1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright(C) 2005-2006, Thomas Gleixner <[email protected]> 4 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar 5 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner 6 * 7 * High-resolution kernel timers 8 * 9 * In contrast to the low-resolution timeout API, aka timer wheel, 10 * hrtimers provide finer resolution and accuracy depending on system 11 * configuration and capabilities. 12 * 13 * Started by: Thomas Gleixner and Ingo Molnar 14 * 15 * Credits: 16 * Based on the original timer wheel code 17 * 18 * Help, testing, suggestions, bugfixes, improvements were 19 * provided by: 20 * 21 * George Anzinger, Andrew Morton, Steven Rostedt, Roman Zippel 22 * et. al. 23 */ 24 25 #include <linux/cpu.h> 26 #include <linux/export.h> 27 #include <linux/percpu.h> 28 #include <linux/hrtimer.h> 29 #include <linux/notifier.h> 30 #include <linux/syscalls.h> 31 #include <linux/interrupt.h> 32 #include <linux/tick.h> 33 #include <linux/err.h> 34 #include <linux/debugobjects.h> 35 #include <linux/sched/signal.h> 36 #include <linux/sched/sysctl.h> 37 #include <linux/sched/rt.h> 38 #include <linux/sched/deadline.h> 39 #include <linux/sched/nohz.h> 40 #include <linux/sched/debug.h> 41 #include <linux/sched/isolation.h> 42 #include <linux/timer.h> 43 #include <linux/freezer.h> 44 #include <linux/compat.h> 45 46 #include <linux/uaccess.h> 47 48 #include <trace/events/timer.h> 49 50 #include "tick-internal.h" 51 52 /* 53 * Masks for selecting the soft and hard context timers from 54 * cpu_base->active 55 */ 56 #define MASK_SHIFT (HRTIMER_BASE_MONOTONIC_SOFT) 57 #define HRTIMER_ACTIVE_HARD ((1U << MASK_SHIFT) - 1) 58 #define HRTIMER_ACTIVE_SOFT (HRTIMER_ACTIVE_HARD << MASK_SHIFT) 59 #define HRTIMER_ACTIVE_ALL (HRTIMER_ACTIVE_SOFT | HRTIMER_ACTIVE_HARD) 60 61 static void retrigger_next_event(void *arg); 62 63 /* 64 * The timer bases: 65 * 66 * There are more clockids than hrtimer bases. Thus, we index 67 * into the timer bases by the hrtimer_base_type enum. When trying 68 * to reach a base using a clockid, hrtimer_clockid_to_base() 69 * is used to convert from clockid to the proper hrtimer_base_type. 70 */ 71 DEFINE_PER_CPU(struct hrtimer_cpu_base, hrtimer_bases) = 72 { 73 .lock = __RAW_SPIN_LOCK_UNLOCKED(hrtimer_bases.lock), 74 .clock_base = 75 { 76 { 77 .index = HRTIMER_BASE_MONOTONIC, 78 .clockid = CLOCK_MONOTONIC, 79 .get_time = &ktime_get, 80 }, 81 { 82 .index = HRTIMER_BASE_REALTIME, 83 .clockid = CLOCK_REALTIME, 84 .get_time = &ktime_get_real, 85 }, 86 { 87 .index = HRTIMER_BASE_BOOTTIME, 88 .clockid = CLOCK_BOOTTIME, 89 .get_time = &ktime_get_boottime, 90 }, 91 { 92 .index = HRTIMER_BASE_TAI, 93 .clockid = CLOCK_TAI, 94 .get_time = &ktime_get_clocktai, 95 }, 96 { 97 .index = HRTIMER_BASE_MONOTONIC_SOFT, 98 .clockid = CLOCK_MONOTONIC, 99 .get_time = &ktime_get, 100 }, 101 { 102 .index = HRTIMER_BASE_REALTIME_SOFT, 103 .clockid = CLOCK_REALTIME, 104 .get_time = &ktime_get_real, 105 }, 106 { 107 .index = HRTIMER_BASE_BOOTTIME_SOFT, 108 .clockid = CLOCK_BOOTTIME, 109 .get_time = &ktime_get_boottime, 110 }, 111 { 112 .index = HRTIMER_BASE_TAI_SOFT, 113 .clockid = CLOCK_TAI, 114 .get_time = &ktime_get_clocktai, 115 }, 116 }, 117 .csd = CSD_INIT(retrigger_next_event, NULL) 118 }; 119 120 static inline bool hrtimer_base_is_online(struct hrtimer_cpu_base *base) 121 { 122 if (!IS_ENABLED(CONFIG_HOTPLUG_CPU)) 123 return true; 124 else 125 return likely(base->online); 126 } 127 128 /* 129 * Functions and macros which are different for UP/SMP systems are kept in a 130 * single place 131 */ 132 #ifdef CONFIG_SMP 133 134 /* 135 * We require the migration_base for lock_hrtimer_base()/switch_hrtimer_base() 136 * such that hrtimer_callback_running() can unconditionally dereference 137 * timer->base->cpu_base 138 */ 139 static struct hrtimer_cpu_base migration_cpu_base = { 140 .clock_base = { { 141 .cpu_base = &migration_cpu_base, 142 .seq = SEQCNT_RAW_SPINLOCK_ZERO(migration_cpu_base.seq, 143 &migration_cpu_base.lock), 144 }, }, 145 }; 146 147 #define migration_base migration_cpu_base.clock_base[0] 148 149 /* 150 * We are using hashed locking: holding per_cpu(hrtimer_bases)[n].lock 151 * means that all timers which are tied to this base via timer->base are 152 * locked, and the base itself is locked too. 153 * 154 * So __run_timers/migrate_timers can safely modify all timers which could 155 * be found on the lists/queues. 156 * 157 * When the timer's base is locked, and the timer removed from list, it is 158 * possible to set timer->base = &migration_base and drop the lock: the timer 159 * remains locked. 160 */ 161 static 162 struct hrtimer_clock_base *lock_hrtimer_base(const struct hrtimer *timer, 163 unsigned long *flags) 164 __acquires(&timer->base->lock) 165 { 166 struct hrtimer_clock_base *base; 167 168 for (;;) { 169 base = READ_ONCE(timer->base); 170 if (likely(base != &migration_base)) { 171 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 172 if (likely(base == timer->base)) 173 return base; 174 /* The timer has migrated to another CPU: */ 175 raw_spin_unlock_irqrestore(&base->cpu_base->lock, *flags); 176 } 177 cpu_relax(); 178 } 179 } 180 181 /* 182 * Check if the elected target is suitable considering its next 183 * event and the hotplug state of the current CPU. 184 * 185 * If the elected target is remote and its next event is after the timer 186 * to queue, then a remote reprogram is necessary. However there is no 187 * guarantee the IPI handling the operation would arrive in time to meet 188 * the high resolution deadline. In this case the local CPU becomes a 189 * preferred target, unless it is offline. 190 * 191 * High and low resolution modes are handled the same way for simplicity. 192 * 193 * Called with cpu_base->lock of target cpu held. 194 */ 195 static bool hrtimer_suitable_target(struct hrtimer *timer, struct hrtimer_clock_base *new_base, 196 struct hrtimer_cpu_base *new_cpu_base, 197 struct hrtimer_cpu_base *this_cpu_base) 198 { 199 ktime_t expires; 200 201 /* 202 * The local CPU clockevent can be reprogrammed. Also get_target_base() 203 * guarantees it is online. 204 */ 205 if (new_cpu_base == this_cpu_base) 206 return true; 207 208 /* 209 * The offline local CPU can't be the default target if the 210 * next remote target event is after this timer. Keep the 211 * elected new base. An IPI will we issued to reprogram 212 * it as a last resort. 213 */ 214 if (!hrtimer_base_is_online(this_cpu_base)) 215 return true; 216 217 expires = ktime_sub(hrtimer_get_expires(timer), new_base->offset); 218 219 return expires >= new_base->cpu_base->expires_next; 220 } 221 222 static inline struct hrtimer_cpu_base *get_target_base(struct hrtimer_cpu_base *base, int pinned) 223 { 224 if (!hrtimer_base_is_online(base)) { 225 int cpu = cpumask_any_and(cpu_online_mask, housekeeping_cpumask(HK_TYPE_TIMER)); 226 227 return &per_cpu(hrtimer_bases, cpu); 228 } 229 230 #if defined(CONFIG_SMP) && defined(CONFIG_NO_HZ_COMMON) 231 if (static_branch_likely(&timers_migration_enabled) && !pinned) 232 return &per_cpu(hrtimer_bases, get_nohz_timer_target()); 233 #endif 234 return base; 235 } 236 237 /* 238 * We switch the timer base to a power-optimized selected CPU target, 239 * if: 240 * - NO_HZ_COMMON is enabled 241 * - timer migration is enabled 242 * - the timer callback is not running 243 * - the timer is not the first expiring timer on the new target 244 * 245 * If one of the above requirements is not fulfilled we move the timer 246 * to the current CPU or leave it on the previously assigned CPU if 247 * the timer callback is currently running. 248 */ 249 static inline struct hrtimer_clock_base * 250 switch_hrtimer_base(struct hrtimer *timer, struct hrtimer_clock_base *base, 251 int pinned) 252 { 253 struct hrtimer_cpu_base *new_cpu_base, *this_cpu_base; 254 struct hrtimer_clock_base *new_base; 255 int basenum = base->index; 256 257 this_cpu_base = this_cpu_ptr(&hrtimer_bases); 258 new_cpu_base = get_target_base(this_cpu_base, pinned); 259 again: 260 new_base = &new_cpu_base->clock_base[basenum]; 261 262 if (base != new_base) { 263 /* 264 * We are trying to move timer to new_base. 265 * However we can't change timer's base while it is running, 266 * so we keep it on the same CPU. No hassle vs. reprogramming 267 * the event source in the high resolution case. The softirq 268 * code will take care of this when the timer function has 269 * completed. There is no conflict as we hold the lock until 270 * the timer is enqueued. 271 */ 272 if (unlikely(hrtimer_callback_running(timer))) 273 return base; 274 275 /* See the comment in lock_hrtimer_base() */ 276 WRITE_ONCE(timer->base, &migration_base); 277 raw_spin_unlock(&base->cpu_base->lock); 278 raw_spin_lock(&new_base->cpu_base->lock); 279 280 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base, 281 this_cpu_base)) { 282 raw_spin_unlock(&new_base->cpu_base->lock); 283 raw_spin_lock(&base->cpu_base->lock); 284 new_cpu_base = this_cpu_base; 285 WRITE_ONCE(timer->base, base); 286 goto again; 287 } 288 WRITE_ONCE(timer->base, new_base); 289 } else { 290 if (!hrtimer_suitable_target(timer, new_base, new_cpu_base, this_cpu_base)) { 291 new_cpu_base = this_cpu_base; 292 goto again; 293 } 294 } 295 return new_base; 296 } 297 298 #else /* CONFIG_SMP */ 299 300 static inline struct hrtimer_clock_base * 301 lock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 302 __acquires(&timer->base->cpu_base->lock) 303 { 304 struct hrtimer_clock_base *base = timer->base; 305 306 raw_spin_lock_irqsave(&base->cpu_base->lock, *flags); 307 308 return base; 309 } 310 311 # define switch_hrtimer_base(t, b, p) (b) 312 313 #endif /* !CONFIG_SMP */ 314 315 /* 316 * Functions for the union type storage format of ktime_t which are 317 * too large for inlining: 318 */ 319 #if BITS_PER_LONG < 64 320 /* 321 * Divide a ktime value by a nanosecond value 322 */ 323 s64 __ktime_divns(const ktime_t kt, s64 div) 324 { 325 int sft = 0; 326 s64 dclc; 327 u64 tmp; 328 329 dclc = ktime_to_ns(kt); 330 tmp = dclc < 0 ? -dclc : dclc; 331 332 /* Make sure the divisor is less than 2^32: */ 333 while (div >> 32) { 334 sft++; 335 div >>= 1; 336 } 337 tmp >>= sft; 338 do_div(tmp, (u32) div); 339 return dclc < 0 ? -tmp : tmp; 340 } 341 EXPORT_SYMBOL_GPL(__ktime_divns); 342 #endif /* BITS_PER_LONG >= 64 */ 343 344 /* 345 * Add two ktime values and do a safety check for overflow: 346 */ 347 ktime_t ktime_add_safe(const ktime_t lhs, const ktime_t rhs) 348 { 349 ktime_t res = ktime_add_unsafe(lhs, rhs); 350 351 /* 352 * We use KTIME_SEC_MAX here, the maximum timeout which we can 353 * return to user space in a timespec: 354 */ 355 if (res < 0 || res < lhs || res < rhs) 356 res = ktime_set(KTIME_SEC_MAX, 0); 357 358 return res; 359 } 360 361 EXPORT_SYMBOL_GPL(ktime_add_safe); 362 363 #ifdef CONFIG_DEBUG_OBJECTS_TIMERS 364 365 static const struct debug_obj_descr hrtimer_debug_descr; 366 367 static void *hrtimer_debug_hint(void *addr) 368 { 369 return ((struct hrtimer *) addr)->function; 370 } 371 372 /* 373 * fixup_init is called when: 374 * - an active object is initialized 375 */ 376 static bool hrtimer_fixup_init(void *addr, enum debug_obj_state state) 377 { 378 struct hrtimer *timer = addr; 379 380 switch (state) { 381 case ODEBUG_STATE_ACTIVE: 382 hrtimer_cancel(timer); 383 debug_object_init(timer, &hrtimer_debug_descr); 384 return true; 385 default: 386 return false; 387 } 388 } 389 390 /* 391 * fixup_activate is called when: 392 * - an active object is activated 393 * - an unknown non-static object is activated 394 */ 395 static bool hrtimer_fixup_activate(void *addr, enum debug_obj_state state) 396 { 397 switch (state) { 398 case ODEBUG_STATE_ACTIVE: 399 WARN_ON(1); 400 fallthrough; 401 default: 402 return false; 403 } 404 } 405 406 /* 407 * fixup_free is called when: 408 * - an active object is freed 409 */ 410 static bool hrtimer_fixup_free(void *addr, enum debug_obj_state state) 411 { 412 struct hrtimer *timer = addr; 413 414 switch (state) { 415 case ODEBUG_STATE_ACTIVE: 416 hrtimer_cancel(timer); 417 debug_object_free(timer, &hrtimer_debug_descr); 418 return true; 419 default: 420 return false; 421 } 422 } 423 424 static const struct debug_obj_descr hrtimer_debug_descr = { 425 .name = "hrtimer", 426 .debug_hint = hrtimer_debug_hint, 427 .fixup_init = hrtimer_fixup_init, 428 .fixup_activate = hrtimer_fixup_activate, 429 .fixup_free = hrtimer_fixup_free, 430 }; 431 432 static inline void debug_hrtimer_init(struct hrtimer *timer) 433 { 434 debug_object_init(timer, &hrtimer_debug_descr); 435 } 436 437 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) 438 { 439 debug_object_init_on_stack(timer, &hrtimer_debug_descr); 440 } 441 442 static inline void debug_hrtimer_activate(struct hrtimer *timer, 443 enum hrtimer_mode mode) 444 { 445 debug_object_activate(timer, &hrtimer_debug_descr); 446 } 447 448 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) 449 { 450 debug_object_deactivate(timer, &hrtimer_debug_descr); 451 } 452 453 void destroy_hrtimer_on_stack(struct hrtimer *timer) 454 { 455 debug_object_free(timer, &hrtimer_debug_descr); 456 } 457 EXPORT_SYMBOL_GPL(destroy_hrtimer_on_stack); 458 459 #else 460 461 static inline void debug_hrtimer_init(struct hrtimer *timer) { } 462 static inline void debug_hrtimer_init_on_stack(struct hrtimer *timer) { } 463 static inline void debug_hrtimer_activate(struct hrtimer *timer, 464 enum hrtimer_mode mode) { } 465 static inline void debug_hrtimer_deactivate(struct hrtimer *timer) { } 466 #endif 467 468 static inline void 469 debug_init(struct hrtimer *timer, clockid_t clockid, 470 enum hrtimer_mode mode) 471 { 472 debug_hrtimer_init(timer); 473 trace_hrtimer_init(timer, clockid, mode); 474 } 475 476 static inline void debug_init_on_stack(struct hrtimer *timer, clockid_t clockid, 477 enum hrtimer_mode mode) 478 { 479 debug_hrtimer_init_on_stack(timer); 480 trace_hrtimer_init(timer, clockid, mode); 481 } 482 483 static inline void debug_activate(struct hrtimer *timer, 484 enum hrtimer_mode mode) 485 { 486 debug_hrtimer_activate(timer, mode); 487 trace_hrtimer_start(timer, mode); 488 } 489 490 static inline void debug_deactivate(struct hrtimer *timer) 491 { 492 debug_hrtimer_deactivate(timer); 493 trace_hrtimer_cancel(timer); 494 } 495 496 static struct hrtimer_clock_base * 497 __next_base(struct hrtimer_cpu_base *cpu_base, unsigned int *active) 498 { 499 unsigned int idx; 500 501 if (!*active) 502 return NULL; 503 504 idx = __ffs(*active); 505 *active &= ~(1U << idx); 506 507 return &cpu_base->clock_base[idx]; 508 } 509 510 #define for_each_active_base(base, cpu_base, active) \ 511 while ((base = __next_base((cpu_base), &(active)))) 512 513 static ktime_t __hrtimer_next_event_base(struct hrtimer_cpu_base *cpu_base, 514 const struct hrtimer *exclude, 515 unsigned int active, 516 ktime_t expires_next) 517 { 518 struct hrtimer_clock_base *base; 519 ktime_t expires; 520 521 for_each_active_base(base, cpu_base, active) { 522 struct timerqueue_node *next; 523 struct hrtimer *timer; 524 525 next = timerqueue_getnext(&base->active); 526 timer = container_of(next, struct hrtimer, node); 527 if (timer == exclude) { 528 /* Get to the next timer in the queue. */ 529 next = timerqueue_iterate_next(next); 530 if (!next) 531 continue; 532 533 timer = container_of(next, struct hrtimer, node); 534 } 535 expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 536 if (expires < expires_next) { 537 expires_next = expires; 538 539 /* Skip cpu_base update if a timer is being excluded. */ 540 if (exclude) 541 continue; 542 543 if (timer->is_soft) 544 cpu_base->softirq_next_timer = timer; 545 else 546 cpu_base->next_timer = timer; 547 } 548 } 549 /* 550 * clock_was_set() might have changed base->offset of any of 551 * the clock bases so the result might be negative. Fix it up 552 * to prevent a false positive in clockevents_program_event(). 553 */ 554 if (expires_next < 0) 555 expires_next = 0; 556 return expires_next; 557 } 558 559 /* 560 * Recomputes cpu_base::*next_timer and returns the earliest expires_next 561 * but does not set cpu_base::*expires_next, that is done by 562 * hrtimer[_force]_reprogram and hrtimer_interrupt only. When updating 563 * cpu_base::*expires_next right away, reprogramming logic would no longer 564 * work. 565 * 566 * When a softirq is pending, we can ignore the HRTIMER_ACTIVE_SOFT bases, 567 * those timers will get run whenever the softirq gets handled, at the end of 568 * hrtimer_run_softirq(), hrtimer_update_softirq_timer() will re-add these bases. 569 * 570 * Therefore softirq values are those from the HRTIMER_ACTIVE_SOFT clock bases. 571 * The !softirq values are the minima across HRTIMER_ACTIVE_ALL, unless an actual 572 * softirq is pending, in which case they're the minima of HRTIMER_ACTIVE_HARD. 573 * 574 * @active_mask must be one of: 575 * - HRTIMER_ACTIVE_ALL, 576 * - HRTIMER_ACTIVE_SOFT, or 577 * - HRTIMER_ACTIVE_HARD. 578 */ 579 static ktime_t 580 __hrtimer_get_next_event(struct hrtimer_cpu_base *cpu_base, unsigned int active_mask) 581 { 582 unsigned int active; 583 struct hrtimer *next_timer = NULL; 584 ktime_t expires_next = KTIME_MAX; 585 586 if (!cpu_base->softirq_activated && (active_mask & HRTIMER_ACTIVE_SOFT)) { 587 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 588 cpu_base->softirq_next_timer = NULL; 589 expires_next = __hrtimer_next_event_base(cpu_base, NULL, 590 active, KTIME_MAX); 591 592 next_timer = cpu_base->softirq_next_timer; 593 } 594 595 if (active_mask & HRTIMER_ACTIVE_HARD) { 596 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 597 cpu_base->next_timer = next_timer; 598 expires_next = __hrtimer_next_event_base(cpu_base, NULL, active, 599 expires_next); 600 } 601 602 return expires_next; 603 } 604 605 static ktime_t hrtimer_update_next_event(struct hrtimer_cpu_base *cpu_base) 606 { 607 ktime_t expires_next, soft = KTIME_MAX; 608 609 /* 610 * If the soft interrupt has already been activated, ignore the 611 * soft bases. They will be handled in the already raised soft 612 * interrupt. 613 */ 614 if (!cpu_base->softirq_activated) { 615 soft = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 616 /* 617 * Update the soft expiry time. clock_settime() might have 618 * affected it. 619 */ 620 cpu_base->softirq_expires_next = soft; 621 } 622 623 expires_next = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_HARD); 624 /* 625 * If a softirq timer is expiring first, update cpu_base->next_timer 626 * and program the hardware with the soft expiry time. 627 */ 628 if (expires_next > soft) { 629 cpu_base->next_timer = cpu_base->softirq_next_timer; 630 expires_next = soft; 631 } 632 633 return expires_next; 634 } 635 636 static inline ktime_t hrtimer_update_base(struct hrtimer_cpu_base *base) 637 { 638 ktime_t *offs_real = &base->clock_base[HRTIMER_BASE_REALTIME].offset; 639 ktime_t *offs_boot = &base->clock_base[HRTIMER_BASE_BOOTTIME].offset; 640 ktime_t *offs_tai = &base->clock_base[HRTIMER_BASE_TAI].offset; 641 642 ktime_t now = ktime_get_update_offsets_now(&base->clock_was_set_seq, 643 offs_real, offs_boot, offs_tai); 644 645 base->clock_base[HRTIMER_BASE_REALTIME_SOFT].offset = *offs_real; 646 base->clock_base[HRTIMER_BASE_BOOTTIME_SOFT].offset = *offs_boot; 647 base->clock_base[HRTIMER_BASE_TAI_SOFT].offset = *offs_tai; 648 649 return now; 650 } 651 652 /* 653 * Is the high resolution mode active ? 654 */ 655 static inline int hrtimer_hres_active(struct hrtimer_cpu_base *cpu_base) 656 { 657 return IS_ENABLED(CONFIG_HIGH_RES_TIMERS) ? 658 cpu_base->hres_active : 0; 659 } 660 661 static void __hrtimer_reprogram(struct hrtimer_cpu_base *cpu_base, 662 struct hrtimer *next_timer, 663 ktime_t expires_next) 664 { 665 cpu_base->expires_next = expires_next; 666 667 /* 668 * If hres is not active, hardware does not have to be 669 * reprogrammed yet. 670 * 671 * If a hang was detected in the last timer interrupt then we 672 * leave the hang delay active in the hardware. We want the 673 * system to make progress. That also prevents the following 674 * scenario: 675 * T1 expires 50ms from now 676 * T2 expires 5s from now 677 * 678 * T1 is removed, so this code is called and would reprogram 679 * the hardware to 5s from now. Any hrtimer_start after that 680 * will not reprogram the hardware due to hang_detected being 681 * set. So we'd effectively block all timers until the T2 event 682 * fires. 683 */ 684 if (!hrtimer_hres_active(cpu_base) || cpu_base->hang_detected) 685 return; 686 687 tick_program_event(expires_next, 1); 688 } 689 690 /* 691 * Reprogram the event source with checking both queues for the 692 * next event 693 * Called with interrupts disabled and base->lock held 694 */ 695 static void 696 hrtimer_force_reprogram(struct hrtimer_cpu_base *cpu_base, int skip_equal) 697 { 698 ktime_t expires_next; 699 700 expires_next = hrtimer_update_next_event(cpu_base); 701 702 if (skip_equal && expires_next == cpu_base->expires_next) 703 return; 704 705 __hrtimer_reprogram(cpu_base, cpu_base->next_timer, expires_next); 706 } 707 708 /* High resolution timer related functions */ 709 #ifdef CONFIG_HIGH_RES_TIMERS 710 711 /* 712 * High resolution timer enabled ? 713 */ 714 static bool hrtimer_hres_enabled __read_mostly = true; 715 unsigned int hrtimer_resolution __read_mostly = LOW_RES_NSEC; 716 EXPORT_SYMBOL_GPL(hrtimer_resolution); 717 718 /* 719 * Enable / Disable high resolution mode 720 */ 721 static int __init setup_hrtimer_hres(char *str) 722 { 723 return (kstrtobool(str, &hrtimer_hres_enabled) == 0); 724 } 725 726 __setup("highres=", setup_hrtimer_hres); 727 728 /* 729 * hrtimer_high_res_enabled - query, if the highres mode is enabled 730 */ 731 static inline int hrtimer_is_hres_enabled(void) 732 { 733 return hrtimer_hres_enabled; 734 } 735 736 /* 737 * Switch to high resolution mode 738 */ 739 static void hrtimer_switch_to_hres(void) 740 { 741 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 742 743 if (tick_init_highres()) { 744 pr_warn("Could not switch to high resolution mode on CPU %u\n", 745 base->cpu); 746 return; 747 } 748 base->hres_active = 1; 749 hrtimer_resolution = HIGH_RES_NSEC; 750 751 tick_setup_sched_timer(true); 752 /* "Retrigger" the interrupt to get things going */ 753 retrigger_next_event(NULL); 754 } 755 756 #else 757 758 static inline int hrtimer_is_hres_enabled(void) { return 0; } 759 static inline void hrtimer_switch_to_hres(void) { } 760 761 #endif /* CONFIG_HIGH_RES_TIMERS */ 762 /* 763 * Retrigger next event is called after clock was set with interrupts 764 * disabled through an SMP function call or directly from low level 765 * resume code. 766 * 767 * This is only invoked when: 768 * - CONFIG_HIGH_RES_TIMERS is enabled. 769 * - CONFIG_NOHZ_COMMON is enabled 770 * 771 * For the other cases this function is empty and because the call sites 772 * are optimized out it vanishes as well, i.e. no need for lots of 773 * #ifdeffery. 774 */ 775 static void retrigger_next_event(void *arg) 776 { 777 struct hrtimer_cpu_base *base = this_cpu_ptr(&hrtimer_bases); 778 779 /* 780 * When high resolution mode or nohz is active, then the offsets of 781 * CLOCK_REALTIME/TAI/BOOTTIME have to be updated. Otherwise the 782 * next tick will take care of that. 783 * 784 * If high resolution mode is active then the next expiring timer 785 * must be reevaluated and the clock event device reprogrammed if 786 * necessary. 787 * 788 * In the NOHZ case the update of the offset and the reevaluation 789 * of the next expiring timer is enough. The return from the SMP 790 * function call will take care of the reprogramming in case the 791 * CPU was in a NOHZ idle sleep. 792 */ 793 if (!hrtimer_hres_active(base) && !tick_nohz_active) 794 return; 795 796 raw_spin_lock(&base->lock); 797 hrtimer_update_base(base); 798 if (hrtimer_hres_active(base)) 799 hrtimer_force_reprogram(base, 0); 800 else 801 hrtimer_update_next_event(base); 802 raw_spin_unlock(&base->lock); 803 } 804 805 /* 806 * When a timer is enqueued and expires earlier than the already enqueued 807 * timers, we have to check, whether it expires earlier than the timer for 808 * which the clock event device was armed. 809 * 810 * Called with interrupts disabled and base->cpu_base.lock held 811 */ 812 static void hrtimer_reprogram(struct hrtimer *timer, bool reprogram) 813 { 814 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 815 struct hrtimer_clock_base *base = timer->base; 816 ktime_t expires = ktime_sub(hrtimer_get_expires(timer), base->offset); 817 818 WARN_ON_ONCE(hrtimer_get_expires_tv64(timer) < 0); 819 820 /* 821 * CLOCK_REALTIME timer might be requested with an absolute 822 * expiry time which is less than base->offset. Set it to 0. 823 */ 824 if (expires < 0) 825 expires = 0; 826 827 if (timer->is_soft) { 828 /* 829 * soft hrtimer could be started on a remote CPU. In this 830 * case softirq_expires_next needs to be updated on the 831 * remote CPU. The soft hrtimer will not expire before the 832 * first hard hrtimer on the remote CPU - 833 * hrtimer_check_target() prevents this case. 834 */ 835 struct hrtimer_cpu_base *timer_cpu_base = base->cpu_base; 836 837 if (timer_cpu_base->softirq_activated) 838 return; 839 840 if (!ktime_before(expires, timer_cpu_base->softirq_expires_next)) 841 return; 842 843 timer_cpu_base->softirq_next_timer = timer; 844 timer_cpu_base->softirq_expires_next = expires; 845 846 if (!ktime_before(expires, timer_cpu_base->expires_next) || 847 !reprogram) 848 return; 849 } 850 851 /* 852 * If the timer is not on the current cpu, we cannot reprogram 853 * the other cpus clock event device. 854 */ 855 if (base->cpu_base != cpu_base) 856 return; 857 858 if (expires >= cpu_base->expires_next) 859 return; 860 861 /* 862 * If the hrtimer interrupt is running, then it will reevaluate the 863 * clock bases and reprogram the clock event device. 864 */ 865 if (cpu_base->in_hrtirq) 866 return; 867 868 cpu_base->next_timer = timer; 869 870 __hrtimer_reprogram(cpu_base, timer, expires); 871 } 872 873 static bool update_needs_ipi(struct hrtimer_cpu_base *cpu_base, 874 unsigned int active) 875 { 876 struct hrtimer_clock_base *base; 877 unsigned int seq; 878 ktime_t expires; 879 880 /* 881 * Update the base offsets unconditionally so the following 882 * checks whether the SMP function call is required works. 883 * 884 * The update is safe even when the remote CPU is in the hrtimer 885 * interrupt or the hrtimer soft interrupt and expiring affected 886 * bases. Either it will see the update before handling a base or 887 * it will see it when it finishes the processing and reevaluates 888 * the next expiring timer. 889 */ 890 seq = cpu_base->clock_was_set_seq; 891 hrtimer_update_base(cpu_base); 892 893 /* 894 * If the sequence did not change over the update then the 895 * remote CPU already handled it. 896 */ 897 if (seq == cpu_base->clock_was_set_seq) 898 return false; 899 900 /* 901 * If the remote CPU is currently handling an hrtimer interrupt, it 902 * will reevaluate the first expiring timer of all clock bases 903 * before reprogramming. Nothing to do here. 904 */ 905 if (cpu_base->in_hrtirq) 906 return false; 907 908 /* 909 * Walk the affected clock bases and check whether the first expiring 910 * timer in a clock base is moving ahead of the first expiring timer of 911 * @cpu_base. If so, the IPI must be invoked because per CPU clock 912 * event devices cannot be remotely reprogrammed. 913 */ 914 active &= cpu_base->active_bases; 915 916 for_each_active_base(base, cpu_base, active) { 917 struct timerqueue_node *next; 918 919 next = timerqueue_getnext(&base->active); 920 expires = ktime_sub(next->expires, base->offset); 921 if (expires < cpu_base->expires_next) 922 return true; 923 924 /* Extra check for softirq clock bases */ 925 if (base->clockid < HRTIMER_BASE_MONOTONIC_SOFT) 926 continue; 927 if (cpu_base->softirq_activated) 928 continue; 929 if (expires < cpu_base->softirq_expires_next) 930 return true; 931 } 932 return false; 933 } 934 935 /* 936 * Clock was set. This might affect CLOCK_REALTIME, CLOCK_TAI and 937 * CLOCK_BOOTTIME (for late sleep time injection). 938 * 939 * This requires to update the offsets for these clocks 940 * vs. CLOCK_MONOTONIC. When high resolution timers are enabled, then this 941 * also requires to eventually reprogram the per CPU clock event devices 942 * when the change moves an affected timer ahead of the first expiring 943 * timer on that CPU. Obviously remote per CPU clock event devices cannot 944 * be reprogrammed. The other reason why an IPI has to be sent is when the 945 * system is in !HIGH_RES and NOHZ mode. The NOHZ mode updates the offsets 946 * in the tick, which obviously might be stopped, so this has to bring out 947 * the remote CPU which might sleep in idle to get this sorted. 948 */ 949 void clock_was_set(unsigned int bases) 950 { 951 struct hrtimer_cpu_base *cpu_base = raw_cpu_ptr(&hrtimer_bases); 952 cpumask_var_t mask; 953 int cpu; 954 955 if (!hrtimer_hres_active(cpu_base) && !tick_nohz_active) 956 goto out_timerfd; 957 958 if (!zalloc_cpumask_var(&mask, GFP_KERNEL)) { 959 on_each_cpu(retrigger_next_event, NULL, 1); 960 goto out_timerfd; 961 } 962 963 /* Avoid interrupting CPUs if possible */ 964 cpus_read_lock(); 965 for_each_online_cpu(cpu) { 966 unsigned long flags; 967 968 cpu_base = &per_cpu(hrtimer_bases, cpu); 969 raw_spin_lock_irqsave(&cpu_base->lock, flags); 970 971 if (update_needs_ipi(cpu_base, bases)) 972 cpumask_set_cpu(cpu, mask); 973 974 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 975 } 976 977 preempt_disable(); 978 smp_call_function_many(mask, retrigger_next_event, NULL, 1); 979 preempt_enable(); 980 cpus_read_unlock(); 981 free_cpumask_var(mask); 982 983 out_timerfd: 984 timerfd_clock_was_set(); 985 } 986 987 static void clock_was_set_work(struct work_struct *work) 988 { 989 clock_was_set(CLOCK_SET_WALL); 990 } 991 992 static DECLARE_WORK(hrtimer_work, clock_was_set_work); 993 994 /* 995 * Called from timekeeping code to reprogram the hrtimer interrupt device 996 * on all cpus and to notify timerfd. 997 */ 998 void clock_was_set_delayed(void) 999 { 1000 schedule_work(&hrtimer_work); 1001 } 1002 1003 /* 1004 * Called during resume either directly from via timekeeping_resume() 1005 * or in the case of s2idle from tick_unfreeze() to ensure that the 1006 * hrtimers are up to date. 1007 */ 1008 void hrtimers_resume_local(void) 1009 { 1010 lockdep_assert_irqs_disabled(); 1011 /* Retrigger on the local CPU */ 1012 retrigger_next_event(NULL); 1013 } 1014 1015 /* 1016 * Counterpart to lock_hrtimer_base above: 1017 */ 1018 static inline 1019 void unlock_hrtimer_base(const struct hrtimer *timer, unsigned long *flags) 1020 __releases(&timer->base->cpu_base->lock) 1021 { 1022 raw_spin_unlock_irqrestore(&timer->base->cpu_base->lock, *flags); 1023 } 1024 1025 /** 1026 * hrtimer_forward() - forward the timer expiry 1027 * @timer: hrtimer to forward 1028 * @now: forward past this time 1029 * @interval: the interval to forward 1030 * 1031 * Forward the timer expiry so it will expire in the future. 1032 * 1033 * .. note:: 1034 * This only updates the timer expiry value and does not requeue the timer. 1035 * 1036 * There is also a variant of the function hrtimer_forward_now(). 1037 * 1038 * Context: Can be safely called from the callback function of @timer. If called 1039 * from other contexts @timer must neither be enqueued nor running the 1040 * callback and the caller needs to take care of serialization. 1041 * 1042 * Return: The number of overruns are returned. 1043 */ 1044 u64 hrtimer_forward(struct hrtimer *timer, ktime_t now, ktime_t interval) 1045 { 1046 u64 orun = 1; 1047 ktime_t delta; 1048 1049 delta = ktime_sub(now, hrtimer_get_expires(timer)); 1050 1051 if (delta < 0) 1052 return 0; 1053 1054 if (WARN_ON(timer->state & HRTIMER_STATE_ENQUEUED)) 1055 return 0; 1056 1057 if (interval < hrtimer_resolution) 1058 interval = hrtimer_resolution; 1059 1060 if (unlikely(delta >= interval)) { 1061 s64 incr = ktime_to_ns(interval); 1062 1063 orun = ktime_divns(delta, incr); 1064 hrtimer_add_expires_ns(timer, incr * orun); 1065 if (hrtimer_get_expires_tv64(timer) > now) 1066 return orun; 1067 /* 1068 * This (and the ktime_add() below) is the 1069 * correction for exact: 1070 */ 1071 orun++; 1072 } 1073 hrtimer_add_expires(timer, interval); 1074 1075 return orun; 1076 } 1077 EXPORT_SYMBOL_GPL(hrtimer_forward); 1078 1079 /* 1080 * enqueue_hrtimer - internal function to (re)start a timer 1081 * 1082 * The timer is inserted in expiry order. Insertion into the 1083 * red black tree is O(log(n)). Must hold the base lock. 1084 * 1085 * Returns true when the new timer is the leftmost timer in the tree. 1086 */ 1087 static bool enqueue_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, 1088 enum hrtimer_mode mode) 1089 { 1090 debug_activate(timer, mode); 1091 WARN_ON_ONCE(!base->cpu_base->online); 1092 1093 base->cpu_base->active_bases |= 1 << base->index; 1094 1095 /* Pairs with the lockless read in hrtimer_is_queued() */ 1096 WRITE_ONCE(timer->state, HRTIMER_STATE_ENQUEUED); 1097 1098 return timerqueue_add(&base->active, &timer->node); 1099 } 1100 1101 /* 1102 * __remove_hrtimer - internal function to remove a timer 1103 * 1104 * Caller must hold the base lock. 1105 * 1106 * High resolution timer mode reprograms the clock event device when the 1107 * timer is the one which expires next. The caller can disable this by setting 1108 * reprogram to zero. This is useful, when the context does a reprogramming 1109 * anyway (e.g. timer interrupt) 1110 */ 1111 static void __remove_hrtimer(struct hrtimer *timer, 1112 struct hrtimer_clock_base *base, 1113 u8 newstate, int reprogram) 1114 { 1115 struct hrtimer_cpu_base *cpu_base = base->cpu_base; 1116 u8 state = timer->state; 1117 1118 /* Pairs with the lockless read in hrtimer_is_queued() */ 1119 WRITE_ONCE(timer->state, newstate); 1120 if (!(state & HRTIMER_STATE_ENQUEUED)) 1121 return; 1122 1123 if (!timerqueue_del(&base->active, &timer->node)) 1124 cpu_base->active_bases &= ~(1 << base->index); 1125 1126 /* 1127 * Note: If reprogram is false we do not update 1128 * cpu_base->next_timer. This happens when we remove the first 1129 * timer on a remote cpu. No harm as we never dereference 1130 * cpu_base->next_timer. So the worst thing what can happen is 1131 * an superfluous call to hrtimer_force_reprogram() on the 1132 * remote cpu later on if the same timer gets enqueued again. 1133 */ 1134 if (reprogram && timer == cpu_base->next_timer) 1135 hrtimer_force_reprogram(cpu_base, 1); 1136 } 1137 1138 /* 1139 * remove hrtimer, called with base lock held 1140 */ 1141 static inline int 1142 remove_hrtimer(struct hrtimer *timer, struct hrtimer_clock_base *base, 1143 bool restart, bool keep_local) 1144 { 1145 u8 state = timer->state; 1146 1147 if (state & HRTIMER_STATE_ENQUEUED) { 1148 bool reprogram; 1149 1150 /* 1151 * Remove the timer and force reprogramming when high 1152 * resolution mode is active and the timer is on the current 1153 * CPU. If we remove a timer on another CPU, reprogramming is 1154 * skipped. The interrupt event on this CPU is fired and 1155 * reprogramming happens in the interrupt handler. This is a 1156 * rare case and less expensive than a smp call. 1157 */ 1158 debug_deactivate(timer); 1159 reprogram = base->cpu_base == this_cpu_ptr(&hrtimer_bases); 1160 1161 /* 1162 * If the timer is not restarted then reprogramming is 1163 * required if the timer is local. If it is local and about 1164 * to be restarted, avoid programming it twice (on removal 1165 * and a moment later when it's requeued). 1166 */ 1167 if (!restart) 1168 state = HRTIMER_STATE_INACTIVE; 1169 else 1170 reprogram &= !keep_local; 1171 1172 __remove_hrtimer(timer, base, state, reprogram); 1173 return 1; 1174 } 1175 return 0; 1176 } 1177 1178 static inline ktime_t hrtimer_update_lowres(struct hrtimer *timer, ktime_t tim, 1179 const enum hrtimer_mode mode) 1180 { 1181 #ifdef CONFIG_TIME_LOW_RES 1182 /* 1183 * CONFIG_TIME_LOW_RES indicates that the system has no way to return 1184 * granular time values. For relative timers we add hrtimer_resolution 1185 * (i.e. one jiffy) to prevent short timeouts. 1186 */ 1187 timer->is_rel = mode & HRTIMER_MODE_REL; 1188 if (timer->is_rel) 1189 tim = ktime_add_safe(tim, hrtimer_resolution); 1190 #endif 1191 return tim; 1192 } 1193 1194 static void 1195 hrtimer_update_softirq_timer(struct hrtimer_cpu_base *cpu_base, bool reprogram) 1196 { 1197 ktime_t expires; 1198 1199 /* 1200 * Find the next SOFT expiration. 1201 */ 1202 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_SOFT); 1203 1204 /* 1205 * reprogramming needs to be triggered, even if the next soft 1206 * hrtimer expires at the same time than the next hard 1207 * hrtimer. cpu_base->softirq_expires_next needs to be updated! 1208 */ 1209 if (expires == KTIME_MAX) 1210 return; 1211 1212 /* 1213 * cpu_base->*next_timer is recomputed by __hrtimer_get_next_event() 1214 * cpu_base->*expires_next is only set by hrtimer_reprogram() 1215 */ 1216 hrtimer_reprogram(cpu_base->softirq_next_timer, reprogram); 1217 } 1218 1219 static int __hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1220 u64 delta_ns, const enum hrtimer_mode mode, 1221 struct hrtimer_clock_base *base) 1222 { 1223 struct hrtimer_cpu_base *this_cpu_base = this_cpu_ptr(&hrtimer_bases); 1224 struct hrtimer_clock_base *new_base; 1225 bool force_local, first; 1226 1227 /* 1228 * If the timer is on the local cpu base and is the first expiring 1229 * timer then this might end up reprogramming the hardware twice 1230 * (on removal and on enqueue). To avoid that by prevent the 1231 * reprogram on removal, keep the timer local to the current CPU 1232 * and enforce reprogramming after it is queued no matter whether 1233 * it is the new first expiring timer again or not. 1234 */ 1235 force_local = base->cpu_base == this_cpu_base; 1236 force_local &= base->cpu_base->next_timer == timer; 1237 1238 /* 1239 * Don't force local queuing if this enqueue happens on a unplugged 1240 * CPU after hrtimer_cpu_dying() has been invoked. 1241 */ 1242 force_local &= this_cpu_base->online; 1243 1244 /* 1245 * Remove an active timer from the queue. In case it is not queued 1246 * on the current CPU, make sure that remove_hrtimer() updates the 1247 * remote data correctly. 1248 * 1249 * If it's on the current CPU and the first expiring timer, then 1250 * skip reprogramming, keep the timer local and enforce 1251 * reprogramming later if it was the first expiring timer. This 1252 * avoids programming the underlying clock event twice (once at 1253 * removal and once after enqueue). 1254 */ 1255 remove_hrtimer(timer, base, true, force_local); 1256 1257 if (mode & HRTIMER_MODE_REL) 1258 tim = ktime_add_safe(tim, base->get_time()); 1259 1260 tim = hrtimer_update_lowres(timer, tim, mode); 1261 1262 hrtimer_set_expires_range_ns(timer, tim, delta_ns); 1263 1264 /* Switch the timer base, if necessary: */ 1265 if (!force_local) { 1266 new_base = switch_hrtimer_base(timer, base, 1267 mode & HRTIMER_MODE_PINNED); 1268 } else { 1269 new_base = base; 1270 } 1271 1272 first = enqueue_hrtimer(timer, new_base, mode); 1273 if (!force_local) { 1274 /* 1275 * If the current CPU base is online, then the timer is 1276 * never queued on a remote CPU if it would be the first 1277 * expiring timer there. 1278 */ 1279 if (hrtimer_base_is_online(this_cpu_base)) 1280 return first; 1281 1282 /* 1283 * Timer was enqueued remote because the current base is 1284 * already offline. If the timer is the first to expire, 1285 * kick the remote CPU to reprogram the clock event. 1286 */ 1287 if (first) { 1288 struct hrtimer_cpu_base *new_cpu_base = new_base->cpu_base; 1289 1290 smp_call_function_single_async(new_cpu_base->cpu, &new_cpu_base->csd); 1291 } 1292 return 0; 1293 } 1294 1295 /* 1296 * Timer was forced to stay on the current CPU to avoid 1297 * reprogramming on removal and enqueue. Force reprogram the 1298 * hardware by evaluating the new first expiring timer. 1299 */ 1300 hrtimer_force_reprogram(new_base->cpu_base, 1); 1301 return 0; 1302 } 1303 1304 /** 1305 * hrtimer_start_range_ns - (re)start an hrtimer 1306 * @timer: the timer to be added 1307 * @tim: expiry time 1308 * @delta_ns: "slack" range for the timer 1309 * @mode: timer mode: absolute (HRTIMER_MODE_ABS) or 1310 * relative (HRTIMER_MODE_REL), and pinned (HRTIMER_MODE_PINNED); 1311 * softirq based mode is considered for debug purpose only! 1312 */ 1313 void hrtimer_start_range_ns(struct hrtimer *timer, ktime_t tim, 1314 u64 delta_ns, const enum hrtimer_mode mode) 1315 { 1316 struct hrtimer_clock_base *base; 1317 unsigned long flags; 1318 1319 /* 1320 * Check whether the HRTIMER_MODE_SOFT bit and hrtimer.is_soft 1321 * match on CONFIG_PREEMPT_RT = n. With PREEMPT_RT check the hard 1322 * expiry mode because unmarked timers are moved to softirq expiry. 1323 */ 1324 if (!IS_ENABLED(CONFIG_PREEMPT_RT)) 1325 WARN_ON_ONCE(!(mode & HRTIMER_MODE_SOFT) ^ !timer->is_soft); 1326 else 1327 WARN_ON_ONCE(!(mode & HRTIMER_MODE_HARD) ^ !timer->is_hard); 1328 1329 base = lock_hrtimer_base(timer, &flags); 1330 1331 if (__hrtimer_start_range_ns(timer, tim, delta_ns, mode, base)) 1332 hrtimer_reprogram(timer, true); 1333 1334 unlock_hrtimer_base(timer, &flags); 1335 } 1336 EXPORT_SYMBOL_GPL(hrtimer_start_range_ns); 1337 1338 /** 1339 * hrtimer_try_to_cancel - try to deactivate a timer 1340 * @timer: hrtimer to stop 1341 * 1342 * Returns: 1343 * 1344 * * 0 when the timer was not active 1345 * * 1 when the timer was active 1346 * * -1 when the timer is currently executing the callback function and 1347 * cannot be stopped 1348 */ 1349 int hrtimer_try_to_cancel(struct hrtimer *timer) 1350 { 1351 struct hrtimer_clock_base *base; 1352 unsigned long flags; 1353 int ret = -1; 1354 1355 /* 1356 * Check lockless first. If the timer is not active (neither 1357 * enqueued nor running the callback, nothing to do here. The 1358 * base lock does not serialize against a concurrent enqueue, 1359 * so we can avoid taking it. 1360 */ 1361 if (!hrtimer_active(timer)) 1362 return 0; 1363 1364 base = lock_hrtimer_base(timer, &flags); 1365 1366 if (!hrtimer_callback_running(timer)) 1367 ret = remove_hrtimer(timer, base, false, false); 1368 1369 unlock_hrtimer_base(timer, &flags); 1370 1371 return ret; 1372 1373 } 1374 EXPORT_SYMBOL_GPL(hrtimer_try_to_cancel); 1375 1376 #ifdef CONFIG_PREEMPT_RT 1377 static void hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) 1378 { 1379 spin_lock_init(&base->softirq_expiry_lock); 1380 } 1381 1382 static void hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) 1383 __acquires(&base->softirq_expiry_lock) 1384 { 1385 spin_lock(&base->softirq_expiry_lock); 1386 } 1387 1388 static void hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) 1389 __releases(&base->softirq_expiry_lock) 1390 { 1391 spin_unlock(&base->softirq_expiry_lock); 1392 } 1393 1394 /* 1395 * The counterpart to hrtimer_cancel_wait_running(). 1396 * 1397 * If there is a waiter for cpu_base->expiry_lock, then it was waiting for 1398 * the timer callback to finish. Drop expiry_lock and reacquire it. That 1399 * allows the waiter to acquire the lock and make progress. 1400 */ 1401 static void hrtimer_sync_wait_running(struct hrtimer_cpu_base *cpu_base, 1402 unsigned long flags) 1403 { 1404 if (atomic_read(&cpu_base->timer_waiters)) { 1405 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1406 spin_unlock(&cpu_base->softirq_expiry_lock); 1407 spin_lock(&cpu_base->softirq_expiry_lock); 1408 raw_spin_lock_irq(&cpu_base->lock); 1409 } 1410 } 1411 1412 #ifdef CONFIG_SMP 1413 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base) 1414 { 1415 return base == &migration_base; 1416 } 1417 #else 1418 static __always_inline bool is_migration_base(struct hrtimer_clock_base *base) 1419 { 1420 return false; 1421 } 1422 #endif 1423 1424 /* 1425 * This function is called on PREEMPT_RT kernels when the fast path 1426 * deletion of a timer failed because the timer callback function was 1427 * running. 1428 * 1429 * This prevents priority inversion: if the soft irq thread is preempted 1430 * in the middle of a timer callback, then calling hrtimer_cancel() can 1431 * lead to two issues: 1432 * 1433 * - If the caller is on a remote CPU then it has to spin wait for the timer 1434 * handler to complete. This can result in unbound priority inversion. 1435 * 1436 * - If the caller originates from the task which preempted the timer 1437 * handler on the same CPU, then spin waiting for the timer handler to 1438 * complete is never going to end. 1439 */ 1440 void hrtimer_cancel_wait_running(const struct hrtimer *timer) 1441 { 1442 /* Lockless read. Prevent the compiler from reloading it below */ 1443 struct hrtimer_clock_base *base = READ_ONCE(timer->base); 1444 1445 /* 1446 * Just relax if the timer expires in hard interrupt context or if 1447 * it is currently on the migration base. 1448 */ 1449 if (!timer->is_soft || is_migration_base(base)) { 1450 cpu_relax(); 1451 return; 1452 } 1453 1454 /* 1455 * Mark the base as contended and grab the expiry lock, which is 1456 * held by the softirq across the timer callback. Drop the lock 1457 * immediately so the softirq can expire the next timer. In theory 1458 * the timer could already be running again, but that's more than 1459 * unlikely and just causes another wait loop. 1460 */ 1461 atomic_inc(&base->cpu_base->timer_waiters); 1462 spin_lock_bh(&base->cpu_base->softirq_expiry_lock); 1463 atomic_dec(&base->cpu_base->timer_waiters); 1464 spin_unlock_bh(&base->cpu_base->softirq_expiry_lock); 1465 } 1466 #else 1467 static inline void 1468 hrtimer_cpu_base_init_expiry_lock(struct hrtimer_cpu_base *base) { } 1469 static inline void 1470 hrtimer_cpu_base_lock_expiry(struct hrtimer_cpu_base *base) { } 1471 static inline void 1472 hrtimer_cpu_base_unlock_expiry(struct hrtimer_cpu_base *base) { } 1473 static inline void hrtimer_sync_wait_running(struct hrtimer_cpu_base *base, 1474 unsigned long flags) { } 1475 #endif 1476 1477 /** 1478 * hrtimer_cancel - cancel a timer and wait for the handler to finish. 1479 * @timer: the timer to be cancelled 1480 * 1481 * Returns: 1482 * 0 when the timer was not active 1483 * 1 when the timer was active 1484 */ 1485 int hrtimer_cancel(struct hrtimer *timer) 1486 { 1487 int ret; 1488 1489 do { 1490 ret = hrtimer_try_to_cancel(timer); 1491 1492 if (ret < 0) 1493 hrtimer_cancel_wait_running(timer); 1494 } while (ret < 0); 1495 return ret; 1496 } 1497 EXPORT_SYMBOL_GPL(hrtimer_cancel); 1498 1499 /** 1500 * __hrtimer_get_remaining - get remaining time for the timer 1501 * @timer: the timer to read 1502 * @adjust: adjust relative timers when CONFIG_TIME_LOW_RES=y 1503 */ 1504 ktime_t __hrtimer_get_remaining(const struct hrtimer *timer, bool adjust) 1505 { 1506 unsigned long flags; 1507 ktime_t rem; 1508 1509 lock_hrtimer_base(timer, &flags); 1510 if (IS_ENABLED(CONFIG_TIME_LOW_RES) && adjust) 1511 rem = hrtimer_expires_remaining_adjusted(timer); 1512 else 1513 rem = hrtimer_expires_remaining(timer); 1514 unlock_hrtimer_base(timer, &flags); 1515 1516 return rem; 1517 } 1518 EXPORT_SYMBOL_GPL(__hrtimer_get_remaining); 1519 1520 #ifdef CONFIG_NO_HZ_COMMON 1521 /** 1522 * hrtimer_get_next_event - get the time until next expiry event 1523 * 1524 * Returns the next expiry time or KTIME_MAX if no timer is pending. 1525 */ 1526 u64 hrtimer_get_next_event(void) 1527 { 1528 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1529 u64 expires = KTIME_MAX; 1530 unsigned long flags; 1531 1532 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1533 1534 if (!hrtimer_hres_active(cpu_base)) 1535 expires = __hrtimer_get_next_event(cpu_base, HRTIMER_ACTIVE_ALL); 1536 1537 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1538 1539 return expires; 1540 } 1541 1542 /** 1543 * hrtimer_next_event_without - time until next expiry event w/o one timer 1544 * @exclude: timer to exclude 1545 * 1546 * Returns the next expiry time over all timers except for the @exclude one or 1547 * KTIME_MAX if none of them is pending. 1548 */ 1549 u64 hrtimer_next_event_without(const struct hrtimer *exclude) 1550 { 1551 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1552 u64 expires = KTIME_MAX; 1553 unsigned long flags; 1554 1555 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1556 1557 if (hrtimer_hres_active(cpu_base)) { 1558 unsigned int active; 1559 1560 if (!cpu_base->softirq_activated) { 1561 active = cpu_base->active_bases & HRTIMER_ACTIVE_SOFT; 1562 expires = __hrtimer_next_event_base(cpu_base, exclude, 1563 active, KTIME_MAX); 1564 } 1565 active = cpu_base->active_bases & HRTIMER_ACTIVE_HARD; 1566 expires = __hrtimer_next_event_base(cpu_base, exclude, active, 1567 expires); 1568 } 1569 1570 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1571 1572 return expires; 1573 } 1574 #endif 1575 1576 static inline int hrtimer_clockid_to_base(clockid_t clock_id) 1577 { 1578 switch (clock_id) { 1579 case CLOCK_REALTIME: 1580 return HRTIMER_BASE_REALTIME; 1581 case CLOCK_MONOTONIC: 1582 return HRTIMER_BASE_MONOTONIC; 1583 case CLOCK_BOOTTIME: 1584 return HRTIMER_BASE_BOOTTIME; 1585 case CLOCK_TAI: 1586 return HRTIMER_BASE_TAI; 1587 default: 1588 WARN(1, "Invalid clockid %d. Using MONOTONIC\n", clock_id); 1589 return HRTIMER_BASE_MONOTONIC; 1590 } 1591 } 1592 1593 static void __hrtimer_setup(struct hrtimer *timer, 1594 enum hrtimer_restart (*function)(struct hrtimer *), 1595 clockid_t clock_id, enum hrtimer_mode mode) 1596 { 1597 bool softtimer = !!(mode & HRTIMER_MODE_SOFT); 1598 struct hrtimer_cpu_base *cpu_base; 1599 int base; 1600 1601 /* 1602 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 1603 * marked for hard interrupt expiry mode are moved into soft 1604 * interrupt context for latency reasons and because the callbacks 1605 * can invoke functions which might sleep on RT, e.g. spin_lock(). 1606 */ 1607 if (IS_ENABLED(CONFIG_PREEMPT_RT) && !(mode & HRTIMER_MODE_HARD)) 1608 softtimer = true; 1609 1610 memset(timer, 0, sizeof(struct hrtimer)); 1611 1612 cpu_base = raw_cpu_ptr(&hrtimer_bases); 1613 1614 /* 1615 * POSIX magic: Relative CLOCK_REALTIME timers are not affected by 1616 * clock modifications, so they needs to become CLOCK_MONOTONIC to 1617 * ensure POSIX compliance. 1618 */ 1619 if (clock_id == CLOCK_REALTIME && mode & HRTIMER_MODE_REL) 1620 clock_id = CLOCK_MONOTONIC; 1621 1622 base = softtimer ? HRTIMER_MAX_CLOCK_BASES / 2 : 0; 1623 base += hrtimer_clockid_to_base(clock_id); 1624 timer->is_soft = softtimer; 1625 timer->is_hard = !!(mode & HRTIMER_MODE_HARD); 1626 timer->base = &cpu_base->clock_base[base]; 1627 timerqueue_init(&timer->node); 1628 1629 if (WARN_ON_ONCE(!function)) 1630 ACCESS_PRIVATE(timer, function) = hrtimer_dummy_timeout; 1631 else 1632 ACCESS_PRIVATE(timer, function) = function; 1633 } 1634 1635 /** 1636 * hrtimer_setup - initialize a timer to the given clock 1637 * @timer: the timer to be initialized 1638 * @function: the callback function 1639 * @clock_id: the clock to be used 1640 * @mode: The modes which are relevant for initialization: 1641 * HRTIMER_MODE_ABS, HRTIMER_MODE_REL, HRTIMER_MODE_ABS_SOFT, 1642 * HRTIMER_MODE_REL_SOFT 1643 * 1644 * The PINNED variants of the above can be handed in, 1645 * but the PINNED bit is ignored as pinning happens 1646 * when the hrtimer is started 1647 */ 1648 void hrtimer_setup(struct hrtimer *timer, enum hrtimer_restart (*function)(struct hrtimer *), 1649 clockid_t clock_id, enum hrtimer_mode mode) 1650 { 1651 debug_init(timer, clock_id, mode); 1652 __hrtimer_setup(timer, function, clock_id, mode); 1653 } 1654 EXPORT_SYMBOL_GPL(hrtimer_setup); 1655 1656 /** 1657 * hrtimer_setup_on_stack - initialize a timer on stack memory 1658 * @timer: The timer to be initialized 1659 * @function: the callback function 1660 * @clock_id: The clock to be used 1661 * @mode: The timer mode 1662 * 1663 * Similar to hrtimer_setup(), except that this one must be used if struct hrtimer is in stack 1664 * memory. 1665 */ 1666 void hrtimer_setup_on_stack(struct hrtimer *timer, 1667 enum hrtimer_restart (*function)(struct hrtimer *), 1668 clockid_t clock_id, enum hrtimer_mode mode) 1669 { 1670 debug_init_on_stack(timer, clock_id, mode); 1671 __hrtimer_setup(timer, function, clock_id, mode); 1672 } 1673 EXPORT_SYMBOL_GPL(hrtimer_setup_on_stack); 1674 1675 /* 1676 * A timer is active, when it is enqueued into the rbtree or the 1677 * callback function is running or it's in the state of being migrated 1678 * to another cpu. 1679 * 1680 * It is important for this function to not return a false negative. 1681 */ 1682 bool hrtimer_active(const struct hrtimer *timer) 1683 { 1684 struct hrtimer_clock_base *base; 1685 unsigned int seq; 1686 1687 do { 1688 base = READ_ONCE(timer->base); 1689 seq = raw_read_seqcount_begin(&base->seq); 1690 1691 if (timer->state != HRTIMER_STATE_INACTIVE || 1692 base->running == timer) 1693 return true; 1694 1695 } while (read_seqcount_retry(&base->seq, seq) || 1696 base != READ_ONCE(timer->base)); 1697 1698 return false; 1699 } 1700 EXPORT_SYMBOL_GPL(hrtimer_active); 1701 1702 /* 1703 * The write_seqcount_barrier()s in __run_hrtimer() split the thing into 3 1704 * distinct sections: 1705 * 1706 * - queued: the timer is queued 1707 * - callback: the timer is being ran 1708 * - post: the timer is inactive or (re)queued 1709 * 1710 * On the read side we ensure we observe timer->state and cpu_base->running 1711 * from the same section, if anything changed while we looked at it, we retry. 1712 * This includes timer->base changing because sequence numbers alone are 1713 * insufficient for that. 1714 * 1715 * The sequence numbers are required because otherwise we could still observe 1716 * a false negative if the read side got smeared over multiple consecutive 1717 * __run_hrtimer() invocations. 1718 */ 1719 1720 static void __run_hrtimer(struct hrtimer_cpu_base *cpu_base, 1721 struct hrtimer_clock_base *base, 1722 struct hrtimer *timer, ktime_t *now, 1723 unsigned long flags) __must_hold(&cpu_base->lock) 1724 { 1725 enum hrtimer_restart (*fn)(struct hrtimer *); 1726 bool expires_in_hardirq; 1727 int restart; 1728 1729 lockdep_assert_held(&cpu_base->lock); 1730 1731 debug_deactivate(timer); 1732 base->running = timer; 1733 1734 /* 1735 * Separate the ->running assignment from the ->state assignment. 1736 * 1737 * As with a regular write barrier, this ensures the read side in 1738 * hrtimer_active() cannot observe base->running == NULL && 1739 * timer->state == INACTIVE. 1740 */ 1741 raw_write_seqcount_barrier(&base->seq); 1742 1743 __remove_hrtimer(timer, base, HRTIMER_STATE_INACTIVE, 0); 1744 fn = ACCESS_PRIVATE(timer, function); 1745 1746 /* 1747 * Clear the 'is relative' flag for the TIME_LOW_RES case. If the 1748 * timer is restarted with a period then it becomes an absolute 1749 * timer. If its not restarted it does not matter. 1750 */ 1751 if (IS_ENABLED(CONFIG_TIME_LOW_RES)) 1752 timer->is_rel = false; 1753 1754 /* 1755 * The timer is marked as running in the CPU base, so it is 1756 * protected against migration to a different CPU even if the lock 1757 * is dropped. 1758 */ 1759 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1760 trace_hrtimer_expire_entry(timer, now); 1761 expires_in_hardirq = lockdep_hrtimer_enter(timer); 1762 1763 restart = fn(timer); 1764 1765 lockdep_hrtimer_exit(expires_in_hardirq); 1766 trace_hrtimer_expire_exit(timer); 1767 raw_spin_lock_irq(&cpu_base->lock); 1768 1769 /* 1770 * Note: We clear the running state after enqueue_hrtimer and 1771 * we do not reprogram the event hardware. Happens either in 1772 * hrtimer_start_range_ns() or in hrtimer_interrupt() 1773 * 1774 * Note: Because we dropped the cpu_base->lock above, 1775 * hrtimer_start_range_ns() can have popped in and enqueued the timer 1776 * for us already. 1777 */ 1778 if (restart != HRTIMER_NORESTART && 1779 !(timer->state & HRTIMER_STATE_ENQUEUED)) 1780 enqueue_hrtimer(timer, base, HRTIMER_MODE_ABS); 1781 1782 /* 1783 * Separate the ->running assignment from the ->state assignment. 1784 * 1785 * As with a regular write barrier, this ensures the read side in 1786 * hrtimer_active() cannot observe base->running.timer == NULL && 1787 * timer->state == INACTIVE. 1788 */ 1789 raw_write_seqcount_barrier(&base->seq); 1790 1791 WARN_ON_ONCE(base->running != timer); 1792 base->running = NULL; 1793 } 1794 1795 static void __hrtimer_run_queues(struct hrtimer_cpu_base *cpu_base, ktime_t now, 1796 unsigned long flags, unsigned int active_mask) 1797 { 1798 struct hrtimer_clock_base *base; 1799 unsigned int active = cpu_base->active_bases & active_mask; 1800 1801 for_each_active_base(base, cpu_base, active) { 1802 struct timerqueue_node *node; 1803 ktime_t basenow; 1804 1805 basenow = ktime_add(now, base->offset); 1806 1807 while ((node = timerqueue_getnext(&base->active))) { 1808 struct hrtimer *timer; 1809 1810 timer = container_of(node, struct hrtimer, node); 1811 1812 /* 1813 * The immediate goal for using the softexpires is 1814 * minimizing wakeups, not running timers at the 1815 * earliest interrupt after their soft expiration. 1816 * This allows us to avoid using a Priority Search 1817 * Tree, which can answer a stabbing query for 1818 * overlapping intervals and instead use the simple 1819 * BST we already have. 1820 * We don't add extra wakeups by delaying timers that 1821 * are right-of a not yet expired timer, because that 1822 * timer will have to trigger a wakeup anyway. 1823 */ 1824 if (basenow < hrtimer_get_softexpires_tv64(timer)) 1825 break; 1826 1827 __run_hrtimer(cpu_base, base, timer, &basenow, flags); 1828 if (active_mask == HRTIMER_ACTIVE_SOFT) 1829 hrtimer_sync_wait_running(cpu_base, flags); 1830 } 1831 } 1832 } 1833 1834 static __latent_entropy void hrtimer_run_softirq(void) 1835 { 1836 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1837 unsigned long flags; 1838 ktime_t now; 1839 1840 hrtimer_cpu_base_lock_expiry(cpu_base); 1841 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1842 1843 now = hrtimer_update_base(cpu_base); 1844 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_SOFT); 1845 1846 cpu_base->softirq_activated = 0; 1847 hrtimer_update_softirq_timer(cpu_base, true); 1848 1849 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1850 hrtimer_cpu_base_unlock_expiry(cpu_base); 1851 } 1852 1853 #ifdef CONFIG_HIGH_RES_TIMERS 1854 1855 /* 1856 * High resolution timer interrupt 1857 * Called with interrupts disabled 1858 */ 1859 void hrtimer_interrupt(struct clock_event_device *dev) 1860 { 1861 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1862 ktime_t expires_next, now, entry_time, delta; 1863 unsigned long flags; 1864 int retries = 0; 1865 1866 BUG_ON(!cpu_base->hres_active); 1867 cpu_base->nr_events++; 1868 dev->next_event = KTIME_MAX; 1869 1870 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1871 entry_time = now = hrtimer_update_base(cpu_base); 1872 retry: 1873 cpu_base->in_hrtirq = 1; 1874 /* 1875 * We set expires_next to KTIME_MAX here with cpu_base->lock 1876 * held to prevent that a timer is enqueued in our queue via 1877 * the migration code. This does not affect enqueueing of 1878 * timers which run their callback and need to be requeued on 1879 * this CPU. 1880 */ 1881 cpu_base->expires_next = KTIME_MAX; 1882 1883 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1884 cpu_base->softirq_expires_next = KTIME_MAX; 1885 cpu_base->softirq_activated = 1; 1886 raise_timer_softirq(HRTIMER_SOFTIRQ); 1887 } 1888 1889 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1890 1891 /* Reevaluate the clock bases for the [soft] next expiry */ 1892 expires_next = hrtimer_update_next_event(cpu_base); 1893 /* 1894 * Store the new expiry value so the migration code can verify 1895 * against it. 1896 */ 1897 cpu_base->expires_next = expires_next; 1898 cpu_base->in_hrtirq = 0; 1899 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1900 1901 /* Reprogramming necessary ? */ 1902 if (!tick_program_event(expires_next, 0)) { 1903 cpu_base->hang_detected = 0; 1904 return; 1905 } 1906 1907 /* 1908 * The next timer was already expired due to: 1909 * - tracing 1910 * - long lasting callbacks 1911 * - being scheduled away when running in a VM 1912 * 1913 * We need to prevent that we loop forever in the hrtimer 1914 * interrupt routine. We give it 3 attempts to avoid 1915 * overreacting on some spurious event. 1916 * 1917 * Acquire base lock for updating the offsets and retrieving 1918 * the current time. 1919 */ 1920 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1921 now = hrtimer_update_base(cpu_base); 1922 cpu_base->nr_retries++; 1923 if (++retries < 3) 1924 goto retry; 1925 /* 1926 * Give the system a chance to do something else than looping 1927 * here. We stored the entry time, so we know exactly how long 1928 * we spent here. We schedule the next event this amount of 1929 * time away. 1930 */ 1931 cpu_base->nr_hangs++; 1932 cpu_base->hang_detected = 1; 1933 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1934 1935 delta = ktime_sub(now, entry_time); 1936 if ((unsigned int)delta > cpu_base->max_hang_time) 1937 cpu_base->max_hang_time = (unsigned int) delta; 1938 /* 1939 * Limit it to a sensible value as we enforce a longer 1940 * delay. Give the CPU at least 100ms to catch up. 1941 */ 1942 if (delta > 100 * NSEC_PER_MSEC) 1943 expires_next = ktime_add_ns(now, 100 * NSEC_PER_MSEC); 1944 else 1945 expires_next = ktime_add(now, delta); 1946 tick_program_event(expires_next, 1); 1947 pr_warn_once("hrtimer: interrupt took %llu ns\n", ktime_to_ns(delta)); 1948 } 1949 #endif /* !CONFIG_HIGH_RES_TIMERS */ 1950 1951 /* 1952 * Called from run_local_timers in hardirq context every jiffy 1953 */ 1954 void hrtimer_run_queues(void) 1955 { 1956 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 1957 unsigned long flags; 1958 ktime_t now; 1959 1960 if (hrtimer_hres_active(cpu_base)) 1961 return; 1962 1963 /* 1964 * This _is_ ugly: We have to check periodically, whether we 1965 * can switch to highres and / or nohz mode. The clocksource 1966 * switch happens with xtime_lock held. Notification from 1967 * there only sets the check bit in the tick_oneshot code, 1968 * otherwise we might deadlock vs. xtime_lock. 1969 */ 1970 if (tick_check_oneshot_change(!hrtimer_is_hres_enabled())) { 1971 hrtimer_switch_to_hres(); 1972 return; 1973 } 1974 1975 raw_spin_lock_irqsave(&cpu_base->lock, flags); 1976 now = hrtimer_update_base(cpu_base); 1977 1978 if (!ktime_before(now, cpu_base->softirq_expires_next)) { 1979 cpu_base->softirq_expires_next = KTIME_MAX; 1980 cpu_base->softirq_activated = 1; 1981 raise_timer_softirq(HRTIMER_SOFTIRQ); 1982 } 1983 1984 __hrtimer_run_queues(cpu_base, now, flags, HRTIMER_ACTIVE_HARD); 1985 raw_spin_unlock_irqrestore(&cpu_base->lock, flags); 1986 } 1987 1988 /* 1989 * Sleep related functions: 1990 */ 1991 static enum hrtimer_restart hrtimer_wakeup(struct hrtimer *timer) 1992 { 1993 struct hrtimer_sleeper *t = 1994 container_of(timer, struct hrtimer_sleeper, timer); 1995 struct task_struct *task = t->task; 1996 1997 t->task = NULL; 1998 if (task) 1999 wake_up_process(task); 2000 2001 return HRTIMER_NORESTART; 2002 } 2003 2004 /** 2005 * hrtimer_sleeper_start_expires - Start a hrtimer sleeper timer 2006 * @sl: sleeper to be started 2007 * @mode: timer mode abs/rel 2008 * 2009 * Wrapper around hrtimer_start_expires() for hrtimer_sleeper based timers 2010 * to allow PREEMPT_RT to tweak the delivery mode (soft/hardirq context) 2011 */ 2012 void hrtimer_sleeper_start_expires(struct hrtimer_sleeper *sl, 2013 enum hrtimer_mode mode) 2014 { 2015 /* 2016 * Make the enqueue delivery mode check work on RT. If the sleeper 2017 * was initialized for hard interrupt delivery, force the mode bit. 2018 * This is a special case for hrtimer_sleepers because 2019 * __hrtimer_setup_sleeper() determines the delivery mode on RT so the 2020 * fiddling with this decision is avoided at the call sites. 2021 */ 2022 if (IS_ENABLED(CONFIG_PREEMPT_RT) && sl->timer.is_hard) 2023 mode |= HRTIMER_MODE_HARD; 2024 2025 hrtimer_start_expires(&sl->timer, mode); 2026 } 2027 EXPORT_SYMBOL_GPL(hrtimer_sleeper_start_expires); 2028 2029 static void __hrtimer_setup_sleeper(struct hrtimer_sleeper *sl, 2030 clockid_t clock_id, enum hrtimer_mode mode) 2031 { 2032 /* 2033 * On PREEMPT_RT enabled kernels hrtimers which are not explicitly 2034 * marked for hard interrupt expiry mode are moved into soft 2035 * interrupt context either for latency reasons or because the 2036 * hrtimer callback takes regular spinlocks or invokes other 2037 * functions which are not suitable for hard interrupt context on 2038 * PREEMPT_RT. 2039 * 2040 * The hrtimer_sleeper callback is RT compatible in hard interrupt 2041 * context, but there is a latency concern: Untrusted userspace can 2042 * spawn many threads which arm timers for the same expiry time on 2043 * the same CPU. That causes a latency spike due to the wakeup of 2044 * a gazillion threads. 2045 * 2046 * OTOH, privileged real-time user space applications rely on the 2047 * low latency of hard interrupt wakeups. If the current task is in 2048 * a real-time scheduling class, mark the mode for hard interrupt 2049 * expiry. 2050 */ 2051 if (IS_ENABLED(CONFIG_PREEMPT_RT)) { 2052 if (rt_or_dl_task_policy(current) && !(mode & HRTIMER_MODE_SOFT)) 2053 mode |= HRTIMER_MODE_HARD; 2054 } 2055 2056 __hrtimer_setup(&sl->timer, hrtimer_wakeup, clock_id, mode); 2057 sl->task = current; 2058 } 2059 2060 /** 2061 * hrtimer_setup_sleeper_on_stack - initialize a sleeper in stack memory 2062 * @sl: sleeper to be initialized 2063 * @clock_id: the clock to be used 2064 * @mode: timer mode abs/rel 2065 */ 2066 void hrtimer_setup_sleeper_on_stack(struct hrtimer_sleeper *sl, 2067 clockid_t clock_id, enum hrtimer_mode mode) 2068 { 2069 debug_init_on_stack(&sl->timer, clock_id, mode); 2070 __hrtimer_setup_sleeper(sl, clock_id, mode); 2071 } 2072 EXPORT_SYMBOL_GPL(hrtimer_setup_sleeper_on_stack); 2073 2074 int nanosleep_copyout(struct restart_block *restart, struct timespec64 *ts) 2075 { 2076 switch(restart->nanosleep.type) { 2077 #ifdef CONFIG_COMPAT_32BIT_TIME 2078 case TT_COMPAT: 2079 if (put_old_timespec32(ts, restart->nanosleep.compat_rmtp)) 2080 return -EFAULT; 2081 break; 2082 #endif 2083 case TT_NATIVE: 2084 if (put_timespec64(ts, restart->nanosleep.rmtp)) 2085 return -EFAULT; 2086 break; 2087 default: 2088 BUG(); 2089 } 2090 return -ERESTART_RESTARTBLOCK; 2091 } 2092 2093 static int __sched do_nanosleep(struct hrtimer_sleeper *t, enum hrtimer_mode mode) 2094 { 2095 struct restart_block *restart; 2096 2097 do { 2098 set_current_state(TASK_INTERRUPTIBLE|TASK_FREEZABLE); 2099 hrtimer_sleeper_start_expires(t, mode); 2100 2101 if (likely(t->task)) 2102 schedule(); 2103 2104 hrtimer_cancel(&t->timer); 2105 mode = HRTIMER_MODE_ABS; 2106 2107 } while (t->task && !signal_pending(current)); 2108 2109 __set_current_state(TASK_RUNNING); 2110 2111 if (!t->task) 2112 return 0; 2113 2114 restart = ¤t->restart_block; 2115 if (restart->nanosleep.type != TT_NONE) { 2116 ktime_t rem = hrtimer_expires_remaining(&t->timer); 2117 struct timespec64 rmt; 2118 2119 if (rem <= 0) 2120 return 0; 2121 rmt = ktime_to_timespec64(rem); 2122 2123 return nanosleep_copyout(restart, &rmt); 2124 } 2125 return -ERESTART_RESTARTBLOCK; 2126 } 2127 2128 static long __sched hrtimer_nanosleep_restart(struct restart_block *restart) 2129 { 2130 struct hrtimer_sleeper t; 2131 int ret; 2132 2133 hrtimer_setup_sleeper_on_stack(&t, restart->nanosleep.clockid, HRTIMER_MODE_ABS); 2134 hrtimer_set_expires_tv64(&t.timer, restart->nanosleep.expires); 2135 ret = do_nanosleep(&t, HRTIMER_MODE_ABS); 2136 destroy_hrtimer_on_stack(&t.timer); 2137 return ret; 2138 } 2139 2140 long hrtimer_nanosleep(ktime_t rqtp, const enum hrtimer_mode mode, 2141 const clockid_t clockid) 2142 { 2143 struct restart_block *restart; 2144 struct hrtimer_sleeper t; 2145 int ret = 0; 2146 2147 hrtimer_setup_sleeper_on_stack(&t, clockid, mode); 2148 hrtimer_set_expires_range_ns(&t.timer, rqtp, current->timer_slack_ns); 2149 ret = do_nanosleep(&t, mode); 2150 if (ret != -ERESTART_RESTARTBLOCK) 2151 goto out; 2152 2153 /* Absolute timers do not update the rmtp value and restart: */ 2154 if (mode == HRTIMER_MODE_ABS) { 2155 ret = -ERESTARTNOHAND; 2156 goto out; 2157 } 2158 2159 restart = ¤t->restart_block; 2160 restart->nanosleep.clockid = t.timer.base->clockid; 2161 restart->nanosleep.expires = hrtimer_get_expires_tv64(&t.timer); 2162 set_restart_fn(restart, hrtimer_nanosleep_restart); 2163 out: 2164 destroy_hrtimer_on_stack(&t.timer); 2165 return ret; 2166 } 2167 2168 #ifdef CONFIG_64BIT 2169 2170 SYSCALL_DEFINE2(nanosleep, struct __kernel_timespec __user *, rqtp, 2171 struct __kernel_timespec __user *, rmtp) 2172 { 2173 struct timespec64 tu; 2174 2175 if (get_timespec64(&tu, rqtp)) 2176 return -EFAULT; 2177 2178 if (!timespec64_valid(&tu)) 2179 return -EINVAL; 2180 2181 current->restart_block.fn = do_no_restart_syscall; 2182 current->restart_block.nanosleep.type = rmtp ? TT_NATIVE : TT_NONE; 2183 current->restart_block.nanosleep.rmtp = rmtp; 2184 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2185 CLOCK_MONOTONIC); 2186 } 2187 2188 #endif 2189 2190 #ifdef CONFIG_COMPAT_32BIT_TIME 2191 2192 SYSCALL_DEFINE2(nanosleep_time32, struct old_timespec32 __user *, rqtp, 2193 struct old_timespec32 __user *, rmtp) 2194 { 2195 struct timespec64 tu; 2196 2197 if (get_old_timespec32(&tu, rqtp)) 2198 return -EFAULT; 2199 2200 if (!timespec64_valid(&tu)) 2201 return -EINVAL; 2202 2203 current->restart_block.fn = do_no_restart_syscall; 2204 current->restart_block.nanosleep.type = rmtp ? TT_COMPAT : TT_NONE; 2205 current->restart_block.nanosleep.compat_rmtp = rmtp; 2206 return hrtimer_nanosleep(timespec64_to_ktime(tu), HRTIMER_MODE_REL, 2207 CLOCK_MONOTONIC); 2208 } 2209 #endif 2210 2211 /* 2212 * Functions related to boot-time initialization: 2213 */ 2214 int hrtimers_prepare_cpu(unsigned int cpu) 2215 { 2216 struct hrtimer_cpu_base *cpu_base = &per_cpu(hrtimer_bases, cpu); 2217 int i; 2218 2219 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2220 struct hrtimer_clock_base *clock_b = &cpu_base->clock_base[i]; 2221 2222 clock_b->cpu_base = cpu_base; 2223 seqcount_raw_spinlock_init(&clock_b->seq, &cpu_base->lock); 2224 timerqueue_init_head(&clock_b->active); 2225 } 2226 2227 cpu_base->cpu = cpu; 2228 hrtimer_cpu_base_init_expiry_lock(cpu_base); 2229 return 0; 2230 } 2231 2232 int hrtimers_cpu_starting(unsigned int cpu) 2233 { 2234 struct hrtimer_cpu_base *cpu_base = this_cpu_ptr(&hrtimer_bases); 2235 2236 /* Clear out any left over state from a CPU down operation */ 2237 cpu_base->active_bases = 0; 2238 cpu_base->hres_active = 0; 2239 cpu_base->hang_detected = 0; 2240 cpu_base->next_timer = NULL; 2241 cpu_base->softirq_next_timer = NULL; 2242 cpu_base->expires_next = KTIME_MAX; 2243 cpu_base->softirq_expires_next = KTIME_MAX; 2244 cpu_base->online = 1; 2245 return 0; 2246 } 2247 2248 #ifdef CONFIG_HOTPLUG_CPU 2249 2250 static void migrate_hrtimer_list(struct hrtimer_clock_base *old_base, 2251 struct hrtimer_clock_base *new_base) 2252 { 2253 struct hrtimer *timer; 2254 struct timerqueue_node *node; 2255 2256 while ((node = timerqueue_getnext(&old_base->active))) { 2257 timer = container_of(node, struct hrtimer, node); 2258 BUG_ON(hrtimer_callback_running(timer)); 2259 debug_deactivate(timer); 2260 2261 /* 2262 * Mark it as ENQUEUED not INACTIVE otherwise the 2263 * timer could be seen as !active and just vanish away 2264 * under us on another CPU 2265 */ 2266 __remove_hrtimer(timer, old_base, HRTIMER_STATE_ENQUEUED, 0); 2267 timer->base = new_base; 2268 /* 2269 * Enqueue the timers on the new cpu. This does not 2270 * reprogram the event device in case the timer 2271 * expires before the earliest on this CPU, but we run 2272 * hrtimer_interrupt after we migrated everything to 2273 * sort out already expired timers and reprogram the 2274 * event device. 2275 */ 2276 enqueue_hrtimer(timer, new_base, HRTIMER_MODE_ABS); 2277 } 2278 } 2279 2280 int hrtimers_cpu_dying(unsigned int dying_cpu) 2281 { 2282 int i, ncpu = cpumask_any_and(cpu_active_mask, housekeeping_cpumask(HK_TYPE_TIMER)); 2283 struct hrtimer_cpu_base *old_base, *new_base; 2284 2285 old_base = this_cpu_ptr(&hrtimer_bases); 2286 new_base = &per_cpu(hrtimer_bases, ncpu); 2287 2288 /* 2289 * The caller is globally serialized and nobody else 2290 * takes two locks at once, deadlock is not possible. 2291 */ 2292 raw_spin_lock(&old_base->lock); 2293 raw_spin_lock_nested(&new_base->lock, SINGLE_DEPTH_NESTING); 2294 2295 for (i = 0; i < HRTIMER_MAX_CLOCK_BASES; i++) { 2296 migrate_hrtimer_list(&old_base->clock_base[i], 2297 &new_base->clock_base[i]); 2298 } 2299 2300 /* 2301 * The migration might have changed the first expiring softirq 2302 * timer on this CPU. Update it. 2303 */ 2304 __hrtimer_get_next_event(new_base, HRTIMER_ACTIVE_SOFT); 2305 /* Tell the other CPU to retrigger the next event */ 2306 smp_call_function_single(ncpu, retrigger_next_event, NULL, 0); 2307 2308 raw_spin_unlock(&new_base->lock); 2309 old_base->online = 0; 2310 raw_spin_unlock(&old_base->lock); 2311 2312 return 0; 2313 } 2314 2315 #endif /* CONFIG_HOTPLUG_CPU */ 2316 2317 void __init hrtimers_init(void) 2318 { 2319 hrtimers_prepare_cpu(smp_processor_id()); 2320 hrtimers_cpu_starting(smp_processor_id()); 2321 open_softirq(HRTIMER_SOFTIRQ, hrtimer_run_softirq); 2322 } 2323