1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Kernel timekeeping code and accessor functions. Based on code from 4 * timer.c, moved in commit 8524070b7982. 5 */ 6 #include <linux/timekeeper_internal.h> 7 #include <linux/module.h> 8 #include <linux/interrupt.h> 9 #include <linux/percpu.h> 10 #include <linux/init.h> 11 #include <linux/mm.h> 12 #include <linux/nmi.h> 13 #include <linux/sched.h> 14 #include <linux/sched/loadavg.h> 15 #include <linux/sched/clock.h> 16 #include <linux/syscore_ops.h> 17 #include <linux/clocksource.h> 18 #include <linux/jiffies.h> 19 #include <linux/time.h> 20 #include <linux/timex.h> 21 #include <linux/tick.h> 22 #include <linux/stop_machine.h> 23 #include <linux/pvclock_gtod.h> 24 #include <linux/compiler.h> 25 #include <linux/audit.h> 26 #include <linux/random.h> 27 28 #include "tick-internal.h" 29 #include "ntp_internal.h" 30 #include "timekeeping_internal.h" 31 32 #define TK_CLEAR_NTP (1 << 0) 33 #define TK_MIRROR (1 << 1) 34 #define TK_CLOCK_WAS_SET (1 << 2) 35 36 enum timekeeping_adv_mode { 37 /* Update timekeeper when a tick has passed */ 38 TK_ADV_TICK, 39 40 /* Update timekeeper on a direct frequency change */ 41 TK_ADV_FREQ 42 }; 43 44 /* 45 * The most important data for readout fits into a single 64 byte 46 * cache line. 47 */ 48 struct tk_data { 49 seqcount_raw_spinlock_t seq; 50 struct timekeeper timekeeper; 51 struct timekeeper shadow_timekeeper; 52 raw_spinlock_t lock; 53 } ____cacheline_aligned; 54 55 static struct tk_data tk_core; 56 57 /* flag for if timekeeping is suspended */ 58 int __read_mostly timekeeping_suspended; 59 60 /** 61 * struct tk_fast - NMI safe timekeeper 62 * @seq: Sequence counter for protecting updates. The lowest bit 63 * is the index for the tk_read_base array 64 * @base: tk_read_base array. Access is indexed by the lowest bit of 65 * @seq. 66 * 67 * See @update_fast_timekeeper() below. 68 */ 69 struct tk_fast { 70 seqcount_latch_t seq; 71 struct tk_read_base base[2]; 72 }; 73 74 /* Suspend-time cycles value for halted fast timekeeper. */ 75 static u64 cycles_at_suspend; 76 77 static u64 dummy_clock_read(struct clocksource *cs) 78 { 79 if (timekeeping_suspended) 80 return cycles_at_suspend; 81 return local_clock(); 82 } 83 84 static struct clocksource dummy_clock = { 85 .read = dummy_clock_read, 86 }; 87 88 /* 89 * Boot time initialization which allows local_clock() to be utilized 90 * during early boot when clocksources are not available. local_clock() 91 * returns nanoseconds already so no conversion is required, hence mult=1 92 * and shift=0. When the first proper clocksource is installed then 93 * the fast time keepers are updated with the correct values. 94 */ 95 #define FAST_TK_INIT \ 96 { \ 97 .clock = &dummy_clock, \ 98 .mask = CLOCKSOURCE_MASK(64), \ 99 .mult = 1, \ 100 .shift = 0, \ 101 } 102 103 static struct tk_fast tk_fast_mono ____cacheline_aligned = { 104 .seq = SEQCNT_LATCH_ZERO(tk_fast_mono.seq), 105 .base[0] = FAST_TK_INIT, 106 .base[1] = FAST_TK_INIT, 107 }; 108 109 static struct tk_fast tk_fast_raw ____cacheline_aligned = { 110 .seq = SEQCNT_LATCH_ZERO(tk_fast_raw.seq), 111 .base[0] = FAST_TK_INIT, 112 .base[1] = FAST_TK_INIT, 113 }; 114 115 unsigned long timekeeper_lock_irqsave(void) 116 { 117 unsigned long flags; 118 119 raw_spin_lock_irqsave(&tk_core.lock, flags); 120 return flags; 121 } 122 123 void timekeeper_unlock_irqrestore(unsigned long flags) 124 { 125 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 126 } 127 128 /* 129 * Multigrain timestamps require tracking the latest fine-grained timestamp 130 * that has been issued, and never returning a coarse-grained timestamp that is 131 * earlier than that value. 132 * 133 * mg_floor represents the latest fine-grained time that has been handed out as 134 * a file timestamp on the system. This is tracked as a monotonic ktime_t, and 135 * converted to a realtime clock value on an as-needed basis. 136 * 137 * Maintaining mg_floor ensures the multigrain interfaces never issue a 138 * timestamp earlier than one that has been previously issued. 139 * 140 * The exception to this rule is when there is a backward realtime clock jump. If 141 * such an event occurs, a timestamp can appear to be earlier than a previous one. 142 */ 143 static __cacheline_aligned_in_smp atomic64_t mg_floor; 144 145 static inline void tk_normalize_xtime(struct timekeeper *tk) 146 { 147 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) { 148 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 149 tk->xtime_sec++; 150 } 151 while (tk->tkr_raw.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_raw.shift)) { 152 tk->tkr_raw.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 153 tk->raw_sec++; 154 } 155 } 156 157 static inline struct timespec64 tk_xtime(const struct timekeeper *tk) 158 { 159 struct timespec64 ts; 160 161 ts.tv_sec = tk->xtime_sec; 162 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 163 return ts; 164 } 165 166 static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts) 167 { 168 tk->xtime_sec = ts->tv_sec; 169 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift; 170 } 171 172 static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts) 173 { 174 tk->xtime_sec += ts->tv_sec; 175 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift; 176 tk_normalize_xtime(tk); 177 } 178 179 static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm) 180 { 181 struct timespec64 tmp; 182 183 /* 184 * Verify consistency of: offset_real = -wall_to_monotonic 185 * before modifying anything 186 */ 187 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec, 188 -tk->wall_to_monotonic.tv_nsec); 189 WARN_ON_ONCE(tk->offs_real != timespec64_to_ktime(tmp)); 190 tk->wall_to_monotonic = wtm; 191 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec); 192 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 193 WRITE_ONCE(tk->offs_real, timespec64_to_ktime(tmp)); 194 WRITE_ONCE(tk->offs_tai, ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0))); 195 } 196 197 static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta) 198 { 199 /* Paired with READ_ONCE() in ktime_mono_to_any() */ 200 WRITE_ONCE(tk->offs_boot, ktime_add(tk->offs_boot, delta)); 201 /* 202 * Timespec representation for VDSO update to avoid 64bit division 203 * on every update. 204 */ 205 tk->monotonic_to_boot = ktime_to_timespec64(tk->offs_boot); 206 } 207 208 /* 209 * tk_clock_read - atomic clocksource read() helper 210 * 211 * This helper is necessary to use in the read paths because, while the 212 * seqcount ensures we don't return a bad value while structures are updated, 213 * it doesn't protect from potential crashes. There is the possibility that 214 * the tkr's clocksource may change between the read reference, and the 215 * clock reference passed to the read function. This can cause crashes if 216 * the wrong clocksource is passed to the wrong read function. 217 * This isn't necessary to use when holding the tk_core.lock or doing 218 * a read of the fast-timekeeper tkrs (which is protected by its own locking 219 * and update logic). 220 */ 221 static inline u64 tk_clock_read(const struct tk_read_base *tkr) 222 { 223 struct clocksource *clock = READ_ONCE(tkr->clock); 224 225 return clock->read(clock); 226 } 227 228 #ifdef CONFIG_DEBUG_TIMEKEEPING 229 #define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */ 230 231 static void timekeeping_check_update(struct timekeeper *tk, u64 offset) 232 { 233 234 u64 max_cycles = tk->tkr_mono.clock->max_cycles; 235 const char *name = tk->tkr_mono.clock->name; 236 237 if (offset > max_cycles) { 238 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n", 239 offset, name, max_cycles); 240 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n"); 241 } else { 242 if (offset > (max_cycles >> 1)) { 243 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n", 244 offset, name, max_cycles >> 1); 245 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n"); 246 } 247 } 248 249 if (tk->underflow_seen) { 250 if (jiffies - tk->last_warning > WARNING_FREQ) { 251 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name); 252 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 253 printk_deferred(" Your kernel is probably still fine.\n"); 254 tk->last_warning = jiffies; 255 } 256 tk->underflow_seen = 0; 257 } 258 259 if (tk->overflow_seen) { 260 if (jiffies - tk->last_warning > WARNING_FREQ) { 261 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name); 262 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n"); 263 printk_deferred(" Your kernel is probably still fine.\n"); 264 tk->last_warning = jiffies; 265 } 266 tk->overflow_seen = 0; 267 } 268 } 269 270 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles); 271 272 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 273 { 274 struct timekeeper *tk = &tk_core.timekeeper; 275 u64 now, last, mask, max, delta; 276 unsigned int seq; 277 278 /* 279 * Since we're called holding a seqcount, the data may shift 280 * under us while we're doing the calculation. This can cause 281 * false positives, since we'd note a problem but throw the 282 * results away. So nest another seqcount here to atomically 283 * grab the points we are checking with. 284 */ 285 do { 286 seq = read_seqcount_begin(&tk_core.seq); 287 now = tk_clock_read(tkr); 288 last = tkr->cycle_last; 289 mask = tkr->mask; 290 max = tkr->clock->max_cycles; 291 } while (read_seqcount_retry(&tk_core.seq, seq)); 292 293 delta = clocksource_delta(now, last, mask); 294 295 /* 296 * Try to catch underflows by checking if we are seeing small 297 * mask-relative negative values. 298 */ 299 if (unlikely((~delta & mask) < (mask >> 3))) 300 tk->underflow_seen = 1; 301 302 /* Check for multiplication overflows */ 303 if (unlikely(delta > max)) 304 tk->overflow_seen = 1; 305 306 /* timekeeping_cycles_to_ns() handles both under and overflow */ 307 return timekeeping_cycles_to_ns(tkr, now); 308 } 309 #else 310 static inline void timekeeping_check_update(struct timekeeper *tk, u64 offset) 311 { 312 } 313 static inline u64 timekeeping_debug_get_ns(const struct tk_read_base *tkr) 314 { 315 BUG(); 316 } 317 #endif 318 319 /** 320 * tk_setup_internals - Set up internals to use clocksource clock. 321 * 322 * @tk: The target timekeeper to setup. 323 * @clock: Pointer to clocksource. 324 * 325 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment 326 * pair and interval request. 327 * 328 * Unless you're the timekeeping code, you should not be using this! 329 */ 330 static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock) 331 { 332 u64 interval; 333 u64 tmp, ntpinterval; 334 struct clocksource *old_clock; 335 336 ++tk->cs_was_changed_seq; 337 old_clock = tk->tkr_mono.clock; 338 tk->tkr_mono.clock = clock; 339 tk->tkr_mono.mask = clock->mask; 340 tk->tkr_mono.cycle_last = tk_clock_read(&tk->tkr_mono); 341 342 tk->tkr_raw.clock = clock; 343 tk->tkr_raw.mask = clock->mask; 344 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last; 345 346 /* Do the ns -> cycle conversion first, using original mult */ 347 tmp = NTP_INTERVAL_LENGTH; 348 tmp <<= clock->shift; 349 ntpinterval = tmp; 350 tmp += clock->mult/2; 351 do_div(tmp, clock->mult); 352 if (tmp == 0) 353 tmp = 1; 354 355 interval = (u64) tmp; 356 tk->cycle_interval = interval; 357 358 /* Go back from cycles -> shifted ns */ 359 tk->xtime_interval = interval * clock->mult; 360 tk->xtime_remainder = ntpinterval - tk->xtime_interval; 361 tk->raw_interval = interval * clock->mult; 362 363 /* if changing clocks, convert xtime_nsec shift units */ 364 if (old_clock) { 365 int shift_change = clock->shift - old_clock->shift; 366 if (shift_change < 0) { 367 tk->tkr_mono.xtime_nsec >>= -shift_change; 368 tk->tkr_raw.xtime_nsec >>= -shift_change; 369 } else { 370 tk->tkr_mono.xtime_nsec <<= shift_change; 371 tk->tkr_raw.xtime_nsec <<= shift_change; 372 } 373 } 374 375 tk->tkr_mono.shift = clock->shift; 376 tk->tkr_raw.shift = clock->shift; 377 378 tk->ntp_error = 0; 379 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift; 380 tk->ntp_tick = ntpinterval << tk->ntp_error_shift; 381 382 /* 383 * The timekeeper keeps its own mult values for the currently 384 * active clocksource. These value will be adjusted via NTP 385 * to counteract clock drifting. 386 */ 387 tk->tkr_mono.mult = clock->mult; 388 tk->tkr_raw.mult = clock->mult; 389 tk->ntp_err_mult = 0; 390 tk->skip_second_overflow = 0; 391 } 392 393 /* Timekeeper helper functions. */ 394 static noinline u64 delta_to_ns_safe(const struct tk_read_base *tkr, u64 delta) 395 { 396 return mul_u64_u32_add_u64_shr(delta, tkr->mult, tkr->xtime_nsec, tkr->shift); 397 } 398 399 static inline u64 timekeeping_cycles_to_ns(const struct tk_read_base *tkr, u64 cycles) 400 { 401 /* Calculate the delta since the last update_wall_time() */ 402 u64 mask = tkr->mask, delta = (cycles - tkr->cycle_last) & mask; 403 404 /* 405 * This detects both negative motion and the case where the delta 406 * overflows the multiplication with tkr->mult. 407 */ 408 if (unlikely(delta > tkr->clock->max_cycles)) { 409 /* 410 * Handle clocksource inconsistency between CPUs to prevent 411 * time from going backwards by checking for the MSB of the 412 * mask being set in the delta. 413 */ 414 if (delta & ~(mask >> 1)) 415 return tkr->xtime_nsec >> tkr->shift; 416 417 return delta_to_ns_safe(tkr, delta); 418 } 419 420 return ((delta * tkr->mult) + tkr->xtime_nsec) >> tkr->shift; 421 } 422 423 static __always_inline u64 __timekeeping_get_ns(const struct tk_read_base *tkr) 424 { 425 return timekeeping_cycles_to_ns(tkr, tk_clock_read(tkr)); 426 } 427 428 static inline u64 timekeeping_get_ns(const struct tk_read_base *tkr) 429 { 430 if (IS_ENABLED(CONFIG_DEBUG_TIMEKEEPING)) 431 return timekeeping_debug_get_ns(tkr); 432 433 return __timekeeping_get_ns(tkr); 434 } 435 436 /** 437 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper. 438 * @tkr: Timekeeping readout base from which we take the update 439 * @tkf: Pointer to NMI safe timekeeper 440 * 441 * We want to use this from any context including NMI and tracing / 442 * instrumenting the timekeeping code itself. 443 * 444 * Employ the latch technique; see @raw_write_seqcount_latch. 445 * 446 * So if a NMI hits the update of base[0] then it will use base[1] 447 * which is still consistent. In the worst case this can result is a 448 * slightly wrong timestamp (a few nanoseconds). See 449 * @ktime_get_mono_fast_ns. 450 */ 451 static void update_fast_timekeeper(const struct tk_read_base *tkr, 452 struct tk_fast *tkf) 453 { 454 struct tk_read_base *base = tkf->base; 455 456 /* Force readers off to base[1] */ 457 raw_write_seqcount_latch(&tkf->seq); 458 459 /* Update base[0] */ 460 memcpy(base, tkr, sizeof(*base)); 461 462 /* Force readers back to base[0] */ 463 raw_write_seqcount_latch(&tkf->seq); 464 465 /* Update base[1] */ 466 memcpy(base + 1, base, sizeof(*base)); 467 } 468 469 static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf) 470 { 471 struct tk_read_base *tkr; 472 unsigned int seq; 473 u64 now; 474 475 do { 476 seq = raw_read_seqcount_latch(&tkf->seq); 477 tkr = tkf->base + (seq & 0x01); 478 now = ktime_to_ns(tkr->base); 479 now += __timekeeping_get_ns(tkr); 480 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 481 482 return now; 483 } 484 485 /** 486 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic 487 * 488 * This timestamp is not guaranteed to be monotonic across an update. 489 * The timestamp is calculated by: 490 * 491 * now = base_mono + clock_delta * slope 492 * 493 * So if the update lowers the slope, readers who are forced to the 494 * not yet updated second array are still using the old steeper slope. 495 * 496 * tmono 497 * ^ 498 * | o n 499 * | o n 500 * | u 501 * | o 502 * |o 503 * |12345678---> reader order 504 * 505 * o = old slope 506 * u = update 507 * n = new slope 508 * 509 * So reader 6 will observe time going backwards versus reader 5. 510 * 511 * While other CPUs are likely to be able to observe that, the only way 512 * for a CPU local observation is when an NMI hits in the middle of 513 * the update. Timestamps taken from that NMI context might be ahead 514 * of the following timestamps. Callers need to be aware of that and 515 * deal with it. 516 */ 517 u64 notrace ktime_get_mono_fast_ns(void) 518 { 519 return __ktime_get_fast_ns(&tk_fast_mono); 520 } 521 EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns); 522 523 /** 524 * ktime_get_raw_fast_ns - Fast NMI safe access to clock monotonic raw 525 * 526 * Contrary to ktime_get_mono_fast_ns() this is always correct because the 527 * conversion factor is not affected by NTP/PTP correction. 528 */ 529 u64 notrace ktime_get_raw_fast_ns(void) 530 { 531 return __ktime_get_fast_ns(&tk_fast_raw); 532 } 533 EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns); 534 535 /** 536 * ktime_get_boot_fast_ns - NMI safe and fast access to boot clock. 537 * 538 * To keep it NMI safe since we're accessing from tracing, we're not using a 539 * separate timekeeper with updates to monotonic clock and boot offset 540 * protected with seqcounts. This has the following minor side effects: 541 * 542 * (1) Its possible that a timestamp be taken after the boot offset is updated 543 * but before the timekeeper is updated. If this happens, the new boot offset 544 * is added to the old timekeeping making the clock appear to update slightly 545 * earlier: 546 * CPU 0 CPU 1 547 * timekeeping_inject_sleeptime64() 548 * __timekeeping_inject_sleeptime(tk, delta); 549 * timestamp(); 550 * timekeeping_update(tk, TK_CLEAR_NTP...); 551 * 552 * (2) On 32-bit systems, the 64-bit boot offset (tk->offs_boot) may be 553 * partially updated. Since the tk->offs_boot update is a rare event, this 554 * should be a rare occurrence which postprocessing should be able to handle. 555 * 556 * The caveats vs. timestamp ordering as documented for ktime_get_mono_fast_ns() 557 * apply as well. 558 */ 559 u64 notrace ktime_get_boot_fast_ns(void) 560 { 561 struct timekeeper *tk = &tk_core.timekeeper; 562 563 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_boot))); 564 } 565 EXPORT_SYMBOL_GPL(ktime_get_boot_fast_ns); 566 567 /** 568 * ktime_get_tai_fast_ns - NMI safe and fast access to tai clock. 569 * 570 * The same limitations as described for ktime_get_boot_fast_ns() apply. The 571 * mono time and the TAI offset are not read atomically which may yield wrong 572 * readouts. However, an update of the TAI offset is an rare event e.g., caused 573 * by settime or adjtimex with an offset. The user of this function has to deal 574 * with the possibility of wrong timestamps in post processing. 575 */ 576 u64 notrace ktime_get_tai_fast_ns(void) 577 { 578 struct timekeeper *tk = &tk_core.timekeeper; 579 580 return (ktime_get_mono_fast_ns() + ktime_to_ns(data_race(tk->offs_tai))); 581 } 582 EXPORT_SYMBOL_GPL(ktime_get_tai_fast_ns); 583 584 static __always_inline u64 __ktime_get_real_fast(struct tk_fast *tkf, u64 *mono) 585 { 586 struct tk_read_base *tkr; 587 u64 basem, baser, delta; 588 unsigned int seq; 589 590 do { 591 seq = raw_read_seqcount_latch(&tkf->seq); 592 tkr = tkf->base + (seq & 0x01); 593 basem = ktime_to_ns(tkr->base); 594 baser = ktime_to_ns(tkr->base_real); 595 delta = __timekeeping_get_ns(tkr); 596 } while (raw_read_seqcount_latch_retry(&tkf->seq, seq)); 597 598 if (mono) 599 *mono = basem + delta; 600 return baser + delta; 601 } 602 603 /** 604 * ktime_get_real_fast_ns: - NMI safe and fast access to clock realtime. 605 * 606 * See ktime_get_mono_fast_ns() for documentation of the time stamp ordering. 607 */ 608 u64 ktime_get_real_fast_ns(void) 609 { 610 return __ktime_get_real_fast(&tk_fast_mono, NULL); 611 } 612 EXPORT_SYMBOL_GPL(ktime_get_real_fast_ns); 613 614 /** 615 * ktime_get_fast_timestamps: - NMI safe timestamps 616 * @snapshot: Pointer to timestamp storage 617 * 618 * Stores clock monotonic, boottime and realtime timestamps. 619 * 620 * Boot time is a racy access on 32bit systems if the sleep time injection 621 * happens late during resume and not in timekeeping_resume(). That could 622 * be avoided by expanding struct tk_read_base with boot offset for 32bit 623 * and adding more overhead to the update. As this is a hard to observe 624 * once per resume event which can be filtered with reasonable effort using 625 * the accurate mono/real timestamps, it's probably not worth the trouble. 626 * 627 * Aside of that it might be possible on 32 and 64 bit to observe the 628 * following when the sleep time injection happens late: 629 * 630 * CPU 0 CPU 1 631 * timekeeping_resume() 632 * ktime_get_fast_timestamps() 633 * mono, real = __ktime_get_real_fast() 634 * inject_sleep_time() 635 * update boot offset 636 * boot = mono + bootoffset; 637 * 638 * That means that boot time already has the sleep time adjustment, but 639 * real time does not. On the next readout both are in sync again. 640 * 641 * Preventing this for 64bit is not really feasible without destroying the 642 * careful cache layout of the timekeeper because the sequence count and 643 * struct tk_read_base would then need two cache lines instead of one. 644 * 645 * Access to the time keeper clock source is disabled across the innermost 646 * steps of suspend/resume. The accessors still work, but the timestamps 647 * are frozen until time keeping is resumed which happens very early. 648 * 649 * For regular suspend/resume there is no observable difference vs. sched 650 * clock, but it might affect some of the nasty low level debug printks. 651 * 652 * OTOH, access to sched clock is not guaranteed across suspend/resume on 653 * all systems either so it depends on the hardware in use. 654 * 655 * If that turns out to be a real problem then this could be mitigated by 656 * using sched clock in a similar way as during early boot. But it's not as 657 * trivial as on early boot because it needs some careful protection 658 * against the clock monotonic timestamp jumping backwards on resume. 659 */ 660 void ktime_get_fast_timestamps(struct ktime_timestamps *snapshot) 661 { 662 struct timekeeper *tk = &tk_core.timekeeper; 663 664 snapshot->real = __ktime_get_real_fast(&tk_fast_mono, &snapshot->mono); 665 snapshot->boot = snapshot->mono + ktime_to_ns(data_race(tk->offs_boot)); 666 } 667 668 /** 669 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource. 670 * @tk: Timekeeper to snapshot. 671 * 672 * It generally is unsafe to access the clocksource after timekeeping has been 673 * suspended, so take a snapshot of the readout base of @tk and use it as the 674 * fast timekeeper's readout base while suspended. It will return the same 675 * number of cycles every time until timekeeping is resumed at which time the 676 * proper readout base for the fast timekeeper will be restored automatically. 677 */ 678 static void halt_fast_timekeeper(const struct timekeeper *tk) 679 { 680 static struct tk_read_base tkr_dummy; 681 const struct tk_read_base *tkr = &tk->tkr_mono; 682 683 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 684 cycles_at_suspend = tk_clock_read(tkr); 685 tkr_dummy.clock = &dummy_clock; 686 tkr_dummy.base_real = tkr->base + tk->offs_real; 687 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono); 688 689 tkr = &tk->tkr_raw; 690 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy)); 691 tkr_dummy.clock = &dummy_clock; 692 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw); 693 } 694 695 static RAW_NOTIFIER_HEAD(pvclock_gtod_chain); 696 697 static void update_pvclock_gtod(struct timekeeper *tk, bool was_set) 698 { 699 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk); 700 } 701 702 /** 703 * pvclock_gtod_register_notifier - register a pvclock timedata update listener 704 * @nb: Pointer to the notifier block to register 705 */ 706 int pvclock_gtod_register_notifier(struct notifier_block *nb) 707 { 708 struct timekeeper *tk = &tk_core.timekeeper; 709 int ret; 710 711 guard(raw_spinlock_irqsave)(&tk_core.lock); 712 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb); 713 update_pvclock_gtod(tk, true); 714 715 return ret; 716 } 717 EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier); 718 719 /** 720 * pvclock_gtod_unregister_notifier - unregister a pvclock 721 * timedata update listener 722 * @nb: Pointer to the notifier block to unregister 723 */ 724 int pvclock_gtod_unregister_notifier(struct notifier_block *nb) 725 { 726 guard(raw_spinlock_irqsave)(&tk_core.lock); 727 return raw_notifier_chain_unregister(&pvclock_gtod_chain, nb); 728 } 729 EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier); 730 731 /* 732 * tk_update_leap_state - helper to update the next_leap_ktime 733 */ 734 static inline void tk_update_leap_state(struct timekeeper *tk) 735 { 736 tk->next_leap_ktime = ntp_get_next_leap(); 737 if (tk->next_leap_ktime != KTIME_MAX) 738 /* Convert to monotonic time */ 739 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real); 740 } 741 742 /* 743 * Update the ktime_t based scalar nsec members of the timekeeper 744 */ 745 static inline void tk_update_ktime_data(struct timekeeper *tk) 746 { 747 u64 seconds; 748 u32 nsec; 749 750 /* 751 * The xtime based monotonic readout is: 752 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now(); 753 * The ktime based monotonic readout is: 754 * nsec = base_mono + now(); 755 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec 756 */ 757 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec); 758 nsec = (u32) tk->wall_to_monotonic.tv_nsec; 759 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec); 760 761 /* 762 * The sum of the nanoseconds portions of xtime and 763 * wall_to_monotonic can be greater/equal one second. Take 764 * this into account before updating tk->ktime_sec. 765 */ 766 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift); 767 if (nsec >= NSEC_PER_SEC) 768 seconds++; 769 tk->ktime_sec = seconds; 770 771 /* Update the monotonic raw base */ 772 tk->tkr_raw.base = ns_to_ktime(tk->raw_sec * NSEC_PER_SEC); 773 } 774 775 /* must hold tk_core.lock */ 776 static void timekeeping_update(struct timekeeper *tk, unsigned int action) 777 { 778 if (action & TK_CLEAR_NTP) { 779 tk->ntp_error = 0; 780 ntp_clear(); 781 } 782 783 tk_update_leap_state(tk); 784 tk_update_ktime_data(tk); 785 786 update_vsyscall(tk); 787 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET); 788 789 tk->tkr_mono.base_real = tk->tkr_mono.base + tk->offs_real; 790 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono); 791 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw); 792 793 if (action & TK_CLOCK_WAS_SET) 794 tk->clock_was_set_seq++; 795 /* 796 * The mirroring of the data to the shadow-timekeeper needs 797 * to happen last here to ensure we don't over-write the 798 * timekeeper structure on the next update with stale data 799 */ 800 if (action & TK_MIRROR) 801 memcpy(&tk_core.shadow_timekeeper, &tk_core.timekeeper, sizeof(tk_core.timekeeper)); 802 } 803 804 /** 805 * timekeeping_forward_now - update clock to the current time 806 * @tk: Pointer to the timekeeper to update 807 * 808 * Forward the current clock to update its state since the last call to 809 * update_wall_time(). This is useful before significant clock changes, 810 * as it avoids having to deal with this time offset explicitly. 811 */ 812 static void timekeeping_forward_now(struct timekeeper *tk) 813 { 814 u64 cycle_now, delta; 815 816 cycle_now = tk_clock_read(&tk->tkr_mono); 817 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 818 tk->tkr_mono.cycle_last = cycle_now; 819 tk->tkr_raw.cycle_last = cycle_now; 820 821 while (delta > 0) { 822 u64 max = tk->tkr_mono.clock->max_cycles; 823 u64 incr = delta < max ? delta : max; 824 825 tk->tkr_mono.xtime_nsec += incr * tk->tkr_mono.mult; 826 tk->tkr_raw.xtime_nsec += incr * tk->tkr_raw.mult; 827 tk_normalize_xtime(tk); 828 delta -= incr; 829 } 830 } 831 832 /** 833 * ktime_get_real_ts64 - Returns the time of day in a timespec64. 834 * @ts: pointer to the timespec to be set 835 * 836 * Returns the time of day in a timespec64 (WARN if suspended). 837 */ 838 void ktime_get_real_ts64(struct timespec64 *ts) 839 { 840 struct timekeeper *tk = &tk_core.timekeeper; 841 unsigned int seq; 842 u64 nsecs; 843 844 WARN_ON(timekeeping_suspended); 845 846 do { 847 seq = read_seqcount_begin(&tk_core.seq); 848 849 ts->tv_sec = tk->xtime_sec; 850 nsecs = timekeeping_get_ns(&tk->tkr_mono); 851 852 } while (read_seqcount_retry(&tk_core.seq, seq)); 853 854 ts->tv_nsec = 0; 855 timespec64_add_ns(ts, nsecs); 856 } 857 EXPORT_SYMBOL(ktime_get_real_ts64); 858 859 ktime_t ktime_get(void) 860 { 861 struct timekeeper *tk = &tk_core.timekeeper; 862 unsigned int seq; 863 ktime_t base; 864 u64 nsecs; 865 866 WARN_ON(timekeeping_suspended); 867 868 do { 869 seq = read_seqcount_begin(&tk_core.seq); 870 base = tk->tkr_mono.base; 871 nsecs = timekeeping_get_ns(&tk->tkr_mono); 872 873 } while (read_seqcount_retry(&tk_core.seq, seq)); 874 875 return ktime_add_ns(base, nsecs); 876 } 877 EXPORT_SYMBOL_GPL(ktime_get); 878 879 u32 ktime_get_resolution_ns(void) 880 { 881 struct timekeeper *tk = &tk_core.timekeeper; 882 unsigned int seq; 883 u32 nsecs; 884 885 WARN_ON(timekeeping_suspended); 886 887 do { 888 seq = read_seqcount_begin(&tk_core.seq); 889 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift; 890 } while (read_seqcount_retry(&tk_core.seq, seq)); 891 892 return nsecs; 893 } 894 EXPORT_SYMBOL_GPL(ktime_get_resolution_ns); 895 896 static ktime_t *offsets[TK_OFFS_MAX] = { 897 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real, 898 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot, 899 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai, 900 }; 901 902 ktime_t ktime_get_with_offset(enum tk_offsets offs) 903 { 904 struct timekeeper *tk = &tk_core.timekeeper; 905 unsigned int seq; 906 ktime_t base, *offset = offsets[offs]; 907 u64 nsecs; 908 909 WARN_ON(timekeeping_suspended); 910 911 do { 912 seq = read_seqcount_begin(&tk_core.seq); 913 base = ktime_add(tk->tkr_mono.base, *offset); 914 nsecs = timekeeping_get_ns(&tk->tkr_mono); 915 916 } while (read_seqcount_retry(&tk_core.seq, seq)); 917 918 return ktime_add_ns(base, nsecs); 919 920 } 921 EXPORT_SYMBOL_GPL(ktime_get_with_offset); 922 923 ktime_t ktime_get_coarse_with_offset(enum tk_offsets offs) 924 { 925 struct timekeeper *tk = &tk_core.timekeeper; 926 unsigned int seq; 927 ktime_t base, *offset = offsets[offs]; 928 u64 nsecs; 929 930 WARN_ON(timekeeping_suspended); 931 932 do { 933 seq = read_seqcount_begin(&tk_core.seq); 934 base = ktime_add(tk->tkr_mono.base, *offset); 935 nsecs = tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift; 936 937 } while (read_seqcount_retry(&tk_core.seq, seq)); 938 939 return ktime_add_ns(base, nsecs); 940 } 941 EXPORT_SYMBOL_GPL(ktime_get_coarse_with_offset); 942 943 /** 944 * ktime_mono_to_any() - convert monotonic time to any other time 945 * @tmono: time to convert. 946 * @offs: which offset to use 947 */ 948 ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs) 949 { 950 ktime_t *offset = offsets[offs]; 951 unsigned int seq; 952 ktime_t tconv; 953 954 if (IS_ENABLED(CONFIG_64BIT)) { 955 /* 956 * Paired with WRITE_ONCE()s in tk_set_wall_to_mono() and 957 * tk_update_sleep_time(). 958 */ 959 return ktime_add(tmono, READ_ONCE(*offset)); 960 } 961 962 do { 963 seq = read_seqcount_begin(&tk_core.seq); 964 tconv = ktime_add(tmono, *offset); 965 } while (read_seqcount_retry(&tk_core.seq, seq)); 966 967 return tconv; 968 } 969 EXPORT_SYMBOL_GPL(ktime_mono_to_any); 970 971 /** 972 * ktime_get_raw - Returns the raw monotonic time in ktime_t format 973 */ 974 ktime_t ktime_get_raw(void) 975 { 976 struct timekeeper *tk = &tk_core.timekeeper; 977 unsigned int seq; 978 ktime_t base; 979 u64 nsecs; 980 981 do { 982 seq = read_seqcount_begin(&tk_core.seq); 983 base = tk->tkr_raw.base; 984 nsecs = timekeeping_get_ns(&tk->tkr_raw); 985 986 } while (read_seqcount_retry(&tk_core.seq, seq)); 987 988 return ktime_add_ns(base, nsecs); 989 } 990 EXPORT_SYMBOL_GPL(ktime_get_raw); 991 992 /** 993 * ktime_get_ts64 - get the monotonic clock in timespec64 format 994 * @ts: pointer to timespec variable 995 * 996 * The function calculates the monotonic clock from the realtime 997 * clock and the wall_to_monotonic offset and stores the result 998 * in normalized timespec64 format in the variable pointed to by @ts. 999 */ 1000 void ktime_get_ts64(struct timespec64 *ts) 1001 { 1002 struct timekeeper *tk = &tk_core.timekeeper; 1003 struct timespec64 tomono; 1004 unsigned int seq; 1005 u64 nsec; 1006 1007 WARN_ON(timekeeping_suspended); 1008 1009 do { 1010 seq = read_seqcount_begin(&tk_core.seq); 1011 ts->tv_sec = tk->xtime_sec; 1012 nsec = timekeeping_get_ns(&tk->tkr_mono); 1013 tomono = tk->wall_to_monotonic; 1014 1015 } while (read_seqcount_retry(&tk_core.seq, seq)); 1016 1017 ts->tv_sec += tomono.tv_sec; 1018 ts->tv_nsec = 0; 1019 timespec64_add_ns(ts, nsec + tomono.tv_nsec); 1020 } 1021 EXPORT_SYMBOL_GPL(ktime_get_ts64); 1022 1023 /** 1024 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC 1025 * 1026 * Returns the seconds portion of CLOCK_MONOTONIC with a single non 1027 * serialized read. tk->ktime_sec is of type 'unsigned long' so this 1028 * works on both 32 and 64 bit systems. On 32 bit systems the readout 1029 * covers ~136 years of uptime which should be enough to prevent 1030 * premature wrap arounds. 1031 */ 1032 time64_t ktime_get_seconds(void) 1033 { 1034 struct timekeeper *tk = &tk_core.timekeeper; 1035 1036 WARN_ON(timekeeping_suspended); 1037 return tk->ktime_sec; 1038 } 1039 EXPORT_SYMBOL_GPL(ktime_get_seconds); 1040 1041 /** 1042 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME 1043 * 1044 * Returns the wall clock seconds since 1970. 1045 * 1046 * For 64bit systems the fast access to tk->xtime_sec is preserved. On 1047 * 32bit systems the access must be protected with the sequence 1048 * counter to provide "atomic" access to the 64bit tk->xtime_sec 1049 * value. 1050 */ 1051 time64_t ktime_get_real_seconds(void) 1052 { 1053 struct timekeeper *tk = &tk_core.timekeeper; 1054 time64_t seconds; 1055 unsigned int seq; 1056 1057 if (IS_ENABLED(CONFIG_64BIT)) 1058 return tk->xtime_sec; 1059 1060 do { 1061 seq = read_seqcount_begin(&tk_core.seq); 1062 seconds = tk->xtime_sec; 1063 1064 } while (read_seqcount_retry(&tk_core.seq, seq)); 1065 1066 return seconds; 1067 } 1068 EXPORT_SYMBOL_GPL(ktime_get_real_seconds); 1069 1070 /** 1071 * __ktime_get_real_seconds - The same as ktime_get_real_seconds 1072 * but without the sequence counter protect. This internal function 1073 * is called just when timekeeping lock is already held. 1074 */ 1075 noinstr time64_t __ktime_get_real_seconds(void) 1076 { 1077 struct timekeeper *tk = &tk_core.timekeeper; 1078 1079 return tk->xtime_sec; 1080 } 1081 1082 /** 1083 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter 1084 * @systime_snapshot: pointer to struct receiving the system time snapshot 1085 */ 1086 void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot) 1087 { 1088 struct timekeeper *tk = &tk_core.timekeeper; 1089 unsigned int seq; 1090 ktime_t base_raw; 1091 ktime_t base_real; 1092 ktime_t base_boot; 1093 u64 nsec_raw; 1094 u64 nsec_real; 1095 u64 now; 1096 1097 WARN_ON_ONCE(timekeeping_suspended); 1098 1099 do { 1100 seq = read_seqcount_begin(&tk_core.seq); 1101 now = tk_clock_read(&tk->tkr_mono); 1102 systime_snapshot->cs_id = tk->tkr_mono.clock->id; 1103 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq; 1104 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq; 1105 base_real = ktime_add(tk->tkr_mono.base, 1106 tk_core.timekeeper.offs_real); 1107 base_boot = ktime_add(tk->tkr_mono.base, 1108 tk_core.timekeeper.offs_boot); 1109 base_raw = tk->tkr_raw.base; 1110 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now); 1111 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now); 1112 } while (read_seqcount_retry(&tk_core.seq, seq)); 1113 1114 systime_snapshot->cycles = now; 1115 systime_snapshot->real = ktime_add_ns(base_real, nsec_real); 1116 systime_snapshot->boot = ktime_add_ns(base_boot, nsec_real); 1117 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw); 1118 } 1119 EXPORT_SYMBOL_GPL(ktime_get_snapshot); 1120 1121 /* Scale base by mult/div checking for overflow */ 1122 static int scale64_check_overflow(u64 mult, u64 div, u64 *base) 1123 { 1124 u64 tmp, rem; 1125 1126 tmp = div64_u64_rem(*base, div, &rem); 1127 1128 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) || 1129 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem))) 1130 return -EOVERFLOW; 1131 tmp *= mult; 1132 1133 rem = div64_u64(rem * mult, div); 1134 *base = tmp + rem; 1135 return 0; 1136 } 1137 1138 /** 1139 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval 1140 * @history: Snapshot representing start of history 1141 * @partial_history_cycles: Cycle offset into history (fractional part) 1142 * @total_history_cycles: Total history length in cycles 1143 * @discontinuity: True indicates clock was set on history period 1144 * @ts: Cross timestamp that should be adjusted using 1145 * partial/total ratio 1146 * 1147 * Helper function used by get_device_system_crosststamp() to correct the 1148 * crosstimestamp corresponding to the start of the current interval to the 1149 * system counter value (timestamp point) provided by the driver. The 1150 * total_history_* quantities are the total history starting at the provided 1151 * reference point and ending at the start of the current interval. The cycle 1152 * count between the driver timestamp point and the start of the current 1153 * interval is partial_history_cycles. 1154 */ 1155 static int adjust_historical_crosststamp(struct system_time_snapshot *history, 1156 u64 partial_history_cycles, 1157 u64 total_history_cycles, 1158 bool discontinuity, 1159 struct system_device_crosststamp *ts) 1160 { 1161 struct timekeeper *tk = &tk_core.timekeeper; 1162 u64 corr_raw, corr_real; 1163 bool interp_forward; 1164 int ret; 1165 1166 if (total_history_cycles == 0 || partial_history_cycles == 0) 1167 return 0; 1168 1169 /* Interpolate shortest distance from beginning or end of history */ 1170 interp_forward = partial_history_cycles > total_history_cycles / 2; 1171 partial_history_cycles = interp_forward ? 1172 total_history_cycles - partial_history_cycles : 1173 partial_history_cycles; 1174 1175 /* 1176 * Scale the monotonic raw time delta by: 1177 * partial_history_cycles / total_history_cycles 1178 */ 1179 corr_raw = (u64)ktime_to_ns( 1180 ktime_sub(ts->sys_monoraw, history->raw)); 1181 ret = scale64_check_overflow(partial_history_cycles, 1182 total_history_cycles, &corr_raw); 1183 if (ret) 1184 return ret; 1185 1186 /* 1187 * If there is a discontinuity in the history, scale monotonic raw 1188 * correction by: 1189 * mult(real)/mult(raw) yielding the realtime correction 1190 * Otherwise, calculate the realtime correction similar to monotonic 1191 * raw calculation 1192 */ 1193 if (discontinuity) { 1194 corr_real = mul_u64_u32_div 1195 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult); 1196 } else { 1197 corr_real = (u64)ktime_to_ns( 1198 ktime_sub(ts->sys_realtime, history->real)); 1199 ret = scale64_check_overflow(partial_history_cycles, 1200 total_history_cycles, &corr_real); 1201 if (ret) 1202 return ret; 1203 } 1204 1205 /* Fixup monotonic raw and real time time values */ 1206 if (interp_forward) { 1207 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw); 1208 ts->sys_realtime = ktime_add_ns(history->real, corr_real); 1209 } else { 1210 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw); 1211 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real); 1212 } 1213 1214 return 0; 1215 } 1216 1217 /* 1218 * timestamp_in_interval - true if ts is chronologically in [start, end] 1219 * 1220 * True if ts occurs chronologically at or after start, and before or at end. 1221 */ 1222 static bool timestamp_in_interval(u64 start, u64 end, u64 ts) 1223 { 1224 if (ts >= start && ts <= end) 1225 return true; 1226 if (start > end && (ts >= start || ts <= end)) 1227 return true; 1228 return false; 1229 } 1230 1231 static bool convert_clock(u64 *val, u32 numerator, u32 denominator) 1232 { 1233 u64 rem, res; 1234 1235 if (!numerator || !denominator) 1236 return false; 1237 1238 res = div64_u64_rem(*val, denominator, &rem) * numerator; 1239 *val = res + div_u64(rem * numerator, denominator); 1240 return true; 1241 } 1242 1243 static bool convert_base_to_cs(struct system_counterval_t *scv) 1244 { 1245 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1246 struct clocksource_base *base; 1247 u32 num, den; 1248 1249 /* The timestamp was taken from the time keeper clock source */ 1250 if (cs->id == scv->cs_id) 1251 return true; 1252 1253 /* 1254 * Check whether cs_id matches the base clock. Prevent the compiler from 1255 * re-evaluating @base as the clocksource might change concurrently. 1256 */ 1257 base = READ_ONCE(cs->base); 1258 if (!base || base->id != scv->cs_id) 1259 return false; 1260 1261 num = scv->use_nsecs ? cs->freq_khz : base->numerator; 1262 den = scv->use_nsecs ? USEC_PER_SEC : base->denominator; 1263 1264 if (!convert_clock(&scv->cycles, num, den)) 1265 return false; 1266 1267 scv->cycles += base->offset; 1268 return true; 1269 } 1270 1271 static bool convert_cs_to_base(u64 *cycles, enum clocksource_ids base_id) 1272 { 1273 struct clocksource *cs = tk_core.timekeeper.tkr_mono.clock; 1274 struct clocksource_base *base; 1275 1276 /* 1277 * Check whether base_id matches the base clock. Prevent the compiler from 1278 * re-evaluating @base as the clocksource might change concurrently. 1279 */ 1280 base = READ_ONCE(cs->base); 1281 if (!base || base->id != base_id) 1282 return false; 1283 1284 *cycles -= base->offset; 1285 if (!convert_clock(cycles, base->denominator, base->numerator)) 1286 return false; 1287 return true; 1288 } 1289 1290 static bool convert_ns_to_cs(u64 *delta) 1291 { 1292 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 1293 1294 if (BITS_TO_BYTES(fls64(*delta) + tkr->shift) >= sizeof(*delta)) 1295 return false; 1296 1297 *delta = div_u64((*delta << tkr->shift) - tkr->xtime_nsec, tkr->mult); 1298 return true; 1299 } 1300 1301 /** 1302 * ktime_real_to_base_clock() - Convert CLOCK_REALTIME timestamp to a base clock timestamp 1303 * @treal: CLOCK_REALTIME timestamp to convert 1304 * @base_id: base clocksource id 1305 * @cycles: pointer to store the converted base clock timestamp 1306 * 1307 * Converts a supplied, future realtime clock value to the corresponding base clock value. 1308 * 1309 * Return: true if the conversion is successful, false otherwise. 1310 */ 1311 bool ktime_real_to_base_clock(ktime_t treal, enum clocksource_ids base_id, u64 *cycles) 1312 { 1313 struct timekeeper *tk = &tk_core.timekeeper; 1314 unsigned int seq; 1315 u64 delta; 1316 1317 do { 1318 seq = read_seqcount_begin(&tk_core.seq); 1319 if ((u64)treal < tk->tkr_mono.base_real) 1320 return false; 1321 delta = (u64)treal - tk->tkr_mono.base_real; 1322 if (!convert_ns_to_cs(&delta)) 1323 return false; 1324 *cycles = tk->tkr_mono.cycle_last + delta; 1325 if (!convert_cs_to_base(cycles, base_id)) 1326 return false; 1327 } while (read_seqcount_retry(&tk_core.seq, seq)); 1328 1329 return true; 1330 } 1331 EXPORT_SYMBOL_GPL(ktime_real_to_base_clock); 1332 1333 /** 1334 * get_device_system_crosststamp - Synchronously capture system/device timestamp 1335 * @get_time_fn: Callback to get simultaneous device time and 1336 * system counter from the device driver 1337 * @ctx: Context passed to get_time_fn() 1338 * @history_begin: Historical reference point used to interpolate system 1339 * time when counter provided by the driver is before the current interval 1340 * @xtstamp: Receives simultaneously captured system and device time 1341 * 1342 * Reads a timestamp from a device and correlates it to system time 1343 */ 1344 int get_device_system_crosststamp(int (*get_time_fn) 1345 (ktime_t *device_time, 1346 struct system_counterval_t *sys_counterval, 1347 void *ctx), 1348 void *ctx, 1349 struct system_time_snapshot *history_begin, 1350 struct system_device_crosststamp *xtstamp) 1351 { 1352 struct system_counterval_t system_counterval; 1353 struct timekeeper *tk = &tk_core.timekeeper; 1354 u64 cycles, now, interval_start; 1355 unsigned int clock_was_set_seq = 0; 1356 ktime_t base_real, base_raw; 1357 u64 nsec_real, nsec_raw; 1358 u8 cs_was_changed_seq; 1359 unsigned int seq; 1360 bool do_interp; 1361 int ret; 1362 1363 do { 1364 seq = read_seqcount_begin(&tk_core.seq); 1365 /* 1366 * Try to synchronously capture device time and a system 1367 * counter value calling back into the device driver 1368 */ 1369 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx); 1370 if (ret) 1371 return ret; 1372 1373 /* 1374 * Verify that the clocksource ID associated with the captured 1375 * system counter value is the same as for the currently 1376 * installed timekeeper clocksource 1377 */ 1378 if (system_counterval.cs_id == CSID_GENERIC || 1379 !convert_base_to_cs(&system_counterval)) 1380 return -ENODEV; 1381 cycles = system_counterval.cycles; 1382 1383 /* 1384 * Check whether the system counter value provided by the 1385 * device driver is on the current timekeeping interval. 1386 */ 1387 now = tk_clock_read(&tk->tkr_mono); 1388 interval_start = tk->tkr_mono.cycle_last; 1389 if (!timestamp_in_interval(interval_start, now, cycles)) { 1390 clock_was_set_seq = tk->clock_was_set_seq; 1391 cs_was_changed_seq = tk->cs_was_changed_seq; 1392 cycles = interval_start; 1393 do_interp = true; 1394 } else { 1395 do_interp = false; 1396 } 1397 1398 base_real = ktime_add(tk->tkr_mono.base, 1399 tk_core.timekeeper.offs_real); 1400 base_raw = tk->tkr_raw.base; 1401 1402 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, cycles); 1403 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, cycles); 1404 } while (read_seqcount_retry(&tk_core.seq, seq)); 1405 1406 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real); 1407 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw); 1408 1409 /* 1410 * Interpolate if necessary, adjusting back from the start of the 1411 * current interval 1412 */ 1413 if (do_interp) { 1414 u64 partial_history_cycles, total_history_cycles; 1415 bool discontinuity; 1416 1417 /* 1418 * Check that the counter value is not before the provided 1419 * history reference and that the history doesn't cross a 1420 * clocksource change 1421 */ 1422 if (!history_begin || 1423 !timestamp_in_interval(history_begin->cycles, 1424 cycles, system_counterval.cycles) || 1425 history_begin->cs_was_changed_seq != cs_was_changed_seq) 1426 return -EINVAL; 1427 partial_history_cycles = cycles - system_counterval.cycles; 1428 total_history_cycles = cycles - history_begin->cycles; 1429 discontinuity = 1430 history_begin->clock_was_set_seq != clock_was_set_seq; 1431 1432 ret = adjust_historical_crosststamp(history_begin, 1433 partial_history_cycles, 1434 total_history_cycles, 1435 discontinuity, xtstamp); 1436 if (ret) 1437 return ret; 1438 } 1439 1440 return 0; 1441 } 1442 EXPORT_SYMBOL_GPL(get_device_system_crosststamp); 1443 1444 /** 1445 * timekeeping_clocksource_has_base - Check whether the current clocksource 1446 * is based on given a base clock 1447 * @id: base clocksource ID 1448 * 1449 * Note: The return value is a snapshot which can become invalid right 1450 * after the function returns. 1451 * 1452 * Return: true if the timekeeper clocksource has a base clock with @id, 1453 * false otherwise 1454 */ 1455 bool timekeeping_clocksource_has_base(enum clocksource_ids id) 1456 { 1457 /* 1458 * This is a snapshot, so no point in using the sequence 1459 * count. Just prevent the compiler from re-evaluating @base as the 1460 * clocksource might change concurrently. 1461 */ 1462 struct clocksource_base *base = READ_ONCE(tk_core.timekeeper.tkr_mono.clock->base); 1463 1464 return base ? base->id == id : false; 1465 } 1466 EXPORT_SYMBOL_GPL(timekeeping_clocksource_has_base); 1467 1468 /** 1469 * do_settimeofday64 - Sets the time of day. 1470 * @ts: pointer to the timespec64 variable containing the new time 1471 * 1472 * Sets the time of day to the new time and update NTP and notify hrtimers 1473 */ 1474 int do_settimeofday64(const struct timespec64 *ts) 1475 { 1476 struct timekeeper *tk = &tk_core.timekeeper; 1477 struct timespec64 ts_delta, xt; 1478 unsigned long flags; 1479 int ret = 0; 1480 1481 if (!timespec64_valid_settod(ts)) 1482 return -EINVAL; 1483 1484 raw_spin_lock_irqsave(&tk_core.lock, flags); 1485 write_seqcount_begin(&tk_core.seq); 1486 1487 timekeeping_forward_now(tk); 1488 1489 xt = tk_xtime(tk); 1490 ts_delta = timespec64_sub(*ts, xt); 1491 1492 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) { 1493 ret = -EINVAL; 1494 goto out; 1495 } 1496 1497 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta)); 1498 1499 tk_set_xtime(tk, ts); 1500 out: 1501 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1502 1503 write_seqcount_end(&tk_core.seq); 1504 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1505 1506 /* Signal hrtimers about time change */ 1507 clock_was_set(CLOCK_SET_WALL); 1508 1509 if (!ret) { 1510 audit_tk_injoffset(ts_delta); 1511 add_device_randomness(ts, sizeof(*ts)); 1512 } 1513 1514 return ret; 1515 } 1516 EXPORT_SYMBOL(do_settimeofday64); 1517 1518 /** 1519 * timekeeping_inject_offset - Adds or subtracts from the current time. 1520 * @ts: Pointer to the timespec variable containing the offset 1521 * 1522 * Adds or subtracts an offset value from the current time. 1523 */ 1524 static int timekeeping_inject_offset(const struct timespec64 *ts) 1525 { 1526 struct timekeeper *tk = &tk_core.timekeeper; 1527 unsigned long flags; 1528 struct timespec64 tmp; 1529 int ret = 0; 1530 1531 if (ts->tv_nsec < 0 || ts->tv_nsec >= NSEC_PER_SEC) 1532 return -EINVAL; 1533 1534 raw_spin_lock_irqsave(&tk_core.lock, flags); 1535 write_seqcount_begin(&tk_core.seq); 1536 1537 timekeeping_forward_now(tk); 1538 1539 /* Make sure the proposed value is valid */ 1540 tmp = timespec64_add(tk_xtime(tk), *ts); 1541 if (timespec64_compare(&tk->wall_to_monotonic, ts) > 0 || 1542 !timespec64_valid_settod(&tmp)) { 1543 ret = -EINVAL; 1544 goto error; 1545 } 1546 1547 tk_xtime_add(tk, ts); 1548 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *ts)); 1549 1550 error: /* even if we error out, we forwarded the time, so call update */ 1551 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1552 1553 write_seqcount_end(&tk_core.seq); 1554 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1555 1556 /* Signal hrtimers about time change */ 1557 clock_was_set(CLOCK_SET_WALL); 1558 1559 return ret; 1560 } 1561 1562 /* 1563 * Indicates if there is an offset between the system clock and the hardware 1564 * clock/persistent clock/rtc. 1565 */ 1566 int persistent_clock_is_local; 1567 1568 /* 1569 * Adjust the time obtained from the CMOS to be UTC time instead of 1570 * local time. 1571 * 1572 * This is ugly, but preferable to the alternatives. Otherwise we 1573 * would either need to write a program to do it in /etc/rc (and risk 1574 * confusion if the program gets run more than once; it would also be 1575 * hard to make the program warp the clock precisely n hours) or 1576 * compile in the timezone information into the kernel. Bad, bad.... 1577 * 1578 * - TYT, 1992-01-01 1579 * 1580 * The best thing to do is to keep the CMOS clock in universal time (UTC) 1581 * as real UNIX machines always do it. This avoids all headaches about 1582 * daylight saving times and warping kernel clocks. 1583 */ 1584 void timekeeping_warp_clock(void) 1585 { 1586 if (sys_tz.tz_minuteswest != 0) { 1587 struct timespec64 adjust; 1588 1589 persistent_clock_is_local = 1; 1590 adjust.tv_sec = sys_tz.tz_minuteswest * 60; 1591 adjust.tv_nsec = 0; 1592 timekeeping_inject_offset(&adjust); 1593 } 1594 } 1595 1596 /* 1597 * __timekeeping_set_tai_offset - Sets the TAI offset from UTC and monotonic 1598 */ 1599 static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset) 1600 { 1601 tk->tai_offset = tai_offset; 1602 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0)); 1603 } 1604 1605 /* 1606 * change_clocksource - Swaps clocksources if a new one is available 1607 * 1608 * Accumulates current time interval and initializes new clocksource 1609 */ 1610 static int change_clocksource(void *data) 1611 { 1612 struct timekeeper *tk = &tk_core.timekeeper; 1613 struct clocksource *new = data, *old = NULL; 1614 unsigned long flags; 1615 1616 /* 1617 * If the clocksource is in a module, get a module reference. 1618 * Succeeds for built-in code (owner == NULL) as well. Abort if the 1619 * reference can't be acquired. 1620 */ 1621 if (!try_module_get(new->owner)) 1622 return 0; 1623 1624 /* Abort if the device can't be enabled */ 1625 if (new->enable && new->enable(new) != 0) { 1626 module_put(new->owner); 1627 return 0; 1628 } 1629 1630 raw_spin_lock_irqsave(&tk_core.lock, flags); 1631 write_seqcount_begin(&tk_core.seq); 1632 1633 timekeeping_forward_now(tk); 1634 old = tk->tkr_mono.clock; 1635 tk_setup_internals(tk, new); 1636 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1637 1638 write_seqcount_end(&tk_core.seq); 1639 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1640 1641 if (old) { 1642 if (old->disable) 1643 old->disable(old); 1644 module_put(old->owner); 1645 } 1646 1647 return 0; 1648 } 1649 1650 /** 1651 * timekeeping_notify - Install a new clock source 1652 * @clock: pointer to the clock source 1653 * 1654 * This function is called from clocksource.c after a new, better clock 1655 * source has been registered. The caller holds the clocksource_mutex. 1656 */ 1657 int timekeeping_notify(struct clocksource *clock) 1658 { 1659 struct timekeeper *tk = &tk_core.timekeeper; 1660 1661 if (tk->tkr_mono.clock == clock) 1662 return 0; 1663 stop_machine(change_clocksource, clock, NULL); 1664 tick_clock_notify(); 1665 return tk->tkr_mono.clock == clock ? 0 : -1; 1666 } 1667 1668 /** 1669 * ktime_get_raw_ts64 - Returns the raw monotonic time in a timespec 1670 * @ts: pointer to the timespec64 to be set 1671 * 1672 * Returns the raw monotonic time (completely un-modified by ntp) 1673 */ 1674 void ktime_get_raw_ts64(struct timespec64 *ts) 1675 { 1676 struct timekeeper *tk = &tk_core.timekeeper; 1677 unsigned int seq; 1678 u64 nsecs; 1679 1680 do { 1681 seq = read_seqcount_begin(&tk_core.seq); 1682 ts->tv_sec = tk->raw_sec; 1683 nsecs = timekeeping_get_ns(&tk->tkr_raw); 1684 1685 } while (read_seqcount_retry(&tk_core.seq, seq)); 1686 1687 ts->tv_nsec = 0; 1688 timespec64_add_ns(ts, nsecs); 1689 } 1690 EXPORT_SYMBOL(ktime_get_raw_ts64); 1691 1692 1693 /** 1694 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres 1695 */ 1696 int timekeeping_valid_for_hres(void) 1697 { 1698 struct timekeeper *tk = &tk_core.timekeeper; 1699 unsigned int seq; 1700 int ret; 1701 1702 do { 1703 seq = read_seqcount_begin(&tk_core.seq); 1704 1705 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES; 1706 1707 } while (read_seqcount_retry(&tk_core.seq, seq)); 1708 1709 return ret; 1710 } 1711 1712 /** 1713 * timekeeping_max_deferment - Returns max time the clocksource can be deferred 1714 */ 1715 u64 timekeeping_max_deferment(void) 1716 { 1717 struct timekeeper *tk = &tk_core.timekeeper; 1718 unsigned int seq; 1719 u64 ret; 1720 1721 do { 1722 seq = read_seqcount_begin(&tk_core.seq); 1723 1724 ret = tk->tkr_mono.clock->max_idle_ns; 1725 1726 } while (read_seqcount_retry(&tk_core.seq, seq)); 1727 1728 return ret; 1729 } 1730 1731 /** 1732 * read_persistent_clock64 - Return time from the persistent clock. 1733 * @ts: Pointer to the storage for the readout value 1734 * 1735 * Weak dummy function for arches that do not yet support it. 1736 * Reads the time from the battery backed persistent clock. 1737 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported. 1738 * 1739 * XXX - Do be sure to remove it once all arches implement it. 1740 */ 1741 void __weak read_persistent_clock64(struct timespec64 *ts) 1742 { 1743 ts->tv_sec = 0; 1744 ts->tv_nsec = 0; 1745 } 1746 1747 /** 1748 * read_persistent_wall_and_boot_offset - Read persistent clock, and also offset 1749 * from the boot. 1750 * @wall_time: current time as returned by persistent clock 1751 * @boot_offset: offset that is defined as wall_time - boot_time 1752 * 1753 * Weak dummy function for arches that do not yet support it. 1754 * 1755 * The default function calculates offset based on the current value of 1756 * local_clock(). This way architectures that support sched_clock() but don't 1757 * support dedicated boot time clock will provide the best estimate of the 1758 * boot time. 1759 */ 1760 void __weak __init 1761 read_persistent_wall_and_boot_offset(struct timespec64 *wall_time, 1762 struct timespec64 *boot_offset) 1763 { 1764 read_persistent_clock64(wall_time); 1765 *boot_offset = ns_to_timespec64(local_clock()); 1766 } 1767 1768 static __init void tkd_basic_setup(struct tk_data *tkd) 1769 { 1770 raw_spin_lock_init(&tkd->lock); 1771 seqcount_raw_spinlock_init(&tkd->seq, &tkd->lock); 1772 } 1773 1774 /* 1775 * Flag reflecting whether timekeeping_resume() has injected sleeptime. 1776 * 1777 * The flag starts of false and is only set when a suspend reaches 1778 * timekeeping_suspend(), timekeeping_resume() sets it to false when the 1779 * timekeeper clocksource is not stopping across suspend and has been 1780 * used to update sleep time. If the timekeeper clocksource has stopped 1781 * then the flag stays true and is used by the RTC resume code to decide 1782 * whether sleeptime must be injected and if so the flag gets false then. 1783 * 1784 * If a suspend fails before reaching timekeeping_resume() then the flag 1785 * stays false and prevents erroneous sleeptime injection. 1786 */ 1787 static bool suspend_timing_needed; 1788 1789 /* Flag for if there is a persistent clock on this platform */ 1790 static bool persistent_clock_exists; 1791 1792 /* 1793 * timekeeping_init - Initializes the clocksource and common timekeeping values 1794 */ 1795 void __init timekeeping_init(void) 1796 { 1797 struct timespec64 wall_time, boot_offset, wall_to_mono; 1798 struct timekeeper *tk = &tk_core.timekeeper; 1799 struct clocksource *clock; 1800 1801 tkd_basic_setup(&tk_core); 1802 1803 read_persistent_wall_and_boot_offset(&wall_time, &boot_offset); 1804 if (timespec64_valid_settod(&wall_time) && 1805 timespec64_to_ns(&wall_time) > 0) { 1806 persistent_clock_exists = true; 1807 } else if (timespec64_to_ns(&wall_time) != 0) { 1808 pr_warn("Persistent clock returned invalid value"); 1809 wall_time = (struct timespec64){0}; 1810 } 1811 1812 if (timespec64_compare(&wall_time, &boot_offset) < 0) 1813 boot_offset = (struct timespec64){0}; 1814 1815 /* 1816 * We want set wall_to_mono, so the following is true: 1817 * wall time + wall_to_mono = boot time 1818 */ 1819 wall_to_mono = timespec64_sub(boot_offset, wall_time); 1820 1821 guard(raw_spinlock_irqsave)(&tk_core.lock); 1822 write_seqcount_begin(&tk_core.seq); 1823 ntp_init(); 1824 1825 clock = clocksource_default_clock(); 1826 if (clock->enable) 1827 clock->enable(clock); 1828 tk_setup_internals(tk, clock); 1829 1830 tk_set_xtime(tk, &wall_time); 1831 tk->raw_sec = 0; 1832 1833 tk_set_wall_to_mono(tk, wall_to_mono); 1834 1835 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1836 1837 write_seqcount_end(&tk_core.seq); 1838 } 1839 1840 /* time in seconds when suspend began for persistent clock */ 1841 static struct timespec64 timekeeping_suspend_time; 1842 1843 /** 1844 * __timekeeping_inject_sleeptime - Internal function to add sleep interval 1845 * @tk: Pointer to the timekeeper to be updated 1846 * @delta: Pointer to the delta value in timespec64 format 1847 * 1848 * Takes a timespec offset measuring a suspend interval and properly 1849 * adds the sleep offset to the timekeeping variables. 1850 */ 1851 static void __timekeeping_inject_sleeptime(struct timekeeper *tk, 1852 const struct timespec64 *delta) 1853 { 1854 if (!timespec64_valid_strict(delta)) { 1855 printk_deferred(KERN_WARNING 1856 "__timekeeping_inject_sleeptime: Invalid " 1857 "sleep delta value!\n"); 1858 return; 1859 } 1860 tk_xtime_add(tk, delta); 1861 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta)); 1862 tk_update_sleep_time(tk, timespec64_to_ktime(*delta)); 1863 tk_debug_account_sleep_time(delta); 1864 } 1865 1866 #if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE) 1867 /* 1868 * We have three kinds of time sources to use for sleep time 1869 * injection, the preference order is: 1870 * 1) non-stop clocksource 1871 * 2) persistent clock (ie: RTC accessible when irqs are off) 1872 * 3) RTC 1873 * 1874 * 1) and 2) are used by timekeeping, 3) by RTC subsystem. 1875 * If system has neither 1) nor 2), 3) will be used finally. 1876 * 1877 * 1878 * If timekeeping has injected sleeptime via either 1) or 2), 1879 * 3) becomes needless, so in this case we don't need to call 1880 * rtc_resume(), and this is what timekeeping_rtc_skipresume() 1881 * means. 1882 */ 1883 bool timekeeping_rtc_skipresume(void) 1884 { 1885 return !suspend_timing_needed; 1886 } 1887 1888 /* 1889 * 1) can be determined whether to use or not only when doing 1890 * timekeeping_resume() which is invoked after rtc_suspend(), 1891 * so we can't skip rtc_suspend() surely if system has 1). 1892 * 1893 * But if system has 2), 2) will definitely be used, so in this 1894 * case we don't need to call rtc_suspend(), and this is what 1895 * timekeeping_rtc_skipsuspend() means. 1896 */ 1897 bool timekeeping_rtc_skipsuspend(void) 1898 { 1899 return persistent_clock_exists; 1900 } 1901 1902 /** 1903 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values 1904 * @delta: pointer to a timespec64 delta value 1905 * 1906 * This hook is for architectures that cannot support read_persistent_clock64 1907 * because their RTC/persistent clock is only accessible when irqs are enabled. 1908 * and also don't have an effective nonstop clocksource. 1909 * 1910 * This function should only be called by rtc_resume(), and allows 1911 * a suspend offset to be injected into the timekeeping values. 1912 */ 1913 void timekeeping_inject_sleeptime64(const struct timespec64 *delta) 1914 { 1915 struct timekeeper *tk = &tk_core.timekeeper; 1916 unsigned long flags; 1917 1918 raw_spin_lock_irqsave(&tk_core.lock, flags); 1919 write_seqcount_begin(&tk_core.seq); 1920 1921 suspend_timing_needed = false; 1922 1923 timekeeping_forward_now(tk); 1924 1925 __timekeeping_inject_sleeptime(tk, delta); 1926 1927 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET); 1928 1929 write_seqcount_end(&tk_core.seq); 1930 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1931 1932 /* Signal hrtimers about time change */ 1933 clock_was_set(CLOCK_SET_WALL | CLOCK_SET_BOOT); 1934 } 1935 #endif 1936 1937 /** 1938 * timekeeping_resume - Resumes the generic timekeeping subsystem. 1939 */ 1940 void timekeeping_resume(void) 1941 { 1942 struct timekeeper *tk = &tk_core.timekeeper; 1943 struct clocksource *clock = tk->tkr_mono.clock; 1944 unsigned long flags; 1945 struct timespec64 ts_new, ts_delta; 1946 u64 cycle_now, nsec; 1947 bool inject_sleeptime = false; 1948 1949 read_persistent_clock64(&ts_new); 1950 1951 clockevents_resume(); 1952 clocksource_resume(); 1953 1954 raw_spin_lock_irqsave(&tk_core.lock, flags); 1955 write_seqcount_begin(&tk_core.seq); 1956 1957 /* 1958 * After system resumes, we need to calculate the suspended time and 1959 * compensate it for the OS time. There are 3 sources that could be 1960 * used: Nonstop clocksource during suspend, persistent clock and rtc 1961 * device. 1962 * 1963 * One specific platform may have 1 or 2 or all of them, and the 1964 * preference will be: 1965 * suspend-nonstop clocksource -> persistent clock -> rtc 1966 * The less preferred source will only be tried if there is no better 1967 * usable source. The rtc part is handled separately in rtc core code. 1968 */ 1969 cycle_now = tk_clock_read(&tk->tkr_mono); 1970 nsec = clocksource_stop_suspend_timing(clock, cycle_now); 1971 if (nsec > 0) { 1972 ts_delta = ns_to_timespec64(nsec); 1973 inject_sleeptime = true; 1974 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) { 1975 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time); 1976 inject_sleeptime = true; 1977 } 1978 1979 if (inject_sleeptime) { 1980 suspend_timing_needed = false; 1981 __timekeeping_inject_sleeptime(tk, &ts_delta); 1982 } 1983 1984 /* Re-base the last cycle value */ 1985 tk->tkr_mono.cycle_last = cycle_now; 1986 tk->tkr_raw.cycle_last = cycle_now; 1987 1988 tk->ntp_error = 0; 1989 timekeeping_suspended = 0; 1990 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 1991 write_seqcount_end(&tk_core.seq); 1992 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 1993 1994 touch_softlockup_watchdog(); 1995 1996 /* Resume the clockevent device(s) and hrtimers */ 1997 tick_resume(); 1998 /* Notify timerfd as resume is equivalent to clock_was_set() */ 1999 timerfd_resume(); 2000 } 2001 2002 int timekeeping_suspend(void) 2003 { 2004 struct timekeeper *tk = &tk_core.timekeeper; 2005 unsigned long flags; 2006 struct timespec64 delta, delta_delta; 2007 static struct timespec64 old_delta; 2008 struct clocksource *curr_clock; 2009 u64 cycle_now; 2010 2011 read_persistent_clock64(&timekeeping_suspend_time); 2012 2013 /* 2014 * On some systems the persistent_clock can not be detected at 2015 * timekeeping_init by its return value, so if we see a valid 2016 * value returned, update the persistent_clock_exists flag. 2017 */ 2018 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec) 2019 persistent_clock_exists = true; 2020 2021 suspend_timing_needed = true; 2022 2023 raw_spin_lock_irqsave(&tk_core.lock, flags); 2024 write_seqcount_begin(&tk_core.seq); 2025 timekeeping_forward_now(tk); 2026 timekeeping_suspended = 1; 2027 2028 /* 2029 * Since we've called forward_now, cycle_last stores the value 2030 * just read from the current clocksource. Save this to potentially 2031 * use in suspend timing. 2032 */ 2033 curr_clock = tk->tkr_mono.clock; 2034 cycle_now = tk->tkr_mono.cycle_last; 2035 clocksource_start_suspend_timing(curr_clock, cycle_now); 2036 2037 if (persistent_clock_exists) { 2038 /* 2039 * To avoid drift caused by repeated suspend/resumes, 2040 * which each can add ~1 second drift error, 2041 * try to compensate so the difference in system time 2042 * and persistent_clock time stays close to constant. 2043 */ 2044 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time); 2045 delta_delta = timespec64_sub(delta, old_delta); 2046 if (abs(delta_delta.tv_sec) >= 2) { 2047 /* 2048 * if delta_delta is too large, assume time correction 2049 * has occurred and set old_delta to the current delta. 2050 */ 2051 old_delta = delta; 2052 } else { 2053 /* Otherwise try to adjust old_system to compensate */ 2054 timekeeping_suspend_time = 2055 timespec64_add(timekeeping_suspend_time, delta_delta); 2056 } 2057 } 2058 2059 timekeeping_update(tk, TK_MIRROR); 2060 halt_fast_timekeeper(tk); 2061 write_seqcount_end(&tk_core.seq); 2062 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 2063 2064 tick_suspend(); 2065 clocksource_suspend(); 2066 clockevents_suspend(); 2067 2068 return 0; 2069 } 2070 2071 /* sysfs resume/suspend bits for timekeeping */ 2072 static struct syscore_ops timekeeping_syscore_ops = { 2073 .resume = timekeeping_resume, 2074 .suspend = timekeeping_suspend, 2075 }; 2076 2077 static int __init timekeeping_init_ops(void) 2078 { 2079 register_syscore_ops(&timekeeping_syscore_ops); 2080 return 0; 2081 } 2082 device_initcall(timekeeping_init_ops); 2083 2084 /* 2085 * Apply a multiplier adjustment to the timekeeper 2086 */ 2087 static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk, 2088 s64 offset, 2089 s32 mult_adj) 2090 { 2091 s64 interval = tk->cycle_interval; 2092 2093 if (mult_adj == 0) { 2094 return; 2095 } else if (mult_adj == -1) { 2096 interval = -interval; 2097 offset = -offset; 2098 } else if (mult_adj != 1) { 2099 interval *= mult_adj; 2100 offset *= mult_adj; 2101 } 2102 2103 /* 2104 * So the following can be confusing. 2105 * 2106 * To keep things simple, lets assume mult_adj == 1 for now. 2107 * 2108 * When mult_adj != 1, remember that the interval and offset values 2109 * have been appropriately scaled so the math is the same. 2110 * 2111 * The basic idea here is that we're increasing the multiplier 2112 * by one, this causes the xtime_interval to be incremented by 2113 * one cycle_interval. This is because: 2114 * xtime_interval = cycle_interval * mult 2115 * So if mult is being incremented by one: 2116 * xtime_interval = cycle_interval * (mult + 1) 2117 * Its the same as: 2118 * xtime_interval = (cycle_interval * mult) + cycle_interval 2119 * Which can be shortened to: 2120 * xtime_interval += cycle_interval 2121 * 2122 * So offset stores the non-accumulated cycles. Thus the current 2123 * time (in shifted nanoseconds) is: 2124 * now = (offset * adj) + xtime_nsec 2125 * Now, even though we're adjusting the clock frequency, we have 2126 * to keep time consistent. In other words, we can't jump back 2127 * in time, and we also want to avoid jumping forward in time. 2128 * 2129 * So given the same offset value, we need the time to be the same 2130 * both before and after the freq adjustment. 2131 * now = (offset * adj_1) + xtime_nsec_1 2132 * now = (offset * adj_2) + xtime_nsec_2 2133 * So: 2134 * (offset * adj_1) + xtime_nsec_1 = 2135 * (offset * adj_2) + xtime_nsec_2 2136 * And we know: 2137 * adj_2 = adj_1 + 1 2138 * So: 2139 * (offset * adj_1) + xtime_nsec_1 = 2140 * (offset * (adj_1+1)) + xtime_nsec_2 2141 * (offset * adj_1) + xtime_nsec_1 = 2142 * (offset * adj_1) + offset + xtime_nsec_2 2143 * Canceling the sides: 2144 * xtime_nsec_1 = offset + xtime_nsec_2 2145 * Which gives us: 2146 * xtime_nsec_2 = xtime_nsec_1 - offset 2147 * Which simplifies to: 2148 * xtime_nsec -= offset 2149 */ 2150 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) { 2151 /* NTP adjustment caused clocksource mult overflow */ 2152 WARN_ON_ONCE(1); 2153 return; 2154 } 2155 2156 tk->tkr_mono.mult += mult_adj; 2157 tk->xtime_interval += interval; 2158 tk->tkr_mono.xtime_nsec -= offset; 2159 } 2160 2161 /* 2162 * Adjust the timekeeper's multiplier to the correct frequency 2163 * and also to reduce the accumulated error value. 2164 */ 2165 static void timekeeping_adjust(struct timekeeper *tk, s64 offset) 2166 { 2167 u64 ntp_tl = ntp_tick_length(); 2168 u32 mult; 2169 2170 /* 2171 * Determine the multiplier from the current NTP tick length. 2172 * Avoid expensive division when the tick length doesn't change. 2173 */ 2174 if (likely(tk->ntp_tick == ntp_tl)) { 2175 mult = tk->tkr_mono.mult - tk->ntp_err_mult; 2176 } else { 2177 tk->ntp_tick = ntp_tl; 2178 mult = div64_u64((tk->ntp_tick >> tk->ntp_error_shift) - 2179 tk->xtime_remainder, tk->cycle_interval); 2180 } 2181 2182 /* 2183 * If the clock is behind the NTP time, increase the multiplier by 1 2184 * to catch up with it. If it's ahead and there was a remainder in the 2185 * tick division, the clock will slow down. Otherwise it will stay 2186 * ahead until the tick length changes to a non-divisible value. 2187 */ 2188 tk->ntp_err_mult = tk->ntp_error > 0 ? 1 : 0; 2189 mult += tk->ntp_err_mult; 2190 2191 timekeeping_apply_adjustment(tk, offset, mult - tk->tkr_mono.mult); 2192 2193 if (unlikely(tk->tkr_mono.clock->maxadj && 2194 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult) 2195 > tk->tkr_mono.clock->maxadj))) { 2196 printk_once(KERN_WARNING 2197 "Adjusting %s more than 11%% (%ld vs %ld)\n", 2198 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult, 2199 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj); 2200 } 2201 2202 /* 2203 * It may be possible that when we entered this function, xtime_nsec 2204 * was very small. Further, if we're slightly speeding the clocksource 2205 * in the code above, its possible the required corrective factor to 2206 * xtime_nsec could cause it to underflow. 2207 * 2208 * Now, since we have already accumulated the second and the NTP 2209 * subsystem has been notified via second_overflow(), we need to skip 2210 * the next update. 2211 */ 2212 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) { 2213 tk->tkr_mono.xtime_nsec += (u64)NSEC_PER_SEC << 2214 tk->tkr_mono.shift; 2215 tk->xtime_sec--; 2216 tk->skip_second_overflow = 1; 2217 } 2218 } 2219 2220 /* 2221 * accumulate_nsecs_to_secs - Accumulates nsecs into secs 2222 * 2223 * Helper function that accumulates the nsecs greater than a second 2224 * from the xtime_nsec field to the xtime_secs field. 2225 * It also calls into the NTP code to handle leapsecond processing. 2226 */ 2227 static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk) 2228 { 2229 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift; 2230 unsigned int clock_set = 0; 2231 2232 while (tk->tkr_mono.xtime_nsec >= nsecps) { 2233 int leap; 2234 2235 tk->tkr_mono.xtime_nsec -= nsecps; 2236 tk->xtime_sec++; 2237 2238 /* 2239 * Skip NTP update if this second was accumulated before, 2240 * i.e. xtime_nsec underflowed in timekeeping_adjust() 2241 */ 2242 if (unlikely(tk->skip_second_overflow)) { 2243 tk->skip_second_overflow = 0; 2244 continue; 2245 } 2246 2247 /* Figure out if its a leap sec and apply if needed */ 2248 leap = second_overflow(tk->xtime_sec); 2249 if (unlikely(leap)) { 2250 struct timespec64 ts; 2251 2252 tk->xtime_sec += leap; 2253 2254 ts.tv_sec = leap; 2255 ts.tv_nsec = 0; 2256 tk_set_wall_to_mono(tk, 2257 timespec64_sub(tk->wall_to_monotonic, ts)); 2258 2259 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap); 2260 2261 clock_set = TK_CLOCK_WAS_SET; 2262 } 2263 } 2264 return clock_set; 2265 } 2266 2267 /* 2268 * logarithmic_accumulation - shifted accumulation of cycles 2269 * 2270 * This functions accumulates a shifted interval of cycles into 2271 * a shifted interval nanoseconds. Allows for O(log) accumulation 2272 * loop. 2273 * 2274 * Returns the unconsumed cycles. 2275 */ 2276 static u64 logarithmic_accumulation(struct timekeeper *tk, u64 offset, 2277 u32 shift, unsigned int *clock_set) 2278 { 2279 u64 interval = tk->cycle_interval << shift; 2280 u64 snsec_per_sec; 2281 2282 /* If the offset is smaller than a shifted interval, do nothing */ 2283 if (offset < interval) 2284 return offset; 2285 2286 /* Accumulate one shifted interval */ 2287 offset -= interval; 2288 tk->tkr_mono.cycle_last += interval; 2289 tk->tkr_raw.cycle_last += interval; 2290 2291 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift; 2292 *clock_set |= accumulate_nsecs_to_secs(tk); 2293 2294 /* Accumulate raw time */ 2295 tk->tkr_raw.xtime_nsec += tk->raw_interval << shift; 2296 snsec_per_sec = (u64)NSEC_PER_SEC << tk->tkr_raw.shift; 2297 while (tk->tkr_raw.xtime_nsec >= snsec_per_sec) { 2298 tk->tkr_raw.xtime_nsec -= snsec_per_sec; 2299 tk->raw_sec++; 2300 } 2301 2302 /* Accumulate error between NTP and clock interval */ 2303 tk->ntp_error += tk->ntp_tick << shift; 2304 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) << 2305 (tk->ntp_error_shift + shift); 2306 2307 return offset; 2308 } 2309 2310 /* 2311 * timekeeping_advance - Updates the timekeeper to the current time and 2312 * current NTP tick length 2313 */ 2314 static bool timekeeping_advance(enum timekeeping_adv_mode mode) 2315 { 2316 struct timekeeper *tk = &tk_core.shadow_timekeeper; 2317 struct timekeeper *real_tk = &tk_core.timekeeper; 2318 unsigned int clock_set = 0; 2319 int shift = 0, maxshift; 2320 u64 offset; 2321 2322 guard(raw_spinlock_irqsave)(&tk_core.lock); 2323 2324 /* Make sure we're fully resumed: */ 2325 if (unlikely(timekeeping_suspended)) 2326 return false; 2327 2328 offset = clocksource_delta(tk_clock_read(&tk->tkr_mono), 2329 tk->tkr_mono.cycle_last, tk->tkr_mono.mask); 2330 2331 /* Check if there's really nothing to do */ 2332 if (offset < real_tk->cycle_interval && mode == TK_ADV_TICK) 2333 return false; 2334 2335 /* Do some additional sanity checking */ 2336 timekeeping_check_update(tk, offset); 2337 2338 /* 2339 * With NO_HZ we may have to accumulate many cycle_intervals 2340 * (think "ticks") worth of time at once. To do this efficiently, 2341 * we calculate the largest doubling multiple of cycle_intervals 2342 * that is smaller than the offset. We then accumulate that 2343 * chunk in one go, and then try to consume the next smaller 2344 * doubled multiple. 2345 */ 2346 shift = ilog2(offset) - ilog2(tk->cycle_interval); 2347 shift = max(0, shift); 2348 /* Bound shift to one less than what overflows tick_length */ 2349 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1; 2350 shift = min(shift, maxshift); 2351 while (offset >= tk->cycle_interval) { 2352 offset = logarithmic_accumulation(tk, offset, shift, &clock_set); 2353 if (offset < tk->cycle_interval<<shift) 2354 shift--; 2355 } 2356 2357 /* Adjust the multiplier to correct NTP error */ 2358 timekeeping_adjust(tk, offset); 2359 2360 /* 2361 * Finally, make sure that after the rounding 2362 * xtime_nsec isn't larger than NSEC_PER_SEC 2363 */ 2364 clock_set |= accumulate_nsecs_to_secs(tk); 2365 2366 write_seqcount_begin(&tk_core.seq); 2367 /* 2368 * Update the real timekeeper. 2369 * 2370 * We could avoid this memcpy by switching pointers, but that 2371 * requires changes to all other timekeeper usage sites as 2372 * well, i.e. move the timekeeper pointer getter into the 2373 * spinlocked/seqcount protected sections. And we trade this 2374 * memcpy under the tk_core.seq against one before we start 2375 * updating. 2376 */ 2377 timekeeping_update(tk, clock_set); 2378 memcpy(real_tk, tk, sizeof(*tk)); 2379 /* The memcpy must come last. Do not put anything here! */ 2380 write_seqcount_end(&tk_core.seq); 2381 2382 return !!clock_set; 2383 } 2384 2385 /** 2386 * update_wall_time - Uses the current clocksource to increment the wall time 2387 * 2388 */ 2389 void update_wall_time(void) 2390 { 2391 if (timekeeping_advance(TK_ADV_TICK)) 2392 clock_was_set_delayed(); 2393 } 2394 2395 /** 2396 * getboottime64 - Return the real time of system boot. 2397 * @ts: pointer to the timespec64 to be set 2398 * 2399 * Returns the wall-time of boot in a timespec64. 2400 * 2401 * This is based on the wall_to_monotonic offset and the total suspend 2402 * time. Calls to settimeofday will affect the value returned (which 2403 * basically means that however wrong your real time clock is at boot time, 2404 * you get the right time here). 2405 */ 2406 void getboottime64(struct timespec64 *ts) 2407 { 2408 struct timekeeper *tk = &tk_core.timekeeper; 2409 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot); 2410 2411 *ts = ktime_to_timespec64(t); 2412 } 2413 EXPORT_SYMBOL_GPL(getboottime64); 2414 2415 void ktime_get_coarse_real_ts64(struct timespec64 *ts) 2416 { 2417 struct timekeeper *tk = &tk_core.timekeeper; 2418 unsigned int seq; 2419 2420 do { 2421 seq = read_seqcount_begin(&tk_core.seq); 2422 2423 *ts = tk_xtime(tk); 2424 } while (read_seqcount_retry(&tk_core.seq, seq)); 2425 } 2426 EXPORT_SYMBOL(ktime_get_coarse_real_ts64); 2427 2428 /** 2429 * ktime_get_coarse_real_ts64_mg - return latter of coarse grained time or floor 2430 * @ts: timespec64 to be filled 2431 * 2432 * Fetch the global mg_floor value, convert it to realtime and compare it 2433 * to the current coarse-grained time. Fill @ts with whichever is 2434 * latest. Note that this is a filesystem-specific interface and should be 2435 * avoided outside of that context. 2436 */ 2437 void ktime_get_coarse_real_ts64_mg(struct timespec64 *ts) 2438 { 2439 struct timekeeper *tk = &tk_core.timekeeper; 2440 u64 floor = atomic64_read(&mg_floor); 2441 ktime_t f_real, offset, coarse; 2442 unsigned int seq; 2443 2444 do { 2445 seq = read_seqcount_begin(&tk_core.seq); 2446 *ts = tk_xtime(tk); 2447 offset = tk_core.timekeeper.offs_real; 2448 } while (read_seqcount_retry(&tk_core.seq, seq)); 2449 2450 coarse = timespec64_to_ktime(*ts); 2451 f_real = ktime_add(floor, offset); 2452 if (ktime_after(f_real, coarse)) 2453 *ts = ktime_to_timespec64(f_real); 2454 } 2455 2456 /** 2457 * ktime_get_real_ts64_mg - attempt to update floor value and return result 2458 * @ts: pointer to the timespec to be set 2459 * 2460 * Get a monotonic fine-grained time value and attempt to swap it into 2461 * mg_floor. If that succeeds then accept the new floor value. If it fails 2462 * then another task raced in during the interim time and updated the 2463 * floor. Since any update to the floor must be later than the previous 2464 * floor, either outcome is acceptable. 2465 * 2466 * Typically this will be called after calling ktime_get_coarse_real_ts64_mg(), 2467 * and determining that the resulting coarse-grained timestamp did not effect 2468 * a change in ctime. Any more recent floor value would effect a change to 2469 * ctime, so there is no need to retry the atomic64_try_cmpxchg() on failure. 2470 * 2471 * @ts will be filled with the latest floor value, regardless of the outcome of 2472 * the cmpxchg. Note that this is a filesystem specific interface and should be 2473 * avoided outside of that context. 2474 */ 2475 void ktime_get_real_ts64_mg(struct timespec64 *ts) 2476 { 2477 struct timekeeper *tk = &tk_core.timekeeper; 2478 ktime_t old = atomic64_read(&mg_floor); 2479 ktime_t offset, mono; 2480 unsigned int seq; 2481 u64 nsecs; 2482 2483 do { 2484 seq = read_seqcount_begin(&tk_core.seq); 2485 2486 ts->tv_sec = tk->xtime_sec; 2487 mono = tk->tkr_mono.base; 2488 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2489 offset = tk_core.timekeeper.offs_real; 2490 } while (read_seqcount_retry(&tk_core.seq, seq)); 2491 2492 mono = ktime_add_ns(mono, nsecs); 2493 2494 /* 2495 * Attempt to update the floor with the new time value. As any 2496 * update must be later then the existing floor, and would effect 2497 * a change to ctime from the perspective of the current task, 2498 * accept the resulting floor value regardless of the outcome of 2499 * the swap. 2500 */ 2501 if (atomic64_try_cmpxchg(&mg_floor, &old, mono)) { 2502 ts->tv_nsec = 0; 2503 timespec64_add_ns(ts, nsecs); 2504 timekeeping_inc_mg_floor_swaps(); 2505 } else { 2506 /* 2507 * Another task changed mg_floor since "old" was fetched. 2508 * "old" has been updated with the latest value of "mg_floor". 2509 * That value is newer than the previous floor value, which 2510 * is enough to effect a change to ctime. Accept it. 2511 */ 2512 *ts = ktime_to_timespec64(ktime_add(old, offset)); 2513 } 2514 } 2515 2516 void ktime_get_coarse_ts64(struct timespec64 *ts) 2517 { 2518 struct timekeeper *tk = &tk_core.timekeeper; 2519 struct timespec64 now, mono; 2520 unsigned int seq; 2521 2522 do { 2523 seq = read_seqcount_begin(&tk_core.seq); 2524 2525 now = tk_xtime(tk); 2526 mono = tk->wall_to_monotonic; 2527 } while (read_seqcount_retry(&tk_core.seq, seq)); 2528 2529 set_normalized_timespec64(ts, now.tv_sec + mono.tv_sec, 2530 now.tv_nsec + mono.tv_nsec); 2531 } 2532 EXPORT_SYMBOL(ktime_get_coarse_ts64); 2533 2534 /* 2535 * Must hold jiffies_lock 2536 */ 2537 void do_timer(unsigned long ticks) 2538 { 2539 jiffies_64 += ticks; 2540 calc_global_load(); 2541 } 2542 2543 /** 2544 * ktime_get_update_offsets_now - hrtimer helper 2545 * @cwsseq: pointer to check and store the clock was set sequence number 2546 * @offs_real: pointer to storage for monotonic -> realtime offset 2547 * @offs_boot: pointer to storage for monotonic -> boottime offset 2548 * @offs_tai: pointer to storage for monotonic -> clock tai offset 2549 * 2550 * Returns current monotonic time and updates the offsets if the 2551 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are 2552 * different. 2553 * 2554 * Called from hrtimer_interrupt() or retrigger_next_event() 2555 */ 2556 ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real, 2557 ktime_t *offs_boot, ktime_t *offs_tai) 2558 { 2559 struct timekeeper *tk = &tk_core.timekeeper; 2560 unsigned int seq; 2561 ktime_t base; 2562 u64 nsecs; 2563 2564 do { 2565 seq = read_seqcount_begin(&tk_core.seq); 2566 2567 base = tk->tkr_mono.base; 2568 nsecs = timekeeping_get_ns(&tk->tkr_mono); 2569 base = ktime_add_ns(base, nsecs); 2570 2571 if (*cwsseq != tk->clock_was_set_seq) { 2572 *cwsseq = tk->clock_was_set_seq; 2573 *offs_real = tk->offs_real; 2574 *offs_boot = tk->offs_boot; 2575 *offs_tai = tk->offs_tai; 2576 } 2577 2578 /* Handle leapsecond insertion adjustments */ 2579 if (unlikely(base >= tk->next_leap_ktime)) 2580 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0)); 2581 2582 } while (read_seqcount_retry(&tk_core.seq, seq)); 2583 2584 return base; 2585 } 2586 2587 /* 2588 * timekeeping_validate_timex - Ensures the timex is ok for use in do_adjtimex 2589 */ 2590 static int timekeeping_validate_timex(const struct __kernel_timex *txc) 2591 { 2592 if (txc->modes & ADJ_ADJTIME) { 2593 /* singleshot must not be used with any other mode bits */ 2594 if (!(txc->modes & ADJ_OFFSET_SINGLESHOT)) 2595 return -EINVAL; 2596 if (!(txc->modes & ADJ_OFFSET_READONLY) && 2597 !capable(CAP_SYS_TIME)) 2598 return -EPERM; 2599 } else { 2600 /* In order to modify anything, you gotta be super-user! */ 2601 if (txc->modes && !capable(CAP_SYS_TIME)) 2602 return -EPERM; 2603 /* 2604 * if the quartz is off by more than 10% then 2605 * something is VERY wrong! 2606 */ 2607 if (txc->modes & ADJ_TICK && 2608 (txc->tick < 900000/USER_HZ || 2609 txc->tick > 1100000/USER_HZ)) 2610 return -EINVAL; 2611 } 2612 2613 if (txc->modes & ADJ_SETOFFSET) { 2614 /* In order to inject time, you gotta be super-user! */ 2615 if (!capable(CAP_SYS_TIME)) 2616 return -EPERM; 2617 2618 /* 2619 * Validate if a timespec/timeval used to inject a time 2620 * offset is valid. Offsets can be positive or negative, so 2621 * we don't check tv_sec. The value of the timeval/timespec 2622 * is the sum of its fields,but *NOTE*: 2623 * The field tv_usec/tv_nsec must always be non-negative and 2624 * we can't have more nanoseconds/microseconds than a second. 2625 */ 2626 if (txc->time.tv_usec < 0) 2627 return -EINVAL; 2628 2629 if (txc->modes & ADJ_NANO) { 2630 if (txc->time.tv_usec >= NSEC_PER_SEC) 2631 return -EINVAL; 2632 } else { 2633 if (txc->time.tv_usec >= USEC_PER_SEC) 2634 return -EINVAL; 2635 } 2636 } 2637 2638 /* 2639 * Check for potential multiplication overflows that can 2640 * only happen on 64-bit systems: 2641 */ 2642 if ((txc->modes & ADJ_FREQUENCY) && (BITS_PER_LONG == 64)) { 2643 if (LLONG_MIN / PPM_SCALE > txc->freq) 2644 return -EINVAL; 2645 if (LLONG_MAX / PPM_SCALE < txc->freq) 2646 return -EINVAL; 2647 } 2648 2649 return 0; 2650 } 2651 2652 /** 2653 * random_get_entropy_fallback - Returns the raw clock source value, 2654 * used by random.c for platforms with no valid random_get_entropy(). 2655 */ 2656 unsigned long random_get_entropy_fallback(void) 2657 { 2658 struct tk_read_base *tkr = &tk_core.timekeeper.tkr_mono; 2659 struct clocksource *clock = READ_ONCE(tkr->clock); 2660 2661 if (unlikely(timekeeping_suspended || !clock)) 2662 return 0; 2663 return clock->read(clock); 2664 } 2665 EXPORT_SYMBOL_GPL(random_get_entropy_fallback); 2666 2667 /** 2668 * do_adjtimex() - Accessor function to NTP __do_adjtimex function 2669 * @txc: Pointer to kernel_timex structure containing NTP parameters 2670 */ 2671 int do_adjtimex(struct __kernel_timex *txc) 2672 { 2673 struct timekeeper *tk = &tk_core.timekeeper; 2674 struct audit_ntp_data ad; 2675 bool offset_set = false; 2676 bool clock_set = false; 2677 struct timespec64 ts; 2678 unsigned long flags; 2679 s32 orig_tai, tai; 2680 int ret; 2681 2682 /* Validate the data before disabling interrupts */ 2683 ret = timekeeping_validate_timex(txc); 2684 if (ret) 2685 return ret; 2686 add_device_randomness(txc, sizeof(*txc)); 2687 2688 if (txc->modes & ADJ_SETOFFSET) { 2689 struct timespec64 delta; 2690 delta.tv_sec = txc->time.tv_sec; 2691 delta.tv_nsec = txc->time.tv_usec; 2692 if (!(txc->modes & ADJ_NANO)) 2693 delta.tv_nsec *= 1000; 2694 ret = timekeeping_inject_offset(&delta); 2695 if (ret) 2696 return ret; 2697 2698 offset_set = delta.tv_sec != 0; 2699 audit_tk_injoffset(delta); 2700 } 2701 2702 audit_ntp_init(&ad); 2703 2704 ktime_get_real_ts64(&ts); 2705 add_device_randomness(&ts, sizeof(ts)); 2706 2707 raw_spin_lock_irqsave(&tk_core.lock, flags); 2708 write_seqcount_begin(&tk_core.seq); 2709 2710 orig_tai = tai = tk->tai_offset; 2711 ret = __do_adjtimex(txc, &ts, &tai, &ad); 2712 2713 if (tai != orig_tai) { 2714 __timekeeping_set_tai_offset(tk, tai); 2715 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET); 2716 clock_set = true; 2717 } else { 2718 tk_update_leap_state(tk); 2719 } 2720 2721 write_seqcount_end(&tk_core.seq); 2722 raw_spin_unlock_irqrestore(&tk_core.lock, flags); 2723 2724 audit_ntp_log(&ad); 2725 2726 /* Update the multiplier immediately if frequency was set directly */ 2727 if (txc->modes & (ADJ_FREQUENCY | ADJ_TICK)) 2728 clock_set |= timekeeping_advance(TK_ADV_FREQ); 2729 2730 if (clock_set) 2731 clock_was_set(CLOCK_SET_WALL); 2732 2733 ntp_notify_cmos_timer(offset_set); 2734 2735 return ret; 2736 } 2737 2738 #ifdef CONFIG_NTP_PPS 2739 /** 2740 * hardpps() - Accessor function to NTP __hardpps function 2741 * @phase_ts: Pointer to timespec64 structure representing phase timestamp 2742 * @raw_ts: Pointer to timespec64 structure representing raw timestamp 2743 */ 2744 void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 2745 { 2746 guard(raw_spinlock_irqsave)(&tk_core.lock); 2747 __hardpps(phase_ts, raw_ts); 2748 } 2749 EXPORT_SYMBOL(hardpps); 2750 #endif /* CONFIG_NTP_PPS */ 2751