xref: /linux-6.15/kernel/time/timer_migration.c (revision 3ba11103)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Infrastructure for migratable timers
4  *
5  * Copyright(C) 2022 linutronix GmbH
6  */
7 #include <linux/cpuhotplug.h>
8 #include <linux/slab.h>
9 #include <linux/smp.h>
10 #include <linux/spinlock.h>
11 #include <linux/timerqueue.h>
12 #include <trace/events/ipi.h>
13 
14 #include "timer_migration.h"
15 #include "tick-internal.h"
16 
17 #define CREATE_TRACE_POINTS
18 #include <trace/events/timer_migration.h>
19 
20 /*
21  * The timer migration mechanism is built on a hierarchy of groups. The
22  * lowest level group contains CPUs, the next level groups of CPU groups
23  * and so forth. The CPU groups are kept per node so for the normal case
24  * lock contention won't happen across nodes. Depending on the number of
25  * CPUs per node even the next level might be kept as groups of CPU groups
26  * per node and only the levels above cross the node topology.
27  *
28  * Example topology for a two node system with 24 CPUs each.
29  *
30  * LVL 2                           [GRP2:0]
31  *                              GRP1:0 = GRP1:M
32  *
33  * LVL 1            [GRP1:0]                      [GRP1:1]
34  *               GRP0:0 - GRP0:2               GRP0:3 - GRP0:5
35  *
36  * LVL 0  [GRP0:0]  [GRP0:1]  [GRP0:2]  [GRP0:3]  [GRP0:4]  [GRP0:5]
37  * CPUS     0-7       8-15      16-23     24-31     32-39     40-47
38  *
39  * The groups hold a timer queue of events sorted by expiry time. These
40  * queues are updated when CPUs go in idle. When they come out of idle
41  * ignore flag of events is set.
42  *
43  * Each group has a designated migrator CPU/group as long as a CPU/group is
44  * active in the group. This designated role is necessary to avoid that all
45  * active CPUs in a group try to migrate expired timers from other CPUs,
46  * which would result in massive lock bouncing.
47  *
48  * When a CPU is awake, it checks in it's own timer tick the group
49  * hierarchy up to the point where it is assigned the migrator role or if
50  * no CPU is active, it also checks the groups where no migrator is set
51  * (TMIGR_NONE).
52  *
53  * If it finds expired timers in one of the group queues it pulls them over
54  * from the idle CPU and runs the timer function. After that it updates the
55  * group and the parent groups if required.
56  *
57  * CPUs which go idle arm their CPU local timer hardware for the next local
58  * (pinned) timer event. If the next migratable timer expires after the
59  * next local timer or the CPU has no migratable timer pending then the
60  * CPU does not queue an event in the LVL0 group. If the next migratable
61  * timer expires before the next local timer then the CPU queues that timer
62  * in the LVL0 group. In both cases the CPU marks itself idle in the LVL0
63  * group.
64  *
65  * When CPU comes out of idle and when a group has at least a single active
66  * child, the ignore flag of the tmigr_event is set. This indicates, that
67  * the event is ignored even if it is still enqueued in the parent groups
68  * timer queue. It will be removed when touching the timer queue the next
69  * time. This spares locking in active path as the lock protects (after
70  * setup) only event information. For more information about locking,
71  * please read the section "Locking rules".
72  *
73  * If the CPU is the migrator of the group then it delegates that role to
74  * the next active CPU in the group or sets migrator to TMIGR_NONE when
75  * there is no active CPU in the group. This delegation needs to be
76  * propagated up the hierarchy so hand over from other leaves can happen at
77  * all hierarchy levels w/o doing a search.
78  *
79  * When the last CPU in the system goes idle, then it drops all migrator
80  * duties up to the top level of the hierarchy (LVL2 in the example). It
81  * then has to make sure, that it arms it's own local hardware timer for
82  * the earliest event in the system.
83  *
84  *
85  * Lifetime rules:
86  * ---------------
87  *
88  * The groups are built up at init time or when CPUs come online. They are
89  * not destroyed when a group becomes empty due to offlining. The group
90  * just won't participate in the hierarchy management anymore. Destroying
91  * groups would result in interesting race conditions which would just make
92  * the whole mechanism slow and complex.
93  *
94  *
95  * Locking rules:
96  * --------------
97  *
98  * For setting up new groups and handling events it's required to lock both
99  * child and parent group. The lock ordering is always bottom up. This also
100  * includes the per CPU locks in struct tmigr_cpu. For updating the migrator and
101  * active CPU/group information atomic_try_cmpxchg() is used instead and only
102  * the per CPU tmigr_cpu->lock is held.
103  *
104  * During the setup of groups tmigr_level_list is required. It is protected by
105  * @tmigr_mutex.
106  *
107  * When @timer_base->lock as well as tmigr related locks are required, the lock
108  * ordering is: first @timer_base->lock, afterwards tmigr related locks.
109  *
110  *
111  * Protection of the tmigr group state information:
112  * ------------------------------------------------
113  *
114  * The state information with the list of active children and migrator needs to
115  * be protected by a sequence counter. It prevents a race when updates in child
116  * groups are propagated in changed order. The state update is performed
117  * lockless and group wise. The following scenario describes what happens
118  * without updating the sequence counter:
119  *
120  * Therefore, let's take three groups and four CPUs (CPU2 and CPU3 as well
121  * as GRP0:1 will not change during the scenario):
122  *
123  *    LVL 1            [GRP1:0]
124  *                     migrator = GRP0:1
125  *                     active   = GRP0:0, GRP0:1
126  *                   /                \
127  *    LVL 0  [GRP0:0]                  [GRP0:1]
128  *           migrator = CPU0           migrator = CPU2
129  *           active   = CPU0           active   = CPU2
130  *              /         \                /         \
131  *    CPUs     0           1              2           3
132  *             active      idle           active      idle
133  *
134  *
135  * 1. CPU0 goes idle. As the update is performed group wise, in the first step
136  *    only GRP0:0 is updated. The update of GRP1:0 is pending as CPU0 has to
137  *    walk the hierarchy.
138  *
139  *    LVL 1            [GRP1:0]
140  *                     migrator = GRP0:1
141  *                     active   = GRP0:0, GRP0:1
142  *                   /                \
143  *    LVL 0  [GRP0:0]                  [GRP0:1]
144  *       --> migrator = TMIGR_NONE     migrator = CPU2
145  *       --> active   =                active   = CPU2
146  *              /         \                /         \
147  *    CPUs     0           1              2           3
148  *         --> idle        idle           active      idle
149  *
150  * 2. While CPU0 goes idle and continues to update the state, CPU1 comes out of
151  *    idle. CPU1 updates GRP0:0. The update for GRP1:0 is pending as CPU1 also
152  *    has to walk the hierarchy. Both CPUs (CPU0 and CPU1) now walk the
153  *    hierarchy to perform the needed update from their point of view. The
154  *    currently visible state looks the following:
155  *
156  *    LVL 1            [GRP1:0]
157  *                     migrator = GRP0:1
158  *                     active   = GRP0:0, GRP0:1
159  *                   /                \
160  *    LVL 0  [GRP0:0]                  [GRP0:1]
161  *       --> migrator = CPU1           migrator = CPU2
162  *       --> active   = CPU1           active   = CPU2
163  *              /         \                /         \
164  *    CPUs     0           1              2           3
165  *             idle    --> active         active      idle
166  *
167  * 3. Here is the race condition: CPU1 managed to propagate its changes (from
168  *    step 2) through the hierarchy to GRP1:0 before CPU0 (step 1) did. The
169  *    active members of GRP1:0 remain unchanged after the update since it is
170  *    still valid from CPU1 current point of view:
171  *
172  *    LVL 1            [GRP1:0]
173  *                 --> migrator = GRP0:1
174  *                 --> active   = GRP0:0, GRP0:1
175  *                   /                \
176  *    LVL 0  [GRP0:0]                  [GRP0:1]
177  *           migrator = CPU1           migrator = CPU2
178  *           active   = CPU1           active   = CPU2
179  *              /         \                /         \
180  *    CPUs     0           1              2           3
181  *             idle        active         active      idle
182  *
183  * 4. Now CPU0 finally propagates its changes (from step 1) to GRP1:0.
184  *
185  *    LVL 1            [GRP1:0]
186  *                 --> migrator = GRP0:1
187  *                 --> active   = GRP0:1
188  *                   /                \
189  *    LVL 0  [GRP0:0]                  [GRP0:1]
190  *           migrator = CPU1           migrator = CPU2
191  *           active   = CPU1           active   = CPU2
192  *              /         \                /         \
193  *    CPUs     0           1              2           3
194  *             idle        active         active      idle
195  *
196  *
197  * The race of CPU0 vs. CPU1 led to an inconsistent state in GRP1:0. CPU1 is
198  * active and is correctly listed as active in GRP0:0. However GRP1:0 does not
199  * have GRP0:0 listed as active, which is wrong. The sequence counter has been
200  * added to avoid inconsistent states during updates. The state is updated
201  * atomically only if all members, including the sequence counter, match the
202  * expected value (compare-and-exchange).
203  *
204  * Looking back at the previous example with the addition of the sequence
205  * counter: The update as performed by CPU0 in step 4 will fail. CPU1 changed
206  * the sequence number during the update in step 3 so the expected old value (as
207  * seen by CPU0 before starting the walk) does not match.
208  *
209  * Prevent race between new event and last CPU going inactive
210  * ----------------------------------------------------------
211  *
212  * When the last CPU is going idle and there is a concurrent update of a new
213  * first global timer of an idle CPU, the group and child states have to be read
214  * while holding the lock in tmigr_update_events(). The following scenario shows
215  * what happens, when this is not done.
216  *
217  * 1. Only CPU2 is active:
218  *
219  *    LVL 1            [GRP1:0]
220  *                     migrator = GRP0:1
221  *                     active   = GRP0:1
222  *                     next_expiry = KTIME_MAX
223  *                   /                \
224  *    LVL 0  [GRP0:0]                  [GRP0:1]
225  *           migrator = TMIGR_NONE     migrator = CPU2
226  *           active   =                active   = CPU2
227  *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
228  *              /         \                /         \
229  *    CPUs     0           1              2           3
230  *             idle        idle           active      idle
231  *
232  * 2. Now CPU 2 goes idle (and has no global timer, that has to be handled) and
233  *    propagates that to GRP0:1:
234  *
235  *    LVL 1            [GRP1:0]
236  *                     migrator = GRP0:1
237  *                     active   = GRP0:1
238  *                     next_expiry = KTIME_MAX
239  *                   /                \
240  *    LVL 0  [GRP0:0]                  [GRP0:1]
241  *           migrator = TMIGR_NONE --> migrator = TMIGR_NONE
242  *           active   =            --> active   =
243  *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
244  *              /         \                /         \
245  *    CPUs     0           1              2           3
246  *             idle        idle       --> idle        idle
247  *
248  * 3. Now the idle state is propagated up to GRP1:0. As this is now the last
249  *    child going idle in top level group, the expiry of the next group event
250  *    has to be handed back to make sure no event is lost. As there is no event
251  *    enqueued, KTIME_MAX is handed back to CPU2.
252  *
253  *    LVL 1            [GRP1:0]
254  *                 --> migrator = TMIGR_NONE
255  *                 --> active   =
256  *                     next_expiry = KTIME_MAX
257  *                   /                \
258  *    LVL 0  [GRP0:0]                  [GRP0:1]
259  *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
260  *           active   =                active   =
261  *           next_expiry = KTIME_MAX   next_expiry = KTIME_MAX
262  *              /         \                /         \
263  *    CPUs     0           1              2           3
264  *             idle        idle       --> idle        idle
265  *
266  * 4. CPU 0 has a new timer queued from idle and it expires at TIMER0. CPU0
267  *    propagates that to GRP0:0:
268  *
269  *    LVL 1            [GRP1:0]
270  *                     migrator = TMIGR_NONE
271  *                     active   =
272  *                     next_expiry = KTIME_MAX
273  *                   /                \
274  *    LVL 0  [GRP0:0]                  [GRP0:1]
275  *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
276  *           active   =                active   =
277  *       --> next_expiry = TIMER0      next_expiry  = KTIME_MAX
278  *              /         \                /         \
279  *    CPUs     0           1              2           3
280  *             idle        idle           idle        idle
281  *
282  * 5. GRP0:0 is not active, so the new timer has to be propagated to
283  *    GRP1:0. Therefore the GRP1:0 state has to be read. When the stalled value
284  *    (from step 2) is read, the timer is enqueued into GRP1:0, but nothing is
285  *    handed back to CPU0, as it seems that there is still an active child in
286  *    top level group.
287  *
288  *    LVL 1            [GRP1:0]
289  *                     migrator = TMIGR_NONE
290  *                     active   =
291  *                 --> next_expiry = TIMER0
292  *                   /                \
293  *    LVL 0  [GRP0:0]                  [GRP0:1]
294  *           migrator = TMIGR_NONE     migrator = TMIGR_NONE
295  *           active   =                active   =
296  *           next_expiry = TIMER0      next_expiry  = KTIME_MAX
297  *              /         \                /         \
298  *    CPUs     0           1              2           3
299  *             idle        idle           idle        idle
300  *
301  * This is prevented by reading the state when holding the lock (when a new
302  * timer has to be propagated from idle path)::
303  *
304  *   CPU2 (tmigr_inactive_up())          CPU0 (tmigr_new_timer_up())
305  *   --------------------------          ---------------------------
306  *   // step 3:
307  *   cmpxchg(&GRP1:0->state);
308  *   tmigr_update_events() {
309  *       spin_lock(&GRP1:0->lock);
310  *       // ... update events ...
311  *       // hand back first expiry when GRP1:0 is idle
312  *       spin_unlock(&GRP1:0->lock);
313  *       // ^^^ release state modification
314  *   }
315  *                                       tmigr_update_events() {
316  *                                           spin_lock(&GRP1:0->lock)
317  *                                           // ^^^ acquire state modification
318  *                                           group_state = atomic_read(&GRP1:0->state)
319  *                                           // .... update events ...
320  *                                           // hand back first expiry when GRP1:0 is idle
321  *                                           spin_unlock(&GRP1:0->lock) <3>
322  *                                           // ^^^ makes state visible for other
323  *                                           // callers of tmigr_new_timer_up()
324  *                                       }
325  *
326  * When CPU0 grabs the lock directly after cmpxchg, the first timer is reported
327  * back to CPU0 and also later on to CPU2. So no timer is missed. A concurrent
328  * update of the group state from active path is no problem, as the upcoming CPU
329  * will take care of the group events.
330  *
331  * Required event and timerqueue update after a remote expiry:
332  * -----------------------------------------------------------
333  *
334  * After expiring timers of a remote CPU, a walk through the hierarchy and
335  * update of events and timerqueues is required. It is obviously needed if there
336  * is a 'new' global timer but also if there is no new global timer but the
337  * remote CPU is still idle.
338  *
339  * 1. CPU0 and CPU1 are idle and have both a global timer expiring at the same
340  *    time. So both have an event enqueued in the timerqueue of GRP0:0. CPU3 is
341  *    also idle and has no global timer pending. CPU2 is the only active CPU and
342  *    thus also the migrator:
343  *
344  *    LVL 1            [GRP1:0]
345  *                     migrator = GRP0:1
346  *                     active   = GRP0:1
347  *                 --> timerqueue = evt-GRP0:0
348  *                   /                \
349  *    LVL 0  [GRP0:0]                  [GRP0:1]
350  *           migrator = TMIGR_NONE     migrator = CPU2
351  *           active   =                active   = CPU2
352  *           groupevt.ignore = false   groupevt.ignore = true
353  *           groupevt.cpu = CPU0       groupevt.cpu =
354  *           timerqueue = evt-CPU0,    timerqueue =
355  *                        evt-CPU1
356  *              /         \                /         \
357  *    CPUs     0           1              2           3
358  *             idle        idle           active      idle
359  *
360  * 2. CPU2 starts to expire remote timers. It starts with LVL0 group
361  *    GRP0:1. There is no event queued in the timerqueue, so CPU2 continues with
362  *    the parent of GRP0:1: GRP1:0. In GRP1:0 it dequeues the first event. It
363  *    looks at tmigr_event::cpu struct member and expires the pending timer(s)
364  *    of CPU0.
365  *
366  *    LVL 1            [GRP1:0]
367  *                     migrator = GRP0:1
368  *                     active   = GRP0:1
369  *                 --> timerqueue =
370  *                   /                \
371  *    LVL 0  [GRP0:0]                  [GRP0:1]
372  *           migrator = TMIGR_NONE     migrator = CPU2
373  *           active   =                active   = CPU2
374  *           groupevt.ignore = false   groupevt.ignore = true
375  *       --> groupevt.cpu = CPU0       groupevt.cpu =
376  *           timerqueue = evt-CPU0,    timerqueue =
377  *                        evt-CPU1
378  *              /         \                /         \
379  *    CPUs     0           1              2           3
380  *             idle        idle           active      idle
381  *
382  * 3. Some work has to be done after expiring the timers of CPU0. If we stop
383  *    here, then CPU1's pending global timer(s) will not expire in time and the
384  *    timerqueue of GRP0:0 has still an event for CPU0 enqueued which has just
385  *    been processed. So it is required to walk the hierarchy from CPU0's point
386  *    of view and update it accordingly. CPU0's event will be removed from the
387  *    timerqueue because it has no pending timer. If CPU0 would have a timer
388  *    pending then it has to expire after CPU1's first timer because all timers
389  *    from this period were just expired. Either way CPU1's event will be first
390  *    in GRP0:0's timerqueue and therefore set in the CPU field of the group
391  *    event which is then enqueued in GRP1:0's timerqueue as GRP0:0 is still not
392  *    active:
393  *
394  *    LVL 1            [GRP1:0]
395  *                     migrator = GRP0:1
396  *                     active   = GRP0:1
397  *                 --> timerqueue = evt-GRP0:0
398  *                   /                \
399  *    LVL 0  [GRP0:0]                  [GRP0:1]
400  *           migrator = TMIGR_NONE     migrator = CPU2
401  *           active   =                active   = CPU2
402  *           groupevt.ignore = false   groupevt.ignore = true
403  *       --> groupevt.cpu = CPU1       groupevt.cpu =
404  *       --> timerqueue = evt-CPU1     timerqueue =
405  *              /         \                /         \
406  *    CPUs     0           1              2           3
407  *             idle        idle           active      idle
408  *
409  * Now CPU2 (migrator) will continue step 2 at GRP1:0 and will expire the
410  * timer(s) of CPU1.
411  *
412  * The hierarchy walk in step 3 can be skipped if the migrator notices that a
413  * CPU of GRP0:0 is active again. The CPU will mark GRP0:0 active and take care
414  * of the group as migrator and any needed updates within the hierarchy.
415  */
416 
417 static DEFINE_MUTEX(tmigr_mutex);
418 static struct list_head *tmigr_level_list __read_mostly;
419 
420 static unsigned int tmigr_hierarchy_levels __read_mostly;
421 static unsigned int tmigr_crossnode_level __read_mostly;
422 
423 static DEFINE_PER_CPU(struct tmigr_cpu, tmigr_cpu);
424 
425 #define TMIGR_NONE	0xFF
426 #define BIT_CNT		8
427 
428 static inline bool tmigr_is_not_available(struct tmigr_cpu *tmc)
429 {
430 	return !(tmc->tmgroup && tmc->online);
431 }
432 
433 /*
434  * Returns true, when @childmask corresponds to the group migrator or when the
435  * group is not active - so no migrator is set.
436  */
437 static bool tmigr_check_migrator(struct tmigr_group *group, u8 childmask)
438 {
439 	union tmigr_state s;
440 
441 	s.state = atomic_read(&group->migr_state);
442 
443 	if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
444 		return true;
445 
446 	return false;
447 }
448 
449 static bool tmigr_check_migrator_and_lonely(struct tmigr_group *group, u8 childmask)
450 {
451 	bool lonely, migrator = false;
452 	unsigned long active;
453 	union tmigr_state s;
454 
455 	s.state = atomic_read(&group->migr_state);
456 
457 	if ((s.migrator == childmask) || (s.migrator == TMIGR_NONE))
458 		migrator = true;
459 
460 	active = s.active;
461 	lonely = bitmap_weight(&active, BIT_CNT) <= 1;
462 
463 	return (migrator && lonely);
464 }
465 
466 static bool tmigr_check_lonely(struct tmigr_group *group)
467 {
468 	unsigned long active;
469 	union tmigr_state s;
470 
471 	s.state = atomic_read(&group->migr_state);
472 
473 	active = s.active;
474 
475 	return bitmap_weight(&active, BIT_CNT) <= 1;
476 }
477 
478 /**
479  * struct tmigr_walk - data required for walking the hierarchy
480  * @nextexp:		Next CPU event expiry information which is handed into
481  *			the timer migration code by the timer code
482  *			(get_next_timer_interrupt())
483  * @firstexp:		Contains the first event expiry information when
484  *			hierarchy is completely idle.  When CPU itself was the
485  *			last going idle, information makes sure, that CPU will
486  *			be back in time. When using this value in the remote
487  *			expiry case, firstexp is stored in the per CPU tmigr_cpu
488  *			struct of CPU which expires remote timers. It is updated
489  *			in top level group only. Be aware, there could occur a
490  *			new top level of the hierarchy between the 'top level
491  *			call' in tmigr_update_events() and the check for the
492  *			parent group in walk_groups(). Then @firstexp might
493  *			contain a value != KTIME_MAX even if it was not the
494  *			final top level. This is not a problem, as the worst
495  *			outcome is a CPU which might wake up a little early.
496  * @evt:		Pointer to tmigr_event which needs to be queued (of idle
497  *			child group)
498  * @childmask:		childmask of child group
499  * @remote:		Is set, when the new timer path is executed in
500  *			tmigr_handle_remote_cpu()
501  * @basej:		timer base in jiffies
502  * @now:		timer base monotonic
503  * @check:		is set if there is the need to handle remote timers;
504  *			required in tmigr_requires_handle_remote() only
505  * @tmc_active:		this flag indicates, whether the CPU which triggers
506  *			the hierarchy walk is !idle in the timer migration
507  *			hierarchy. When the CPU is idle and the whole hierarchy is
508  *			idle, only the first event of the top level has to be
509  *			considered.
510  */
511 struct tmigr_walk {
512 	u64			nextexp;
513 	u64			firstexp;
514 	struct tmigr_event	*evt;
515 	u8			childmask;
516 	bool			remote;
517 	unsigned long		basej;
518 	u64			now;
519 	bool			check;
520 	bool			tmc_active;
521 };
522 
523 typedef bool (*up_f)(struct tmigr_group *, struct tmigr_group *, struct tmigr_walk *);
524 
525 static void __walk_groups(up_f up, struct tmigr_walk *data,
526 			  struct tmigr_cpu *tmc)
527 {
528 	struct tmigr_group *child = NULL, *group = tmc->tmgroup;
529 
530 	do {
531 		WARN_ON_ONCE(group->level >= tmigr_hierarchy_levels);
532 
533 		if (up(group, child, data))
534 			break;
535 
536 		child = group;
537 		group = group->parent;
538 	} while (group);
539 }
540 
541 static void walk_groups(up_f up, struct tmigr_walk *data, struct tmigr_cpu *tmc)
542 {
543 	lockdep_assert_held(&tmc->lock);
544 
545 	__walk_groups(up, data, tmc);
546 }
547 
548 /*
549  * Returns the next event of the timerqueue @group->events
550  *
551  * Removes timers with ignore flag and update next_expiry of the group. Values
552  * of the group event are updated in tmigr_update_events() only.
553  */
554 static struct tmigr_event *tmigr_next_groupevt(struct tmigr_group *group)
555 {
556 	struct timerqueue_node *node = NULL;
557 	struct tmigr_event *evt = NULL;
558 
559 	lockdep_assert_held(&group->lock);
560 
561 	WRITE_ONCE(group->next_expiry, KTIME_MAX);
562 
563 	while ((node = timerqueue_getnext(&group->events))) {
564 		evt = container_of(node, struct tmigr_event, nextevt);
565 
566 		if (!evt->ignore) {
567 			WRITE_ONCE(group->next_expiry, evt->nextevt.expires);
568 			return evt;
569 		}
570 
571 		/*
572 		 * Remove next timers with ignore flag, because the group lock
573 		 * is held anyway
574 		 */
575 		if (!timerqueue_del(&group->events, node))
576 			break;
577 	}
578 
579 	return NULL;
580 }
581 
582 /*
583  * Return the next event (with the expiry equal or before @now)
584  *
585  * Event, which is returned, is also removed from the queue.
586  */
587 static struct tmigr_event *tmigr_next_expired_groupevt(struct tmigr_group *group,
588 						       u64 now)
589 {
590 	struct tmigr_event *evt = tmigr_next_groupevt(group);
591 
592 	if (!evt || now < evt->nextevt.expires)
593 		return NULL;
594 
595 	/*
596 	 * The event is ready to expire. Remove it and update next group event.
597 	 */
598 	timerqueue_del(&group->events, &evt->nextevt);
599 	tmigr_next_groupevt(group);
600 
601 	return evt;
602 }
603 
604 static u64 tmigr_next_groupevt_expires(struct tmigr_group *group)
605 {
606 	struct tmigr_event *evt;
607 
608 	evt = tmigr_next_groupevt(group);
609 
610 	if (!evt)
611 		return KTIME_MAX;
612 	else
613 		return evt->nextevt.expires;
614 }
615 
616 static bool tmigr_active_up(struct tmigr_group *group,
617 			    struct tmigr_group *child,
618 			    struct tmigr_walk *data)
619 {
620 	union tmigr_state curstate, newstate;
621 	bool walk_done;
622 	u8 childmask;
623 
624 	childmask = data->childmask;
625 	/*
626 	 * No memory barrier is required here in contrast to
627 	 * tmigr_inactive_up(), as the group state change does not depend on the
628 	 * child state.
629 	 */
630 	curstate.state = atomic_read(&group->migr_state);
631 
632 	do {
633 		newstate = curstate;
634 		walk_done = true;
635 
636 		if (newstate.migrator == TMIGR_NONE) {
637 			newstate.migrator = childmask;
638 
639 			/* Changes need to be propagated */
640 			walk_done = false;
641 		}
642 
643 		newstate.active |= childmask;
644 		newstate.seq++;
645 
646 	} while (!atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state));
647 
648 	trace_tmigr_group_set_cpu_active(group, newstate, childmask);
649 
650 	if (walk_done == false)
651 		data->childmask = group->childmask;
652 
653 	/*
654 	 * The group is active (again). The group event might be still queued
655 	 * into the parent group's timerqueue but can now be handled by the
656 	 * migrator of this group. Therefore the ignore flag for the group event
657 	 * is updated to reflect this.
658 	 *
659 	 * The update of the ignore flag in the active path is done lockless. In
660 	 * worst case the migrator of the parent group observes the change too
661 	 * late and expires remotely all events belonging to this group. The
662 	 * lock is held while updating the ignore flag in idle path. So this
663 	 * state change will not be lost.
664 	 */
665 	group->groupevt.ignore = true;
666 
667 	return walk_done;
668 }
669 
670 static void __tmigr_cpu_activate(struct tmigr_cpu *tmc)
671 {
672 	struct tmigr_walk data;
673 
674 	data.childmask = tmc->childmask;
675 
676 	trace_tmigr_cpu_active(tmc);
677 
678 	tmc->cpuevt.ignore = true;
679 	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
680 
681 	walk_groups(&tmigr_active_up, &data, tmc);
682 }
683 
684 /**
685  * tmigr_cpu_activate() - set this CPU active in timer migration hierarchy
686  *
687  * Call site timer_clear_idle() is called with interrupts disabled.
688  */
689 void tmigr_cpu_activate(void)
690 {
691 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
692 
693 	if (tmigr_is_not_available(tmc))
694 		return;
695 
696 	if (WARN_ON_ONCE(!tmc->idle))
697 		return;
698 
699 	raw_spin_lock(&tmc->lock);
700 	tmc->idle = false;
701 	__tmigr_cpu_activate(tmc);
702 	raw_spin_unlock(&tmc->lock);
703 }
704 
705 /*
706  * Returns true, if there is nothing to be propagated to the next level
707  *
708  * @data->firstexp is set to expiry of first gobal event of the (top level of
709  * the) hierarchy, but only when hierarchy is completely idle.
710  *
711  * The child and group states need to be read under the lock, to prevent a race
712  * against a concurrent tmigr_inactive_up() run when the last CPU goes idle. See
713  * also section "Prevent race between new event and last CPU going inactive" in
714  * the documentation at the top.
715  *
716  * This is the only place where the group event expiry value is set.
717  */
718 static
719 bool tmigr_update_events(struct tmigr_group *group, struct tmigr_group *child,
720 			 struct tmigr_walk *data)
721 {
722 	struct tmigr_event *evt, *first_childevt;
723 	union tmigr_state childstate, groupstate;
724 	bool remote = data->remote;
725 	bool walk_done = false;
726 	u64 nextexp;
727 
728 	if (child) {
729 		raw_spin_lock(&child->lock);
730 		raw_spin_lock_nested(&group->lock, SINGLE_DEPTH_NESTING);
731 
732 		childstate.state = atomic_read(&child->migr_state);
733 		groupstate.state = atomic_read(&group->migr_state);
734 
735 		if (childstate.active) {
736 			walk_done = true;
737 			goto unlock;
738 		}
739 
740 		first_childevt = tmigr_next_groupevt(child);
741 		nextexp = child->next_expiry;
742 		evt = &child->groupevt;
743 
744 		evt->ignore = (nextexp == KTIME_MAX) ? true : false;
745 	} else {
746 		nextexp = data->nextexp;
747 
748 		first_childevt = evt = data->evt;
749 
750 		/*
751 		 * Walking the hierarchy is required in any case when a
752 		 * remote expiry was done before. This ensures to not lose
753 		 * already queued events in non active groups (see section
754 		 * "Required event and timerqueue update after a remote
755 		 * expiry" in the documentation at the top).
756 		 *
757 		 * The two call sites which are executed without a remote expiry
758 		 * before, are not prevented from propagating changes through
759 		 * the hierarchy by the return:
760 		 *  - When entering this path by tmigr_new_timer(), @evt->ignore
761 		 *    is never set.
762 		 *  - tmigr_inactive_up() takes care of the propagation by
763 		 *    itself and ignores the return value. But an immediate
764 		 *    return is possible if there is a parent, sparing group
765 		 *    locking at this level, because the upper walking call to
766 		 *    the parent will take care about removing this event from
767 		 *    within the group and update next_expiry accordingly.
768 		 *
769 		 * However if there is no parent, ie: the hierarchy has only a
770 		 * single level so @group is the top level group, make sure the
771 		 * first event information of the group is updated properly and
772 		 * also handled properly, so skip this fast return path.
773 		 */
774 		if (evt->ignore && !remote && group->parent)
775 			return true;
776 
777 		raw_spin_lock(&group->lock);
778 
779 		childstate.state = 0;
780 		groupstate.state = atomic_read(&group->migr_state);
781 	}
782 
783 	/*
784 	 * If the child event is already queued in the group, remove it from the
785 	 * queue when the expiry time changed only or when it could be ignored.
786 	 */
787 	if (timerqueue_node_queued(&evt->nextevt)) {
788 		if ((evt->nextevt.expires == nextexp) && !evt->ignore) {
789 			/* Make sure not to miss a new CPU event with the same expiry */
790 			evt->cpu = first_childevt->cpu;
791 			goto check_toplvl;
792 		}
793 
794 		if (!timerqueue_del(&group->events, &evt->nextevt))
795 			WRITE_ONCE(group->next_expiry, KTIME_MAX);
796 	}
797 
798 	if (evt->ignore) {
799 		/*
800 		 * When the next child event could be ignored (nextexp is
801 		 * KTIME_MAX) and there was no remote timer handling before or
802 		 * the group is already active, there is no need to walk the
803 		 * hierarchy even if there is a parent group.
804 		 *
805 		 * The other way round: even if the event could be ignored, but
806 		 * if a remote timer handling was executed before and the group
807 		 * is not active, walking the hierarchy is required to not miss
808 		 * an enqueued timer in the non active group. The enqueued timer
809 		 * of the group needs to be propagated to a higher level to
810 		 * ensure it is handled.
811 		 */
812 		if (!remote || groupstate.active)
813 			walk_done = true;
814 	} else {
815 		evt->nextevt.expires = nextexp;
816 		evt->cpu = first_childevt->cpu;
817 
818 		if (timerqueue_add(&group->events, &evt->nextevt))
819 			WRITE_ONCE(group->next_expiry, nextexp);
820 	}
821 
822 check_toplvl:
823 	if (!group->parent && (groupstate.migrator == TMIGR_NONE)) {
824 		walk_done = true;
825 
826 		/*
827 		 * Nothing to do when update was done during remote timer
828 		 * handling. First timer in top level group which needs to be
829 		 * handled when top level group is not active, is calculated
830 		 * directly in tmigr_handle_remote_up().
831 		 */
832 		if (remote)
833 			goto unlock;
834 
835 		/*
836 		 * The top level group is idle and it has to be ensured the
837 		 * global timers are handled in time. (This could be optimized
838 		 * by keeping track of the last global scheduled event and only
839 		 * arming it on the CPU if the new event is earlier. Not sure if
840 		 * its worth the complexity.)
841 		 */
842 		data->firstexp = tmigr_next_groupevt_expires(group);
843 	}
844 
845 	trace_tmigr_update_events(child, group, childstate, groupstate,
846 				  nextexp);
847 
848 unlock:
849 	raw_spin_unlock(&group->lock);
850 
851 	if (child)
852 		raw_spin_unlock(&child->lock);
853 
854 	return walk_done;
855 }
856 
857 static bool tmigr_new_timer_up(struct tmigr_group *group,
858 			       struct tmigr_group *child,
859 			       struct tmigr_walk *data)
860 {
861 	return tmigr_update_events(group, child, data);
862 }
863 
864 /*
865  * Returns the expiry of the next timer that needs to be handled. KTIME_MAX is
866  * returned, if an active CPU will handle all the timer migration hierarchy
867  * timers.
868  */
869 static u64 tmigr_new_timer(struct tmigr_cpu *tmc, u64 nextexp)
870 {
871 	struct tmigr_walk data = { .nextexp = nextexp,
872 				   .firstexp = KTIME_MAX,
873 				   .evt = &tmc->cpuevt };
874 
875 	lockdep_assert_held(&tmc->lock);
876 
877 	if (tmc->remote)
878 		return KTIME_MAX;
879 
880 	trace_tmigr_cpu_new_timer(tmc);
881 
882 	tmc->cpuevt.ignore = false;
883 	data.remote = false;
884 
885 	walk_groups(&tmigr_new_timer_up, &data, tmc);
886 
887 	/* If there is a new first global event, make sure it is handled */
888 	return data.firstexp;
889 }
890 
891 static void tmigr_handle_remote_cpu(unsigned int cpu, u64 now,
892 				    unsigned long jif)
893 {
894 	struct timer_events tevt;
895 	struct tmigr_walk data;
896 	struct tmigr_cpu *tmc;
897 
898 	tmc = per_cpu_ptr(&tmigr_cpu, cpu);
899 
900 	raw_spin_lock_irq(&tmc->lock);
901 
902 	/*
903 	 * If the remote CPU is offline then the timers have been migrated to
904 	 * another CPU.
905 	 *
906 	 * If tmigr_cpu::remote is set, at the moment another CPU already
907 	 * expires the timers of the remote CPU.
908 	 *
909 	 * If tmigr_event::ignore is set, then the CPU returns from idle and
910 	 * takes care of its timers.
911 	 *
912 	 * If the next event expires in the future, then the event has been
913 	 * updated and there are no timers to expire right now. The CPU which
914 	 * updated the event takes care when hierarchy is completely
915 	 * idle. Otherwise the migrator does it as the event is enqueued.
916 	 */
917 	if (!tmc->online || tmc->remote || tmc->cpuevt.ignore ||
918 	    now < tmc->cpuevt.nextevt.expires) {
919 		raw_spin_unlock_irq(&tmc->lock);
920 		return;
921 	}
922 
923 	trace_tmigr_handle_remote_cpu(tmc);
924 
925 	tmc->remote = true;
926 	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
927 
928 	/* Drop the lock to allow the remote CPU to exit idle */
929 	raw_spin_unlock_irq(&tmc->lock);
930 
931 	if (cpu != smp_processor_id())
932 		timer_expire_remote(cpu);
933 
934 	/*
935 	 * Lock ordering needs to be preserved - timer_base locks before tmigr
936 	 * related locks (see section "Locking rules" in the documentation at
937 	 * the top). During fetching the next timer interrupt, also tmc->lock
938 	 * needs to be held. Otherwise there is a possible race window against
939 	 * the CPU itself when it comes out of idle, updates the first timer in
940 	 * the hierarchy and goes back to idle.
941 	 *
942 	 * timer base locks are dropped as fast as possible: After checking
943 	 * whether the remote CPU went offline in the meantime and after
944 	 * fetching the next remote timer interrupt. Dropping the locks as fast
945 	 * as possible keeps the locking region small and prevents holding
946 	 * several (unnecessary) locks during walking the hierarchy for updating
947 	 * the timerqueue and group events.
948 	 */
949 	local_irq_disable();
950 	timer_lock_remote_bases(cpu);
951 	raw_spin_lock(&tmc->lock);
952 
953 	/*
954 	 * When the CPU went offline in the meantime, no hierarchy walk has to
955 	 * be done for updating the queued events, because the walk was
956 	 * already done during marking the CPU offline in the hierarchy.
957 	 *
958 	 * When the CPU is no longer idle, the CPU takes care of the timers and
959 	 * also of the timers in the hierarchy.
960 	 *
961 	 * (See also section "Required event and timerqueue update after a
962 	 * remote expiry" in the documentation at the top)
963 	 */
964 	if (!tmc->online || !tmc->idle) {
965 		timer_unlock_remote_bases(cpu);
966 		goto unlock;
967 	}
968 
969 	/* next	event of CPU */
970 	fetch_next_timer_interrupt_remote(jif, now, &tevt, cpu);
971 	timer_unlock_remote_bases(cpu);
972 
973 	data.nextexp = tevt.global;
974 	data.firstexp = KTIME_MAX;
975 	data.evt = &tmc->cpuevt;
976 	data.remote = true;
977 
978 	/*
979 	 * The update is done even when there is no 'new' global timer pending
980 	 * on the remote CPU (see section "Required event and timerqueue update
981 	 * after a remote expiry" in the documentation at the top)
982 	 */
983 	walk_groups(&tmigr_new_timer_up, &data, tmc);
984 
985 unlock:
986 	tmc->remote = false;
987 	raw_spin_unlock_irq(&tmc->lock);
988 }
989 
990 static bool tmigr_handle_remote_up(struct tmigr_group *group,
991 				   struct tmigr_group *child,
992 				   struct tmigr_walk *data)
993 {
994 	struct tmigr_event *evt;
995 	unsigned long jif;
996 	u8 childmask;
997 	u64 now;
998 
999 	jif = data->basej;
1000 	now = data->now;
1001 
1002 	childmask = data->childmask;
1003 
1004 	trace_tmigr_handle_remote(group);
1005 again:
1006 	/*
1007 	 * Handle the group only if @childmask is the migrator or if the
1008 	 * group has no migrator. Otherwise the group is active and is
1009 	 * handled by its own migrator.
1010 	 */
1011 	if (!tmigr_check_migrator(group, childmask))
1012 		return true;
1013 
1014 	raw_spin_lock_irq(&group->lock);
1015 
1016 	evt = tmigr_next_expired_groupevt(group, now);
1017 
1018 	if (evt) {
1019 		unsigned int remote_cpu = evt->cpu;
1020 
1021 		raw_spin_unlock_irq(&group->lock);
1022 
1023 		tmigr_handle_remote_cpu(remote_cpu, now, jif);
1024 
1025 		/* check if there is another event, that needs to be handled */
1026 		goto again;
1027 	}
1028 
1029 	/*
1030 	 * Update of childmask for the next level and keep track of the expiry
1031 	 * of the first event that needs to be handled (group->next_expiry was
1032 	 * updated by tmigr_next_expired_groupevt(), next was set by
1033 	 * tmigr_handle_remote_cpu()).
1034 	 */
1035 	data->childmask = group->childmask;
1036 	data->firstexp = group->next_expiry;
1037 
1038 	raw_spin_unlock_irq(&group->lock);
1039 
1040 	return false;
1041 }
1042 
1043 /**
1044  * tmigr_handle_remote() - Handle global timers of remote idle CPUs
1045  *
1046  * Called from the timer soft interrupt with interrupts enabled.
1047  */
1048 void tmigr_handle_remote(void)
1049 {
1050 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1051 	struct tmigr_walk data;
1052 
1053 	if (tmigr_is_not_available(tmc))
1054 		return;
1055 
1056 	data.childmask = tmc->childmask;
1057 	data.firstexp = KTIME_MAX;
1058 
1059 	/*
1060 	 * NOTE: This is a doubled check because the migrator test will be done
1061 	 * in tmigr_handle_remote_up() anyway. Keep this check to speed up the
1062 	 * return when nothing has to be done.
1063 	 */
1064 	if (!tmigr_check_migrator(tmc->tmgroup, tmc->childmask)) {
1065 		/*
1066 		 * If this CPU was an idle migrator, make sure to clear its wakeup
1067 		 * value so it won't chase timers that have already expired elsewhere.
1068 		 * This avoids endless requeue from tmigr_new_timer().
1069 		 */
1070 		if (READ_ONCE(tmc->wakeup) == KTIME_MAX)
1071 			return;
1072 	}
1073 
1074 	data.now = get_jiffies_update(&data.basej);
1075 
1076 	/*
1077 	 * Update @tmc->wakeup only at the end and do not reset @tmc->wakeup to
1078 	 * KTIME_MAX. Even if tmc->lock is not held during the whole remote
1079 	 * handling, tmc->wakeup is fine to be stale as it is called in
1080 	 * interrupt context and tick_nohz_next_event() is executed in interrupt
1081 	 * exit path only after processing the last pending interrupt.
1082 	 */
1083 
1084 	__walk_groups(&tmigr_handle_remote_up, &data, tmc);
1085 
1086 	raw_spin_lock_irq(&tmc->lock);
1087 	WRITE_ONCE(tmc->wakeup, data.firstexp);
1088 	raw_spin_unlock_irq(&tmc->lock);
1089 }
1090 
1091 static bool tmigr_requires_handle_remote_up(struct tmigr_group *group,
1092 					    struct tmigr_group *child,
1093 					    struct tmigr_walk *data)
1094 {
1095 	u8 childmask;
1096 
1097 	childmask = data->childmask;
1098 
1099 	/*
1100 	 * Handle the group only if the child is the migrator or if the group
1101 	 * has no migrator. Otherwise the group is active and is handled by its
1102 	 * own migrator.
1103 	 */
1104 	if (!tmigr_check_migrator(group, childmask))
1105 		return true;
1106 
1107 	/*
1108 	 * When there is a parent group and the CPU which triggered the
1109 	 * hierarchy walk is not active, proceed the walk to reach the top level
1110 	 * group before reading the next_expiry value.
1111 	 */
1112 	if (group->parent && !data->tmc_active)
1113 		goto out;
1114 
1115 	/*
1116 	 * The lock is required on 32bit architectures to read the variable
1117 	 * consistently with a concurrent writer. On 64bit the lock is not
1118 	 * required because the read operation is not split and so it is always
1119 	 * consistent.
1120 	 */
1121 	if (IS_ENABLED(CONFIG_64BIT)) {
1122 		data->firstexp = READ_ONCE(group->next_expiry);
1123 		if (data->now >= data->firstexp) {
1124 			data->check = true;
1125 			return true;
1126 		}
1127 	} else {
1128 		raw_spin_lock(&group->lock);
1129 		data->firstexp = group->next_expiry;
1130 		if (data->now >= group->next_expiry) {
1131 			data->check = true;
1132 			raw_spin_unlock(&group->lock);
1133 			return true;
1134 		}
1135 		raw_spin_unlock(&group->lock);
1136 	}
1137 
1138 out:
1139 	/* Update of childmask for the next level */
1140 	data->childmask = group->childmask;
1141 	return false;
1142 }
1143 
1144 /**
1145  * tmigr_requires_handle_remote() - Check the need of remote timer handling
1146  *
1147  * Must be called with interrupts disabled.
1148  */
1149 bool tmigr_requires_handle_remote(void)
1150 {
1151 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1152 	struct tmigr_walk data;
1153 	unsigned long jif;
1154 	bool ret = false;
1155 
1156 	if (tmigr_is_not_available(tmc))
1157 		return ret;
1158 
1159 	data.now = get_jiffies_update(&jif);
1160 	data.childmask = tmc->childmask;
1161 	data.firstexp = KTIME_MAX;
1162 	data.tmc_active = !tmc->idle;
1163 	data.check = false;
1164 
1165 	/*
1166 	 * If the CPU is active, walk the hierarchy to check whether a remote
1167 	 * expiry is required.
1168 	 *
1169 	 * Check is done lockless as interrupts are disabled and @tmc->idle is
1170 	 * set only by the local CPU.
1171 	 */
1172 	if (!tmc->idle) {
1173 		__walk_groups(&tmigr_requires_handle_remote_up, &data, tmc);
1174 
1175 		return data.check;
1176 	}
1177 
1178 	/*
1179 	 * When the CPU is idle, compare @tmc->wakeup with @data.now. The lock
1180 	 * is required on 32bit architectures to read the variable consistently
1181 	 * with a concurrent writer. On 64bit the lock is not required because
1182 	 * the read operation is not split and so it is always consistent.
1183 	 */
1184 	if (IS_ENABLED(CONFIG_64BIT)) {
1185 		if (data.now >= READ_ONCE(tmc->wakeup))
1186 			return true;
1187 	} else {
1188 		raw_spin_lock(&tmc->lock);
1189 		if (data.now >= tmc->wakeup)
1190 			ret = true;
1191 		raw_spin_unlock(&tmc->lock);
1192 	}
1193 
1194 	return ret;
1195 }
1196 
1197 /**
1198  * tmigr_cpu_new_timer() - enqueue next global timer into hierarchy (idle tmc)
1199  * @nextexp:	Next expiry of global timer (or KTIME_MAX if not)
1200  *
1201  * The CPU is already deactivated in the timer migration
1202  * hierarchy. tick_nohz_get_sleep_length() calls tick_nohz_next_event()
1203  * and thereby the timer idle path is executed once more. @tmc->wakeup
1204  * holds the first timer, when the timer migration hierarchy is
1205  * completely idle.
1206  *
1207  * Returns the first timer that needs to be handled by this CPU or KTIME_MAX if
1208  * nothing needs to be done.
1209  */
1210 u64 tmigr_cpu_new_timer(u64 nextexp)
1211 {
1212 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1213 	u64 ret;
1214 
1215 	if (tmigr_is_not_available(tmc))
1216 		return nextexp;
1217 
1218 	raw_spin_lock(&tmc->lock);
1219 
1220 	ret = READ_ONCE(tmc->wakeup);
1221 	if (nextexp != KTIME_MAX) {
1222 		if (nextexp != tmc->cpuevt.nextevt.expires ||
1223 		    tmc->cpuevt.ignore) {
1224 			ret = tmigr_new_timer(tmc, nextexp);
1225 		}
1226 	}
1227 	/*
1228 	 * Make sure the reevaluation of timers in idle path will not miss an
1229 	 * event.
1230 	 */
1231 	WRITE_ONCE(tmc->wakeup, ret);
1232 
1233 	trace_tmigr_cpu_new_timer_idle(tmc, nextexp);
1234 	raw_spin_unlock(&tmc->lock);
1235 	return ret;
1236 }
1237 
1238 static bool tmigr_inactive_up(struct tmigr_group *group,
1239 			      struct tmigr_group *child,
1240 			      struct tmigr_walk *data)
1241 {
1242 	union tmigr_state curstate, newstate, childstate;
1243 	bool walk_done;
1244 	u8 childmask;
1245 
1246 	childmask = data->childmask;
1247 	childstate.state = 0;
1248 
1249 	/*
1250 	 * The memory barrier is paired with the cmpxchg() in tmigr_active_up()
1251 	 * to make sure the updates of child and group states are ordered. The
1252 	 * ordering is mandatory, as the group state change depends on the child
1253 	 * state.
1254 	 */
1255 	curstate.state = atomic_read_acquire(&group->migr_state);
1256 
1257 	for (;;) {
1258 		if (child)
1259 			childstate.state = atomic_read(&child->migr_state);
1260 
1261 		newstate = curstate;
1262 		walk_done = true;
1263 
1264 		/* Reset active bit when the child is no longer active */
1265 		if (!childstate.active)
1266 			newstate.active &= ~childmask;
1267 
1268 		if (newstate.migrator == childmask) {
1269 			/*
1270 			 * Find a new migrator for the group, because the child
1271 			 * group is idle!
1272 			 */
1273 			if (!childstate.active) {
1274 				unsigned long new_migr_bit, active = newstate.active;
1275 
1276 				new_migr_bit = find_first_bit(&active, BIT_CNT);
1277 
1278 				if (new_migr_bit != BIT_CNT) {
1279 					newstate.migrator = BIT(new_migr_bit);
1280 				} else {
1281 					newstate.migrator = TMIGR_NONE;
1282 
1283 					/* Changes need to be propagated */
1284 					walk_done = false;
1285 				}
1286 			}
1287 		}
1288 
1289 		newstate.seq++;
1290 
1291 		WARN_ON_ONCE((newstate.migrator != TMIGR_NONE) && !(newstate.active));
1292 
1293 		if (atomic_try_cmpxchg(&group->migr_state, &curstate.state, newstate.state)) {
1294 			trace_tmigr_group_set_cpu_inactive(group, newstate, childmask);
1295 			break;
1296 		}
1297 
1298 		/*
1299 		 * The memory barrier is paired with the cmpxchg() in
1300 		 * tmigr_active_up() to make sure the updates of child and group
1301 		 * states are ordered. It is required only when the above
1302 		 * try_cmpxchg() fails.
1303 		 */
1304 		smp_mb__after_atomic();
1305 	}
1306 
1307 	data->remote = false;
1308 
1309 	/* Event Handling */
1310 	tmigr_update_events(group, child, data);
1311 
1312 	if (walk_done == false)
1313 		data->childmask = group->childmask;
1314 
1315 	return walk_done;
1316 }
1317 
1318 static u64 __tmigr_cpu_deactivate(struct tmigr_cpu *tmc, u64 nextexp)
1319 {
1320 	struct tmigr_walk data = { .nextexp = nextexp,
1321 				   .firstexp = KTIME_MAX,
1322 				   .evt = &tmc->cpuevt,
1323 				   .childmask = tmc->childmask };
1324 
1325 	/*
1326 	 * If nextexp is KTIME_MAX, the CPU event will be ignored because the
1327 	 * local timer expires before the global timer, no global timer is set
1328 	 * or CPU goes offline.
1329 	 */
1330 	if (nextexp != KTIME_MAX)
1331 		tmc->cpuevt.ignore = false;
1332 
1333 	walk_groups(&tmigr_inactive_up, &data, tmc);
1334 	return data.firstexp;
1335 }
1336 
1337 /**
1338  * tmigr_cpu_deactivate() - Put current CPU into inactive state
1339  * @nextexp:	The next global timer expiry of the current CPU
1340  *
1341  * Must be called with interrupts disabled.
1342  *
1343  * Return: the next event expiry of the current CPU or the next event expiry
1344  * from the hierarchy if this CPU is the top level migrator or the hierarchy is
1345  * completely idle.
1346  */
1347 u64 tmigr_cpu_deactivate(u64 nextexp)
1348 {
1349 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1350 	u64 ret;
1351 
1352 	if (tmigr_is_not_available(tmc))
1353 		return nextexp;
1354 
1355 	raw_spin_lock(&tmc->lock);
1356 
1357 	ret = __tmigr_cpu_deactivate(tmc, nextexp);
1358 
1359 	tmc->idle = true;
1360 
1361 	/*
1362 	 * Make sure the reevaluation of timers in idle path will not miss an
1363 	 * event.
1364 	 */
1365 	WRITE_ONCE(tmc->wakeup, ret);
1366 
1367 	trace_tmigr_cpu_idle(tmc, nextexp);
1368 	raw_spin_unlock(&tmc->lock);
1369 	return ret;
1370 }
1371 
1372 /**
1373  * tmigr_quick_check() - Quick forecast of next tmigr event when CPU wants to
1374  *			 go idle
1375  * @nextevt:	The next global timer expiry of the current CPU
1376  *
1377  * Return:
1378  * * KTIME_MAX		- when it is probable that nothing has to be done (not
1379  *			  the only one in the level 0 group; and if it is the
1380  *			  only one in level 0 group, but there are more than a
1381  *			  single group active on the way to top level)
1382  * * nextevt		- when CPU is offline and has to handle timer on his own
1383  *			  or when on the way to top in every group only a single
1384  *			  child is active but @nextevt is before the lowest
1385  *			  next_expiry encountered while walking up to top level.
1386  * * next_expiry	- value of lowest expiry encountered while walking groups
1387  *			  if only a single child is active on each and @nextevt
1388  *			  is after this lowest expiry.
1389  */
1390 u64 tmigr_quick_check(u64 nextevt)
1391 {
1392 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1393 	struct tmigr_group *group = tmc->tmgroup;
1394 
1395 	if (tmigr_is_not_available(tmc))
1396 		return nextevt;
1397 
1398 	if (WARN_ON_ONCE(tmc->idle))
1399 		return nextevt;
1400 
1401 	if (!tmigr_check_migrator_and_lonely(tmc->tmgroup, tmc->childmask))
1402 		return KTIME_MAX;
1403 
1404 	do {
1405 		if (!tmigr_check_lonely(group)) {
1406 			return KTIME_MAX;
1407 		} else {
1408 			/*
1409 			 * Since current CPU is active, events may not be sorted
1410 			 * from bottom to the top because the CPU's event is ignored
1411 			 * up to the top and its sibling's events not propagated upwards.
1412 			 * Thus keep track of the lowest observed expiry.
1413 			 */
1414 			nextevt = min_t(u64, nextevt, READ_ONCE(group->next_expiry));
1415 			if (!group->parent)
1416 				return nextevt;
1417 		}
1418 		group = group->parent;
1419 	} while (group);
1420 
1421 	return KTIME_MAX;
1422 }
1423 
1424 /*
1425  * tmigr_trigger_active() - trigger a CPU to become active again
1426  *
1427  * This function is executed on a CPU which is part of cpu_online_mask, when the
1428  * last active CPU in the hierarchy is offlining. With this, it is ensured that
1429  * the other CPU is active and takes over the migrator duty.
1430  */
1431 static long tmigr_trigger_active(void *unused)
1432 {
1433 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1434 
1435 	WARN_ON_ONCE(!tmc->online || tmc->idle);
1436 
1437 	return 0;
1438 }
1439 
1440 static int tmigr_cpu_offline(unsigned int cpu)
1441 {
1442 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1443 	int migrator;
1444 	u64 firstexp;
1445 
1446 	raw_spin_lock_irq(&tmc->lock);
1447 	tmc->online = false;
1448 	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
1449 
1450 	/*
1451 	 * CPU has to handle the local events on his own, when on the way to
1452 	 * offline; Therefore nextevt value is set to KTIME_MAX
1453 	 */
1454 	firstexp = __tmigr_cpu_deactivate(tmc, KTIME_MAX);
1455 	trace_tmigr_cpu_offline(tmc);
1456 	raw_spin_unlock_irq(&tmc->lock);
1457 
1458 	if (firstexp != KTIME_MAX) {
1459 		migrator = cpumask_any_but(cpu_online_mask, cpu);
1460 		work_on_cpu(migrator, tmigr_trigger_active, NULL);
1461 	}
1462 
1463 	return 0;
1464 }
1465 
1466 static int tmigr_cpu_online(unsigned int cpu)
1467 {
1468 	struct tmigr_cpu *tmc = this_cpu_ptr(&tmigr_cpu);
1469 
1470 	/* Check whether CPU data was successfully initialized */
1471 	if (WARN_ON_ONCE(!tmc->tmgroup))
1472 		return -EINVAL;
1473 
1474 	raw_spin_lock_irq(&tmc->lock);
1475 	trace_tmigr_cpu_online(tmc);
1476 	tmc->idle = timer_base_is_idle();
1477 	if (!tmc->idle)
1478 		__tmigr_cpu_activate(tmc);
1479 	tmc->online = true;
1480 	raw_spin_unlock_irq(&tmc->lock);
1481 	return 0;
1482 }
1483 
1484 static void tmigr_init_group(struct tmigr_group *group, unsigned int lvl,
1485 			     int node)
1486 {
1487 	union tmigr_state s;
1488 
1489 	raw_spin_lock_init(&group->lock);
1490 
1491 	group->level = lvl;
1492 	group->numa_node = lvl < tmigr_crossnode_level ? node : NUMA_NO_NODE;
1493 
1494 	group->num_children = 0;
1495 
1496 	s.migrator = TMIGR_NONE;
1497 	s.active = 0;
1498 	s.seq = 0;
1499 	atomic_set(&group->migr_state, s.state);
1500 
1501 	timerqueue_init_head(&group->events);
1502 	timerqueue_init(&group->groupevt.nextevt);
1503 	group->groupevt.nextevt.expires = KTIME_MAX;
1504 	WRITE_ONCE(group->next_expiry, KTIME_MAX);
1505 	group->groupevt.ignore = true;
1506 }
1507 
1508 static struct tmigr_group *tmigr_get_group(unsigned int cpu, int node,
1509 					   unsigned int lvl)
1510 {
1511 	struct tmigr_group *tmp, *group = NULL;
1512 
1513 	lockdep_assert_held(&tmigr_mutex);
1514 
1515 	/* Try to attach to an existing group first */
1516 	list_for_each_entry(tmp, &tmigr_level_list[lvl], list) {
1517 		/*
1518 		 * If @lvl is below the cross NUMA node level, check whether
1519 		 * this group belongs to the same NUMA node.
1520 		 */
1521 		if (lvl < tmigr_crossnode_level && tmp->numa_node != node)
1522 			continue;
1523 
1524 		/* Capacity left? */
1525 		if (tmp->num_children >= TMIGR_CHILDREN_PER_GROUP)
1526 			continue;
1527 
1528 		/*
1529 		 * TODO: A possible further improvement: Make sure that all CPU
1530 		 * siblings end up in the same group of the lowest level of the
1531 		 * hierarchy. Rely on the topology sibling mask would be a
1532 		 * reasonable solution.
1533 		 */
1534 
1535 		group = tmp;
1536 		break;
1537 	}
1538 
1539 	if (group)
1540 		return group;
1541 
1542 	/* Allocate and	set up a new group */
1543 	group = kzalloc_node(sizeof(*group), GFP_KERNEL, node);
1544 	if (!group)
1545 		return ERR_PTR(-ENOMEM);
1546 
1547 	tmigr_init_group(group, lvl, node);
1548 
1549 	/* Setup successful. Add it to the hierarchy */
1550 	list_add(&group->list, &tmigr_level_list[lvl]);
1551 	trace_tmigr_group_set(group);
1552 	return group;
1553 }
1554 
1555 static void tmigr_connect_child_parent(struct tmigr_group *child,
1556 				       struct tmigr_group *parent,
1557 				       bool activate)
1558 {
1559 	struct tmigr_walk data;
1560 
1561 	raw_spin_lock_irq(&child->lock);
1562 	raw_spin_lock_nested(&parent->lock, SINGLE_DEPTH_NESTING);
1563 
1564 	child->parent = parent;
1565 	child->childmask = BIT(parent->num_children++);
1566 
1567 	raw_spin_unlock(&parent->lock);
1568 	raw_spin_unlock_irq(&child->lock);
1569 
1570 	trace_tmigr_connect_child_parent(child);
1571 
1572 	if (!activate)
1573 		return;
1574 
1575 	/*
1576 	 * To prevent inconsistent states, active children need to be active in
1577 	 * the new parent as well. Inactive children are already marked inactive
1578 	 * in the parent group:
1579 	 *
1580 	 * * When new groups were created by tmigr_setup_groups() starting from
1581 	 *   the lowest level (and not higher then one level below the current
1582 	 *   top level), then they are not active. They will be set active when
1583 	 *   the new online CPU comes active.
1584 	 *
1585 	 * * But if a new group above the current top level is required, it is
1586 	 *   mandatory to propagate the active state of the already existing
1587 	 *   child to the new parent. So tmigr_connect_child_parent() is
1588 	 *   executed with the formerly top level group (child) and the newly
1589 	 *   created group (parent).
1590 	 *
1591 	 * * It is ensured that the child is active, as this setup path is
1592 	 *   executed in hotplug prepare callback. This is exectued by an
1593 	 *   already connected and !idle CPU. Even if all other CPUs go idle,
1594 	 *   the CPU executing the setup will be responsible up to current top
1595 	 *   level group. And the next time it goes inactive, it will release
1596 	 *   the new childmask and parent to subsequent walkers through this
1597 	 *   @child. Therefore propagate active state unconditionally.
1598 	 */
1599 	data.childmask = child->childmask;
1600 
1601 	/*
1602 	 * There is only one new level per time (which is protected by
1603 	 * tmigr_mutex). When connecting the child and the parent and set the
1604 	 * child active when the parent is inactive, the parent needs to be the
1605 	 * uppermost level. Otherwise there went something wrong!
1606 	 */
1607 	WARN_ON(!tmigr_active_up(parent, child, &data) && parent->parent);
1608 }
1609 
1610 static int tmigr_setup_groups(unsigned int cpu, unsigned int node)
1611 {
1612 	struct tmigr_group *group, *child, **stack;
1613 	int top = 0, err = 0, i = 0;
1614 	struct list_head *lvllist;
1615 
1616 	stack = kcalloc(tmigr_hierarchy_levels, sizeof(*stack), GFP_KERNEL);
1617 	if (!stack)
1618 		return -ENOMEM;
1619 
1620 	do {
1621 		group = tmigr_get_group(cpu, node, i);
1622 		if (IS_ERR(group)) {
1623 			err = PTR_ERR(group);
1624 			break;
1625 		}
1626 
1627 		top = i;
1628 		stack[i++] = group;
1629 
1630 		/*
1631 		 * When booting only less CPUs of a system than CPUs are
1632 		 * available, not all calculated hierarchy levels are required.
1633 		 *
1634 		 * The loop is aborted as soon as the highest level, which might
1635 		 * be different from tmigr_hierarchy_levels, contains only a
1636 		 * single group.
1637 		 */
1638 		if (group->parent || i == tmigr_hierarchy_levels ||
1639 		    (list_empty(&tmigr_level_list[i]) &&
1640 		     list_is_singular(&tmigr_level_list[i - 1])))
1641 			break;
1642 
1643 	} while (i < tmigr_hierarchy_levels);
1644 
1645 	while (i > 0) {
1646 		group = stack[--i];
1647 
1648 		if (err < 0) {
1649 			list_del(&group->list);
1650 			kfree(group);
1651 			continue;
1652 		}
1653 
1654 		WARN_ON_ONCE(i != group->level);
1655 
1656 		/*
1657 		 * Update tmc -> group / child -> group connection
1658 		 */
1659 		if (i == 0) {
1660 			struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu);
1661 
1662 			raw_spin_lock_irq(&group->lock);
1663 
1664 			tmc->tmgroup = group;
1665 			tmc->childmask = BIT(group->num_children++);
1666 
1667 			raw_spin_unlock_irq(&group->lock);
1668 
1669 			trace_tmigr_connect_cpu_parent(tmc);
1670 
1671 			/* There are no children that need to be connected */
1672 			continue;
1673 		} else {
1674 			child = stack[i - 1];
1675 			/* Will be activated at online time */
1676 			tmigr_connect_child_parent(child, group, false);
1677 		}
1678 
1679 		/* check if uppermost level was newly created */
1680 		if (top != i)
1681 			continue;
1682 
1683 		WARN_ON_ONCE(top == 0);
1684 
1685 		lvllist = &tmigr_level_list[top];
1686 		if (group->num_children == 1 && list_is_singular(lvllist)) {
1687 			/*
1688 			 * The target CPU must never do the prepare work, except
1689 			 * on early boot when the boot CPU is the target. Otherwise
1690 			 * it may spuriously activate the old top level group inside
1691 			 * the new one (nevertheless whether old top level group is
1692 			 * active or not) and/or release an uninitialized childmask.
1693 			 */
1694 			WARN_ON_ONCE(cpu == raw_smp_processor_id());
1695 
1696 			lvllist = &tmigr_level_list[top - 1];
1697 			list_for_each_entry(child, lvllist, list) {
1698 				if (child->parent)
1699 					continue;
1700 
1701 				tmigr_connect_child_parent(child, group, true);
1702 			}
1703 		}
1704 	}
1705 
1706 	kfree(stack);
1707 
1708 	return err;
1709 }
1710 
1711 static int tmigr_add_cpu(unsigned int cpu)
1712 {
1713 	int node = cpu_to_node(cpu);
1714 	int ret;
1715 
1716 	mutex_lock(&tmigr_mutex);
1717 	ret = tmigr_setup_groups(cpu, node);
1718 	mutex_unlock(&tmigr_mutex);
1719 
1720 	return ret;
1721 }
1722 
1723 static int tmigr_cpu_prepare(unsigned int cpu)
1724 {
1725 	struct tmigr_cpu *tmc = per_cpu_ptr(&tmigr_cpu, cpu);
1726 	int ret = 0;
1727 
1728 	/* Not first online attempt? */
1729 	if (tmc->tmgroup)
1730 		return ret;
1731 
1732 	raw_spin_lock_init(&tmc->lock);
1733 	timerqueue_init(&tmc->cpuevt.nextevt);
1734 	tmc->cpuevt.nextevt.expires = KTIME_MAX;
1735 	tmc->cpuevt.ignore = true;
1736 	tmc->cpuevt.cpu = cpu;
1737 	tmc->remote = false;
1738 	WRITE_ONCE(tmc->wakeup, KTIME_MAX);
1739 
1740 	ret = tmigr_add_cpu(cpu);
1741 	if (ret < 0)
1742 		return ret;
1743 
1744 	if (tmc->childmask == 0)
1745 		return -EINVAL;
1746 
1747 	return ret;
1748 }
1749 
1750 static int __init tmigr_init(void)
1751 {
1752 	unsigned int cpulvl, nodelvl, cpus_per_node, i;
1753 	unsigned int nnodes = num_possible_nodes();
1754 	unsigned int ncpus = num_possible_cpus();
1755 	int ret = -ENOMEM;
1756 
1757 	BUILD_BUG_ON_NOT_POWER_OF_2(TMIGR_CHILDREN_PER_GROUP);
1758 
1759 	/* Nothing to do if running on UP */
1760 	if (ncpus == 1)
1761 		return 0;
1762 
1763 	/*
1764 	 * Calculate the required hierarchy levels. Unfortunately there is no
1765 	 * reliable information available, unless all possible CPUs have been
1766 	 * brought up and all NUMA nodes are populated.
1767 	 *
1768 	 * Estimate the number of levels with the number of possible nodes and
1769 	 * the number of possible CPUs. Assume CPUs are spread evenly across
1770 	 * nodes. We cannot rely on cpumask_of_node() because it only works for
1771 	 * online CPUs.
1772 	 */
1773 	cpus_per_node = DIV_ROUND_UP(ncpus, nnodes);
1774 
1775 	/* Calc the hierarchy levels required to hold the CPUs of a node */
1776 	cpulvl = DIV_ROUND_UP(order_base_2(cpus_per_node),
1777 			      ilog2(TMIGR_CHILDREN_PER_GROUP));
1778 
1779 	/* Calculate the extra levels to connect all nodes */
1780 	nodelvl = DIV_ROUND_UP(order_base_2(nnodes),
1781 			       ilog2(TMIGR_CHILDREN_PER_GROUP));
1782 
1783 	tmigr_hierarchy_levels = cpulvl + nodelvl;
1784 
1785 	/*
1786 	 * If a NUMA node spawns more than one CPU level group then the next
1787 	 * level(s) of the hierarchy contains groups which handle all CPU groups
1788 	 * of the same NUMA node. The level above goes across NUMA nodes. Store
1789 	 * this information for the setup code to decide in which level node
1790 	 * matching is no longer required.
1791 	 */
1792 	tmigr_crossnode_level = cpulvl;
1793 
1794 	tmigr_level_list = kcalloc(tmigr_hierarchy_levels, sizeof(struct list_head), GFP_KERNEL);
1795 	if (!tmigr_level_list)
1796 		goto err;
1797 
1798 	for (i = 0; i < tmigr_hierarchy_levels; i++)
1799 		INIT_LIST_HEAD(&tmigr_level_list[i]);
1800 
1801 	pr_info("Timer migration: %d hierarchy levels; %d children per group;"
1802 		" %d crossnode level\n",
1803 		tmigr_hierarchy_levels, TMIGR_CHILDREN_PER_GROUP,
1804 		tmigr_crossnode_level);
1805 
1806 	ret = cpuhp_setup_state(CPUHP_TMIGR_PREPARE, "tmigr:prepare",
1807 				tmigr_cpu_prepare, NULL);
1808 	if (ret)
1809 		goto err;
1810 
1811 	ret = cpuhp_setup_state(CPUHP_AP_TMIGR_ONLINE, "tmigr:online",
1812 				tmigr_cpu_online, tmigr_cpu_offline);
1813 	if (ret)
1814 		goto err;
1815 
1816 	return 0;
1817 
1818 err:
1819 	pr_err("Timer migration setup failed\n");
1820 	return ret;
1821 }
1822 early_initcall(tmigr_init);
1823