1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_MIRROR (1 << 1) 34 #define TK_CLOCK_WAS_SET (1 << 2) 35 36 #define TK_UPDATE_ALL (TK_CLEAR_NTP | TK_CLOCK_WAS_SET) 37 38 enum timekeeping_adv_mode { 39 /* Update timekeeper when a tick has passed */ 40 TK_ADV_TICK, 41 42 /* Update timekeeper on a direct frequency change */ 43 TK_ADV_FREQ 44 }; 45 46 /* 47 * The most important data for readout fits into a single 64 byte 48 * cache line. 49 */ 50 struct tk_data { 51 seqcount_raw_spinlock_t seq; 52 struct timekeeper timekeeper; 53 struct timekeeper shadow_timekeeper; 54 raw_spinlock_t lock; 55 } ____cacheline_aligned; 56 57 static struct tk_data tk_core; 58 59 /* flag for if timekeeping is suspended */ 60 int __read_mostly timekeeping_suspended; 61 62 /** 63 * struct tk_fast - NMI safe timekeeper 64 * @seq: Sequence counter for protecting updates. The lowest bit 65 * is the index for the tk_read_base array 66 * @base: tk_read_base array. Access is indexed by the lowest bit of 67 * @seq. 68 * 69 * See @update_fast_timekeeper() below. 70 */ 71 struct tk_fast { 72 seqcount_latch_t seq; 73 struct tk_read_base base[2]; 74 }; 75 76 /* Suspend-time cycles value for halted fast timekeeper. */ 77 static u64 cycles_at_suspend; 78 79 static u64 dummy_clock_read(struct clocksource *cs) 80 { 81 if (timekeeping_suspended) 82 return cycles_at_suspend; 83 return local_clock(); 84 } 85 86 static struct clocksource dummy_clock = { 87 .read = dummy_clock_read, 88 }; 89 90 /* 91 * Boot time initialization which allows local_clock() to be utilized 92 * during early boot when clocksources are not available. local_clock() 93 * returns nanoseconds already so no conversion is required, hence mult=1 94 * and shift=0. When the first proper clocksource is installed then 95 * the fast time keepers are updated with the correct values. 96 */ 97 #define FAST_TK_INIT \ 98 { \ 99 .clock = &dummy_clock, \ 100 .mask = CLOCKSOURCE_MASK(64), \ 101 .mult = 1, \ 102 .shift = 0, \ 103 } 104 105 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 106 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 107 .base[0] = FAST_TK_INIT, 108 .base[1] = FAST_TK_INIT, 109 }; 110 111 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 112 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 113 .base[0] = FAST_TK_INIT, 114 .base[1] = FAST_TK_INIT, 115 }; 116 117 unsigned long timekeeper_lock_irqsave(void) 118 { 119 unsigned long flags; 120 121 raw_spin_lock_irqsave(&tk_core.lock, flags); 122 return flags; 123 } 124 125 void timekeeper_unlock_irqrestore(unsigned long flags) 126 { 127 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 128 } 129 130 /* 131 * Multigrain timestamps require tracking the latest fine-grained timestamp 132 * that has been issued, and never returning a coarse-grained timestamp that is 133 * earlier than that value. 134 * 135 * mg_floor represents the latest fine-grained time that has been handed out as 136 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and 137 * converted to a realtime clock value on an as-needed basis. 138 * 139 * Maintaining mg_floor ensures the multigrain interfaces never issue a 140 * timestamp earlier than one that has been previously issued. 141 * 142 * The exception to this rule is when there is a backward realtime clock jump. If 143 * such an event occurs, a timestamp can appear to be earlier than a previous one. 144 */ 145 static __cacheline_aligned_in_smp atomic64_t mg_floor; 146 147 static inline void tk_normalize_xtime(struct timekeeper *tk) 148 { 149 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 150 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 151 tk->xtime_sec++; 152 } 153 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 154 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 155 tk->raw_sec++; 156 } 157 } 158 159 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 160 { 161 struct timespec64 ts; 162 163 ts.tv_sec = tk->xtime_sec; 164 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 165 return ts; 166 } 167 168 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 169 { 170 tk->xtime_sec = ts->tv_sec; 171 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 172 } 173 174 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 175 { 176 tk->xtime_sec += ts->tv_sec; 177 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 178 tk_normalize_xtime(tk); 179 } 180 181 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 182 { 183 struct timespec64 tmp; 184 185 /* 186 * Verify consistency of: offset_real = -wall_to_monotonic 187 * before modifying anything 188 */ 189 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 190 -tk->wall_to_monotonic.tv_nsec); 191 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 192 tk->wall_to_monotonic = wtm; 193 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 194 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 195 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); 196 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); 197 } 198 199 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 200 { 201 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 202 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); 203 /* 204 * Timespec representation for VDSO update to avoid 64bit division 205 * on every update. 206 */ 207 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 208 } 209 210 /* 211 * tk_clock_read - atomic clocksource read() helper 212 * 213 * This helper is necessary to use in the read paths because, while the 214 * seqcount ensures we don't return a bad value while structures are updated, 215 * it doesn't protect from potential crashes. There is the possibility that 216 * the tkr's clocksource may change between the read reference, and the 217 * clock reference passed to the read function. This can cause crashes if 218 * the wrong clocksource is passed to the wrong read function. 219 * This isn't necessary to use when holding the tk_core.lock or doing 220 * a read of the fast-timekeeper tkrs (which is protected by its own locking 221 * and update logic). 222 */ 223 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 224 { 225 struct clocksource *clock = READ_ONCE(tkr->clock); 226 227 return clock->read(clock); 228 } 229 230 #ifdef CONFIG_DEBUG_TIMEKEEPING 231 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 232 233 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 234 { 235 236 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 237 const char *name = tk->tkr_mono.clock->name; 238 239 if (offset > max_cycles) { 240 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 241 offset, name, max_cycles); 242 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 243 } else { 244 if (offset > (max_cycles >> 1)) { 245 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 246 offset, name, max_cycles >> 1); 247 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 248 } 249 } 250 251 if (tk->underflow_seen) { 252 if (jiffies - tk->last_warning > WARNING_FREQ) { 253 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 254 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 255 printk_deferred(" Your kernel is probably still fine.\n"); 256 tk->last_warning = jiffies; 257 } 258 tk->underflow_seen = 0; 259 } 260 261 if (tk->overflow_seen) { 262 if (jiffies - tk->last_warning > WARNING_FREQ) { 263 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 264 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 265 printk_deferred(" Your kernel is probably still fine.\n"); 266 tk->last_warning = jiffies; 267 } 268 tk->overflow_seen = 0; 269 } 270 } 271 272 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles); 273 274 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 275 { 276 struct timekeeper *tk = &tk_core.timekeeper; 277 u64 now, last, mask, max, delta; 278 unsigned int seq; 279 280 /* 281 * Since we're called holding a seqcount, the data may shift 282 * under us while we're doing the calculation. This can cause 283 * false positives, since we'd note a problem but throw the 284 * results away. So nest another seqcount here to atomically 285 * grab the points we are checking with. 286 */ 287 do { 288 seq = read_seqcount_begin(&tk_core.seq); 289 now = tk_clock_read(tkr); 290 last = tkr->cycle_last; 291 mask = tkr->mask; 292 max = tkr->clock->max_cycles; 293 } while (read_seqcount_retry(&tk_core.seq, seq)); 294 295 delta = clocksource_delta(now, last, mask); 296 297 /* 298 * Try to catch underflows by checking if we are seeing small 299 * mask-relative negative values. 300 */ 301 if (unlikely((~delta & mask) < (mask >> 3))) 302 tk->underflow_seen = 1; 303 304 /* Check for multiplication overflows */ 305 if (unlikely(delta > max)) 306 tk->overflow_seen = 1; 307 308 /* timekeeping_cycles_to_ns() handles both under and overflow */ 309 return timekeeping_cycles_to_ns(tkr, now); 310 } 311 #else 312 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 313 { 314 } 315 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 316 { 317 BUG(); 318 } 319 #endif 320 321 /** 322 * tk_setup_internals - Set up internals to use clocksource clock. 323 * 324 * @tk: The target timekeeper to setup. 325 * @clock: Pointer to clocksource. 326 * 327 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 328 * pair and interval request. 329 * 330 * Unless you're the timekeeping code, you should not be using this! 331 */ 332 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 333 { 334 u64 interval; 335 u64 tmp, ntpinterval; 336 struct clocksource *old_clock; 337 338 ++tk->cs_was_changed_seq; 339 old_clock = tk->tkr_mono.clock; 340 tk->tkr_mono.clock = clock; 341 tk->tkr_mono.mask = clock->mask; 342 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 343 344 tk->tkr_raw.clock = clock; 345 tk->tkr_raw.mask = clock->mask; 346 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 347 348 /* Do the ns -> cycle conversion first, using original mult */ 349 tmp = NTP_INTERVAL_LENGTH; 350 tmp <<= clock->shift; 351 ntpinterval = tmp; 352 tmp += clock->mult/2; 353 do_div(tmp, clock->mult); 354 if (tmp == 0) 355 tmp = 1; 356 357 interval = (u64) tmp; 358 tk->cycle_interval = interval; 359 360 /* Go back from cycles -> shifted ns */ 361 tk->xtime_interval = interval * clock->mult; 362 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 363 tk->raw_interval = interval * clock->mult; 364 365 /* if changing clocks, convert xtime_nsec shift units */ 366 if (old_clock) { 367 int shift_change = clock->shift - old_clock->shift; 368 if (shift_change < 0) { 369 tk->tkr_mono.xtime_nsec >>= -shift_change; 370 tk->tkr_raw.xtime_nsec >>= -shift_change; 371 } else { 372 tk->tkr_mono.xtime_nsec <<= shift_change; 373 tk->tkr_raw.xtime_nsec <<= shift_change; 374 } 375 } 376 377 tk->tkr_mono.shift = clock->shift; 378 tk->tkr_raw.shift = clock->shift; 379 380 tk->ntp_error = 0; 381 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 382 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 383 384 /* 385 * The timekeeper keeps its own mult values for the currently 386 * active clocksource. These value will be adjusted via NTP 387 * to counteract clock drifting. 388 */ 389 tk->tkr_mono.mult = clock->mult; 390 tk->tkr_raw.mult = clock->mult; 391 tk->ntp_err_mult = 0; 392 tk->skip_second_overflow = 0; 393 } 394 395 /* Timekeeper helper functions. */ 396 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 397 { 398 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 399 } 400 401 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 402 { 403 /* Calculate the delta since the last update_wall_time() */ 404 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 405 406 /* 407 * This detects both negative motion and the case where the delta 408 * overflows the multiplication with tkr->mult. 409 */ 410 if (unlikely(delta > tkr->clock->max_cycles)) { 411 /* 412 * Handle clocksource inconsistency between CPUs to prevent 413 * time from going backwards by checking for the MSB of the 414 * mask being set in the delta. 415 */ 416 if (delta & ~(mask >> 1)) 417 return tkr->xtime_nsec >> tkr->shift; 418 419 return delta_to_ns_safe(tkr, delta); 420 } 421 422 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 423 } 424 425 static __always_inline u64 __timekeeping_get_ns(const struct tk_read_base *tkr) 426 { 427 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 428 } 429 430 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 431 { 432 if (IS_ENABLED(CONFIG_DEBUG_TIMEKEEPING)) 433 return timekeeping_debug_get_ns(tkr); 434 435 return __timekeeping_get_ns(tkr); 436 } 437 438 /** 439 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 440 * @tkr: Timekeeping readout base from which we take the update 441 * @tkf: Pointer to NMI safe timekeeper 442 * 443 * We want to use this from any context including NMI and tracing / 444 * instrumenting the timekeeping code itself. 445 * 446 * Employ the latch technique; see @raw_write_seqcount_latch. 447 * 448 * So if a NMI hits the update of base[0] then it will use base[1] 449 * which is still consistent. In the worst case this can result is a 450 * slightly wrong timestamp (a few nanoseconds). See 451 * @ktime_get_mono_fast_ns. 452 */ 453 static void update_fast_timekeeper(const struct tk_read_base *tkr, 454 struct tk_fast *tkf) 455 { 456 struct tk_read_base *base = tkf->base; 457 458 /* Force readers off to base[1] */ 459 raw_write_seqcount_latch(&tkf->seq); 460 461 /* Update base[0] */ 462 memcpy(base, tkr, sizeof(*base)); 463 464 /* Force readers back to base[0] */ 465 raw_write_seqcount_latch(&tkf->seq); 466 467 /* Update base[1] */ 468 memcpy(base + 1, base, sizeof(*base)); 469 } 470 471 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 472 { 473 struct tk_read_base *tkr; 474 unsigned int seq; 475 u64 now; 476 477 do { 478 seq = raw_read_seqcount_latch(&tkf->seq); 479 tkr = tkf->base + (seq & 0x01); 480 now = ktime_to_ns(tkr->base); 481 now += __timekeeping_get_ns(tkr); 482 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 483 484 return now; 485 } 486 487 /** 488 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 489 * 490 * This timestamp is not guaranteed to be monotonic across an update. 491 * The timestamp is calculated by: 492 * 493 * now = base_mono + clock_delta * slope 494 * 495 * So if the update lowers the slope, readers who are forced to the 496 * not yet updated second array are still using the old steeper slope. 497 * 498 * tmono 499 * ^ 500 * | o n 501 * | o n 502 * | u 503 * | o 504 * |o 505 * |12345678---> reader order 506 * 507 * o = old slope 508 * u = update 509 * n = new slope 510 * 511 * So reader 6 will observe time going backwards versus reader 5. 512 * 513 * While other CPUs are likely to be able to observe that, the only way 514 * for a CPU local observation is when an NMI hits in the middle of 515 * the update. Timestamps taken from that NMI context might be ahead 516 * of the following timestamps. Callers need to be aware of that and 517 * deal with it. 518 */ 519 u64 notrace ktime_get_mono_fast_ns(void) 520 { 521 return __ktime_get_fast_ns(&tk_fast_mono); 522 } 523 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 524 525 /** 526 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 527 * 528 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 529 * conversion factor is not affected by NTP/PTP correction. 530 */ 531 u64 notrace ktime_get_raw_fast_ns(void) 532 { 533 return __ktime_get_fast_ns(&tk_fast_raw); 534 } 535 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 536 537 /** 538 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 539 * 540 * To keep it NMI safe since we're accessing from tracing, we're not using a 541 * separate timekeeper with updates to monotonic clock and boot offset 542 * protected with seqcounts. This has the following minor side effects: 543 * 544 * (1) Its possible that a timestamp be taken after the boot offset is updated 545 * but before the timekeeper is updated. If this happens, the new boot offset 546 * is added to the old timekeeping making the clock appear to update slightly 547 * earlier: 548 * CPU 0 CPU 1 549 * timekeeping_inject_sleeptime64() 550 * __timekeeping_inject_sleeptime(tk, delta); 551 * timestamp(); 552 * timekeeping_update(tkd, tk, TK_CLEAR_NTP...); 553 * 554 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 555 * partially updated. Since the tk->offs_boot update is a rare event, this 556 * should be a rare occurrence which postprocessing should be able to handle. 557 * 558 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 559 * apply as well. 560 */ 561 u64 notrace ktime_get_boot_fast_ns(void) 562 { 563 struct timekeeper *tk = &tk_core.timekeeper; 564 565 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 566 } 567 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 568 569 /** 570 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 571 * 572 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 573 * mono time and the TAI offset are not read atomically which may yield wrong 574 * readouts. However, an update of the TAI offset is an rare event e.g., caused 575 * by settime or adjtimex with an offset. The user of this function has to deal 576 * with the possibility of wrong timestamps in post processing. 577 */ 578 u64 notrace ktime_get_tai_fast_ns(void) 579 { 580 struct timekeeper *tk = &tk_core.timekeeper; 581 582 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 583 } 584 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 585 586 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 587 { 588 struct tk_read_base *tkr; 589 u64 basem, baser, delta; 590 unsigned int seq; 591 592 do { 593 seq = raw_read_seqcount_latch(&tkf->seq); 594 tkr = tkf->base + (seq & 0x01); 595 basem = ktime_to_ns(tkr->base); 596 baser = ktime_to_ns(tkr->base_real); 597 delta = __timekeeping_get_ns(tkr); 598 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 599 600 if (mono) 601 *mono = basem + delta; 602 return baser + delta; 603 } 604 605 /** 606 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 607 * 608 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 609 */ 610 u64 ktime_get_real_fast_ns(void) 611 { 612 return __ktime_get_real_fast(&tk_fast_mono, NULL); 613 } 614 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 615 616 /** 617 * ktime_get_fast_timestamps: - NMI safe timestamps 618 * @snapshot: Pointer to timestamp storage 619 * 620 * Stores clock monotonic, boottime and realtime timestamps. 621 * 622 * Boot time is a racy access on 32bit systems if the sleep time injection 623 * happens late during resume and not in timekeeping_resume(). That could 624 * be avoided by expanding struct tk_read_base with boot offset for 32bit 625 * and adding more overhead to the update. As this is a hard to observe 626 * once per resume event which can be filtered with reasonable effort using 627 * the accurate mono/real timestamps, it's probably not worth the trouble. 628 * 629 * Aside of that it might be possible on 32 and 64 bit to observe the 630 * following when the sleep time injection happens late: 631 * 632 * CPU 0 CPU 1 633 * timekeeping_resume() 634 * ktime_get_fast_timestamps() 635 * mono, real = __ktime_get_real_fast() 636 * inject_sleep_time() 637 * update boot offset 638 * boot = mono + bootoffset; 639 * 640 * That means that boot time already has the sleep time adjustment, but 641 * real time does not. On the next readout both are in sync again. 642 * 643 * Preventing this for 64bit is not really feasible without destroying the 644 * careful cache layout of the timekeeper because the sequence count and 645 * struct tk_read_base would then need two cache lines instead of one. 646 * 647 * Access to the time keeper clock source is disabled across the innermost 648 * steps of suspend/resume. The accessors still work, but the timestamps 649 * are frozen until time keeping is resumed which happens very early. 650 * 651 * For regular suspend/resume there is no observable difference vs. sched 652 * clock, but it might affect some of the nasty low level debug printks. 653 * 654 * OTOH, access to sched clock is not guaranteed across suspend/resume on 655 * all systems either so it depends on the hardware in use. 656 * 657 * If that turns out to be a real problem then this could be mitigated by 658 * using sched clock in a similar way as during early boot. But it's not as 659 * trivial as on early boot because it needs some careful protection 660 * against the clock monotonic timestamp jumping backwards on resume. 661 */ 662 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 663 { 664 struct timekeeper *tk = &tk_core.timekeeper; 665 666 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 667 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 668 } 669 670 /** 671 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 672 * @tk: Timekeeper to snapshot. 673 * 674 * It generally is unsafe to access the clocksource after timekeeping has been 675 * suspended, so take a snapshot of the readout base of @tk and use it as the 676 * fast timekeeper's readout base while suspended. It will return the same 677 * number of cycles every time until timekeeping is resumed at which time the 678 * proper readout base for the fast timekeeper will be restored automatically. 679 */ 680 static void halt_fast_timekeeper(const struct timekeeper *tk) 681 { 682 static struct tk_read_base tkr_dummy; 683 const struct tk_read_base *tkr = &tk->tkr_mono; 684 685 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 686 cycles_at_suspend = tk_clock_read(tkr); 687 tkr_dummy.clock = &dummy_clock; 688 tkr_dummy.base_real = tkr->base + tk->offs_real; 689 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 690 691 tkr = &tk->tkr_raw; 692 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 693 tkr_dummy.clock = &dummy_clock; 694 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 695 } 696 697 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 698 699 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 700 { 701 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 702 } 703 704 /** 705 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 706 * @nb: Pointer to the notifier block to register 707 */ 708 int pvclock_gtod_register_notifier(struct notifier_block *nb) 709 { 710 struct timekeeper *tk = &tk_core.timekeeper; 711 int ret; 712 713 guard(raw_spinlock_irqsave)(&tk_core.lock); 714 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 715 update_pvclock_gtod(tk, true); 716 717 return ret; 718 } 719 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 720 721 /** 722 * pvclock_gtod_unregister_notifier - unregister a pvclock 723 * timedata update listener 724 * @nb: Pointer to the notifier block to unregister 725 */ 726 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 727 { 728 guard(raw_spinlock_irqsave)(&tk_core.lock); 729 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 730 } 731 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 732 733 /* 734 * tk_update_leap_state - helper to update the next_leap_ktime 735 */ 736 static inline void tk_update_leap_state(struct timekeeper *tk) 737 { 738 tk->next_leap_ktime = ntp_get_next_leap(); 739 if (tk->next_leap_ktime != KTIME_MAX) 740 /* Convert to monotonic time */ 741 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 742 } 743 744 /* 745 * Update the ktime_t based scalar nsec members of the timekeeper 746 */ 747 static inline void tk_update_ktime_data(struct timekeeper *tk) 748 { 749 u64 seconds; 750 u32 nsec; 751 752 /* 753 * The xtime based monotonic readout is: 754 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 755 * The ktime based monotonic readout is: 756 * nsec = base_mono + now(); 757 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 758 */ 759 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 760 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 761 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 762 763 /* 764 * The sum of the nanoseconds portions of xtime and 765 * wall_to_monotonic can be greater/equal one second. Take 766 * this into account before updating tk->ktime_sec. 767 */ 768 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 769 if (nsec >= NSEC_PER_SEC) 770 seconds++; 771 tk->ktime_sec = seconds; 772 773 /* Update the monotonic raw base */ 774 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 775 } 776 777 /* 778 * Restore the shadow timekeeper from the real timekeeper. 779 */ 780 static void timekeeping_restore_shadow(struct tk_data *tkd) 781 { 782 lockdep_assert_held(&tkd->lock); 783 memcpy(&tkd->shadow_timekeeper, &tkd->timekeeper, sizeof(tkd->timekeeper)); 784 } 785 786 static void timekeeping_update(struct tk_data *tkd, struct timekeeper *tk, unsigned int action) 787 { 788 lockdep_assert_held(&tkd->lock); 789 790 if (action & TK_CLEAR_NTP) { 791 tk->ntp_error = 0; 792 ntp_clear(); 793 } 794 795 tk_update_leap_state(tk); 796 tk_update_ktime_data(tk); 797 798 update_vsyscall(tk); 799 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 800 801 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 802 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 803 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 804 805 if (action & TK_CLOCK_WAS_SET) 806 tk->clock_was_set_seq++; 807 /* 808 * The mirroring of the data to the shadow-timekeeper needs 809 * to happen last here to ensure we don't over-write the 810 * timekeeper structure on the next update with stale data 811 */ 812 if (action & TK_MIRROR) 813 timekeeping_restore_shadow(tkd); 814 } 815 816 static void timekeeping_update_from_shadow(struct tk_data *tkd, unsigned int action) 817 { 818 /* 819 * Block out readers before invoking timekeeping_update() because 820 * that updates VDSO and other time related infrastructure. Not 821 * blocking the readers might let a reader see time going backwards 822 * when reading from the VDSO after the VDSO update and then 823 * reading in the kernel from the timekeeper before that got updated. 824 */ 825 write_seqcount_begin(&tkd->seq); 826 827 timekeeping_update(tkd, &tkd->shadow_timekeeper, action); 828 829 /* 830 * Update the real timekeeper. 831 * 832 * We could avoid this memcpy() by switching pointers, but that has 833 * the downside that the reader side does not longer benefit from 834 * the cacheline optimized data layout of the timekeeper and requires 835 * another indirection. 836 */ 837 memcpy(&tkd->timekeeper, &tkd->shadow_timekeeper, sizeof(tkd->shadow_timekeeper)); 838 write_seqcount_end(&tkd->seq); 839 } 840 841 /** 842 * timekeeping_forward_now - update clock to the current time 843 * @tk: Pointer to the timekeeper to update 844 * 845 * Forward the current clock to update its state since the last call to 846 * update_wall_time(). This is useful before significant clock changes, 847 * as it avoids having to deal with this time offset explicitly. 848 */ 849 static void timekeeping_forward_now(struct timekeeper *tk) 850 { 851 u64 cycle_now, delta; 852 853 cycle_now = tk_clock_read(&tk->tkr_mono); 854 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 855 tk->tkr_mono.cycle_last = cycle_now; 856 tk->tkr_raw.cycle_last = cycle_now; 857 858 while (delta > 0) { 859 u64 max = tk->tkr_mono.clock->max_cycles; 860 u64 incr = delta < max ? delta : max; 861 862 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 863 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 864 tk_normalize_xtime(tk); 865 delta -= incr; 866 } 867 } 868 869 /** 870 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 871 * @ts: pointer to the timespec to be set 872 * 873 * Returns the time of day in a timespec64 (WARN if suspended). 874 */ 875 void ktime_get_real_ts64(struct timespec64 *ts) 876 { 877 struct timekeeper *tk = &tk_core.timekeeper; 878 unsigned int seq; 879 u64 nsecs; 880 881 WARN_ON(timekeeping_suspended); 882 883 do { 884 seq = read_seqcount_begin(&tk_core.seq); 885 886 ts->tv_sec = tk->xtime_sec; 887 nsecs = timekeeping_get_ns(&tk->tkr_mono); 888 889 } while (read_seqcount_retry(&tk_core.seq, seq)); 890 891 ts->tv_nsec = 0; 892 timespec64_add_ns(ts, nsecs); 893 } 894 EXPORT_SYMBOL(ktime_get_real_ts64); 895 896 ktime_t ktime_get(void) 897 { 898 struct timekeeper *tk = &tk_core.timekeeper; 899 unsigned int seq; 900 ktime_t base; 901 u64 nsecs; 902 903 WARN_ON(timekeeping_suspended); 904 905 do { 906 seq = read_seqcount_begin(&tk_core.seq); 907 base = tk->tkr_mono.base; 908 nsecs = timekeeping_get_ns(&tk->tkr_mono); 909 910 } while (read_seqcount_retry(&tk_core.seq, seq)); 911 912 return ktime_add_ns(base, nsecs); 913 } 914 EXPORT_SYMBOL_GPL(ktime_get); 915 916 u32 ktime_get_resolution_ns(void) 917 { 918 struct timekeeper *tk = &tk_core.timekeeper; 919 unsigned int seq; 920 u32 nsecs; 921 922 WARN_ON(timekeeping_suspended); 923 924 do { 925 seq = read_seqcount_begin(&tk_core.seq); 926 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 927 } while (read_seqcount_retry(&tk_core.seq, seq)); 928 929 return nsecs; 930 } 931 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 932 933 static ktime_t *offsets[TK_OFFS_MAX] = { 934 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 935 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 936 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 937 }; 938 939 ktime_t ktime_get_with_offset(enum tk_offsets offs) 940 { 941 struct timekeeper *tk = &tk_core.timekeeper; 942 unsigned int seq; 943 ktime_t base, *offset = offsets[offs]; 944 u64 nsecs; 945 946 WARN_ON(timekeeping_suspended); 947 948 do { 949 seq = read_seqcount_begin(&tk_core.seq); 950 base = ktime_add(tk->tkr_mono.base, *offset); 951 nsecs = timekeeping_get_ns(&tk->tkr_mono); 952 953 } while (read_seqcount_retry(&tk_core.seq, seq)); 954 955 return ktime_add_ns(base, nsecs); 956 957 } 958 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 959 960 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 961 { 962 struct timekeeper *tk = &tk_core.timekeeper; 963 unsigned int seq; 964 ktime_t base, *offset = offsets[offs]; 965 u64 nsecs; 966 967 WARN_ON(timekeeping_suspended); 968 969 do { 970 seq = read_seqcount_begin(&tk_core.seq); 971 base = ktime_add(tk->tkr_mono.base, *offset); 972 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 973 974 } while (read_seqcount_retry(&tk_core.seq, seq)); 975 976 return ktime_add_ns(base, nsecs); 977 } 978 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 979 980 /** 981 * ktime_mono_to_any() - convert monotonic time to any other time 982 * @tmono: time to convert. 983 * @offs: which offset to use 984 */ 985 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 986 { 987 ktime_t *offset = offsets[offs]; 988 unsigned int seq; 989 ktime_t tconv; 990 991 if (IS_ENABLED(CONFIG_64BIT)) { 992 /* 993 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and 994 * tk_update_sleep_time(). 995 */ 996 return ktime_add(tmono, READ_ONCE(*offset)); 997 } 998 999 do { 1000 seq = read_seqcount_begin(&tk_core.seq); 1001 tconv = ktime_add(tmono, *offset); 1002 } while (read_seqcount_retry(&tk_core.seq, seq)); 1003 1004 return tconv; 1005 } 1006 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 1007 1008 /** 1009 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 1010 */ 1011 ktime_t ktime_get_raw(void) 1012 { 1013 struct timekeeper *tk = &tk_core.timekeeper; 1014 unsigned int seq; 1015 ktime_t base; 1016 u64 nsecs; 1017 1018 do { 1019 seq = read_seqcount_begin(&tk_core.seq); 1020 base = tk->tkr_raw.base; 1021 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1022 1023 } while (read_seqcount_retry(&tk_core.seq, seq)); 1024 1025 return ktime_add_ns(base, nsecs); 1026 } 1027 EXPORT_SYMBOL_GPL(ktime_get_raw); 1028 1029 /** 1030 * ktime_get_ts64 - get the monotonic clock in timespec64 format 1031 * @ts: pointer to timespec variable 1032 * 1033 * The function calculates the monotonic clock from the realtime 1034 * clock and the wall_to_monotonic offset and stores the result 1035 * in normalized timespec64 format in the variable pointed to by @ts. 1036 */ 1037 void ktime_get_ts64(struct timespec64 *ts) 1038 { 1039 struct timekeeper *tk = &tk_core.timekeeper; 1040 struct timespec64 tomono; 1041 unsigned int seq; 1042 u64 nsec; 1043 1044 WARN_ON(timekeeping_suspended); 1045 1046 do { 1047 seq = read_seqcount_begin(&tk_core.seq); 1048 ts->tv_sec = tk->xtime_sec; 1049 nsec = timekeeping_get_ns(&tk->tkr_mono); 1050 tomono = tk->wall_to_monotonic; 1051 1052 } while (read_seqcount_retry(&tk_core.seq, seq)); 1053 1054 ts->tv_sec += tomono.tv_sec; 1055 ts->tv_nsec = 0; 1056 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 1057 } 1058 EXPORT_SYMBOL_GPL(ktime_get_ts64); 1059 1060 /** 1061 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 1062 * 1063 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 1064 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 1065 * works on both 32 and 64 bit systems. On 32 bit systems the readout 1066 * covers ~136 years of uptime which should be enough to prevent 1067 * premature wrap arounds. 1068 */ 1069 time64_t ktime_get_seconds(void) 1070 { 1071 struct timekeeper *tk = &tk_core.timekeeper; 1072 1073 WARN_ON(timekeeping_suspended); 1074 return tk->ktime_sec; 1075 } 1076 EXPORT_SYMBOL_GPL(ktime_get_seconds); 1077 1078 /** 1079 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 1080 * 1081 * Returns the wall clock seconds since 1970. 1082 * 1083 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1084 * 32bit systems the access must be protected with the sequence 1085 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1086 * value. 1087 */ 1088 time64_t ktime_get_real_seconds(void) 1089 { 1090 struct timekeeper *tk = &tk_core.timekeeper; 1091 time64_t seconds; 1092 unsigned int seq; 1093 1094 if (IS_ENABLED(CONFIG_64BIT)) 1095 return tk->xtime_sec; 1096 1097 do { 1098 seq = read_seqcount_begin(&tk_core.seq); 1099 seconds = tk->xtime_sec; 1100 1101 } while (read_seqcount_retry(&tk_core.seq, seq)); 1102 1103 return seconds; 1104 } 1105 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1106 1107 /** 1108 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1109 * but without the sequence counter protect. This internal function 1110 * is called just when timekeeping lock is already held. 1111 */ 1112 noinstr time64_t __ktime_get_real_seconds(void) 1113 { 1114 struct timekeeper *tk = &tk_core.timekeeper; 1115 1116 return tk->xtime_sec; 1117 } 1118 1119 /** 1120 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1121 * @systime_snapshot: pointer to struct receiving the system time snapshot 1122 */ 1123 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1124 { 1125 struct timekeeper *tk = &tk_core.timekeeper; 1126 unsigned int seq; 1127 ktime_t base_raw; 1128 ktime_t base_real; 1129 ktime_t base_boot; 1130 u64 nsec_raw; 1131 u64 nsec_real; 1132 u64 now; 1133 1134 WARN_ON_ONCE(timekeeping_suspended); 1135 1136 do { 1137 seq = read_seqcount_begin(&tk_core.seq); 1138 now = tk_clock_read(&tk->tkr_mono); 1139 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1140 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1141 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1142 base_real = ktime_add(tk->tkr_mono.base, 1143 tk_core.timekeeper.offs_real); 1144 base_boot = ktime_add(tk->tkr_mono.base, 1145 tk_core.timekeeper.offs_boot); 1146 base_raw = tk->tkr_raw.base; 1147 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1148 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1149 } while (read_seqcount_retry(&tk_core.seq, seq)); 1150 1151 systime_snapshot->cycles = now; 1152 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1153 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); 1154 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1155 } 1156 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1157 1158 /* Scale base by mult/div checking for overflow */ 1159 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1160 { 1161 u64 tmp, rem; 1162 1163 tmp = div64_u64_rem(*base, div, &rem); 1164 1165 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1166 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1167 return -EOVERFLOW; 1168 tmp *= mult; 1169 1170 rem = div64_u64(rem * mult, div); 1171 *base = tmp + rem; 1172 return 0; 1173 } 1174 1175 /** 1176 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1177 * @history: Snapshot representing start of history 1178 * @partial_history_cycles: Cycle offset into history (fractional part) 1179 * @total_history_cycles: Total history length in cycles 1180 * @discontinuity: True indicates clock was set on history period 1181 * @ts: Cross timestamp that should be adjusted using 1182 * partial/total ratio 1183 * 1184 * Helper function used by get_device_system_crosststamp() to correct the 1185 * crosstimestamp corresponding to the start of the current interval to the 1186 * system counter value (timestamp point) provided by the driver. The 1187 * total_history_* quantities are the total history starting at the provided 1188 * reference point and ending at the start of the current interval. The cycle 1189 * count between the driver timestamp point and the start of the current 1190 * interval is partial_history_cycles. 1191 */ 1192 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1193 u64 partial_history_cycles, 1194 u64 total_history_cycles, 1195 bool discontinuity, 1196 struct system_device_crosststamp *ts) 1197 { 1198 struct timekeeper *tk = &tk_core.timekeeper; 1199 u64 corr_raw, corr_real; 1200 bool interp_forward; 1201 int ret; 1202 1203 if (total_history_cycles == 0 || partial_history_cycles == 0) 1204 return 0; 1205 1206 /* Interpolate shortest distance from beginning or end of history */ 1207 interp_forward = partial_history_cycles > total_history_cycles / 2; 1208 partial_history_cycles = interp_forward ? 1209 total_history_cycles - partial_history_cycles : 1210 partial_history_cycles; 1211 1212 /* 1213 * Scale the monotonic raw time delta by: 1214 * partial_history_cycles / total_history_cycles 1215 */ 1216 corr_raw = (u64)ktime_to_ns( 1217 ktime_sub(ts->sys_monoraw, history->raw)); 1218 ret = scale64_check_overflow(partial_history_cycles, 1219 total_history_cycles, &corr_raw); 1220 if (ret) 1221 return ret; 1222 1223 /* 1224 * If there is a discontinuity in the history, scale monotonic raw 1225 * correction by: 1226 * mult(real)/mult(raw) yielding the realtime correction 1227 * Otherwise, calculate the realtime correction similar to monotonic 1228 * raw calculation 1229 */ 1230 if (discontinuity) { 1231 corr_real = mul_u64_u32_div 1232 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1233 } else { 1234 corr_real = (u64)ktime_to_ns( 1235 ktime_sub(ts->sys_realtime, history->real)); 1236 ret = scale64_check_overflow(partial_history_cycles, 1237 total_history_cycles, &corr_real); 1238 if (ret) 1239 return ret; 1240 } 1241 1242 /* Fixup monotonic raw and real time time values */ 1243 if (interp_forward) { 1244 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1245 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1246 } else { 1247 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1248 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1249 } 1250 1251 return 0; 1252 } 1253 1254 /* 1255 * timestamp_in_interval - true if ts is chronologically in [start, end] 1256 * 1257 * True if ts occurs chronologically at or after start, and before or at end. 1258 */ 1259 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1260 { 1261 if (ts >= start && ts <= end) 1262 return true; 1263 if (start > end && (ts >= start || ts <= end)) 1264 return true; 1265 return false; 1266 } 1267 1268 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1269 { 1270 u64 rem, res; 1271 1272 if (!numerator || !denominator) 1273 return false; 1274 1275 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1276 *val = res + div_u64(rem * numerator, denominator); 1277 return true; 1278 } 1279 1280 static bool convert_base_to_cs(struct system_counterval_t *scv) 1281 { 1282 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1283 struct clocksource_base *base; 1284 u32 num, den; 1285 1286 /* The timestamp was taken from the time keeper clock source */ 1287 if (cs->id == scv->cs_id) 1288 return true; 1289 1290 /* 1291 * Check whether cs_id matches the base clock. Prevent the compiler from 1292 * re-evaluating @base as the clocksource might change concurrently. 1293 */ 1294 base = READ_ONCE(cs->base); 1295 if (!base || base->id != scv->cs_id) 1296 return false; 1297 1298 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1299 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1300 1301 if (!convert_clock(&scv->cycles, num, den)) 1302 return false; 1303 1304 scv->cycles += base->offset; 1305 return true; 1306 } 1307 1308 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1309 { 1310 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1311 struct clocksource_base *base; 1312 1313 /* 1314 * Check whether base_id matches the base clock. Prevent the compiler from 1315 * re-evaluating @base as the clocksource might change concurrently. 1316 */ 1317 base = READ_ONCE(cs->base); 1318 if (!base || base->id != base_id) 1319 return false; 1320 1321 *cycles -= base->offset; 1322 if (!convert_clock(cycles, base->denominator, base->numerator)) 1323 return false; 1324 return true; 1325 } 1326 1327 static bool convert_ns_to_cs(u64 *delta) 1328 { 1329 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1330 1331 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1332 return false; 1333 1334 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1335 return true; 1336 } 1337 1338 /** 1339 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1340 * @treal: CLOCK_REALTIME timestamp to convert 1341 * @base_id: base clocksource id 1342 * @cycles: pointer to store the converted base clock timestamp 1343 * 1344 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1345 * 1346 * Return: true if the conversion is successful, false otherwise. 1347 */ 1348 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1349 { 1350 struct timekeeper *tk = &tk_core.timekeeper; 1351 unsigned int seq; 1352 u64 delta; 1353 1354 do { 1355 seq = read_seqcount_begin(&tk_core.seq); 1356 if ((u64)treal < tk->tkr_mono.base_real) 1357 return false; 1358 delta = (u64)treal - tk->tkr_mono.base_real; 1359 if (!convert_ns_to_cs(&delta)) 1360 return false; 1361 *cycles = tk->tkr_mono.cycle_last + delta; 1362 if (!convert_cs_to_base(cycles, base_id)) 1363 return false; 1364 } while (read_seqcount_retry(&tk_core.seq, seq)); 1365 1366 return true; 1367 } 1368 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1369 1370 /** 1371 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1372 * @get_time_fn: Callback to get simultaneous device time and 1373 * system counter from the device driver 1374 * @ctx: Context passed to get_time_fn() 1375 * @history_begin: Historical reference point used to interpolate system 1376 * time when counter provided by the driver is before the current interval 1377 * @xtstamp: Receives simultaneously captured system and device time 1378 * 1379 * Reads a timestamp from a device and correlates it to system time 1380 */ 1381 int get_device_system_crosststamp(int (*get_time_fn) 1382 (ktime_t *device_time, 1383 struct system_counterval_t *sys_counterval, 1384 void *ctx), 1385 void *ctx, 1386 struct system_time_snapshot *history_begin, 1387 struct system_device_crosststamp *xtstamp) 1388 { 1389 struct system_counterval_t system_counterval; 1390 struct timekeeper *tk = &tk_core.timekeeper; 1391 u64 cycles, now, interval_start; 1392 unsigned int clock_was_set_seq = 0; 1393 ktime_t base_real, base_raw; 1394 u64 nsec_real, nsec_raw; 1395 u8 cs_was_changed_seq; 1396 unsigned int seq; 1397 bool do_interp; 1398 int ret; 1399 1400 do { 1401 seq = read_seqcount_begin(&tk_core.seq); 1402 /* 1403 * Try to synchronously capture device time and a system 1404 * counter value calling back into the device driver 1405 */ 1406 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1407 if (ret) 1408 return ret; 1409 1410 /* 1411 * Verify that the clocksource ID associated with the captured 1412 * system counter value is the same as for the currently 1413 * installed timekeeper clocksource 1414 */ 1415 if (system_counterval.cs_id == CSID_GENERIC || 1416 !convert_base_to_cs(&system_counterval)) 1417 return -ENODEV; 1418 cycles = system_counterval.cycles; 1419 1420 /* 1421 * Check whether the system counter value provided by the 1422 * device driver is on the current timekeeping interval. 1423 */ 1424 now = tk_clock_read(&tk->tkr_mono); 1425 interval_start = tk->tkr_mono.cycle_last; 1426 if (!timestamp_in_interval(interval_start, now, cycles)) { 1427 clock_was_set_seq = tk->clock_was_set_seq; 1428 cs_was_changed_seq = tk->cs_was_changed_seq; 1429 cycles = interval_start; 1430 do_interp = true; 1431 } else { 1432 do_interp = false; 1433 } 1434 1435 base_real = ktime_add(tk->tkr_mono.base, 1436 tk_core.timekeeper.offs_real); 1437 base_raw = tk->tkr_raw.base; 1438 1439 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1440 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1441 } while (read_seqcount_retry(&tk_core.seq, seq)); 1442 1443 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1444 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1445 1446 /* 1447 * Interpolate if necessary, adjusting back from the start of the 1448 * current interval 1449 */ 1450 if (do_interp) { 1451 u64 partial_history_cycles, total_history_cycles; 1452 bool discontinuity; 1453 1454 /* 1455 * Check that the counter value is not before the provided 1456 * history reference and that the history doesn't cross a 1457 * clocksource change 1458 */ 1459 if (!history_begin || 1460 !timestamp_in_interval(history_begin->cycles, 1461 cycles, system_counterval.cycles) || 1462 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1463 return -EINVAL; 1464 partial_history_cycles = cycles - system_counterval.cycles; 1465 total_history_cycles = cycles - history_begin->cycles; 1466 discontinuity = 1467 history_begin->clock_was_set_seq != clock_was_set_seq; 1468 1469 ret = adjust_historical_crosststamp(history_begin, 1470 partial_history_cycles, 1471 total_history_cycles, 1472 discontinuity, xtstamp); 1473 if (ret) 1474 return ret; 1475 } 1476 1477 return 0; 1478 } 1479 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1480 1481 /** 1482 * timekeeping_clocksource_has_base - Check whether the current clocksource 1483 * is based on given a base clock 1484 * @id: base clocksource ID 1485 * 1486 * Note: The return value is a snapshot which can become invalid right 1487 * after the function returns. 1488 * 1489 * Return: true if the timekeeper clocksource has a base clock with @id, 1490 * false otherwise 1491 */ 1492 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1493 { 1494 /* 1495 * This is a snapshot, so no point in using the sequence 1496 * count. Just prevent the compiler from re-evaluating @base as the 1497 * clocksource might change concurrently. 1498 */ 1499 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1500 1501 return base ? base->id == id : false; 1502 } 1503 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1504 1505 /** 1506 * do_settimeofday64 - Sets the time of day. 1507 * @ts: pointer to the timespec64 variable containing the new time 1508 * 1509 * Sets the time of day to the new time and update NTP and notify hrtimers 1510 */ 1511 int do_settimeofday64(const struct timespec64 *ts) 1512 { 1513 struct timespec64 ts_delta, xt; 1514 1515 if (!timespec64_valid_settod(ts)) 1516 return -EINVAL; 1517 1518 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1519 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1520 1521 timekeeping_forward_now(tks); 1522 1523 xt = tk_xtime(tks); 1524 ts_delta = timespec64_sub(*ts, xt); 1525 1526 if (timespec64_compare(&tks->wall_to_monotonic, &ts_delta) > 0) { 1527 timekeeping_restore_shadow(&tk_core); 1528 return -EINVAL; 1529 } 1530 1531 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, ts_delta)); 1532 tk_set_xtime(tks, ts); 1533 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1534 } 1535 1536 /* Signal hrtimers about time change */ 1537 clock_was_set(CLOCK_SET_WALL); 1538 1539 audit_tk_injoffset(ts_delta); 1540 add_device_randomness(ts, sizeof(*ts)); 1541 return 0; 1542 } 1543 EXPORT_SYMBOL(do_settimeofday64); 1544 1545 /** 1546 * timekeeping_inject_offset - Adds or subtracts from the current time. 1547 * @ts: Pointer to the timespec variable containing the offset 1548 * 1549 * Adds or subtracts an offset value from the current time. 1550 */ 1551 static int timekeeping_inject_offset(const struct timespec64 *ts) 1552 { 1553 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1554 return -EINVAL; 1555 1556 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1557 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1558 struct timespec64 tmp; 1559 1560 timekeeping_forward_now(tks); 1561 1562 /* Make sure the proposed value is valid */ 1563 tmp = timespec64_add(tk_xtime(tks), *ts); 1564 if (timespec64_compare(&tks->wall_to_monotonic, ts) > 0 || 1565 !timespec64_valid_settod(&tmp)) { 1566 timekeeping_restore_shadow(&tk_core); 1567 return -EINVAL; 1568 } 1569 1570 tk_xtime_add(tks, ts); 1571 tk_set_wall_to_mono(tks, timespec64_sub(tks->wall_to_monotonic, *ts)); 1572 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1573 } 1574 1575 /* Signal hrtimers about time change */ 1576 clock_was_set(CLOCK_SET_WALL); 1577 return 0; 1578 } 1579 1580 /* 1581 * Indicates if there is an offset between the system clock and the hardware 1582 * clock/persistent clock/rtc. 1583 */ 1584 int persistent_clock_is_local; 1585 1586 /* 1587 * Adjust the time obtained from the CMOS to be UTC time instead of 1588 * local time. 1589 * 1590 * This is ugly, but preferable to the alternatives. Otherwise we 1591 * would either need to write a program to do it in /etc/rc (and risk 1592 * confusion if the program gets run more than once; it would also be 1593 * hard to make the program warp the clock precisely n hours) or 1594 * compile in the timezone information into the kernel. Bad, bad.... 1595 * 1596 * - TYT, 1992-01-01 1597 * 1598 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1599 * as real UNIX machines always do it. This avoids all headaches about 1600 * daylight saving times and warping kernel clocks. 1601 */ 1602 void timekeeping_warp_clock(void) 1603 { 1604 if (sys_tz.tz_minuteswest != 0) { 1605 struct timespec64 adjust; 1606 1607 persistent_clock_is_local = 1; 1608 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1609 adjust.tv_nsec = 0; 1610 timekeeping_inject_offset(&adjust); 1611 } 1612 } 1613 1614 /* 1615 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1616 */ 1617 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1618 { 1619 tk->tai_offset = tai_offset; 1620 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1621 } 1622 1623 /* 1624 * change_clocksource - Swaps clocksources if a new one is available 1625 * 1626 * Accumulates current time interval and initializes new clocksource 1627 */ 1628 static int change_clocksource(void *data) 1629 { 1630 struct clocksource *new = data, *old = NULL; 1631 1632 /* 1633 * If the clocksource is in a module, get a module reference. 1634 * Succeeds for built-in code (owner == NULL) as well. Abort if the 1635 * reference can't be acquired. 1636 */ 1637 if (!try_module_get(new->owner)) 1638 return 0; 1639 1640 /* Abort if the device can't be enabled */ 1641 if (new->enable && new->enable(new) != 0) { 1642 module_put(new->owner); 1643 return 0; 1644 } 1645 1646 scoped_guard (raw_spinlock_irqsave, &tk_core.lock) { 1647 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1648 1649 timekeeping_forward_now(tks); 1650 old = tks->tkr_mono.clock; 1651 tk_setup_internals(tks, new); 1652 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1653 } 1654 1655 if (old) { 1656 if (old->disable) 1657 old->disable(old); 1658 module_put(old->owner); 1659 } 1660 1661 return 0; 1662 } 1663 1664 /** 1665 * timekeeping_notify - Install a new clock source 1666 * @clock: pointer to the clock source 1667 * 1668 * This function is called from clocksource.c after a new, better clock 1669 * source has been registered. The caller holds the clocksource_mutex. 1670 */ 1671 int timekeeping_notify(struct clocksource *clock) 1672 { 1673 struct timekeeper *tk = &tk_core.timekeeper; 1674 1675 if (tk->tkr_mono.clock == clock) 1676 return 0; 1677 stop_machine(change_clocksource, clock, NULL); 1678 tick_clock_notify(); 1679 return tk->tkr_mono.clock == clock ? 0 : -1; 1680 } 1681 1682 /** 1683 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1684 * @ts: pointer to the timespec64 to be set 1685 * 1686 * Returns the raw monotonic time (completely un-modified by ntp) 1687 */ 1688 void ktime_get_raw_ts64(struct timespec64 *ts) 1689 { 1690 struct timekeeper *tk = &tk_core.timekeeper; 1691 unsigned int seq; 1692 u64 nsecs; 1693 1694 do { 1695 seq = read_seqcount_begin(&tk_core.seq); 1696 ts->tv_sec = tk->raw_sec; 1697 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1698 1699 } while (read_seqcount_retry(&tk_core.seq, seq)); 1700 1701 ts->tv_nsec = 0; 1702 timespec64_add_ns(ts, nsecs); 1703 } 1704 EXPORT_SYMBOL(ktime_get_raw_ts64); 1705 1706 1707 /** 1708 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1709 */ 1710 int timekeeping_valid_for_hres(void) 1711 { 1712 struct timekeeper *tk = &tk_core.timekeeper; 1713 unsigned int seq; 1714 int ret; 1715 1716 do { 1717 seq = read_seqcount_begin(&tk_core.seq); 1718 1719 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1720 1721 } while (read_seqcount_retry(&tk_core.seq, seq)); 1722 1723 return ret; 1724 } 1725 1726 /** 1727 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1728 */ 1729 u64 timekeeping_max_deferment(void) 1730 { 1731 struct timekeeper *tk = &tk_core.timekeeper; 1732 unsigned int seq; 1733 u64 ret; 1734 1735 do { 1736 seq = read_seqcount_begin(&tk_core.seq); 1737 1738 ret = tk->tkr_mono.clock->max_idle_ns; 1739 1740 } while (read_seqcount_retry(&tk_core.seq, seq)); 1741 1742 return ret; 1743 } 1744 1745 /** 1746 * read_persistent_clock64 - Return time from the persistent clock. 1747 * @ts: Pointer to the storage for the readout value 1748 * 1749 * Weak dummy function for arches that do not yet support it. 1750 * Reads the time from the battery backed persistent clock. 1751 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1752 * 1753 * XXX - Do be sure to remove it once all arches implement it. 1754 */ 1755 void __weak read_persistent_clock64(struct timespec64 *ts) 1756 { 1757 ts->tv_sec = 0; 1758 ts->tv_nsec = 0; 1759 } 1760 1761 /** 1762 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1763 * from the boot. 1764 * @wall_time: current time as returned by persistent clock 1765 * @boot_offset: offset that is defined as wall_time - boot_time 1766 * 1767 * Weak dummy function for arches that do not yet support it. 1768 * 1769 * The default function calculates offset based on the current value of 1770 * local_clock(). This way architectures that support sched_clock() but don't 1771 * support dedicated boot time clock will provide the best estimate of the 1772 * boot time. 1773 */ 1774 void __weak __init 1775 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1776 struct timespec64 *boot_offset) 1777 { 1778 read_persistent_clock64(wall_time); 1779 *boot_offset = ns_to_timespec64(local_clock()); 1780 } 1781 1782 static __init void tkd_basic_setup(struct tk_data *tkd) 1783 { 1784 raw_spin_lock_init(&tkd->lock); 1785 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); 1786 } 1787 1788 /* 1789 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1790 * 1791 * The flag starts of false and is only set when a suspend reaches 1792 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1793 * timekeeper clocksource is not stopping across suspend and has been 1794 * used to update sleep time. If the timekeeper clocksource has stopped 1795 * then the flag stays true and is used by the RTC resume code to decide 1796 * whether sleeptime must be injected and if so the flag gets false then. 1797 * 1798 * If a suspend fails before reaching timekeeping_resume() then the flag 1799 * stays false and prevents erroneous sleeptime injection. 1800 */ 1801 static bool suspend_timing_needed; 1802 1803 /* Flag for if there is a persistent clock on this platform */ 1804 static bool persistent_clock_exists; 1805 1806 /* 1807 * timekeeping_init - Initializes the clocksource and common timekeeping values 1808 */ 1809 void __init timekeeping_init(void) 1810 { 1811 struct timespec64 wall_time, boot_offset, wall_to_mono; 1812 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1813 struct clocksource *clock; 1814 1815 tkd_basic_setup(&tk_core); 1816 1817 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1818 if (timespec64_valid_settod(&wall_time) && 1819 timespec64_to_ns(&wall_time) > 0) { 1820 persistent_clock_exists = true; 1821 } else if (timespec64_to_ns(&wall_time) != 0) { 1822 pr_warn("Persistent clock returned invalid value"); 1823 wall_time = (struct timespec64){0}; 1824 } 1825 1826 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1827 boot_offset = (struct timespec64){0}; 1828 1829 /* 1830 * We want set wall_to_mono, so the following is true: 1831 * wall time + wall_to_mono = boot time 1832 */ 1833 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1834 1835 guard(raw_spinlock_irqsave)(&tk_core.lock); 1836 1837 ntp_init(); 1838 1839 clock = clocksource_default_clock(); 1840 if (clock->enable) 1841 clock->enable(clock); 1842 tk_setup_internals(tks, clock); 1843 1844 tk_set_xtime(tks, &wall_time); 1845 tks->raw_sec = 0; 1846 1847 tk_set_wall_to_mono(tks, wall_to_mono); 1848 1849 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1850 } 1851 1852 /* time in seconds when suspend began for persistent clock */ 1853 static struct timespec64 timekeeping_suspend_time; 1854 1855 /** 1856 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1857 * @tk: Pointer to the timekeeper to be updated 1858 * @delta: Pointer to the delta value in timespec64 format 1859 * 1860 * Takes a timespec offset measuring a suspend interval and properly 1861 * adds the sleep offset to the timekeeping variables. 1862 */ 1863 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1864 const struct timespec64 *delta) 1865 { 1866 if (!timespec64_valid_strict(delta)) { 1867 printk_deferred(KERN_WARNING 1868 "__timekeeping_inject_sleeptime: Invalid " 1869 "sleep delta value!\n"); 1870 return; 1871 } 1872 tk_xtime_add(tk, delta); 1873 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1874 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1875 tk_debug_account_sleep_time(delta); 1876 } 1877 1878 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1879 /* 1880 * We have three kinds of time sources to use for sleep time 1881 * injection, the preference order is: 1882 * 1) non-stop clocksource 1883 * 2) persistent clock (ie: RTC accessible when irqs are off) 1884 * 3) RTC 1885 * 1886 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1887 * If system has neither 1) nor 2), 3) will be used finally. 1888 * 1889 * 1890 * If timekeeping has injected sleeptime via either 1) or 2), 1891 * 3) becomes needless, so in this case we don't need to call 1892 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1893 * means. 1894 */ 1895 bool timekeeping_rtc_skipresume(void) 1896 { 1897 return !suspend_timing_needed; 1898 } 1899 1900 /* 1901 * 1) can be determined whether to use or not only when doing 1902 * timekeeping_resume() which is invoked after rtc_suspend(), 1903 * so we can't skip rtc_suspend() surely if system has 1). 1904 * 1905 * But if system has 2), 2) will definitely be used, so in this 1906 * case we don't need to call rtc_suspend(), and this is what 1907 * timekeeping_rtc_skipsuspend() means. 1908 */ 1909 bool timekeeping_rtc_skipsuspend(void) 1910 { 1911 return persistent_clock_exists; 1912 } 1913 1914 /** 1915 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1916 * @delta: pointer to a timespec64 delta value 1917 * 1918 * This hook is for architectures that cannot support read_persistent_clock64 1919 * because their RTC/persistent clock is only accessible when irqs are enabled. 1920 * and also don't have an effective nonstop clocksource. 1921 * 1922 * This function should only be called by rtc_resume(), and allows 1923 * a suspend offset to be injected into the timekeeping values. 1924 */ 1925 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1926 { 1927 scoped_guard(raw_spinlock_irqsave, &tk_core.lock) { 1928 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1929 1930 suspend_timing_needed = false; 1931 timekeeping_forward_now(tks); 1932 __timekeeping_inject_sleeptime(tks, delta); 1933 timekeeping_update_from_shadow(&tk_core, TK_UPDATE_ALL); 1934 } 1935 1936 /* Signal hrtimers about time change */ 1937 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1938 } 1939 #endif 1940 1941 /** 1942 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1943 */ 1944 void timekeeping_resume(void) 1945 { 1946 struct timekeeper *tks = &tk_core.shadow_timekeeper; 1947 struct clocksource *clock = tks->tkr_mono.clock; 1948 struct timespec64 ts_new, ts_delta; 1949 bool inject_sleeptime = false; 1950 u64 cycle_now, nsec; 1951 unsigned long flags; 1952 1953 read_persistent_clock64(&ts_new); 1954 1955 clockevents_resume(); 1956 clocksource_resume(); 1957 1958 raw_spin_lock_irqsave(&tk_core.lock, flags); 1959 1960 /* 1961 * After system resumes, we need to calculate the suspended time and 1962 * compensate it for the OS time. There are 3 sources that could be 1963 * used: Nonstop clocksource during suspend, persistent clock and rtc 1964 * device. 1965 * 1966 * One specific platform may have 1 or 2 or all of them, and the 1967 * preference will be: 1968 * suspend-nonstop clocksource -> persistent clock -> rtc 1969 * The less preferred source will only be tried if there is no better 1970 * usable source. The rtc part is handled separately in rtc core code. 1971 */ 1972 cycle_now = tk_clock_read(&tks->tkr_mono); 1973 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1974 if (nsec > 0) { 1975 ts_delta = ns_to_timespec64(nsec); 1976 inject_sleeptime = true; 1977 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1978 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1979 inject_sleeptime = true; 1980 } 1981 1982 if (inject_sleeptime) { 1983 suspend_timing_needed = false; 1984 __timekeeping_inject_sleeptime(tks, &ts_delta); 1985 } 1986 1987 /* Re-base the last cycle value */ 1988 tks->tkr_mono.cycle_last = cycle_now; 1989 tks->tkr_raw.cycle_last = cycle_now; 1990 1991 tks->ntp_error = 0; 1992 timekeeping_suspended = 0; 1993 timekeeping_update_from_shadow(&tk_core, TK_CLOCK_WAS_SET); 1994 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1995 1996 touch_softlockup_watchdog(); 1997 1998 /* Resume the clockevent device(s) and hrtimers */ 1999 tick_resume(); 2000 /* Notify timerfd as resume is equivalent to clock_was_set() */ 2001 timerfd_resume(); 2002 } 2003 2004 int timekeeping_suspend(void) 2005 { 2006 struct timekeeper *tks = &tk_core.shadow_timekeeper; 2007 struct timespec64 delta, delta_delta; 2008 static struct timespec64 old_delta; 2009 struct clocksource *curr_clock; 2010 unsigned long flags; 2011 u64 cycle_now; 2012 2013 read_persistent_clock64(&timekeeping_suspend_time); 2014 2015 /* 2016 * On some systems the persistent_clock can not be detected at 2017 * timekeeping_init by its return value, so if we see a valid 2018 * value returned, update the persistent_clock_exists flag. 2019 */ 2020 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 2021 persistent_clock_exists = true; 2022 2023 suspend_timing_needed = true; 2024 2025 raw_spin_lock_irqsave(&tk_core.lock, flags); 2026 timekeeping_forward_now(tks); 2027 timekeeping_suspended = 1; 2028 2029 /* 2030 * Since we've called forward_now, cycle_last stores the value 2031 * just read from the current clocksource. Save this to potentially 2032 * use in suspend timing. 2033 */ 2034 curr_clock = tks->tkr_mono.clock; 2035 cycle_now = tks->tkr_mono.cycle_last; 2036 clocksource_start_suspend_timing(curr_clock, cycle_now); 2037 2038 if (persistent_clock_exists) { 2039 /* 2040 * To avoid drift caused by repeated suspend/resumes, 2041 * which each can add ~1 second drift error, 2042 * try to compensate so the difference in system time 2043 * and persistent_clock time stays close to constant. 2044 */ 2045 delta = timespec64_sub(tk_xtime(tks), timekeeping_suspend_time); 2046 delta_delta = timespec64_sub(delta, old_delta); 2047 if (abs(delta_delta.tv_sec) >= 2) { 2048 /* 2049 * if delta_delta is too large, assume time correction 2050 * has occurred and set old_delta to the current delta. 2051 */ 2052 old_delta = delta; 2053 } else { 2054 /* Otherwise try to adjust old_system to compensate */ 2055 timekeeping_suspend_time = 2056 timespec64_add(timekeeping_suspend_time, delta_delta); 2057 } 2058 } 2059 2060 timekeeping_update_from_shadow(&tk_core, 0); 2061 halt_fast_timekeeper(tks); 2062 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 2063 2064 tick_suspend(); 2065 clocksource_suspend(); 2066 clockevents_suspend(); 2067 2068 return 0; 2069 } 2070 2071 /* sysfs resume/suspend bits for timekeeping */ 2072 static struct syscore_ops timekeeping_syscore_ops = { 2073 .resume = timekeeping_resume, 2074 .suspend = timekeeping_suspend, 2075 }; 2076 2077 static int __init timekeeping_init_ops(void) 2078 { 2079 register_syscore_ops(&timekeeping_syscore_ops); 2080 return 0; 2081 } 2082 device_initcall(timekeeping_init_ops); 2083 2084 /* 2085 * Apply a multiplier adjustment to the timekeeper 2086 */ 2087 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 2088 s64 offset, 2089 s32 mult_adj) 2090 { 2091 s64 interval = tk->cycle_interval; 2092 2093 if (mult_adj == 0) { 2094 return; 2095 } else if (mult_adj == -1) { 2096 interval = -interval; 2097 offset = -offset; 2098 } else if (mult_adj != 1) { 2099 interval *= mult_adj; 2100 offset *= mult_adj; 2101 } 2102 2103 /* 2104 * So the following can be confusing. 2105 * 2106 * To keep things simple, lets assume mult_adj == 1 for now. 2107 * 2108 * When mult_adj != 1, remember that the interval and offset values 2109 * have been appropriately scaled so the math is the same. 2110 * 2111 * The basic idea here is that we're increasing the multiplier 2112 * by one, this causes the xtime_interval to be incremented by 2113 * one cycle_interval. This is because: 2114 * xtime_interval = cycle_interval * mult 2115 * So if mult is being incremented by one: 2116 * xtime_interval = cycle_interval * (mult + 1) 2117 * Its the same as: 2118 * xtime_interval = (cycle_interval * mult) + cycle_interval 2119 * Which can be shortened to: 2120 * xtime_interval += cycle_interval 2121 * 2122 * So offset stores the non-accumulated cycles. Thus the current 2123 * time (in shifted nanoseconds) is: 2124 * now = (offset * adj) + xtime_nsec 2125 * Now, even though we're adjusting the clock frequency, we have 2126 * to keep time consistent. In other words, we can't jump back 2127 * in time, and we also want to avoid jumping forward in time. 2128 * 2129 * So given the same offset value, we need the time to be the same 2130 * both before and after the freq adjustment. 2131 * now = (offset * adj_1) + xtime_nsec_1 2132 * now = (offset * adj_2) + xtime_nsec_2 2133 * So: 2134 * (offset * adj_1) + xtime_nsec_1 = 2135 * (offset * adj_2) + xtime_nsec_2 2136 * And we know: 2137 * adj_2 = adj_1 + 1 2138 * So: 2139 * (offset * adj_1) + xtime_nsec_1 = 2140 * (offset * (adj_1+1)) + xtime_nsec_2 2141 * (offset * adj_1) + xtime_nsec_1 = 2142 * (offset * adj_1) + offset + xtime_nsec_2 2143 * Canceling the sides: 2144 * xtime_nsec_1 = offset + xtime_nsec_2 2145 * Which gives us: 2146 * xtime_nsec_2 = xtime_nsec_1 - offset 2147 * Which simplifies to: 2148 * xtime_nsec -= offset 2149 */ 2150 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2151 /* NTP adjustment caused clocksource mult overflow */ 2152 WARN_ON_ONCE(1); 2153 return; 2154 } 2155 2156 tk->tkr_mono.mult += mult_adj; 2157 tk->xtime_interval += interval; 2158 tk->tkr_mono.xtime_nsec -= offset; 2159 } 2160 2161 /* 2162 * Adjust the timekeeper's multiplier to the correct frequency 2163 * and also to reduce the accumulated error value. 2164 */ 2165 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2166 { 2167 u64 ntp_tl = ntp_tick_length(); 2168 u32 mult; 2169 2170 /* 2171 * Determine the multiplier from the current NTP tick length. 2172 * Avoid expensive division when the tick length doesn't change. 2173 */ 2174 if (likely(tk->ntp_tick == ntp_tl)) { 2175 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2176 } else { 2177 tk->ntp_tick = ntp_tl; 2178 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2179 tk->xtime_remainder, tk->cycle_interval); 2180 } 2181 2182 /* 2183 * If the clock is behind the NTP time, increase the multiplier by 1 2184 * to catch up with it. If it's ahead and there was a remainder in the 2185 * tick division, the clock will slow down. Otherwise it will stay 2186 * ahead until the tick length changes to a non-divisible value. 2187 */ 2188 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2189 mult += tk->ntp_err_mult; 2190 2191 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2192 2193 if (unlikely(tk->tkr_mono.clock->maxadj && 2194 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2195 > tk->tkr_mono.clock->maxadj))) { 2196 printk_once(KERN_WARNING 2197 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2198 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2199 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2200 } 2201 2202 /* 2203 * It may be possible that when we entered this function, xtime_nsec 2204 * was very small. Further, if we're slightly speeding the clocksource 2205 * in the code above, its possible the required corrective factor to 2206 * xtime_nsec could cause it to underflow. 2207 * 2208 * Now, since we have already accumulated the second and the NTP 2209 * subsystem has been notified via second_overflow(), we need to skip 2210 * the next update. 2211 */ 2212 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2213 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2214 tk->tkr_mono.shift; 2215 tk->xtime_sec--; 2216 tk->skip_second_overflow = 1; 2217 } 2218 } 2219 2220 /* 2221 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2222 * 2223 * Helper function that accumulates the nsecs greater than a second 2224 * from the xtime_nsec field to the xtime_secs field. 2225 * It also calls into the NTP code to handle leapsecond processing. 2226 */ 2227 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2228 { 2229 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2230 unsigned int clock_set = 0; 2231 2232 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2233 int leap; 2234 2235 tk->tkr_mono.xtime_nsec -= nsecps; 2236 tk->xtime_sec++; 2237 2238 /* 2239 * Skip NTP update if this second was accumulated before, 2240 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2241 */ 2242 if (unlikely(tk->skip_second_overflow)) { 2243 tk->skip_second_overflow = 0; 2244 continue; 2245 } 2246 2247 /* Figure out if its a leap sec and apply if needed */ 2248 leap = second_overflow(tk->xtime_sec); 2249 if (unlikely(leap)) { 2250 struct timespec64 ts; 2251 2252 tk->xtime_sec += leap; 2253 2254 ts.tv_sec = leap; 2255 ts.tv_nsec = 0; 2256 tk_set_wall_to_mono(tk, 2257 timespec64_sub(tk->wall_to_monotonic, ts)); 2258 2259 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2260 2261 clock_set = TK_CLOCK_WAS_SET; 2262 } 2263 } 2264 return clock_set; 2265 } 2266 2267 /* 2268 * logarithmic_accumulation - shifted accumulation of cycles 2269 * 2270 * This functions accumulates a shifted interval of cycles into 2271 * a shifted interval nanoseconds. Allows for O(log) accumulation 2272 * loop. 2273 * 2274 * Returns the unconsumed cycles. 2275 */ 2276 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2277 u32 shift, unsigned int *clock_set) 2278 { 2279 u64 interval = tk->cycle_interval << shift; 2280 u64 snsec_per_sec; 2281 2282 /* If the offset is smaller than a shifted interval, do nothing */ 2283 if (offset < interval) 2284 return offset; 2285 2286 /* Accumulate one shifted interval */ 2287 offset -= interval; 2288 tk->tkr_mono.cycle_last += interval; 2289 tk->tkr_raw.cycle_last += interval; 2290 2291 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2292 *clock_set |= accumulate_nsecs_to_secs(tk); 2293 2294 /* Accumulate raw time */ 2295 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2296 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2297 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2298 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2299 tk->raw_sec++; 2300 } 2301 2302 /* Accumulate error between NTP and clock interval */ 2303 tk->ntp_error += tk->ntp_tick << shift; 2304 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2305 (tk->ntp_error_shift + shift); 2306 2307 return offset; 2308 } 2309 2310 /* 2311 * timekeeping_advance - Updates the timekeeper to the current time and 2312 * current NTP tick length 2313 */ 2314 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2315 { 2316 struct timekeeper *tk = &tk_core.shadow_timekeeper; 2317 struct timekeeper *real_tk = &tk_core.timekeeper; 2318 unsigned int clock_set = 0; 2319 int shift = 0, maxshift; 2320 u64 offset; 2321 2322 guard(raw_spinlock_irqsave)(&tk_core.lock); 2323 2324 /* Make sure we're fully resumed: */ 2325 if (unlikely(timekeeping_suspended)) 2326 return false; 2327 2328 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2329 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2330 2331 /* Check if there's really nothing to do */ 2332 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2333 return false; 2334 2335 /* Do some additional sanity checking */ 2336 timekeeping_check_update(tk, offset); 2337 2338 /* 2339 * With NO_HZ we may have to accumulate many cycle_intervals 2340 * (think "ticks") worth of time at once. To do this efficiently, 2341 * we calculate the largest doubling multiple of cycle_intervals 2342 * that is smaller than the offset. We then accumulate that 2343 * chunk in one go, and then try to consume the next smaller 2344 * doubled multiple. 2345 */ 2346 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2347 shift = max(0, shift); 2348 /* Bound shift to one less than what overflows tick_length */ 2349 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2350 shift = min(shift, maxshift); 2351 while (offset >= tk->cycle_interval) { 2352 offset = logarithmic_accumulation(tk, offset, shift, &clock_set); 2353 if (offset < tk->cycle_interval<<shift) 2354 shift--; 2355 } 2356 2357 /* Adjust the multiplier to correct NTP error */ 2358 timekeeping_adjust(tk, offset); 2359 2360 /* 2361 * Finally, make sure that after the rounding 2362 * xtime_nsec isn't larger than NSEC_PER_SEC 2363 */ 2364 clock_set |= accumulate_nsecs_to_secs(tk); 2365 2366 timekeeping_update_from_shadow(&tk_core, clock_set); 2367 2368 return !!clock_set; 2369 } 2370 2371 /** 2372 * update_wall_time - Uses the current clocksource to increment the wall time 2373 * 2374 */ 2375 void update_wall_time(void) 2376 { 2377 if (timekeeping_advance(TK_ADV_TICK)) 2378 clock_was_set_delayed(); 2379 } 2380 2381 /** 2382 * getboottime64 - Return the real time of system boot. 2383 * @ts: pointer to the timespec64 to be set 2384 * 2385 * Returns the wall-time of boot in a timespec64. 2386 * 2387 * This is based on the wall_to_monotonic offset and the total suspend 2388 * time. Calls to settimeofday will affect the value returned (which 2389 * basically means that however wrong your real time clock is at boot time, 2390 * you get the right time here). 2391 */ 2392 void getboottime64(struct timespec64 *ts) 2393 { 2394 struct timekeeper *tk = &tk_core.timekeeper; 2395 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2396 2397 *ts = ktime_to_timespec64(t); 2398 } 2399 EXPORT_SYMBOL_GPL(getboottime64); 2400 2401 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2402 { 2403 struct timekeeper *tk = &tk_core.timekeeper; 2404 unsigned int seq; 2405 2406 do { 2407 seq = read_seqcount_begin(&tk_core.seq); 2408 2409 *ts = tk_xtime(tk); 2410 } while (read_seqcount_retry(&tk_core.seq, seq)); 2411 } 2412 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2413 2414 /** 2415 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor 2416 * @ts: timespec64 to be filled 2417 * 2418 * Fetch the global mg_floor value, convert it to realtime and compare it 2419 * to the current coarse-grained time. Fill @ts with whichever is 2420 * latest. Note that this is a filesystem-specific interface and should be 2421 * avoided outside of that context. 2422 */ 2423 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) 2424 { 2425 struct timekeeper *tk = &tk_core.timekeeper; 2426 u64 floor = atomic64_read(&mg_floor); 2427 ktime_t f_real, offset, coarse; 2428 unsigned int seq; 2429 2430 do { 2431 seq = read_seqcount_begin(&tk_core.seq); 2432 *ts = tk_xtime(tk); 2433 offset = tk_core.timekeeper.offs_real; 2434 } while (read_seqcount_retry(&tk_core.seq, seq)); 2435 2436 coarse = timespec64_to_ktime(*ts); 2437 f_real = ktime_add(floor, offset); 2438 if (ktime_after(f_real, coarse)) 2439 *ts = ktime_to_timespec64(f_real); 2440 } 2441 2442 /** 2443 * ktime_get_real_ts64_mg - attempt to update floor value and return result 2444 * @ts: pointer to the timespec to be set 2445 * 2446 * Get a monotonic fine-grained time value and attempt to swap it into 2447 * mg_floor. If that succeeds then accept the new floor value. If it fails 2448 * then another task raced in during the interim time and updated the 2449 * floor. Since any update to the floor must be later than the previous 2450 * floor, either outcome is acceptable. 2451 * 2452 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), 2453 * and determining that the resulting coarse-grained timestamp did not effect 2454 * a change in ctime. Any more recent floor value would effect a change to 2455 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. 2456 * 2457 * @ts will be filled with the latest floor value, regardless of the outcome of 2458 * the cmpxchg. Note that this is a filesystem specific interface and should be 2459 * avoided outside of that context. 2460 */ 2461 void ktime_get_real_ts64_mg(struct timespec64 *ts) 2462 { 2463 struct timekeeper *tk = &tk_core.timekeeper; 2464 ktime_t old = atomic64_read(&mg_floor); 2465 ktime_t offset, mono; 2466 unsigned int seq; 2467 u64 nsecs; 2468 2469 do { 2470 seq = read_seqcount_begin(&tk_core.seq); 2471 2472 ts->tv_sec = tk->xtime_sec; 2473 mono = tk->tkr_mono.base; 2474 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2475 offset = tk_core.timekeeper.offs_real; 2476 } while (read_seqcount_retry(&tk_core.seq, seq)); 2477 2478 mono = ktime_add_ns(mono, nsecs); 2479 2480 /* 2481 * Attempt to update the floor with the new time value. As any 2482 * update must be later then the existing floor, and would effect 2483 * a change to ctime from the perspective of the current task, 2484 * accept the resulting floor value regardless of the outcome of 2485 * the swap. 2486 */ 2487 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { 2488 ts->tv_nsec = 0; 2489 timespec64_add_ns(ts, nsecs); 2490 timekeeping_inc_mg_floor_swaps(); 2491 } else { 2492 /* 2493 * Another task changed mg_floor since "old" was fetched. 2494 * "old" has been updated with the latest value of "mg_floor". 2495 * That value is newer than the previous floor value, which 2496 * is enough to effect a change to ctime. Accept it. 2497 */ 2498 *ts = ktime_to_timespec64(ktime_add(old, offset)); 2499 } 2500 } 2501 2502 void ktime_get_coarse_ts64(struct timespec64 *ts) 2503 { 2504 struct timekeeper *tk = &tk_core.timekeeper; 2505 struct timespec64 now, mono; 2506 unsigned int seq; 2507 2508 do { 2509 seq = read_seqcount_begin(&tk_core.seq); 2510 2511 now = tk_xtime(tk); 2512 mono = tk->wall_to_monotonic; 2513 } while (read_seqcount_retry(&tk_core.seq, seq)); 2514 2515 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2516 now.tv_nsec + mono.tv_nsec); 2517 } 2518 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2519 2520 /* 2521 * Must hold jiffies_lock 2522 */ 2523 void do_timer(unsigned long ticks) 2524 { 2525 jiffies_64 += ticks; 2526 calc_global_load(); 2527 } 2528 2529 /** 2530 * ktime_get_update_offsets_now - hrtimer helper 2531 * @cwsseq: pointer to check and store the clock was set sequence number 2532 * @offs_real: pointer to storage for monotonic -> realtime offset 2533 * @offs_boot: pointer to storage for monotonic -> boottime offset 2534 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2535 * 2536 * Returns current monotonic time and updates the offsets if the 2537 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2538 * different. 2539 * 2540 * Called from hrtimer_interrupt() or retrigger_next_event() 2541 */ 2542 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2543 ktime_t *offs_boot, ktime_t *offs_tai) 2544 { 2545 struct timekeeper *tk = &tk_core.timekeeper; 2546 unsigned int seq; 2547 ktime_t base; 2548 u64 nsecs; 2549 2550 do { 2551 seq = read_seqcount_begin(&tk_core.seq); 2552 2553 base = tk->tkr_mono.base; 2554 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2555 base = ktime_add_ns(base, nsecs); 2556 2557 if (*cwsseq != tk->clock_was_set_seq) { 2558 *cwsseq = tk->clock_was_set_seq; 2559 *offs_real = tk->offs_real; 2560 *offs_boot = tk->offs_boot; 2561 *offs_tai = tk->offs_tai; 2562 } 2563 2564 /* Handle leapsecond insertion adjustments */ 2565 if (unlikely(base >= tk->next_leap_ktime)) 2566 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2567 2568 } while (read_seqcount_retry(&tk_core.seq, seq)); 2569 2570 return base; 2571 } 2572 2573 /* 2574 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2575 */ 2576 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2577 { 2578 if (txc->modes & ADJ_ADJTIME) { 2579 /* singleshot must not be used with any other mode bits */ 2580 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2581 return -EINVAL; 2582 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2583 !capable(CAP_SYS_TIME)) 2584 return -EPERM; 2585 } else { 2586 /* In order to modify anything, you gotta be super-user! */ 2587 if (txc->modes && !capable(CAP_SYS_TIME)) 2588 return -EPERM; 2589 /* 2590 * if the quartz is off by more than 10% then 2591 * something is VERY wrong! 2592 */ 2593 if (txc->modes & ADJ_TICK && 2594 (txc->tick < 900000/USER_HZ || 2595 txc->tick > 1100000/USER_HZ)) 2596 return -EINVAL; 2597 } 2598 2599 if (txc->modes & ADJ_SETOFFSET) { 2600 /* In order to inject time, you gotta be super-user! */ 2601 if (!capable(CAP_SYS_TIME)) 2602 return -EPERM; 2603 2604 /* 2605 * Validate if a timespec/timeval used to inject a time 2606 * offset is valid. Offsets can be positive or negative, so 2607 * we don't check tv_sec. The value of the timeval/timespec 2608 * is the sum of its fields,but *NOTE*: 2609 * The field tv_usec/tv_nsec must always be non-negative and 2610 * we can't have more nanoseconds/microseconds than a second. 2611 */ 2612 if (txc->time.tv_usec < 0) 2613 return -EINVAL; 2614 2615 if (txc->modes & ADJ_NANO) { 2616 if (txc->time.tv_usec >= NSEC_PER_SEC) 2617 return -EINVAL; 2618 } else { 2619 if (txc->time.tv_usec >= USEC_PER_SEC) 2620 return -EINVAL; 2621 } 2622 } 2623 2624 /* 2625 * Check for potential multiplication overflows that can 2626 * only happen on 64-bit systems: 2627 */ 2628 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2629 if (LLONG_MIN / PPM_SCALE > txc->freq) 2630 return -EINVAL; 2631 if (LLONG_MAX / PPM_SCALE < txc->freq) 2632 return -EINVAL; 2633 } 2634 2635 return 0; 2636 } 2637 2638 /** 2639 * random_get_entropy_fallback - Returns the raw clock source value, 2640 * used by random.c for platforms with no valid random_get_entropy(). 2641 */ 2642 unsigned long random_get_entropy_fallback(void) 2643 { 2644 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2645 struct clocksource *clock = READ_ONCE(tkr->clock); 2646 2647 if (unlikely(timekeeping_suspended || !clock)) 2648 return 0; 2649 return clock->read(clock); 2650 } 2651 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2652 2653 /** 2654 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2655 * @txc: Pointer to kernel_timex structure containing NTP parameters 2656 */ 2657 int do_adjtimex(struct __kernel_timex *txc) 2658 { 2659 struct timekeeper *tk = &tk_core.timekeeper; 2660 struct audit_ntp_data ad; 2661 bool offset_set = false; 2662 bool clock_set = false; 2663 struct timespec64 ts; 2664 unsigned long flags; 2665 s32 orig_tai, tai; 2666 int ret; 2667 2668 /* Validate the data before disabling interrupts */ 2669 ret = timekeeping_validate_timex(txc); 2670 if (ret) 2671 return ret; 2672 add_device_randomness(txc, sizeof(*txc)); 2673 2674 if (txc->modes & ADJ_SETOFFSET) { 2675 struct timespec64 delta; 2676 delta.tv_sec = txc->time.tv_sec; 2677 delta.tv_nsec = txc->time.tv_usec; 2678 if (!(txc->modes & ADJ_NANO)) 2679 delta.tv_nsec *= 1000; 2680 ret = timekeeping_inject_offset(&delta); 2681 if (ret) 2682 return ret; 2683 2684 offset_set = delta.tv_sec != 0; 2685 audit_tk_injoffset(delta); 2686 } 2687 2688 audit_ntp_init(&ad); 2689 2690 ktime_get_real_ts64(&ts); 2691 add_device_randomness(&ts, sizeof(ts)); 2692 2693 raw_spin_lock_irqsave(&tk_core.lock, flags); 2694 write_seqcount_begin(&tk_core.seq); 2695 2696 orig_tai = tai = tk->tai_offset; 2697 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2698 2699 if (tai != orig_tai) { 2700 __timekeeping_set_tai_offset(tk, tai); 2701 timekeeping_update(&tk_core, tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2702 clock_set = true; 2703 } else { 2704 tk_update_leap_state(tk); 2705 } 2706 2707 write_seqcount_end(&tk_core.seq); 2708 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 2709 2710 audit_ntp_log(&ad); 2711 2712 /* Update the multiplier immediately if frequency was set directly */ 2713 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2714 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2715 2716 if (clock_set) 2717 clock_was_set(CLOCK_SET_WALL); 2718 2719 ntp_notify_cmos_timer(offset_set); 2720 2721 return ret; 2722 } 2723 2724 #ifdef CONFIG_NTP_PPS 2725 /** 2726 * hardpps() - Accessor function to NTP __hardpps function 2727 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2728 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2729 */ 2730 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2731 { 2732 guard(raw_spinlock_irqsave)(&tk_core.lock); 2733 __hardpps(phase_ts, raw_ts); 2734 } 2735 EXPORT_SYMBOL(hardpps); 2736 #endif /* CONFIG_NTP_PPS */ 2737