xref: /linux-6.15/kernel/time/timer.c (revision 89f01e10)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Kernel internal timers
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  *
7  *  1997-01-28  Modified by Finn Arne Gangstad to make timers scale better.
8  *
9  *  1997-09-10  Updated NTP code according to technical memorandum Jan '96
10  *              "A Kernel Model for Precision Timekeeping" by Dave Mills
11  *  1998-12-24  Fixed a xtime SMP race (we need the xtime_lock rw spinlock to
12  *              serialize accesses to xtime/lost_ticks).
13  *                              Copyright (C) 1998  Andrea Arcangeli
14  *  1999-03-10  Improved NTP compatibility by Ulrich Windl
15  *  2002-05-31	Move sys_sysinfo here and make its locking sane, Robert Love
16  *  2000-10-05  Implemented scalable SMP per-CPU timer handling.
17  *                              Copyright (C) 2000, 2001, 2002  Ingo Molnar
18  *              Designed by David S. Miller, Alexey Kuznetsov and Ingo Molnar
19  */
20 
21 #include <linux/kernel_stat.h>
22 #include <linux/export.h>
23 #include <linux/interrupt.h>
24 #include <linux/percpu.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/swap.h>
28 #include <linux/pid_namespace.h>
29 #include <linux/notifier.h>
30 #include <linux/thread_info.h>
31 #include <linux/time.h>
32 #include <linux/jiffies.h>
33 #include <linux/posix-timers.h>
34 #include <linux/cpu.h>
35 #include <linux/syscalls.h>
36 #include <linux/delay.h>
37 #include <linux/tick.h>
38 #include <linux/kallsyms.h>
39 #include <linux/irq_work.h>
40 #include <linux/sched/signal.h>
41 #include <linux/sched/sysctl.h>
42 #include <linux/sched/nohz.h>
43 #include <linux/sched/debug.h>
44 #include <linux/slab.h>
45 #include <linux/compat.h>
46 #include <linux/random.h>
47 #include <linux/sysctl.h>
48 
49 #include <linux/uaccess.h>
50 #include <asm/unistd.h>
51 #include <asm/div64.h>
52 #include <asm/timex.h>
53 #include <asm/io.h>
54 
55 #include "tick-internal.h"
56 
57 #define CREATE_TRACE_POINTS
58 #include <trace/events/timer.h>
59 
60 __visible u64 jiffies_64 __cacheline_aligned_in_smp = INITIAL_JIFFIES;
61 
62 EXPORT_SYMBOL(jiffies_64);
63 
64 /*
65  * The timer wheel has LVL_DEPTH array levels. Each level provides an array of
66  * LVL_SIZE buckets. Each level is driven by its own clock and therefor each
67  * level has a different granularity.
68  *
69  * The level granularity is:		LVL_CLK_DIV ^ lvl
70  * The level clock frequency is:	HZ / (LVL_CLK_DIV ^ level)
71  *
72  * The array level of a newly armed timer depends on the relative expiry
73  * time. The farther the expiry time is away the higher the array level and
74  * therefor the granularity becomes.
75  *
76  * Contrary to the original timer wheel implementation, which aims for 'exact'
77  * expiry of the timers, this implementation removes the need for recascading
78  * the timers into the lower array levels. The previous 'classic' timer wheel
79  * implementation of the kernel already violated the 'exact' expiry by adding
80  * slack to the expiry time to provide batched expiration. The granularity
81  * levels provide implicit batching.
82  *
83  * This is an optimization of the original timer wheel implementation for the
84  * majority of the timer wheel use cases: timeouts. The vast majority of
85  * timeout timers (networking, disk I/O ...) are canceled before expiry. If
86  * the timeout expires it indicates that normal operation is disturbed, so it
87  * does not matter much whether the timeout comes with a slight delay.
88  *
89  * The only exception to this are networking timers with a small expiry
90  * time. They rely on the granularity. Those fit into the first wheel level,
91  * which has HZ granularity.
92  *
93  * We don't have cascading anymore. timers with a expiry time above the
94  * capacity of the last wheel level are force expired at the maximum timeout
95  * value of the last wheel level. From data sampling we know that the maximum
96  * value observed is 5 days (network connection tracking), so this should not
97  * be an issue.
98  *
99  * The currently chosen array constants values are a good compromise between
100  * array size and granularity.
101  *
102  * This results in the following granularity and range levels:
103  *
104  * HZ 1000 steps
105  * Level Offset  Granularity            Range
106  *  0      0         1 ms                0 ms -         63 ms
107  *  1     64         8 ms               64 ms -        511 ms
108  *  2    128        64 ms              512 ms -       4095 ms (512ms - ~4s)
109  *  3    192       512 ms             4096 ms -      32767 ms (~4s - ~32s)
110  *  4    256      4096 ms (~4s)      32768 ms -     262143 ms (~32s - ~4m)
111  *  5    320     32768 ms (~32s)    262144 ms -    2097151 ms (~4m - ~34m)
112  *  6    384    262144 ms (~4m)    2097152 ms -   16777215 ms (~34m - ~4h)
113  *  7    448   2097152 ms (~34m)  16777216 ms -  134217727 ms (~4h - ~1d)
114  *  8    512  16777216 ms (~4h)  134217728 ms - 1073741822 ms (~1d - ~12d)
115  *
116  * HZ  300
117  * Level Offset  Granularity            Range
118  *  0	   0         3 ms                0 ms -        210 ms
119  *  1	  64        26 ms              213 ms -       1703 ms (213ms - ~1s)
120  *  2	 128       213 ms             1706 ms -      13650 ms (~1s - ~13s)
121  *  3	 192      1706 ms (~1s)      13653 ms -     109223 ms (~13s - ~1m)
122  *  4	 256     13653 ms (~13s)    109226 ms -     873810 ms (~1m - ~14m)
123  *  5	 320    109226 ms (~1m)     873813 ms -    6990503 ms (~14m - ~1h)
124  *  6	 384    873813 ms (~14m)   6990506 ms -   55924050 ms (~1h - ~15h)
125  *  7	 448   6990506 ms (~1h)   55924053 ms -  447392423 ms (~15h - ~5d)
126  *  8    512  55924053 ms (~15h) 447392426 ms - 3579139406 ms (~5d - ~41d)
127  *
128  * HZ  250
129  * Level Offset  Granularity            Range
130  *  0	   0         4 ms                0 ms -        255 ms
131  *  1	  64        32 ms              256 ms -       2047 ms (256ms - ~2s)
132  *  2	 128       256 ms             2048 ms -      16383 ms (~2s - ~16s)
133  *  3	 192      2048 ms (~2s)      16384 ms -     131071 ms (~16s - ~2m)
134  *  4	 256     16384 ms (~16s)    131072 ms -    1048575 ms (~2m - ~17m)
135  *  5	 320    131072 ms (~2m)    1048576 ms -    8388607 ms (~17m - ~2h)
136  *  6	 384   1048576 ms (~17m)   8388608 ms -   67108863 ms (~2h - ~18h)
137  *  7	 448   8388608 ms (~2h)   67108864 ms -  536870911 ms (~18h - ~6d)
138  *  8    512  67108864 ms (~18h) 536870912 ms - 4294967288 ms (~6d - ~49d)
139  *
140  * HZ  100
141  * Level Offset  Granularity            Range
142  *  0	   0         10 ms               0 ms -        630 ms
143  *  1	  64         80 ms             640 ms -       5110 ms (640ms - ~5s)
144  *  2	 128        640 ms            5120 ms -      40950 ms (~5s - ~40s)
145  *  3	 192       5120 ms (~5s)     40960 ms -     327670 ms (~40s - ~5m)
146  *  4	 256      40960 ms (~40s)   327680 ms -    2621430 ms (~5m - ~43m)
147  *  5	 320     327680 ms (~5m)   2621440 ms -   20971510 ms (~43m - ~5h)
148  *  6	 384    2621440 ms (~43m) 20971520 ms -  167772150 ms (~5h - ~1d)
149  *  7	 448   20971520 ms (~5h) 167772160 ms - 1342177270 ms (~1d - ~15d)
150  */
151 
152 /* Clock divisor for the next level */
153 #define LVL_CLK_SHIFT	3
154 #define LVL_CLK_DIV	(1UL << LVL_CLK_SHIFT)
155 #define LVL_CLK_MASK	(LVL_CLK_DIV - 1)
156 #define LVL_SHIFT(n)	((n) * LVL_CLK_SHIFT)
157 #define LVL_GRAN(n)	(1UL << LVL_SHIFT(n))
158 
159 /*
160  * The time start value for each level to select the bucket at enqueue
161  * time. We start from the last possible delta of the previous level
162  * so that we can later add an extra LVL_GRAN(n) to n (see calc_index()).
163  */
164 #define LVL_START(n)	((LVL_SIZE - 1) << (((n) - 1) * LVL_CLK_SHIFT))
165 
166 /* Size of each clock level */
167 #define LVL_BITS	6
168 #define LVL_SIZE	(1UL << LVL_BITS)
169 #define LVL_MASK	(LVL_SIZE - 1)
170 #define LVL_OFFS(n)	((n) * LVL_SIZE)
171 
172 /* Level depth */
173 #if HZ > 100
174 # define LVL_DEPTH	9
175 # else
176 # define LVL_DEPTH	8
177 #endif
178 
179 /* The cutoff (max. capacity of the wheel) */
180 #define WHEEL_TIMEOUT_CUTOFF	(LVL_START(LVL_DEPTH))
181 #define WHEEL_TIMEOUT_MAX	(WHEEL_TIMEOUT_CUTOFF - LVL_GRAN(LVL_DEPTH - 1))
182 
183 /*
184  * The resulting wheel size. If NOHZ is configured we allocate two
185  * wheels so we have a separate storage for the deferrable timers.
186  */
187 #define WHEEL_SIZE	(LVL_SIZE * LVL_DEPTH)
188 
189 #ifdef CONFIG_NO_HZ_COMMON
190 /*
191  * If multiple bases need to be locked, use the base ordering for lock
192  * nesting, i.e. lowest number first.
193  */
194 # define NR_BASES	3
195 # define BASE_LOCAL	0
196 # define BASE_GLOBAL	1
197 # define BASE_DEF	2
198 #else
199 # define NR_BASES	1
200 # define BASE_LOCAL	0
201 # define BASE_GLOBAL	0
202 # define BASE_DEF	0
203 #endif
204 
205 /**
206  * struct timer_base - Per CPU timer base (number of base depends on config)
207  * @lock:		Lock protecting the timer_base
208  * @running_timer:	When expiring timers, the lock is dropped. To make
209  *			sure not to race agains deleting/modifying a
210  *			currently running timer, the pointer is set to the
211  *			timer, which expires at the moment. If no timer is
212  *			running, the pointer is NULL.
213  * @expiry_lock:	PREEMPT_RT only: Lock is taken in softirq around
214  *			timer expiry callback execution and when trying to
215  *			delete a running timer and it wasn't successful in
216  *			the first glance. It prevents priority inversion
217  *			when callback was preempted on a remote CPU and a
218  *			caller tries to delete the running timer. It also
219  *			prevents a life lock, when the task which tries to
220  *			delete a timer preempted the softirq thread which
221  *			is running the timer callback function.
222  * @timer_waiters:	PREEMPT_RT only: Tells, if there is a waiter
223  *			waiting for the end of the timer callback function
224  *			execution.
225  * @clk:		clock of the timer base; is updated before enqueue
226  *			of a timer; during expiry, it is 1 offset ahead of
227  *			jiffies to avoid endless requeuing to current
228  *			jiffies
229  * @next_expiry:	expiry value of the first timer; it is updated when
230  *			finding the next timer and during enqueue; the
231  *			value is not valid, when next_expiry_recalc is set
232  * @cpu:		Number of CPU the timer base belongs to
233  * @next_expiry_recalc: States, whether a recalculation of next_expiry is
234  *			required. Value is set true, when a timer was
235  *			deleted.
236  * @is_idle:		Is set, when timer_base is idle. It is triggered by NOHZ
237  *			code. This state is only used in standard
238  *			base. Deferrable timers, which are enqueued remotely
239  *			never wake up an idle CPU. So no matter of supporting it
240  *			for this base.
241  * @timers_pending:	Is set, when a timer is pending in the base. It is only
242  *			reliable when next_expiry_recalc is not set.
243  * @pending_map:	bitmap of the timer wheel; each bit reflects a
244  *			bucket of the wheel. When a bit is set, at least a
245  *			single timer is enqueued in the related bucket.
246  * @vectors:		Array of lists; Each array member reflects a bucket
247  *			of the timer wheel. The list contains all timers
248  *			which are enqueued into a specific bucket.
249  */
250 struct timer_base {
251 	raw_spinlock_t		lock;
252 	struct timer_list	*running_timer;
253 #ifdef CONFIG_PREEMPT_RT
254 	spinlock_t		expiry_lock;
255 	atomic_t		timer_waiters;
256 #endif
257 	unsigned long		clk;
258 	unsigned long		next_expiry;
259 	unsigned int		cpu;
260 	bool			next_expiry_recalc;
261 	bool			is_idle;
262 	bool			timers_pending;
263 	DECLARE_BITMAP(pending_map, WHEEL_SIZE);
264 	struct hlist_head	vectors[WHEEL_SIZE];
265 } ____cacheline_aligned;
266 
267 static DEFINE_PER_CPU(struct timer_base, timer_bases[NR_BASES]);
268 
269 #ifdef CONFIG_NO_HZ_COMMON
270 
271 static DEFINE_STATIC_KEY_FALSE(timers_nohz_active);
272 static DEFINE_MUTEX(timer_keys_mutex);
273 
274 static void timer_update_keys(struct work_struct *work);
275 static DECLARE_WORK(timer_update_work, timer_update_keys);
276 
277 #ifdef CONFIG_SMP
278 static unsigned int sysctl_timer_migration = 1;
279 
280 DEFINE_STATIC_KEY_FALSE(timers_migration_enabled);
281 
282 static void timers_update_migration(void)
283 {
284 	if (sysctl_timer_migration && tick_nohz_active)
285 		static_branch_enable(&timers_migration_enabled);
286 	else
287 		static_branch_disable(&timers_migration_enabled);
288 }
289 
290 #ifdef CONFIG_SYSCTL
291 static int timer_migration_handler(struct ctl_table *table, int write,
292 			    void *buffer, size_t *lenp, loff_t *ppos)
293 {
294 	int ret;
295 
296 	mutex_lock(&timer_keys_mutex);
297 	ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
298 	if (!ret && write)
299 		timers_update_migration();
300 	mutex_unlock(&timer_keys_mutex);
301 	return ret;
302 }
303 
304 static struct ctl_table timer_sysctl[] = {
305 	{
306 		.procname	= "timer_migration",
307 		.data		= &sysctl_timer_migration,
308 		.maxlen		= sizeof(unsigned int),
309 		.mode		= 0644,
310 		.proc_handler	= timer_migration_handler,
311 		.extra1		= SYSCTL_ZERO,
312 		.extra2		= SYSCTL_ONE,
313 	},
314 	{}
315 };
316 
317 static int __init timer_sysctl_init(void)
318 {
319 	register_sysctl("kernel", timer_sysctl);
320 	return 0;
321 }
322 device_initcall(timer_sysctl_init);
323 #endif /* CONFIG_SYSCTL */
324 #else /* CONFIG_SMP */
325 static inline void timers_update_migration(void) { }
326 #endif /* !CONFIG_SMP */
327 
328 static void timer_update_keys(struct work_struct *work)
329 {
330 	mutex_lock(&timer_keys_mutex);
331 	timers_update_migration();
332 	static_branch_enable(&timers_nohz_active);
333 	mutex_unlock(&timer_keys_mutex);
334 }
335 
336 void timers_update_nohz(void)
337 {
338 	schedule_work(&timer_update_work);
339 }
340 
341 static inline bool is_timers_nohz_active(void)
342 {
343 	return static_branch_unlikely(&timers_nohz_active);
344 }
345 #else
346 static inline bool is_timers_nohz_active(void) { return false; }
347 #endif /* NO_HZ_COMMON */
348 
349 static unsigned long round_jiffies_common(unsigned long j, int cpu,
350 		bool force_up)
351 {
352 	int rem;
353 	unsigned long original = j;
354 
355 	/*
356 	 * We don't want all cpus firing their timers at once hitting the
357 	 * same lock or cachelines, so we skew each extra cpu with an extra
358 	 * 3 jiffies. This 3 jiffies came originally from the mm/ code which
359 	 * already did this.
360 	 * The skew is done by adding 3*cpunr, then round, then subtract this
361 	 * extra offset again.
362 	 */
363 	j += cpu * 3;
364 
365 	rem = j % HZ;
366 
367 	/*
368 	 * If the target jiffie is just after a whole second (which can happen
369 	 * due to delays of the timer irq, long irq off times etc etc) then
370 	 * we should round down to the whole second, not up. Use 1/4th second
371 	 * as cutoff for this rounding as an extreme upper bound for this.
372 	 * But never round down if @force_up is set.
373 	 */
374 	if (rem < HZ/4 && !force_up) /* round down */
375 		j = j - rem;
376 	else /* round up */
377 		j = j - rem + HZ;
378 
379 	/* now that we have rounded, subtract the extra skew again */
380 	j -= cpu * 3;
381 
382 	/*
383 	 * Make sure j is still in the future. Otherwise return the
384 	 * unmodified value.
385 	 */
386 	return time_is_after_jiffies(j) ? j : original;
387 }
388 
389 /**
390  * __round_jiffies - function to round jiffies to a full second
391  * @j: the time in (absolute) jiffies that should be rounded
392  * @cpu: the processor number on which the timeout will happen
393  *
394  * __round_jiffies() rounds an absolute time in the future (in jiffies)
395  * up or down to (approximately) full seconds. This is useful for timers
396  * for which the exact time they fire does not matter too much, as long as
397  * they fire approximately every X seconds.
398  *
399  * By rounding these timers to whole seconds, all such timers will fire
400  * at the same time, rather than at various times spread out. The goal
401  * of this is to have the CPU wake up less, which saves power.
402  *
403  * The exact rounding is skewed for each processor to avoid all
404  * processors firing at the exact same time, which could lead
405  * to lock contention or spurious cache line bouncing.
406  *
407  * The return value is the rounded version of the @j parameter.
408  */
409 unsigned long __round_jiffies(unsigned long j, int cpu)
410 {
411 	return round_jiffies_common(j, cpu, false);
412 }
413 EXPORT_SYMBOL_GPL(__round_jiffies);
414 
415 /**
416  * __round_jiffies_relative - function to round jiffies to a full second
417  * @j: the time in (relative) jiffies that should be rounded
418  * @cpu: the processor number on which the timeout will happen
419  *
420  * __round_jiffies_relative() rounds a time delta  in the future (in jiffies)
421  * up or down to (approximately) full seconds. This is useful for timers
422  * for which the exact time they fire does not matter too much, as long as
423  * they fire approximately every X seconds.
424  *
425  * By rounding these timers to whole seconds, all such timers will fire
426  * at the same time, rather than at various times spread out. The goal
427  * of this is to have the CPU wake up less, which saves power.
428  *
429  * The exact rounding is skewed for each processor to avoid all
430  * processors firing at the exact same time, which could lead
431  * to lock contention or spurious cache line bouncing.
432  *
433  * The return value is the rounded version of the @j parameter.
434  */
435 unsigned long __round_jiffies_relative(unsigned long j, int cpu)
436 {
437 	unsigned long j0 = jiffies;
438 
439 	/* Use j0 because jiffies might change while we run */
440 	return round_jiffies_common(j + j0, cpu, false) - j0;
441 }
442 EXPORT_SYMBOL_GPL(__round_jiffies_relative);
443 
444 /**
445  * round_jiffies - function to round jiffies to a full second
446  * @j: the time in (absolute) jiffies that should be rounded
447  *
448  * round_jiffies() rounds an absolute time in the future (in jiffies)
449  * up or down to (approximately) full seconds. This is useful for timers
450  * for which the exact time they fire does not matter too much, as long as
451  * they fire approximately every X seconds.
452  *
453  * By rounding these timers to whole seconds, all such timers will fire
454  * at the same time, rather than at various times spread out. The goal
455  * of this is to have the CPU wake up less, which saves power.
456  *
457  * The return value is the rounded version of the @j parameter.
458  */
459 unsigned long round_jiffies(unsigned long j)
460 {
461 	return round_jiffies_common(j, raw_smp_processor_id(), false);
462 }
463 EXPORT_SYMBOL_GPL(round_jiffies);
464 
465 /**
466  * round_jiffies_relative - function to round jiffies to a full second
467  * @j: the time in (relative) jiffies that should be rounded
468  *
469  * round_jiffies_relative() rounds a time delta  in the future (in jiffies)
470  * up or down to (approximately) full seconds. This is useful for timers
471  * for which the exact time they fire does not matter too much, as long as
472  * they fire approximately every X seconds.
473  *
474  * By rounding these timers to whole seconds, all such timers will fire
475  * at the same time, rather than at various times spread out. The goal
476  * of this is to have the CPU wake up less, which saves power.
477  *
478  * The return value is the rounded version of the @j parameter.
479  */
480 unsigned long round_jiffies_relative(unsigned long j)
481 {
482 	return __round_jiffies_relative(j, raw_smp_processor_id());
483 }
484 EXPORT_SYMBOL_GPL(round_jiffies_relative);
485 
486 /**
487  * __round_jiffies_up - function to round jiffies up to a full second
488  * @j: the time in (absolute) jiffies that should be rounded
489  * @cpu: the processor number on which the timeout will happen
490  *
491  * This is the same as __round_jiffies() except that it will never
492  * round down.  This is useful for timeouts for which the exact time
493  * of firing does not matter too much, as long as they don't fire too
494  * early.
495  */
496 unsigned long __round_jiffies_up(unsigned long j, int cpu)
497 {
498 	return round_jiffies_common(j, cpu, true);
499 }
500 EXPORT_SYMBOL_GPL(__round_jiffies_up);
501 
502 /**
503  * __round_jiffies_up_relative - function to round jiffies up to a full second
504  * @j: the time in (relative) jiffies that should be rounded
505  * @cpu: the processor number on which the timeout will happen
506  *
507  * This is the same as __round_jiffies_relative() except that it will never
508  * round down.  This is useful for timeouts for which the exact time
509  * of firing does not matter too much, as long as they don't fire too
510  * early.
511  */
512 unsigned long __round_jiffies_up_relative(unsigned long j, int cpu)
513 {
514 	unsigned long j0 = jiffies;
515 
516 	/* Use j0 because jiffies might change while we run */
517 	return round_jiffies_common(j + j0, cpu, true) - j0;
518 }
519 EXPORT_SYMBOL_GPL(__round_jiffies_up_relative);
520 
521 /**
522  * round_jiffies_up - function to round jiffies up to a full second
523  * @j: the time in (absolute) jiffies that should be rounded
524  *
525  * This is the same as round_jiffies() except that it will never
526  * round down.  This is useful for timeouts for which the exact time
527  * of firing does not matter too much, as long as they don't fire too
528  * early.
529  */
530 unsigned long round_jiffies_up(unsigned long j)
531 {
532 	return round_jiffies_common(j, raw_smp_processor_id(), true);
533 }
534 EXPORT_SYMBOL_GPL(round_jiffies_up);
535 
536 /**
537  * round_jiffies_up_relative - function to round jiffies up to a full second
538  * @j: the time in (relative) jiffies that should be rounded
539  *
540  * This is the same as round_jiffies_relative() except that it will never
541  * round down.  This is useful for timeouts for which the exact time
542  * of firing does not matter too much, as long as they don't fire too
543  * early.
544  */
545 unsigned long round_jiffies_up_relative(unsigned long j)
546 {
547 	return __round_jiffies_up_relative(j, raw_smp_processor_id());
548 }
549 EXPORT_SYMBOL_GPL(round_jiffies_up_relative);
550 
551 
552 static inline unsigned int timer_get_idx(struct timer_list *timer)
553 {
554 	return (timer->flags & TIMER_ARRAYMASK) >> TIMER_ARRAYSHIFT;
555 }
556 
557 static inline void timer_set_idx(struct timer_list *timer, unsigned int idx)
558 {
559 	timer->flags = (timer->flags & ~TIMER_ARRAYMASK) |
560 			idx << TIMER_ARRAYSHIFT;
561 }
562 
563 /*
564  * Helper function to calculate the array index for a given expiry
565  * time.
566  */
567 static inline unsigned calc_index(unsigned long expires, unsigned lvl,
568 				  unsigned long *bucket_expiry)
569 {
570 
571 	/*
572 	 * The timer wheel has to guarantee that a timer does not fire
573 	 * early. Early expiry can happen due to:
574 	 * - Timer is armed at the edge of a tick
575 	 * - Truncation of the expiry time in the outer wheel levels
576 	 *
577 	 * Round up with level granularity to prevent this.
578 	 */
579 	expires = (expires >> LVL_SHIFT(lvl)) + 1;
580 	*bucket_expiry = expires << LVL_SHIFT(lvl);
581 	return LVL_OFFS(lvl) + (expires & LVL_MASK);
582 }
583 
584 static int calc_wheel_index(unsigned long expires, unsigned long clk,
585 			    unsigned long *bucket_expiry)
586 {
587 	unsigned long delta = expires - clk;
588 	unsigned int idx;
589 
590 	if (delta < LVL_START(1)) {
591 		idx = calc_index(expires, 0, bucket_expiry);
592 	} else if (delta < LVL_START(2)) {
593 		idx = calc_index(expires, 1, bucket_expiry);
594 	} else if (delta < LVL_START(3)) {
595 		idx = calc_index(expires, 2, bucket_expiry);
596 	} else if (delta < LVL_START(4)) {
597 		idx = calc_index(expires, 3, bucket_expiry);
598 	} else if (delta < LVL_START(5)) {
599 		idx = calc_index(expires, 4, bucket_expiry);
600 	} else if (delta < LVL_START(6)) {
601 		idx = calc_index(expires, 5, bucket_expiry);
602 	} else if (delta < LVL_START(7)) {
603 		idx = calc_index(expires, 6, bucket_expiry);
604 	} else if (LVL_DEPTH > 8 && delta < LVL_START(8)) {
605 		idx = calc_index(expires, 7, bucket_expiry);
606 	} else if ((long) delta < 0) {
607 		idx = clk & LVL_MASK;
608 		*bucket_expiry = clk;
609 	} else {
610 		/*
611 		 * Force expire obscene large timeouts to expire at the
612 		 * capacity limit of the wheel.
613 		 */
614 		if (delta >= WHEEL_TIMEOUT_CUTOFF)
615 			expires = clk + WHEEL_TIMEOUT_MAX;
616 
617 		idx = calc_index(expires, LVL_DEPTH - 1, bucket_expiry);
618 	}
619 	return idx;
620 }
621 
622 static void
623 trigger_dyntick_cpu(struct timer_base *base, struct timer_list *timer)
624 {
625 	/*
626 	 * Deferrable timers do not prevent the CPU from entering dynticks and
627 	 * are not taken into account on the idle/nohz_full path. An IPI when a
628 	 * new deferrable timer is enqueued will wake up the remote CPU but
629 	 * nothing will be done with the deferrable timer base. Therefore skip
630 	 * the remote IPI for deferrable timers completely.
631 	 */
632 	if (!is_timers_nohz_active() || timer->flags & TIMER_DEFERRABLE)
633 		return;
634 
635 	/*
636 	 * We might have to IPI the remote CPU if the base is idle and the
637 	 * timer is not deferrable. If the other CPU is on the way to idle
638 	 * then it can't set base->is_idle as we hold the base lock:
639 	 */
640 	if (base->is_idle)
641 		wake_up_nohz_cpu(base->cpu);
642 }
643 
644 /*
645  * Enqueue the timer into the hash bucket, mark it pending in
646  * the bitmap, store the index in the timer flags then wake up
647  * the target CPU if needed.
648  */
649 static void enqueue_timer(struct timer_base *base, struct timer_list *timer,
650 			  unsigned int idx, unsigned long bucket_expiry)
651 {
652 
653 	hlist_add_head(&timer->entry, base->vectors + idx);
654 	__set_bit(idx, base->pending_map);
655 	timer_set_idx(timer, idx);
656 
657 	trace_timer_start(timer, bucket_expiry);
658 
659 	/*
660 	 * Check whether this is the new first expiring timer. The
661 	 * effective expiry time of the timer is required here
662 	 * (bucket_expiry) instead of timer->expires.
663 	 */
664 	if (time_before(bucket_expiry, base->next_expiry)) {
665 		/*
666 		 * Set the next expiry time and kick the CPU so it
667 		 * can reevaluate the wheel:
668 		 */
669 		base->next_expiry = bucket_expiry;
670 		base->timers_pending = true;
671 		base->next_expiry_recalc = false;
672 		trigger_dyntick_cpu(base, timer);
673 	}
674 }
675 
676 static void internal_add_timer(struct timer_base *base, struct timer_list *timer)
677 {
678 	unsigned long bucket_expiry;
679 	unsigned int idx;
680 
681 	idx = calc_wheel_index(timer->expires, base->clk, &bucket_expiry);
682 	enqueue_timer(base, timer, idx, bucket_expiry);
683 }
684 
685 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS
686 
687 static const struct debug_obj_descr timer_debug_descr;
688 
689 struct timer_hint {
690 	void	(*function)(struct timer_list *t);
691 	long	offset;
692 };
693 
694 #define TIMER_HINT(fn, container, timr, hintfn)			\
695 	{							\
696 		.function = fn,					\
697 		.offset	  = offsetof(container, hintfn) -	\
698 			    offsetof(container, timr)		\
699 	}
700 
701 static const struct timer_hint timer_hints[] = {
702 	TIMER_HINT(delayed_work_timer_fn,
703 		   struct delayed_work, timer, work.func),
704 	TIMER_HINT(kthread_delayed_work_timer_fn,
705 		   struct kthread_delayed_work, timer, work.func),
706 };
707 
708 static void *timer_debug_hint(void *addr)
709 {
710 	struct timer_list *timer = addr;
711 	int i;
712 
713 	for (i = 0; i < ARRAY_SIZE(timer_hints); i++) {
714 		if (timer_hints[i].function == timer->function) {
715 			void (**fn)(void) = addr + timer_hints[i].offset;
716 
717 			return *fn;
718 		}
719 	}
720 
721 	return timer->function;
722 }
723 
724 static bool timer_is_static_object(void *addr)
725 {
726 	struct timer_list *timer = addr;
727 
728 	return (timer->entry.pprev == NULL &&
729 		timer->entry.next == TIMER_ENTRY_STATIC);
730 }
731 
732 /*
733  * fixup_init is called when:
734  * - an active object is initialized
735  */
736 static bool timer_fixup_init(void *addr, enum debug_obj_state state)
737 {
738 	struct timer_list *timer = addr;
739 
740 	switch (state) {
741 	case ODEBUG_STATE_ACTIVE:
742 		del_timer_sync(timer);
743 		debug_object_init(timer, &timer_debug_descr);
744 		return true;
745 	default:
746 		return false;
747 	}
748 }
749 
750 /* Stub timer callback for improperly used timers. */
751 static void stub_timer(struct timer_list *unused)
752 {
753 	WARN_ON(1);
754 }
755 
756 /*
757  * fixup_activate is called when:
758  * - an active object is activated
759  * - an unknown non-static object is activated
760  */
761 static bool timer_fixup_activate(void *addr, enum debug_obj_state state)
762 {
763 	struct timer_list *timer = addr;
764 
765 	switch (state) {
766 	case ODEBUG_STATE_NOTAVAILABLE:
767 		timer_setup(timer, stub_timer, 0);
768 		return true;
769 
770 	case ODEBUG_STATE_ACTIVE:
771 		WARN_ON(1);
772 		fallthrough;
773 	default:
774 		return false;
775 	}
776 }
777 
778 /*
779  * fixup_free is called when:
780  * - an active object is freed
781  */
782 static bool timer_fixup_free(void *addr, enum debug_obj_state state)
783 {
784 	struct timer_list *timer = addr;
785 
786 	switch (state) {
787 	case ODEBUG_STATE_ACTIVE:
788 		del_timer_sync(timer);
789 		debug_object_free(timer, &timer_debug_descr);
790 		return true;
791 	default:
792 		return false;
793 	}
794 }
795 
796 /*
797  * fixup_assert_init is called when:
798  * - an untracked/uninit-ed object is found
799  */
800 static bool timer_fixup_assert_init(void *addr, enum debug_obj_state state)
801 {
802 	struct timer_list *timer = addr;
803 
804 	switch (state) {
805 	case ODEBUG_STATE_NOTAVAILABLE:
806 		timer_setup(timer, stub_timer, 0);
807 		return true;
808 	default:
809 		return false;
810 	}
811 }
812 
813 static const struct debug_obj_descr timer_debug_descr = {
814 	.name			= "timer_list",
815 	.debug_hint		= timer_debug_hint,
816 	.is_static_object	= timer_is_static_object,
817 	.fixup_init		= timer_fixup_init,
818 	.fixup_activate		= timer_fixup_activate,
819 	.fixup_free		= timer_fixup_free,
820 	.fixup_assert_init	= timer_fixup_assert_init,
821 };
822 
823 static inline void debug_timer_init(struct timer_list *timer)
824 {
825 	debug_object_init(timer, &timer_debug_descr);
826 }
827 
828 static inline void debug_timer_activate(struct timer_list *timer)
829 {
830 	debug_object_activate(timer, &timer_debug_descr);
831 }
832 
833 static inline void debug_timer_deactivate(struct timer_list *timer)
834 {
835 	debug_object_deactivate(timer, &timer_debug_descr);
836 }
837 
838 static inline void debug_timer_assert_init(struct timer_list *timer)
839 {
840 	debug_object_assert_init(timer, &timer_debug_descr);
841 }
842 
843 static void do_init_timer(struct timer_list *timer,
844 			  void (*func)(struct timer_list *),
845 			  unsigned int flags,
846 			  const char *name, struct lock_class_key *key);
847 
848 void init_timer_on_stack_key(struct timer_list *timer,
849 			     void (*func)(struct timer_list *),
850 			     unsigned int flags,
851 			     const char *name, struct lock_class_key *key)
852 {
853 	debug_object_init_on_stack(timer, &timer_debug_descr);
854 	do_init_timer(timer, func, flags, name, key);
855 }
856 EXPORT_SYMBOL_GPL(init_timer_on_stack_key);
857 
858 void destroy_timer_on_stack(struct timer_list *timer)
859 {
860 	debug_object_free(timer, &timer_debug_descr);
861 }
862 EXPORT_SYMBOL_GPL(destroy_timer_on_stack);
863 
864 #else
865 static inline void debug_timer_init(struct timer_list *timer) { }
866 static inline void debug_timer_activate(struct timer_list *timer) { }
867 static inline void debug_timer_deactivate(struct timer_list *timer) { }
868 static inline void debug_timer_assert_init(struct timer_list *timer) { }
869 #endif
870 
871 static inline void debug_init(struct timer_list *timer)
872 {
873 	debug_timer_init(timer);
874 	trace_timer_init(timer);
875 }
876 
877 static inline void debug_deactivate(struct timer_list *timer)
878 {
879 	debug_timer_deactivate(timer);
880 	trace_timer_cancel(timer);
881 }
882 
883 static inline void debug_assert_init(struct timer_list *timer)
884 {
885 	debug_timer_assert_init(timer);
886 }
887 
888 static void do_init_timer(struct timer_list *timer,
889 			  void (*func)(struct timer_list *),
890 			  unsigned int flags,
891 			  const char *name, struct lock_class_key *key)
892 {
893 	timer->entry.pprev = NULL;
894 	timer->function = func;
895 	if (WARN_ON_ONCE(flags & ~TIMER_INIT_FLAGS))
896 		flags &= TIMER_INIT_FLAGS;
897 	timer->flags = flags | raw_smp_processor_id();
898 	lockdep_init_map(&timer->lockdep_map, name, key, 0);
899 }
900 
901 /**
902  * init_timer_key - initialize a timer
903  * @timer: the timer to be initialized
904  * @func: timer callback function
905  * @flags: timer flags
906  * @name: name of the timer
907  * @key: lockdep class key of the fake lock used for tracking timer
908  *       sync lock dependencies
909  *
910  * init_timer_key() must be done to a timer prior calling *any* of the
911  * other timer functions.
912  */
913 void init_timer_key(struct timer_list *timer,
914 		    void (*func)(struct timer_list *), unsigned int flags,
915 		    const char *name, struct lock_class_key *key)
916 {
917 	debug_init(timer);
918 	do_init_timer(timer, func, flags, name, key);
919 }
920 EXPORT_SYMBOL(init_timer_key);
921 
922 static inline void detach_timer(struct timer_list *timer, bool clear_pending)
923 {
924 	struct hlist_node *entry = &timer->entry;
925 
926 	debug_deactivate(timer);
927 
928 	__hlist_del(entry);
929 	if (clear_pending)
930 		entry->pprev = NULL;
931 	entry->next = LIST_POISON2;
932 }
933 
934 static int detach_if_pending(struct timer_list *timer, struct timer_base *base,
935 			     bool clear_pending)
936 {
937 	unsigned idx = timer_get_idx(timer);
938 
939 	if (!timer_pending(timer))
940 		return 0;
941 
942 	if (hlist_is_singular_node(&timer->entry, base->vectors + idx)) {
943 		__clear_bit(idx, base->pending_map);
944 		base->next_expiry_recalc = true;
945 	}
946 
947 	detach_timer(timer, clear_pending);
948 	return 1;
949 }
950 
951 static inline struct timer_base *get_timer_cpu_base(u32 tflags, u32 cpu)
952 {
953 	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
954 	struct timer_base *base;
955 
956 	base = per_cpu_ptr(&timer_bases[index], cpu);
957 
958 	/*
959 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
960 	 * to use the deferrable base.
961 	 */
962 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
963 		base = per_cpu_ptr(&timer_bases[BASE_DEF], cpu);
964 	return base;
965 }
966 
967 static inline struct timer_base *get_timer_this_cpu_base(u32 tflags)
968 {
969 	int index = tflags & TIMER_PINNED ? BASE_LOCAL : BASE_GLOBAL;
970 	struct timer_base *base;
971 
972 	base = this_cpu_ptr(&timer_bases[index]);
973 
974 	/*
975 	 * If the timer is deferrable and NO_HZ_COMMON is set then we need
976 	 * to use the deferrable base.
977 	 */
978 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON) && (tflags & TIMER_DEFERRABLE))
979 		base = this_cpu_ptr(&timer_bases[BASE_DEF]);
980 	return base;
981 }
982 
983 static inline struct timer_base *get_timer_base(u32 tflags)
984 {
985 	return get_timer_cpu_base(tflags, tflags & TIMER_CPUMASK);
986 }
987 
988 static inline struct timer_base *
989 get_target_base(struct timer_base *base, unsigned tflags)
990 {
991 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON)
992 	if (static_branch_likely(&timers_migration_enabled) &&
993 	    !(tflags & TIMER_PINNED))
994 		return get_timer_cpu_base(tflags, get_nohz_timer_target());
995 #endif
996 	return get_timer_this_cpu_base(tflags);
997 }
998 
999 static inline void __forward_timer_base(struct timer_base *base,
1000 					unsigned long basej)
1001 {
1002 	/*
1003 	 * Check whether we can forward the base. We can only do that when
1004 	 * @basej is past base->clk otherwise we might rewind base->clk.
1005 	 */
1006 	if (time_before_eq(basej, base->clk))
1007 		return;
1008 
1009 	/*
1010 	 * If the next expiry value is > jiffies, then we fast forward to
1011 	 * jiffies otherwise we forward to the next expiry value.
1012 	 */
1013 	if (time_after(base->next_expiry, basej)) {
1014 		base->clk = basej;
1015 	} else {
1016 		if (WARN_ON_ONCE(time_before(base->next_expiry, base->clk)))
1017 			return;
1018 		base->clk = base->next_expiry;
1019 	}
1020 
1021 }
1022 
1023 static inline void forward_timer_base(struct timer_base *base)
1024 {
1025 	__forward_timer_base(base, READ_ONCE(jiffies));
1026 }
1027 
1028 /*
1029  * We are using hashed locking: Holding per_cpu(timer_bases[x]).lock means
1030  * that all timers which are tied to this base are locked, and the base itself
1031  * is locked too.
1032  *
1033  * So __run_timers/migrate_timers can safely modify all timers which could
1034  * be found in the base->vectors array.
1035  *
1036  * When a timer is migrating then the TIMER_MIGRATING flag is set and we need
1037  * to wait until the migration is done.
1038  */
1039 static struct timer_base *lock_timer_base(struct timer_list *timer,
1040 					  unsigned long *flags)
1041 	__acquires(timer->base->lock)
1042 {
1043 	for (;;) {
1044 		struct timer_base *base;
1045 		u32 tf;
1046 
1047 		/*
1048 		 * We need to use READ_ONCE() here, otherwise the compiler
1049 		 * might re-read @tf between the check for TIMER_MIGRATING
1050 		 * and spin_lock().
1051 		 */
1052 		tf = READ_ONCE(timer->flags);
1053 
1054 		if (!(tf & TIMER_MIGRATING)) {
1055 			base = get_timer_base(tf);
1056 			raw_spin_lock_irqsave(&base->lock, *flags);
1057 			if (timer->flags == tf)
1058 				return base;
1059 			raw_spin_unlock_irqrestore(&base->lock, *flags);
1060 		}
1061 		cpu_relax();
1062 	}
1063 }
1064 
1065 #define MOD_TIMER_PENDING_ONLY		0x01
1066 #define MOD_TIMER_REDUCE		0x02
1067 #define MOD_TIMER_NOTPENDING		0x04
1068 
1069 static inline int
1070 __mod_timer(struct timer_list *timer, unsigned long expires, unsigned int options)
1071 {
1072 	unsigned long clk = 0, flags, bucket_expiry;
1073 	struct timer_base *base, *new_base;
1074 	unsigned int idx = UINT_MAX;
1075 	int ret = 0;
1076 
1077 	debug_assert_init(timer);
1078 
1079 	/*
1080 	 * This is a common optimization triggered by the networking code - if
1081 	 * the timer is re-modified to have the same timeout or ends up in the
1082 	 * same array bucket then just return:
1083 	 */
1084 	if (!(options & MOD_TIMER_NOTPENDING) && timer_pending(timer)) {
1085 		/*
1086 		 * The downside of this optimization is that it can result in
1087 		 * larger granularity than you would get from adding a new
1088 		 * timer with this expiry.
1089 		 */
1090 		long diff = timer->expires - expires;
1091 
1092 		if (!diff)
1093 			return 1;
1094 		if (options & MOD_TIMER_REDUCE && diff <= 0)
1095 			return 1;
1096 
1097 		/*
1098 		 * We lock timer base and calculate the bucket index right
1099 		 * here. If the timer ends up in the same bucket, then we
1100 		 * just update the expiry time and avoid the whole
1101 		 * dequeue/enqueue dance.
1102 		 */
1103 		base = lock_timer_base(timer, &flags);
1104 		/*
1105 		 * Has @timer been shutdown? This needs to be evaluated
1106 		 * while holding base lock to prevent a race against the
1107 		 * shutdown code.
1108 		 */
1109 		if (!timer->function)
1110 			goto out_unlock;
1111 
1112 		forward_timer_base(base);
1113 
1114 		if (timer_pending(timer) && (options & MOD_TIMER_REDUCE) &&
1115 		    time_before_eq(timer->expires, expires)) {
1116 			ret = 1;
1117 			goto out_unlock;
1118 		}
1119 
1120 		clk = base->clk;
1121 		idx = calc_wheel_index(expires, clk, &bucket_expiry);
1122 
1123 		/*
1124 		 * Retrieve and compare the array index of the pending
1125 		 * timer. If it matches set the expiry to the new value so a
1126 		 * subsequent call will exit in the expires check above.
1127 		 */
1128 		if (idx == timer_get_idx(timer)) {
1129 			if (!(options & MOD_TIMER_REDUCE))
1130 				timer->expires = expires;
1131 			else if (time_after(timer->expires, expires))
1132 				timer->expires = expires;
1133 			ret = 1;
1134 			goto out_unlock;
1135 		}
1136 	} else {
1137 		base = lock_timer_base(timer, &flags);
1138 		/*
1139 		 * Has @timer been shutdown? This needs to be evaluated
1140 		 * while holding base lock to prevent a race against the
1141 		 * shutdown code.
1142 		 */
1143 		if (!timer->function)
1144 			goto out_unlock;
1145 
1146 		forward_timer_base(base);
1147 	}
1148 
1149 	ret = detach_if_pending(timer, base, false);
1150 	if (!ret && (options & MOD_TIMER_PENDING_ONLY))
1151 		goto out_unlock;
1152 
1153 	new_base = get_target_base(base, timer->flags);
1154 
1155 	if (base != new_base) {
1156 		/*
1157 		 * We are trying to schedule the timer on the new base.
1158 		 * However we can't change timer's base while it is running,
1159 		 * otherwise timer_delete_sync() can't detect that the timer's
1160 		 * handler yet has not finished. This also guarantees that the
1161 		 * timer is serialized wrt itself.
1162 		 */
1163 		if (likely(base->running_timer != timer)) {
1164 			/* See the comment in lock_timer_base() */
1165 			timer->flags |= TIMER_MIGRATING;
1166 
1167 			raw_spin_unlock(&base->lock);
1168 			base = new_base;
1169 			raw_spin_lock(&base->lock);
1170 			WRITE_ONCE(timer->flags,
1171 				   (timer->flags & ~TIMER_BASEMASK) | base->cpu);
1172 			forward_timer_base(base);
1173 		}
1174 	}
1175 
1176 	debug_timer_activate(timer);
1177 
1178 	timer->expires = expires;
1179 	/*
1180 	 * If 'idx' was calculated above and the base time did not advance
1181 	 * between calculating 'idx' and possibly switching the base, only
1182 	 * enqueue_timer() is required. Otherwise we need to (re)calculate
1183 	 * the wheel index via internal_add_timer().
1184 	 */
1185 	if (idx != UINT_MAX && clk == base->clk)
1186 		enqueue_timer(base, timer, idx, bucket_expiry);
1187 	else
1188 		internal_add_timer(base, timer);
1189 
1190 out_unlock:
1191 	raw_spin_unlock_irqrestore(&base->lock, flags);
1192 
1193 	return ret;
1194 }
1195 
1196 /**
1197  * mod_timer_pending - Modify a pending timer's timeout
1198  * @timer:	The pending timer to be modified
1199  * @expires:	New absolute timeout in jiffies
1200  *
1201  * mod_timer_pending() is the same for pending timers as mod_timer(), but
1202  * will not activate inactive timers.
1203  *
1204  * If @timer->function == NULL then the start operation is silently
1205  * discarded.
1206  *
1207  * Return:
1208  * * %0 - The timer was inactive and not modified or was in
1209  *	  shutdown state and the operation was discarded
1210  * * %1 - The timer was active and requeued to expire at @expires
1211  */
1212 int mod_timer_pending(struct timer_list *timer, unsigned long expires)
1213 {
1214 	return __mod_timer(timer, expires, MOD_TIMER_PENDING_ONLY);
1215 }
1216 EXPORT_SYMBOL(mod_timer_pending);
1217 
1218 /**
1219  * mod_timer - Modify a timer's timeout
1220  * @timer:	The timer to be modified
1221  * @expires:	New absolute timeout in jiffies
1222  *
1223  * mod_timer(timer, expires) is equivalent to:
1224  *
1225  *     del_timer(timer); timer->expires = expires; add_timer(timer);
1226  *
1227  * mod_timer() is more efficient than the above open coded sequence. In
1228  * case that the timer is inactive, the del_timer() part is a NOP. The
1229  * timer is in any case activated with the new expiry time @expires.
1230  *
1231  * Note that if there are multiple unserialized concurrent users of the
1232  * same timer, then mod_timer() is the only safe way to modify the timeout,
1233  * since add_timer() cannot modify an already running timer.
1234  *
1235  * If @timer->function == NULL then the start operation is silently
1236  * discarded. In this case the return value is 0 and meaningless.
1237  *
1238  * Return:
1239  * * %0 - The timer was inactive and started or was in shutdown
1240  *	  state and the operation was discarded
1241  * * %1 - The timer was active and requeued to expire at @expires or
1242  *	  the timer was active and not modified because @expires did
1243  *	  not change the effective expiry time
1244  */
1245 int mod_timer(struct timer_list *timer, unsigned long expires)
1246 {
1247 	return __mod_timer(timer, expires, 0);
1248 }
1249 EXPORT_SYMBOL(mod_timer);
1250 
1251 /**
1252  * timer_reduce - Modify a timer's timeout if it would reduce the timeout
1253  * @timer:	The timer to be modified
1254  * @expires:	New absolute timeout in jiffies
1255  *
1256  * timer_reduce() is very similar to mod_timer(), except that it will only
1257  * modify an enqueued timer if that would reduce the expiration time. If
1258  * @timer is not enqueued it starts the timer.
1259  *
1260  * If @timer->function == NULL then the start operation is silently
1261  * discarded.
1262  *
1263  * Return:
1264  * * %0 - The timer was inactive and started or was in shutdown
1265  *	  state and the operation was discarded
1266  * * %1 - The timer was active and requeued to expire at @expires or
1267  *	  the timer was active and not modified because @expires
1268  *	  did not change the effective expiry time such that the
1269  *	  timer would expire earlier than already scheduled
1270  */
1271 int timer_reduce(struct timer_list *timer, unsigned long expires)
1272 {
1273 	return __mod_timer(timer, expires, MOD_TIMER_REDUCE);
1274 }
1275 EXPORT_SYMBOL(timer_reduce);
1276 
1277 /**
1278  * add_timer - Start a timer
1279  * @timer:	The timer to be started
1280  *
1281  * Start @timer to expire at @timer->expires in the future. @timer->expires
1282  * is the absolute expiry time measured in 'jiffies'. When the timer expires
1283  * timer->function(timer) will be invoked from soft interrupt context.
1284  *
1285  * The @timer->expires and @timer->function fields must be set prior
1286  * to calling this function.
1287  *
1288  * If @timer->function == NULL then the start operation is silently
1289  * discarded.
1290  *
1291  * If @timer->expires is already in the past @timer will be queued to
1292  * expire at the next timer tick.
1293  *
1294  * This can only operate on an inactive timer. Attempts to invoke this on
1295  * an active timer are rejected with a warning.
1296  */
1297 void add_timer(struct timer_list *timer)
1298 {
1299 	if (WARN_ON_ONCE(timer_pending(timer)))
1300 		return;
1301 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1302 }
1303 EXPORT_SYMBOL(add_timer);
1304 
1305 /**
1306  * add_timer_local() - Start a timer on the local CPU
1307  * @timer:	The timer to be started
1308  *
1309  * Same as add_timer() except that the timer flag TIMER_PINNED is set.
1310  *
1311  * See add_timer() for further details.
1312  */
1313 void add_timer_local(struct timer_list *timer)
1314 {
1315 	if (WARN_ON_ONCE(timer_pending(timer)))
1316 		return;
1317 	timer->flags |= TIMER_PINNED;
1318 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1319 }
1320 EXPORT_SYMBOL(add_timer_local);
1321 
1322 /**
1323  * add_timer_global() - Start a timer without TIMER_PINNED flag set
1324  * @timer:	The timer to be started
1325  *
1326  * Same as add_timer() except that the timer flag TIMER_PINNED is unset.
1327  *
1328  * See add_timer() for further details.
1329  */
1330 void add_timer_global(struct timer_list *timer)
1331 {
1332 	if (WARN_ON_ONCE(timer_pending(timer)))
1333 		return;
1334 	timer->flags &= ~TIMER_PINNED;
1335 	__mod_timer(timer, timer->expires, MOD_TIMER_NOTPENDING);
1336 }
1337 EXPORT_SYMBOL(add_timer_global);
1338 
1339 /**
1340  * add_timer_on - Start a timer on a particular CPU
1341  * @timer:	The timer to be started
1342  * @cpu:	The CPU to start it on
1343  *
1344  * Same as add_timer() except that it starts the timer on the given CPU and
1345  * the TIMER_PINNED flag is set. When timer shouldn't be a pinned timer in
1346  * the next round, add_timer_global() should be used instead as it unsets
1347  * the TIMER_PINNED flag.
1348  *
1349  * See add_timer() for further details.
1350  */
1351 void add_timer_on(struct timer_list *timer, int cpu)
1352 {
1353 	struct timer_base *new_base, *base;
1354 	unsigned long flags;
1355 
1356 	debug_assert_init(timer);
1357 
1358 	if (WARN_ON_ONCE(timer_pending(timer)))
1359 		return;
1360 
1361 	/* Make sure timer flags have TIMER_PINNED flag set */
1362 	timer->flags |= TIMER_PINNED;
1363 
1364 	new_base = get_timer_cpu_base(timer->flags, cpu);
1365 
1366 	/*
1367 	 * If @timer was on a different CPU, it should be migrated with the
1368 	 * old base locked to prevent other operations proceeding with the
1369 	 * wrong base locked.  See lock_timer_base().
1370 	 */
1371 	base = lock_timer_base(timer, &flags);
1372 	/*
1373 	 * Has @timer been shutdown? This needs to be evaluated while
1374 	 * holding base lock to prevent a race against the shutdown code.
1375 	 */
1376 	if (!timer->function)
1377 		goto out_unlock;
1378 
1379 	if (base != new_base) {
1380 		timer->flags |= TIMER_MIGRATING;
1381 
1382 		raw_spin_unlock(&base->lock);
1383 		base = new_base;
1384 		raw_spin_lock(&base->lock);
1385 		WRITE_ONCE(timer->flags,
1386 			   (timer->flags & ~TIMER_BASEMASK) | cpu);
1387 	}
1388 	forward_timer_base(base);
1389 
1390 	debug_timer_activate(timer);
1391 	internal_add_timer(base, timer);
1392 out_unlock:
1393 	raw_spin_unlock_irqrestore(&base->lock, flags);
1394 }
1395 EXPORT_SYMBOL_GPL(add_timer_on);
1396 
1397 /**
1398  * __timer_delete - Internal function: Deactivate a timer
1399  * @timer:	The timer to be deactivated
1400  * @shutdown:	If true, this indicates that the timer is about to be
1401  *		shutdown permanently.
1402  *
1403  * If @shutdown is true then @timer->function is set to NULL under the
1404  * timer base lock which prevents further rearming of the time. In that
1405  * case any attempt to rearm @timer after this function returns will be
1406  * silently ignored.
1407  *
1408  * Return:
1409  * * %0 - The timer was not pending
1410  * * %1 - The timer was pending and deactivated
1411  */
1412 static int __timer_delete(struct timer_list *timer, bool shutdown)
1413 {
1414 	struct timer_base *base;
1415 	unsigned long flags;
1416 	int ret = 0;
1417 
1418 	debug_assert_init(timer);
1419 
1420 	/*
1421 	 * If @shutdown is set then the lock has to be taken whether the
1422 	 * timer is pending or not to protect against a concurrent rearm
1423 	 * which might hit between the lockless pending check and the lock
1424 	 * aquisition. By taking the lock it is ensured that such a newly
1425 	 * enqueued timer is dequeued and cannot end up with
1426 	 * timer->function == NULL in the expiry code.
1427 	 *
1428 	 * If timer->function is currently executed, then this makes sure
1429 	 * that the callback cannot requeue the timer.
1430 	 */
1431 	if (timer_pending(timer) || shutdown) {
1432 		base = lock_timer_base(timer, &flags);
1433 		ret = detach_if_pending(timer, base, true);
1434 		if (shutdown)
1435 			timer->function = NULL;
1436 		raw_spin_unlock_irqrestore(&base->lock, flags);
1437 	}
1438 
1439 	return ret;
1440 }
1441 
1442 /**
1443  * timer_delete - Deactivate a timer
1444  * @timer:	The timer to be deactivated
1445  *
1446  * The function only deactivates a pending timer, but contrary to
1447  * timer_delete_sync() it does not take into account whether the timer's
1448  * callback function is concurrently executed on a different CPU or not.
1449  * It neither prevents rearming of the timer.  If @timer can be rearmed
1450  * concurrently then the return value of this function is meaningless.
1451  *
1452  * Return:
1453  * * %0 - The timer was not pending
1454  * * %1 - The timer was pending and deactivated
1455  */
1456 int timer_delete(struct timer_list *timer)
1457 {
1458 	return __timer_delete(timer, false);
1459 }
1460 EXPORT_SYMBOL(timer_delete);
1461 
1462 /**
1463  * timer_shutdown - Deactivate a timer and prevent rearming
1464  * @timer:	The timer to be deactivated
1465  *
1466  * The function does not wait for an eventually running timer callback on a
1467  * different CPU but it prevents rearming of the timer. Any attempt to arm
1468  * @timer after this function returns will be silently ignored.
1469  *
1470  * This function is useful for teardown code and should only be used when
1471  * timer_shutdown_sync() cannot be invoked due to locking or context constraints.
1472  *
1473  * Return:
1474  * * %0 - The timer was not pending
1475  * * %1 - The timer was pending
1476  */
1477 int timer_shutdown(struct timer_list *timer)
1478 {
1479 	return __timer_delete(timer, true);
1480 }
1481 EXPORT_SYMBOL_GPL(timer_shutdown);
1482 
1483 /**
1484  * __try_to_del_timer_sync - Internal function: Try to deactivate a timer
1485  * @timer:	Timer to deactivate
1486  * @shutdown:	If true, this indicates that the timer is about to be
1487  *		shutdown permanently.
1488  *
1489  * If @shutdown is true then @timer->function is set to NULL under the
1490  * timer base lock which prevents further rearming of the timer. Any
1491  * attempt to rearm @timer after this function returns will be silently
1492  * ignored.
1493  *
1494  * This function cannot guarantee that the timer cannot be rearmed
1495  * right after dropping the base lock if @shutdown is false. That
1496  * needs to be prevented by the calling code if necessary.
1497  *
1498  * Return:
1499  * * %0  - The timer was not pending
1500  * * %1  - The timer was pending and deactivated
1501  * * %-1 - The timer callback function is running on a different CPU
1502  */
1503 static int __try_to_del_timer_sync(struct timer_list *timer, bool shutdown)
1504 {
1505 	struct timer_base *base;
1506 	unsigned long flags;
1507 	int ret = -1;
1508 
1509 	debug_assert_init(timer);
1510 
1511 	base = lock_timer_base(timer, &flags);
1512 
1513 	if (base->running_timer != timer)
1514 		ret = detach_if_pending(timer, base, true);
1515 	if (shutdown)
1516 		timer->function = NULL;
1517 
1518 	raw_spin_unlock_irqrestore(&base->lock, flags);
1519 
1520 	return ret;
1521 }
1522 
1523 /**
1524  * try_to_del_timer_sync - Try to deactivate a timer
1525  * @timer:	Timer to deactivate
1526  *
1527  * This function tries to deactivate a timer. On success the timer is not
1528  * queued and the timer callback function is not running on any CPU.
1529  *
1530  * This function does not guarantee that the timer cannot be rearmed right
1531  * after dropping the base lock. That needs to be prevented by the calling
1532  * code if necessary.
1533  *
1534  * Return:
1535  * * %0  - The timer was not pending
1536  * * %1  - The timer was pending and deactivated
1537  * * %-1 - The timer callback function is running on a different CPU
1538  */
1539 int try_to_del_timer_sync(struct timer_list *timer)
1540 {
1541 	return __try_to_del_timer_sync(timer, false);
1542 }
1543 EXPORT_SYMBOL(try_to_del_timer_sync);
1544 
1545 #ifdef CONFIG_PREEMPT_RT
1546 static __init void timer_base_init_expiry_lock(struct timer_base *base)
1547 {
1548 	spin_lock_init(&base->expiry_lock);
1549 }
1550 
1551 static inline void timer_base_lock_expiry(struct timer_base *base)
1552 {
1553 	spin_lock(&base->expiry_lock);
1554 }
1555 
1556 static inline void timer_base_unlock_expiry(struct timer_base *base)
1557 {
1558 	spin_unlock(&base->expiry_lock);
1559 }
1560 
1561 /*
1562  * The counterpart to del_timer_wait_running().
1563  *
1564  * If there is a waiter for base->expiry_lock, then it was waiting for the
1565  * timer callback to finish. Drop expiry_lock and reacquire it. That allows
1566  * the waiter to acquire the lock and make progress.
1567  */
1568 static void timer_sync_wait_running(struct timer_base *base)
1569 {
1570 	if (atomic_read(&base->timer_waiters)) {
1571 		raw_spin_unlock_irq(&base->lock);
1572 		spin_unlock(&base->expiry_lock);
1573 		spin_lock(&base->expiry_lock);
1574 		raw_spin_lock_irq(&base->lock);
1575 	}
1576 }
1577 
1578 /*
1579  * This function is called on PREEMPT_RT kernels when the fast path
1580  * deletion of a timer failed because the timer callback function was
1581  * running.
1582  *
1583  * This prevents priority inversion, if the softirq thread on a remote CPU
1584  * got preempted, and it prevents a life lock when the task which tries to
1585  * delete a timer preempted the softirq thread running the timer callback
1586  * function.
1587  */
1588 static void del_timer_wait_running(struct timer_list *timer)
1589 {
1590 	u32 tf;
1591 
1592 	tf = READ_ONCE(timer->flags);
1593 	if (!(tf & (TIMER_MIGRATING | TIMER_IRQSAFE))) {
1594 		struct timer_base *base = get_timer_base(tf);
1595 
1596 		/*
1597 		 * Mark the base as contended and grab the expiry lock,
1598 		 * which is held by the softirq across the timer
1599 		 * callback. Drop the lock immediately so the softirq can
1600 		 * expire the next timer. In theory the timer could already
1601 		 * be running again, but that's more than unlikely and just
1602 		 * causes another wait loop.
1603 		 */
1604 		atomic_inc(&base->timer_waiters);
1605 		spin_lock_bh(&base->expiry_lock);
1606 		atomic_dec(&base->timer_waiters);
1607 		spin_unlock_bh(&base->expiry_lock);
1608 	}
1609 }
1610 #else
1611 static inline void timer_base_init_expiry_lock(struct timer_base *base) { }
1612 static inline void timer_base_lock_expiry(struct timer_base *base) { }
1613 static inline void timer_base_unlock_expiry(struct timer_base *base) { }
1614 static inline void timer_sync_wait_running(struct timer_base *base) { }
1615 static inline void del_timer_wait_running(struct timer_list *timer) { }
1616 #endif
1617 
1618 /**
1619  * __timer_delete_sync - Internal function: Deactivate a timer and wait
1620  *			 for the handler to finish.
1621  * @timer:	The timer to be deactivated
1622  * @shutdown:	If true, @timer->function will be set to NULL under the
1623  *		timer base lock which prevents rearming of @timer
1624  *
1625  * If @shutdown is not set the timer can be rearmed later. If the timer can
1626  * be rearmed concurrently, i.e. after dropping the base lock then the
1627  * return value is meaningless.
1628  *
1629  * If @shutdown is set then @timer->function is set to NULL under timer
1630  * base lock which prevents rearming of the timer. Any attempt to rearm
1631  * a shutdown timer is silently ignored.
1632  *
1633  * If the timer should be reused after shutdown it has to be initialized
1634  * again.
1635  *
1636  * Return:
1637  * * %0	- The timer was not pending
1638  * * %1	- The timer was pending and deactivated
1639  */
1640 static int __timer_delete_sync(struct timer_list *timer, bool shutdown)
1641 {
1642 	int ret;
1643 
1644 #ifdef CONFIG_LOCKDEP
1645 	unsigned long flags;
1646 
1647 	/*
1648 	 * If lockdep gives a backtrace here, please reference
1649 	 * the synchronization rules above.
1650 	 */
1651 	local_irq_save(flags);
1652 	lock_map_acquire(&timer->lockdep_map);
1653 	lock_map_release(&timer->lockdep_map);
1654 	local_irq_restore(flags);
1655 #endif
1656 	/*
1657 	 * don't use it in hardirq context, because it
1658 	 * could lead to deadlock.
1659 	 */
1660 	WARN_ON(in_hardirq() && !(timer->flags & TIMER_IRQSAFE));
1661 
1662 	/*
1663 	 * Must be able to sleep on PREEMPT_RT because of the slowpath in
1664 	 * del_timer_wait_running().
1665 	 */
1666 	if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(timer->flags & TIMER_IRQSAFE))
1667 		lockdep_assert_preemption_enabled();
1668 
1669 	do {
1670 		ret = __try_to_del_timer_sync(timer, shutdown);
1671 
1672 		if (unlikely(ret < 0)) {
1673 			del_timer_wait_running(timer);
1674 			cpu_relax();
1675 		}
1676 	} while (ret < 0);
1677 
1678 	return ret;
1679 }
1680 
1681 /**
1682  * timer_delete_sync - Deactivate a timer and wait for the handler to finish.
1683  * @timer:	The timer to be deactivated
1684  *
1685  * Synchronization rules: Callers must prevent restarting of the timer,
1686  * otherwise this function is meaningless. It must not be called from
1687  * interrupt contexts unless the timer is an irqsafe one. The caller must
1688  * not hold locks which would prevent completion of the timer's callback
1689  * function. The timer's handler must not call add_timer_on(). Upon exit
1690  * the timer is not queued and the handler is not running on any CPU.
1691  *
1692  * For !irqsafe timers, the caller must not hold locks that are held in
1693  * interrupt context. Even if the lock has nothing to do with the timer in
1694  * question.  Here's why::
1695  *
1696  *    CPU0                             CPU1
1697  *    ----                             ----
1698  *                                     <SOFTIRQ>
1699  *                                       call_timer_fn();
1700  *                                       base->running_timer = mytimer;
1701  *    spin_lock_irq(somelock);
1702  *                                     <IRQ>
1703  *                                        spin_lock(somelock);
1704  *    timer_delete_sync(mytimer);
1705  *    while (base->running_timer == mytimer);
1706  *
1707  * Now timer_delete_sync() will never return and never release somelock.
1708  * The interrupt on the other CPU is waiting to grab somelock but it has
1709  * interrupted the softirq that CPU0 is waiting to finish.
1710  *
1711  * This function cannot guarantee that the timer is not rearmed again by
1712  * some concurrent or preempting code, right after it dropped the base
1713  * lock. If there is the possibility of a concurrent rearm then the return
1714  * value of the function is meaningless.
1715  *
1716  * If such a guarantee is needed, e.g. for teardown situations then use
1717  * timer_shutdown_sync() instead.
1718  *
1719  * Return:
1720  * * %0	- The timer was not pending
1721  * * %1	- The timer was pending and deactivated
1722  */
1723 int timer_delete_sync(struct timer_list *timer)
1724 {
1725 	return __timer_delete_sync(timer, false);
1726 }
1727 EXPORT_SYMBOL(timer_delete_sync);
1728 
1729 /**
1730  * timer_shutdown_sync - Shutdown a timer and prevent rearming
1731  * @timer: The timer to be shutdown
1732  *
1733  * When the function returns it is guaranteed that:
1734  *   - @timer is not queued
1735  *   - The callback function of @timer is not running
1736  *   - @timer cannot be enqueued again. Any attempt to rearm
1737  *     @timer is silently ignored.
1738  *
1739  * See timer_delete_sync() for synchronization rules.
1740  *
1741  * This function is useful for final teardown of an infrastructure where
1742  * the timer is subject to a circular dependency problem.
1743  *
1744  * A common pattern for this is a timer and a workqueue where the timer can
1745  * schedule work and work can arm the timer. On shutdown the workqueue must
1746  * be destroyed and the timer must be prevented from rearming. Unless the
1747  * code has conditionals like 'if (mything->in_shutdown)' to prevent that
1748  * there is no way to get this correct with timer_delete_sync().
1749  *
1750  * timer_shutdown_sync() is solving the problem. The correct ordering of
1751  * calls in this case is:
1752  *
1753  *	timer_shutdown_sync(&mything->timer);
1754  *	workqueue_destroy(&mything->workqueue);
1755  *
1756  * After this 'mything' can be safely freed.
1757  *
1758  * This obviously implies that the timer is not required to be functional
1759  * for the rest of the shutdown operation.
1760  *
1761  * Return:
1762  * * %0 - The timer was not pending
1763  * * %1 - The timer was pending
1764  */
1765 int timer_shutdown_sync(struct timer_list *timer)
1766 {
1767 	return __timer_delete_sync(timer, true);
1768 }
1769 EXPORT_SYMBOL_GPL(timer_shutdown_sync);
1770 
1771 static void call_timer_fn(struct timer_list *timer,
1772 			  void (*fn)(struct timer_list *),
1773 			  unsigned long baseclk)
1774 {
1775 	int count = preempt_count();
1776 
1777 #ifdef CONFIG_LOCKDEP
1778 	/*
1779 	 * It is permissible to free the timer from inside the
1780 	 * function that is called from it, this we need to take into
1781 	 * account for lockdep too. To avoid bogus "held lock freed"
1782 	 * warnings as well as problems when looking into
1783 	 * timer->lockdep_map, make a copy and use that here.
1784 	 */
1785 	struct lockdep_map lockdep_map;
1786 
1787 	lockdep_copy_map(&lockdep_map, &timer->lockdep_map);
1788 #endif
1789 	/*
1790 	 * Couple the lock chain with the lock chain at
1791 	 * timer_delete_sync() by acquiring the lock_map around the fn()
1792 	 * call here and in timer_delete_sync().
1793 	 */
1794 	lock_map_acquire(&lockdep_map);
1795 
1796 	trace_timer_expire_entry(timer, baseclk);
1797 	fn(timer);
1798 	trace_timer_expire_exit(timer);
1799 
1800 	lock_map_release(&lockdep_map);
1801 
1802 	if (count != preempt_count()) {
1803 		WARN_ONCE(1, "timer: %pS preempt leak: %08x -> %08x\n",
1804 			  fn, count, preempt_count());
1805 		/*
1806 		 * Restore the preempt count. That gives us a decent
1807 		 * chance to survive and extract information. If the
1808 		 * callback kept a lock held, bad luck, but not worse
1809 		 * than the BUG() we had.
1810 		 */
1811 		preempt_count_set(count);
1812 	}
1813 }
1814 
1815 static void expire_timers(struct timer_base *base, struct hlist_head *head)
1816 {
1817 	/*
1818 	 * This value is required only for tracing. base->clk was
1819 	 * incremented directly before expire_timers was called. But expiry
1820 	 * is related to the old base->clk value.
1821 	 */
1822 	unsigned long baseclk = base->clk - 1;
1823 
1824 	while (!hlist_empty(head)) {
1825 		struct timer_list *timer;
1826 		void (*fn)(struct timer_list *);
1827 
1828 		timer = hlist_entry(head->first, struct timer_list, entry);
1829 
1830 		base->running_timer = timer;
1831 		detach_timer(timer, true);
1832 
1833 		fn = timer->function;
1834 
1835 		if (WARN_ON_ONCE(!fn)) {
1836 			/* Should never happen. Emphasis on should! */
1837 			base->running_timer = NULL;
1838 			continue;
1839 		}
1840 
1841 		if (timer->flags & TIMER_IRQSAFE) {
1842 			raw_spin_unlock(&base->lock);
1843 			call_timer_fn(timer, fn, baseclk);
1844 			raw_spin_lock(&base->lock);
1845 			base->running_timer = NULL;
1846 		} else {
1847 			raw_spin_unlock_irq(&base->lock);
1848 			call_timer_fn(timer, fn, baseclk);
1849 			raw_spin_lock_irq(&base->lock);
1850 			base->running_timer = NULL;
1851 			timer_sync_wait_running(base);
1852 		}
1853 	}
1854 }
1855 
1856 static int collect_expired_timers(struct timer_base *base,
1857 				  struct hlist_head *heads)
1858 {
1859 	unsigned long clk = base->clk = base->next_expiry;
1860 	struct hlist_head *vec;
1861 	int i, levels = 0;
1862 	unsigned int idx;
1863 
1864 	for (i = 0; i < LVL_DEPTH; i++) {
1865 		idx = (clk & LVL_MASK) + i * LVL_SIZE;
1866 
1867 		if (__test_and_clear_bit(idx, base->pending_map)) {
1868 			vec = base->vectors + idx;
1869 			hlist_move_list(vec, heads++);
1870 			levels++;
1871 		}
1872 		/* Is it time to look at the next level? */
1873 		if (clk & LVL_CLK_MASK)
1874 			break;
1875 		/* Shift clock for the next level granularity */
1876 		clk >>= LVL_CLK_SHIFT;
1877 	}
1878 	return levels;
1879 }
1880 
1881 /*
1882  * Find the next pending bucket of a level. Search from level start (@offset)
1883  * + @clk upwards and if nothing there, search from start of the level
1884  * (@offset) up to @offset + clk.
1885  */
1886 static int next_pending_bucket(struct timer_base *base, unsigned offset,
1887 			       unsigned clk)
1888 {
1889 	unsigned pos, start = offset + clk;
1890 	unsigned end = offset + LVL_SIZE;
1891 
1892 	pos = find_next_bit(base->pending_map, end, start);
1893 	if (pos < end)
1894 		return pos - start;
1895 
1896 	pos = find_next_bit(base->pending_map, start, offset);
1897 	return pos < start ? pos + LVL_SIZE - start : -1;
1898 }
1899 
1900 /*
1901  * Search the first expiring timer in the various clock levels. Caller must
1902  * hold base->lock.
1903  *
1904  * Store next expiry time in base->next_expiry.
1905  */
1906 static void next_expiry_recalc(struct timer_base *base)
1907 {
1908 	unsigned long clk, next, adj;
1909 	unsigned lvl, offset = 0;
1910 
1911 	next = base->clk + NEXT_TIMER_MAX_DELTA;
1912 	clk = base->clk;
1913 	for (lvl = 0; lvl < LVL_DEPTH; lvl++, offset += LVL_SIZE) {
1914 		int pos = next_pending_bucket(base, offset, clk & LVL_MASK);
1915 		unsigned long lvl_clk = clk & LVL_CLK_MASK;
1916 
1917 		if (pos >= 0) {
1918 			unsigned long tmp = clk + (unsigned long) pos;
1919 
1920 			tmp <<= LVL_SHIFT(lvl);
1921 			if (time_before(tmp, next))
1922 				next = tmp;
1923 
1924 			/*
1925 			 * If the next expiration happens before we reach
1926 			 * the next level, no need to check further.
1927 			 */
1928 			if (pos <= ((LVL_CLK_DIV - lvl_clk) & LVL_CLK_MASK))
1929 				break;
1930 		}
1931 		/*
1932 		 * Clock for the next level. If the current level clock lower
1933 		 * bits are zero, we look at the next level as is. If not we
1934 		 * need to advance it by one because that's going to be the
1935 		 * next expiring bucket in that level. base->clk is the next
1936 		 * expiring jiffie. So in case of:
1937 		 *
1938 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1939 		 *  0    0    0    0    0    0
1940 		 *
1941 		 * we have to look at all levels @index 0. With
1942 		 *
1943 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1944 		 *  0    0    0    0    0    2
1945 		 *
1946 		 * LVL0 has the next expiring bucket @index 2. The upper
1947 		 * levels have the next expiring bucket @index 1.
1948 		 *
1949 		 * In case that the propagation wraps the next level the same
1950 		 * rules apply:
1951 		 *
1952 		 * LVL5 LVL4 LVL3 LVL2 LVL1 LVL0
1953 		 *  0    0    0    0    F    2
1954 		 *
1955 		 * So after looking at LVL0 we get:
1956 		 *
1957 		 * LVL5 LVL4 LVL3 LVL2 LVL1
1958 		 *  0    0    0    1    0
1959 		 *
1960 		 * So no propagation from LVL1 to LVL2 because that happened
1961 		 * with the add already, but then we need to propagate further
1962 		 * from LVL2 to LVL3.
1963 		 *
1964 		 * So the simple check whether the lower bits of the current
1965 		 * level are 0 or not is sufficient for all cases.
1966 		 */
1967 		adj = lvl_clk ? 1 : 0;
1968 		clk >>= LVL_CLK_SHIFT;
1969 		clk += adj;
1970 	}
1971 
1972 	base->next_expiry = next;
1973 	base->next_expiry_recalc = false;
1974 	base->timers_pending = !(next == base->clk + NEXT_TIMER_MAX_DELTA);
1975 }
1976 
1977 #ifdef CONFIG_NO_HZ_COMMON
1978 /*
1979  * Check, if the next hrtimer event is before the next timer wheel
1980  * event:
1981  */
1982 static u64 cmp_next_hrtimer_event(u64 basem, u64 expires)
1983 {
1984 	u64 nextevt = hrtimer_get_next_event();
1985 
1986 	/*
1987 	 * If high resolution timers are enabled
1988 	 * hrtimer_get_next_event() returns KTIME_MAX.
1989 	 */
1990 	if (expires <= nextevt)
1991 		return expires;
1992 
1993 	/*
1994 	 * If the next timer is already expired, return the tick base
1995 	 * time so the tick is fired immediately.
1996 	 */
1997 	if (nextevt <= basem)
1998 		return basem;
1999 
2000 	/*
2001 	 * Round up to the next jiffie. High resolution timers are
2002 	 * off, so the hrtimers are expired in the tick and we need to
2003 	 * make sure that this tick really expires the timer to avoid
2004 	 * a ping pong of the nohz stop code.
2005 	 *
2006 	 * Use DIV_ROUND_UP_ULL to prevent gcc calling __divdi3
2007 	 */
2008 	return DIV_ROUND_UP_ULL(nextevt, TICK_NSEC) * TICK_NSEC;
2009 }
2010 
2011 static unsigned long next_timer_interrupt(struct timer_base *base,
2012 					  unsigned long basej)
2013 {
2014 	if (base->next_expiry_recalc)
2015 		next_expiry_recalc(base);
2016 
2017 	/*
2018 	 * Move next_expiry for the empty base into the future to prevent an
2019 	 * unnecessary raise of the timer softirq when the next_expiry value
2020 	 * will be reached even if there is no timer pending.
2021 	 *
2022 	 * This update is also required to make timer_base::next_expiry values
2023 	 * easy comparable to find out which base holds the first pending timer.
2024 	 */
2025 	if (!base->timers_pending)
2026 		base->next_expiry = basej + NEXT_TIMER_MAX_DELTA;
2027 
2028 	return base->next_expiry;
2029 }
2030 
2031 static unsigned long fetch_next_timer_interrupt(unsigned long basej, u64 basem,
2032 						struct timer_base *base_local,
2033 						struct timer_base *base_global,
2034 						struct timer_events *tevt)
2035 {
2036 	unsigned long nextevt, nextevt_local, nextevt_global;
2037 	bool local_first;
2038 
2039 	nextevt_local = next_timer_interrupt(base_local, basej);
2040 	nextevt_global = next_timer_interrupt(base_global, basej);
2041 
2042 	local_first = time_before_eq(nextevt_local, nextevt_global);
2043 
2044 	nextevt = local_first ? nextevt_local : nextevt_global;
2045 
2046 	/*
2047 	 * If the @nextevt is at max. one tick away, use @nextevt and store
2048 	 * it in the local expiry value. The next global event is irrelevant in
2049 	 * this case and can be left as KTIME_MAX.
2050 	 */
2051 	if (time_before_eq(nextevt, basej + 1)) {
2052 		/* If we missed a tick already, force 0 delta */
2053 		if (time_before(nextevt, basej))
2054 			nextevt = basej;
2055 		tevt->local = basem + (u64)(nextevt - basej) * TICK_NSEC;
2056 
2057 		/*
2058 		 * This is required for the remote check only but it doesn't
2059 		 * hurt, when it is done for both call sites:
2060 		 *
2061 		 * * The remote callers will only take care of the global timers
2062 		 *   as local timers will be handled by CPU itself. When not
2063 		 *   updating tevt->global with the already missed first global
2064 		 *   timer, it is possible that it will be missed completely.
2065 		 *
2066 		 * * The local callers will ignore the tevt->global anyway, when
2067 		 *   nextevt is max. one tick away.
2068 		 */
2069 		if (!local_first)
2070 			tevt->global = tevt->local;
2071 		return nextevt;
2072 	}
2073 
2074 	/*
2075 	 * Update tevt.* values:
2076 	 *
2077 	 * If the local queue expires first, then the global event can be
2078 	 * ignored. If the global queue is empty, nothing to do either.
2079 	 */
2080 	if (!local_first && base_global->timers_pending)
2081 		tevt->global = basem + (u64)(nextevt_global - basej) * TICK_NSEC;
2082 
2083 	if (base_local->timers_pending)
2084 		tevt->local = basem + (u64)(nextevt_local - basej) * TICK_NSEC;
2085 
2086 	return nextevt;
2087 }
2088 
2089 # ifdef CONFIG_SMP
2090 /**
2091  * fetch_next_timer_interrupt_remote() - Store next timers into @tevt
2092  * @basej:	base time jiffies
2093  * @basem:	base time clock monotonic
2094  * @tevt:	Pointer to the storage for the expiry values
2095  * @cpu:	Remote CPU
2096  *
2097  * Stores the next pending local and global timer expiry values in the
2098  * struct pointed to by @tevt. If a queue is empty the corresponding
2099  * field is set to KTIME_MAX. If local event expires before global
2100  * event, global event is set to KTIME_MAX as well.
2101  *
2102  * Caller needs to make sure timer base locks are held (use
2103  * timer_lock_remote_bases() for this purpose).
2104  */
2105 void fetch_next_timer_interrupt_remote(unsigned long basej, u64 basem,
2106 				       struct timer_events *tevt,
2107 				       unsigned int cpu)
2108 {
2109 	struct timer_base *base_local, *base_global;
2110 
2111 	/* Preset local / global events */
2112 	tevt->local = tevt->global = KTIME_MAX;
2113 
2114 	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2115 	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2116 
2117 	lockdep_assert_held(&base_local->lock);
2118 	lockdep_assert_held(&base_global->lock);
2119 
2120 	fetch_next_timer_interrupt(basej, basem, base_local, base_global, tevt);
2121 }
2122 
2123 /**
2124  * timer_unlock_remote_bases - unlock timer bases of cpu
2125  * @cpu:	Remote CPU
2126  *
2127  * Unlocks the remote timer bases.
2128  */
2129 void timer_unlock_remote_bases(unsigned int cpu)
2130 	__releases(timer_bases[BASE_LOCAL]->lock)
2131 	__releases(timer_bases[BASE_GLOBAL]->lock)
2132 {
2133 	struct timer_base *base_local, *base_global;
2134 
2135 	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2136 	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2137 
2138 	raw_spin_unlock(&base_global->lock);
2139 	raw_spin_unlock(&base_local->lock);
2140 }
2141 
2142 /**
2143  * timer_lock_remote_bases - lock timer bases of cpu
2144  * @cpu:	Remote CPU
2145  *
2146  * Locks the remote timer bases.
2147  */
2148 void timer_lock_remote_bases(unsigned int cpu)
2149 	__acquires(timer_bases[BASE_LOCAL]->lock)
2150 	__acquires(timer_bases[BASE_GLOBAL]->lock)
2151 {
2152 	struct timer_base *base_local, *base_global;
2153 
2154 	base_local = per_cpu_ptr(&timer_bases[BASE_LOCAL], cpu);
2155 	base_global = per_cpu_ptr(&timer_bases[BASE_GLOBAL], cpu);
2156 
2157 	lockdep_assert_irqs_disabled();
2158 
2159 	raw_spin_lock(&base_local->lock);
2160 	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2161 }
2162 # endif /* CONFIG_SMP */
2163 
2164 static inline u64 __get_next_timer_interrupt(unsigned long basej, u64 basem,
2165 					     bool *idle)
2166 {
2167 	struct timer_events tevt = { .local = KTIME_MAX, .global = KTIME_MAX };
2168 	struct timer_base *base_local, *base_global;
2169 	unsigned long nextevt;
2170 	u64 expires;
2171 
2172 	/*
2173 	 * Pretend that there is no timer pending if the cpu is offline.
2174 	 * Possible pending timers will be migrated later to an active cpu.
2175 	 */
2176 	if (cpu_is_offline(smp_processor_id())) {
2177 		if (idle)
2178 			*idle = true;
2179 		return tevt.local;
2180 	}
2181 
2182 	base_local = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2183 	base_global = this_cpu_ptr(&timer_bases[BASE_GLOBAL]);
2184 
2185 	raw_spin_lock(&base_local->lock);
2186 	raw_spin_lock_nested(&base_global->lock, SINGLE_DEPTH_NESTING);
2187 
2188 	nextevt = fetch_next_timer_interrupt(basej, basem, base_local,
2189 					     base_global, &tevt);
2190 
2191 	/*
2192 	 * We have a fresh next event. Check whether we can forward the
2193 	 * base.
2194 	 */
2195 	__forward_timer_base(base_local, basej);
2196 	__forward_timer_base(base_global, basej);
2197 
2198 	/*
2199 	 * Set base->is_idle only when caller is timer_base_try_to_set_idle()
2200 	 */
2201 	if (idle) {
2202 		/*
2203 		 * Bases are idle if the next event is more than a tick away.
2204 		 *
2205 		 * If the base is marked idle then any timer add operation must
2206 		 * forward the base clk itself to keep granularity small. This
2207 		 * idle logic is only maintained for the BASE_LOCAL and
2208 		 * BASE_GLOBAL base, deferrable timers may still see large
2209 		 * granularity skew (by design).
2210 		 */
2211 		if (!base_local->is_idle && time_after(nextevt, basej + 1)) {
2212 			base_local->is_idle = base_global->is_idle = true;
2213 			trace_timer_base_idle(true, base_local->cpu);
2214 		}
2215 		*idle = base_local->is_idle;
2216 	}
2217 
2218 	raw_spin_unlock(&base_global->lock);
2219 	raw_spin_unlock(&base_local->lock);
2220 
2221 	expires = min_t(u64, tevt.local, tevt.global);
2222 
2223 	return cmp_next_hrtimer_event(basem, expires);
2224 }
2225 
2226 /**
2227  * get_next_timer_interrupt() - return the time (clock mono) of the next timer
2228  * @basej:	base time jiffies
2229  * @basem:	base time clock monotonic
2230  *
2231  * Returns the tick aligned clock monotonic time of the next pending
2232  * timer or KTIME_MAX if no timer is pending.
2233  */
2234 u64 get_next_timer_interrupt(unsigned long basej, u64 basem)
2235 {
2236 	return __get_next_timer_interrupt(basej, basem, NULL);
2237 }
2238 
2239 /**
2240  * timer_base_try_to_set_idle() - Try to set the idle state of the timer bases
2241  * @basej:	base time jiffies
2242  * @basem:	base time clock monotonic
2243  * @idle:	pointer to store the value of timer_base->is_idle on return;
2244  *		*idle contains the information whether tick was already stopped
2245  *
2246  * Returns the tick aligned clock monotonic time of the next pending timer or
2247  * KTIME_MAX if no timer is pending. When tick was already stopped KTIME_MAX is
2248  * returned as well.
2249  */
2250 u64 timer_base_try_to_set_idle(unsigned long basej, u64 basem, bool *idle)
2251 {
2252 	if (*idle)
2253 		return KTIME_MAX;
2254 
2255 	return __get_next_timer_interrupt(basej, basem, idle);
2256 }
2257 
2258 /**
2259  * timer_clear_idle - Clear the idle state of the timer base
2260  *
2261  * Called with interrupts disabled
2262  */
2263 void timer_clear_idle(void)
2264 {
2265 	/*
2266 	 * We do this unlocked. The worst outcome is a remote enqueue sending
2267 	 * a pointless IPI, but taking the lock would just make the window for
2268 	 * sending the IPI a few instructions smaller for the cost of taking
2269 	 * the lock in the exit from idle path.
2270 	 */
2271 	__this_cpu_write(timer_bases[BASE_LOCAL].is_idle, false);
2272 	__this_cpu_write(timer_bases[BASE_GLOBAL].is_idle, false);
2273 	trace_timer_base_idle(false, smp_processor_id());
2274 }
2275 #endif
2276 
2277 /**
2278  * __run_timers - run all expired timers (if any) on this CPU.
2279  * @base: the timer vector to be processed.
2280  */
2281 static inline void __run_timers(struct timer_base *base)
2282 {
2283 	struct hlist_head heads[LVL_DEPTH];
2284 	int levels;
2285 
2286 	lockdep_assert_held(&base->lock);
2287 
2288 	if (base->running_timer)
2289 		return;
2290 
2291 	while (time_after_eq(jiffies, base->clk) &&
2292 	       time_after_eq(jiffies, base->next_expiry)) {
2293 		levels = collect_expired_timers(base, heads);
2294 		/*
2295 		 * The two possible reasons for not finding any expired
2296 		 * timer at this clk are that all matching timers have been
2297 		 * dequeued or no timer has been queued since
2298 		 * base::next_expiry was set to base::clk +
2299 		 * NEXT_TIMER_MAX_DELTA.
2300 		 */
2301 		WARN_ON_ONCE(!levels && !base->next_expiry_recalc
2302 			     && base->timers_pending);
2303 		/*
2304 		 * While executing timers, base->clk is set 1 offset ahead of
2305 		 * jiffies to avoid endless requeuing to current jiffies.
2306 		 */
2307 		base->clk++;
2308 		next_expiry_recalc(base);
2309 
2310 		while (levels--)
2311 			expire_timers(base, heads + levels);
2312 	}
2313 }
2314 
2315 static void __run_timer_base(struct timer_base *base)
2316 {
2317 	if (time_before(jiffies, base->next_expiry))
2318 		return;
2319 
2320 	timer_base_lock_expiry(base);
2321 	raw_spin_lock_irq(&base->lock);
2322 	__run_timers(base);
2323 	raw_spin_unlock_irq(&base->lock);
2324 	timer_base_unlock_expiry(base);
2325 }
2326 
2327 static void run_timer_base(int index)
2328 {
2329 	struct timer_base *base = this_cpu_ptr(&timer_bases[index]);
2330 
2331 	__run_timer_base(base);
2332 }
2333 
2334 /*
2335  * This function runs timers and the timer-tq in bottom half context.
2336  */
2337 static __latent_entropy void run_timer_softirq(struct softirq_action *h)
2338 {
2339 	run_timer_base(BASE_LOCAL);
2340 	if (IS_ENABLED(CONFIG_NO_HZ_COMMON)) {
2341 		run_timer_base(BASE_GLOBAL);
2342 		run_timer_base(BASE_DEF);
2343 	}
2344 }
2345 
2346 /*
2347  * Called by the local, per-CPU timer interrupt on SMP.
2348  */
2349 static void run_local_timers(void)
2350 {
2351 	struct timer_base *base = this_cpu_ptr(&timer_bases[BASE_LOCAL]);
2352 
2353 	hrtimer_run_queues();
2354 
2355 	for (int i = 0; i < NR_BASES; i++, base++) {
2356 		/* Raise the softirq only if required. */
2357 		if (time_after_eq(jiffies, base->next_expiry)) {
2358 			raise_softirq(TIMER_SOFTIRQ);
2359 			return;
2360 		}
2361 	}
2362 }
2363 
2364 /*
2365  * Called from the timer interrupt handler to charge one tick to the current
2366  * process.  user_tick is 1 if the tick is user time, 0 for system.
2367  */
2368 void update_process_times(int user_tick)
2369 {
2370 	struct task_struct *p = current;
2371 
2372 	/* Note: this timer irq context must be accounted for as well. */
2373 	account_process_tick(p, user_tick);
2374 	run_local_timers();
2375 	rcu_sched_clock_irq(user_tick);
2376 #ifdef CONFIG_IRQ_WORK
2377 	if (in_irq())
2378 		irq_work_tick();
2379 #endif
2380 	scheduler_tick();
2381 	if (IS_ENABLED(CONFIG_POSIX_TIMERS))
2382 		run_posix_cpu_timers();
2383 }
2384 
2385 /*
2386  * Since schedule_timeout()'s timer is defined on the stack, it must store
2387  * the target task on the stack as well.
2388  */
2389 struct process_timer {
2390 	struct timer_list timer;
2391 	struct task_struct *task;
2392 };
2393 
2394 static void process_timeout(struct timer_list *t)
2395 {
2396 	struct process_timer *timeout = from_timer(timeout, t, timer);
2397 
2398 	wake_up_process(timeout->task);
2399 }
2400 
2401 /**
2402  * schedule_timeout - sleep until timeout
2403  * @timeout: timeout value in jiffies
2404  *
2405  * Make the current task sleep until @timeout jiffies have elapsed.
2406  * The function behavior depends on the current task state
2407  * (see also set_current_state() description):
2408  *
2409  * %TASK_RUNNING - the scheduler is called, but the task does not sleep
2410  * at all. That happens because sched_submit_work() does nothing for
2411  * tasks in %TASK_RUNNING state.
2412  *
2413  * %TASK_UNINTERRUPTIBLE - at least @timeout jiffies are guaranteed to
2414  * pass before the routine returns unless the current task is explicitly
2415  * woken up, (e.g. by wake_up_process()).
2416  *
2417  * %TASK_INTERRUPTIBLE - the routine may return early if a signal is
2418  * delivered to the current task or the current task is explicitly woken
2419  * up.
2420  *
2421  * The current task state is guaranteed to be %TASK_RUNNING when this
2422  * routine returns.
2423  *
2424  * Specifying a @timeout value of %MAX_SCHEDULE_TIMEOUT will schedule
2425  * the CPU away without a bound on the timeout. In this case the return
2426  * value will be %MAX_SCHEDULE_TIMEOUT.
2427  *
2428  * Returns 0 when the timer has expired otherwise the remaining time in
2429  * jiffies will be returned. In all cases the return value is guaranteed
2430  * to be non-negative.
2431  */
2432 signed long __sched schedule_timeout(signed long timeout)
2433 {
2434 	struct process_timer timer;
2435 	unsigned long expire;
2436 
2437 	switch (timeout)
2438 	{
2439 	case MAX_SCHEDULE_TIMEOUT:
2440 		/*
2441 		 * These two special cases are useful to be comfortable
2442 		 * in the caller. Nothing more. We could take
2443 		 * MAX_SCHEDULE_TIMEOUT from one of the negative value
2444 		 * but I' d like to return a valid offset (>=0) to allow
2445 		 * the caller to do everything it want with the retval.
2446 		 */
2447 		schedule();
2448 		goto out;
2449 	default:
2450 		/*
2451 		 * Another bit of PARANOID. Note that the retval will be
2452 		 * 0 since no piece of kernel is supposed to do a check
2453 		 * for a negative retval of schedule_timeout() (since it
2454 		 * should never happens anyway). You just have the printk()
2455 		 * that will tell you if something is gone wrong and where.
2456 		 */
2457 		if (timeout < 0) {
2458 			printk(KERN_ERR "schedule_timeout: wrong timeout "
2459 				"value %lx\n", timeout);
2460 			dump_stack();
2461 			__set_current_state(TASK_RUNNING);
2462 			goto out;
2463 		}
2464 	}
2465 
2466 	expire = timeout + jiffies;
2467 
2468 	timer.task = current;
2469 	timer_setup_on_stack(&timer.timer, process_timeout, 0);
2470 	__mod_timer(&timer.timer, expire, MOD_TIMER_NOTPENDING);
2471 	schedule();
2472 	del_timer_sync(&timer.timer);
2473 
2474 	/* Remove the timer from the object tracker */
2475 	destroy_timer_on_stack(&timer.timer);
2476 
2477 	timeout = expire - jiffies;
2478 
2479  out:
2480 	return timeout < 0 ? 0 : timeout;
2481 }
2482 EXPORT_SYMBOL(schedule_timeout);
2483 
2484 /*
2485  * We can use __set_current_state() here because schedule_timeout() calls
2486  * schedule() unconditionally.
2487  */
2488 signed long __sched schedule_timeout_interruptible(signed long timeout)
2489 {
2490 	__set_current_state(TASK_INTERRUPTIBLE);
2491 	return schedule_timeout(timeout);
2492 }
2493 EXPORT_SYMBOL(schedule_timeout_interruptible);
2494 
2495 signed long __sched schedule_timeout_killable(signed long timeout)
2496 {
2497 	__set_current_state(TASK_KILLABLE);
2498 	return schedule_timeout(timeout);
2499 }
2500 EXPORT_SYMBOL(schedule_timeout_killable);
2501 
2502 signed long __sched schedule_timeout_uninterruptible(signed long timeout)
2503 {
2504 	__set_current_state(TASK_UNINTERRUPTIBLE);
2505 	return schedule_timeout(timeout);
2506 }
2507 EXPORT_SYMBOL(schedule_timeout_uninterruptible);
2508 
2509 /*
2510  * Like schedule_timeout_uninterruptible(), except this task will not contribute
2511  * to load average.
2512  */
2513 signed long __sched schedule_timeout_idle(signed long timeout)
2514 {
2515 	__set_current_state(TASK_IDLE);
2516 	return schedule_timeout(timeout);
2517 }
2518 EXPORT_SYMBOL(schedule_timeout_idle);
2519 
2520 #ifdef CONFIG_HOTPLUG_CPU
2521 static void migrate_timer_list(struct timer_base *new_base, struct hlist_head *head)
2522 {
2523 	struct timer_list *timer;
2524 	int cpu = new_base->cpu;
2525 
2526 	while (!hlist_empty(head)) {
2527 		timer = hlist_entry(head->first, struct timer_list, entry);
2528 		detach_timer(timer, false);
2529 		timer->flags = (timer->flags & ~TIMER_BASEMASK) | cpu;
2530 		internal_add_timer(new_base, timer);
2531 	}
2532 }
2533 
2534 int timers_prepare_cpu(unsigned int cpu)
2535 {
2536 	struct timer_base *base;
2537 	int b;
2538 
2539 	for (b = 0; b < NR_BASES; b++) {
2540 		base = per_cpu_ptr(&timer_bases[b], cpu);
2541 		base->clk = jiffies;
2542 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2543 		base->next_expiry_recalc = false;
2544 		base->timers_pending = false;
2545 		base->is_idle = false;
2546 	}
2547 	return 0;
2548 }
2549 
2550 int timers_dead_cpu(unsigned int cpu)
2551 {
2552 	struct timer_base *old_base;
2553 	struct timer_base *new_base;
2554 	int b, i;
2555 
2556 	for (b = 0; b < NR_BASES; b++) {
2557 		old_base = per_cpu_ptr(&timer_bases[b], cpu);
2558 		new_base = get_cpu_ptr(&timer_bases[b]);
2559 		/*
2560 		 * The caller is globally serialized and nobody else
2561 		 * takes two locks at once, deadlock is not possible.
2562 		 */
2563 		raw_spin_lock_irq(&new_base->lock);
2564 		raw_spin_lock_nested(&old_base->lock, SINGLE_DEPTH_NESTING);
2565 
2566 		/*
2567 		 * The current CPUs base clock might be stale. Update it
2568 		 * before moving the timers over.
2569 		 */
2570 		forward_timer_base(new_base);
2571 
2572 		WARN_ON_ONCE(old_base->running_timer);
2573 		old_base->running_timer = NULL;
2574 
2575 		for (i = 0; i < WHEEL_SIZE; i++)
2576 			migrate_timer_list(new_base, old_base->vectors + i);
2577 
2578 		raw_spin_unlock(&old_base->lock);
2579 		raw_spin_unlock_irq(&new_base->lock);
2580 		put_cpu_ptr(&timer_bases);
2581 	}
2582 	return 0;
2583 }
2584 
2585 #endif /* CONFIG_HOTPLUG_CPU */
2586 
2587 static void __init init_timer_cpu(int cpu)
2588 {
2589 	struct timer_base *base;
2590 	int i;
2591 
2592 	for (i = 0; i < NR_BASES; i++) {
2593 		base = per_cpu_ptr(&timer_bases[i], cpu);
2594 		base->cpu = cpu;
2595 		raw_spin_lock_init(&base->lock);
2596 		base->clk = jiffies;
2597 		base->next_expiry = base->clk + NEXT_TIMER_MAX_DELTA;
2598 		timer_base_init_expiry_lock(base);
2599 	}
2600 }
2601 
2602 static void __init init_timer_cpus(void)
2603 {
2604 	int cpu;
2605 
2606 	for_each_possible_cpu(cpu)
2607 		init_timer_cpu(cpu);
2608 }
2609 
2610 void __init init_timers(void)
2611 {
2612 	init_timer_cpus();
2613 	posix_cputimers_init_work();
2614 	open_softirq(TIMER_SOFTIRQ, run_timer_softirq);
2615 }
2616 
2617 /**
2618  * msleep - sleep safely even with waitqueue interruptions
2619  * @msecs: Time in milliseconds to sleep for
2620  */
2621 void msleep(unsigned int msecs)
2622 {
2623 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2624 
2625 	while (timeout)
2626 		timeout = schedule_timeout_uninterruptible(timeout);
2627 }
2628 
2629 EXPORT_SYMBOL(msleep);
2630 
2631 /**
2632  * msleep_interruptible - sleep waiting for signals
2633  * @msecs: Time in milliseconds to sleep for
2634  */
2635 unsigned long msleep_interruptible(unsigned int msecs)
2636 {
2637 	unsigned long timeout = msecs_to_jiffies(msecs) + 1;
2638 
2639 	while (timeout && !signal_pending(current))
2640 		timeout = schedule_timeout_interruptible(timeout);
2641 	return jiffies_to_msecs(timeout);
2642 }
2643 
2644 EXPORT_SYMBOL(msleep_interruptible);
2645 
2646 /**
2647  * usleep_range_state - Sleep for an approximate time in a given state
2648  * @min:	Minimum time in usecs to sleep
2649  * @max:	Maximum time in usecs to sleep
2650  * @state:	State of the current task that will be while sleeping
2651  *
2652  * In non-atomic context where the exact wakeup time is flexible, use
2653  * usleep_range_state() instead of udelay().  The sleep improves responsiveness
2654  * by avoiding the CPU-hogging busy-wait of udelay(), and the range reduces
2655  * power usage by allowing hrtimers to take advantage of an already-
2656  * scheduled interrupt instead of scheduling a new one just for this sleep.
2657  */
2658 void __sched usleep_range_state(unsigned long min, unsigned long max,
2659 				unsigned int state)
2660 {
2661 	ktime_t exp = ktime_add_us(ktime_get(), min);
2662 	u64 delta = (u64)(max - min) * NSEC_PER_USEC;
2663 
2664 	for (;;) {
2665 		__set_current_state(state);
2666 		/* Do not return before the requested sleep time has elapsed */
2667 		if (!schedule_hrtimeout_range(&exp, delta, HRTIMER_MODE_ABS))
2668 			break;
2669 	}
2670 }
2671 EXPORT_SYMBOL(usleep_range_state);
2672