1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * NTP state machine interfaces and logic. 4 * 5 * This code was mainly moved from kernel/timer.c and kernel/time.c 6 * Please see those files for relevant copyright info and historical 7 * changelogs. 8 */ 9 #include <linux/capability.h> 10 #include <linux/clocksource.h> 11 #include <linux/workqueue.h> 12 #include <linux/hrtimer.h> 13 #include <linux/jiffies.h> 14 #include <linux/math64.h> 15 #include <linux/timex.h> 16 #include <linux/time.h> 17 #include <linux/mm.h> 18 #include <linux/module.h> 19 #include <linux/rtc.h> 20 #include <linux/audit.h> 21 22 #include "ntp_internal.h" 23 #include "timekeeping_internal.h" 24 25 /** 26 * struct ntp_data - Structure holding all NTP related state 27 * @tick_usec: USER_HZ period in microseconds 28 * @tick_length: Adjusted tick length 29 * @tick_length_base: Base value for @tick_length 30 * @time_state: State of the clock synchronization 31 * @time_status: Clock status bits 32 * @time_offset: Time adjustment in nanoseconds 33 * @time_constant: PLL time constant 34 * @time_maxerror: Maximum error in microseconds holding the NTP sync distance 35 * (NTP dispersion + delay / 2) 36 * @time_esterror: Estimated error in microseconds holding NTP dispersion 37 * @time_freq: Frequency offset scaled nsecs/secs 38 * @time_reftime: Time at last adjustment in seconds 39 * @time_adjust: Adjustment value 40 * @ntp_tick_adj: Constant boot-param configurable NTP tick adjustment (upscaled) 41 * 42 * Protected by the timekeeping locks. 43 */ 44 struct ntp_data { 45 unsigned long tick_usec; 46 u64 tick_length; 47 u64 tick_length_base; 48 int time_state; 49 int time_status; 50 s64 time_offset; 51 long time_constant; 52 long time_maxerror; 53 long time_esterror; 54 s64 time_freq; 55 time64_t time_reftime; 56 long time_adjust; 57 s64 ntp_tick_adj; 58 }; 59 60 static struct ntp_data tk_ntp_data = { 61 .tick_usec = USER_TICK_USEC, 62 .time_state = TIME_OK, 63 .time_status = STA_UNSYNC, 64 .time_constant = 2, 65 .time_maxerror = NTP_PHASE_LIMIT, 66 .time_esterror = NTP_PHASE_LIMIT, 67 }; 68 69 #define SECS_PER_DAY 86400 70 #define MAX_TICKADJ 500LL /* usecs */ 71 #define MAX_TICKADJ_SCALED \ 72 (((MAX_TICKADJ * NSEC_PER_USEC) << NTP_SCALE_SHIFT) / NTP_INTERVAL_FREQ) 73 #define MAX_TAI_OFFSET 100000 74 75 /* second value of the next pending leapsecond, or TIME64_MAX if no leap */ 76 static time64_t ntp_next_leap_sec = TIME64_MAX; 77 78 #ifdef CONFIG_NTP_PPS 79 80 /* 81 * The following variables are used when a pulse-per-second (PPS) signal 82 * is available. They establish the engineering parameters of the clock 83 * discipline loop when controlled by the PPS signal. 84 */ 85 #define PPS_VALID 10 /* PPS signal watchdog max (s) */ 86 #define PPS_POPCORN 4 /* popcorn spike threshold (shift) */ 87 #define PPS_INTMIN 2 /* min freq interval (s) (shift) */ 88 #define PPS_INTMAX 8 /* max freq interval (s) (shift) */ 89 #define PPS_INTCOUNT 4 /* number of consecutive good intervals to 90 increase pps_shift or consecutive bad 91 intervals to decrease it */ 92 #define PPS_MAXWANDER 100000 /* max PPS freq wander (ns/s) */ 93 94 static int pps_valid; /* signal watchdog counter */ 95 static long pps_tf[3]; /* phase median filter */ 96 static long pps_jitter; /* current jitter (ns) */ 97 static struct timespec64 pps_fbase; /* beginning of the last freq interval */ 98 static int pps_shift; /* current interval duration (s) (shift) */ 99 static int pps_intcnt; /* interval counter */ 100 static s64 pps_freq; /* frequency offset (scaled ns/s) */ 101 static long pps_stabil; /* current stability (scaled ns/s) */ 102 103 /* 104 * PPS signal quality monitors 105 */ 106 static long pps_calcnt; /* calibration intervals */ 107 static long pps_jitcnt; /* jitter limit exceeded */ 108 static long pps_stbcnt; /* stability limit exceeded */ 109 static long pps_errcnt; /* calibration errors */ 110 111 112 /* 113 * PPS kernel consumer compensates the whole phase error immediately. 114 * Otherwise, reduce the offset by a fixed factor times the time constant. 115 */ 116 static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset) 117 { 118 if (ntpdata->time_status & STA_PPSTIME && ntpdata->time_status & STA_PPSSIGNAL) 119 return offset; 120 else 121 return shift_right(offset, SHIFT_PLL + ntpdata->time_constant); 122 } 123 124 static inline void pps_reset_freq_interval(void) 125 { 126 /* The PPS calibration interval may end surprisingly early */ 127 pps_shift = PPS_INTMIN; 128 pps_intcnt = 0; 129 } 130 131 /** 132 * pps_clear - Clears the PPS state variables 133 */ 134 static inline void pps_clear(void) 135 { 136 pps_reset_freq_interval(); 137 pps_tf[0] = 0; 138 pps_tf[1] = 0; 139 pps_tf[2] = 0; 140 pps_fbase.tv_sec = pps_fbase.tv_nsec = 0; 141 pps_freq = 0; 142 } 143 144 /* 145 * Decrease pps_valid to indicate that another second has passed since the 146 * last PPS signal. When it reaches 0, indicate that PPS signal is missing. 147 */ 148 static inline void pps_dec_valid(struct ntp_data *ntpdata) 149 { 150 if (pps_valid > 0) 151 pps_valid--; 152 else { 153 ntpdata->time_status &= ~(STA_PPSSIGNAL | STA_PPSJITTER | 154 STA_PPSWANDER | STA_PPSERROR); 155 pps_clear(); 156 } 157 } 158 159 static inline void pps_set_freq(s64 freq) 160 { 161 pps_freq = freq; 162 } 163 164 static inline bool is_error_status(int status) 165 { 166 return (status & (STA_UNSYNC|STA_CLOCKERR)) 167 /* 168 * PPS signal lost when either PPS time or PPS frequency 169 * synchronization requested 170 */ 171 || ((status & (STA_PPSFREQ|STA_PPSTIME)) 172 && !(status & STA_PPSSIGNAL)) 173 /* 174 * PPS jitter exceeded when PPS time synchronization 175 * requested 176 */ 177 || ((status & (STA_PPSTIME|STA_PPSJITTER)) 178 == (STA_PPSTIME|STA_PPSJITTER)) 179 /* 180 * PPS wander exceeded or calibration error when PPS 181 * frequency synchronization requested 182 */ 183 || ((status & STA_PPSFREQ) 184 && (status & (STA_PPSWANDER|STA_PPSERROR))); 185 } 186 187 static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc) 188 { 189 txc->ppsfreq = shift_right((pps_freq >> PPM_SCALE_INV_SHIFT) * 190 PPM_SCALE_INV, NTP_SCALE_SHIFT); 191 txc->jitter = pps_jitter; 192 if (!(ntpdata->time_status & STA_NANO)) 193 txc->jitter = pps_jitter / NSEC_PER_USEC; 194 txc->shift = pps_shift; 195 txc->stabil = pps_stabil; 196 txc->jitcnt = pps_jitcnt; 197 txc->calcnt = pps_calcnt; 198 txc->errcnt = pps_errcnt; 199 txc->stbcnt = pps_stbcnt; 200 } 201 202 #else /* !CONFIG_NTP_PPS */ 203 204 static inline s64 ntp_offset_chunk(struct ntp_data *ntpdata, s64 offset) 205 { 206 return shift_right(offset, SHIFT_PLL + ntpdata->time_constant); 207 } 208 209 static inline void pps_reset_freq_interval(void) {} 210 static inline void pps_clear(void) {} 211 static inline void pps_dec_valid(struct ntp_data *ntpdata) {} 212 static inline void pps_set_freq(s64 freq) {} 213 214 static inline bool is_error_status(int status) 215 { 216 return status & (STA_UNSYNC|STA_CLOCKERR); 217 } 218 219 static inline void pps_fill_timex(struct ntp_data *ntpdata, struct __kernel_timex *txc) 220 { 221 /* PPS is not implemented, so these are zero */ 222 txc->ppsfreq = 0; 223 txc->jitter = 0; 224 txc->shift = 0; 225 txc->stabil = 0; 226 txc->jitcnt = 0; 227 txc->calcnt = 0; 228 txc->errcnt = 0; 229 txc->stbcnt = 0; 230 } 231 232 #endif /* CONFIG_NTP_PPS */ 233 234 /* 235 * Update tick_length and tick_length_base, based on tick_usec, ntp_tick_adj and 236 * time_freq: 237 */ 238 static void ntp_update_frequency(struct ntp_data *ntpdata) 239 { 240 u64 second_length, new_base, tick_usec = (u64)ntpdata->tick_usec; 241 242 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ) << NTP_SCALE_SHIFT; 243 244 second_length += ntpdata->ntp_tick_adj; 245 second_length += ntpdata->time_freq; 246 247 new_base = div_u64(second_length, NTP_INTERVAL_FREQ); 248 249 /* 250 * Don't wait for the next second_overflow, apply the change to the 251 * tick length immediately: 252 */ 253 ntpdata->tick_length += new_base - ntpdata->tick_length_base; 254 ntpdata->tick_length_base = new_base; 255 } 256 257 static inline s64 ntp_update_offset_fll(struct ntp_data *ntpdata, s64 offset64, long secs) 258 { 259 ntpdata->time_status &= ~STA_MODE; 260 261 if (secs < MINSEC) 262 return 0; 263 264 if (!(ntpdata->time_status & STA_FLL) && (secs <= MAXSEC)) 265 return 0; 266 267 ntpdata->time_status |= STA_MODE; 268 269 return div64_long(offset64 << (NTP_SCALE_SHIFT - SHIFT_FLL), secs); 270 } 271 272 static void ntp_update_offset(struct ntp_data *ntpdata, long offset) 273 { 274 s64 freq_adj, offset64; 275 long secs, real_secs; 276 277 if (!(ntpdata->time_status & STA_PLL)) 278 return; 279 280 if (!(ntpdata->time_status & STA_NANO)) { 281 /* Make sure the multiplication below won't overflow */ 282 offset = clamp(offset, -USEC_PER_SEC, USEC_PER_SEC); 283 offset *= NSEC_PER_USEC; 284 } 285 286 /* Scale the phase adjustment and clamp to the operating range. */ 287 offset = clamp(offset, -MAXPHASE, MAXPHASE); 288 289 /* 290 * Select how the frequency is to be controlled 291 * and in which mode (PLL or FLL). 292 */ 293 real_secs = __ktime_get_real_seconds(); 294 secs = (long)(real_secs - ntpdata->time_reftime); 295 if (unlikely(ntpdata->time_status & STA_FREQHOLD)) 296 secs = 0; 297 298 ntpdata->time_reftime = real_secs; 299 300 offset64 = offset; 301 freq_adj = ntp_update_offset_fll(ntpdata, offset64, secs); 302 303 /* 304 * Clamp update interval to reduce PLL gain with low 305 * sampling rate (e.g. intermittent network connection) 306 * to avoid instability. 307 */ 308 if (unlikely(secs > 1 << (SHIFT_PLL + 1 + ntpdata->time_constant))) 309 secs = 1 << (SHIFT_PLL + 1 + ntpdata->time_constant); 310 311 freq_adj += (offset64 * secs) << 312 (NTP_SCALE_SHIFT - 2 * (SHIFT_PLL + 2 + ntpdata->time_constant)); 313 314 freq_adj = min(freq_adj + ntpdata->time_freq, MAXFREQ_SCALED); 315 316 ntpdata->time_freq = max(freq_adj, -MAXFREQ_SCALED); 317 318 ntpdata->time_offset = div_s64(offset64 << NTP_SCALE_SHIFT, NTP_INTERVAL_FREQ); 319 } 320 321 static void __ntp_clear(struct ntp_data *ntpdata) 322 { 323 /* Stop active adjtime() */ 324 ntpdata->time_adjust = 0; 325 ntpdata->time_status |= STA_UNSYNC; 326 ntpdata->time_maxerror = NTP_PHASE_LIMIT; 327 ntpdata->time_esterror = NTP_PHASE_LIMIT; 328 329 ntp_update_frequency(ntpdata); 330 331 ntpdata->tick_length = ntpdata->tick_length_base; 332 ntpdata->time_offset = 0; 333 334 ntp_next_leap_sec = TIME64_MAX; 335 /* Clear PPS state variables */ 336 pps_clear(); 337 } 338 339 /** 340 * ntp_clear - Clears the NTP state variables 341 */ 342 void ntp_clear(void) 343 { 344 __ntp_clear(&tk_ntp_data); 345 } 346 347 348 u64 ntp_tick_length(void) 349 { 350 return tk_ntp_data.tick_length; 351 } 352 353 /** 354 * ntp_get_next_leap - Returns the next leapsecond in CLOCK_REALTIME ktime_t 355 * 356 * Provides the time of the next leapsecond against CLOCK_REALTIME in 357 * a ktime_t format. Returns KTIME_MAX if no leapsecond is pending. 358 */ 359 ktime_t ntp_get_next_leap(void) 360 { 361 struct ntp_data *ntpdata = &tk_ntp_data; 362 ktime_t ret; 363 364 if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS)) 365 return ktime_set(ntp_next_leap_sec, 0); 366 ret = KTIME_MAX; 367 return ret; 368 } 369 370 /* 371 * This routine handles the overflow of the microsecond field 372 * 373 * The tricky bits of code to handle the accurate clock support 374 * were provided by Dave Mills ([email protected]) of NTP fame. 375 * They were originally developed for SUN and DEC kernels. 376 * All the kudos should go to Dave for this stuff. 377 * 378 * Also handles leap second processing, and returns leap offset 379 */ 380 int second_overflow(time64_t secs) 381 { 382 struct ntp_data *ntpdata = &tk_ntp_data; 383 s64 delta; 384 int leap = 0; 385 s32 rem; 386 387 /* 388 * Leap second processing. If in leap-insert state at the end of the 389 * day, the system clock is set back one second; if in leap-delete 390 * state, the system clock is set ahead one second. 391 */ 392 switch (ntpdata->time_state) { 393 case TIME_OK: 394 if (ntpdata->time_status & STA_INS) { 395 ntpdata->time_state = TIME_INS; 396 div_s64_rem(secs, SECS_PER_DAY, &rem); 397 ntp_next_leap_sec = secs + SECS_PER_DAY - rem; 398 } else if (ntpdata->time_status & STA_DEL) { 399 ntpdata->time_state = TIME_DEL; 400 div_s64_rem(secs + 1, SECS_PER_DAY, &rem); 401 ntp_next_leap_sec = secs + SECS_PER_DAY - rem; 402 } 403 break; 404 case TIME_INS: 405 if (!(ntpdata->time_status & STA_INS)) { 406 ntp_next_leap_sec = TIME64_MAX; 407 ntpdata->time_state = TIME_OK; 408 } else if (secs == ntp_next_leap_sec) { 409 leap = -1; 410 ntpdata->time_state = TIME_OOP; 411 pr_notice("Clock: inserting leap second 23:59:60 UTC\n"); 412 } 413 break; 414 case TIME_DEL: 415 if (!(ntpdata->time_status & STA_DEL)) { 416 ntp_next_leap_sec = TIME64_MAX; 417 ntpdata->time_state = TIME_OK; 418 } else if (secs == ntp_next_leap_sec) { 419 leap = 1; 420 ntp_next_leap_sec = TIME64_MAX; 421 ntpdata->time_state = TIME_WAIT; 422 pr_notice("Clock: deleting leap second 23:59:59 UTC\n"); 423 } 424 break; 425 case TIME_OOP: 426 ntp_next_leap_sec = TIME64_MAX; 427 ntpdata->time_state = TIME_WAIT; 428 break; 429 case TIME_WAIT: 430 if (!(ntpdata->time_status & (STA_INS | STA_DEL))) 431 ntpdata->time_state = TIME_OK; 432 break; 433 } 434 435 /* Bump the maxerror field */ 436 ntpdata->time_maxerror += MAXFREQ / NSEC_PER_USEC; 437 if (ntpdata->time_maxerror > NTP_PHASE_LIMIT) { 438 ntpdata->time_maxerror = NTP_PHASE_LIMIT; 439 ntpdata->time_status |= STA_UNSYNC; 440 } 441 442 /* Compute the phase adjustment for the next second */ 443 ntpdata->tick_length = ntpdata->tick_length_base; 444 445 delta = ntp_offset_chunk(ntpdata, ntpdata->time_offset); 446 ntpdata->time_offset -= delta; 447 ntpdata->tick_length += delta; 448 449 /* Check PPS signal */ 450 pps_dec_valid(ntpdata); 451 452 if (!ntpdata->time_adjust) 453 goto out; 454 455 if (ntpdata->time_adjust > MAX_TICKADJ) { 456 ntpdata->time_adjust -= MAX_TICKADJ; 457 ntpdata->tick_length += MAX_TICKADJ_SCALED; 458 goto out; 459 } 460 461 if (ntpdata->time_adjust < -MAX_TICKADJ) { 462 ntpdata->time_adjust += MAX_TICKADJ; 463 ntpdata->tick_length -= MAX_TICKADJ_SCALED; 464 goto out; 465 } 466 467 ntpdata->tick_length += (s64)(ntpdata->time_adjust * NSEC_PER_USEC / NTP_INTERVAL_FREQ) 468 << NTP_SCALE_SHIFT; 469 ntpdata->time_adjust = 0; 470 471 out: 472 return leap; 473 } 474 475 #if defined(CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) 476 static void sync_hw_clock(struct work_struct *work); 477 static DECLARE_WORK(sync_work, sync_hw_clock); 478 static struct hrtimer sync_hrtimer; 479 #define SYNC_PERIOD_NS (11ULL * 60 * NSEC_PER_SEC) 480 481 static enum hrtimer_restart sync_timer_callback(struct hrtimer *timer) 482 { 483 queue_work(system_freezable_power_efficient_wq, &sync_work); 484 485 return HRTIMER_NORESTART; 486 } 487 488 static void sched_sync_hw_clock(unsigned long offset_nsec, bool retry) 489 { 490 ktime_t exp = ktime_set(ktime_get_real_seconds(), 0); 491 492 if (retry) 493 exp = ktime_add_ns(exp, 2ULL * NSEC_PER_SEC - offset_nsec); 494 else 495 exp = ktime_add_ns(exp, SYNC_PERIOD_NS - offset_nsec); 496 497 hrtimer_start(&sync_hrtimer, exp, HRTIMER_MODE_ABS); 498 } 499 500 /* 501 * Check whether @now is correct versus the required time to update the RTC 502 * and calculate the value which needs to be written to the RTC so that the 503 * next seconds increment of the RTC after the write is aligned with the next 504 * seconds increment of clock REALTIME. 505 * 506 * tsched t1 write(t2.tv_sec - 1sec)) t2 RTC increments seconds 507 * 508 * t2.tv_nsec == 0 509 * tsched = t2 - set_offset_nsec 510 * newval = t2 - NSEC_PER_SEC 511 * 512 * ==> neval = tsched + set_offset_nsec - NSEC_PER_SEC 513 * 514 * As the execution of this code is not guaranteed to happen exactly at 515 * tsched this allows it to happen within a fuzzy region: 516 * 517 * abs(now - tsched) < FUZZ 518 * 519 * If @now is not inside the allowed window the function returns false. 520 */ 521 static inline bool rtc_tv_nsec_ok(unsigned long set_offset_nsec, 522 struct timespec64 *to_set, 523 const struct timespec64 *now) 524 { 525 /* Allowed error in tv_nsec, arbitrarily set to 5 jiffies in ns. */ 526 const unsigned long TIME_SET_NSEC_FUZZ = TICK_NSEC * 5; 527 struct timespec64 delay = {.tv_sec = -1, 528 .tv_nsec = set_offset_nsec}; 529 530 *to_set = timespec64_add(*now, delay); 531 532 if (to_set->tv_nsec < TIME_SET_NSEC_FUZZ) { 533 to_set->tv_nsec = 0; 534 return true; 535 } 536 537 if (to_set->tv_nsec > NSEC_PER_SEC - TIME_SET_NSEC_FUZZ) { 538 to_set->tv_sec++; 539 to_set->tv_nsec = 0; 540 return true; 541 } 542 return false; 543 } 544 545 #ifdef CONFIG_GENERIC_CMOS_UPDATE 546 int __weak update_persistent_clock64(struct timespec64 now64) 547 { 548 return -ENODEV; 549 } 550 #else 551 static inline int update_persistent_clock64(struct timespec64 now64) 552 { 553 return -ENODEV; 554 } 555 #endif 556 557 #ifdef CONFIG_RTC_SYSTOHC 558 /* Save NTP synchronized time to the RTC */ 559 static int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec) 560 { 561 struct rtc_device *rtc; 562 struct rtc_time tm; 563 int err = -ENODEV; 564 565 rtc = rtc_class_open(CONFIG_RTC_SYSTOHC_DEVICE); 566 if (!rtc) 567 return -ENODEV; 568 569 if (!rtc->ops || !rtc->ops->set_time) 570 goto out_close; 571 572 /* First call might not have the correct offset */ 573 if (*offset_nsec == rtc->set_offset_nsec) { 574 rtc_time64_to_tm(to_set->tv_sec, &tm); 575 err = rtc_set_time(rtc, &tm); 576 } else { 577 /* Store the update offset and let the caller try again */ 578 *offset_nsec = rtc->set_offset_nsec; 579 err = -EAGAIN; 580 } 581 out_close: 582 rtc_class_close(rtc); 583 return err; 584 } 585 #else 586 static inline int update_rtc(struct timespec64 *to_set, unsigned long *offset_nsec) 587 { 588 return -ENODEV; 589 } 590 #endif 591 592 /** 593 * ntp_synced - Tells whether the NTP status is not UNSYNC 594 * Returns: true if not UNSYNC, false otherwise 595 */ 596 static inline bool ntp_synced(void) 597 { 598 return !(tk_ntp_data.time_status & STA_UNSYNC); 599 } 600 601 /* 602 * If we have an externally synchronized Linux clock, then update RTC clock 603 * accordingly every ~11 minutes. Generally RTCs can only store second 604 * precision, but many RTCs will adjust the phase of their second tick to 605 * match the moment of update. This infrastructure arranges to call to the RTC 606 * set at the correct moment to phase synchronize the RTC second tick over 607 * with the kernel clock. 608 */ 609 static void sync_hw_clock(struct work_struct *work) 610 { 611 /* 612 * The default synchronization offset is 500ms for the deprecated 613 * update_persistent_clock64() under the assumption that it uses 614 * the infamous CMOS clock (MC146818). 615 */ 616 static unsigned long offset_nsec = NSEC_PER_SEC / 2; 617 struct timespec64 now, to_set; 618 int res = -EAGAIN; 619 620 /* 621 * Don't update if STA_UNSYNC is set and if ntp_notify_cmos_timer() 622 * managed to schedule the work between the timer firing and the 623 * work being able to rearm the timer. Wait for the timer to expire. 624 */ 625 if (!ntp_synced() || hrtimer_is_queued(&sync_hrtimer)) 626 return; 627 628 ktime_get_real_ts64(&now); 629 /* If @now is not in the allowed window, try again */ 630 if (!rtc_tv_nsec_ok(offset_nsec, &to_set, &now)) 631 goto rearm; 632 633 /* Take timezone adjusted RTCs into account */ 634 if (persistent_clock_is_local) 635 to_set.tv_sec -= (sys_tz.tz_minuteswest * 60); 636 637 /* Try the legacy RTC first. */ 638 res = update_persistent_clock64(to_set); 639 if (res != -ENODEV) 640 goto rearm; 641 642 /* Try the RTC class */ 643 res = update_rtc(&to_set, &offset_nsec); 644 if (res == -ENODEV) 645 return; 646 rearm: 647 sched_sync_hw_clock(offset_nsec, res != 0); 648 } 649 650 void ntp_notify_cmos_timer(bool offset_set) 651 { 652 /* 653 * If the time jumped (using ADJ_SETOFFSET) cancels sync timer, 654 * which may have been running if the time was synchronized 655 * prior to the ADJ_SETOFFSET call. 656 */ 657 if (offset_set) 658 hrtimer_cancel(&sync_hrtimer); 659 660 /* 661 * When the work is currently executed but has not yet the timer 662 * rearmed this queues the work immediately again. No big issue, 663 * just a pointless work scheduled. 664 */ 665 if (ntp_synced() && !hrtimer_is_queued(&sync_hrtimer)) 666 queue_work(system_freezable_power_efficient_wq, &sync_work); 667 } 668 669 static void __init ntp_init_cmos_sync(void) 670 { 671 hrtimer_init(&sync_hrtimer, CLOCK_REALTIME, HRTIMER_MODE_ABS); 672 sync_hrtimer.function = sync_timer_callback; 673 } 674 #else /* CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */ 675 static inline void __init ntp_init_cmos_sync(void) { } 676 #endif /* !CONFIG_GENERIC_CMOS_UPDATE) || defined(CONFIG_RTC_SYSTOHC) */ 677 678 /* 679 * Propagate a new txc->status value into the NTP state: 680 */ 681 static inline void process_adj_status(struct ntp_data *ntpdata, const struct __kernel_timex *txc) 682 { 683 if ((ntpdata->time_status & STA_PLL) && !(txc->status & STA_PLL)) { 684 ntpdata->time_state = TIME_OK; 685 ntpdata->time_status = STA_UNSYNC; 686 ntp_next_leap_sec = TIME64_MAX; 687 /* Restart PPS frequency calibration */ 688 pps_reset_freq_interval(); 689 } 690 691 /* 692 * If we turn on PLL adjustments then reset the 693 * reference time to current time. 694 */ 695 if (!(ntpdata->time_status & STA_PLL) && (txc->status & STA_PLL)) 696 ntpdata->time_reftime = __ktime_get_real_seconds(); 697 698 /* only set allowed bits */ 699 ntpdata->time_status &= STA_RONLY; 700 ntpdata->time_status |= txc->status & ~STA_RONLY; 701 } 702 703 static inline void process_adjtimex_modes(struct ntp_data *ntpdata, const struct __kernel_timex *txc, 704 s32 *time_tai) 705 { 706 if (txc->modes & ADJ_STATUS) 707 process_adj_status(ntpdata, txc); 708 709 if (txc->modes & ADJ_NANO) 710 ntpdata->time_status |= STA_NANO; 711 712 if (txc->modes & ADJ_MICRO) 713 ntpdata->time_status &= ~STA_NANO; 714 715 if (txc->modes & ADJ_FREQUENCY) { 716 ntpdata->time_freq = txc->freq * PPM_SCALE; 717 ntpdata->time_freq = min(ntpdata->time_freq, MAXFREQ_SCALED); 718 ntpdata->time_freq = max(ntpdata->time_freq, -MAXFREQ_SCALED); 719 /* Update pps_freq */ 720 pps_set_freq(ntpdata->time_freq); 721 } 722 723 if (txc->modes & ADJ_MAXERROR) 724 ntpdata->time_maxerror = clamp(txc->maxerror, 0, NTP_PHASE_LIMIT); 725 726 if (txc->modes & ADJ_ESTERROR) 727 ntpdata->time_esterror = clamp(txc->esterror, 0, NTP_PHASE_LIMIT); 728 729 if (txc->modes & ADJ_TIMECONST) { 730 ntpdata->time_constant = clamp(txc->constant, 0, MAXTC); 731 if (!(ntpdata->time_status & STA_NANO)) 732 ntpdata->time_constant += 4; 733 ntpdata->time_constant = clamp(ntpdata->time_constant, 0, MAXTC); 734 } 735 736 if (txc->modes & ADJ_TAI && txc->constant >= 0 && txc->constant <= MAX_TAI_OFFSET) 737 *time_tai = txc->constant; 738 739 if (txc->modes & ADJ_OFFSET) 740 ntp_update_offset(ntpdata, txc->offset); 741 742 if (txc->modes & ADJ_TICK) 743 ntpdata->tick_usec = txc->tick; 744 745 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET)) 746 ntp_update_frequency(ntpdata); 747 } 748 749 /* 750 * adjtimex() mainly allows reading (and writing, if superuser) of 751 * kernel time-keeping variables. used by xntpd. 752 */ 753 int __do_adjtimex(struct __kernel_timex *txc, const struct timespec64 *ts, 754 s32 *time_tai, struct audit_ntp_data *ad) 755 { 756 struct ntp_data *ntpdata = &tk_ntp_data; 757 int result; 758 759 if (txc->modes & ADJ_ADJTIME) { 760 long save_adjust = ntpdata->time_adjust; 761 762 if (!(txc->modes & ADJ_OFFSET_READONLY)) { 763 /* adjtime() is independent from ntp_adjtime() */ 764 ntpdata->time_adjust = txc->offset; 765 ntp_update_frequency(ntpdata); 766 767 audit_ntp_set_old(ad, AUDIT_NTP_ADJUST, save_adjust); 768 audit_ntp_set_new(ad, AUDIT_NTP_ADJUST, ntpdata->time_adjust); 769 } 770 txc->offset = save_adjust; 771 } else { 772 /* If there are input parameters, then process them: */ 773 if (txc->modes) { 774 audit_ntp_set_old(ad, AUDIT_NTP_OFFSET, ntpdata->time_offset); 775 audit_ntp_set_old(ad, AUDIT_NTP_FREQ, ntpdata->time_freq); 776 audit_ntp_set_old(ad, AUDIT_NTP_STATUS, ntpdata->time_status); 777 audit_ntp_set_old(ad, AUDIT_NTP_TAI, *time_tai); 778 audit_ntp_set_old(ad, AUDIT_NTP_TICK, ntpdata->tick_usec); 779 780 process_adjtimex_modes(ntpdata, txc, time_tai); 781 782 audit_ntp_set_new(ad, AUDIT_NTP_OFFSET, ntpdata->time_offset); 783 audit_ntp_set_new(ad, AUDIT_NTP_FREQ, ntpdata->time_freq); 784 audit_ntp_set_new(ad, AUDIT_NTP_STATUS, ntpdata->time_status); 785 audit_ntp_set_new(ad, AUDIT_NTP_TAI, *time_tai); 786 audit_ntp_set_new(ad, AUDIT_NTP_TICK, ntpdata->tick_usec); 787 } 788 789 txc->offset = shift_right(ntpdata->time_offset * NTP_INTERVAL_FREQ, NTP_SCALE_SHIFT); 790 if (!(ntpdata->time_status & STA_NANO)) 791 txc->offset = (u32)txc->offset / NSEC_PER_USEC; 792 } 793 794 result = ntpdata->time_state; 795 if (is_error_status(ntpdata->time_status)) 796 result = TIME_ERROR; 797 798 txc->freq = shift_right((ntpdata->time_freq >> PPM_SCALE_INV_SHIFT) * 799 PPM_SCALE_INV, NTP_SCALE_SHIFT); 800 txc->maxerror = ntpdata->time_maxerror; 801 txc->esterror = ntpdata->time_esterror; 802 txc->status = ntpdata->time_status; 803 txc->constant = ntpdata->time_constant; 804 txc->precision = 1; 805 txc->tolerance = MAXFREQ_SCALED / PPM_SCALE; 806 txc->tick = ntpdata->tick_usec; 807 txc->tai = *time_tai; 808 809 /* Fill PPS status fields */ 810 pps_fill_timex(ntpdata, txc); 811 812 txc->time.tv_sec = ts->tv_sec; 813 txc->time.tv_usec = ts->tv_nsec; 814 if (!(ntpdata->time_status & STA_NANO)) 815 txc->time.tv_usec = ts->tv_nsec / NSEC_PER_USEC; 816 817 /* Handle leapsec adjustments */ 818 if (unlikely(ts->tv_sec >= ntp_next_leap_sec)) { 819 if ((ntpdata->time_state == TIME_INS) && (ntpdata->time_status & STA_INS)) { 820 result = TIME_OOP; 821 txc->tai++; 822 txc->time.tv_sec--; 823 } 824 if ((ntpdata->time_state == TIME_DEL) && (ntpdata->time_status & STA_DEL)) { 825 result = TIME_WAIT; 826 txc->tai--; 827 txc->time.tv_sec++; 828 } 829 if ((ntpdata->time_state == TIME_OOP) && (ts->tv_sec == ntp_next_leap_sec)) 830 result = TIME_WAIT; 831 } 832 833 return result; 834 } 835 836 #ifdef CONFIG_NTP_PPS 837 838 /* 839 * struct pps_normtime is basically a struct timespec, but it is 840 * semantically different (and it is the reason why it was invented): 841 * pps_normtime.nsec has a range of ( -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] 842 * while timespec.tv_nsec has a range of [0, NSEC_PER_SEC) 843 */ 844 struct pps_normtime { 845 s64 sec; /* seconds */ 846 long nsec; /* nanoseconds */ 847 }; 848 849 /* 850 * Normalize the timestamp so that nsec is in the 851 * [ -NSEC_PER_SEC / 2, NSEC_PER_SEC / 2 ] interval 852 */ 853 static inline struct pps_normtime pps_normalize_ts(struct timespec64 ts) 854 { 855 struct pps_normtime norm = { 856 .sec = ts.tv_sec, 857 .nsec = ts.tv_nsec 858 }; 859 860 if (norm.nsec > (NSEC_PER_SEC >> 1)) { 861 norm.nsec -= NSEC_PER_SEC; 862 norm.sec++; 863 } 864 865 return norm; 866 } 867 868 /* Get current phase correction and jitter */ 869 static inline long pps_phase_filter_get(long *jitter) 870 { 871 *jitter = pps_tf[0] - pps_tf[1]; 872 if (*jitter < 0) 873 *jitter = -*jitter; 874 875 /* TODO: test various filters */ 876 return pps_tf[0]; 877 } 878 879 /* Add the sample to the phase filter */ 880 static inline void pps_phase_filter_add(long err) 881 { 882 pps_tf[2] = pps_tf[1]; 883 pps_tf[1] = pps_tf[0]; 884 pps_tf[0] = err; 885 } 886 887 /* 888 * Decrease frequency calibration interval length. It is halved after four 889 * consecutive unstable intervals. 890 */ 891 static inline void pps_dec_freq_interval(void) 892 { 893 if (--pps_intcnt <= -PPS_INTCOUNT) { 894 pps_intcnt = -PPS_INTCOUNT; 895 if (pps_shift > PPS_INTMIN) { 896 pps_shift--; 897 pps_intcnt = 0; 898 } 899 } 900 } 901 902 /* 903 * Increase frequency calibration interval length. It is doubled after 904 * four consecutive stable intervals. 905 */ 906 static inline void pps_inc_freq_interval(void) 907 { 908 if (++pps_intcnt >= PPS_INTCOUNT) { 909 pps_intcnt = PPS_INTCOUNT; 910 if (pps_shift < PPS_INTMAX) { 911 pps_shift++; 912 pps_intcnt = 0; 913 } 914 } 915 } 916 917 /* 918 * Update clock frequency based on MONOTONIC_RAW clock PPS signal 919 * timestamps 920 * 921 * At the end of the calibration interval the difference between the 922 * first and last MONOTONIC_RAW clock timestamps divided by the length 923 * of the interval becomes the frequency update. If the interval was 924 * too long, the data are discarded. 925 * Returns the difference between old and new frequency values. 926 */ 927 static long hardpps_update_freq(struct ntp_data *ntpdata, struct pps_normtime freq_norm) 928 { 929 long delta, delta_mod; 930 s64 ftemp; 931 932 /* Check if the frequency interval was too long */ 933 if (freq_norm.sec > (2 << pps_shift)) { 934 ntpdata->time_status |= STA_PPSERROR; 935 pps_errcnt++; 936 pps_dec_freq_interval(); 937 printk_deferred(KERN_ERR "hardpps: PPSERROR: interval too long - %lld s\n", 938 freq_norm.sec); 939 return 0; 940 } 941 942 /* 943 * Here the raw frequency offset and wander (stability) is 944 * calculated. If the wander is less than the wander threshold the 945 * interval is increased; otherwise it is decreased. 946 */ 947 ftemp = div_s64(((s64)(-freq_norm.nsec)) << NTP_SCALE_SHIFT, 948 freq_norm.sec); 949 delta = shift_right(ftemp - pps_freq, NTP_SCALE_SHIFT); 950 pps_freq = ftemp; 951 if (delta > PPS_MAXWANDER || delta < -PPS_MAXWANDER) { 952 printk_deferred(KERN_WARNING "hardpps: PPSWANDER: change=%ld\n", delta); 953 ntpdata->time_status |= STA_PPSWANDER; 954 pps_stbcnt++; 955 pps_dec_freq_interval(); 956 } else { 957 /* Good sample */ 958 pps_inc_freq_interval(); 959 } 960 961 /* 962 * The stability metric is calculated as the average of recent 963 * frequency changes, but is used only for performance monitoring 964 */ 965 delta_mod = delta; 966 if (delta_mod < 0) 967 delta_mod = -delta_mod; 968 pps_stabil += (div_s64(((s64)delta_mod) << (NTP_SCALE_SHIFT - SHIFT_USEC), 969 NSEC_PER_USEC) - pps_stabil) >> PPS_INTMIN; 970 971 /* If enabled, the system clock frequency is updated */ 972 if ((ntpdata->time_status & STA_PPSFREQ) && !(ntpdata->time_status & STA_FREQHOLD)) { 973 ntpdata->time_freq = pps_freq; 974 ntp_update_frequency(ntpdata); 975 } 976 977 return delta; 978 } 979 980 /* Correct REALTIME clock phase error against PPS signal */ 981 static void hardpps_update_phase(struct ntp_data *ntpdata, long error) 982 { 983 long correction = -error; 984 long jitter; 985 986 /* Add the sample to the median filter */ 987 pps_phase_filter_add(correction); 988 correction = pps_phase_filter_get(&jitter); 989 990 /* 991 * Nominal jitter is due to PPS signal noise. If it exceeds the 992 * threshold, the sample is discarded; otherwise, if so enabled, 993 * the time offset is updated. 994 */ 995 if (jitter > (pps_jitter << PPS_POPCORN)) { 996 printk_deferred(KERN_WARNING "hardpps: PPSJITTER: jitter=%ld, limit=%ld\n", 997 jitter, (pps_jitter << PPS_POPCORN)); 998 ntpdata->time_status |= STA_PPSJITTER; 999 pps_jitcnt++; 1000 } else if (ntpdata->time_status & STA_PPSTIME) { 1001 /* Correct the time using the phase offset */ 1002 ntpdata->time_offset = div_s64(((s64)correction) << NTP_SCALE_SHIFT, 1003 NTP_INTERVAL_FREQ); 1004 /* Cancel running adjtime() */ 1005 ntpdata->time_adjust = 0; 1006 } 1007 /* Update jitter */ 1008 pps_jitter += (jitter - pps_jitter) >> PPS_INTMIN; 1009 } 1010 1011 /* 1012 * __hardpps() - discipline CPU clock oscillator to external PPS signal 1013 * 1014 * This routine is called at each PPS signal arrival in order to 1015 * discipline the CPU clock oscillator to the PPS signal. It takes two 1016 * parameters: REALTIME and MONOTONIC_RAW clock timestamps. The former 1017 * is used to correct clock phase error and the latter is used to 1018 * correct the frequency. 1019 * 1020 * This code is based on David Mills's reference nanokernel 1021 * implementation. It was mostly rewritten but keeps the same idea. 1022 */ 1023 void __hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts) 1024 { 1025 struct pps_normtime pts_norm, freq_norm; 1026 struct ntp_data *ntpdata = &tk_ntp_data; 1027 1028 pts_norm = pps_normalize_ts(*phase_ts); 1029 1030 /* Clear the error bits, they will be set again if needed */ 1031 ntpdata->time_status &= ~(STA_PPSJITTER | STA_PPSWANDER | STA_PPSERROR); 1032 1033 /* indicate signal presence */ 1034 ntpdata->time_status |= STA_PPSSIGNAL; 1035 pps_valid = PPS_VALID; 1036 1037 /* 1038 * When called for the first time, just start the frequency 1039 * interval 1040 */ 1041 if (unlikely(pps_fbase.tv_sec == 0)) { 1042 pps_fbase = *raw_ts; 1043 return; 1044 } 1045 1046 /* Ok, now we have a base for frequency calculation */ 1047 freq_norm = pps_normalize_ts(timespec64_sub(*raw_ts, pps_fbase)); 1048 1049 /* 1050 * Check that the signal is in the range 1051 * [1s - MAXFREQ us, 1s + MAXFREQ us], otherwise reject it 1052 */ 1053 if ((freq_norm.sec == 0) || (freq_norm.nsec > MAXFREQ * freq_norm.sec) || 1054 (freq_norm.nsec < -MAXFREQ * freq_norm.sec)) { 1055 ntpdata->time_status |= STA_PPSJITTER; 1056 /* Restart the frequency calibration interval */ 1057 pps_fbase = *raw_ts; 1058 printk_deferred(KERN_ERR "hardpps: PPSJITTER: bad pulse\n"); 1059 return; 1060 } 1061 1062 /* Signal is ok. Check if the current frequency interval is finished */ 1063 if (freq_norm.sec >= (1 << pps_shift)) { 1064 pps_calcnt++; 1065 /* Restart the frequency calibration interval */ 1066 pps_fbase = *raw_ts; 1067 hardpps_update_freq(ntpdata, freq_norm); 1068 } 1069 1070 hardpps_update_phase(ntpdata, pts_norm.nsec); 1071 1072 } 1073 #endif /* CONFIG_NTP_PPS */ 1074 1075 static int __init ntp_tick_adj_setup(char *str) 1076 { 1077 int rc = kstrtos64(str, 0, &tk_ntp_data.ntp_tick_adj); 1078 if (rc) 1079 return rc; 1080 1081 tk_ntp_data.ntp_tick_adj <<= NTP_SCALE_SHIFT; 1082 return 1; 1083 } 1084 1085 __setup("ntp_tick_adj=", ntp_tick_adj_setup); 1086 1087 void __init ntp_init(void) 1088 { 1089 ntp_clear(); 1090 ntp_init_cmos_sync(); 1091 } 1092