1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/module.h> 8 #include <linux/mm.h> 9 #include <linux/utsname.h> 10 #include <linux/mman.h> 11 #include <linux/smp_lock.h> 12 #include <linux/notifier.h> 13 #include <linux/reboot.h> 14 #include <linux/prctl.h> 15 #include <linux/highuid.h> 16 #include <linux/fs.h> 17 #include <linux/resource.h> 18 #include <linux/kernel.h> 19 #include <linux/kexec.h> 20 #include <linux/workqueue.h> 21 #include <linux/capability.h> 22 #include <linux/device.h> 23 #include <linux/key.h> 24 #include <linux/times.h> 25 #include <linux/posix-timers.h> 26 #include <linux/security.h> 27 #include <linux/dcookies.h> 28 #include <linux/suspend.h> 29 #include <linux/tty.h> 30 #include <linux/signal.h> 31 #include <linux/cn_proc.h> 32 #include <linux/getcpu.h> 33 #include <linux/task_io_accounting_ops.h> 34 #include <linux/seccomp.h> 35 #include <linux/cpu.h> 36 #include <linux/ptrace.h> 37 38 #include <linux/compat.h> 39 #include <linux/syscalls.h> 40 #include <linux/kprobes.h> 41 #include <linux/user_namespace.h> 42 43 #include <asm/uaccess.h> 44 #include <asm/io.h> 45 #include <asm/unistd.h> 46 47 #ifndef SET_UNALIGN_CTL 48 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 49 #endif 50 #ifndef GET_UNALIGN_CTL 51 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 52 #endif 53 #ifndef SET_FPEMU_CTL 54 # define SET_FPEMU_CTL(a,b) (-EINVAL) 55 #endif 56 #ifndef GET_FPEMU_CTL 57 # define GET_FPEMU_CTL(a,b) (-EINVAL) 58 #endif 59 #ifndef SET_FPEXC_CTL 60 # define SET_FPEXC_CTL(a,b) (-EINVAL) 61 #endif 62 #ifndef GET_FPEXC_CTL 63 # define GET_FPEXC_CTL(a,b) (-EINVAL) 64 #endif 65 #ifndef GET_ENDIAN 66 # define GET_ENDIAN(a,b) (-EINVAL) 67 #endif 68 #ifndef SET_ENDIAN 69 # define SET_ENDIAN(a,b) (-EINVAL) 70 #endif 71 #ifndef GET_TSC_CTL 72 # define GET_TSC_CTL(a) (-EINVAL) 73 #endif 74 #ifndef SET_TSC_CTL 75 # define SET_TSC_CTL(a) (-EINVAL) 76 #endif 77 78 /* 79 * this is where the system-wide overflow UID and GID are defined, for 80 * architectures that now have 32-bit UID/GID but didn't in the past 81 */ 82 83 int overflowuid = DEFAULT_OVERFLOWUID; 84 int overflowgid = DEFAULT_OVERFLOWGID; 85 86 #ifdef CONFIG_UID16 87 EXPORT_SYMBOL(overflowuid); 88 EXPORT_SYMBOL(overflowgid); 89 #endif 90 91 /* 92 * the same as above, but for filesystems which can only store a 16-bit 93 * UID and GID. as such, this is needed on all architectures 94 */ 95 96 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 97 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 98 99 EXPORT_SYMBOL(fs_overflowuid); 100 EXPORT_SYMBOL(fs_overflowgid); 101 102 /* 103 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 104 */ 105 106 int C_A_D = 1; 107 struct pid *cad_pid; 108 EXPORT_SYMBOL(cad_pid); 109 110 /* 111 * If set, this is used for preparing the system to power off. 112 */ 113 114 void (*pm_power_off_prepare)(void); 115 116 /* 117 * set the priority of a task 118 * - the caller must hold the RCU read lock 119 */ 120 static int set_one_prio(struct task_struct *p, int niceval, int error) 121 { 122 const struct cred *cred = current_cred(), *pcred = __task_cred(p); 123 int no_nice; 124 125 if (pcred->uid != cred->euid && 126 pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) { 127 error = -EPERM; 128 goto out; 129 } 130 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 131 error = -EACCES; 132 goto out; 133 } 134 no_nice = security_task_setnice(p, niceval); 135 if (no_nice) { 136 error = no_nice; 137 goto out; 138 } 139 if (error == -ESRCH) 140 error = 0; 141 set_user_nice(p, niceval); 142 out: 143 return error; 144 } 145 146 asmlinkage long sys_setpriority(int which, int who, int niceval) 147 { 148 struct task_struct *g, *p; 149 struct user_struct *user; 150 const struct cred *cred = current_cred(); 151 int error = -EINVAL; 152 struct pid *pgrp; 153 154 if (which > PRIO_USER || which < PRIO_PROCESS) 155 goto out; 156 157 /* normalize: avoid signed division (rounding problems) */ 158 error = -ESRCH; 159 if (niceval < -20) 160 niceval = -20; 161 if (niceval > 19) 162 niceval = 19; 163 164 read_lock(&tasklist_lock); 165 switch (which) { 166 case PRIO_PROCESS: 167 if (who) 168 p = find_task_by_vpid(who); 169 else 170 p = current; 171 if (p) 172 error = set_one_prio(p, niceval, error); 173 break; 174 case PRIO_PGRP: 175 if (who) 176 pgrp = find_vpid(who); 177 else 178 pgrp = task_pgrp(current); 179 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 180 error = set_one_prio(p, niceval, error); 181 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 182 break; 183 case PRIO_USER: 184 user = (struct user_struct *) cred->user; 185 if (!who) 186 who = cred->uid; 187 else if ((who != cred->uid) && 188 !(user = find_user(who))) 189 goto out_unlock; /* No processes for this user */ 190 191 do_each_thread(g, p) 192 if (__task_cred(p)->uid == who) 193 error = set_one_prio(p, niceval, error); 194 while_each_thread(g, p); 195 if (who != cred->uid) 196 free_uid(user); /* For find_user() */ 197 break; 198 } 199 out_unlock: 200 read_unlock(&tasklist_lock); 201 out: 202 return error; 203 } 204 205 /* 206 * Ugh. To avoid negative return values, "getpriority()" will 207 * not return the normal nice-value, but a negated value that 208 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 209 * to stay compatible. 210 */ 211 asmlinkage long sys_getpriority(int which, int who) 212 { 213 struct task_struct *g, *p; 214 struct user_struct *user; 215 const struct cred *cred = current_cred(); 216 long niceval, retval = -ESRCH; 217 struct pid *pgrp; 218 219 if (which > PRIO_USER || which < PRIO_PROCESS) 220 return -EINVAL; 221 222 read_lock(&tasklist_lock); 223 switch (which) { 224 case PRIO_PROCESS: 225 if (who) 226 p = find_task_by_vpid(who); 227 else 228 p = current; 229 if (p) { 230 niceval = 20 - task_nice(p); 231 if (niceval > retval) 232 retval = niceval; 233 } 234 break; 235 case PRIO_PGRP: 236 if (who) 237 pgrp = find_vpid(who); 238 else 239 pgrp = task_pgrp(current); 240 do_each_pid_thread(pgrp, PIDTYPE_PGID, p) { 241 niceval = 20 - task_nice(p); 242 if (niceval > retval) 243 retval = niceval; 244 } while_each_pid_thread(pgrp, PIDTYPE_PGID, p); 245 break; 246 case PRIO_USER: 247 user = (struct user_struct *) cred->user; 248 if (!who) 249 who = cred->uid; 250 else if ((who != cred->uid) && 251 !(user = find_user(who))) 252 goto out_unlock; /* No processes for this user */ 253 254 do_each_thread(g, p) 255 if (__task_cred(p)->uid == who) { 256 niceval = 20 - task_nice(p); 257 if (niceval > retval) 258 retval = niceval; 259 } 260 while_each_thread(g, p); 261 if (who != cred->uid) 262 free_uid(user); /* for find_user() */ 263 break; 264 } 265 out_unlock: 266 read_unlock(&tasklist_lock); 267 268 return retval; 269 } 270 271 /** 272 * emergency_restart - reboot the system 273 * 274 * Without shutting down any hardware or taking any locks 275 * reboot the system. This is called when we know we are in 276 * trouble so this is our best effort to reboot. This is 277 * safe to call in interrupt context. 278 */ 279 void emergency_restart(void) 280 { 281 machine_emergency_restart(); 282 } 283 EXPORT_SYMBOL_GPL(emergency_restart); 284 285 void kernel_restart_prepare(char *cmd) 286 { 287 blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 288 system_state = SYSTEM_RESTART; 289 device_shutdown(); 290 sysdev_shutdown(); 291 } 292 293 /** 294 * kernel_restart - reboot the system 295 * @cmd: pointer to buffer containing command to execute for restart 296 * or %NULL 297 * 298 * Shutdown everything and perform a clean reboot. 299 * This is not safe to call in interrupt context. 300 */ 301 void kernel_restart(char *cmd) 302 { 303 kernel_restart_prepare(cmd); 304 if (!cmd) 305 printk(KERN_EMERG "Restarting system.\n"); 306 else 307 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 308 machine_restart(cmd); 309 } 310 EXPORT_SYMBOL_GPL(kernel_restart); 311 312 static void kernel_shutdown_prepare(enum system_states state) 313 { 314 blocking_notifier_call_chain(&reboot_notifier_list, 315 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); 316 system_state = state; 317 device_shutdown(); 318 } 319 /** 320 * kernel_halt - halt the system 321 * 322 * Shutdown everything and perform a clean system halt. 323 */ 324 void kernel_halt(void) 325 { 326 kernel_shutdown_prepare(SYSTEM_HALT); 327 sysdev_shutdown(); 328 printk(KERN_EMERG "System halted.\n"); 329 machine_halt(); 330 } 331 332 EXPORT_SYMBOL_GPL(kernel_halt); 333 334 /** 335 * kernel_power_off - power_off the system 336 * 337 * Shutdown everything and perform a clean system power_off. 338 */ 339 void kernel_power_off(void) 340 { 341 kernel_shutdown_prepare(SYSTEM_POWER_OFF); 342 if (pm_power_off_prepare) 343 pm_power_off_prepare(); 344 disable_nonboot_cpus(); 345 sysdev_shutdown(); 346 printk(KERN_EMERG "Power down.\n"); 347 machine_power_off(); 348 } 349 EXPORT_SYMBOL_GPL(kernel_power_off); 350 /* 351 * Reboot system call: for obvious reasons only root may call it, 352 * and even root needs to set up some magic numbers in the registers 353 * so that some mistake won't make this reboot the whole machine. 354 * You can also set the meaning of the ctrl-alt-del-key here. 355 * 356 * reboot doesn't sync: do that yourself before calling this. 357 */ 358 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg) 359 { 360 char buffer[256]; 361 362 /* We only trust the superuser with rebooting the system. */ 363 if (!capable(CAP_SYS_BOOT)) 364 return -EPERM; 365 366 /* For safety, we require "magic" arguments. */ 367 if (magic1 != LINUX_REBOOT_MAGIC1 || 368 (magic2 != LINUX_REBOOT_MAGIC2 && 369 magic2 != LINUX_REBOOT_MAGIC2A && 370 magic2 != LINUX_REBOOT_MAGIC2B && 371 magic2 != LINUX_REBOOT_MAGIC2C)) 372 return -EINVAL; 373 374 /* Instead of trying to make the power_off code look like 375 * halt when pm_power_off is not set do it the easy way. 376 */ 377 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) 378 cmd = LINUX_REBOOT_CMD_HALT; 379 380 lock_kernel(); 381 switch (cmd) { 382 case LINUX_REBOOT_CMD_RESTART: 383 kernel_restart(NULL); 384 break; 385 386 case LINUX_REBOOT_CMD_CAD_ON: 387 C_A_D = 1; 388 break; 389 390 case LINUX_REBOOT_CMD_CAD_OFF: 391 C_A_D = 0; 392 break; 393 394 case LINUX_REBOOT_CMD_HALT: 395 kernel_halt(); 396 unlock_kernel(); 397 do_exit(0); 398 break; 399 400 case LINUX_REBOOT_CMD_POWER_OFF: 401 kernel_power_off(); 402 unlock_kernel(); 403 do_exit(0); 404 break; 405 406 case LINUX_REBOOT_CMD_RESTART2: 407 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 408 unlock_kernel(); 409 return -EFAULT; 410 } 411 buffer[sizeof(buffer) - 1] = '\0'; 412 413 kernel_restart(buffer); 414 break; 415 416 #ifdef CONFIG_KEXEC 417 case LINUX_REBOOT_CMD_KEXEC: 418 { 419 int ret; 420 ret = kernel_kexec(); 421 unlock_kernel(); 422 return ret; 423 } 424 #endif 425 426 #ifdef CONFIG_HIBERNATION 427 case LINUX_REBOOT_CMD_SW_SUSPEND: 428 { 429 int ret = hibernate(); 430 unlock_kernel(); 431 return ret; 432 } 433 #endif 434 435 default: 436 unlock_kernel(); 437 return -EINVAL; 438 } 439 unlock_kernel(); 440 return 0; 441 } 442 443 static void deferred_cad(struct work_struct *dummy) 444 { 445 kernel_restart(NULL); 446 } 447 448 /* 449 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 450 * As it's called within an interrupt, it may NOT sync: the only choice 451 * is whether to reboot at once, or just ignore the ctrl-alt-del. 452 */ 453 void ctrl_alt_del(void) 454 { 455 static DECLARE_WORK(cad_work, deferred_cad); 456 457 if (C_A_D) 458 schedule_work(&cad_work); 459 else 460 kill_cad_pid(SIGINT, 1); 461 } 462 463 /* 464 * Unprivileged users may change the real gid to the effective gid 465 * or vice versa. (BSD-style) 466 * 467 * If you set the real gid at all, or set the effective gid to a value not 468 * equal to the real gid, then the saved gid is set to the new effective gid. 469 * 470 * This makes it possible for a setgid program to completely drop its 471 * privileges, which is often a useful assertion to make when you are doing 472 * a security audit over a program. 473 * 474 * The general idea is that a program which uses just setregid() will be 475 * 100% compatible with BSD. A program which uses just setgid() will be 476 * 100% compatible with POSIX with saved IDs. 477 * 478 * SMP: There are not races, the GIDs are checked only by filesystem 479 * operations (as far as semantic preservation is concerned). 480 */ 481 asmlinkage long sys_setregid(gid_t rgid, gid_t egid) 482 { 483 const struct cred *old; 484 struct cred *new; 485 int retval; 486 487 new = prepare_creds(); 488 if (!new) 489 return -ENOMEM; 490 old = current_cred(); 491 492 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); 493 if (retval) 494 goto error; 495 496 retval = -EPERM; 497 if (rgid != (gid_t) -1) { 498 if (old->gid == rgid || 499 old->egid == rgid || 500 capable(CAP_SETGID)) 501 new->gid = rgid; 502 else 503 goto error; 504 } 505 if (egid != (gid_t) -1) { 506 if (old->gid == egid || 507 old->egid == egid || 508 old->sgid == egid || 509 capable(CAP_SETGID)) 510 new->egid = egid; 511 else 512 goto error; 513 } 514 515 if (rgid != (gid_t) -1 || 516 (egid != (gid_t) -1 && egid != old->gid)) 517 new->sgid = new->egid; 518 new->fsgid = new->egid; 519 520 return commit_creds(new); 521 522 error: 523 abort_creds(new); 524 return retval; 525 } 526 527 /* 528 * setgid() is implemented like SysV w/ SAVED_IDS 529 * 530 * SMP: Same implicit races as above. 531 */ 532 asmlinkage long sys_setgid(gid_t gid) 533 { 534 const struct cred *old; 535 struct cred *new; 536 int retval; 537 538 new = prepare_creds(); 539 if (!new) 540 return -ENOMEM; 541 old = current_cred(); 542 543 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); 544 if (retval) 545 goto error; 546 547 retval = -EPERM; 548 if (capable(CAP_SETGID)) 549 new->gid = new->egid = new->sgid = new->fsgid = gid; 550 else if (gid == old->gid || gid == old->sgid) 551 new->egid = new->fsgid = gid; 552 else 553 goto error; 554 555 return commit_creds(new); 556 557 error: 558 abort_creds(new); 559 return retval; 560 } 561 562 /* 563 * change the user struct in a credentials set to match the new UID 564 */ 565 static int set_user(struct cred *new) 566 { 567 struct user_struct *new_user; 568 569 new_user = alloc_uid(current_user_ns(), new->uid); 570 if (!new_user) 571 return -EAGAIN; 572 573 if (atomic_read(&new_user->processes) >= 574 current->signal->rlim[RLIMIT_NPROC].rlim_cur && 575 new_user != INIT_USER) { 576 free_uid(new_user); 577 return -EAGAIN; 578 } 579 580 free_uid(new->user); 581 new->user = new_user; 582 return 0; 583 } 584 585 /* 586 * Unprivileged users may change the real uid to the effective uid 587 * or vice versa. (BSD-style) 588 * 589 * If you set the real uid at all, or set the effective uid to a value not 590 * equal to the real uid, then the saved uid is set to the new effective uid. 591 * 592 * This makes it possible for a setuid program to completely drop its 593 * privileges, which is often a useful assertion to make when you are doing 594 * a security audit over a program. 595 * 596 * The general idea is that a program which uses just setreuid() will be 597 * 100% compatible with BSD. A program which uses just setuid() will be 598 * 100% compatible with POSIX with saved IDs. 599 */ 600 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid) 601 { 602 const struct cred *old; 603 struct cred *new; 604 int retval; 605 606 new = prepare_creds(); 607 if (!new) 608 return -ENOMEM; 609 old = current_cred(); 610 611 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); 612 if (retval) 613 goto error; 614 615 retval = -EPERM; 616 if (ruid != (uid_t) -1) { 617 new->uid = ruid; 618 if (old->uid != ruid && 619 old->euid != ruid && 620 !capable(CAP_SETUID)) 621 goto error; 622 } 623 624 if (euid != (uid_t) -1) { 625 new->euid = euid; 626 if (old->uid != euid && 627 old->euid != euid && 628 old->suid != euid && 629 !capable(CAP_SETUID)) 630 goto error; 631 } 632 633 retval = -EAGAIN; 634 if (new->uid != old->uid && set_user(new) < 0) 635 goto error; 636 637 if (ruid != (uid_t) -1 || 638 (euid != (uid_t) -1 && euid != old->uid)) 639 new->suid = new->euid; 640 new->fsuid = new->euid; 641 642 retval = security_task_fix_setuid(new, old, LSM_SETID_RE); 643 if (retval < 0) 644 goto error; 645 646 return commit_creds(new); 647 648 error: 649 abort_creds(new); 650 return retval; 651 } 652 653 /* 654 * setuid() is implemented like SysV with SAVED_IDS 655 * 656 * Note that SAVED_ID's is deficient in that a setuid root program 657 * like sendmail, for example, cannot set its uid to be a normal 658 * user and then switch back, because if you're root, setuid() sets 659 * the saved uid too. If you don't like this, blame the bright people 660 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 661 * will allow a root program to temporarily drop privileges and be able to 662 * regain them by swapping the real and effective uid. 663 */ 664 asmlinkage long sys_setuid(uid_t uid) 665 { 666 const struct cred *old; 667 struct cred *new; 668 int retval; 669 670 new = prepare_creds(); 671 if (!new) 672 return -ENOMEM; 673 old = current_cred(); 674 675 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); 676 if (retval) 677 goto error; 678 679 retval = -EPERM; 680 if (capable(CAP_SETUID)) { 681 new->suid = new->uid = uid; 682 if (uid != old->uid && set_user(new) < 0) { 683 retval = -EAGAIN; 684 goto error; 685 } 686 } else if (uid != old->uid && uid != new->suid) { 687 goto error; 688 } 689 690 new->fsuid = new->euid = uid; 691 692 retval = security_task_fix_setuid(new, old, LSM_SETID_ID); 693 if (retval < 0) 694 goto error; 695 696 return commit_creds(new); 697 698 error: 699 abort_creds(new); 700 return retval; 701 } 702 703 704 /* 705 * This function implements a generic ability to update ruid, euid, 706 * and suid. This allows you to implement the 4.4 compatible seteuid(). 707 */ 708 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 709 { 710 const struct cred *old; 711 struct cred *new; 712 int retval; 713 714 new = prepare_creds(); 715 if (!new) 716 return -ENOMEM; 717 718 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); 719 if (retval) 720 goto error; 721 old = current_cred(); 722 723 retval = -EPERM; 724 if (!capable(CAP_SETUID)) { 725 if (ruid != (uid_t) -1 && ruid != old->uid && 726 ruid != old->euid && ruid != old->suid) 727 goto error; 728 if (euid != (uid_t) -1 && euid != old->uid && 729 euid != old->euid && euid != old->suid) 730 goto error; 731 if (suid != (uid_t) -1 && suid != old->uid && 732 suid != old->euid && suid != old->suid) 733 goto error; 734 } 735 736 retval = -EAGAIN; 737 if (ruid != (uid_t) -1) { 738 new->uid = ruid; 739 if (ruid != old->uid && set_user(new) < 0) 740 goto error; 741 } 742 if (euid != (uid_t) -1) 743 new->euid = euid; 744 if (suid != (uid_t) -1) 745 new->suid = suid; 746 new->fsuid = new->euid; 747 748 retval = security_task_fix_setuid(new, old, LSM_SETID_RES); 749 if (retval < 0) 750 goto error; 751 752 return commit_creds(new); 753 754 error: 755 abort_creds(new); 756 return retval; 757 } 758 759 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid) 760 { 761 const struct cred *cred = current_cred(); 762 int retval; 763 764 if (!(retval = put_user(cred->uid, ruid)) && 765 !(retval = put_user(cred->euid, euid))) 766 retval = put_user(cred->suid, suid); 767 768 return retval; 769 } 770 771 /* 772 * Same as above, but for rgid, egid, sgid. 773 */ 774 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 775 { 776 const struct cred *old; 777 struct cred *new; 778 int retval; 779 780 new = prepare_creds(); 781 if (!new) 782 return -ENOMEM; 783 old = current_cred(); 784 785 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); 786 if (retval) 787 goto error; 788 789 retval = -EPERM; 790 if (!capable(CAP_SETGID)) { 791 if (rgid != (gid_t) -1 && rgid != old->gid && 792 rgid != old->egid && rgid != old->sgid) 793 goto error; 794 if (egid != (gid_t) -1 && egid != old->gid && 795 egid != old->egid && egid != old->sgid) 796 goto error; 797 if (sgid != (gid_t) -1 && sgid != old->gid && 798 sgid != old->egid && sgid != old->sgid) 799 goto error; 800 } 801 802 if (rgid != (gid_t) -1) 803 new->gid = rgid; 804 if (egid != (gid_t) -1) 805 new->egid = egid; 806 if (sgid != (gid_t) -1) 807 new->sgid = sgid; 808 new->fsgid = new->egid; 809 810 return commit_creds(new); 811 812 error: 813 abort_creds(new); 814 return retval; 815 } 816 817 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid) 818 { 819 const struct cred *cred = current_cred(); 820 int retval; 821 822 if (!(retval = put_user(cred->gid, rgid)) && 823 !(retval = put_user(cred->egid, egid))) 824 retval = put_user(cred->sgid, sgid); 825 826 return retval; 827 } 828 829 830 /* 831 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 832 * is used for "access()" and for the NFS daemon (letting nfsd stay at 833 * whatever uid it wants to). It normally shadows "euid", except when 834 * explicitly set by setfsuid() or for access.. 835 */ 836 asmlinkage long sys_setfsuid(uid_t uid) 837 { 838 const struct cred *old; 839 struct cred *new; 840 uid_t old_fsuid; 841 842 new = prepare_creds(); 843 if (!new) 844 return current_fsuid(); 845 old = current_cred(); 846 old_fsuid = old->fsuid; 847 848 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0) 849 goto error; 850 851 if (uid == old->uid || uid == old->euid || 852 uid == old->suid || uid == old->fsuid || 853 capable(CAP_SETUID)) { 854 if (uid != old_fsuid) { 855 new->fsuid = uid; 856 if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0) 857 goto change_okay; 858 } 859 } 860 861 error: 862 abort_creds(new); 863 return old_fsuid; 864 865 change_okay: 866 commit_creds(new); 867 return old_fsuid; 868 } 869 870 /* 871 * Samma på svenska.. 872 */ 873 asmlinkage long sys_setfsgid(gid_t gid) 874 { 875 const struct cred *old; 876 struct cred *new; 877 gid_t old_fsgid; 878 879 new = prepare_creds(); 880 if (!new) 881 return current_fsgid(); 882 old = current_cred(); 883 old_fsgid = old->fsgid; 884 885 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) 886 goto error; 887 888 if (gid == old->gid || gid == old->egid || 889 gid == old->sgid || gid == old->fsgid || 890 capable(CAP_SETGID)) { 891 if (gid != old_fsgid) { 892 new->fsgid = gid; 893 goto change_okay; 894 } 895 } 896 897 error: 898 abort_creds(new); 899 return old_fsgid; 900 901 change_okay: 902 commit_creds(new); 903 return old_fsgid; 904 } 905 906 void do_sys_times(struct tms *tms) 907 { 908 struct task_cputime cputime; 909 cputime_t cutime, cstime; 910 911 thread_group_cputime(current, &cputime); 912 spin_lock_irq(¤t->sighand->siglock); 913 cutime = current->signal->cutime; 914 cstime = current->signal->cstime; 915 spin_unlock_irq(¤t->sighand->siglock); 916 tms->tms_utime = cputime_to_clock_t(cputime.utime); 917 tms->tms_stime = cputime_to_clock_t(cputime.stime); 918 tms->tms_cutime = cputime_to_clock_t(cutime); 919 tms->tms_cstime = cputime_to_clock_t(cstime); 920 } 921 922 asmlinkage long sys_times(struct tms __user * tbuf) 923 { 924 if (tbuf) { 925 struct tms tmp; 926 927 do_sys_times(&tmp); 928 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 929 return -EFAULT; 930 } 931 force_successful_syscall_return(); 932 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 933 } 934 935 /* 936 * This needs some heavy checking ... 937 * I just haven't the stomach for it. I also don't fully 938 * understand sessions/pgrp etc. Let somebody who does explain it. 939 * 940 * OK, I think I have the protection semantics right.... this is really 941 * only important on a multi-user system anyway, to make sure one user 942 * can't send a signal to a process owned by another. -TYT, 12/12/91 943 * 944 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 945 * LBT 04.03.94 946 */ 947 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid) 948 { 949 struct task_struct *p; 950 struct task_struct *group_leader = current->group_leader; 951 struct pid *pgrp; 952 int err; 953 954 if (!pid) 955 pid = task_pid_vnr(group_leader); 956 if (!pgid) 957 pgid = pid; 958 if (pgid < 0) 959 return -EINVAL; 960 961 /* From this point forward we keep holding onto the tasklist lock 962 * so that our parent does not change from under us. -DaveM 963 */ 964 write_lock_irq(&tasklist_lock); 965 966 err = -ESRCH; 967 p = find_task_by_vpid(pid); 968 if (!p) 969 goto out; 970 971 err = -EINVAL; 972 if (!thread_group_leader(p)) 973 goto out; 974 975 if (same_thread_group(p->real_parent, group_leader)) { 976 err = -EPERM; 977 if (task_session(p) != task_session(group_leader)) 978 goto out; 979 err = -EACCES; 980 if (p->did_exec) 981 goto out; 982 } else { 983 err = -ESRCH; 984 if (p != group_leader) 985 goto out; 986 } 987 988 err = -EPERM; 989 if (p->signal->leader) 990 goto out; 991 992 pgrp = task_pid(p); 993 if (pgid != pid) { 994 struct task_struct *g; 995 996 pgrp = find_vpid(pgid); 997 g = pid_task(pgrp, PIDTYPE_PGID); 998 if (!g || task_session(g) != task_session(group_leader)) 999 goto out; 1000 } 1001 1002 err = security_task_setpgid(p, pgid); 1003 if (err) 1004 goto out; 1005 1006 if (task_pgrp(p) != pgrp) { 1007 change_pid(p, PIDTYPE_PGID, pgrp); 1008 set_task_pgrp(p, pid_nr(pgrp)); 1009 } 1010 1011 err = 0; 1012 out: 1013 /* All paths lead to here, thus we are safe. -DaveM */ 1014 write_unlock_irq(&tasklist_lock); 1015 return err; 1016 } 1017 1018 asmlinkage long sys_getpgid(pid_t pid) 1019 { 1020 struct task_struct *p; 1021 struct pid *grp; 1022 int retval; 1023 1024 rcu_read_lock(); 1025 if (!pid) 1026 grp = task_pgrp(current); 1027 else { 1028 retval = -ESRCH; 1029 p = find_task_by_vpid(pid); 1030 if (!p) 1031 goto out; 1032 grp = task_pgrp(p); 1033 if (!grp) 1034 goto out; 1035 1036 retval = security_task_getpgid(p); 1037 if (retval) 1038 goto out; 1039 } 1040 retval = pid_vnr(grp); 1041 out: 1042 rcu_read_unlock(); 1043 return retval; 1044 } 1045 1046 #ifdef __ARCH_WANT_SYS_GETPGRP 1047 1048 asmlinkage long sys_getpgrp(void) 1049 { 1050 return sys_getpgid(0); 1051 } 1052 1053 #endif 1054 1055 asmlinkage long sys_getsid(pid_t pid) 1056 { 1057 struct task_struct *p; 1058 struct pid *sid; 1059 int retval; 1060 1061 rcu_read_lock(); 1062 if (!pid) 1063 sid = task_session(current); 1064 else { 1065 retval = -ESRCH; 1066 p = find_task_by_vpid(pid); 1067 if (!p) 1068 goto out; 1069 sid = task_session(p); 1070 if (!sid) 1071 goto out; 1072 1073 retval = security_task_getsid(p); 1074 if (retval) 1075 goto out; 1076 } 1077 retval = pid_vnr(sid); 1078 out: 1079 rcu_read_unlock(); 1080 return retval; 1081 } 1082 1083 asmlinkage long sys_setsid(void) 1084 { 1085 struct task_struct *group_leader = current->group_leader; 1086 struct pid *sid = task_pid(group_leader); 1087 pid_t session = pid_vnr(sid); 1088 int err = -EPERM; 1089 1090 write_lock_irq(&tasklist_lock); 1091 /* Fail if I am already a session leader */ 1092 if (group_leader->signal->leader) 1093 goto out; 1094 1095 /* Fail if a process group id already exists that equals the 1096 * proposed session id. 1097 */ 1098 if (pid_task(sid, PIDTYPE_PGID)) 1099 goto out; 1100 1101 group_leader->signal->leader = 1; 1102 __set_special_pids(sid); 1103 1104 proc_clear_tty(group_leader); 1105 1106 err = session; 1107 out: 1108 write_unlock_irq(&tasklist_lock); 1109 return err; 1110 } 1111 1112 /* 1113 * Supplementary group IDs 1114 */ 1115 1116 /* init to 2 - one for init_task, one to ensure it is never freed */ 1117 struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; 1118 1119 struct group_info *groups_alloc(int gidsetsize) 1120 { 1121 struct group_info *group_info; 1122 int nblocks; 1123 int i; 1124 1125 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; 1126 /* Make sure we always allocate at least one indirect block pointer */ 1127 nblocks = nblocks ? : 1; 1128 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); 1129 if (!group_info) 1130 return NULL; 1131 group_info->ngroups = gidsetsize; 1132 group_info->nblocks = nblocks; 1133 atomic_set(&group_info->usage, 1); 1134 1135 if (gidsetsize <= NGROUPS_SMALL) 1136 group_info->blocks[0] = group_info->small_block; 1137 else { 1138 for (i = 0; i < nblocks; i++) { 1139 gid_t *b; 1140 b = (void *)__get_free_page(GFP_USER); 1141 if (!b) 1142 goto out_undo_partial_alloc; 1143 group_info->blocks[i] = b; 1144 } 1145 } 1146 return group_info; 1147 1148 out_undo_partial_alloc: 1149 while (--i >= 0) { 1150 free_page((unsigned long)group_info->blocks[i]); 1151 } 1152 kfree(group_info); 1153 return NULL; 1154 } 1155 1156 EXPORT_SYMBOL(groups_alloc); 1157 1158 void groups_free(struct group_info *group_info) 1159 { 1160 if (group_info->blocks[0] != group_info->small_block) { 1161 int i; 1162 for (i = 0; i < group_info->nblocks; i++) 1163 free_page((unsigned long)group_info->blocks[i]); 1164 } 1165 kfree(group_info); 1166 } 1167 1168 EXPORT_SYMBOL(groups_free); 1169 1170 /* export the group_info to a user-space array */ 1171 static int groups_to_user(gid_t __user *grouplist, 1172 const struct group_info *group_info) 1173 { 1174 int i; 1175 unsigned int count = group_info->ngroups; 1176 1177 for (i = 0; i < group_info->nblocks; i++) { 1178 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count); 1179 unsigned int len = cp_count * sizeof(*grouplist); 1180 1181 if (copy_to_user(grouplist, group_info->blocks[i], len)) 1182 return -EFAULT; 1183 1184 grouplist += NGROUPS_PER_BLOCK; 1185 count -= cp_count; 1186 } 1187 return 0; 1188 } 1189 1190 /* fill a group_info from a user-space array - it must be allocated already */ 1191 static int groups_from_user(struct group_info *group_info, 1192 gid_t __user *grouplist) 1193 { 1194 int i; 1195 unsigned int count = group_info->ngroups; 1196 1197 for (i = 0; i < group_info->nblocks; i++) { 1198 unsigned int cp_count = min(NGROUPS_PER_BLOCK, count); 1199 unsigned int len = cp_count * sizeof(*grouplist); 1200 1201 if (copy_from_user(group_info->blocks[i], grouplist, len)) 1202 return -EFAULT; 1203 1204 grouplist += NGROUPS_PER_BLOCK; 1205 count -= cp_count; 1206 } 1207 return 0; 1208 } 1209 1210 /* a simple Shell sort */ 1211 static void groups_sort(struct group_info *group_info) 1212 { 1213 int base, max, stride; 1214 int gidsetsize = group_info->ngroups; 1215 1216 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) 1217 ; /* nothing */ 1218 stride /= 3; 1219 1220 while (stride) { 1221 max = gidsetsize - stride; 1222 for (base = 0; base < max; base++) { 1223 int left = base; 1224 int right = left + stride; 1225 gid_t tmp = GROUP_AT(group_info, right); 1226 1227 while (left >= 0 && GROUP_AT(group_info, left) > tmp) { 1228 GROUP_AT(group_info, right) = 1229 GROUP_AT(group_info, left); 1230 right = left; 1231 left -= stride; 1232 } 1233 GROUP_AT(group_info, right) = tmp; 1234 } 1235 stride /= 3; 1236 } 1237 } 1238 1239 /* a simple bsearch */ 1240 int groups_search(const struct group_info *group_info, gid_t grp) 1241 { 1242 unsigned int left, right; 1243 1244 if (!group_info) 1245 return 0; 1246 1247 left = 0; 1248 right = group_info->ngroups; 1249 while (left < right) { 1250 unsigned int mid = (left+right)/2; 1251 int cmp = grp - GROUP_AT(group_info, mid); 1252 if (cmp > 0) 1253 left = mid + 1; 1254 else if (cmp < 0) 1255 right = mid; 1256 else 1257 return 1; 1258 } 1259 return 0; 1260 } 1261 1262 /** 1263 * set_groups - Change a group subscription in a set of credentials 1264 * @new: The newly prepared set of credentials to alter 1265 * @group_info: The group list to install 1266 * 1267 * Validate a group subscription and, if valid, insert it into a set 1268 * of credentials. 1269 */ 1270 int set_groups(struct cred *new, struct group_info *group_info) 1271 { 1272 int retval; 1273 1274 retval = security_task_setgroups(group_info); 1275 if (retval) 1276 return retval; 1277 1278 put_group_info(new->group_info); 1279 groups_sort(group_info); 1280 get_group_info(group_info); 1281 new->group_info = group_info; 1282 return 0; 1283 } 1284 1285 EXPORT_SYMBOL(set_groups); 1286 1287 /** 1288 * set_current_groups - Change current's group subscription 1289 * @group_info: The group list to impose 1290 * 1291 * Validate a group subscription and, if valid, impose it upon current's task 1292 * security record. 1293 */ 1294 int set_current_groups(struct group_info *group_info) 1295 { 1296 struct cred *new; 1297 int ret; 1298 1299 new = prepare_creds(); 1300 if (!new) 1301 return -ENOMEM; 1302 1303 ret = set_groups(new, group_info); 1304 if (ret < 0) { 1305 abort_creds(new); 1306 return ret; 1307 } 1308 1309 return commit_creds(new); 1310 } 1311 1312 EXPORT_SYMBOL(set_current_groups); 1313 1314 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) 1315 { 1316 const struct cred *cred = current_cred(); 1317 int i; 1318 1319 if (gidsetsize < 0) 1320 return -EINVAL; 1321 1322 /* no need to grab task_lock here; it cannot change */ 1323 i = cred->group_info->ngroups; 1324 if (gidsetsize) { 1325 if (i > gidsetsize) { 1326 i = -EINVAL; 1327 goto out; 1328 } 1329 if (groups_to_user(grouplist, cred->group_info)) { 1330 i = -EFAULT; 1331 goto out; 1332 } 1333 } 1334 out: 1335 return i; 1336 } 1337 1338 /* 1339 * SMP: Our groups are copy-on-write. We can set them safely 1340 * without another task interfering. 1341 */ 1342 1343 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist) 1344 { 1345 struct group_info *group_info; 1346 int retval; 1347 1348 if (!capable(CAP_SETGID)) 1349 return -EPERM; 1350 if ((unsigned)gidsetsize > NGROUPS_MAX) 1351 return -EINVAL; 1352 1353 group_info = groups_alloc(gidsetsize); 1354 if (!group_info) 1355 return -ENOMEM; 1356 retval = groups_from_user(group_info, grouplist); 1357 if (retval) { 1358 put_group_info(group_info); 1359 return retval; 1360 } 1361 1362 retval = set_current_groups(group_info); 1363 put_group_info(group_info); 1364 1365 return retval; 1366 } 1367 1368 /* 1369 * Check whether we're fsgid/egid or in the supplemental group.. 1370 */ 1371 int in_group_p(gid_t grp) 1372 { 1373 const struct cred *cred = current_cred(); 1374 int retval = 1; 1375 1376 if (grp != cred->fsgid) 1377 retval = groups_search(cred->group_info, grp); 1378 return retval; 1379 } 1380 1381 EXPORT_SYMBOL(in_group_p); 1382 1383 int in_egroup_p(gid_t grp) 1384 { 1385 const struct cred *cred = current_cred(); 1386 int retval = 1; 1387 1388 if (grp != cred->egid) 1389 retval = groups_search(cred->group_info, grp); 1390 return retval; 1391 } 1392 1393 EXPORT_SYMBOL(in_egroup_p); 1394 1395 DECLARE_RWSEM(uts_sem); 1396 1397 asmlinkage long sys_newuname(struct new_utsname __user * name) 1398 { 1399 int errno = 0; 1400 1401 down_read(&uts_sem); 1402 if (copy_to_user(name, utsname(), sizeof *name)) 1403 errno = -EFAULT; 1404 up_read(&uts_sem); 1405 return errno; 1406 } 1407 1408 asmlinkage long sys_sethostname(char __user *name, int len) 1409 { 1410 int errno; 1411 char tmp[__NEW_UTS_LEN]; 1412 1413 if (!capable(CAP_SYS_ADMIN)) 1414 return -EPERM; 1415 if (len < 0 || len > __NEW_UTS_LEN) 1416 return -EINVAL; 1417 down_write(&uts_sem); 1418 errno = -EFAULT; 1419 if (!copy_from_user(tmp, name, len)) { 1420 struct new_utsname *u = utsname(); 1421 1422 memcpy(u->nodename, tmp, len); 1423 memset(u->nodename + len, 0, sizeof(u->nodename) - len); 1424 errno = 0; 1425 } 1426 up_write(&uts_sem); 1427 return errno; 1428 } 1429 1430 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1431 1432 asmlinkage long sys_gethostname(char __user *name, int len) 1433 { 1434 int i, errno; 1435 struct new_utsname *u; 1436 1437 if (len < 0) 1438 return -EINVAL; 1439 down_read(&uts_sem); 1440 u = utsname(); 1441 i = 1 + strlen(u->nodename); 1442 if (i > len) 1443 i = len; 1444 errno = 0; 1445 if (copy_to_user(name, u->nodename, i)) 1446 errno = -EFAULT; 1447 up_read(&uts_sem); 1448 return errno; 1449 } 1450 1451 #endif 1452 1453 /* 1454 * Only setdomainname; getdomainname can be implemented by calling 1455 * uname() 1456 */ 1457 asmlinkage long sys_setdomainname(char __user *name, int len) 1458 { 1459 int errno; 1460 char tmp[__NEW_UTS_LEN]; 1461 1462 if (!capable(CAP_SYS_ADMIN)) 1463 return -EPERM; 1464 if (len < 0 || len > __NEW_UTS_LEN) 1465 return -EINVAL; 1466 1467 down_write(&uts_sem); 1468 errno = -EFAULT; 1469 if (!copy_from_user(tmp, name, len)) { 1470 struct new_utsname *u = utsname(); 1471 1472 memcpy(u->domainname, tmp, len); 1473 memset(u->domainname + len, 0, sizeof(u->domainname) - len); 1474 errno = 0; 1475 } 1476 up_write(&uts_sem); 1477 return errno; 1478 } 1479 1480 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1481 { 1482 if (resource >= RLIM_NLIMITS) 1483 return -EINVAL; 1484 else { 1485 struct rlimit value; 1486 task_lock(current->group_leader); 1487 value = current->signal->rlim[resource]; 1488 task_unlock(current->group_leader); 1489 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1490 } 1491 } 1492 1493 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1494 1495 /* 1496 * Back compatibility for getrlimit. Needed for some apps. 1497 */ 1498 1499 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1500 { 1501 struct rlimit x; 1502 if (resource >= RLIM_NLIMITS) 1503 return -EINVAL; 1504 1505 task_lock(current->group_leader); 1506 x = current->signal->rlim[resource]; 1507 task_unlock(current->group_leader); 1508 if (x.rlim_cur > 0x7FFFFFFF) 1509 x.rlim_cur = 0x7FFFFFFF; 1510 if (x.rlim_max > 0x7FFFFFFF) 1511 x.rlim_max = 0x7FFFFFFF; 1512 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1513 } 1514 1515 #endif 1516 1517 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) 1518 { 1519 struct rlimit new_rlim, *old_rlim; 1520 int retval; 1521 1522 if (resource >= RLIM_NLIMITS) 1523 return -EINVAL; 1524 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1525 return -EFAULT; 1526 old_rlim = current->signal->rlim + resource; 1527 if ((new_rlim.rlim_max > old_rlim->rlim_max) && 1528 !capable(CAP_SYS_RESOURCE)) 1529 return -EPERM; 1530 1531 if (resource == RLIMIT_NOFILE) { 1532 if (new_rlim.rlim_max == RLIM_INFINITY) 1533 new_rlim.rlim_max = sysctl_nr_open; 1534 if (new_rlim.rlim_cur == RLIM_INFINITY) 1535 new_rlim.rlim_cur = sysctl_nr_open; 1536 if (new_rlim.rlim_max > sysctl_nr_open) 1537 return -EPERM; 1538 } 1539 1540 if (new_rlim.rlim_cur > new_rlim.rlim_max) 1541 return -EINVAL; 1542 1543 retval = security_task_setrlimit(resource, &new_rlim); 1544 if (retval) 1545 return retval; 1546 1547 if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) { 1548 /* 1549 * The caller is asking for an immediate RLIMIT_CPU 1550 * expiry. But we use the zero value to mean "it was 1551 * never set". So let's cheat and make it one second 1552 * instead 1553 */ 1554 new_rlim.rlim_cur = 1; 1555 } 1556 1557 task_lock(current->group_leader); 1558 *old_rlim = new_rlim; 1559 task_unlock(current->group_leader); 1560 1561 if (resource != RLIMIT_CPU) 1562 goto out; 1563 1564 /* 1565 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1566 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1567 * very long-standing error, and fixing it now risks breakage of 1568 * applications, so we live with it 1569 */ 1570 if (new_rlim.rlim_cur == RLIM_INFINITY) 1571 goto out; 1572 1573 update_rlimit_cpu(new_rlim.rlim_cur); 1574 out: 1575 return 0; 1576 } 1577 1578 /* 1579 * It would make sense to put struct rusage in the task_struct, 1580 * except that would make the task_struct be *really big*. After 1581 * task_struct gets moved into malloc'ed memory, it would 1582 * make sense to do this. It will make moving the rest of the information 1583 * a lot simpler! (Which we're not doing right now because we're not 1584 * measuring them yet). 1585 * 1586 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1587 * races with threads incrementing their own counters. But since word 1588 * reads are atomic, we either get new values or old values and we don't 1589 * care which for the sums. We always take the siglock to protect reading 1590 * the c* fields from p->signal from races with exit.c updating those 1591 * fields when reaping, so a sample either gets all the additions of a 1592 * given child after it's reaped, or none so this sample is before reaping. 1593 * 1594 * Locking: 1595 * We need to take the siglock for CHILDEREN, SELF and BOTH 1596 * for the cases current multithreaded, non-current single threaded 1597 * non-current multithreaded. Thread traversal is now safe with 1598 * the siglock held. 1599 * Strictly speaking, we donot need to take the siglock if we are current and 1600 * single threaded, as no one else can take our signal_struct away, no one 1601 * else can reap the children to update signal->c* counters, and no one else 1602 * can race with the signal-> fields. If we do not take any lock, the 1603 * signal-> fields could be read out of order while another thread was just 1604 * exiting. So we should place a read memory barrier when we avoid the lock. 1605 * On the writer side, write memory barrier is implied in __exit_signal 1606 * as __exit_signal releases the siglock spinlock after updating the signal-> 1607 * fields. But we don't do this yet to keep things simple. 1608 * 1609 */ 1610 1611 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r) 1612 { 1613 r->ru_nvcsw += t->nvcsw; 1614 r->ru_nivcsw += t->nivcsw; 1615 r->ru_minflt += t->min_flt; 1616 r->ru_majflt += t->maj_flt; 1617 r->ru_inblock += task_io_get_inblock(t); 1618 r->ru_oublock += task_io_get_oublock(t); 1619 } 1620 1621 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1622 { 1623 struct task_struct *t; 1624 unsigned long flags; 1625 cputime_t utime, stime; 1626 struct task_cputime cputime; 1627 1628 memset((char *) r, 0, sizeof *r); 1629 utime = stime = cputime_zero; 1630 1631 if (who == RUSAGE_THREAD) { 1632 utime = task_utime(current); 1633 stime = task_stime(current); 1634 accumulate_thread_rusage(p, r); 1635 goto out; 1636 } 1637 1638 if (!lock_task_sighand(p, &flags)) 1639 return; 1640 1641 switch (who) { 1642 case RUSAGE_BOTH: 1643 case RUSAGE_CHILDREN: 1644 utime = p->signal->cutime; 1645 stime = p->signal->cstime; 1646 r->ru_nvcsw = p->signal->cnvcsw; 1647 r->ru_nivcsw = p->signal->cnivcsw; 1648 r->ru_minflt = p->signal->cmin_flt; 1649 r->ru_majflt = p->signal->cmaj_flt; 1650 r->ru_inblock = p->signal->cinblock; 1651 r->ru_oublock = p->signal->coublock; 1652 1653 if (who == RUSAGE_CHILDREN) 1654 break; 1655 1656 case RUSAGE_SELF: 1657 thread_group_cputime(p, &cputime); 1658 utime = cputime_add(utime, cputime.utime); 1659 stime = cputime_add(stime, cputime.stime); 1660 r->ru_nvcsw += p->signal->nvcsw; 1661 r->ru_nivcsw += p->signal->nivcsw; 1662 r->ru_minflt += p->signal->min_flt; 1663 r->ru_majflt += p->signal->maj_flt; 1664 r->ru_inblock += p->signal->inblock; 1665 r->ru_oublock += p->signal->oublock; 1666 t = p; 1667 do { 1668 accumulate_thread_rusage(t, r); 1669 t = next_thread(t); 1670 } while (t != p); 1671 break; 1672 1673 default: 1674 BUG(); 1675 } 1676 unlock_task_sighand(p, &flags); 1677 1678 out: 1679 cputime_to_timeval(utime, &r->ru_utime); 1680 cputime_to_timeval(stime, &r->ru_stime); 1681 } 1682 1683 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1684 { 1685 struct rusage r; 1686 k_getrusage(p, who, &r); 1687 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1688 } 1689 1690 asmlinkage long sys_getrusage(int who, struct rusage __user *ru) 1691 { 1692 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN && 1693 who != RUSAGE_THREAD) 1694 return -EINVAL; 1695 return getrusage(current, who, ru); 1696 } 1697 1698 asmlinkage long sys_umask(int mask) 1699 { 1700 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1701 return mask; 1702 } 1703 1704 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, 1705 unsigned long arg4, unsigned long arg5) 1706 { 1707 struct task_struct *me = current; 1708 unsigned char comm[sizeof(me->comm)]; 1709 long error; 1710 1711 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1712 if (error != -ENOSYS) 1713 return error; 1714 1715 error = 0; 1716 switch (option) { 1717 case PR_SET_PDEATHSIG: 1718 if (!valid_signal(arg2)) { 1719 error = -EINVAL; 1720 break; 1721 } 1722 me->pdeath_signal = arg2; 1723 error = 0; 1724 break; 1725 case PR_GET_PDEATHSIG: 1726 error = put_user(me->pdeath_signal, (int __user *)arg2); 1727 break; 1728 case PR_GET_DUMPABLE: 1729 error = get_dumpable(me->mm); 1730 break; 1731 case PR_SET_DUMPABLE: 1732 if (arg2 < 0 || arg2 > 1) { 1733 error = -EINVAL; 1734 break; 1735 } 1736 set_dumpable(me->mm, arg2); 1737 error = 0; 1738 break; 1739 1740 case PR_SET_UNALIGN: 1741 error = SET_UNALIGN_CTL(me, arg2); 1742 break; 1743 case PR_GET_UNALIGN: 1744 error = GET_UNALIGN_CTL(me, arg2); 1745 break; 1746 case PR_SET_FPEMU: 1747 error = SET_FPEMU_CTL(me, arg2); 1748 break; 1749 case PR_GET_FPEMU: 1750 error = GET_FPEMU_CTL(me, arg2); 1751 break; 1752 case PR_SET_FPEXC: 1753 error = SET_FPEXC_CTL(me, arg2); 1754 break; 1755 case PR_GET_FPEXC: 1756 error = GET_FPEXC_CTL(me, arg2); 1757 break; 1758 case PR_GET_TIMING: 1759 error = PR_TIMING_STATISTICAL; 1760 break; 1761 case PR_SET_TIMING: 1762 if (arg2 != PR_TIMING_STATISTICAL) 1763 error = -EINVAL; 1764 else 1765 error = 0; 1766 break; 1767 1768 case PR_SET_NAME: 1769 comm[sizeof(me->comm)-1] = 0; 1770 if (strncpy_from_user(comm, (char __user *)arg2, 1771 sizeof(me->comm) - 1) < 0) 1772 return -EFAULT; 1773 set_task_comm(me, comm); 1774 return 0; 1775 case PR_GET_NAME: 1776 get_task_comm(comm, me); 1777 if (copy_to_user((char __user *)arg2, comm, 1778 sizeof(comm))) 1779 return -EFAULT; 1780 return 0; 1781 case PR_GET_ENDIAN: 1782 error = GET_ENDIAN(me, arg2); 1783 break; 1784 case PR_SET_ENDIAN: 1785 error = SET_ENDIAN(me, arg2); 1786 break; 1787 1788 case PR_GET_SECCOMP: 1789 error = prctl_get_seccomp(); 1790 break; 1791 case PR_SET_SECCOMP: 1792 error = prctl_set_seccomp(arg2); 1793 break; 1794 case PR_GET_TSC: 1795 error = GET_TSC_CTL(arg2); 1796 break; 1797 case PR_SET_TSC: 1798 error = SET_TSC_CTL(arg2); 1799 break; 1800 case PR_GET_TIMERSLACK: 1801 error = current->timer_slack_ns; 1802 break; 1803 case PR_SET_TIMERSLACK: 1804 if (arg2 <= 0) 1805 current->timer_slack_ns = 1806 current->default_timer_slack_ns; 1807 else 1808 current->timer_slack_ns = arg2; 1809 error = 0; 1810 break; 1811 default: 1812 error = -EINVAL; 1813 break; 1814 } 1815 return error; 1816 } 1817 1818 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep, 1819 struct getcpu_cache __user *unused) 1820 { 1821 int err = 0; 1822 int cpu = raw_smp_processor_id(); 1823 if (cpup) 1824 err |= put_user(cpu, cpup); 1825 if (nodep) 1826 err |= put_user(cpu_to_node(cpu), nodep); 1827 return err ? -EFAULT : 0; 1828 } 1829 1830 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff"; 1831 1832 static void argv_cleanup(char **argv, char **envp) 1833 { 1834 argv_free(argv); 1835 } 1836 1837 /** 1838 * orderly_poweroff - Trigger an orderly system poweroff 1839 * @force: force poweroff if command execution fails 1840 * 1841 * This may be called from any context to trigger a system shutdown. 1842 * If the orderly shutdown fails, it will force an immediate shutdown. 1843 */ 1844 int orderly_poweroff(bool force) 1845 { 1846 int argc; 1847 char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc); 1848 static char *envp[] = { 1849 "HOME=/", 1850 "PATH=/sbin:/bin:/usr/sbin:/usr/bin", 1851 NULL 1852 }; 1853 int ret = -ENOMEM; 1854 struct subprocess_info *info; 1855 1856 if (argv == NULL) { 1857 printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n", 1858 __func__, poweroff_cmd); 1859 goto out; 1860 } 1861 1862 info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC); 1863 if (info == NULL) { 1864 argv_free(argv); 1865 goto out; 1866 } 1867 1868 call_usermodehelper_setcleanup(info, argv_cleanup); 1869 1870 ret = call_usermodehelper_exec(info, UMH_NO_WAIT); 1871 1872 out: 1873 if (ret && force) { 1874 printk(KERN_WARNING "Failed to start orderly shutdown: " 1875 "forcing the issue\n"); 1876 1877 /* I guess this should try to kick off some daemon to 1878 sync and poweroff asap. Or not even bother syncing 1879 if we're doing an emergency shutdown? */ 1880 emergency_sync(); 1881 kernel_power_off(); 1882 } 1883 1884 return ret; 1885 } 1886 EXPORT_SYMBOL_GPL(orderly_poweroff); 1887