1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * This file contains the base functions to manage periodic tick 4 * related events. 5 * 6 * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]> 7 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 8 * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner 9 */ 10 #include <linux/cpu.h> 11 #include <linux/err.h> 12 #include <linux/hrtimer.h> 13 #include <linux/interrupt.h> 14 #include <linux/nmi.h> 15 #include <linux/percpu.h> 16 #include <linux/profile.h> 17 #include <linux/sched.h> 18 #include <linux/module.h> 19 #include <linux/sched/clock.h> 20 #include <trace/events/power.h> 21 22 #include <asm/irq_regs.h> 23 24 #include "tick-internal.h" 25 26 /* 27 * Tick devices 28 */ 29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device); 30 /* 31 * Tick next event: keeps track of the tick time 32 */ 33 ktime_t tick_next_period; 34 ktime_t tick_period; 35 36 /* 37 * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR 38 * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This 39 * variable has two functions: 40 * 41 * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the 42 * timekeeping lock all at once. Only the CPU which is assigned to do the 43 * update is handling it. 44 * 45 * 2) Hand off the duty in the NOHZ idle case by setting the value to 46 * TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks 47 * at it will take over and keep the time keeping alive. The handover 48 * procedure also covers cpu hotplug. 49 */ 50 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT; 51 #ifdef CONFIG_NO_HZ_FULL 52 /* 53 * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns 54 * tick_do_timer_cpu and it should be taken over by an eligible secondary 55 * when one comes online. 56 */ 57 static int tick_do_timer_boot_cpu __read_mostly = -1; 58 #endif 59 60 /* 61 * Debugging: see timer_list.c 62 */ 63 struct tick_device *tick_get_device(int cpu) 64 { 65 return &per_cpu(tick_cpu_device, cpu); 66 } 67 68 /** 69 * tick_is_oneshot_available - check for a oneshot capable event device 70 */ 71 int tick_is_oneshot_available(void) 72 { 73 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev); 74 75 if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT)) 76 return 0; 77 if (!(dev->features & CLOCK_EVT_FEAT_C3STOP)) 78 return 1; 79 return tick_broadcast_oneshot_available(); 80 } 81 82 /* 83 * Periodic tick 84 */ 85 static void tick_periodic(int cpu) 86 { 87 if (tick_do_timer_cpu == cpu) { 88 /* 89 * Use running_clock() as reference to check for missing ticks. 90 */ 91 static ktime_t last_update; 92 ktime_t now; 93 int ticks = 1; 94 95 now = ns_to_ktime(running_clock()); 96 write_seqlock(&jiffies_lock); 97 98 if (last_update) { 99 u64 delta = ktime_sub(now, last_update); 100 101 /* 102 * Check for eventually missed ticks 103 * 104 * There is likely a persistent delta between 105 * last_update and tick_next_period. So they are 106 * updated separately. 107 */ 108 if (delta >= 2 * tick_period) { 109 s64 period = ktime_to_ns(tick_period); 110 111 ticks = ktime_divns(delta, period); 112 } 113 last_update = ktime_add(last_update, 114 ticks * tick_period); 115 } else { 116 last_update = now; 117 } 118 119 /* Keep track of the next tick event */ 120 tick_next_period = ktime_add(tick_next_period, 121 ticks * tick_period); 122 do_timer(ticks); 123 write_sequnlock(&jiffies_lock); 124 update_wall_time(); 125 } 126 127 update_process_times(user_mode(get_irq_regs())); 128 profile_tick(CPU_PROFILING); 129 } 130 131 /* 132 * Event handler for periodic ticks 133 */ 134 void tick_handle_periodic(struct clock_event_device *dev) 135 { 136 int cpu = smp_processor_id(); 137 ktime_t next = dev->next_event; 138 139 tick_periodic(cpu); 140 141 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON) 142 /* 143 * The cpu might have transitioned to HIGHRES or NOHZ mode via 144 * update_process_times() -> run_local_timers() -> 145 * hrtimer_run_queues(). 146 */ 147 if (dev->event_handler != tick_handle_periodic) 148 return; 149 #endif 150 151 if (!clockevent_state_oneshot(dev)) 152 return; 153 for (;;) { 154 /* 155 * Setup the next period for devices, which do not have 156 * periodic mode: 157 */ 158 next = ktime_add(next, tick_period); 159 160 if (!clockevents_program_event(dev, next, false)) 161 return; 162 /* 163 * Have to be careful here. If we're in oneshot mode, 164 * before we call tick_periodic() in a loop, we need 165 * to be sure we're using a real hardware clocksource. 166 * Otherwise we could get trapped in an infinite 167 * loop, as the tick_periodic() increments jiffies, 168 * which then will increment time, possibly causing 169 * the loop to trigger again and again. 170 */ 171 if (timekeeping_valid_for_hres()) 172 tick_periodic(cpu); 173 } 174 } 175 176 /* 177 * Setup the device for a periodic tick 178 */ 179 void tick_setup_periodic(struct clock_event_device *dev, int broadcast) 180 { 181 tick_set_periodic_handler(dev, broadcast); 182 183 /* Broadcast setup ? */ 184 if (!tick_device_is_functional(dev)) 185 return; 186 187 if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) && 188 !tick_broadcast_oneshot_active()) { 189 clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC); 190 } else { 191 unsigned int seq; 192 ktime_t next; 193 194 do { 195 seq = read_seqbegin(&jiffies_lock); 196 next = tick_next_period; 197 } while (read_seqretry(&jiffies_lock, seq)); 198 199 clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT); 200 201 for (;;) { 202 if (!clockevents_program_event(dev, next, false)) 203 return; 204 next = ktime_add(next, tick_period); 205 } 206 } 207 } 208 209 #ifdef CONFIG_NO_HZ_FULL 210 static void giveup_do_timer(void *info) 211 { 212 int cpu = *(unsigned int *)info; 213 214 WARN_ON(tick_do_timer_cpu != smp_processor_id()); 215 216 tick_do_timer_cpu = cpu; 217 } 218 219 static void tick_take_do_timer_from_boot(void) 220 { 221 int cpu = smp_processor_id(); 222 int from = tick_do_timer_boot_cpu; 223 224 if (from >= 0 && from != cpu) 225 smp_call_function_single(from, giveup_do_timer, &cpu, 1); 226 } 227 #endif 228 229 /* 230 * Setup the tick device 231 */ 232 static void tick_setup_device(struct tick_device *td, 233 struct clock_event_device *newdev, int cpu, 234 const struct cpumask *cpumask) 235 { 236 void (*handler)(struct clock_event_device *) = NULL; 237 ktime_t next_event = 0; 238 239 /* 240 * First device setup ? 241 */ 242 if (!td->evtdev) { 243 /* 244 * If no cpu took the do_timer update, assign it to 245 * this cpu: 246 */ 247 if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) { 248 tick_do_timer_cpu = cpu; 249 250 tick_next_period = ktime_get(); 251 tick_period = NSEC_PER_SEC / HZ; 252 #ifdef CONFIG_NO_HZ_FULL 253 /* 254 * The boot CPU may be nohz_full, in which case set 255 * tick_do_timer_boot_cpu so the first housekeeping 256 * secondary that comes up will take do_timer from 257 * us. 258 */ 259 if (tick_nohz_full_cpu(cpu)) 260 tick_do_timer_boot_cpu = cpu; 261 262 } else if (tick_do_timer_boot_cpu != -1 && 263 !tick_nohz_full_cpu(cpu)) { 264 tick_take_do_timer_from_boot(); 265 tick_do_timer_boot_cpu = -1; 266 WARN_ON(tick_do_timer_cpu != cpu); 267 #endif 268 } 269 270 /* 271 * Startup in periodic mode first. 272 */ 273 td->mode = TICKDEV_MODE_PERIODIC; 274 } else { 275 handler = td->evtdev->event_handler; 276 next_event = td->evtdev->next_event; 277 td->evtdev->event_handler = clockevents_handle_noop; 278 } 279 280 td->evtdev = newdev; 281 282 /* 283 * When the device is not per cpu, pin the interrupt to the 284 * current cpu: 285 */ 286 if (!cpumask_equal(newdev->cpumask, cpumask)) 287 irq_set_affinity(newdev->irq, cpumask); 288 289 /* 290 * When global broadcasting is active, check if the current 291 * device is registered as a placeholder for broadcast mode. 292 * This allows us to handle this x86 misfeature in a generic 293 * way. This function also returns !=0 when we keep the 294 * current active broadcast state for this CPU. 295 */ 296 if (tick_device_uses_broadcast(newdev, cpu)) 297 return; 298 299 if (td->mode == TICKDEV_MODE_PERIODIC) 300 tick_setup_periodic(newdev, 0); 301 else 302 tick_setup_oneshot(newdev, handler, next_event); 303 } 304 305 void tick_install_replacement(struct clock_event_device *newdev) 306 { 307 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 308 int cpu = smp_processor_id(); 309 310 clockevents_exchange_device(td->evtdev, newdev); 311 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 312 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 313 tick_oneshot_notify(); 314 } 315 316 static bool tick_check_percpu(struct clock_event_device *curdev, 317 struct clock_event_device *newdev, int cpu) 318 { 319 if (!cpumask_test_cpu(cpu, newdev->cpumask)) 320 return false; 321 if (cpumask_equal(newdev->cpumask, cpumask_of(cpu))) 322 return true; 323 /* Check if irq affinity can be set */ 324 if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq)) 325 return false; 326 /* Prefer an existing cpu local device */ 327 if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu))) 328 return false; 329 return true; 330 } 331 332 static bool tick_check_preferred(struct clock_event_device *curdev, 333 struct clock_event_device *newdev) 334 { 335 /* Prefer oneshot capable device */ 336 if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) { 337 if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT)) 338 return false; 339 if (tick_oneshot_mode_active()) 340 return false; 341 } 342 343 /* 344 * Use the higher rated one, but prefer a CPU local device with a lower 345 * rating than a non-CPU local device 346 */ 347 return !curdev || 348 newdev->rating > curdev->rating || 349 !cpumask_equal(curdev->cpumask, newdev->cpumask); 350 } 351 352 /* 353 * Check whether the new device is a better fit than curdev. curdev 354 * can be NULL ! 355 */ 356 bool tick_check_replacement(struct clock_event_device *curdev, 357 struct clock_event_device *newdev) 358 { 359 if (!tick_check_percpu(curdev, newdev, smp_processor_id())) 360 return false; 361 362 return tick_check_preferred(curdev, newdev); 363 } 364 365 /* 366 * Check, if the new registered device should be used. Called with 367 * clockevents_lock held and interrupts disabled. 368 */ 369 void tick_check_new_device(struct clock_event_device *newdev) 370 { 371 struct clock_event_device *curdev; 372 struct tick_device *td; 373 int cpu; 374 375 cpu = smp_processor_id(); 376 td = &per_cpu(tick_cpu_device, cpu); 377 curdev = td->evtdev; 378 379 /* cpu local device ? */ 380 if (!tick_check_percpu(curdev, newdev, cpu)) 381 goto out_bc; 382 383 /* Preference decision */ 384 if (!tick_check_preferred(curdev, newdev)) 385 goto out_bc; 386 387 if (!try_module_get(newdev->owner)) 388 return; 389 390 /* 391 * Replace the eventually existing device by the new 392 * device. If the current device is the broadcast device, do 393 * not give it back to the clockevents layer ! 394 */ 395 if (tick_is_broadcast_device(curdev)) { 396 clockevents_shutdown(curdev); 397 curdev = NULL; 398 } 399 clockevents_exchange_device(curdev, newdev); 400 tick_setup_device(td, newdev, cpu, cpumask_of(cpu)); 401 if (newdev->features & CLOCK_EVT_FEAT_ONESHOT) 402 tick_oneshot_notify(); 403 return; 404 405 out_bc: 406 /* 407 * Can the new device be used as a broadcast device ? 408 */ 409 tick_install_broadcast_device(newdev); 410 } 411 412 /** 413 * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode 414 * @state: The target state (enter/exit) 415 * 416 * The system enters/leaves a state, where affected devices might stop 417 * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups. 418 * 419 * Called with interrupts disabled, so clockevents_lock is not 420 * required here because the local clock event device cannot go away 421 * under us. 422 */ 423 int tick_broadcast_oneshot_control(enum tick_broadcast_state state) 424 { 425 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 426 427 if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP)) 428 return 0; 429 430 return __tick_broadcast_oneshot_control(state); 431 } 432 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control); 433 434 #ifdef CONFIG_HOTPLUG_CPU 435 /* 436 * Transfer the do_timer job away from a dying cpu. 437 * 438 * Called with interrupts disabled. Not locking required. If 439 * tick_do_timer_cpu is owned by this cpu, nothing can change it. 440 */ 441 void tick_handover_do_timer(void) 442 { 443 if (tick_do_timer_cpu == smp_processor_id()) { 444 int cpu = cpumask_first(cpu_online_mask); 445 446 tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu : 447 TICK_DO_TIMER_NONE; 448 } 449 } 450 451 /* 452 * Shutdown an event device on a given cpu: 453 * 454 * This is called on a life CPU, when a CPU is dead. So we cannot 455 * access the hardware device itself. 456 * We just set the mode and remove it from the lists. 457 */ 458 void tick_shutdown(unsigned int cpu) 459 { 460 struct tick_device *td = &per_cpu(tick_cpu_device, cpu); 461 struct clock_event_device *dev = td->evtdev; 462 463 td->mode = TICKDEV_MODE_PERIODIC; 464 if (dev) { 465 /* 466 * Prevent that the clock events layer tries to call 467 * the set mode function! 468 */ 469 clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED); 470 clockevents_exchange_device(dev, NULL); 471 dev->event_handler = clockevents_handle_noop; 472 td->evtdev = NULL; 473 } 474 } 475 #endif 476 477 /** 478 * tick_suspend_local - Suspend the local tick device 479 * 480 * Called from the local cpu for freeze with interrupts disabled. 481 * 482 * No locks required. Nothing can change the per cpu device. 483 */ 484 void tick_suspend_local(void) 485 { 486 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 487 488 clockevents_shutdown(td->evtdev); 489 } 490 491 /** 492 * tick_resume_local - Resume the local tick device 493 * 494 * Called from the local CPU for unfreeze or XEN resume magic. 495 * 496 * No locks required. Nothing can change the per cpu device. 497 */ 498 void tick_resume_local(void) 499 { 500 struct tick_device *td = this_cpu_ptr(&tick_cpu_device); 501 bool broadcast = tick_resume_check_broadcast(); 502 503 clockevents_tick_resume(td->evtdev); 504 if (!broadcast) { 505 if (td->mode == TICKDEV_MODE_PERIODIC) 506 tick_setup_periodic(td->evtdev, 0); 507 else 508 tick_resume_oneshot(); 509 } 510 } 511 512 /** 513 * tick_suspend - Suspend the tick and the broadcast device 514 * 515 * Called from syscore_suspend() via timekeeping_suspend with only one 516 * CPU online and interrupts disabled or from tick_unfreeze() under 517 * tick_freeze_lock. 518 * 519 * No locks required. Nothing can change the per cpu device. 520 */ 521 void tick_suspend(void) 522 { 523 tick_suspend_local(); 524 tick_suspend_broadcast(); 525 } 526 527 /** 528 * tick_resume - Resume the tick and the broadcast device 529 * 530 * Called from syscore_resume() via timekeeping_resume with only one 531 * CPU online and interrupts disabled. 532 * 533 * No locks required. Nothing can change the per cpu device. 534 */ 535 void tick_resume(void) 536 { 537 tick_resume_broadcast(); 538 tick_resume_local(); 539 } 540 541 #ifdef CONFIG_SUSPEND 542 static DEFINE_RAW_SPINLOCK(tick_freeze_lock); 543 static unsigned int tick_freeze_depth; 544 545 /** 546 * tick_freeze - Suspend the local tick and (possibly) timekeeping. 547 * 548 * Check if this is the last online CPU executing the function and if so, 549 * suspend timekeeping. Otherwise suspend the local tick. 550 * 551 * Call with interrupts disabled. Must be balanced with %tick_unfreeze(). 552 * Interrupts must not be enabled before the subsequent %tick_unfreeze(). 553 */ 554 void tick_freeze(void) 555 { 556 raw_spin_lock(&tick_freeze_lock); 557 558 tick_freeze_depth++; 559 if (tick_freeze_depth == num_online_cpus()) { 560 trace_suspend_resume(TPS("timekeeping_freeze"), 561 smp_processor_id(), true); 562 system_state = SYSTEM_SUSPEND; 563 sched_clock_suspend(); 564 timekeeping_suspend(); 565 } else { 566 tick_suspend_local(); 567 } 568 569 raw_spin_unlock(&tick_freeze_lock); 570 } 571 572 /** 573 * tick_unfreeze - Resume the local tick and (possibly) timekeeping. 574 * 575 * Check if this is the first CPU executing the function and if so, resume 576 * timekeeping. Otherwise resume the local tick. 577 * 578 * Call with interrupts disabled. Must be balanced with %tick_freeze(). 579 * Interrupts must not be enabled after the preceding %tick_freeze(). 580 */ 581 void tick_unfreeze(void) 582 { 583 raw_spin_lock(&tick_freeze_lock); 584 585 if (tick_freeze_depth == num_online_cpus()) { 586 timekeeping_resume(); 587 sched_clock_resume(); 588 system_state = SYSTEM_RUNNING; 589 trace_suspend_resume(TPS("timekeeping_freeze"), 590 smp_processor_id(), false); 591 } else { 592 touch_softlockup_watchdog(); 593 tick_resume_local(); 594 } 595 596 tick_freeze_depth--; 597 598 raw_spin_unlock(&tick_freeze_lock); 599 } 600 #endif /* CONFIG_SUSPEND */ 601 602 /** 603 * tick_init - initialize the tick control 604 */ 605 void __init tick_init(void) 606 { 607 tick_broadcast_init(); 608 tick_nohz_init(); 609 } 610