xref: /linux-6.15/kernel/sys.c (revision a115bc07)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/notifier.h>
12 #include <linux/reboot.h>
13 #include <linux/prctl.h>
14 #include <linux/highuid.h>
15 #include <linux/fs.h>
16 #include <linux/perf_event.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37 #include <linux/fs_struct.h>
38 
39 #include <linux/compat.h>
40 #include <linux/syscalls.h>
41 #include <linux/kprobes.h>
42 #include <linux/user_namespace.h>
43 
44 #include <asm/uaccess.h>
45 #include <asm/io.h>
46 #include <asm/unistd.h>
47 
48 #ifndef SET_UNALIGN_CTL
49 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
50 #endif
51 #ifndef GET_UNALIGN_CTL
52 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
53 #endif
54 #ifndef SET_FPEMU_CTL
55 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
56 #endif
57 #ifndef GET_FPEMU_CTL
58 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
59 #endif
60 #ifndef SET_FPEXC_CTL
61 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
62 #endif
63 #ifndef GET_FPEXC_CTL
64 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
65 #endif
66 #ifndef GET_ENDIAN
67 # define GET_ENDIAN(a,b)	(-EINVAL)
68 #endif
69 #ifndef SET_ENDIAN
70 # define SET_ENDIAN(a,b)	(-EINVAL)
71 #endif
72 #ifndef GET_TSC_CTL
73 # define GET_TSC_CTL(a)		(-EINVAL)
74 #endif
75 #ifndef SET_TSC_CTL
76 # define SET_TSC_CTL(a)		(-EINVAL)
77 #endif
78 
79 /*
80  * this is where the system-wide overflow UID and GID are defined, for
81  * architectures that now have 32-bit UID/GID but didn't in the past
82  */
83 
84 int overflowuid = DEFAULT_OVERFLOWUID;
85 int overflowgid = DEFAULT_OVERFLOWGID;
86 
87 #ifdef CONFIG_UID16
88 EXPORT_SYMBOL(overflowuid);
89 EXPORT_SYMBOL(overflowgid);
90 #endif
91 
92 /*
93  * the same as above, but for filesystems which can only store a 16-bit
94  * UID and GID. as such, this is needed on all architectures
95  */
96 
97 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
98 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
99 
100 EXPORT_SYMBOL(fs_overflowuid);
101 EXPORT_SYMBOL(fs_overflowgid);
102 
103 /*
104  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
105  */
106 
107 int C_A_D = 1;
108 struct pid *cad_pid;
109 EXPORT_SYMBOL(cad_pid);
110 
111 /*
112  * If set, this is used for preparing the system to power off.
113  */
114 
115 void (*pm_power_off_prepare)(void);
116 
117 /*
118  * set the priority of a task
119  * - the caller must hold the RCU read lock
120  */
121 static int set_one_prio(struct task_struct *p, int niceval, int error)
122 {
123 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
124 	int no_nice;
125 
126 	if (pcred->uid  != cred->euid &&
127 	    pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
128 		error = -EPERM;
129 		goto out;
130 	}
131 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
132 		error = -EACCES;
133 		goto out;
134 	}
135 	no_nice = security_task_setnice(p, niceval);
136 	if (no_nice) {
137 		error = no_nice;
138 		goto out;
139 	}
140 	if (error == -ESRCH)
141 		error = 0;
142 	set_user_nice(p, niceval);
143 out:
144 	return error;
145 }
146 
147 SYSCALL_DEFINE3(setpriority, int, which, int, who, int, niceval)
148 {
149 	struct task_struct *g, *p;
150 	struct user_struct *user;
151 	const struct cred *cred = current_cred();
152 	int error = -EINVAL;
153 	struct pid *pgrp;
154 
155 	if (which > PRIO_USER || which < PRIO_PROCESS)
156 		goto out;
157 
158 	/* normalize: avoid signed division (rounding problems) */
159 	error = -ESRCH;
160 	if (niceval < -20)
161 		niceval = -20;
162 	if (niceval > 19)
163 		niceval = 19;
164 
165 	rcu_read_lock();
166 	read_lock(&tasklist_lock);
167 	switch (which) {
168 		case PRIO_PROCESS:
169 			if (who)
170 				p = find_task_by_vpid(who);
171 			else
172 				p = current;
173 			if (p)
174 				error = set_one_prio(p, niceval, error);
175 			break;
176 		case PRIO_PGRP:
177 			if (who)
178 				pgrp = find_vpid(who);
179 			else
180 				pgrp = task_pgrp(current);
181 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
182 				error = set_one_prio(p, niceval, error);
183 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
184 			break;
185 		case PRIO_USER:
186 			user = (struct user_struct *) cred->user;
187 			if (!who)
188 				who = cred->uid;
189 			else if ((who != cred->uid) &&
190 				 !(user = find_user(who)))
191 				goto out_unlock;	/* No processes for this user */
192 
193 			do_each_thread(g, p) {
194 				if (__task_cred(p)->uid == who)
195 					error = set_one_prio(p, niceval, error);
196 			} while_each_thread(g, p);
197 			if (who != cred->uid)
198 				free_uid(user);		/* For find_user() */
199 			break;
200 	}
201 out_unlock:
202 	read_unlock(&tasklist_lock);
203 	rcu_read_unlock();
204 out:
205 	return error;
206 }
207 
208 /*
209  * Ugh. To avoid negative return values, "getpriority()" will
210  * not return the normal nice-value, but a negated value that
211  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
212  * to stay compatible.
213  */
214 SYSCALL_DEFINE2(getpriority, int, which, int, who)
215 {
216 	struct task_struct *g, *p;
217 	struct user_struct *user;
218 	const struct cred *cred = current_cred();
219 	long niceval, retval = -ESRCH;
220 	struct pid *pgrp;
221 
222 	if (which > PRIO_USER || which < PRIO_PROCESS)
223 		return -EINVAL;
224 
225 	rcu_read_lock();
226 	read_lock(&tasklist_lock);
227 	switch (which) {
228 		case PRIO_PROCESS:
229 			if (who)
230 				p = find_task_by_vpid(who);
231 			else
232 				p = current;
233 			if (p) {
234 				niceval = 20 - task_nice(p);
235 				if (niceval > retval)
236 					retval = niceval;
237 			}
238 			break;
239 		case PRIO_PGRP:
240 			if (who)
241 				pgrp = find_vpid(who);
242 			else
243 				pgrp = task_pgrp(current);
244 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
245 				niceval = 20 - task_nice(p);
246 				if (niceval > retval)
247 					retval = niceval;
248 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
249 			break;
250 		case PRIO_USER:
251 			user = (struct user_struct *) cred->user;
252 			if (!who)
253 				who = cred->uid;
254 			else if ((who != cred->uid) &&
255 				 !(user = find_user(who)))
256 				goto out_unlock;	/* No processes for this user */
257 
258 			do_each_thread(g, p) {
259 				if (__task_cred(p)->uid == who) {
260 					niceval = 20 - task_nice(p);
261 					if (niceval > retval)
262 						retval = niceval;
263 				}
264 			} while_each_thread(g, p);
265 			if (who != cred->uid)
266 				free_uid(user);		/* for find_user() */
267 			break;
268 	}
269 out_unlock:
270 	read_unlock(&tasklist_lock);
271 	rcu_read_unlock();
272 
273 	return retval;
274 }
275 
276 /**
277  *	emergency_restart - reboot the system
278  *
279  *	Without shutting down any hardware or taking any locks
280  *	reboot the system.  This is called when we know we are in
281  *	trouble so this is our best effort to reboot.  This is
282  *	safe to call in interrupt context.
283  */
284 void emergency_restart(void)
285 {
286 	machine_emergency_restart();
287 }
288 EXPORT_SYMBOL_GPL(emergency_restart);
289 
290 void kernel_restart_prepare(char *cmd)
291 {
292 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
293 	system_state = SYSTEM_RESTART;
294 	device_shutdown();
295 	sysdev_shutdown();
296 }
297 
298 /**
299  *	kernel_restart - reboot the system
300  *	@cmd: pointer to buffer containing command to execute for restart
301  *		or %NULL
302  *
303  *	Shutdown everything and perform a clean reboot.
304  *	This is not safe to call in interrupt context.
305  */
306 void kernel_restart(char *cmd)
307 {
308 	kernel_restart_prepare(cmd);
309 	if (!cmd)
310 		printk(KERN_EMERG "Restarting system.\n");
311 	else
312 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
313 	machine_restart(cmd);
314 }
315 EXPORT_SYMBOL_GPL(kernel_restart);
316 
317 static void kernel_shutdown_prepare(enum system_states state)
318 {
319 	blocking_notifier_call_chain(&reboot_notifier_list,
320 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
321 	system_state = state;
322 	device_shutdown();
323 }
324 /**
325  *	kernel_halt - halt the system
326  *
327  *	Shutdown everything and perform a clean system halt.
328  */
329 void kernel_halt(void)
330 {
331 	kernel_shutdown_prepare(SYSTEM_HALT);
332 	sysdev_shutdown();
333 	printk(KERN_EMERG "System halted.\n");
334 	machine_halt();
335 }
336 
337 EXPORT_SYMBOL_GPL(kernel_halt);
338 
339 /**
340  *	kernel_power_off - power_off the system
341  *
342  *	Shutdown everything and perform a clean system power_off.
343  */
344 void kernel_power_off(void)
345 {
346 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
347 	if (pm_power_off_prepare)
348 		pm_power_off_prepare();
349 	disable_nonboot_cpus();
350 	sysdev_shutdown();
351 	printk(KERN_EMERG "Power down.\n");
352 	machine_power_off();
353 }
354 EXPORT_SYMBOL_GPL(kernel_power_off);
355 
356 static DEFINE_MUTEX(reboot_mutex);
357 
358 /*
359  * Reboot system call: for obvious reasons only root may call it,
360  * and even root needs to set up some magic numbers in the registers
361  * so that some mistake won't make this reboot the whole machine.
362  * You can also set the meaning of the ctrl-alt-del-key here.
363  *
364  * reboot doesn't sync: do that yourself before calling this.
365  */
366 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
367 		void __user *, arg)
368 {
369 	char buffer[256];
370 	int ret = 0;
371 
372 	/* We only trust the superuser with rebooting the system. */
373 	if (!capable(CAP_SYS_BOOT))
374 		return -EPERM;
375 
376 	/* For safety, we require "magic" arguments. */
377 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
378 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
379 	                magic2 != LINUX_REBOOT_MAGIC2A &&
380 			magic2 != LINUX_REBOOT_MAGIC2B &&
381 	                magic2 != LINUX_REBOOT_MAGIC2C))
382 		return -EINVAL;
383 
384 	/* Instead of trying to make the power_off code look like
385 	 * halt when pm_power_off is not set do it the easy way.
386 	 */
387 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
388 		cmd = LINUX_REBOOT_CMD_HALT;
389 
390 	mutex_lock(&reboot_mutex);
391 	switch (cmd) {
392 	case LINUX_REBOOT_CMD_RESTART:
393 		kernel_restart(NULL);
394 		break;
395 
396 	case LINUX_REBOOT_CMD_CAD_ON:
397 		C_A_D = 1;
398 		break;
399 
400 	case LINUX_REBOOT_CMD_CAD_OFF:
401 		C_A_D = 0;
402 		break;
403 
404 	case LINUX_REBOOT_CMD_HALT:
405 		kernel_halt();
406 		do_exit(0);
407 		panic("cannot halt");
408 
409 	case LINUX_REBOOT_CMD_POWER_OFF:
410 		kernel_power_off();
411 		do_exit(0);
412 		break;
413 
414 	case LINUX_REBOOT_CMD_RESTART2:
415 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
416 			ret = -EFAULT;
417 			break;
418 		}
419 		buffer[sizeof(buffer) - 1] = '\0';
420 
421 		kernel_restart(buffer);
422 		break;
423 
424 #ifdef CONFIG_KEXEC
425 	case LINUX_REBOOT_CMD_KEXEC:
426 		ret = kernel_kexec();
427 		break;
428 #endif
429 
430 #ifdef CONFIG_HIBERNATION
431 	case LINUX_REBOOT_CMD_SW_SUSPEND:
432 		ret = hibernate();
433 		break;
434 #endif
435 
436 	default:
437 		ret = -EINVAL;
438 		break;
439 	}
440 	mutex_unlock(&reboot_mutex);
441 	return ret;
442 }
443 
444 static void deferred_cad(struct work_struct *dummy)
445 {
446 	kernel_restart(NULL);
447 }
448 
449 /*
450  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
451  * As it's called within an interrupt, it may NOT sync: the only choice
452  * is whether to reboot at once, or just ignore the ctrl-alt-del.
453  */
454 void ctrl_alt_del(void)
455 {
456 	static DECLARE_WORK(cad_work, deferred_cad);
457 
458 	if (C_A_D)
459 		schedule_work(&cad_work);
460 	else
461 		kill_cad_pid(SIGINT, 1);
462 }
463 
464 /*
465  * Unprivileged users may change the real gid to the effective gid
466  * or vice versa.  (BSD-style)
467  *
468  * If you set the real gid at all, or set the effective gid to a value not
469  * equal to the real gid, then the saved gid is set to the new effective gid.
470  *
471  * This makes it possible for a setgid program to completely drop its
472  * privileges, which is often a useful assertion to make when you are doing
473  * a security audit over a program.
474  *
475  * The general idea is that a program which uses just setregid() will be
476  * 100% compatible with BSD.  A program which uses just setgid() will be
477  * 100% compatible with POSIX with saved IDs.
478  *
479  * SMP: There are not races, the GIDs are checked only by filesystem
480  *      operations (as far as semantic preservation is concerned).
481  */
482 SYSCALL_DEFINE2(setregid, gid_t, rgid, gid_t, egid)
483 {
484 	const struct cred *old;
485 	struct cred *new;
486 	int retval;
487 
488 	new = prepare_creds();
489 	if (!new)
490 		return -ENOMEM;
491 	old = current_cred();
492 
493 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
494 	if (retval)
495 		goto error;
496 
497 	retval = -EPERM;
498 	if (rgid != (gid_t) -1) {
499 		if (old->gid == rgid ||
500 		    old->egid == rgid ||
501 		    capable(CAP_SETGID))
502 			new->gid = rgid;
503 		else
504 			goto error;
505 	}
506 	if (egid != (gid_t) -1) {
507 		if (old->gid == egid ||
508 		    old->egid == egid ||
509 		    old->sgid == egid ||
510 		    capable(CAP_SETGID))
511 			new->egid = egid;
512 		else
513 			goto error;
514 	}
515 
516 	if (rgid != (gid_t) -1 ||
517 	    (egid != (gid_t) -1 && egid != old->gid))
518 		new->sgid = new->egid;
519 	new->fsgid = new->egid;
520 
521 	return commit_creds(new);
522 
523 error:
524 	abort_creds(new);
525 	return retval;
526 }
527 
528 /*
529  * setgid() is implemented like SysV w/ SAVED_IDS
530  *
531  * SMP: Same implicit races as above.
532  */
533 SYSCALL_DEFINE1(setgid, gid_t, gid)
534 {
535 	const struct cred *old;
536 	struct cred *new;
537 	int retval;
538 
539 	new = prepare_creds();
540 	if (!new)
541 		return -ENOMEM;
542 	old = current_cred();
543 
544 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
545 	if (retval)
546 		goto error;
547 
548 	retval = -EPERM;
549 	if (capable(CAP_SETGID))
550 		new->gid = new->egid = new->sgid = new->fsgid = gid;
551 	else if (gid == old->gid || gid == old->sgid)
552 		new->egid = new->fsgid = gid;
553 	else
554 		goto error;
555 
556 	return commit_creds(new);
557 
558 error:
559 	abort_creds(new);
560 	return retval;
561 }
562 
563 /*
564  * change the user struct in a credentials set to match the new UID
565  */
566 static int set_user(struct cred *new)
567 {
568 	struct user_struct *new_user;
569 
570 	new_user = alloc_uid(current_user_ns(), new->uid);
571 	if (!new_user)
572 		return -EAGAIN;
573 
574 	if (atomic_read(&new_user->processes) >= rlimit(RLIMIT_NPROC) &&
575 			new_user != INIT_USER) {
576 		free_uid(new_user);
577 		return -EAGAIN;
578 	}
579 
580 	free_uid(new->user);
581 	new->user = new_user;
582 	return 0;
583 }
584 
585 /*
586  * Unprivileged users may change the real uid to the effective uid
587  * or vice versa.  (BSD-style)
588  *
589  * If you set the real uid at all, or set the effective uid to a value not
590  * equal to the real uid, then the saved uid is set to the new effective uid.
591  *
592  * This makes it possible for a setuid program to completely drop its
593  * privileges, which is often a useful assertion to make when you are doing
594  * a security audit over a program.
595  *
596  * The general idea is that a program which uses just setreuid() will be
597  * 100% compatible with BSD.  A program which uses just setuid() will be
598  * 100% compatible with POSIX with saved IDs.
599  */
600 SYSCALL_DEFINE2(setreuid, uid_t, ruid, uid_t, euid)
601 {
602 	const struct cred *old;
603 	struct cred *new;
604 	int retval;
605 
606 	new = prepare_creds();
607 	if (!new)
608 		return -ENOMEM;
609 	old = current_cred();
610 
611 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
612 	if (retval)
613 		goto error;
614 
615 	retval = -EPERM;
616 	if (ruid != (uid_t) -1) {
617 		new->uid = ruid;
618 		if (old->uid != ruid &&
619 		    old->euid != ruid &&
620 		    !capable(CAP_SETUID))
621 			goto error;
622 	}
623 
624 	if (euid != (uid_t) -1) {
625 		new->euid = euid;
626 		if (old->uid != euid &&
627 		    old->euid != euid &&
628 		    old->suid != euid &&
629 		    !capable(CAP_SETUID))
630 			goto error;
631 	}
632 
633 	if (new->uid != old->uid) {
634 		retval = set_user(new);
635 		if (retval < 0)
636 			goto error;
637 	}
638 	if (ruid != (uid_t) -1 ||
639 	    (euid != (uid_t) -1 && euid != old->uid))
640 		new->suid = new->euid;
641 	new->fsuid = new->euid;
642 
643 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
644 	if (retval < 0)
645 		goto error;
646 
647 	return commit_creds(new);
648 
649 error:
650 	abort_creds(new);
651 	return retval;
652 }
653 
654 /*
655  * setuid() is implemented like SysV with SAVED_IDS
656  *
657  * Note that SAVED_ID's is deficient in that a setuid root program
658  * like sendmail, for example, cannot set its uid to be a normal
659  * user and then switch back, because if you're root, setuid() sets
660  * the saved uid too.  If you don't like this, blame the bright people
661  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
662  * will allow a root program to temporarily drop privileges and be able to
663  * regain them by swapping the real and effective uid.
664  */
665 SYSCALL_DEFINE1(setuid, uid_t, uid)
666 {
667 	const struct cred *old;
668 	struct cred *new;
669 	int retval;
670 
671 	new = prepare_creds();
672 	if (!new)
673 		return -ENOMEM;
674 	old = current_cred();
675 
676 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
677 	if (retval)
678 		goto error;
679 
680 	retval = -EPERM;
681 	if (capable(CAP_SETUID)) {
682 		new->suid = new->uid = uid;
683 		if (uid != old->uid) {
684 			retval = set_user(new);
685 			if (retval < 0)
686 				goto error;
687 		}
688 	} else if (uid != old->uid && uid != new->suid) {
689 		goto error;
690 	}
691 
692 	new->fsuid = new->euid = uid;
693 
694 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
695 	if (retval < 0)
696 		goto error;
697 
698 	return commit_creds(new);
699 
700 error:
701 	abort_creds(new);
702 	return retval;
703 }
704 
705 
706 /*
707  * This function implements a generic ability to update ruid, euid,
708  * and suid.  This allows you to implement the 4.4 compatible seteuid().
709  */
710 SYSCALL_DEFINE3(setresuid, uid_t, ruid, uid_t, euid, uid_t, suid)
711 {
712 	const struct cred *old;
713 	struct cred *new;
714 	int retval;
715 
716 	new = prepare_creds();
717 	if (!new)
718 		return -ENOMEM;
719 
720 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
721 	if (retval)
722 		goto error;
723 	old = current_cred();
724 
725 	retval = -EPERM;
726 	if (!capable(CAP_SETUID)) {
727 		if (ruid != (uid_t) -1 && ruid != old->uid &&
728 		    ruid != old->euid  && ruid != old->suid)
729 			goto error;
730 		if (euid != (uid_t) -1 && euid != old->uid &&
731 		    euid != old->euid  && euid != old->suid)
732 			goto error;
733 		if (suid != (uid_t) -1 && suid != old->uid &&
734 		    suid != old->euid  && suid != old->suid)
735 			goto error;
736 	}
737 
738 	if (ruid != (uid_t) -1) {
739 		new->uid = ruid;
740 		if (ruid != old->uid) {
741 			retval = set_user(new);
742 			if (retval < 0)
743 				goto error;
744 		}
745 	}
746 	if (euid != (uid_t) -1)
747 		new->euid = euid;
748 	if (suid != (uid_t) -1)
749 		new->suid = suid;
750 	new->fsuid = new->euid;
751 
752 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
753 	if (retval < 0)
754 		goto error;
755 
756 	return commit_creds(new);
757 
758 error:
759 	abort_creds(new);
760 	return retval;
761 }
762 
763 SYSCALL_DEFINE3(getresuid, uid_t __user *, ruid, uid_t __user *, euid, uid_t __user *, suid)
764 {
765 	const struct cred *cred = current_cred();
766 	int retval;
767 
768 	if (!(retval   = put_user(cred->uid,  ruid)) &&
769 	    !(retval   = put_user(cred->euid, euid)))
770 		retval = put_user(cred->suid, suid);
771 
772 	return retval;
773 }
774 
775 /*
776  * Same as above, but for rgid, egid, sgid.
777  */
778 SYSCALL_DEFINE3(setresgid, gid_t, rgid, gid_t, egid, gid_t, sgid)
779 {
780 	const struct cred *old;
781 	struct cred *new;
782 	int retval;
783 
784 	new = prepare_creds();
785 	if (!new)
786 		return -ENOMEM;
787 	old = current_cred();
788 
789 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
790 	if (retval)
791 		goto error;
792 
793 	retval = -EPERM;
794 	if (!capable(CAP_SETGID)) {
795 		if (rgid != (gid_t) -1 && rgid != old->gid &&
796 		    rgid != old->egid  && rgid != old->sgid)
797 			goto error;
798 		if (egid != (gid_t) -1 && egid != old->gid &&
799 		    egid != old->egid  && egid != old->sgid)
800 			goto error;
801 		if (sgid != (gid_t) -1 && sgid != old->gid &&
802 		    sgid != old->egid  && sgid != old->sgid)
803 			goto error;
804 	}
805 
806 	if (rgid != (gid_t) -1)
807 		new->gid = rgid;
808 	if (egid != (gid_t) -1)
809 		new->egid = egid;
810 	if (sgid != (gid_t) -1)
811 		new->sgid = sgid;
812 	new->fsgid = new->egid;
813 
814 	return commit_creds(new);
815 
816 error:
817 	abort_creds(new);
818 	return retval;
819 }
820 
821 SYSCALL_DEFINE3(getresgid, gid_t __user *, rgid, gid_t __user *, egid, gid_t __user *, sgid)
822 {
823 	const struct cred *cred = current_cred();
824 	int retval;
825 
826 	if (!(retval   = put_user(cred->gid,  rgid)) &&
827 	    !(retval   = put_user(cred->egid, egid)))
828 		retval = put_user(cred->sgid, sgid);
829 
830 	return retval;
831 }
832 
833 
834 /*
835  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
836  * is used for "access()" and for the NFS daemon (letting nfsd stay at
837  * whatever uid it wants to). It normally shadows "euid", except when
838  * explicitly set by setfsuid() or for access..
839  */
840 SYSCALL_DEFINE1(setfsuid, uid_t, uid)
841 {
842 	const struct cred *old;
843 	struct cred *new;
844 	uid_t old_fsuid;
845 
846 	new = prepare_creds();
847 	if (!new)
848 		return current_fsuid();
849 	old = current_cred();
850 	old_fsuid = old->fsuid;
851 
852 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
853 		goto error;
854 
855 	if (uid == old->uid  || uid == old->euid  ||
856 	    uid == old->suid || uid == old->fsuid ||
857 	    capable(CAP_SETUID)) {
858 		if (uid != old_fsuid) {
859 			new->fsuid = uid;
860 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
861 				goto change_okay;
862 		}
863 	}
864 
865 error:
866 	abort_creds(new);
867 	return old_fsuid;
868 
869 change_okay:
870 	commit_creds(new);
871 	return old_fsuid;
872 }
873 
874 /*
875  * Samma på svenska..
876  */
877 SYSCALL_DEFINE1(setfsgid, gid_t, gid)
878 {
879 	const struct cred *old;
880 	struct cred *new;
881 	gid_t old_fsgid;
882 
883 	new = prepare_creds();
884 	if (!new)
885 		return current_fsgid();
886 	old = current_cred();
887 	old_fsgid = old->fsgid;
888 
889 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
890 		goto error;
891 
892 	if (gid == old->gid  || gid == old->egid  ||
893 	    gid == old->sgid || gid == old->fsgid ||
894 	    capable(CAP_SETGID)) {
895 		if (gid != old_fsgid) {
896 			new->fsgid = gid;
897 			goto change_okay;
898 		}
899 	}
900 
901 error:
902 	abort_creds(new);
903 	return old_fsgid;
904 
905 change_okay:
906 	commit_creds(new);
907 	return old_fsgid;
908 }
909 
910 void do_sys_times(struct tms *tms)
911 {
912 	cputime_t tgutime, tgstime, cutime, cstime;
913 
914 	spin_lock_irq(&current->sighand->siglock);
915 	thread_group_times(current, &tgutime, &tgstime);
916 	cutime = current->signal->cutime;
917 	cstime = current->signal->cstime;
918 	spin_unlock_irq(&current->sighand->siglock);
919 	tms->tms_utime = cputime_to_clock_t(tgutime);
920 	tms->tms_stime = cputime_to_clock_t(tgstime);
921 	tms->tms_cutime = cputime_to_clock_t(cutime);
922 	tms->tms_cstime = cputime_to_clock_t(cstime);
923 }
924 
925 SYSCALL_DEFINE1(times, struct tms __user *, tbuf)
926 {
927 	if (tbuf) {
928 		struct tms tmp;
929 
930 		do_sys_times(&tmp);
931 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
932 			return -EFAULT;
933 	}
934 	force_successful_syscall_return();
935 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
936 }
937 
938 /*
939  * This needs some heavy checking ...
940  * I just haven't the stomach for it. I also don't fully
941  * understand sessions/pgrp etc. Let somebody who does explain it.
942  *
943  * OK, I think I have the protection semantics right.... this is really
944  * only important on a multi-user system anyway, to make sure one user
945  * can't send a signal to a process owned by another.  -TYT, 12/12/91
946  *
947  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
948  * LBT 04.03.94
949  */
950 SYSCALL_DEFINE2(setpgid, pid_t, pid, pid_t, pgid)
951 {
952 	struct task_struct *p;
953 	struct task_struct *group_leader = current->group_leader;
954 	struct pid *pgrp;
955 	int err;
956 
957 	if (!pid)
958 		pid = task_pid_vnr(group_leader);
959 	if (!pgid)
960 		pgid = pid;
961 	if (pgid < 0)
962 		return -EINVAL;
963 
964 	/* From this point forward we keep holding onto the tasklist lock
965 	 * so that our parent does not change from under us. -DaveM
966 	 */
967 	write_lock_irq(&tasklist_lock);
968 
969 	err = -ESRCH;
970 	p = find_task_by_vpid(pid);
971 	if (!p)
972 		goto out;
973 
974 	err = -EINVAL;
975 	if (!thread_group_leader(p))
976 		goto out;
977 
978 	if (same_thread_group(p->real_parent, group_leader)) {
979 		err = -EPERM;
980 		if (task_session(p) != task_session(group_leader))
981 			goto out;
982 		err = -EACCES;
983 		if (p->did_exec)
984 			goto out;
985 	} else {
986 		err = -ESRCH;
987 		if (p != group_leader)
988 			goto out;
989 	}
990 
991 	err = -EPERM;
992 	if (p->signal->leader)
993 		goto out;
994 
995 	pgrp = task_pid(p);
996 	if (pgid != pid) {
997 		struct task_struct *g;
998 
999 		pgrp = find_vpid(pgid);
1000 		g = pid_task(pgrp, PIDTYPE_PGID);
1001 		if (!g || task_session(g) != task_session(group_leader))
1002 			goto out;
1003 	}
1004 
1005 	err = security_task_setpgid(p, pgid);
1006 	if (err)
1007 		goto out;
1008 
1009 	if (task_pgrp(p) != pgrp)
1010 		change_pid(p, PIDTYPE_PGID, pgrp);
1011 
1012 	err = 0;
1013 out:
1014 	/* All paths lead to here, thus we are safe. -DaveM */
1015 	write_unlock_irq(&tasklist_lock);
1016 	return err;
1017 }
1018 
1019 SYSCALL_DEFINE1(getpgid, pid_t, pid)
1020 {
1021 	struct task_struct *p;
1022 	struct pid *grp;
1023 	int retval;
1024 
1025 	rcu_read_lock();
1026 	if (!pid)
1027 		grp = task_pgrp(current);
1028 	else {
1029 		retval = -ESRCH;
1030 		p = find_task_by_vpid(pid);
1031 		if (!p)
1032 			goto out;
1033 		grp = task_pgrp(p);
1034 		if (!grp)
1035 			goto out;
1036 
1037 		retval = security_task_getpgid(p);
1038 		if (retval)
1039 			goto out;
1040 	}
1041 	retval = pid_vnr(grp);
1042 out:
1043 	rcu_read_unlock();
1044 	return retval;
1045 }
1046 
1047 #ifdef __ARCH_WANT_SYS_GETPGRP
1048 
1049 SYSCALL_DEFINE0(getpgrp)
1050 {
1051 	return sys_getpgid(0);
1052 }
1053 
1054 #endif
1055 
1056 SYSCALL_DEFINE1(getsid, pid_t, pid)
1057 {
1058 	struct task_struct *p;
1059 	struct pid *sid;
1060 	int retval;
1061 
1062 	rcu_read_lock();
1063 	if (!pid)
1064 		sid = task_session(current);
1065 	else {
1066 		retval = -ESRCH;
1067 		p = find_task_by_vpid(pid);
1068 		if (!p)
1069 			goto out;
1070 		sid = task_session(p);
1071 		if (!sid)
1072 			goto out;
1073 
1074 		retval = security_task_getsid(p);
1075 		if (retval)
1076 			goto out;
1077 	}
1078 	retval = pid_vnr(sid);
1079 out:
1080 	rcu_read_unlock();
1081 	return retval;
1082 }
1083 
1084 SYSCALL_DEFINE0(setsid)
1085 {
1086 	struct task_struct *group_leader = current->group_leader;
1087 	struct pid *sid = task_pid(group_leader);
1088 	pid_t session = pid_vnr(sid);
1089 	int err = -EPERM;
1090 
1091 	write_lock_irq(&tasklist_lock);
1092 	/* Fail if I am already a session leader */
1093 	if (group_leader->signal->leader)
1094 		goto out;
1095 
1096 	/* Fail if a process group id already exists that equals the
1097 	 * proposed session id.
1098 	 */
1099 	if (pid_task(sid, PIDTYPE_PGID))
1100 		goto out;
1101 
1102 	group_leader->signal->leader = 1;
1103 	__set_special_pids(sid);
1104 
1105 	proc_clear_tty(group_leader);
1106 
1107 	err = session;
1108 out:
1109 	write_unlock_irq(&tasklist_lock);
1110 	if (err > 0)
1111 		proc_sid_connector(group_leader);
1112 	return err;
1113 }
1114 
1115 DECLARE_RWSEM(uts_sem);
1116 
1117 SYSCALL_DEFINE1(newuname, struct new_utsname __user *, name)
1118 {
1119 	int errno = 0;
1120 
1121 	down_read(&uts_sem);
1122 	if (copy_to_user(name, utsname(), sizeof *name))
1123 		errno = -EFAULT;
1124 	up_read(&uts_sem);
1125 	return errno;
1126 }
1127 
1128 SYSCALL_DEFINE2(sethostname, char __user *, name, int, len)
1129 {
1130 	int errno;
1131 	char tmp[__NEW_UTS_LEN];
1132 
1133 	if (!capable(CAP_SYS_ADMIN))
1134 		return -EPERM;
1135 	if (len < 0 || len > __NEW_UTS_LEN)
1136 		return -EINVAL;
1137 	down_write(&uts_sem);
1138 	errno = -EFAULT;
1139 	if (!copy_from_user(tmp, name, len)) {
1140 		struct new_utsname *u = utsname();
1141 
1142 		memcpy(u->nodename, tmp, len);
1143 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1144 		errno = 0;
1145 	}
1146 	up_write(&uts_sem);
1147 	return errno;
1148 }
1149 
1150 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1151 
1152 SYSCALL_DEFINE2(gethostname, char __user *, name, int, len)
1153 {
1154 	int i, errno;
1155 	struct new_utsname *u;
1156 
1157 	if (len < 0)
1158 		return -EINVAL;
1159 	down_read(&uts_sem);
1160 	u = utsname();
1161 	i = 1 + strlen(u->nodename);
1162 	if (i > len)
1163 		i = len;
1164 	errno = 0;
1165 	if (copy_to_user(name, u->nodename, i))
1166 		errno = -EFAULT;
1167 	up_read(&uts_sem);
1168 	return errno;
1169 }
1170 
1171 #endif
1172 
1173 /*
1174  * Only setdomainname; getdomainname can be implemented by calling
1175  * uname()
1176  */
1177 SYSCALL_DEFINE2(setdomainname, char __user *, name, int, len)
1178 {
1179 	int errno;
1180 	char tmp[__NEW_UTS_LEN];
1181 
1182 	if (!capable(CAP_SYS_ADMIN))
1183 		return -EPERM;
1184 	if (len < 0 || len > __NEW_UTS_LEN)
1185 		return -EINVAL;
1186 
1187 	down_write(&uts_sem);
1188 	errno = -EFAULT;
1189 	if (!copy_from_user(tmp, name, len)) {
1190 		struct new_utsname *u = utsname();
1191 
1192 		memcpy(u->domainname, tmp, len);
1193 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1194 		errno = 0;
1195 	}
1196 	up_write(&uts_sem);
1197 	return errno;
1198 }
1199 
1200 SYSCALL_DEFINE2(getrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1201 {
1202 	if (resource >= RLIM_NLIMITS)
1203 		return -EINVAL;
1204 	else {
1205 		struct rlimit value;
1206 		task_lock(current->group_leader);
1207 		value = current->signal->rlim[resource];
1208 		task_unlock(current->group_leader);
1209 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1210 	}
1211 }
1212 
1213 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1214 
1215 /*
1216  *	Back compatibility for getrlimit. Needed for some apps.
1217  */
1218 
1219 SYSCALL_DEFINE2(old_getrlimit, unsigned int, resource,
1220 		struct rlimit __user *, rlim)
1221 {
1222 	struct rlimit x;
1223 	if (resource >= RLIM_NLIMITS)
1224 		return -EINVAL;
1225 
1226 	task_lock(current->group_leader);
1227 	x = current->signal->rlim[resource];
1228 	task_unlock(current->group_leader);
1229 	if (x.rlim_cur > 0x7FFFFFFF)
1230 		x.rlim_cur = 0x7FFFFFFF;
1231 	if (x.rlim_max > 0x7FFFFFFF)
1232 		x.rlim_max = 0x7FFFFFFF;
1233 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1234 }
1235 
1236 #endif
1237 
1238 SYSCALL_DEFINE2(setrlimit, unsigned int, resource, struct rlimit __user *, rlim)
1239 {
1240 	struct rlimit new_rlim, *old_rlim;
1241 	int retval;
1242 
1243 	if (resource >= RLIM_NLIMITS)
1244 		return -EINVAL;
1245 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1246 		return -EFAULT;
1247 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1248 		return -EINVAL;
1249 	old_rlim = current->signal->rlim + resource;
1250 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1251 	    !capable(CAP_SYS_RESOURCE))
1252 		return -EPERM;
1253 	if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > sysctl_nr_open)
1254 		return -EPERM;
1255 
1256 	retval = security_task_setrlimit(resource, &new_rlim);
1257 	if (retval)
1258 		return retval;
1259 
1260 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1261 		/*
1262 		 * The caller is asking for an immediate RLIMIT_CPU
1263 		 * expiry.  But we use the zero value to mean "it was
1264 		 * never set".  So let's cheat and make it one second
1265 		 * instead
1266 		 */
1267 		new_rlim.rlim_cur = 1;
1268 	}
1269 
1270 	task_lock(current->group_leader);
1271 	*old_rlim = new_rlim;
1272 	task_unlock(current->group_leader);
1273 
1274 	if (resource != RLIMIT_CPU)
1275 		goto out;
1276 
1277 	/*
1278 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1279 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1280 	 * very long-standing error, and fixing it now risks breakage of
1281 	 * applications, so we live with it
1282 	 */
1283 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1284 		goto out;
1285 
1286 	update_rlimit_cpu(new_rlim.rlim_cur);
1287 out:
1288 	return 0;
1289 }
1290 
1291 /*
1292  * It would make sense to put struct rusage in the task_struct,
1293  * except that would make the task_struct be *really big*.  After
1294  * task_struct gets moved into malloc'ed memory, it would
1295  * make sense to do this.  It will make moving the rest of the information
1296  * a lot simpler!  (Which we're not doing right now because we're not
1297  * measuring them yet).
1298  *
1299  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1300  * races with threads incrementing their own counters.  But since word
1301  * reads are atomic, we either get new values or old values and we don't
1302  * care which for the sums.  We always take the siglock to protect reading
1303  * the c* fields from p->signal from races with exit.c updating those
1304  * fields when reaping, so a sample either gets all the additions of a
1305  * given child after it's reaped, or none so this sample is before reaping.
1306  *
1307  * Locking:
1308  * We need to take the siglock for CHILDEREN, SELF and BOTH
1309  * for  the cases current multithreaded, non-current single threaded
1310  * non-current multithreaded.  Thread traversal is now safe with
1311  * the siglock held.
1312  * Strictly speaking, we donot need to take the siglock if we are current and
1313  * single threaded,  as no one else can take our signal_struct away, no one
1314  * else can  reap the  children to update signal->c* counters, and no one else
1315  * can race with the signal-> fields. If we do not take any lock, the
1316  * signal-> fields could be read out of order while another thread was just
1317  * exiting. So we should  place a read memory barrier when we avoid the lock.
1318  * On the writer side,  write memory barrier is implied in  __exit_signal
1319  * as __exit_signal releases  the siglock spinlock after updating the signal->
1320  * fields. But we don't do this yet to keep things simple.
1321  *
1322  */
1323 
1324 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1325 {
1326 	r->ru_nvcsw += t->nvcsw;
1327 	r->ru_nivcsw += t->nivcsw;
1328 	r->ru_minflt += t->min_flt;
1329 	r->ru_majflt += t->maj_flt;
1330 	r->ru_inblock += task_io_get_inblock(t);
1331 	r->ru_oublock += task_io_get_oublock(t);
1332 }
1333 
1334 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1335 {
1336 	struct task_struct *t;
1337 	unsigned long flags;
1338 	cputime_t tgutime, tgstime, utime, stime;
1339 	unsigned long maxrss = 0;
1340 
1341 	memset((char *) r, 0, sizeof *r);
1342 	utime = stime = cputime_zero;
1343 
1344 	if (who == RUSAGE_THREAD) {
1345 		task_times(current, &utime, &stime);
1346 		accumulate_thread_rusage(p, r);
1347 		maxrss = p->signal->maxrss;
1348 		goto out;
1349 	}
1350 
1351 	if (!lock_task_sighand(p, &flags))
1352 		return;
1353 
1354 	switch (who) {
1355 		case RUSAGE_BOTH:
1356 		case RUSAGE_CHILDREN:
1357 			utime = p->signal->cutime;
1358 			stime = p->signal->cstime;
1359 			r->ru_nvcsw = p->signal->cnvcsw;
1360 			r->ru_nivcsw = p->signal->cnivcsw;
1361 			r->ru_minflt = p->signal->cmin_flt;
1362 			r->ru_majflt = p->signal->cmaj_flt;
1363 			r->ru_inblock = p->signal->cinblock;
1364 			r->ru_oublock = p->signal->coublock;
1365 			maxrss = p->signal->cmaxrss;
1366 
1367 			if (who == RUSAGE_CHILDREN)
1368 				break;
1369 
1370 		case RUSAGE_SELF:
1371 			thread_group_times(p, &tgutime, &tgstime);
1372 			utime = cputime_add(utime, tgutime);
1373 			stime = cputime_add(stime, tgstime);
1374 			r->ru_nvcsw += p->signal->nvcsw;
1375 			r->ru_nivcsw += p->signal->nivcsw;
1376 			r->ru_minflt += p->signal->min_flt;
1377 			r->ru_majflt += p->signal->maj_flt;
1378 			r->ru_inblock += p->signal->inblock;
1379 			r->ru_oublock += p->signal->oublock;
1380 			if (maxrss < p->signal->maxrss)
1381 				maxrss = p->signal->maxrss;
1382 			t = p;
1383 			do {
1384 				accumulate_thread_rusage(t, r);
1385 				t = next_thread(t);
1386 			} while (t != p);
1387 			break;
1388 
1389 		default:
1390 			BUG();
1391 	}
1392 	unlock_task_sighand(p, &flags);
1393 
1394 out:
1395 	cputime_to_timeval(utime, &r->ru_utime);
1396 	cputime_to_timeval(stime, &r->ru_stime);
1397 
1398 	if (who != RUSAGE_CHILDREN) {
1399 		struct mm_struct *mm = get_task_mm(p);
1400 		if (mm) {
1401 			setmax_mm_hiwater_rss(&maxrss, mm);
1402 			mmput(mm);
1403 		}
1404 	}
1405 	r->ru_maxrss = maxrss * (PAGE_SIZE / 1024); /* convert pages to KBs */
1406 }
1407 
1408 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1409 {
1410 	struct rusage r;
1411 	k_getrusage(p, who, &r);
1412 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1413 }
1414 
1415 SYSCALL_DEFINE2(getrusage, int, who, struct rusage __user *, ru)
1416 {
1417 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1418 	    who != RUSAGE_THREAD)
1419 		return -EINVAL;
1420 	return getrusage(current, who, ru);
1421 }
1422 
1423 SYSCALL_DEFINE1(umask, int, mask)
1424 {
1425 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1426 	return mask;
1427 }
1428 
1429 SYSCALL_DEFINE5(prctl, int, option, unsigned long, arg2, unsigned long, arg3,
1430 		unsigned long, arg4, unsigned long, arg5)
1431 {
1432 	struct task_struct *me = current;
1433 	unsigned char comm[sizeof(me->comm)];
1434 	long error;
1435 
1436 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1437 	if (error != -ENOSYS)
1438 		return error;
1439 
1440 	error = 0;
1441 	switch (option) {
1442 		case PR_SET_PDEATHSIG:
1443 			if (!valid_signal(arg2)) {
1444 				error = -EINVAL;
1445 				break;
1446 			}
1447 			me->pdeath_signal = arg2;
1448 			error = 0;
1449 			break;
1450 		case PR_GET_PDEATHSIG:
1451 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1452 			break;
1453 		case PR_GET_DUMPABLE:
1454 			error = get_dumpable(me->mm);
1455 			break;
1456 		case PR_SET_DUMPABLE:
1457 			if (arg2 < 0 || arg2 > 1) {
1458 				error = -EINVAL;
1459 				break;
1460 			}
1461 			set_dumpable(me->mm, arg2);
1462 			error = 0;
1463 			break;
1464 
1465 		case PR_SET_UNALIGN:
1466 			error = SET_UNALIGN_CTL(me, arg2);
1467 			break;
1468 		case PR_GET_UNALIGN:
1469 			error = GET_UNALIGN_CTL(me, arg2);
1470 			break;
1471 		case PR_SET_FPEMU:
1472 			error = SET_FPEMU_CTL(me, arg2);
1473 			break;
1474 		case PR_GET_FPEMU:
1475 			error = GET_FPEMU_CTL(me, arg2);
1476 			break;
1477 		case PR_SET_FPEXC:
1478 			error = SET_FPEXC_CTL(me, arg2);
1479 			break;
1480 		case PR_GET_FPEXC:
1481 			error = GET_FPEXC_CTL(me, arg2);
1482 			break;
1483 		case PR_GET_TIMING:
1484 			error = PR_TIMING_STATISTICAL;
1485 			break;
1486 		case PR_SET_TIMING:
1487 			if (arg2 != PR_TIMING_STATISTICAL)
1488 				error = -EINVAL;
1489 			else
1490 				error = 0;
1491 			break;
1492 
1493 		case PR_SET_NAME:
1494 			comm[sizeof(me->comm)-1] = 0;
1495 			if (strncpy_from_user(comm, (char __user *)arg2,
1496 					      sizeof(me->comm) - 1) < 0)
1497 				return -EFAULT;
1498 			set_task_comm(me, comm);
1499 			return 0;
1500 		case PR_GET_NAME:
1501 			get_task_comm(comm, me);
1502 			if (copy_to_user((char __user *)arg2, comm,
1503 					 sizeof(comm)))
1504 				return -EFAULT;
1505 			return 0;
1506 		case PR_GET_ENDIAN:
1507 			error = GET_ENDIAN(me, arg2);
1508 			break;
1509 		case PR_SET_ENDIAN:
1510 			error = SET_ENDIAN(me, arg2);
1511 			break;
1512 
1513 		case PR_GET_SECCOMP:
1514 			error = prctl_get_seccomp();
1515 			break;
1516 		case PR_SET_SECCOMP:
1517 			error = prctl_set_seccomp(arg2);
1518 			break;
1519 		case PR_GET_TSC:
1520 			error = GET_TSC_CTL(arg2);
1521 			break;
1522 		case PR_SET_TSC:
1523 			error = SET_TSC_CTL(arg2);
1524 			break;
1525 		case PR_TASK_PERF_EVENTS_DISABLE:
1526 			error = perf_event_task_disable();
1527 			break;
1528 		case PR_TASK_PERF_EVENTS_ENABLE:
1529 			error = perf_event_task_enable();
1530 			break;
1531 		case PR_GET_TIMERSLACK:
1532 			error = current->timer_slack_ns;
1533 			break;
1534 		case PR_SET_TIMERSLACK:
1535 			if (arg2 <= 0)
1536 				current->timer_slack_ns =
1537 					current->default_timer_slack_ns;
1538 			else
1539 				current->timer_slack_ns = arg2;
1540 			error = 0;
1541 			break;
1542 		case PR_MCE_KILL:
1543 			if (arg4 | arg5)
1544 				return -EINVAL;
1545 			switch (arg2) {
1546 			case PR_MCE_KILL_CLEAR:
1547 				if (arg3 != 0)
1548 					return -EINVAL;
1549 				current->flags &= ~PF_MCE_PROCESS;
1550 				break;
1551 			case PR_MCE_KILL_SET:
1552 				current->flags |= PF_MCE_PROCESS;
1553 				if (arg3 == PR_MCE_KILL_EARLY)
1554 					current->flags |= PF_MCE_EARLY;
1555 				else if (arg3 == PR_MCE_KILL_LATE)
1556 					current->flags &= ~PF_MCE_EARLY;
1557 				else if (arg3 == PR_MCE_KILL_DEFAULT)
1558 					current->flags &=
1559 						~(PF_MCE_EARLY|PF_MCE_PROCESS);
1560 				else
1561 					return -EINVAL;
1562 				break;
1563 			default:
1564 				return -EINVAL;
1565 			}
1566 			error = 0;
1567 			break;
1568 		case PR_MCE_KILL_GET:
1569 			if (arg2 | arg3 | arg4 | arg5)
1570 				return -EINVAL;
1571 			if (current->flags & PF_MCE_PROCESS)
1572 				error = (current->flags & PF_MCE_EARLY) ?
1573 					PR_MCE_KILL_EARLY : PR_MCE_KILL_LATE;
1574 			else
1575 				error = PR_MCE_KILL_DEFAULT;
1576 			break;
1577 		default:
1578 			error = -EINVAL;
1579 			break;
1580 	}
1581 	return error;
1582 }
1583 
1584 SYSCALL_DEFINE3(getcpu, unsigned __user *, cpup, unsigned __user *, nodep,
1585 		struct getcpu_cache __user *, unused)
1586 {
1587 	int err = 0;
1588 	int cpu = raw_smp_processor_id();
1589 	if (cpup)
1590 		err |= put_user(cpu, cpup);
1591 	if (nodep)
1592 		err |= put_user(cpu_to_node(cpu), nodep);
1593 	return err ? -EFAULT : 0;
1594 }
1595 
1596 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1597 
1598 static void argv_cleanup(char **argv, char **envp)
1599 {
1600 	argv_free(argv);
1601 }
1602 
1603 /**
1604  * orderly_poweroff - Trigger an orderly system poweroff
1605  * @force: force poweroff if command execution fails
1606  *
1607  * This may be called from any context to trigger a system shutdown.
1608  * If the orderly shutdown fails, it will force an immediate shutdown.
1609  */
1610 int orderly_poweroff(bool force)
1611 {
1612 	int argc;
1613 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1614 	static char *envp[] = {
1615 		"HOME=/",
1616 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1617 		NULL
1618 	};
1619 	int ret = -ENOMEM;
1620 	struct subprocess_info *info;
1621 
1622 	if (argv == NULL) {
1623 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1624 		       __func__, poweroff_cmd);
1625 		goto out;
1626 	}
1627 
1628 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1629 	if (info == NULL) {
1630 		argv_free(argv);
1631 		goto out;
1632 	}
1633 
1634 	call_usermodehelper_setcleanup(info, argv_cleanup);
1635 
1636 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1637 
1638   out:
1639 	if (ret && force) {
1640 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1641 		       "forcing the issue\n");
1642 
1643 		/* I guess this should try to kick off some daemon to
1644 		   sync and poweroff asap.  Or not even bother syncing
1645 		   if we're doing an emergency shutdown? */
1646 		emergency_sync();
1647 		kernel_power_off();
1648 	}
1649 
1650 	return ret;
1651 }
1652 EXPORT_SYMBOL_GPL(orderly_poweroff);
1653