 } 869 870 static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now, 871 unsigned long jif) 872 { 873 struct timer_events tevt; 874 struct tmigr_walk data; 875 struct tmigr_cpu *tmc; 876 877 tmc = per_cpu_ptr(&tmigr_cpu, cpu); 878 879 raw_spin_lock_irq(&tmc->lock); 880 881 /* 882 * If the remote CPU is offline then the timers have been migrated to 883 * another CPU. 884 * 885 * If tmigr_cpu::remote is set, at the moment another CPU already 886 * expires the timers of the remote CPU. 887 * 888 * If tmigr_event::ignore is set, then the CPU returns from idle and 889 * takes care of its timers. 890 * 891 * If the next event expires in the future, then the event has been 892 * updated and there are no timers to expire right now. The CPU which 893 * updated the event takes care when hierarchy is completely 894 * idle. Otherwise the migrator does it as the event is enqueued. 895 */ 896 if (!tmc->online || tmc->remote || tmc->cpuevt.ignore || 897 now < tmc->cpuevt.nextevt.expires) { 898 raw_spin_unlock_irq(&tmc->lock); 899 return; 900 } 901 902 trace_tmigr_handle_remote_cpu(tmc); 903 904 tmc->remote = true; 905 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 906 907 /* Drop the lock to allow the remote CPU to exit idle */ 908 raw_spin_unlock_irq(&tmc->lock); 909 910 if (cpu != smp_processor_id()) 911 timer_expire_remote(cpu); 912 913 /* 914 * Lock ordering needs to be preserved - timer_base locks before tmigr 915 * related locks (see section "Locking rules" in the documentation at 916 * the top). During fetching the next timer interrupt, also tmc->lock 917 * needs to be held. Otherwise there is a possible race window against 918 * the CPU itself when it comes out of idle, updates the first timer in 919 * the hierarchy and goes back to idle. 920 * 921 * timer base locks are dropped as fast as possible: After checking 922 * whether the remote CPU went offline in the meantime and after 923 * fetching the next remote timer interrupt. Dropping the locks as fast 924 * as possible keeps the locking region small and prevents holding 925 * several (unnecessary) locks during walking the hierarchy for updating 926 * the timerqueue and group events. 927 */ 928 local_irq_disable(); 929 timer_lock_remote_bases(cpu); 930 raw_spin_lock(&tmc->lock); 931 932 /* 933 * When the CPU went offline in the meantime, no hierarchy walk has to 934 * be done for updating the queued events, because the walk was 935 * already done during marking the CPU offline in the hierarchy. 936 * 937 * When the CPU is no longer idle, the CPU takes care of the timers and 938 * also of the timers in the hierarchy. 939 * 940 * (See also section "Required event and timerqueue update after a 941 * remote expiry" in the documentation at the top) 942 */ 943 if (!tmc->online || !tmc->idle) { 944 timer_unlock_remote_bases(cpu); 945 goto unlock; 946 } 947 948 /* next event of CPU */ 949 fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu); 950 timer_unlock_remote_bases(cpu); 951 952 data.nextexp = tevt.global; 953 data.firstexp = KTIME_MAX; 954 data.evt = &tmc->cpuevt; 955 data.remote = true; 956 957 /* 958 * The update is done even when there is no 'new' global timer pending 959 * on the remote CPU (see section "Required event and timerqueue update 960 * after a remote expiry" in the documentation at the top) 961 */ 962 walk_groups(&tmigr_new_timer_up, &data, tmc); 963 964 unlock: 965 tmc->remote = false; 966 raw_spin_unlock_irq(&tmc->lock); 967 } 968 969 static bool tmigr_handle_remote_up(struct tmigr_group *group, 970 struct tmigr_group *child, 971 void *ptr) 972 { 973 struct tmigr_remote_data *data = ptr; 974 struct tmigr_event *evt; 975 unsigned long jif; 976 u8 childmask; 977 u64 now; 978 979 jif = data->basej; 980 now = data->now; 981 982 childmask = data->childmask; 983 984 trace_tmigr_handle_remote(group); 985 again: 986 /* 987 * Handle the group only if @childmask is the migrator or if the 988 * group has no migrator. Otherwise the group is active and is 989 * handled by its own migrator. 990 */ 991 if (!tmigr_check_migrator(group, childmask)) 992 return true; 993 994 raw_spin_lock_irq(&group->lock); 995 996 evt = tmigr_next_expired_groupevt(group, now); 997 998 if (evt) { 999 unsigned int remote_cpu = evt->cpu; 1000 1001 raw_spin_unlock_irq(&group->lock); 1002 1003 tmigr_handle_remote_cpu(remote_cpu, now, jif); 1004 1005 /* check if there is another event, that needs to be handled */ 1006 goto again; 1007 } 1008 1009 /* 1010 * Update of childmask for the next level and keep track of the expiry 1011 * of the first event that needs to be handled (group->next_expiry was 1012 * updated by tmigr_next_expired_groupevt(), next was set by 1013 * tmigr_handle_remote_cpu()). 1014 */ 1015 data->childmask = group->childmask; 1016 data->firstexp = group->next_expiry; 1017 1018 raw_spin_unlock_irq(&group->lock); 1019 1020 return false; 1021 } 1022 1023 /** 1024 * tmigr_handle_remote() - Handle global timers of remote idle CPUs 1025 * 1026 * Called from the timer soft interrupt with interrupts enabled. 1027 */ 1028 void tmigr_handle_remote(void) 1029 { 1030 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1031 struct tmigr_remote_data data; 1032 1033 if (tmigr_is_not_available(tmc)) 1034 return; 1035 1036 data.childmask = tmc->childmask; 1037 data.firstexp = KTIME_MAX; 1038 1039 /* 1040 * NOTE: This is a doubled check because the migrator test will be done 1041 * in tmigr_handle_remote_up() anyway. Keep this check to speed up the 1042 * return when nothing has to be done. 1043 */ 1044 if (!tmigr_check_migrator(tmc->tmgroup, tmc->childmask)) { 1045 /* 1046 * If this CPU was an idle migrator, make sure to clear its wakeup 1047 * value so it won't chase timers that have already expired elsewhere. 1048 * This avoids endless requeue from tmigr_new_timer(). 1049 */ 1050 if (READ_ONCE(tmc->wakeup) == KTIME_MAX) 1051 return; 1052 } 1053 1054 data.now = get_jiffies_update(&data.basej); 1055 1056 /* 1057 * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to 1058 * KTIME_MAX. Even if tmc->lock is not held during the whole remote 1059 * handling, tmc->wakeup is fine to be stale as it is called in 1060 * interrupt context and tick_nohz_next_event() is executed in interrupt 1061 * exit path only after processing the last pending interrupt. 1062 */ 1063 1064 __walk_groups(&tmigr_handle_remote_up, &data, tmc); 1065 1066 raw_spin_lock_irq(&tmc->lock); 1067 WRITE_ONCE(tmc->wakeup, data.firstexp); 1068 raw_spin_unlock_irq(&tmc->lock); 1069 } 1070 1071 static bool tmigr_requires_handle_remote_up(struct tmigr_group *group, 1072 struct tmigr_group *child, 1073 void *ptr) 1074 { 1075 struct tmigr_remote_data *data = ptr; 1076 u8 childmask; 1077 1078 childmask = data->childmask; 1079 1080 /* 1081 * Handle the group only if the child is the migrator or if the group 1082 * has no migrator. Otherwise the group is active and is handled by its 1083 * own migrator. 1084 */ 1085 if (!tmigr_check_migrator(group, childmask)) 1086 return true; 1087 1088 /* 1089 * When there is a parent group and the CPU which triggered the 1090 * hierarchy walk is not active, proceed the walk to reach the top level 1091 * group before reading the next_expiry value. 1092 */ 1093 if (group->parent && !data->tmc_active) 1094 goto out; 1095 1096 /* 1097 * The lock is required on 32bit architectures to read the variable 1098 * consistently with a concurrent writer. On 64bit the lock is not 1099 * required because the read operation is not split and so it is always 1100 * consistent. 1101 */ 1102 if (IS_ENABLED(CONFIG_64BIT)) { 1103 data->firstexp = READ_ONCE(group->next_expiry); 1104 if (data->now >= data->firstexp) { 1105 data->check = true; 1106 return true; 1107 } 1108 } else { 1109 raw_spin_lock(&group->lock); 1110 data->firstexp = group->next_expiry; 1111 if (data->now >= group->next_expiry) { 1112 data->check = true; 1113 raw_spin_unlock(&group->lock); 1114 return true; 1115 } 1116 raw_spin_unlock(&group->lock); 1117 } 1118 1119 out: 1120 /* Update of childmask for the next level */ 1121 data->childmask = group->childmask; 1122 return false; 1123 } 1124 1125 /** 1126 * tmigr_requires_handle_remote() - Check the need of remote timer handling 1127 * 1128 * Must be called with interrupts disabled. 1129 */ 1130 bool tmigr_requires_handle_remote(void) 1131 { 1132 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1133 struct tmigr_remote_data data; 1134 unsigned long jif; 1135 bool ret = false; 1136 1137 if (tmigr_is_not_available(tmc)) 1138 return ret; 1139 1140 data.now = get_jiffies_update(&jif); 1141 data.childmask = tmc->childmask; 1142 data.firstexp = KTIME_MAX; 1143 data.tmc_active = !tmc->idle; 1144 data.check = false; 1145 1146 /* 1147 * If the CPU is active, walk the hierarchy to check whether a remote 1148 * expiry is required. 1149 * 1150 * Check is done lockless as interrupts are disabled and @tmc->idle is 1151 * set only by the local CPU. 1152 */ 1153 if (!tmc->idle) { 1154 __walk_groups(&tmigr_requires_handle_remote_up, &data, tmc); 1155 1156 return data.check; 1157 } 1158 1159 /* 1160 * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock 1161 * is required on 32bit architectures to read the variable consistently 1162 * with a concurrent writer. On 64bit the lock is not required because 1163 * the read operation is not split and so it is always consistent. 1164 */ 1165 if (IS_ENABLED(CONFIG_64BIT)) { 1166 if (data.now >= READ_ONCE(tmc->wakeup)) 1167 return true; 1168 } else { 1169 raw_spin_lock(&tmc->lock); 1170 if (data.now >= tmc->wakeup) 1171 ret = true; 1172 raw_spin_unlock(&tmc->lock); 1173 } 1174 1175 return ret; 1176 } 1177 1178 /** 1179 * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc) 1180 * @nextexp: Next expiry of global timer (or KTIME_MAX if not) 1181 * 1182 * The CPU is already deactivated in the timer migration 1183 * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event() 1184 * and thereby the timer idle path is executed once more. @tmc->wakeup 1185 * holds the first timer, when the timer migration hierarchy is 1186 * completely idle. 1187 * 1188 * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if 1189 * nothing needs to be done. 1190 */ 1191 u64 tmigr_cpu_new_timer(u64 nextexp) 1192 { 1193 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1194 u64 ret; 1195 1196 if (tmigr_is_not_available(tmc)) 1197 return nextexp; 1198 1199 raw_spin_lock(&tmc->lock); 1200 1201 ret = READ_ONCE(tmc->wakeup); 1202 if (nextexp != KTIME_MAX) { 1203 if (nextexp != tmc->cpuevt.nextevt.expires || 1204 tmc->cpuevt.ignore) { 1205 ret = tmigr_new_timer(tmc, nextexp); 1206 } 1207 } 1208 /* 1209 * Make sure the reevaluation of timers in idle path will not miss an 1210 * event. 1211 */ 1212 WRITE_ONCE(tmc->wakeup, ret); 1213 1214 trace_tmigr_cpu_new_timer_idle(tmc, nextexp); 1215 raw_spin_unlock(&tmc->lock); 1216 return ret; 1217 } 1218 1219 static bool tmigr_inactive_up(struct tmigr_group *group, 1220 struct tmigr_group *child, 1221 void *ptr) 1222 { 1223 union tmigr_state curstate, newstate, childstate; 1224 struct tmigr_walk *data = ptr; 1225 bool walk_done; 1226 u8 childmask; 1227 1228 childmask = data->childmask; 1229 childstate.state = 0; 1230 1231 /* 1232 * The memory barrier is paired with the cmpxchg() in tmigr_active_up() 1233 * to make sure the updates of child and group states are ordered. The 1234 * ordering is mandatory, as the group state change depends on the child 1235 * state. 1236 */ 1237 curstate.state = atomic_read_acquire(&group->migr_state); 1238 1239 for (;;) { 1240 if (child) 1241 childstate.state = atomic_read(&child->migr_state); 1242 1243 newstate = curstate; 1244 walk_done = true; 1245 1246 /* Reset active bit when the child is no longer active */ 1247 if (!childstate.active) 1248 newstate.active &= ~childmask; 1249 1250 if (newstate.migrator == childmask) { 1251 /* 1252 * Find a new migrator for the group, because the child 1253 * group is idle! 1254 */ 1255 if (!childstate.active) { 1256 unsigned long new_migr_bit, active = newstate.active; 1257 1258 new_migr_bit = find_first_bit(&active, BIT_CNT); 1259 1260 if (new_migr_bit != BIT_CNT) { 1261 newstate.migrator = BIT(new_migr_bit); 1262 } else { 1263 newstate.migrator = TMIGR_NONE; 1264 1265 /* Changes need to be propagated */ 1266 walk_done = false; 1267 } 1268 } 1269 } 1270 1271 newstate.seq++; 1272 1273 WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active)); 1274 1275 if (atomic_try_cmpxchg(&group->migr_state, &curstate.state, 1276 newstate.state)) 1277 break; 1278 1279 /* 1280 * The memory barrier is paired with the cmpxchg() in 1281 * tmigr_active_up() to make sure the updates of child and group 1282 * states are ordered. It is required only when the above 1283 * try_cmpxchg() fails. 1284 */ 1285 smp_mb__after_atomic(); 1286 } 1287 1288 data->remote = false; 1289 1290 /* Event Handling */ 1291 tmigr_update_events(group, child, data); 1292 1293 if (group->parent && (walk_done == false)) 1294 data->childmask = group->childmask; 1295 1296 /* 1297 * data->firstexp was set by tmigr_update_events() and contains the 1298 * expiry of the first global event which needs to be handled. It 1299 * differs from KTIME_MAX if: 1300 * - group is the top level group and 1301 * - group is idle (which means CPU was the last active CPU in the 1302 * hierarchy) and 1303 * - there is a pending event in the hierarchy 1304 */ 1305 WARN_ON_ONCE(data->firstexp != KTIME_MAX && group->parent); 1306 1307 trace_tmigr_group_set_cpu_inactive(group, newstate, childmask); 1308 1309 return walk_done; 1310 } 1311 1312 static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp) 1313 { 1314 struct tmigr_walk data = { .nextexp = nextexp, 1315 .firstexp = KTIME_MAX, 1316 .evt = &tmc->cpuevt, 1317 .childmask = tmc->childmask }; 1318 1319 /* 1320 * If nextexp is KTIME_MAX, the CPU event will be ignored because the 1321 * local timer expires before the global timer, no global timer is set 1322 * or CPU goes offline. 1323 */ 1324 if (nextexp != KTIME_MAX) 1325 tmc->cpuevt.ignore = false; 1326 1327 walk_groups(&tmigr_inactive_up, &data, tmc); 1328 return data.firstexp; 1329 } 1330 1331 /** 1332 * tmigr_cpu_deactivate() - Put current CPU into inactive state 1333 * @nextexp: The next global timer expiry of the current CPU 1334 * 1335 * Must be called with interrupts disabled. 1336 * 1337 * Return: the next event expiry of the current CPU or the next event expiry 1338 * from the hierarchy if this CPU is the top level migrator or the hierarchy is 1339 * completely idle. 1340 */ 1341 u64 tmigr_cpu_deactivate(u64 nextexp) 1342 { 1343 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1344 u64 ret; 1345 1346 if (tmigr_is_not_available(tmc)) 1347 return nextexp; 1348 1349 raw_spin_lock(&tmc->lock); 1350 1351 ret = __tmigr_cpu_deactivate(tmc, nextexp); 1352 1353 tmc->idle = true; 1354 1355 /* 1356 * Make sure the reevaluation of timers in idle path will not miss an 1357 * event. 1358 */ 1359 WRITE_ONCE(tmc->wakeup, ret); 1360 1361 trace_tmigr_cpu_idle(tmc, nextexp); 1362 raw_spin_unlock(&tmc->lock); 1363 return ret; 1364 } 1365 1366 /** 1367 * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to 1368 * go idle 1369 * @nextevt: The next global timer expiry of the current CPU 1370 * 1371 * Return: 1372 * * KTIME_MAX - when it is probable that nothing has to be done (not 1373 * the only one in the level 0 group; and if it is the 1374 * only one in level 0 group, but there are more than a 1375 * single group active on the way to top level) 1376 * * nextevt - when CPU is offline and has to handle timer on his own 1377 * or when on the way to top in every group only a single 1378 * child is active but @nextevt is before the lowest 1379 * next_expiry encountered while walking up to top level. 1380 * * next_expiry - value of lowest expiry encountered while walking groups 1381 * if only a single child is active on each and @nextevt 1382 * is after this lowest expiry. 1383 */ 1384 u64 tmigr_quick_check(u64 nextevt) 1385 { 1386 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1387 struct tmigr_group *group = tmc->tmgroup; 1388 1389 if (tmigr_is_not_available(tmc)) 1390 return nextevt; 1391 1392 if (WARN_ON_ONCE(tmc->idle)) 1393 return nextevt; 1394 1395 if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->childmask)) 1396 return KTIME_MAX; 1397 1398 do { 1399 if (!tmigr_check_lonely(group)) { 1400 return KTIME_MAX; 1401 } else { 1402 /* 1403 * Since current CPU is active, events may not be sorted 1404 * from bottom to the top because the CPU's event is ignored 1405 * up to the top and its sibling's events not propagated upwards. 1406 * Thus keep track of the lowest observed expiry. 1407 */ 1408 nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry)); 1409 if (!group->parent) 1410 return nextevt; 1411 } 1412 group = group->parent; 1413 } while (group); 1414 1415 return KTIME_MAX; 1416 } 1417 1418 static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl, 1419 int node) 1420 { 1421 union tmigr_state s; 1422 1423 raw_spin_lock_init(&group->lock); 1424 1425 group->level = lvl; 1426 group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE; 1427 1428 group->num_children = 0; 1429 1430 s.migrator = TMIGR_NONE; 1431 s.active = 0; 1432 s.seq = 0; 1433 atomic_set(&group->migr_state, s.state); 1434 1435 timerqueue_init_head(&group->events); 1436 timerqueue_init(&group->groupevt.nextevt); 1437 group->groupevt.nextevt.expires = KTIME_MAX; 1438 WRITE_ONCE(group->next_expiry, KTIME_MAX); 1439 group->groupevt.ignore = true; 1440 } 1441 1442 static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node, 1443 unsigned int lvl) 1444 { 1445 struct tmigr_group *tmp, *group = NULL; 1446 1447 lockdep_assert_held(&tmigr_mutex); 1448 1449 /* Try to attach to an existing group first */ 1450 list_for_each_entry(tmp, &tmigr_level_list[lvl], list) { 1451 /* 1452 * If @lvl is below the cross NUMA node level, check whether 1453 * this group belongs to the same NUMA node. 1454 */ 1455 if (lvl < tmigr_crossnode_level && tmp->numa_node != node) 1456 continue; 1457 1458 /* Capacity left? */ 1459 if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP) 1460 continue; 1461 1462 /* 1463 * TODO: A possible further improvement: Make sure that all CPU 1464 * siblings end up in the same group of the lowest level of the 1465 * hierarchy. Rely on the topology sibling mask would be a 1466 * reasonable solution. 1467 */ 1468 1469 group = tmp; 1470 break; 1471 } 1472 1473 if (group) 1474 return group; 1475 1476 /* Allocate and set up a new group */ 1477 group = kzalloc_node(sizeof(*group), GFP_KERNEL, node); 1478 if (!group) 1479 return ERR_PTR(-ENOMEM); 1480 1481 tmigr_init_group(group, lvl, node); 1482 1483 /* Setup successful. Add it to the hierarchy */ 1484 list_add(&group->list, &tmigr_level_list[lvl]); 1485 trace_tmigr_group_set(group); 1486 return group; 1487 } 1488 1489 static void tmigr_connect_child_parent(struct tmigr_group *child, 1490 struct tmigr_group *parent) 1491 { 1492 union tmigr_state childstate; 1493 1494 raw_spin_lock_irq(&child->lock); 1495 raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING); 1496 1497 child->parent = parent; 1498 child->childmask = BIT(parent->num_children++); 1499 1500 raw_spin_unlock(&parent->lock); 1501 raw_spin_unlock_irq(&child->lock); 1502 1503 trace_tmigr_connect_child_parent(child); 1504 1505 /* 1506 * To prevent inconsistent states, active children need to be active in 1507 * the new parent as well. Inactive children are already marked inactive 1508 * in the parent group: 1509 * 1510 * * When new groups were created by tmigr_setup_groups() starting from 1511 * the lowest level (and not higher then one level below the current 1512 * top level), then they are not active. They will be set active when 1513 * the new online CPU comes active. 1514 * 1515 * * But if a new group above the current top level is required, it is 1516 * mandatory to propagate the active state of the already existing 1517 * child to the new parent. So tmigr_connect_child_parent() is 1518 * executed with the formerly top level group (child) and the newly 1519 * created group (parent). 1520 */ 1521 childstate.state = atomic_read(&child->migr_state); 1522 if (childstate.migrator != TMIGR_NONE) { 1523 struct tmigr_walk data; 1524 1525 data.childmask = child->childmask; 1526 1527 /* 1528 * There is only one new level per time. When connecting the 1529 * child and the parent and set the child active when the parent 1530 * is inactive, the parent needs to be the uppermost 1531 * level. Otherwise there went something wrong! 1532 */ 1533 WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent); 1534 } 1535 } 1536 1537 static int tmigr_setup_groups(unsigned int cpu, unsigned int node) 1538 { 1539 struct tmigr_group *group, *child, **stack; 1540 int top = 0, err = 0, i = 0; 1541 struct list_head *lvllist; 1542 1543 stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL); 1544 if (!stack) 1545 return -ENOMEM; 1546 1547 do { 1548 group = tmigr_get_group(cpu, node, i); 1549 if (IS_ERR(group)) { 1550 err = PTR_ERR(group); 1551 break; 1552 } 1553 1554 top = i; 1555 stack[i++] = group; 1556 1557 /* 1558 * When booting only less CPUs of a system than CPUs are 1559 * available, not all calculated hierarchy levels are required. 1560 * 1561 * The loop is aborted as soon as the highest level, which might 1562 * be different from tmigr_hierarchy_levels, contains only a 1563 * single group. 1564 */ 1565 if (group->parent || i == tmigr_hierarchy_levels || 1566 (list_empty(&tmigr_level_list[i]) && 1567 list_is_singular(&tmigr_level_list[i - 1]))) 1568 break; 1569 1570 } while (i < tmigr_hierarchy_levels); 1571 1572 do { 1573 group = stack[--i]; 1574 1575 if (err < 0) { 1576 list_del(&group->list); 1577 kfree(group); 1578 continue; 1579 } 1580 1581 WARN_ON_ONCE(i != group->level); 1582 1583 /* 1584 * Update tmc -> group / child -> group connection 1585 */ 1586 if (i == 0) { 1587 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1588 1589 raw_spin_lock_irq(&group->lock); 1590 1591 tmc->tmgroup = group; 1592 tmc->childmask = BIT(group->num_children++); 1593 1594 raw_spin_unlock_irq(&group->lock); 1595 1596 trace_tmigr_connect_cpu_parent(tmc); 1597 1598 /* There are no children that need to be connected */ 1599 continue; 1600 } else { 1601 child = stack[i - 1]; 1602 tmigr_connect_child_parent(child, group); 1603 } 1604 1605 /* check if uppermost level was newly created */ 1606 if (top != i) 1607 continue; 1608 1609 WARN_ON_ONCE(top == 0); 1610 1611 lvllist = &tmigr_level_list[top]; 1612 if (group->num_children == 1 && list_is_singular(lvllist)) { 1613 lvllist = &tmigr_level_list[top - 1]; 1614 list_for_each_entry(child, lvllist, list) { 1615 if (child->parent) 1616 continue; 1617 1618 tmigr_connect_child_parent(child, group); 1619 } 1620 } 1621 } while (i > 0); 1622 1623 kfree(stack); 1624 1625 return err; 1626 } 1627 1628 static int tmigr_add_cpu(unsigned int cpu) 1629 { 1630 int node = cpu_to_node(cpu); 1631 int ret; 1632 1633 mutex_lock(&tmigr_mutex); 1634 ret = tmigr_setup_groups(cpu, node); 1635 mutex_unlock(&tmigr_mutex); 1636 1637 return ret; 1638 } 1639 1640 static int tmigr_cpu_online(unsigned int cpu) 1641 { 1642 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1643 int ret; 1644 1645 /* First online attempt? Initialize CPU data */ 1646 if (!tmc->tmgroup) { 1647 raw_spin_lock_init(&tmc->lock); 1648 1649 ret = tmigr_add_cpu(cpu); 1650 if (ret < 0) 1651 return ret; 1652 1653 if (tmc->childmask == 0) 1654 return -EINVAL; 1655 1656 timerqueue_init(&tmc->cpuevt.nextevt); 1657 tmc->cpuevt.nextevt.expires = KTIME_MAX; 1658 tmc->cpuevt.ignore = true; 1659 tmc->cpuevt.cpu = cpu; 1660 1661 tmc->remote = false; 1662 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 1663 } 1664 raw_spin_lock_irq(&tmc->lock); 1665 trace_tmigr_cpu_online(tmc); 1666 tmc->idle = timer_base_is_idle(); 1667 if (!tmc->idle) 1668 __tmigr_cpu_activate(tmc); 1669 tmc->online = true; 1670 raw_spin_unlock_irq(&tmc->lock); 1671 return 0; 1672 } 1673 1674 /* 1675 * tmigr_trigger_active() - trigger a CPU to become active again 1676 * 1677 * This function is executed on a CPU which is part of cpu_online_mask, when the 1678 * last active CPU in the hierarchy is offlining. With this, it is ensured that 1679 * the other CPU is active and takes over the migrator duty. 1680 */ 1681 static long tmigr_trigger_active(void *unused) 1682 { 1683 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1684 1685 WARN_ON_ONCE(!tmc->online || tmc->idle); 1686 1687 return 0; 1688 } 1689 1690 static int tmigr_cpu_offline(unsigned int cpu) 1691 { 1692 struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu); 1693 int migrator; 1694 u64 firstexp; 1695 1696 raw_spin_lock_irq(&tmc->lock); 1697 tmc->online = false; 1698 WRITE_ONCE(tmc->wakeup, KTIME_MAX); 1699 1700 /* 1701 * CPU has to handle the local events on his own, when on the way to 1702 * offline; Therefore nextevt value is set to KTIME_MAX 1703 */ 1704 firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX); 1705 trace_tmigr_cpu_offline(tmc); 1706 raw_spin_unlock_irq(&tmc->lock); 1707 1708 if (firstexp != KTIME_MAX) { 1709 migrator = cpumask_any_but(cpu_online_mask, cpu); 1710 work_on_cpu(migrator, tmigr_trigger_active, NULL); 1711 } 1712 1713 return 0; 1714 } 1715 1716 static int __init tmigr_init(void) 1717 { 1718 unsigned int cpulvl, nodelvl, cpus_per_node, i; 1719 unsigned int nnodes = num_possible_nodes(); 1720 unsigned int ncpus = num_possible_cpus(); 1721 int ret = -ENOMEM; 1722 1723 BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP); 1724 1725 /* Nothing to do if running on UP */ 1726 if (ncpus == 1) 1727 return 0; 1728 1729 /* 1730 * Calculate the required hierarchy levels. Unfortunately there is no 1731 * reliable information available, unless all possible CPUs have been 1732 * brought up and all NUMA nodes are populated. 1733 * 1734 * Estimate the number of levels with the number of possible nodes and 1735 * the number of possible CPUs. Assume CPUs are spread evenly across 1736 * nodes. We cannot rely on cpumask_of_node() because it only works for 1737 * online CPUs. 1738 */ 1739 cpus_per_node = DIV_ROUND_UP(ncpus, nnodes); 1740 1741 /* Calc the hierarchy levels required to hold the CPUs of a node */ 1742 cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node), 1743 ilog2(TMIGR_CHILDREN_PER_GROUP)); 1744 1745 /* Calculate the extra levels to connect all nodes */ 1746 nodelvl = DIV_ROUND_UP(order_base_2(nnodes), 1747 ilog2(TMIGR_CHILDREN_PER_GROUP)); 1748 1749 tmigr_hierarchy_levels = cpulvl + nodelvl; 1750 1751 /* 1752 * If a NUMA node spawns more than one CPU level group then the next 1753 * level(s) of the hierarchy contains groups which handle all CPU groups 1754 * of the same NUMA node. The level above goes across NUMA nodes. Store 1755 * this information for the setup code to decide in which level node 1756 * matching is no longer required. 1757 */ 1758 tmigr_crossnode_level = cpulvl; 1759 1760 tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL); 1761 if (!tmigr_level_list) 1762 goto err; 1763 1764 for (i = 0; i < tmigr_hierarchy_levels; i++) 1765 INIT_LIST_HEAD(&tmigr_level_list[i]); 1766 1767 pr_info("Timer migration: %d hierarchy levels; %d children per group;" 1768 " %d crossnode level\n", 1769 tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP, 1770 tmigr_crossnode_level); 1771 1772 ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online", 1773 tmigr_cpu_online, tmigr_cpu_offline); 1774 if (ret) 1775 goto err; 1776 1777 return 0; 1778 1779 err: 1780 pr_err("Timer migration setup failed\n"); 1781 return ret; 1782 } 1783 late_initcall(tmigr_init); 1784