xref: /linux-6.15/kernel/time/tick-common.c (revision d441dceb)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file contains the base functions to manage periodic tick
4  * related events.
5  *
6  * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]>
7  * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
8  * Copyright(C) 2006-2007, Timesys Corp., Thomas Gleixner
9  */
10 #include <linux/cpu.h>
11 #include <linux/err.h>
12 #include <linux/hrtimer.h>
13 #include <linux/interrupt.h>
14 #include <linux/nmi.h>
15 #include <linux/percpu.h>
16 #include <linux/profile.h>
17 #include <linux/sched.h>
18 #include <linux/module.h>
19 #include <linux/sched/clock.h>
20 #include <trace/events/power.h>
21 
22 #include <asm/irq_regs.h>
23 
24 #include "tick-internal.h"
25 
26 /*
27  * Tick devices
28  */
29 DEFINE_PER_CPU(struct tick_device, tick_cpu_device);
30 /*
31  * Tick next event: keeps track of the tick time
32  */
33 ktime_t tick_next_period;
34 ktime_t tick_period;
35 
36 /*
37  * tick_do_timer_cpu is a timer core internal variable which holds the CPU NR
38  * which is responsible for calling do_timer(), i.e. the timekeeping stuff. This
39  * variable has two functions:
40  *
41  * 1) Prevent a thundering herd issue of a gazillion of CPUs trying to grab the
42  *    timekeeping lock all at once. Only the CPU which is assigned to do the
43  *    update is handling it.
44  *
45  * 2) Hand off the duty in the NOHZ idle case by setting the value to
46  *    TICK_DO_TIMER_NONE, i.e. a non existing CPU. So the next cpu which looks
47  *    at it will take over and keep the time keeping alive.  The handover
48  *    procedure also covers cpu hotplug.
49  */
50 int tick_do_timer_cpu __read_mostly = TICK_DO_TIMER_BOOT;
51 #ifdef CONFIG_NO_HZ_FULL
52 /*
53  * tick_do_timer_boot_cpu indicates the boot CPU temporarily owns
54  * tick_do_timer_cpu and it should be taken over by an eligible secondary
55  * when one comes online.
56  */
57 static int tick_do_timer_boot_cpu __read_mostly = -1;
58 #endif
59 
60 /*
61  * Debugging: see timer_list.c
62  */
63 struct tick_device *tick_get_device(int cpu)
64 {
65 	return &per_cpu(tick_cpu_device, cpu);
66 }
67 
68 /**
69  * tick_is_oneshot_available - check for a oneshot capable event device
70  */
71 int tick_is_oneshot_available(void)
72 {
73 	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
74 
75 	if (!dev || !(dev->features & CLOCK_EVT_FEAT_ONESHOT))
76 		return 0;
77 	if (!(dev->features & CLOCK_EVT_FEAT_C3STOP))
78 		return 1;
79 	return tick_broadcast_oneshot_available();
80 }
81 
82 /*
83  * Periodic tick
84  */
85 static void tick_periodic(int cpu)
86 {
87 	if (tick_do_timer_cpu == cpu) {
88 		/*
89 		 * Use running_clock() as reference to check for missing ticks.
90 		 */
91 		static ktime_t last_update;
92 		ktime_t now;
93 		int ticks = 1;
94 
95 		now = ns_to_ktime(running_clock());
96 		write_seqlock(&jiffies_lock);
97 
98 		if (last_update) {
99 			u64 delta = ktime_sub(now, last_update);
100 
101 			/*
102 			 * Check for eventually missed ticks
103 			 *
104 			 * There is likely a persistent delta between
105 			 * last_update and tick_next_period. So they are
106 			 * updated separately.
107 			 */
108 			if (delta >= 2 * tick_period) {
109 				s64 period = ktime_to_ns(tick_period);
110 
111 				ticks = ktime_divns(delta, period);
112 			}
113 			last_update = ktime_add(last_update,
114 						ticks * tick_period);
115 		} else {
116 			last_update = now;
117 		}
118 
119 		/* Keep track of the next tick event */
120 		tick_next_period = ktime_add(tick_next_period,
121 					     ticks * tick_period);
122 		do_timer(ticks);
123 		write_sequnlock(&jiffies_lock);
124 		update_wall_time();
125 	}
126 
127 	update_process_times(user_mode(get_irq_regs()));
128 	profile_tick(CPU_PROFILING);
129 }
130 
131 /*
132  * Event handler for periodic ticks
133  */
134 void tick_handle_periodic(struct clock_event_device *dev)
135 {
136 	int cpu = smp_processor_id();
137 	ktime_t next = dev->next_event;
138 
139 	tick_periodic(cpu);
140 
141 #if defined(CONFIG_HIGH_RES_TIMERS) || defined(CONFIG_NO_HZ_COMMON)
142 	/*
143 	 * The cpu might have transitioned to HIGHRES or NOHZ mode via
144 	 * update_process_times() -> run_local_timers() ->
145 	 * hrtimer_run_queues().
146 	 */
147 	if (dev->event_handler != tick_handle_periodic)
148 		return;
149 #endif
150 
151 	if (!clockevent_state_oneshot(dev))
152 		return;
153 	for (;;) {
154 		/*
155 		 * Setup the next period for devices, which do not have
156 		 * periodic mode:
157 		 */
158 		next = ktime_add(next, tick_period);
159 
160 		if (!clockevents_program_event(dev, next, false))
161 			return;
162 		/*
163 		 * Have to be careful here. If we're in oneshot mode,
164 		 * before we call tick_periodic() in a loop, we need
165 		 * to be sure we're using a real hardware clocksource.
166 		 * Otherwise we could get trapped in an infinite
167 		 * loop, as the tick_periodic() increments jiffies,
168 		 * which then will increment time, possibly causing
169 		 * the loop to trigger again and again.
170 		 */
171 		if (timekeeping_valid_for_hres())
172 			tick_periodic(cpu);
173 	}
174 }
175 
176 /*
177  * Setup the device for a periodic tick
178  */
179 void tick_setup_periodic(struct clock_event_device *dev, int broadcast)
180 {
181 	tick_set_periodic_handler(dev, broadcast);
182 
183 	/* Broadcast setup ? */
184 	if (!tick_device_is_functional(dev))
185 		return;
186 
187 	if ((dev->features & CLOCK_EVT_FEAT_PERIODIC) &&
188 	    !tick_broadcast_oneshot_active()) {
189 		clockevents_switch_state(dev, CLOCK_EVT_STATE_PERIODIC);
190 	} else {
191 		unsigned int seq;
192 		ktime_t next;
193 
194 		do {
195 			seq = read_seqbegin(&jiffies_lock);
196 			next = tick_next_period;
197 		} while (read_seqretry(&jiffies_lock, seq));
198 
199 		clockevents_switch_state(dev, CLOCK_EVT_STATE_ONESHOT);
200 
201 		for (;;) {
202 			if (!clockevents_program_event(dev, next, false))
203 				return;
204 			next = ktime_add(next, tick_period);
205 		}
206 	}
207 }
208 
209 #ifdef CONFIG_NO_HZ_FULL
210 static void giveup_do_timer(void *info)
211 {
212 	int cpu = *(unsigned int *)info;
213 
214 	WARN_ON(tick_do_timer_cpu != smp_processor_id());
215 
216 	tick_do_timer_cpu = cpu;
217 }
218 
219 static void tick_take_do_timer_from_boot(void)
220 {
221 	int cpu = smp_processor_id();
222 	int from = tick_do_timer_boot_cpu;
223 
224 	if (from >= 0 && from != cpu)
225 		smp_call_function_single(from, giveup_do_timer, &cpu, 1);
226 }
227 #endif
228 
229 /*
230  * Setup the tick device
231  */
232 static void tick_setup_device(struct tick_device *td,
233 			      struct clock_event_device *newdev, int cpu,
234 			      const struct cpumask *cpumask)
235 {
236 	void (*handler)(struct clock_event_device *) = NULL;
237 	ktime_t next_event = 0;
238 
239 	/*
240 	 * First device setup ?
241 	 */
242 	if (!td->evtdev) {
243 		/*
244 		 * If no cpu took the do_timer update, assign it to
245 		 * this cpu:
246 		 */
247 		if (tick_do_timer_cpu == TICK_DO_TIMER_BOOT) {
248 			tick_do_timer_cpu = cpu;
249 
250 			tick_next_period = ktime_get();
251 			tick_period = NSEC_PER_SEC / HZ;
252 #ifdef CONFIG_NO_HZ_FULL
253 			/*
254 			 * The boot CPU may be nohz_full, in which case set
255 			 * tick_do_timer_boot_cpu so the first housekeeping
256 			 * secondary that comes up will take do_timer from
257 			 * us.
258 			 */
259 			if (tick_nohz_full_cpu(cpu))
260 				tick_do_timer_boot_cpu = cpu;
261 
262 		} else if (tick_do_timer_boot_cpu != -1 &&
263 						!tick_nohz_full_cpu(cpu)) {
264 			tick_take_do_timer_from_boot();
265 			tick_do_timer_boot_cpu = -1;
266 			WARN_ON(tick_do_timer_cpu != cpu);
267 #endif
268 		}
269 
270 		/*
271 		 * Startup in periodic mode first.
272 		 */
273 		td->mode = TICKDEV_MODE_PERIODIC;
274 	} else {
275 		handler = td->evtdev->event_handler;
276 		next_event = td->evtdev->next_event;
277 		td->evtdev->event_handler = clockevents_handle_noop;
278 	}
279 
280 	td->evtdev = newdev;
281 
282 	/*
283 	 * When the device is not per cpu, pin the interrupt to the
284 	 * current cpu:
285 	 */
286 	if (!cpumask_equal(newdev->cpumask, cpumask))
287 		irq_set_affinity(newdev->irq, cpumask);
288 
289 	/*
290 	 * When global broadcasting is active, check if the current
291 	 * device is registered as a placeholder for broadcast mode.
292 	 * This allows us to handle this x86 misfeature in a generic
293 	 * way. This function also returns !=0 when we keep the
294 	 * current active broadcast state for this CPU.
295 	 */
296 	if (tick_device_uses_broadcast(newdev, cpu))
297 		return;
298 
299 	if (td->mode == TICKDEV_MODE_PERIODIC)
300 		tick_setup_periodic(newdev, 0);
301 	else
302 		tick_setup_oneshot(newdev, handler, next_event);
303 }
304 
305 void tick_install_replacement(struct clock_event_device *newdev)
306 {
307 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
308 	int cpu = smp_processor_id();
309 
310 	clockevents_exchange_device(td->evtdev, newdev);
311 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
312 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
313 		tick_oneshot_notify();
314 }
315 
316 static bool tick_check_percpu(struct clock_event_device *curdev,
317 			      struct clock_event_device *newdev, int cpu)
318 {
319 	if (!cpumask_test_cpu(cpu, newdev->cpumask))
320 		return false;
321 	if (cpumask_equal(newdev->cpumask, cpumask_of(cpu)))
322 		return true;
323 	/* Check if irq affinity can be set */
324 	if (newdev->irq >= 0 && !irq_can_set_affinity(newdev->irq))
325 		return false;
326 	/* Prefer an existing cpu local device */
327 	if (curdev && cpumask_equal(curdev->cpumask, cpumask_of(cpu)))
328 		return false;
329 	return true;
330 }
331 
332 static bool tick_check_preferred(struct clock_event_device *curdev,
333 				 struct clock_event_device *newdev)
334 {
335 	/* Prefer oneshot capable device */
336 	if (!(newdev->features & CLOCK_EVT_FEAT_ONESHOT)) {
337 		if (curdev && (curdev->features & CLOCK_EVT_FEAT_ONESHOT))
338 			return false;
339 		if (tick_oneshot_mode_active())
340 			return false;
341 	}
342 
343 	/*
344 	 * Use the higher rated one, but prefer a CPU local device with a lower
345 	 * rating than a non-CPU local device
346 	 */
347 	return !curdev ||
348 		newdev->rating > curdev->rating ||
349 	       !cpumask_equal(curdev->cpumask, newdev->cpumask);
350 }
351 
352 /*
353  * Check whether the new device is a better fit than curdev. curdev
354  * can be NULL !
355  */
356 bool tick_check_replacement(struct clock_event_device *curdev,
357 			    struct clock_event_device *newdev)
358 {
359 	if (!tick_check_percpu(curdev, newdev, smp_processor_id()))
360 		return false;
361 
362 	return tick_check_preferred(curdev, newdev);
363 }
364 
365 /*
366  * Check, if the new registered device should be used. Called with
367  * clockevents_lock held and interrupts disabled.
368  */
369 void tick_check_new_device(struct clock_event_device *newdev)
370 {
371 	struct clock_event_device *curdev;
372 	struct tick_device *td;
373 	int cpu;
374 
375 	cpu = smp_processor_id();
376 	td = &per_cpu(tick_cpu_device, cpu);
377 	curdev = td->evtdev;
378 
379 	/* cpu local device ? */
380 	if (!tick_check_percpu(curdev, newdev, cpu))
381 		goto out_bc;
382 
383 	/* Preference decision */
384 	if (!tick_check_preferred(curdev, newdev))
385 		goto out_bc;
386 
387 	if (!try_module_get(newdev->owner))
388 		return;
389 
390 	/*
391 	 * Replace the eventually existing device by the new
392 	 * device. If the current device is the broadcast device, do
393 	 * not give it back to the clockevents layer !
394 	 */
395 	if (tick_is_broadcast_device(curdev)) {
396 		clockevents_shutdown(curdev);
397 		curdev = NULL;
398 	}
399 	clockevents_exchange_device(curdev, newdev);
400 	tick_setup_device(td, newdev, cpu, cpumask_of(cpu));
401 	if (newdev->features & CLOCK_EVT_FEAT_ONESHOT)
402 		tick_oneshot_notify();
403 	return;
404 
405 out_bc:
406 	/*
407 	 * Can the new device be used as a broadcast device ?
408 	 */
409 	tick_install_broadcast_device(newdev);
410 }
411 
412 /**
413  * tick_broadcast_oneshot_control - Enter/exit broadcast oneshot mode
414  * @state:	The target state (enter/exit)
415  *
416  * The system enters/leaves a state, where affected devices might stop
417  * Returns 0 on success, -EBUSY if the cpu is used to broadcast wakeups.
418  *
419  * Called with interrupts disabled, so clockevents_lock is not
420  * required here because the local clock event device cannot go away
421  * under us.
422  */
423 int tick_broadcast_oneshot_control(enum tick_broadcast_state state)
424 {
425 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
426 
427 	if (!(td->evtdev->features & CLOCK_EVT_FEAT_C3STOP))
428 		return 0;
429 
430 	return __tick_broadcast_oneshot_control(state);
431 }
432 EXPORT_SYMBOL_GPL(tick_broadcast_oneshot_control);
433 
434 #ifdef CONFIG_HOTPLUG_CPU
435 /*
436  * Transfer the do_timer job away from a dying cpu.
437  *
438  * Called with interrupts disabled. Not locking required. If
439  * tick_do_timer_cpu is owned by this cpu, nothing can change it.
440  */
441 void tick_handover_do_timer(void)
442 {
443 	if (tick_do_timer_cpu == smp_processor_id()) {
444 		int cpu = cpumask_first(cpu_online_mask);
445 
446 		tick_do_timer_cpu = (cpu < nr_cpu_ids) ? cpu :
447 			TICK_DO_TIMER_NONE;
448 	}
449 }
450 
451 /*
452  * Shutdown an event device on a given cpu:
453  *
454  * This is called on a life CPU, when a CPU is dead. So we cannot
455  * access the hardware device itself.
456  * We just set the mode and remove it from the lists.
457  */
458 void tick_shutdown(unsigned int cpu)
459 {
460 	struct tick_device *td = &per_cpu(tick_cpu_device, cpu);
461 	struct clock_event_device *dev = td->evtdev;
462 
463 	td->mode = TICKDEV_MODE_PERIODIC;
464 	if (dev) {
465 		/*
466 		 * Prevent that the clock events layer tries to call
467 		 * the set mode function!
468 		 */
469 		clockevent_set_state(dev, CLOCK_EVT_STATE_DETACHED);
470 		clockevents_exchange_device(dev, NULL);
471 		dev->event_handler = clockevents_handle_noop;
472 		td->evtdev = NULL;
473 	}
474 }
475 #endif
476 
477 /**
478  * tick_suspend_local - Suspend the local tick device
479  *
480  * Called from the local cpu for freeze with interrupts disabled.
481  *
482  * No locks required. Nothing can change the per cpu device.
483  */
484 void tick_suspend_local(void)
485 {
486 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
487 
488 	clockevents_shutdown(td->evtdev);
489 }
490 
491 /**
492  * tick_resume_local - Resume the local tick device
493  *
494  * Called from the local CPU for unfreeze or XEN resume magic.
495  *
496  * No locks required. Nothing can change the per cpu device.
497  */
498 void tick_resume_local(void)
499 {
500 	struct tick_device *td = this_cpu_ptr(&tick_cpu_device);
501 	bool broadcast = tick_resume_check_broadcast();
502 
503 	clockevents_tick_resume(td->evtdev);
504 	if (!broadcast) {
505 		if (td->mode == TICKDEV_MODE_PERIODIC)
506 			tick_setup_periodic(td->evtdev, 0);
507 		else
508 			tick_resume_oneshot();
509 	}
510 }
511 
512 /**
513  * tick_suspend - Suspend the tick and the broadcast device
514  *
515  * Called from syscore_suspend() via timekeeping_suspend with only one
516  * CPU online and interrupts disabled or from tick_unfreeze() under
517  * tick_freeze_lock.
518  *
519  * No locks required. Nothing can change the per cpu device.
520  */
521 void tick_suspend(void)
522 {
523 	tick_suspend_local();
524 	tick_suspend_broadcast();
525 }
526 
527 /**
528  * tick_resume - Resume the tick and the broadcast device
529  *
530  * Called from syscore_resume() via timekeeping_resume with only one
531  * CPU online and interrupts disabled.
532  *
533  * No locks required. Nothing can change the per cpu device.
534  */
535 void tick_resume(void)
536 {
537 	tick_resume_broadcast();
538 	tick_resume_local();
539 }
540 
541 #ifdef CONFIG_SUSPEND
542 static DEFINE_RAW_SPINLOCK(tick_freeze_lock);
543 static unsigned int tick_freeze_depth;
544 
545 /**
546  * tick_freeze - Suspend the local tick and (possibly) timekeeping.
547  *
548  * Check if this is the last online CPU executing the function and if so,
549  * suspend timekeeping.  Otherwise suspend the local tick.
550  *
551  * Call with interrupts disabled.  Must be balanced with %tick_unfreeze().
552  * Interrupts must not be enabled before the subsequent %tick_unfreeze().
553  */
554 void tick_freeze(void)
555 {
556 	raw_spin_lock(&tick_freeze_lock);
557 
558 	tick_freeze_depth++;
559 	if (tick_freeze_depth == num_online_cpus()) {
560 		trace_suspend_resume(TPS("timekeeping_freeze"),
561 				     smp_processor_id(), true);
562 		system_state = SYSTEM_SUSPEND;
563 		sched_clock_suspend();
564 		timekeeping_suspend();
565 	} else {
566 		tick_suspend_local();
567 	}
568 
569 	raw_spin_unlock(&tick_freeze_lock);
570 }
571 
572 /**
573  * tick_unfreeze - Resume the local tick and (possibly) timekeeping.
574  *
575  * Check if this is the first CPU executing the function and if so, resume
576  * timekeeping.  Otherwise resume the local tick.
577  *
578  * Call with interrupts disabled.  Must be balanced with %tick_freeze().
579  * Interrupts must not be enabled after the preceding %tick_freeze().
580  */
581 void tick_unfreeze(void)
582 {
583 	raw_spin_lock(&tick_freeze_lock);
584 
585 	if (tick_freeze_depth == num_online_cpus()) {
586 		timekeeping_resume();
587 		sched_clock_resume();
588 		system_state = SYSTEM_RUNNING;
589 		trace_suspend_resume(TPS("timekeeping_freeze"),
590 				     smp_processor_id(), false);
591 	} else {
592 		touch_softlockup_watchdog();
593 		tick_resume_local();
594 	}
595 
596 	tick_freeze_depth--;
597 
598 	raw_spin_unlock(&tick_freeze_lock);
599 }
600 #endif /* CONFIG_SUSPEND */
601 
602 /**
603  * tick_init - initialize the tick control
604  */
605 void __init tick_init(void)
606 {
607 	tick_broadcast_init();
608 	tick_nohz_init();
609 }
610