xref: /linux-6.15/kernel/sys.c (revision e4aebf06)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  linux/kernel/sys.c
4  *
5  *  Copyright (C) 1991, 1992  Linus Torvalds
6  */
7 
8 #include <linux/export.h>
9 #include <linux/mm.h>
10 #include <linux/utsname.h>
11 #include <linux/mman.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/kmod.h>
17 #include <linux/perf_event.h>
18 #include <linux/resource.h>
19 #include <linux/kernel.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/suspend.h>
28 #include <linux/tty.h>
29 #include <linux/signal.h>
30 #include <linux/cn_proc.h>
31 #include <linux/getcpu.h>
32 #include <linux/task_io_accounting_ops.h>
33 #include <linux/seccomp.h>
34 #include <linux/cpu.h>
35 #include <linux/personality.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 #include <linux/file.h>
39 #include <linux/mount.h>
40 #include <linux/gfp.h>
41 #include <linux/syscore_ops.h>
42 #include <linux/version.h>
43 #include <linux/ctype.h>
44 #include <linux/syscall_user_dispatch.h>
45 
46 #include <linux/compat.h>
47 #include <linux/syscalls.h>
48 #include <linux/kprobes.h>
49 #include <linux/user_namespace.h>
50 #include <linux/time_namespace.h>
51 #include <linux/binfmts.h>
52 
53 #include <linux/sched.h>
54 #include <linux/sched/autogroup.h>
55 #include <linux/sched/loadavg.h>
56 #include <linux/sched/stat.h>
57 #include <linux/sched/mm.h>
58 #include <linux/sched/coredump.h>
59 #include <linux/sched/task.h>
60 #include <linux/sched/cputime.h>
61 #include <linux/rcupdate.h>
62 #include <linux/uidgid.h>
63 #include <linux/cred.h>
64 
65 #include <linux/nospec.h>
66 
67 #include <linux/kmsg_dump.h>
68 /* Move somewhere else to avoid recompiling? */
69 #include <generated/utsrelease.h>
70 
71 #include <linux/uaccess.h>
72 #include <asm/io.h>
73 #include <asm/unistd.h>
74 
75 #include "uid16.h"
76 
77 #ifndef SET_UNALIGN_CTL
78 # define SET_UNALIGN_CTL(a, b)	(-EINVAL)
79 #endif
80 #ifndef GET_UNALIGN_CTL
81 # define GET_UNALIGN_CTL(a, b)	(-EINVAL)
82 #endif
83 #ifndef SET_FPEMU_CTL
84 # define SET_FPEMU_CTL(a, b)	(-EINVAL)
85 #endif
86 #ifndef GET_FPEMU_CTL
87 # define GET_FPEMU_CTL(a, b)	(-EINVAL)
88 #endif
89 #ifndef SET_FPEXC_CTL
90 # define SET_FPEXC_CTL(a, b)	(-EINVAL)
91 #endif
92 #ifndef GET_FPEXC_CTL
93 # define GET_FPEXC_CTL(a, b)	(-EINVAL)
94 #endif
95 #ifndef GET_ENDIAN
96 # define GET_ENDIAN(a, b)	(-EINVAL)
97 #endif
98 #ifndef SET_ENDIAN
99 # define SET_ENDIAN(a, b)	(-EINVAL)
100 #endif
101 #ifndef GET_TSC_CTL
102 # define GET_TSC_CTL(a)		(-EINVAL)
103 #endif
104 #ifndef SET_TSC_CTL
105 # define SET_TSC_CTL(a)		(-EINVAL)
106 #endif
107 #ifndef GET_FP_MODE
108 # define GET_FP_MODE(a)		(-EINVAL)
109 #endif
110 #ifndef SET_FP_MODE
111 # define SET_FP_MODE(a,b)	(-EINVAL)
112 #endif
113 #ifndef SVE_SET_VL
114 # define SVE_SET_VL(a)		(-EINVAL)
115 #endif
116 #ifndef SVE_GET_VL
117 # define SVE_GET_VL()		(-EINVAL)
118 #endif
119 #ifndef PAC_RESET_KEYS
120 # define PAC_RESET_KEYS(a, b)	(-EINVAL)
121 #endif
122 #ifndef SET_TAGGED_ADDR_CTRL
123 # define SET_TAGGED_ADDR_CTRL(a)	(-EINVAL)
124 #endif
125 #ifndef GET_TAGGED_ADDR_CTRL
126 # define GET_TAGGED_ADDR_CTRL()		(-EINVAL)
127 #endif
128 
129 /*
130  * this is where the system-wide overflow UID and GID are defined, for
131  * architectures that now have 32-bit UID/GID but didn't in the past
132  */
133 
134 int overflowuid = DEFAULT_OVERFLOWUID;
135 int overflowgid = DEFAULT_OVERFLOWGID;
136 
137 EXPORT_SYMBOL(overflowuid);
138 EXPORT_SYMBOL(overflowgid);
139 
140 /*
141  * the same as above, but for filesystems which can only store a 16-bit
142  * UID and GID. as such, this is needed on all architectures
143  */
144 
145 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
146 int fs_overflowgid = DEFAULT_FS_OVERFLOWGID;
147 
148 EXPORT_SYMBOL(fs_overflowuid);
149 EXPORT_SYMBOL(fs_overflowgid);
150 
151 /*
152  * Returns true if current's euid is same as p's uid or euid,
153  * or has CAP_SYS_NICE to p's user_ns.
154  *
155  * Called with rcu_read_lock, creds are safe
156  */
157 static bool set_one_prio_perm(struct task_struct *p)
158 {
159 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
160 
161 	if (uid_eq(pcred->uid,  cred->euid) ||
162 	    uid_eq(pcred->euid, cred->euid))
163 		return true;
164 	if (ns_capable(pcred->user_ns, CAP_SYS_NICE))
165 		return true;
166 	return false;
167 }
168 
169 /*
170  * set the priority of a task
171  * - the caller must hold the RCU read lock
172  */
173 static int set_one_prio(struct task_struct *p, int niceval, int error)
174 {
175 	int no_nice;
176 
177 	if (!set_one_prio_perm(p)) {
178 		error = -EPERM;
179 		goto out;
180 	}
181 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
182 		error = -EACCES;
183 		goto out;
184 	}
185 	no_nice = security_task_setnice(p, niceval);
186 	if (no_nice) {
187 		error = no_nice;
188 		goto out;
189 	}
190 	if (error == -ESRCH)
191 		error = 0;
192 	set_user_nice(p, niceval);
193 out:
194 	return error;
195 }
196 
197 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
198 {
199 	struct task_struct *g, *p;
200 	struct user_struct *user;
201 	const struct cred *cred = current_cred();
202 	int error = -EINVAL;
203 	struct pid *pgrp;
204 	kuid_t uid;
205 
206 	if (which > PRIO_USER || which < PRIO_PROCESS)
207 		goto out;
208 
209 	/* normalize: avoid signed division (rounding problems) */
210 	error = -ESRCH;
211 	if (niceval < MIN_NICE)
212 		niceval = MIN_NICE;
213 	if (niceval > MAX_NICE)
214 		niceval = MAX_NICE;
215 
216 	rcu_read_lock();
217 	read_lock(&tasklist_lock);
218 	switch (which) {
219 	case PRIO_PROCESS:
220 		if (who)
221 			p = find_task_by_vpid(who);
222 		else
223 			p = current;
224 		if (p)
225 			error = set_one_prio(p, niceval, error);
226 		break;
227 	case PRIO_PGRP:
228 		if (who)
229 			pgrp = find_vpid(who);
230 		else
231 			pgrp = task_pgrp(current);
232 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
233 			error = set_one_prio(p, niceval, error);
234 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
235 		break;
236 	case PRIO_USER:
237 		uid = make_kuid(cred->user_ns, who);
238 		user = cred->user;
239 		if (!who)
240 			uid = cred->uid;
241 		else if (!uid_eq(uid, cred->uid)) {
242 			user = find_user(uid);
243 			if (!user)
244 				goto out_unlock;	/* No processes for this user */
245 		}
246 		do_each_thread(g, p) {
247 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p))
248 				error = set_one_prio(p, niceval, error);
249 		} while_each_thread(g, p);
250 		if (!uid_eq(uid, cred->uid))
251 			free_uid(user);		/* For find_user() */
252 		break;
253 	}
254 out_unlock:
255 	read_unlock(&tasklist_lock);
256 	rcu_read_unlock();
257 out:
258 	return error;
259 }
260 
261 /*
262  * Ugh. To avoid negative return values, "getpriority()" will
263  * not return the normal nice-value, but a negated value that
264  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
265  * to stay compatible.
266  */
267 SYSCALL_DEFINE2(getpriority, int, which, int, who)
268 {
269 	struct task_struct *g, *p;
270 	struct user_struct *user;
271 	const struct cred *cred = current_cred();
272 	long niceval, retval = -ESRCH;
273 	struct pid *pgrp;
274 	kuid_t uid;
275 
276 	if (which > PRIO_USER || which < PRIO_PROCESS)
277 		return -EINVAL;
278 
279 	rcu_read_lock();
280 	read_lock(&tasklist_lock);
281 	switch (which) {
282 	case PRIO_PROCESS:
283 		if (who)
284 			p = find_task_by_vpid(who);
285 		else
286 			p = current;
287 		if (p) {
288 			niceval = nice_to_rlimit(task_nice(p));
289 			if (niceval > retval)
290 				retval = niceval;
291 		}
292 		break;
293 	case PRIO_PGRP:
294 		if (who)
295 			pgrp = find_vpid(who);
296 		else
297 			pgrp = task_pgrp(current);
298 		do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
299 			niceval = nice_to_rlimit(task_nice(p));
300 			if (niceval > retval)
301 				retval = niceval;
302 		} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
303 		break;
304 	case PRIO_USER:
305 		uid = make_kuid(cred->user_ns, who);
306 		user = cred->user;
307 		if (!who)
308 			uid = cred->uid;
309 		else if (!uid_eq(uid, cred->uid)) {
310 			user = find_user(uid);
311 			if (!user)
312 				goto out_unlock;	/* No processes for this user */
313 		}
314 		do_each_thread(g, p) {
315 			if (uid_eq(task_uid(p), uid) && task_pid_vnr(p)) {
316 				niceval = nice_to_rlimit(task_nice(p));
317 				if (niceval > retval)
318 					retval = niceval;
319 			}
320 		} while_each_thread(g, p);
321 		if (!uid_eq(uid, cred->uid))
322 			free_uid(user);		/* for find_user() */
323 		break;
324 	}
325 out_unlock:
326 	read_unlock(&tasklist_lock);
327 	rcu_read_unlock();
328 
329 	return retval;
330 }
331 
332 /*
333  * Unprivileged users may change the real gid to the effective gid
334  * or vice versa.  (BSD-style)
335  *
336  * If you set the real gid at all, or set the effective gid to a value not
337  * equal to the real gid, then the saved gid is set to the new effective gid.
338  *
339  * This makes it possible for a setgid program to completely drop its
340  * privileges, which is often a useful assertion to make when you are doing
341  * a security audit over a program.
342  *
343  * The general idea is that a program which uses just setregid() will be
344  * 100% compatible with BSD.  A program which uses just setgid() will be
345  * 100% compatible with POSIX with saved IDs.
346  *
347  * SMP: There are not races, the GIDs are checked only by filesystem
348  *      operations (as far as semantic preservation is concerned).
349  */
350 #ifdef CONFIG_MULTIUSER
351 long __sys_setregid(gid_t rgid, gid_t egid)
352 {
353 	struct user_namespace *ns = current_user_ns();
354 	const struct cred *old;
355 	struct cred *new;
356 	int retval;
357 	kgid_t krgid, kegid;
358 
359 	krgid = make_kgid(ns, rgid);
360 	kegid = make_kgid(ns, egid);
361 
362 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
363 		return -EINVAL;
364 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
365 		return -EINVAL;
366 
367 	new = prepare_creds();
368 	if (!new)
369 		return -ENOMEM;
370 	old = current_cred();
371 
372 	retval = -EPERM;
373 	if (rgid != (gid_t) -1) {
374 		if (gid_eq(old->gid, krgid) ||
375 		    gid_eq(old->egid, krgid) ||
376 		    ns_capable_setid(old->user_ns, CAP_SETGID))
377 			new->gid = krgid;
378 		else
379 			goto error;
380 	}
381 	if (egid != (gid_t) -1) {
382 		if (gid_eq(old->gid, kegid) ||
383 		    gid_eq(old->egid, kegid) ||
384 		    gid_eq(old->sgid, kegid) ||
385 		    ns_capable_setid(old->user_ns, CAP_SETGID))
386 			new->egid = kegid;
387 		else
388 			goto error;
389 	}
390 
391 	if (rgid != (gid_t) -1 ||
392 	    (egid != (gid_t) -1 && !gid_eq(kegid, old->gid)))
393 		new->sgid = new->egid;
394 	new->fsgid = new->egid;
395 
396 	retval = security_task_fix_setgid(new, old, LSM_SETID_RE);
397 	if (retval < 0)
398 		goto error;
399 
400 	return commit_creds(new);
401 
402 error:
403 	abort_creds(new);
404 	return retval;
405 }
406 
407 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
408 {
409 	return __sys_setregid(rgid, egid);
410 }
411 
412 /*
413  * setgid() is implemented like SysV w/ SAVED_IDS
414  *
415  * SMP: Same implicit races as above.
416  */
417 long __sys_setgid(gid_t gid)
418 {
419 	struct user_namespace *ns = current_user_ns();
420 	const struct cred *old;
421 	struct cred *new;
422 	int retval;
423 	kgid_t kgid;
424 
425 	kgid = make_kgid(ns, gid);
426 	if (!gid_valid(kgid))
427 		return -EINVAL;
428 
429 	new = prepare_creds();
430 	if (!new)
431 		return -ENOMEM;
432 	old = current_cred();
433 
434 	retval = -EPERM;
435 	if (ns_capable_setid(old->user_ns, CAP_SETGID))
436 		new->gid = new->egid = new->sgid = new->fsgid = kgid;
437 	else if (gid_eq(kgid, old->gid) || gid_eq(kgid, old->sgid))
438 		new->egid = new->fsgid = kgid;
439 	else
440 		goto error;
441 
442 	retval = security_task_fix_setgid(new, old, LSM_SETID_ID);
443 	if (retval < 0)
444 		goto error;
445 
446 	return commit_creds(new);
447 
448 error:
449 	abort_creds(new);
450 	return retval;
451 }
452 
453 SYSCALL_DEFINE1(setgid, gid_t, gid)
454 {
455 	return __sys_setgid(gid);
456 }
457 
458 /*
459  * change the user struct in a credentials set to match the new UID
460  */
461 static int set_user(struct cred *new)
462 {
463 	struct user_struct *new_user;
464 
465 	new_user = alloc_uid(new->uid);
466 	if (!new_user)
467 		return -EAGAIN;
468 
469 	/*
470 	 * We don't fail in case of NPROC limit excess here because too many
471 	 * poorly written programs don't check set*uid() return code, assuming
472 	 * it never fails if called by root.  We may still enforce NPROC limit
473 	 * for programs doing set*uid()+execve() by harmlessly deferring the
474 	 * failure to the execve() stage.
475 	 */
476 	if (is_ucounts_overlimit(new->ucounts, UCOUNT_RLIMIT_NPROC, rlimit(RLIMIT_NPROC)) &&
477 			new_user != INIT_USER)
478 		current->flags |= PF_NPROC_EXCEEDED;
479 	else
480 		current->flags &= ~PF_NPROC_EXCEEDED;
481 
482 	free_uid(new->user);
483 	new->user = new_user;
484 	return 0;
485 }
486 
487 /*
488  * Unprivileged users may change the real uid to the effective uid
489  * or vice versa.  (BSD-style)
490  *
491  * If you set the real uid at all, or set the effective uid to a value not
492  * equal to the real uid, then the saved uid is set to the new effective uid.
493  *
494  * This makes it possible for a setuid program to completely drop its
495  * privileges, which is often a useful assertion to make when you are doing
496  * a security audit over a program.
497  *
498  * The general idea is that a program which uses just setreuid() will be
499  * 100% compatible with BSD.  A program which uses just setuid() will be
500  * 100% compatible with POSIX with saved IDs.
501  */
502 long __sys_setreuid(uid_t ruid, uid_t euid)
503 {
504 	struct user_namespace *ns = current_user_ns();
505 	const struct cred *old;
506 	struct cred *new;
507 	int retval;
508 	kuid_t kruid, keuid;
509 
510 	kruid = make_kuid(ns, ruid);
511 	keuid = make_kuid(ns, euid);
512 
513 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
514 		return -EINVAL;
515 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
516 		return -EINVAL;
517 
518 	new = prepare_creds();
519 	if (!new)
520 		return -ENOMEM;
521 	old = current_cred();
522 
523 	retval = -EPERM;
524 	if (ruid != (uid_t) -1) {
525 		new->uid = kruid;
526 		if (!uid_eq(old->uid, kruid) &&
527 		    !uid_eq(old->euid, kruid) &&
528 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
529 			goto error;
530 	}
531 
532 	if (euid != (uid_t) -1) {
533 		new->euid = keuid;
534 		if (!uid_eq(old->uid, keuid) &&
535 		    !uid_eq(old->euid, keuid) &&
536 		    !uid_eq(old->suid, keuid) &&
537 		    !ns_capable_setid(old->user_ns, CAP_SETUID))
538 			goto error;
539 	}
540 
541 	if (!uid_eq(new->uid, old->uid)) {
542 		retval = set_user(new);
543 		if (retval < 0)
544 			goto error;
545 	}
546 	if (ruid != (uid_t) -1 ||
547 	    (euid != (uid_t) -1 && !uid_eq(keuid, old->uid)))
548 		new->suid = new->euid;
549 	new->fsuid = new->euid;
550 
551 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
552 	if (retval < 0)
553 		goto error;
554 
555 	retval = set_cred_ucounts(new);
556 	if (retval < 0)
557 		goto error;
558 
559 	return commit_creds(new);
560 
561 error:
562 	abort_creds(new);
563 	return retval;
564 }
565 
566 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
567 {
568 	return __sys_setreuid(ruid, euid);
569 }
570 
571 /*
572  * setuid() is implemented like SysV with SAVED_IDS
573  *
574  * Note that SAVED_ID's is deficient in that a setuid root program
575  * like sendmail, for example, cannot set its uid to be a normal
576  * user and then switch back, because if you're root, setuid() sets
577  * the saved uid too.  If you don't like this, blame the bright people
578  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
579  * will allow a root program to temporarily drop privileges and be able to
580  * regain them by swapping the real and effective uid.
581  */
582 long __sys_setuid(uid_t uid)
583 {
584 	struct user_namespace *ns = current_user_ns();
585 	const struct cred *old;
586 	struct cred *new;
587 	int retval;
588 	kuid_t kuid;
589 
590 	kuid = make_kuid(ns, uid);
591 	if (!uid_valid(kuid))
592 		return -EINVAL;
593 
594 	new = prepare_creds();
595 	if (!new)
596 		return -ENOMEM;
597 	old = current_cred();
598 
599 	retval = -EPERM;
600 	if (ns_capable_setid(old->user_ns, CAP_SETUID)) {
601 		new->suid = new->uid = kuid;
602 		if (!uid_eq(kuid, old->uid)) {
603 			retval = set_user(new);
604 			if (retval < 0)
605 				goto error;
606 		}
607 	} else if (!uid_eq(kuid, old->uid) && !uid_eq(kuid, new->suid)) {
608 		goto error;
609 	}
610 
611 	new->fsuid = new->euid = kuid;
612 
613 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
614 	if (retval < 0)
615 		goto error;
616 
617 	retval = set_cred_ucounts(new);
618 	if (retval < 0)
619 		goto error;
620 
621 	return commit_creds(new);
622 
623 error:
624 	abort_creds(new);
625 	return retval;
626 }
627 
628 SYSCALL_DEFINE1(setuid, uid_t, uid)
629 {
630 	return __sys_setuid(uid);
631 }
632 
633 
634 /*
635  * This function implements a generic ability to update ruid, euid,
636  * and suid.  This allows you to implement the 4.4 compatible seteuid().
637  */
638 long __sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
639 {
640 	struct user_namespace *ns = current_user_ns();
641 	const struct cred *old;
642 	struct cred *new;
643 	int retval;
644 	kuid_t kruid, keuid, ksuid;
645 
646 	kruid = make_kuid(ns, ruid);
647 	keuid = make_kuid(ns, euid);
648 	ksuid = make_kuid(ns, suid);
649 
650 	if ((ruid != (uid_t) -1) && !uid_valid(kruid))
651 		return -EINVAL;
652 
653 	if ((euid != (uid_t) -1) && !uid_valid(keuid))
654 		return -EINVAL;
655 
656 	if ((suid != (uid_t) -1) && !uid_valid(ksuid))
657 		return -EINVAL;
658 
659 	new = prepare_creds();
660 	if (!new)
661 		return -ENOMEM;
662 
663 	old = current_cred();
664 
665 	retval = -EPERM;
666 	if (!ns_capable_setid(old->user_ns, CAP_SETUID)) {
667 		if (ruid != (uid_t) -1        && !uid_eq(kruid, old->uid) &&
668 		    !uid_eq(kruid, old->euid) && !uid_eq(kruid, old->suid))
669 			goto error;
670 		if (euid != (uid_t) -1        && !uid_eq(keuid, old->uid) &&
671 		    !uid_eq(keuid, old->euid) && !uid_eq(keuid, old->suid))
672 			goto error;
673 		if (suid != (uid_t) -1        && !uid_eq(ksuid, old->uid) &&
674 		    !uid_eq(ksuid, old->euid) && !uid_eq(ksuid, old->suid))
675 			goto error;
676 	}
677 
678 	if (ruid != (uid_t) -1) {
679 		new->uid = kruid;
680 		if (!uid_eq(kruid, old->uid)) {
681 			retval = set_user(new);
682 			if (retval < 0)
683 				goto error;
684 		}
685 	}
686 	if (euid != (uid_t) -1)
687 		new->euid = keuid;
688 	if (suid != (uid_t) -1)
689 		new->suid = ksuid;
690 	new->fsuid = new->euid;
691 
692 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
693 	if (retval < 0)
694 		goto error;
695 
696 	retval = set_cred_ucounts(new);
697 	if (retval < 0)
698 		goto error;
699 
700 	return commit_creds(new);
701 
702 error:
703 	abort_creds(new);
704 	return retval;
705 }
706 
707 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
708 {
709 	return __sys_setresuid(ruid, euid, suid);
710 }
711 
712 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruidp, uid_t __user *, euidp, uid_t __user *, suidp)
713 {
714 	const struct cred *cred = current_cred();
715 	int retval;
716 	uid_t ruid, euid, suid;
717 
718 	ruid = from_kuid_munged(cred->user_ns, cred->uid);
719 	euid = from_kuid_munged(cred->user_ns, cred->euid);
720 	suid = from_kuid_munged(cred->user_ns, cred->suid);
721 
722 	retval = put_user(ruid, ruidp);
723 	if (!retval) {
724 		retval = put_user(euid, euidp);
725 		if (!retval)
726 			return put_user(suid, suidp);
727 	}
728 	return retval;
729 }
730 
731 /*
732  * Same as above, but for rgid, egid, sgid.
733  */
734 long __sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
735 {
736 	struct user_namespace *ns = current_user_ns();
737 	const struct cred *old;
738 	struct cred *new;
739 	int retval;
740 	kgid_t krgid, kegid, ksgid;
741 
742 	krgid = make_kgid(ns, rgid);
743 	kegid = make_kgid(ns, egid);
744 	ksgid = make_kgid(ns, sgid);
745 
746 	if ((rgid != (gid_t) -1) && !gid_valid(krgid))
747 		return -EINVAL;
748 	if ((egid != (gid_t) -1) && !gid_valid(kegid))
749 		return -EINVAL;
750 	if ((sgid != (gid_t) -1) && !gid_valid(ksgid))
751 		return -EINVAL;
752 
753 	new = prepare_creds();
754 	if (!new)
755 		return -ENOMEM;
756 	old = current_cred();
757 
758 	retval = -EPERM;
759 	if (!ns_capable_setid(old->user_ns, CAP_SETGID)) {
760 		if (rgid != (gid_t) -1        && !gid_eq(krgid, old->gid) &&
761 		    !gid_eq(krgid, old->egid) && !gid_eq(krgid, old->sgid))
762 			goto error;
763 		if (egid != (gid_t) -1        && !gid_eq(kegid, old->gid) &&
764 		    !gid_eq(kegid, old->egid) && !gid_eq(kegid, old->sgid))
765 			goto error;
766 		if (sgid != (gid_t) -1        && !gid_eq(ksgid, old->gid) &&
767 		    !gid_eq(ksgid, old->egid) && !gid_eq(ksgid, old->sgid))
768 			goto error;
769 	}
770 
771 	if (rgid != (gid_t) -1)
772 		new->gid = krgid;
773 	if (egid != (gid_t) -1)
774 		new->egid = kegid;
775 	if (sgid != (gid_t) -1)
776 		new->sgid = ksgid;
777 	new->fsgid = new->egid;
778 
779 	retval = security_task_fix_setgid(new, old, LSM_SETID_RES);
780 	if (retval < 0)
781 		goto error;
782 
783 	return commit_creds(new);
784 
785 error:
786 	abort_creds(new);
787 	return retval;
788 }
789 
790 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
791 {
792 	return __sys_setresgid(rgid, egid, sgid);
793 }
794 
795 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgidp, gid_t __user *, egidp, gid_t __user *, sgidp)
796 {
797 	const struct cred *cred = current_cred();
798 	int retval;
799 	gid_t rgid, egid, sgid;
800 
801 	rgid = from_kgid_munged(cred->user_ns, cred->gid);
802 	egid = from_kgid_munged(cred->user_ns, cred->egid);
803 	sgid = from_kgid_munged(cred->user_ns, cred->sgid);
804 
805 	retval = put_user(rgid, rgidp);
806 	if (!retval) {
807 		retval = put_user(egid, egidp);
808 		if (!retval)
809 			retval = put_user(sgid, sgidp);
810 	}
811 
812 	return retval;
813 }
814 
815 
816 /*
817  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
818  * is used for "access()" and for the NFS daemon (letting nfsd stay at
819  * whatever uid it wants to). It normally shadows "euid", except when
820  * explicitly set by setfsuid() or for access..
821  */
822 long __sys_setfsuid(uid_t uid)
823 {
824 	const struct cred *old;
825 	struct cred *new;
826 	uid_t old_fsuid;
827 	kuid_t kuid;
828 
829 	old = current_cred();
830 	old_fsuid = from_kuid_munged(old->user_ns, old->fsuid);
831 
832 	kuid = make_kuid(old->user_ns, uid);
833 	if (!uid_valid(kuid))
834 		return old_fsuid;
835 
836 	new = prepare_creds();
837 	if (!new)
838 		return old_fsuid;
839 
840 	if (uid_eq(kuid, old->uid)  || uid_eq(kuid, old->euid)  ||
841 	    uid_eq(kuid, old->suid) || uid_eq(kuid, old->fsuid) ||
842 	    ns_capable_setid(old->user_ns, CAP_SETUID)) {
843 		if (!uid_eq(kuid, old->fsuid)) {
844 			new->fsuid = kuid;
845 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
846 				goto change_okay;
847 		}
848 	}
849 
850 	abort_creds(new);
851 	return old_fsuid;
852 
853 change_okay:
854 	commit_creds(new);
855 	return old_fsuid;
856 }
857 
858 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
859 {
860 	return __sys_setfsuid(uid);
861 }
862 
863 /*
864  * Samma på svenska..
865  */
866 long __sys_setfsgid(gid_t gid)
867 {
868 	const struct cred *old;
869 	struct cred *new;
870 	gid_t old_fsgid;
871 	kgid_t kgid;
872 
873 	old = current_cred();
874 	old_fsgid = from_kgid_munged(old->user_ns, old->fsgid);
875 
876 	kgid = make_kgid(old->user_ns, gid);
877 	if (!gid_valid(kgid))
878 		return old_fsgid;
879 
880 	new = prepare_creds();
881 	if (!new)
882 		return old_fsgid;
883 
884 	if (gid_eq(kgid, old->gid)  || gid_eq(kgid, old->egid)  ||
885 	    gid_eq(kgid, old->sgid) || gid_eq(kgid, old->fsgid) ||
886 	    ns_capable_setid(old->user_ns, CAP_SETGID)) {
887 		if (!gid_eq(kgid, old->fsgid)) {
888 			new->fsgid = kgid;
889 			if (security_task_fix_setgid(new,old,LSM_SETID_FS) == 0)
890 				goto change_okay;
891 		}
892 	}
893 
894 	abort_creds(new);
895 	return old_fsgid;
896 
897 change_okay:
898 	commit_creds(new);
899 	return old_fsgid;
900 }
901 
902 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
903 {
904 	return __sys_setfsgid(gid);
905 }
906 #endif /* CONFIG_MULTIUSER */
907 
908 /**
909  * sys_getpid - return the thread group id of the current process
910  *
911  * Note, despite the name, this returns the tgid not the pid.  The tgid and
912  * the pid are identical unless CLONE_THREAD was specified on clone() in
913  * which case the tgid is the same in all threads of the same group.
914  *
915  * This is SMP safe as current->tgid does not change.
916  */
917 SYSCALL_DEFINE0(getpid)
918 {
919 	return task_tgid_vnr(current);
920 }
921 
922 /* Thread ID - the internal kernel "pid" */
923 SYSCALL_DEFINE0(gettid)
924 {
925 	return task_pid_vnr(current);
926 }
927 
928 /*
929  * Accessing ->real_parent is not SMP-safe, it could
930  * change from under us. However, we can use a stale
931  * value of ->real_parent under rcu_read_lock(), see
932  * release_task()->call_rcu(delayed_put_task_struct).
933  */
934 SYSCALL_DEFINE0(getppid)
935 {
936 	int pid;
937 
938 	rcu_read_lock();
939 	pid = task_tgid_vnr(rcu_dereference(current->real_parent));
940 	rcu_read_unlock();
941 
942 	return pid;
943 }
944 
945 SYSCALL_DEFINE0(getuid)
946 {
947 	/* Only we change this so SMP safe */
948 	return from_kuid_munged(current_user_ns(), current_uid());
949 }
950 
951 SYSCALL_DEFINE0(geteuid)
952 {
953 	/* Only we change this so SMP safe */
954 	return from_kuid_munged(current_user_ns(), current_euid());
955 }
956 
957 SYSCALL_DEFINE0(getgid)
958 {
959 	/* Only we change this so SMP safe */
960 	return from_kgid_munged(current_user_ns(), current_gid());
961 }
962 
963 SYSCALL_DEFINE0(getegid)
964 {
965 	/* Only we change this so SMP safe */
966 	return from_kgid_munged(current_user_ns(), current_egid());
967 }
968 
969 static void do_sys_times(struct tms *tms)
970 {
971 	u64 tgutime, tgstime, cutime, cstime;
972 
973 	thread_group_cputime_adjusted(current, &tgutime, &tgstime);
974 	cutime = current->signal->cutime;
975 	cstime = current->signal->cstime;
976 	tms->tms_utime = nsec_to_clock_t(tgutime);
977 	tms->tms_stime = nsec_to_clock_t(tgstime);
978 	tms->tms_cutime = nsec_to_clock_t(cutime);
979 	tms->tms_cstime = nsec_to_clock_t(cstime);
980 }
981 
982 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
983 {
984 	if (tbuf) {
985 		struct tms tmp;
986 
987 		do_sys_times(&tmp);
988 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
989 			return -EFAULT;
990 	}
991 	force_successful_syscall_return();
992 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
993 }
994 
995 #ifdef CONFIG_COMPAT
996 static compat_clock_t clock_t_to_compat_clock_t(clock_t x)
997 {
998 	return compat_jiffies_to_clock_t(clock_t_to_jiffies(x));
999 }
1000 
1001 COMPAT_SYSCALL_DEFINE1(times, struct compat_tms __user *, tbuf)
1002 {
1003 	if (tbuf) {
1004 		struct tms tms;
1005 		struct compat_tms tmp;
1006 
1007 		do_sys_times(&tms);
1008 		/* Convert our struct tms to the compat version. */
1009 		tmp.tms_utime = clock_t_to_compat_clock_t(tms.tms_utime);
1010 		tmp.tms_stime = clock_t_to_compat_clock_t(tms.tms_stime);
1011 		tmp.tms_cutime = clock_t_to_compat_clock_t(tms.tms_cutime);
1012 		tmp.tms_cstime = clock_t_to_compat_clock_t(tms.tms_cstime);
1013 		if (copy_to_user(tbuf, &tmp, sizeof(tmp)))
1014 			return -EFAULT;
1015 	}
1016 	force_successful_syscall_return();
1017 	return compat_jiffies_to_clock_t(jiffies);
1018 }
1019 #endif
1020 
1021 /*
1022  * This needs some heavy checking ...
1023  * I just haven't the stomach for it. I also don't fully
1024  * understand sessions/pgrp etc. Let somebody who does explain it.
1025  *
1026  * OK, I think I have the protection semantics right.... this is really
1027  * only important on a multi-user system anyway, to make sure one user
1028  * can't send a signal to a process owned by another.  -TYT, 12/12/91
1029  *
1030  * !PF_FORKNOEXEC check to conform completely to POSIX.
1031  */
1032 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
1033 {
1034 	struct task_struct *p;
1035 	struct task_struct *group_leader = current->group_leader;
1036 	struct pid *pgrp;
1037 	int err;
1038 
1039 	if (!pid)
1040 		pid = task_pid_vnr(group_leader);
1041 	if (!pgid)
1042 		pgid = pid;
1043 	if (pgid < 0)
1044 		return -EINVAL;
1045 	rcu_read_lock();
1046 
1047 	/* From this point forward we keep holding onto the tasklist lock
1048 	 * so that our parent does not change from under us. -DaveM
1049 	 */
1050 	write_lock_irq(&tasklist_lock);
1051 
1052 	err = -ESRCH;
1053 	p = find_task_by_vpid(pid);
1054 	if (!p)
1055 		goto out;
1056 
1057 	err = -EINVAL;
1058 	if (!thread_group_leader(p))
1059 		goto out;
1060 
1061 	if (same_thread_group(p->real_parent, group_leader)) {
1062 		err = -EPERM;
1063 		if (task_session(p) != task_session(group_leader))
1064 			goto out;
1065 		err = -EACCES;
1066 		if (!(p->flags & PF_FORKNOEXEC))
1067 			goto out;
1068 	} else {
1069 		err = -ESRCH;
1070 		if (p != group_leader)
1071 			goto out;
1072 	}
1073 
1074 	err = -EPERM;
1075 	if (p->signal->leader)
1076 		goto out;
1077 
1078 	pgrp = task_pid(p);
1079 	if (pgid != pid) {
1080 		struct task_struct *g;
1081 
1082 		pgrp = find_vpid(pgid);
1083 		g = pid_task(pgrp, PIDTYPE_PGID);
1084 		if (!g || task_session(g) != task_session(group_leader))
1085 			goto out;
1086 	}
1087 
1088 	err = security_task_setpgid(p, pgid);
1089 	if (err)
1090 		goto out;
1091 
1092 	if (task_pgrp(p) != pgrp)
1093 		change_pid(p, PIDTYPE_PGID, pgrp);
1094 
1095 	err = 0;
1096 out:
1097 	/* All paths lead to here, thus we are safe. -DaveM */
1098 	write_unlock_irq(&tasklist_lock);
1099 	rcu_read_unlock();
1100 	return err;
1101 }
1102 
1103 static int do_getpgid(pid_t pid)
1104 {
1105 	struct task_struct *p;
1106 	struct pid *grp;
1107 	int retval;
1108 
1109 	rcu_read_lock();
1110 	if (!pid)
1111 		grp = task_pgrp(current);
1112 	else {
1113 		retval = -ESRCH;
1114 		p = find_task_by_vpid(pid);
1115 		if (!p)
1116 			goto out;
1117 		grp = task_pgrp(p);
1118 		if (!grp)
1119 			goto out;
1120 
1121 		retval = security_task_getpgid(p);
1122 		if (retval)
1123 			goto out;
1124 	}
1125 	retval = pid_vnr(grp);
1126 out:
1127 	rcu_read_unlock();
1128 	return retval;
1129 }
1130 
1131 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1132 {
1133 	return do_getpgid(pid);
1134 }
1135 
1136 #ifdef __ARCH_WANT_SYS_GETPGRP
1137 
1138 SYSCALL_DEFINE0(getpgrp)
1139 {
1140 	return do_getpgid(0);
1141 }
1142 
1143 #endif
1144 
1145 SYSCALL_DEFINE1(getsid, pid_t, pid)
1146 {
1147 	struct task_struct *p;
1148 	struct pid *sid;
1149 	int retval;
1150 
1151 	rcu_read_lock();
1152 	if (!pid)
1153 		sid = task_session(current);
1154 	else {
1155 		retval = -ESRCH;
1156 		p = find_task_by_vpid(pid);
1157 		if (!p)
1158 			goto out;
1159 		sid = task_session(p);
1160 		if (!sid)
1161 			goto out;
1162 
1163 		retval = security_task_getsid(p);
1164 		if (retval)
1165 			goto out;
1166 	}
1167 	retval = pid_vnr(sid);
1168 out:
1169 	rcu_read_unlock();
1170 	return retval;
1171 }
1172 
1173 static void set_special_pids(struct pid *pid)
1174 {
1175 	struct task_struct *curr = current->group_leader;
1176 
1177 	if (task_session(curr) != pid)
1178 		change_pid(curr, PIDTYPE_SID, pid);
1179 
1180 	if (task_pgrp(curr) != pid)
1181 		change_pid(curr, PIDTYPE_PGID, pid);
1182 }
1183 
1184 int ksys_setsid(void)
1185 {
1186 	struct task_struct *group_leader = current->group_leader;
1187 	struct pid *sid = task_pid(group_leader);
1188 	pid_t session = pid_vnr(sid);
1189 	int err = -EPERM;
1190 
1191 	write_lock_irq(&tasklist_lock);
1192 	/* Fail if I am already a session leader */
1193 	if (group_leader->signal->leader)
1194 		goto out;
1195 
1196 	/* Fail if a process group id already exists that equals the
1197 	 * proposed session id.
1198 	 */
1199 	if (pid_task(sid, PIDTYPE_PGID))
1200 		goto out;
1201 
1202 	group_leader->signal->leader = 1;
1203 	set_special_pids(sid);
1204 
1205 	proc_clear_tty(group_leader);
1206 
1207 	err = session;
1208 out:
1209 	write_unlock_irq(&tasklist_lock);
1210 	if (err > 0) {
1211 		proc_sid_connector(group_leader);
1212 		sched_autogroup_create_attach(group_leader);
1213 	}
1214 	return err;
1215 }
1216 
1217 SYSCALL_DEFINE0(setsid)
1218 {
1219 	return ksys_setsid();
1220 }
1221 
1222 DECLARE_RWSEM(uts_sem);
1223 
1224 #ifdef COMPAT_UTS_MACHINE
1225 #define override_architecture(name) \
1226 	(personality(current->personality) == PER_LINUX32 && \
1227 	 copy_to_user(name->machine, COMPAT_UTS_MACHINE, \
1228 		      sizeof(COMPAT_UTS_MACHINE)))
1229 #else
1230 #define override_architecture(name)	0
1231 #endif
1232 
1233 /*
1234  * Work around broken programs that cannot handle "Linux 3.0".
1235  * Instead we map 3.x to 2.6.40+x, so e.g. 3.0 would be 2.6.40
1236  * And we map 4.x and later versions to 2.6.60+x, so 4.0/5.0/6.0/... would be
1237  * 2.6.60.
1238  */
1239 static int override_release(char __user *release, size_t len)
1240 {
1241 	int ret = 0;
1242 
1243 	if (current->personality & UNAME26) {
1244 		const char *rest = UTS_RELEASE;
1245 		char buf[65] = { 0 };
1246 		int ndots = 0;
1247 		unsigned v;
1248 		size_t copy;
1249 
1250 		while (*rest) {
1251 			if (*rest == '.' && ++ndots >= 3)
1252 				break;
1253 			if (!isdigit(*rest) && *rest != '.')
1254 				break;
1255 			rest++;
1256 		}
1257 		v = LINUX_VERSION_PATCHLEVEL + 60;
1258 		copy = clamp_t(size_t, len, 1, sizeof(buf));
1259 		copy = scnprintf(buf, copy, "2.6.%u%s", v, rest);
1260 		ret = copy_to_user(release, buf, copy + 1);
1261 	}
1262 	return ret;
1263 }
1264 
1265 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1266 {
1267 	struct new_utsname tmp;
1268 
1269 	down_read(&uts_sem);
1270 	memcpy(&tmp, utsname(), sizeof(tmp));
1271 	up_read(&uts_sem);
1272 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1273 		return -EFAULT;
1274 
1275 	if (override_release(name->release, sizeof(name->release)))
1276 		return -EFAULT;
1277 	if (override_architecture(name))
1278 		return -EFAULT;
1279 	return 0;
1280 }
1281 
1282 #ifdef __ARCH_WANT_SYS_OLD_UNAME
1283 /*
1284  * Old cruft
1285  */
1286 SYSCALL_DEFINE1(uname, struct old_utsname __user *, name)
1287 {
1288 	struct old_utsname tmp;
1289 
1290 	if (!name)
1291 		return -EFAULT;
1292 
1293 	down_read(&uts_sem);
1294 	memcpy(&tmp, utsname(), sizeof(tmp));
1295 	up_read(&uts_sem);
1296 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1297 		return -EFAULT;
1298 
1299 	if (override_release(name->release, sizeof(name->release)))
1300 		return -EFAULT;
1301 	if (override_architecture(name))
1302 		return -EFAULT;
1303 	return 0;
1304 }
1305 
1306 SYSCALL_DEFINE1(olduname, struct oldold_utsname __user *, name)
1307 {
1308 	struct oldold_utsname tmp;
1309 
1310 	if (!name)
1311 		return -EFAULT;
1312 
1313 	memset(&tmp, 0, sizeof(tmp));
1314 
1315 	down_read(&uts_sem);
1316 	memcpy(&tmp.sysname, &utsname()->sysname, __OLD_UTS_LEN);
1317 	memcpy(&tmp.nodename, &utsname()->nodename, __OLD_UTS_LEN);
1318 	memcpy(&tmp.release, &utsname()->release, __OLD_UTS_LEN);
1319 	memcpy(&tmp.version, &utsname()->version, __OLD_UTS_LEN);
1320 	memcpy(&tmp.machine, &utsname()->machine, __OLD_UTS_LEN);
1321 	up_read(&uts_sem);
1322 	if (copy_to_user(name, &tmp, sizeof(tmp)))
1323 		return -EFAULT;
1324 
1325 	if (override_architecture(name))
1326 		return -EFAULT;
1327 	if (override_release(name->release, sizeof(name->release)))
1328 		return -EFAULT;
1329 	return 0;
1330 }
1331 #endif
1332 
1333 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1334 {
1335 	int errno;
1336 	char tmp[__NEW_UTS_LEN];
1337 
1338 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1339 		return -EPERM;
1340 
1341 	if (len < 0 || len > __NEW_UTS_LEN)
1342 		return -EINVAL;
1343 	errno = -EFAULT;
1344 	if (!copy_from_user(tmp, name, len)) {
1345 		struct new_utsname *u;
1346 
1347 		down_write(&uts_sem);
1348 		u = utsname();
1349 		memcpy(u->nodename, tmp, len);
1350 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1351 		errno = 0;
1352 		uts_proc_notify(UTS_PROC_HOSTNAME);
1353 		up_write(&uts_sem);
1354 	}
1355 	return errno;
1356 }
1357 
1358 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1359 
1360 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1361 {
1362 	int i;
1363 	struct new_utsname *u;
1364 	char tmp[__NEW_UTS_LEN + 1];
1365 
1366 	if (len < 0)
1367 		return -EINVAL;
1368 	down_read(&uts_sem);
1369 	u = utsname();
1370 	i = 1 + strlen(u->nodename);
1371 	if (i > len)
1372 		i = len;
1373 	memcpy(tmp, u->nodename, i);
1374 	up_read(&uts_sem);
1375 	if (copy_to_user(name, tmp, i))
1376 		return -EFAULT;
1377 	return 0;
1378 }
1379 
1380 #endif
1381 
1382 /*
1383  * Only setdomainname; getdomainname can be implemented by calling
1384  * uname()
1385  */
1386 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1387 {
1388 	int errno;
1389 	char tmp[__NEW_UTS_LEN];
1390 
1391 	if (!ns_capable(current->nsproxy->uts_ns->user_ns, CAP_SYS_ADMIN))
1392 		return -EPERM;
1393 	if (len < 0 || len > __NEW_UTS_LEN)
1394 		return -EINVAL;
1395 
1396 	errno = -EFAULT;
1397 	if (!copy_from_user(tmp, name, len)) {
1398 		struct new_utsname *u;
1399 
1400 		down_write(&uts_sem);
1401 		u = utsname();
1402 		memcpy(u->domainname, tmp, len);
1403 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1404 		errno = 0;
1405 		uts_proc_notify(UTS_PROC_DOMAINNAME);
1406 		up_write(&uts_sem);
1407 	}
1408 	return errno;
1409 }
1410 
1411 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1412 {
1413 	struct rlimit value;
1414 	int ret;
1415 
1416 	ret = do_prlimit(current, resource, NULL, &value);
1417 	if (!ret)
1418 		ret = copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1419 
1420 	return ret;
1421 }
1422 
1423 #ifdef CONFIG_COMPAT
1424 
1425 COMPAT_SYSCALL_DEFINE2(setrlimit, unsigned int, resource,
1426 		       struct compat_rlimit __user *, rlim)
1427 {
1428 	struct rlimit r;
1429 	struct compat_rlimit r32;
1430 
1431 	if (copy_from_user(&r32, rlim, sizeof(struct compat_rlimit)))
1432 		return -EFAULT;
1433 
1434 	if (r32.rlim_cur == COMPAT_RLIM_INFINITY)
1435 		r.rlim_cur = RLIM_INFINITY;
1436 	else
1437 		r.rlim_cur = r32.rlim_cur;
1438 	if (r32.rlim_max == COMPAT_RLIM_INFINITY)
1439 		r.rlim_max = RLIM_INFINITY;
1440 	else
1441 		r.rlim_max = r32.rlim_max;
1442 	return do_prlimit(current, resource, &r, NULL);
1443 }
1444 
1445 COMPAT_SYSCALL_DEFINE2(getrlimit, unsigned int, resource,
1446 		       struct compat_rlimit __user *, rlim)
1447 {
1448 	struct rlimit r;
1449 	int ret;
1450 
1451 	ret = do_prlimit(current, resource, NULL, &r);
1452 	if (!ret) {
1453 		struct compat_rlimit r32;
1454 		if (r.rlim_cur > COMPAT_RLIM_INFINITY)
1455 			r32.rlim_cur = COMPAT_RLIM_INFINITY;
1456 		else
1457 			r32.rlim_cur = r.rlim_cur;
1458 		if (r.rlim_max > COMPAT_RLIM_INFINITY)
1459 			r32.rlim_max = COMPAT_RLIM_INFINITY;
1460 		else
1461 			r32.rlim_max = r.rlim_max;
1462 
1463 		if (copy_to_user(rlim, &r32, sizeof(struct compat_rlimit)))
1464 			return -EFAULT;
1465 	}
1466 	return ret;
1467 }
1468 
1469 #endif
1470 
1471 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1472 
1473 /*
1474  *	Back compatibility for getrlimit. Needed for some apps.
1475  */
1476 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1477 		struct rlimit __user *, rlim)
1478 {
1479 	struct rlimit x;
1480 	if (resource >= RLIM_NLIMITS)
1481 		return -EINVAL;
1482 
1483 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1484 	task_lock(current->group_leader);
1485 	x = current->signal->rlim[resource];
1486 	task_unlock(current->group_leader);
1487 	if (x.rlim_cur > 0x7FFFFFFF)
1488 		x.rlim_cur = 0x7FFFFFFF;
1489 	if (x.rlim_max > 0x7FFFFFFF)
1490 		x.rlim_max = 0x7FFFFFFF;
1491 	return copy_to_user(rlim, &x, sizeof(x)) ? -EFAULT : 0;
1492 }
1493 
1494 #ifdef CONFIG_COMPAT
1495 COMPAT_SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1496 		       struct compat_rlimit __user *, rlim)
1497 {
1498 	struct rlimit r;
1499 
1500 	if (resource >= RLIM_NLIMITS)
1501 		return -EINVAL;
1502 
1503 	resource = array_index_nospec(resource, RLIM_NLIMITS);
1504 	task_lock(current->group_leader);
1505 	r = current->signal->rlim[resource];
1506 	task_unlock(current->group_leader);
1507 	if (r.rlim_cur > 0x7FFFFFFF)
1508 		r.rlim_cur = 0x7FFFFFFF;
1509 	if (r.rlim_max > 0x7FFFFFFF)
1510 		r.rlim_max = 0x7FFFFFFF;
1511 
1512 	if (put_user(r.rlim_cur, &rlim->rlim_cur) ||
1513 	    put_user(r.rlim_max, &rlim->rlim_max))
1514 		return -EFAULT;
1515 	return 0;
1516 }
1517 #endif
1518 
1519 #endif
1520 
1521 static inline bool rlim64_is_infinity(__u64 rlim64)
1522 {
1523 #if BITS_PER_LONG < 64
1524 	return rlim64 >= ULONG_MAX;
1525 #else
1526 	return rlim64 == RLIM64_INFINITY;
1527 #endif
1528 }
1529 
1530 static void rlim_to_rlim64(const struct rlimit *rlim, struct rlimit64 *rlim64)
1531 {
1532 	if (rlim->rlim_cur == RLIM_INFINITY)
1533 		rlim64->rlim_cur = RLIM64_INFINITY;
1534 	else
1535 		rlim64->rlim_cur = rlim->rlim_cur;
1536 	if (rlim->rlim_max == RLIM_INFINITY)
1537 		rlim64->rlim_max = RLIM64_INFINITY;
1538 	else
1539 		rlim64->rlim_max = rlim->rlim_max;
1540 }
1541 
1542 static void rlim64_to_rlim(const struct rlimit64 *rlim64, struct rlimit *rlim)
1543 {
1544 	if (rlim64_is_infinity(rlim64->rlim_cur))
1545 		rlim->rlim_cur = RLIM_INFINITY;
1546 	else
1547 		rlim->rlim_cur = (unsigned long)rlim64->rlim_cur;
1548 	if (rlim64_is_infinity(rlim64->rlim_max))
1549 		rlim->rlim_max = RLIM_INFINITY;
1550 	else
1551 		rlim->rlim_max = (unsigned long)rlim64->rlim_max;
1552 }
1553 
1554 /* make sure you are allowed to change @tsk limits before calling this */
1555 int do_prlimit(struct task_struct *tsk, unsigned int resource,
1556 		struct rlimit *new_rlim, struct rlimit *old_rlim)
1557 {
1558 	struct rlimit *rlim;
1559 	int retval = 0;
1560 
1561 	if (resource >= RLIM_NLIMITS)
1562 		return -EINVAL;
1563 	if (new_rlim) {
1564 		if (new_rlim->rlim_cur > new_rlim->rlim_max)
1565 			return -EINVAL;
1566 		if (resource == RLIMIT_NOFILE &&
1567 				new_rlim->rlim_max > sysctl_nr_open)
1568 			return -EPERM;
1569 	}
1570 
1571 	/* protect tsk->signal and tsk->sighand from disappearing */
1572 	read_lock(&tasklist_lock);
1573 	if (!tsk->sighand) {
1574 		retval = -ESRCH;
1575 		goto out;
1576 	}
1577 
1578 	rlim = tsk->signal->rlim + resource;
1579 	task_lock(tsk->group_leader);
1580 	if (new_rlim) {
1581 		/* Keep the capable check against init_user_ns until
1582 		   cgroups can contain all limits */
1583 		if (new_rlim->rlim_max > rlim->rlim_max &&
1584 				!capable(CAP_SYS_RESOURCE))
1585 			retval = -EPERM;
1586 		if (!retval)
1587 			retval = security_task_setrlimit(tsk, resource, new_rlim);
1588 	}
1589 	if (!retval) {
1590 		if (old_rlim)
1591 			*old_rlim = *rlim;
1592 		if (new_rlim)
1593 			*rlim = *new_rlim;
1594 	}
1595 	task_unlock(tsk->group_leader);
1596 
1597 	/*
1598 	 * RLIMIT_CPU handling. Arm the posix CPU timer if the limit is not
1599 	 * infite. In case of RLIM_INFINITY the posix CPU timer code
1600 	 * ignores the rlimit.
1601 	 */
1602 	 if (!retval && new_rlim && resource == RLIMIT_CPU &&
1603 	     new_rlim->rlim_cur != RLIM_INFINITY &&
1604 	     IS_ENABLED(CONFIG_POSIX_TIMERS))
1605 		update_rlimit_cpu(tsk, new_rlim->rlim_cur);
1606 out:
1607 	read_unlock(&tasklist_lock);
1608 	return retval;
1609 }
1610 
1611 /* rcu lock must be held */
1612 static int check_prlimit_permission(struct task_struct *task,
1613 				    unsigned int flags)
1614 {
1615 	const struct cred *cred = current_cred(), *tcred;
1616 	bool id_match;
1617 
1618 	if (current == task)
1619 		return 0;
1620 
1621 	tcred = __task_cred(task);
1622 	id_match = (uid_eq(cred->uid, tcred->euid) &&
1623 		    uid_eq(cred->uid, tcred->suid) &&
1624 		    uid_eq(cred->uid, tcred->uid)  &&
1625 		    gid_eq(cred->gid, tcred->egid) &&
1626 		    gid_eq(cred->gid, tcred->sgid) &&
1627 		    gid_eq(cred->gid, tcred->gid));
1628 	if (!id_match && !ns_capable(tcred->user_ns, CAP_SYS_RESOURCE))
1629 		return -EPERM;
1630 
1631 	return security_task_prlimit(cred, tcred, flags);
1632 }
1633 
1634 SYSCALL_DEFINE4(prlimit64, pid_t, pid, unsigned int, resource,
1635 		const struct rlimit64 __user *, new_rlim,
1636 		struct rlimit64 __user *, old_rlim)
1637 {
1638 	struct rlimit64 old64, new64;
1639 	struct rlimit old, new;
1640 	struct task_struct *tsk;
1641 	unsigned int checkflags = 0;
1642 	int ret;
1643 
1644 	if (old_rlim)
1645 		checkflags |= LSM_PRLIMIT_READ;
1646 
1647 	if (new_rlim) {
1648 		if (copy_from_user(&new64, new_rlim, sizeof(new64)))
1649 			return -EFAULT;
1650 		rlim64_to_rlim(&new64, &new);
1651 		checkflags |= LSM_PRLIMIT_WRITE;
1652 	}
1653 
1654 	rcu_read_lock();
1655 	tsk = pid ? find_task_by_vpid(pid) : current;
1656 	if (!tsk) {
1657 		rcu_read_unlock();
1658 		return -ESRCH;
1659 	}
1660 	ret = check_prlimit_permission(tsk, checkflags);
1661 	if (ret) {
1662 		rcu_read_unlock();
1663 		return ret;
1664 	}
1665 	get_task_struct(tsk);
1666 	rcu_read_unlock();
1667 
1668 	ret = do_prlimit(tsk, resource, new_rlim ? &new : NULL,
1669 			old_rlim ? &old : NULL);
1670 
1671 	if (!ret && old_rlim) {
1672 		rlim_to_rlim64(&old, &old64);
1673 		if (copy_to_user(old_rlim, &old64, sizeof(old64)))
1674 			ret = -EFAULT;
1675 	}
1676 
1677 	put_task_struct(tsk);
1678 	return ret;
1679 }
1680 
1681 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1682 {
1683 	struct rlimit new_rlim;
1684 
1685 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1686 		return -EFAULT;
1687 	return do_prlimit(current, resource, &new_rlim, NULL);
1688 }
1689 
1690 /*
1691  * It would make sense to put struct rusage in the task_struct,
1692  * except that would make the task_struct be *really big*.  After
1693  * task_struct gets moved into malloc'ed memory, it would
1694  * make sense to do this.  It will make moving the rest of the information
1695  * a lot simpler!  (Which we're not doing right now because we're not
1696  * measuring them yet).
1697  *
1698  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1699  * races with threads incrementing their own counters.  But since word
1700  * reads are atomic, we either get new values or old values and we don't
1701  * care which for the sums.  We always take the siglock to protect reading
1702  * the c* fields from p->signal from races with exit.c updating those
1703  * fields when reaping, so a sample either gets all the additions of a
1704  * given child after it's reaped, or none so this sample is before reaping.
1705  *
1706  * Locking:
1707  * We need to take the siglock for CHILDEREN, SELF and BOTH
1708  * for  the cases current multithreaded, non-current single threaded
1709  * non-current multithreaded.  Thread traversal is now safe with
1710  * the siglock held.
1711  * Strictly speaking, we donot need to take the siglock if we are current and
1712  * single threaded,  as no one else can take our signal_struct away, no one
1713  * else can  reap the  children to update signal->c* counters, and no one else
1714  * can race with the signal-> fields. If we do not take any lock, the
1715  * signal-> fields could be read out of order while another thread was just
1716  * exiting. So we should  place a read memory barrier when we avoid the lock.
1717  * On the writer side,  write memory barrier is implied in  __exit_signal
1718  * as __exit_signal releases  the siglock spinlock after updating the signal->
1719  * fields. But we don't do this yet to keep things simple.
1720  *
1721  */
1722 
1723 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1724 {
1725 	r->ru_nvcsw += t->nvcsw;
1726 	r->ru_nivcsw += t->nivcsw;
1727 	r->ru_minflt += t->min_flt;
1728 	r->ru_majflt += t->maj_flt;
1729 	r->ru_inblock += task_io_get_inblock(t);
1730 	r->ru_oublock += task_io_get_oublock(t);
1731 }
1732 
1733 void getrusage(struct task_struct *p, int who, struct rusage *r)
1734 {
1735 	struct task_struct *t;
1736 	unsigned long flags;
1737 	u64 tgutime, tgstime, utime, stime;
1738 	unsigned long maxrss = 0;
1739 
1740 	memset((char *)r, 0, sizeof (*r));
1741 	utime = stime = 0;
1742 
1743 	if (who == RUSAGE_THREAD) {
1744 		task_cputime_adjusted(current, &utime, &stime);
1745 		accumulate_thread_rusage(p, r);
1746 		maxrss = p->signal->maxrss;
1747 		goto out;
1748 	}
1749 
1750 	if (!lock_task_sighand(p, &flags))
1751 		return;
1752 
1753 	switch (who) {
1754 	case RUSAGE_BOTH:
1755 	case RUSAGE_CHILDREN:
1756 		utime = p->signal->cutime;
1757 		stime = p->signal->cstime;
1758 		r->ru_nvcsw = p->signal->cnvcsw;
1759 		r->ru_nivcsw = p->signal->cnivcsw;
1760 		r->ru_minflt = p->signal->cmin_flt;
1761 		r->ru_majflt = p->signal->cmaj_flt;
1762 		r->ru_inblock = p->signal->cinblock;
1763 		r->ru_oublock = p->signal->coublock;
1764 		maxrss = p->signal->cmaxrss;
1765 
1766 		if (who == RUSAGE_CHILDREN)
1767 			break;
1768 		fallthrough;
1769 
1770 	case RUSAGE_SELF:
1771 		thread_group_cputime_adjusted(p, &tgutime, &tgstime);
1772 		utime += tgutime;
1773 		stime += tgstime;
1774 		r->ru_nvcsw += p->signal->nvcsw;
1775 		r->ru_nivcsw += p->signal->nivcsw;
1776 		r->ru_minflt += p->signal->min_flt;
1777 		r->ru_majflt += p->signal->maj_flt;
1778 		r->ru_inblock += p->signal->inblock;
1779 		r->ru_oublock += p->signal->oublock;
1780 		if (maxrss < p->signal->maxrss)
1781 			maxrss = p->signal->maxrss;
1782 		t = p;
1783 		do {
1784 			accumulate_thread_rusage(t, r);
1785 		} while_each_thread(p, t);
1786 		break;
1787 
1788 	default:
1789 		BUG();
1790 	}
1791 	unlock_task_sighand(p, &flags);
1792 
1793 out:
1794 	r->ru_utime = ns_to_kernel_old_timeval(utime);
1795 	r->ru_stime = ns_to_kernel_old_timeval(stime);
1796 
1797 	if (who != RUSAGE_CHILDREN) {
1798 		struct mm_struct *mm = get_task_mm(p);
1799 
1800 		if (mm) {
1801 			setmax_mm_hiwater_rss(&maxrss, mm);
1802 			mmput(mm);
1803 		}
1804 	}
1805 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1806 }
1807 
1808 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1809 {
1810 	struct rusage r;
1811 
1812 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1813 	    who != RUSAGE_THREAD)
1814 		return -EINVAL;
1815 
1816 	getrusage(current, who, &r);
1817 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1818 }
1819 
1820 #ifdef CONFIG_COMPAT
1821 COMPAT_SYSCALL_DEFINE2(getrusage, int, who, struct compat_rusage __user *, ru)
1822 {
1823 	struct rusage r;
1824 
1825 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1826 	    who != RUSAGE_THREAD)
1827 		return -EINVAL;
1828 
1829 	getrusage(current, who, &r);
1830 	return put_compat_rusage(&r, ru);
1831 }
1832 #endif
1833 
1834 SYSCALL_DEFINE1(umask, int, mask)
1835 {
1836 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1837 	return mask;
1838 }
1839 
1840 static int prctl_set_mm_exe_file(struct mm_struct *mm, unsigned int fd)
1841 {
1842 	struct fd exe;
1843 	struct file *old_exe, *exe_file;
1844 	struct inode *inode;
1845 	int err;
1846 
1847 	exe = fdget(fd);
1848 	if (!exe.file)
1849 		return -EBADF;
1850 
1851 	inode = file_inode(exe.file);
1852 
1853 	/*
1854 	 * Because the original mm->exe_file points to executable file, make
1855 	 * sure that this one is executable as well, to avoid breaking an
1856 	 * overall picture.
1857 	 */
1858 	err = -EACCES;
1859 	if (!S_ISREG(inode->i_mode) || path_noexec(&exe.file->f_path))
1860 		goto exit;
1861 
1862 	err = file_permission(exe.file, MAY_EXEC);
1863 	if (err)
1864 		goto exit;
1865 
1866 	/*
1867 	 * Forbid mm->exe_file change if old file still mapped.
1868 	 */
1869 	exe_file = get_mm_exe_file(mm);
1870 	err = -EBUSY;
1871 	if (exe_file) {
1872 		struct vm_area_struct *vma;
1873 
1874 		mmap_read_lock(mm);
1875 		for (vma = mm->mmap; vma; vma = vma->vm_next) {
1876 			if (!vma->vm_file)
1877 				continue;
1878 			if (path_equal(&vma->vm_file->f_path,
1879 				       &exe_file->f_path))
1880 				goto exit_err;
1881 		}
1882 
1883 		mmap_read_unlock(mm);
1884 		fput(exe_file);
1885 	}
1886 
1887 	err = 0;
1888 	/* set the new file, lockless */
1889 	get_file(exe.file);
1890 	old_exe = xchg(&mm->exe_file, exe.file);
1891 	if (old_exe)
1892 		fput(old_exe);
1893 exit:
1894 	fdput(exe);
1895 	return err;
1896 exit_err:
1897 	mmap_read_unlock(mm);
1898 	fput(exe_file);
1899 	goto exit;
1900 }
1901 
1902 /*
1903  * Check arithmetic relations of passed addresses.
1904  *
1905  * WARNING: we don't require any capability here so be very careful
1906  * in what is allowed for modification from userspace.
1907  */
1908 static int validate_prctl_map_addr(struct prctl_mm_map *prctl_map)
1909 {
1910 	unsigned long mmap_max_addr = TASK_SIZE;
1911 	int error = -EINVAL, i;
1912 
1913 	static const unsigned char offsets[] = {
1914 		offsetof(struct prctl_mm_map, start_code),
1915 		offsetof(struct prctl_mm_map, end_code),
1916 		offsetof(struct prctl_mm_map, start_data),
1917 		offsetof(struct prctl_mm_map, end_data),
1918 		offsetof(struct prctl_mm_map, start_brk),
1919 		offsetof(struct prctl_mm_map, brk),
1920 		offsetof(struct prctl_mm_map, start_stack),
1921 		offsetof(struct prctl_mm_map, arg_start),
1922 		offsetof(struct prctl_mm_map, arg_end),
1923 		offsetof(struct prctl_mm_map, env_start),
1924 		offsetof(struct prctl_mm_map, env_end),
1925 	};
1926 
1927 	/*
1928 	 * Make sure the members are not somewhere outside
1929 	 * of allowed address space.
1930 	 */
1931 	for (i = 0; i < ARRAY_SIZE(offsets); i++) {
1932 		u64 val = *(u64 *)((char *)prctl_map + offsets[i]);
1933 
1934 		if ((unsigned long)val >= mmap_max_addr ||
1935 		    (unsigned long)val < mmap_min_addr)
1936 			goto out;
1937 	}
1938 
1939 	/*
1940 	 * Make sure the pairs are ordered.
1941 	 */
1942 #define __prctl_check_order(__m1, __op, __m2)				\
1943 	((unsigned long)prctl_map->__m1 __op				\
1944 	 (unsigned long)prctl_map->__m2) ? 0 : -EINVAL
1945 	error  = __prctl_check_order(start_code, <, end_code);
1946 	error |= __prctl_check_order(start_data,<=, end_data);
1947 	error |= __prctl_check_order(start_brk, <=, brk);
1948 	error |= __prctl_check_order(arg_start, <=, arg_end);
1949 	error |= __prctl_check_order(env_start, <=, env_end);
1950 	if (error)
1951 		goto out;
1952 #undef __prctl_check_order
1953 
1954 	error = -EINVAL;
1955 
1956 	/*
1957 	 * @brk should be after @end_data in traditional maps.
1958 	 */
1959 	if (prctl_map->start_brk <= prctl_map->end_data ||
1960 	    prctl_map->brk <= prctl_map->end_data)
1961 		goto out;
1962 
1963 	/*
1964 	 * Neither we should allow to override limits if they set.
1965 	 */
1966 	if (check_data_rlimit(rlimit(RLIMIT_DATA), prctl_map->brk,
1967 			      prctl_map->start_brk, prctl_map->end_data,
1968 			      prctl_map->start_data))
1969 			goto out;
1970 
1971 	error = 0;
1972 out:
1973 	return error;
1974 }
1975 
1976 #ifdef CONFIG_CHECKPOINT_RESTORE
1977 static int prctl_set_mm_map(int opt, const void __user *addr, unsigned long data_size)
1978 {
1979 	struct prctl_mm_map prctl_map = { .exe_fd = (u32)-1, };
1980 	unsigned long user_auxv[AT_VECTOR_SIZE];
1981 	struct mm_struct *mm = current->mm;
1982 	int error;
1983 
1984 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
1985 	BUILD_BUG_ON(sizeof(struct prctl_mm_map) > 256);
1986 
1987 	if (opt == PR_SET_MM_MAP_SIZE)
1988 		return put_user((unsigned int)sizeof(prctl_map),
1989 				(unsigned int __user *)addr);
1990 
1991 	if (data_size != sizeof(prctl_map))
1992 		return -EINVAL;
1993 
1994 	if (copy_from_user(&prctl_map, addr, sizeof(prctl_map)))
1995 		return -EFAULT;
1996 
1997 	error = validate_prctl_map_addr(&prctl_map);
1998 	if (error)
1999 		return error;
2000 
2001 	if (prctl_map.auxv_size) {
2002 		/*
2003 		 * Someone is trying to cheat the auxv vector.
2004 		 */
2005 		if (!prctl_map.auxv ||
2006 				prctl_map.auxv_size > sizeof(mm->saved_auxv))
2007 			return -EINVAL;
2008 
2009 		memset(user_auxv, 0, sizeof(user_auxv));
2010 		if (copy_from_user(user_auxv,
2011 				   (const void __user *)prctl_map.auxv,
2012 				   prctl_map.auxv_size))
2013 			return -EFAULT;
2014 
2015 		/* Last entry must be AT_NULL as specification requires */
2016 		user_auxv[AT_VECTOR_SIZE - 2] = AT_NULL;
2017 		user_auxv[AT_VECTOR_SIZE - 1] = AT_NULL;
2018 	}
2019 
2020 	if (prctl_map.exe_fd != (u32)-1) {
2021 		/*
2022 		 * Check if the current user is checkpoint/restore capable.
2023 		 * At the time of this writing, it checks for CAP_SYS_ADMIN
2024 		 * or CAP_CHECKPOINT_RESTORE.
2025 		 * Note that a user with access to ptrace can masquerade an
2026 		 * arbitrary program as any executable, even setuid ones.
2027 		 * This may have implications in the tomoyo subsystem.
2028 		 */
2029 		if (!checkpoint_restore_ns_capable(current_user_ns()))
2030 			return -EPERM;
2031 
2032 		error = prctl_set_mm_exe_file(mm, prctl_map.exe_fd);
2033 		if (error)
2034 			return error;
2035 	}
2036 
2037 	/*
2038 	 * arg_lock protects concurent updates but we still need mmap_lock for
2039 	 * read to exclude races with sys_brk.
2040 	 */
2041 	mmap_read_lock(mm);
2042 
2043 	/*
2044 	 * We don't validate if these members are pointing to
2045 	 * real present VMAs because application may have correspond
2046 	 * VMAs already unmapped and kernel uses these members for statistics
2047 	 * output in procfs mostly, except
2048 	 *
2049 	 *  - @start_brk/@brk which are used in do_brk_flags but kernel lookups
2050 	 *    for VMAs when updating these memvers so anything wrong written
2051 	 *    here cause kernel to swear at userspace program but won't lead
2052 	 *    to any problem in kernel itself
2053 	 */
2054 
2055 	spin_lock(&mm->arg_lock);
2056 	mm->start_code	= prctl_map.start_code;
2057 	mm->end_code	= prctl_map.end_code;
2058 	mm->start_data	= prctl_map.start_data;
2059 	mm->end_data	= prctl_map.end_data;
2060 	mm->start_brk	= prctl_map.start_brk;
2061 	mm->brk		= prctl_map.brk;
2062 	mm->start_stack	= prctl_map.start_stack;
2063 	mm->arg_start	= prctl_map.arg_start;
2064 	mm->arg_end	= prctl_map.arg_end;
2065 	mm->env_start	= prctl_map.env_start;
2066 	mm->env_end	= prctl_map.env_end;
2067 	spin_unlock(&mm->arg_lock);
2068 
2069 	/*
2070 	 * Note this update of @saved_auxv is lockless thus
2071 	 * if someone reads this member in procfs while we're
2072 	 * updating -- it may get partly updated results. It's
2073 	 * known and acceptable trade off: we leave it as is to
2074 	 * not introduce additional locks here making the kernel
2075 	 * more complex.
2076 	 */
2077 	if (prctl_map.auxv_size)
2078 		memcpy(mm->saved_auxv, user_auxv, sizeof(user_auxv));
2079 
2080 	mmap_read_unlock(mm);
2081 	return 0;
2082 }
2083 #endif /* CONFIG_CHECKPOINT_RESTORE */
2084 
2085 static int prctl_set_auxv(struct mm_struct *mm, unsigned long addr,
2086 			  unsigned long len)
2087 {
2088 	/*
2089 	 * This doesn't move the auxiliary vector itself since it's pinned to
2090 	 * mm_struct, but it permits filling the vector with new values.  It's
2091 	 * up to the caller to provide sane values here, otherwise userspace
2092 	 * tools which use this vector might be unhappy.
2093 	 */
2094 	unsigned long user_auxv[AT_VECTOR_SIZE] = {};
2095 
2096 	if (len > sizeof(user_auxv))
2097 		return -EINVAL;
2098 
2099 	if (copy_from_user(user_auxv, (const void __user *)addr, len))
2100 		return -EFAULT;
2101 
2102 	/* Make sure the last entry is always AT_NULL */
2103 	user_auxv[AT_VECTOR_SIZE - 2] = 0;
2104 	user_auxv[AT_VECTOR_SIZE - 1] = 0;
2105 
2106 	BUILD_BUG_ON(sizeof(user_auxv) != sizeof(mm->saved_auxv));
2107 
2108 	task_lock(current);
2109 	memcpy(mm->saved_auxv, user_auxv, len);
2110 	task_unlock(current);
2111 
2112 	return 0;
2113 }
2114 
2115 static int prctl_set_mm(int opt, unsigned long addr,
2116 			unsigned long arg4, unsigned long arg5)
2117 {
2118 	struct mm_struct *mm = current->mm;
2119 	struct prctl_mm_map prctl_map = {
2120 		.auxv = NULL,
2121 		.auxv_size = 0,
2122 		.exe_fd = -1,
2123 	};
2124 	struct vm_area_struct *vma;
2125 	int error;
2126 
2127 	if (arg5 || (arg4 && (opt != PR_SET_MM_AUXV &&
2128 			      opt != PR_SET_MM_MAP &&
2129 			      opt != PR_SET_MM_MAP_SIZE)))
2130 		return -EINVAL;
2131 
2132 #ifdef CONFIG_CHECKPOINT_RESTORE
2133 	if (opt == PR_SET_MM_MAP || opt == PR_SET_MM_MAP_SIZE)
2134 		return prctl_set_mm_map(opt, (const void __user *)addr, arg4);
2135 #endif
2136 
2137 	if (!capable(CAP_SYS_RESOURCE))
2138 		return -EPERM;
2139 
2140 	if (opt == PR_SET_MM_EXE_FILE)
2141 		return prctl_set_mm_exe_file(mm, (unsigned int)addr);
2142 
2143 	if (opt == PR_SET_MM_AUXV)
2144 		return prctl_set_auxv(mm, addr, arg4);
2145 
2146 	if (addr >= TASK_SIZE || addr < mmap_min_addr)
2147 		return -EINVAL;
2148 
2149 	error = -EINVAL;
2150 
2151 	/*
2152 	 * arg_lock protects concurent updates of arg boundaries, we need
2153 	 * mmap_lock for a) concurrent sys_brk, b) finding VMA for addr
2154 	 * validation.
2155 	 */
2156 	mmap_read_lock(mm);
2157 	vma = find_vma(mm, addr);
2158 
2159 	spin_lock(&mm->arg_lock);
2160 	prctl_map.start_code	= mm->start_code;
2161 	prctl_map.end_code	= mm->end_code;
2162 	prctl_map.start_data	= mm->start_data;
2163 	prctl_map.end_data	= mm->end_data;
2164 	prctl_map.start_brk	= mm->start_brk;
2165 	prctl_map.brk		= mm->brk;
2166 	prctl_map.start_stack	= mm->start_stack;
2167 	prctl_map.arg_start	= mm->arg_start;
2168 	prctl_map.arg_end	= mm->arg_end;
2169 	prctl_map.env_start	= mm->env_start;
2170 	prctl_map.env_end	= mm->env_end;
2171 
2172 	switch (opt) {
2173 	case PR_SET_MM_START_CODE:
2174 		prctl_map.start_code = addr;
2175 		break;
2176 	case PR_SET_MM_END_CODE:
2177 		prctl_map.end_code = addr;
2178 		break;
2179 	case PR_SET_MM_START_DATA:
2180 		prctl_map.start_data = addr;
2181 		break;
2182 	case PR_SET_MM_END_DATA:
2183 		prctl_map.end_data = addr;
2184 		break;
2185 	case PR_SET_MM_START_STACK:
2186 		prctl_map.start_stack = addr;
2187 		break;
2188 	case PR_SET_MM_START_BRK:
2189 		prctl_map.start_brk = addr;
2190 		break;
2191 	case PR_SET_MM_BRK:
2192 		prctl_map.brk = addr;
2193 		break;
2194 	case PR_SET_MM_ARG_START:
2195 		prctl_map.arg_start = addr;
2196 		break;
2197 	case PR_SET_MM_ARG_END:
2198 		prctl_map.arg_end = addr;
2199 		break;
2200 	case PR_SET_MM_ENV_START:
2201 		prctl_map.env_start = addr;
2202 		break;
2203 	case PR_SET_MM_ENV_END:
2204 		prctl_map.env_end = addr;
2205 		break;
2206 	default:
2207 		goto out;
2208 	}
2209 
2210 	error = validate_prctl_map_addr(&prctl_map);
2211 	if (error)
2212 		goto out;
2213 
2214 	switch (opt) {
2215 	/*
2216 	 * If command line arguments and environment
2217 	 * are placed somewhere else on stack, we can
2218 	 * set them up here, ARG_START/END to setup
2219 	 * command line argumets and ENV_START/END
2220 	 * for environment.
2221 	 */
2222 	case PR_SET_MM_START_STACK:
2223 	case PR_SET_MM_ARG_START:
2224 	case PR_SET_MM_ARG_END:
2225 	case PR_SET_MM_ENV_START:
2226 	case PR_SET_MM_ENV_END:
2227 		if (!vma) {
2228 			error = -EFAULT;
2229 			goto out;
2230 		}
2231 	}
2232 
2233 	mm->start_code	= prctl_map.start_code;
2234 	mm->end_code	= prctl_map.end_code;
2235 	mm->start_data	= prctl_map.start_data;
2236 	mm->end_data	= prctl_map.end_data;
2237 	mm->start_brk	= prctl_map.start_brk;
2238 	mm->brk		= prctl_map.brk;
2239 	mm->start_stack	= prctl_map.start_stack;
2240 	mm->arg_start	= prctl_map.arg_start;
2241 	mm->arg_end	= prctl_map.arg_end;
2242 	mm->env_start	= prctl_map.env_start;
2243 	mm->env_end	= prctl_map.env_end;
2244 
2245 	error = 0;
2246 out:
2247 	spin_unlock(&mm->arg_lock);
2248 	mmap_read_unlock(mm);
2249 	return error;
2250 }
2251 
2252 #ifdef CONFIG_CHECKPOINT_RESTORE
2253 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2254 {
2255 	return put_user(me->clear_child_tid, tid_addr);
2256 }
2257 #else
2258 static int prctl_get_tid_address(struct task_struct *me, int __user * __user *tid_addr)
2259 {
2260 	return -EINVAL;
2261 }
2262 #endif
2263 
2264 static int propagate_has_child_subreaper(struct task_struct *p, void *data)
2265 {
2266 	/*
2267 	 * If task has has_child_subreaper - all its decendants
2268 	 * already have these flag too and new decendants will
2269 	 * inherit it on fork, skip them.
2270 	 *
2271 	 * If we've found child_reaper - skip descendants in
2272 	 * it's subtree as they will never get out pidns.
2273 	 */
2274 	if (p->signal->has_child_subreaper ||
2275 	    is_child_reaper(task_pid(p)))
2276 		return 0;
2277 
2278 	p->signal->has_child_subreaper = 1;
2279 	return 1;
2280 }
2281 
2282 int __weak arch_prctl_spec_ctrl_get(struct task_struct *t, unsigned long which)
2283 {
2284 	return -EINVAL;
2285 }
2286 
2287 int __weak arch_prctl_spec_ctrl_set(struct task_struct *t, unsigned long which,
2288 				    unsigned long ctrl)
2289 {
2290 	return -EINVAL;
2291 }
2292 
2293 #define PR_IO_FLUSHER (PF_MEMALLOC_NOIO | PF_LOCAL_THROTTLE)
2294 
2295 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
2296 		unsigned long, arg4, unsigned long, arg5)
2297 {
2298 	struct task_struct *me = current;
2299 	unsigned char comm[sizeof(me->comm)];
2300 	long error;
2301 
2302 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
2303 	if (error != -ENOSYS)
2304 		return error;
2305 
2306 	error = 0;
2307 	switch (option) {
2308 	case PR_SET_PDEATHSIG:
2309 		if (!valid_signal(arg2)) {
2310 			error = -EINVAL;
2311 			break;
2312 		}
2313 		me->pdeath_signal = arg2;
2314 		break;
2315 	case PR_GET_PDEATHSIG:
2316 		error = put_user(me->pdeath_signal, (int __user *)arg2);
2317 		break;
2318 	case PR_GET_DUMPABLE:
2319 		error = get_dumpable(me->mm);
2320 		break;
2321 	case PR_SET_DUMPABLE:
2322 		if (arg2 != SUID_DUMP_DISABLE && arg2 != SUID_DUMP_USER) {
2323 			error = -EINVAL;
2324 			break;
2325 		}
2326 		set_dumpable(me->mm, arg2);
2327 		break;
2328 
2329 	case PR_SET_UNALIGN:
2330 		error = SET_UNALIGN_CTL(me, arg2);
2331 		break;
2332 	case PR_GET_UNALIGN:
2333 		error = GET_UNALIGN_CTL(me, arg2);
2334 		break;
2335 	case PR_SET_FPEMU:
2336 		error = SET_FPEMU_CTL(me, arg2);
2337 		break;
2338 	case PR_GET_FPEMU:
2339 		error = GET_FPEMU_CTL(me, arg2);
2340 		break;
2341 	case PR_SET_FPEXC:
2342 		error = SET_FPEXC_CTL(me, arg2);
2343 		break;
2344 	case PR_GET_FPEXC:
2345 		error = GET_FPEXC_CTL(me, arg2);
2346 		break;
2347 	case PR_GET_TIMING:
2348 		error = PR_TIMING_STATISTICAL;
2349 		break;
2350 	case PR_SET_TIMING:
2351 		if (arg2 != PR_TIMING_STATISTICAL)
2352 			error = -EINVAL;
2353 		break;
2354 	case PR_SET_NAME:
2355 		comm[sizeof(me->comm) - 1] = 0;
2356 		if (strncpy_from_user(comm, (char __user *)arg2,
2357 				      sizeof(me->comm) - 1) < 0)
2358 			return -EFAULT;
2359 		set_task_comm(me, comm);
2360 		proc_comm_connector(me);
2361 		break;
2362 	case PR_GET_NAME:
2363 		get_task_comm(comm, me);
2364 		if (copy_to_user((char __user *)arg2, comm, sizeof(comm)))
2365 			return -EFAULT;
2366 		break;
2367 	case PR_GET_ENDIAN:
2368 		error = GET_ENDIAN(me, arg2);
2369 		break;
2370 	case PR_SET_ENDIAN:
2371 		error = SET_ENDIAN(me, arg2);
2372 		break;
2373 	case PR_GET_SECCOMP:
2374 		error = prctl_get_seccomp();
2375 		break;
2376 	case PR_SET_SECCOMP:
2377 		error = prctl_set_seccomp(arg2, (char __user *)arg3);
2378 		break;
2379 	case PR_GET_TSC:
2380 		error = GET_TSC_CTL(arg2);
2381 		break;
2382 	case PR_SET_TSC:
2383 		error = SET_TSC_CTL(arg2);
2384 		break;
2385 	case PR_TASK_PERF_EVENTS_DISABLE:
2386 		error = perf_event_task_disable();
2387 		break;
2388 	case PR_TASK_PERF_EVENTS_ENABLE:
2389 		error = perf_event_task_enable();
2390 		break;
2391 	case PR_GET_TIMERSLACK:
2392 		if (current->timer_slack_ns > ULONG_MAX)
2393 			error = ULONG_MAX;
2394 		else
2395 			error = current->timer_slack_ns;
2396 		break;
2397 	case PR_SET_TIMERSLACK:
2398 		if (arg2 <= 0)
2399 			current->timer_slack_ns =
2400 					current->default_timer_slack_ns;
2401 		else
2402 			current->timer_slack_ns = arg2;
2403 		break;
2404 	case PR_MCE_KILL:
2405 		if (arg4 | arg5)
2406 			return -EINVAL;
2407 		switch (arg2) {
2408 		case PR_MCE_KILL_CLEAR:
2409 			if (arg3 != 0)
2410 				return -EINVAL;
2411 			current->flags &= ~PF_MCE_PROCESS;
2412 			break;
2413 		case PR_MCE_KILL_SET:
2414 			current->flags |= PF_MCE_PROCESS;
2415 			if (arg3 == PR_MCE_KILL_EARLY)
2416 				current->flags |= PF_MCE_EARLY;
2417 			else if (arg3 == PR_MCE_KILL_LATE)
2418 				current->flags &= ~PF_MCE_EARLY;
2419 			else if (arg3 == PR_MCE_KILL_DEFAULT)
2420 				current->flags &=
2421 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
2422 			else
2423 				return -EINVAL;
2424 			break;
2425 		default:
2426 			return -EINVAL;
2427 		}
2428 		break;
2429 	case PR_MCE_KILL_GET:
2430 		if (arg2 | arg3 | arg4 | arg5)
2431 			return -EINVAL;
2432 		if (current->flags & PF_MCE_PROCESS)
2433 			error = (current->flags & PF_MCE_EARLY) ?
2434 				PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
2435 		else
2436 			error = PR_MCE_KILL_DEFAULT;
2437 		break;
2438 	case PR_SET_MM:
2439 		error = prctl_set_mm(arg2, arg3, arg4, arg5);
2440 		break;
2441 	case PR_GET_TID_ADDRESS:
2442 		error = prctl_get_tid_address(me, (int __user * __user *)arg2);
2443 		break;
2444 	case PR_SET_CHILD_SUBREAPER:
2445 		me->signal->is_child_subreaper = !!arg2;
2446 		if (!arg2)
2447 			break;
2448 
2449 		walk_process_tree(me, propagate_has_child_subreaper, NULL);
2450 		break;
2451 	case PR_GET_CHILD_SUBREAPER:
2452 		error = put_user(me->signal->is_child_subreaper,
2453 				 (int __user *)arg2);
2454 		break;
2455 	case PR_SET_NO_NEW_PRIVS:
2456 		if (arg2 != 1 || arg3 || arg4 || arg5)
2457 			return -EINVAL;
2458 
2459 		task_set_no_new_privs(current);
2460 		break;
2461 	case PR_GET_NO_NEW_PRIVS:
2462 		if (arg2 || arg3 || arg4 || arg5)
2463 			return -EINVAL;
2464 		return task_no_new_privs(current) ? 1 : 0;
2465 	case PR_GET_THP_DISABLE:
2466 		if (arg2 || arg3 || arg4 || arg5)
2467 			return -EINVAL;
2468 		error = !!test_bit(MMF_DISABLE_THP, &me->mm->flags);
2469 		break;
2470 	case PR_SET_THP_DISABLE:
2471 		if (arg3 || arg4 || arg5)
2472 			return -EINVAL;
2473 		if (mmap_write_lock_killable(me->mm))
2474 			return -EINTR;
2475 		if (arg2)
2476 			set_bit(MMF_DISABLE_THP, &me->mm->flags);
2477 		else
2478 			clear_bit(MMF_DISABLE_THP, &me->mm->flags);
2479 		mmap_write_unlock(me->mm);
2480 		break;
2481 	case PR_MPX_ENABLE_MANAGEMENT:
2482 	case PR_MPX_DISABLE_MANAGEMENT:
2483 		/* No longer implemented: */
2484 		return -EINVAL;
2485 	case PR_SET_FP_MODE:
2486 		error = SET_FP_MODE(me, arg2);
2487 		break;
2488 	case PR_GET_FP_MODE:
2489 		error = GET_FP_MODE(me);
2490 		break;
2491 	case PR_SVE_SET_VL:
2492 		error = SVE_SET_VL(arg2);
2493 		break;
2494 	case PR_SVE_GET_VL:
2495 		error = SVE_GET_VL();
2496 		break;
2497 	case PR_GET_SPECULATION_CTRL:
2498 		if (arg3 || arg4 || arg5)
2499 			return -EINVAL;
2500 		error = arch_prctl_spec_ctrl_get(me, arg2);
2501 		break;
2502 	case PR_SET_SPECULATION_CTRL:
2503 		if (arg4 || arg5)
2504 			return -EINVAL;
2505 		error = arch_prctl_spec_ctrl_set(me, arg2, arg3);
2506 		break;
2507 	case PR_PAC_RESET_KEYS:
2508 		if (arg3 || arg4 || arg5)
2509 			return -EINVAL;
2510 		error = PAC_RESET_KEYS(me, arg2);
2511 		break;
2512 	case PR_SET_TAGGED_ADDR_CTRL:
2513 		if (arg3 || arg4 || arg5)
2514 			return -EINVAL;
2515 		error = SET_TAGGED_ADDR_CTRL(arg2);
2516 		break;
2517 	case PR_GET_TAGGED_ADDR_CTRL:
2518 		if (arg2 || arg3 || arg4 || arg5)
2519 			return -EINVAL;
2520 		error = GET_TAGGED_ADDR_CTRL();
2521 		break;
2522 	case PR_SET_IO_FLUSHER:
2523 		if (!capable(CAP_SYS_RESOURCE))
2524 			return -EPERM;
2525 
2526 		if (arg3 || arg4 || arg5)
2527 			return -EINVAL;
2528 
2529 		if (arg2 == 1)
2530 			current->flags |= PR_IO_FLUSHER;
2531 		else if (!arg2)
2532 			current->flags &= ~PR_IO_FLUSHER;
2533 		else
2534 			return -EINVAL;
2535 		break;
2536 	case PR_GET_IO_FLUSHER:
2537 		if (!capable(CAP_SYS_RESOURCE))
2538 			return -EPERM;
2539 
2540 		if (arg2 || arg3 || arg4 || arg5)
2541 			return -EINVAL;
2542 
2543 		error = (current->flags & PR_IO_FLUSHER) == PR_IO_FLUSHER;
2544 		break;
2545 	case PR_SET_SYSCALL_USER_DISPATCH:
2546 		error = set_syscall_user_dispatch(arg2, arg3, arg4,
2547 						  (char __user *) arg5);
2548 		break;
2549 	default:
2550 		error = -EINVAL;
2551 		break;
2552 	}
2553 	return error;
2554 }
2555 
2556 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
2557 		struct getcpu_cache __user *, unused)
2558 {
2559 	int err = 0;
2560 	int cpu = raw_smp_processor_id();
2561 
2562 	if (cpup)
2563 		err |= put_user(cpu, cpup);
2564 	if (nodep)
2565 		err |= put_user(cpu_to_node(cpu), nodep);
2566 	return err ? -EFAULT : 0;
2567 }
2568 
2569 /**
2570  * do_sysinfo - fill in sysinfo struct
2571  * @info: pointer to buffer to fill
2572  */
2573 static int do_sysinfo(struct sysinfo *info)
2574 {
2575 	unsigned long mem_total, sav_total;
2576 	unsigned int mem_unit, bitcount;
2577 	struct timespec64 tp;
2578 
2579 	memset(info, 0, sizeof(struct sysinfo));
2580 
2581 	ktime_get_boottime_ts64(&tp);
2582 	timens_add_boottime(&tp);
2583 	info->uptime = tp.tv_sec + (tp.tv_nsec ? 1 : 0);
2584 
2585 	get_avenrun(info->loads, 0, SI_LOAD_SHIFT - FSHIFT);
2586 
2587 	info->procs = nr_threads;
2588 
2589 	si_meminfo(info);
2590 	si_swapinfo(info);
2591 
2592 	/*
2593 	 * If the sum of all the available memory (i.e. ram + swap)
2594 	 * is less than can be stored in a 32 bit unsigned long then
2595 	 * we can be binary compatible with 2.2.x kernels.  If not,
2596 	 * well, in that case 2.2.x was broken anyways...
2597 	 *
2598 	 *  -Erik Andersen <[email protected]>
2599 	 */
2600 
2601 	mem_total = info->totalram + info->totalswap;
2602 	if (mem_total < info->totalram || mem_total < info->totalswap)
2603 		goto out;
2604 	bitcount = 0;
2605 	mem_unit = info->mem_unit;
2606 	while (mem_unit > 1) {
2607 		bitcount++;
2608 		mem_unit >>= 1;
2609 		sav_total = mem_total;
2610 		mem_total <<= 1;
2611 		if (mem_total < sav_total)
2612 			goto out;
2613 	}
2614 
2615 	/*
2616 	 * If mem_total did not overflow, multiply all memory values by
2617 	 * info->mem_unit and set it to 1.  This leaves things compatible
2618 	 * with 2.2.x, and also retains compatibility with earlier 2.4.x
2619 	 * kernels...
2620 	 */
2621 
2622 	info->mem_unit = 1;
2623 	info->totalram <<= bitcount;
2624 	info->freeram <<= bitcount;
2625 	info->sharedram <<= bitcount;
2626 	info->bufferram <<= bitcount;
2627 	info->totalswap <<= bitcount;
2628 	info->freeswap <<= bitcount;
2629 	info->totalhigh <<= bitcount;
2630 	info->freehigh <<= bitcount;
2631 
2632 out:
2633 	return 0;
2634 }
2635 
2636 SYSCALL_DEFINE1(sysinfo, struct sysinfo __user *, info)
2637 {
2638 	struct sysinfo val;
2639 
2640 	do_sysinfo(&val);
2641 
2642 	if (copy_to_user(info, &val, sizeof(struct sysinfo)))
2643 		return -EFAULT;
2644 
2645 	return 0;
2646 }
2647 
2648 #ifdef CONFIG_COMPAT
2649 struct compat_sysinfo {
2650 	s32 uptime;
2651 	u32 loads[3];
2652 	u32 totalram;
2653 	u32 freeram;
2654 	u32 sharedram;
2655 	u32 bufferram;
2656 	u32 totalswap;
2657 	u32 freeswap;
2658 	u16 procs;
2659 	u16 pad;
2660 	u32 totalhigh;
2661 	u32 freehigh;
2662 	u32 mem_unit;
2663 	char _f[20-2*sizeof(u32)-sizeof(int)];
2664 };
2665 
2666 COMPAT_SYSCALL_DEFINE1(sysinfo, struct compat_sysinfo __user *, info)
2667 {
2668 	struct sysinfo s;
2669 	struct compat_sysinfo s_32;
2670 
2671 	do_sysinfo(&s);
2672 
2673 	/* Check to see if any memory value is too large for 32-bit and scale
2674 	 *  down if needed
2675 	 */
2676 	if (upper_32_bits(s.totalram) || upper_32_bits(s.totalswap)) {
2677 		int bitcount = 0;
2678 
2679 		while (s.mem_unit < PAGE_SIZE) {
2680 			s.mem_unit <<= 1;
2681 			bitcount++;
2682 		}
2683 
2684 		s.totalram >>= bitcount;
2685 		s.freeram >>= bitcount;
2686 		s.sharedram >>= bitcount;
2687 		s.bufferram >>= bitcount;
2688 		s.totalswap >>= bitcount;
2689 		s.freeswap >>= bitcount;
2690 		s.totalhigh >>= bitcount;
2691 		s.freehigh >>= bitcount;
2692 	}
2693 
2694 	memset(&s_32, 0, sizeof(s_32));
2695 	s_32.uptime = s.uptime;
2696 	s_32.loads[0] = s.loads[0];
2697 	s_32.loads[1] = s.loads[1];
2698 	s_32.loads[2] = s.loads[2];
2699 	s_32.totalram = s.totalram;
2700 	s_32.freeram = s.freeram;
2701 	s_32.sharedram = s.sharedram;
2702 	s_32.bufferram = s.bufferram;
2703 	s_32.totalswap = s.totalswap;
2704 	s_32.freeswap = s.freeswap;
2705 	s_32.procs = s.procs;
2706 	s_32.totalhigh = s.totalhigh;
2707 	s_32.freehigh = s.freehigh;
2708 	s_32.mem_unit = s.mem_unit;
2709 	if (copy_to_user(info, &s_32, sizeof(s_32)))
2710 		return -EFAULT;
2711 	return 0;
2712 }
2713 #endif /* CONFIG_COMPAT */
2714