xref: /linux-6.15/kernel/sys.c (revision 2e4c77be)
1 /*
2  *  linux/kernel/sys.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 #include <linux/module.h>
8 #include <linux/mm.h>
9 #include <linux/utsname.h>
10 #include <linux/mman.h>
11 #include <linux/smp_lock.h>
12 #include <linux/notifier.h>
13 #include <linux/reboot.h>
14 #include <linux/prctl.h>
15 #include <linux/highuid.h>
16 #include <linux/fs.h>
17 #include <linux/resource.h>
18 #include <linux/kernel.h>
19 #include <linux/kexec.h>
20 #include <linux/workqueue.h>
21 #include <linux/capability.h>
22 #include <linux/device.h>
23 #include <linux/key.h>
24 #include <linux/times.h>
25 #include <linux/posix-timers.h>
26 #include <linux/security.h>
27 #include <linux/dcookies.h>
28 #include <linux/suspend.h>
29 #include <linux/tty.h>
30 #include <linux/signal.h>
31 #include <linux/cn_proc.h>
32 #include <linux/getcpu.h>
33 #include <linux/task_io_accounting_ops.h>
34 #include <linux/seccomp.h>
35 #include <linux/cpu.h>
36 #include <linux/ptrace.h>
37 
38 #include <linux/compat.h>
39 #include <linux/syscalls.h>
40 #include <linux/kprobes.h>
41 #include <linux/user_namespace.h>
42 
43 #include <asm/uaccess.h>
44 #include <asm/io.h>
45 #include <asm/unistd.h>
46 
47 #ifndef SET_UNALIGN_CTL
48 # define SET_UNALIGN_CTL(a,b)	(-EINVAL)
49 #endif
50 #ifndef GET_UNALIGN_CTL
51 # define GET_UNALIGN_CTL(a,b)	(-EINVAL)
52 #endif
53 #ifndef SET_FPEMU_CTL
54 # define SET_FPEMU_CTL(a,b)	(-EINVAL)
55 #endif
56 #ifndef GET_FPEMU_CTL
57 # define GET_FPEMU_CTL(a,b)	(-EINVAL)
58 #endif
59 #ifndef SET_FPEXC_CTL
60 # define SET_FPEXC_CTL(a,b)	(-EINVAL)
61 #endif
62 #ifndef GET_FPEXC_CTL
63 # define GET_FPEXC_CTL(a,b)	(-EINVAL)
64 #endif
65 #ifndef GET_ENDIAN
66 # define GET_ENDIAN(a,b)	(-EINVAL)
67 #endif
68 #ifndef SET_ENDIAN
69 # define SET_ENDIAN(a,b)	(-EINVAL)
70 #endif
71 #ifndef GET_TSC_CTL
72 # define GET_TSC_CTL(a)		(-EINVAL)
73 #endif
74 #ifndef SET_TSC_CTL
75 # define SET_TSC_CTL(a)		(-EINVAL)
76 #endif
77 
78 /*
79  * this is where the system-wide overflow UID and GID are defined, for
80  * architectures that now have 32-bit UID/GID but didn't in the past
81  */
82 
83 int overflowuid = DEFAULT_OVERFLOWUID;
84 int overflowgid = DEFAULT_OVERFLOWGID;
85 
86 #ifdef CONFIG_UID16
87 EXPORT_SYMBOL(overflowuid);
88 EXPORT_SYMBOL(overflowgid);
89 #endif
90 
91 /*
92  * the same as above, but for filesystems which can only store a 16-bit
93  * UID and GID. as such, this is needed on all architectures
94  */
95 
96 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID;
97 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID;
98 
99 EXPORT_SYMBOL(fs_overflowuid);
100 EXPORT_SYMBOL(fs_overflowgid);
101 
102 /*
103  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
104  */
105 
106 int C_A_D = 1;
107 struct pid *cad_pid;
108 EXPORT_SYMBOL(cad_pid);
109 
110 /*
111  * If set, this is used for preparing the system to power off.
112  */
113 
114 void (*pm_power_off_prepare)(void);
115 
116 /*
117  * set the priority of a task
118  * - the caller must hold the RCU read lock
119  */
120 static int set_one_prio(struct task_struct *p, int niceval, int error)
121 {
122 	const struct cred *cred = current_cred(), *pcred = __task_cred(p);
123 	int no_nice;
124 
125 	if (pcred->uid  != cred->euid &&
126 	    pcred->euid != cred->euid && !capable(CAP_SYS_NICE)) {
127 		error = -EPERM;
128 		goto out;
129 	}
130 	if (niceval < task_nice(p) && !can_nice(p, niceval)) {
131 		error = -EACCES;
132 		goto out;
133 	}
134 	no_nice = security_task_setnice(p, niceval);
135 	if (no_nice) {
136 		error = no_nice;
137 		goto out;
138 	}
139 	if (error == -ESRCH)
140 		error = 0;
141 	set_user_nice(p, niceval);
142 out:
143 	return error;
144 }
145 
146 asmlinkage long sys_setpriority(int which, int who, int niceval)
147 {
148 	struct task_struct *g, *p;
149 	struct user_struct *user;
150 	const struct cred *cred = current_cred();
151 	int error = -EINVAL;
152 	struct pid *pgrp;
153 
154 	if (which > PRIO_USER || which < PRIO_PROCESS)
155 		goto out;
156 
157 	/* normalize: avoid signed division (rounding problems) */
158 	error = -ESRCH;
159 	if (niceval < -20)
160 		niceval = -20;
161 	if (niceval > 19)
162 		niceval = 19;
163 
164 	read_lock(&tasklist_lock);
165 	switch (which) {
166 		case PRIO_PROCESS:
167 			if (who)
168 				p = find_task_by_vpid(who);
169 			else
170 				p = current;
171 			if (p)
172 				error = set_one_prio(p, niceval, error);
173 			break;
174 		case PRIO_PGRP:
175 			if (who)
176 				pgrp = find_vpid(who);
177 			else
178 				pgrp = task_pgrp(current);
179 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
180 				error = set_one_prio(p, niceval, error);
181 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
182 			break;
183 		case PRIO_USER:
184 			user = (struct user_struct *) cred->user;
185 			if (!who)
186 				who = cred->uid;
187 			else if ((who != cred->uid) &&
188 				 !(user = find_user(who)))
189 				goto out_unlock;	/* No processes for this user */
190 
191 			do_each_thread(g, p)
192 				if (__task_cred(p)->uid == who)
193 					error = set_one_prio(p, niceval, error);
194 			while_each_thread(g, p);
195 			if (who != cred->uid)
196 				free_uid(user);		/* For find_user() */
197 			break;
198 	}
199 out_unlock:
200 	read_unlock(&tasklist_lock);
201 out:
202 	return error;
203 }
204 
205 /*
206  * Ugh. To avoid negative return values, "getpriority()" will
207  * not return the normal nice-value, but a negated value that
208  * has been offset by 20 (ie it returns 40..1 instead of -20..19)
209  * to stay compatible.
210  */
211 asmlinkage long sys_getpriority(int which, int who)
212 {
213 	struct task_struct *g, *p;
214 	struct user_struct *user;
215 	const struct cred *cred = current_cred();
216 	long niceval, retval = -ESRCH;
217 	struct pid *pgrp;
218 
219 	if (which > PRIO_USER || which < PRIO_PROCESS)
220 		return -EINVAL;
221 
222 	read_lock(&tasklist_lock);
223 	switch (which) {
224 		case PRIO_PROCESS:
225 			if (who)
226 				p = find_task_by_vpid(who);
227 			else
228 				p = current;
229 			if (p) {
230 				niceval = 20 - task_nice(p);
231 				if (niceval > retval)
232 					retval = niceval;
233 			}
234 			break;
235 		case PRIO_PGRP:
236 			if (who)
237 				pgrp = find_vpid(who);
238 			else
239 				pgrp = task_pgrp(current);
240 			do_each_pid_thread(pgrp, PIDTYPE_PGID, p) {
241 				niceval = 20 - task_nice(p);
242 				if (niceval > retval)
243 					retval = niceval;
244 			} while_each_pid_thread(pgrp, PIDTYPE_PGID, p);
245 			break;
246 		case PRIO_USER:
247 			user = (struct user_struct *) cred->user;
248 			if (!who)
249 				who = cred->uid;
250 			else if ((who != cred->uid) &&
251 				 !(user = find_user(who)))
252 				goto out_unlock;	/* No processes for this user */
253 
254 			do_each_thread(g, p)
255 				if (__task_cred(p)->uid == who) {
256 					niceval = 20 - task_nice(p);
257 					if (niceval > retval)
258 						retval = niceval;
259 				}
260 			while_each_thread(g, p);
261 			if (who != cred->uid)
262 				free_uid(user);		/* for find_user() */
263 			break;
264 	}
265 out_unlock:
266 	read_unlock(&tasklist_lock);
267 
268 	return retval;
269 }
270 
271 /**
272  *	emergency_restart - reboot the system
273  *
274  *	Without shutting down any hardware or taking any locks
275  *	reboot the system.  This is called when we know we are in
276  *	trouble so this is our best effort to reboot.  This is
277  *	safe to call in interrupt context.
278  */
279 void emergency_restart(void)
280 {
281 	machine_emergency_restart();
282 }
283 EXPORT_SYMBOL_GPL(emergency_restart);
284 
285 void kernel_restart_prepare(char *cmd)
286 {
287 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
288 	system_state = SYSTEM_RESTART;
289 	device_shutdown();
290 	sysdev_shutdown();
291 }
292 
293 /**
294  *	kernel_restart - reboot the system
295  *	@cmd: pointer to buffer containing command to execute for restart
296  *		or %NULL
297  *
298  *	Shutdown everything and perform a clean reboot.
299  *	This is not safe to call in interrupt context.
300  */
301 void kernel_restart(char *cmd)
302 {
303 	kernel_restart_prepare(cmd);
304 	if (!cmd)
305 		printk(KERN_EMERG "Restarting system.\n");
306 	else
307 		printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd);
308 	machine_restart(cmd);
309 }
310 EXPORT_SYMBOL_GPL(kernel_restart);
311 
312 static void kernel_shutdown_prepare(enum system_states state)
313 {
314 	blocking_notifier_call_chain(&reboot_notifier_list,
315 		(state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL);
316 	system_state = state;
317 	device_shutdown();
318 }
319 /**
320  *	kernel_halt - halt the system
321  *
322  *	Shutdown everything and perform a clean system halt.
323  */
324 void kernel_halt(void)
325 {
326 	kernel_shutdown_prepare(SYSTEM_HALT);
327 	sysdev_shutdown();
328 	printk(KERN_EMERG "System halted.\n");
329 	machine_halt();
330 }
331 
332 EXPORT_SYMBOL_GPL(kernel_halt);
333 
334 /**
335  *	kernel_power_off - power_off the system
336  *
337  *	Shutdown everything and perform a clean system power_off.
338  */
339 void kernel_power_off(void)
340 {
341 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
342 	if (pm_power_off_prepare)
343 		pm_power_off_prepare();
344 	disable_nonboot_cpus();
345 	sysdev_shutdown();
346 	printk(KERN_EMERG "Power down.\n");
347 	machine_power_off();
348 }
349 EXPORT_SYMBOL_GPL(kernel_power_off);
350 /*
351  * Reboot system call: for obvious reasons only root may call it,
352  * and even root needs to set up some magic numbers in the registers
353  * so that some mistake won't make this reboot the whole machine.
354  * You can also set the meaning of the ctrl-alt-del-key here.
355  *
356  * reboot doesn't sync: do that yourself before calling this.
357  */
358 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg)
359 {
360 	char buffer[256];
361 
362 	/* We only trust the superuser with rebooting the system. */
363 	if (!capable(CAP_SYS_BOOT))
364 		return -EPERM;
365 
366 	/* For safety, we require "magic" arguments. */
367 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
368 	    (magic2 != LINUX_REBOOT_MAGIC2 &&
369 	                magic2 != LINUX_REBOOT_MAGIC2A &&
370 			magic2 != LINUX_REBOOT_MAGIC2B &&
371 	                magic2 != LINUX_REBOOT_MAGIC2C))
372 		return -EINVAL;
373 
374 	/* Instead of trying to make the power_off code look like
375 	 * halt when pm_power_off is not set do it the easy way.
376 	 */
377 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off)
378 		cmd = LINUX_REBOOT_CMD_HALT;
379 
380 	lock_kernel();
381 	switch (cmd) {
382 	case LINUX_REBOOT_CMD_RESTART:
383 		kernel_restart(NULL);
384 		break;
385 
386 	case LINUX_REBOOT_CMD_CAD_ON:
387 		C_A_D = 1;
388 		break;
389 
390 	case LINUX_REBOOT_CMD_CAD_OFF:
391 		C_A_D = 0;
392 		break;
393 
394 	case LINUX_REBOOT_CMD_HALT:
395 		kernel_halt();
396 		unlock_kernel();
397 		do_exit(0);
398 		break;
399 
400 	case LINUX_REBOOT_CMD_POWER_OFF:
401 		kernel_power_off();
402 		unlock_kernel();
403 		do_exit(0);
404 		break;
405 
406 	case LINUX_REBOOT_CMD_RESTART2:
407 		if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) {
408 			unlock_kernel();
409 			return -EFAULT;
410 		}
411 		buffer[sizeof(buffer) - 1] = '\0';
412 
413 		kernel_restart(buffer);
414 		break;
415 
416 #ifdef CONFIG_KEXEC
417 	case LINUX_REBOOT_CMD_KEXEC:
418 		{
419 			int ret;
420 			ret = kernel_kexec();
421 			unlock_kernel();
422 			return ret;
423 		}
424 #endif
425 
426 #ifdef CONFIG_HIBERNATION
427 	case LINUX_REBOOT_CMD_SW_SUSPEND:
428 		{
429 			int ret = hibernate();
430 			unlock_kernel();
431 			return ret;
432 		}
433 #endif
434 
435 	default:
436 		unlock_kernel();
437 		return -EINVAL;
438 	}
439 	unlock_kernel();
440 	return 0;
441 }
442 
443 static void deferred_cad(struct work_struct *dummy)
444 {
445 	kernel_restart(NULL);
446 }
447 
448 /*
449  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
450  * As it's called within an interrupt, it may NOT sync: the only choice
451  * is whether to reboot at once, or just ignore the ctrl-alt-del.
452  */
453 void ctrl_alt_del(void)
454 {
455 	static DECLARE_WORK(cad_work, deferred_cad);
456 
457 	if (C_A_D)
458 		schedule_work(&cad_work);
459 	else
460 		kill_cad_pid(SIGINT, 1);
461 }
462 
463 /*
464  * Unprivileged users may change the real gid to the effective gid
465  * or vice versa.  (BSD-style)
466  *
467  * If you set the real gid at all, or set the effective gid to a value not
468  * equal to the real gid, then the saved gid is set to the new effective gid.
469  *
470  * This makes it possible for a setgid program to completely drop its
471  * privileges, which is often a useful assertion to make when you are doing
472  * a security audit over a program.
473  *
474  * The general idea is that a program which uses just setregid() will be
475  * 100% compatible with BSD.  A program which uses just setgid() will be
476  * 100% compatible with POSIX with saved IDs.
477  *
478  * SMP: There are not races, the GIDs are checked only by filesystem
479  *      operations (as far as semantic preservation is concerned).
480  */
481 asmlinkage long sys_setregid(gid_t rgid, gid_t egid)
482 {
483 	const struct cred *old;
484 	struct cred *new;
485 	int retval;
486 
487 	new = prepare_creds();
488 	if (!new)
489 		return -ENOMEM;
490 	old = current_cred();
491 
492 	retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE);
493 	if (retval)
494 		goto error;
495 
496 	retval = -EPERM;
497 	if (rgid != (gid_t) -1) {
498 		if (old->gid == rgid ||
499 		    old->egid == rgid ||
500 		    capable(CAP_SETGID))
501 			new->gid = rgid;
502 		else
503 			goto error;
504 	}
505 	if (egid != (gid_t) -1) {
506 		if (old->gid == egid ||
507 		    old->egid == egid ||
508 		    old->sgid == egid ||
509 		    capable(CAP_SETGID))
510 			new->egid = egid;
511 		else
512 			goto error;
513 	}
514 
515 	if (rgid != (gid_t) -1 ||
516 	    (egid != (gid_t) -1 && egid != old->gid))
517 		new->sgid = new->egid;
518 	new->fsgid = new->egid;
519 
520 	return commit_creds(new);
521 
522 error:
523 	abort_creds(new);
524 	return retval;
525 }
526 
527 /*
528  * setgid() is implemented like SysV w/ SAVED_IDS
529  *
530  * SMP: Same implicit races as above.
531  */
532 asmlinkage long sys_setgid(gid_t gid)
533 {
534 	const struct cred *old;
535 	struct cred *new;
536 	int retval;
537 
538 	new = prepare_creds();
539 	if (!new)
540 		return -ENOMEM;
541 	old = current_cred();
542 
543 	retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID);
544 	if (retval)
545 		goto error;
546 
547 	retval = -EPERM;
548 	if (capable(CAP_SETGID))
549 		new->gid = new->egid = new->sgid = new->fsgid = gid;
550 	else if (gid == old->gid || gid == old->sgid)
551 		new->egid = new->fsgid = gid;
552 	else
553 		goto error;
554 
555 	return commit_creds(new);
556 
557 error:
558 	abort_creds(new);
559 	return retval;
560 }
561 
562 /*
563  * change the user struct in a credentials set to match the new UID
564  */
565 static int set_user(struct cred *new)
566 {
567 	struct user_struct *new_user;
568 
569 	new_user = alloc_uid(current_user_ns(), new->uid);
570 	if (!new_user)
571 		return -EAGAIN;
572 
573 	if (atomic_read(&new_user->processes) >=
574 				current->signal->rlim[RLIMIT_NPROC].rlim_cur &&
575 			new_user != INIT_USER) {
576 		free_uid(new_user);
577 		return -EAGAIN;
578 	}
579 
580 	free_uid(new->user);
581 	new->user = new_user;
582 	return 0;
583 }
584 
585 /*
586  * Unprivileged users may change the real uid to the effective uid
587  * or vice versa.  (BSD-style)
588  *
589  * If you set the real uid at all, or set the effective uid to a value not
590  * equal to the real uid, then the saved uid is set to the new effective uid.
591  *
592  * This makes it possible for a setuid program to completely drop its
593  * privileges, which is often a useful assertion to make when you are doing
594  * a security audit over a program.
595  *
596  * The general idea is that a program which uses just setreuid() will be
597  * 100% compatible with BSD.  A program which uses just setuid() will be
598  * 100% compatible with POSIX with saved IDs.
599  */
600 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid)
601 {
602 	const struct cred *old;
603 	struct cred *new;
604 	int retval;
605 
606 	new = prepare_creds();
607 	if (!new)
608 		return -ENOMEM;
609 	old = current_cred();
610 
611 	retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE);
612 	if (retval)
613 		goto error;
614 
615 	retval = -EPERM;
616 	if (ruid != (uid_t) -1) {
617 		new->uid = ruid;
618 		if (old->uid != ruid &&
619 		    old->euid != ruid &&
620 		    !capable(CAP_SETUID))
621 			goto error;
622 	}
623 
624 	if (euid != (uid_t) -1) {
625 		new->euid = euid;
626 		if (old->uid != euid &&
627 		    old->euid != euid &&
628 		    old->suid != euid &&
629 		    !capable(CAP_SETUID))
630 			goto error;
631 	}
632 
633 	retval = -EAGAIN;
634 	if (new->uid != old->uid && set_user(new) < 0)
635 		goto error;
636 
637 	if (ruid != (uid_t) -1 ||
638 	    (euid != (uid_t) -1 && euid != old->uid))
639 		new->suid = new->euid;
640 	new->fsuid = new->euid;
641 
642 	retval = security_task_fix_setuid(new, old, LSM_SETID_RE);
643 	if (retval < 0)
644 		goto error;
645 
646 	return commit_creds(new);
647 
648 error:
649 	abort_creds(new);
650 	return retval;
651 }
652 
653 /*
654  * setuid() is implemented like SysV with SAVED_IDS
655  *
656  * Note that SAVED_ID's is deficient in that a setuid root program
657  * like sendmail, for example, cannot set its uid to be a normal
658  * user and then switch back, because if you're root, setuid() sets
659  * the saved uid too.  If you don't like this, blame the bright people
660  * in the POSIX committee and/or USG.  Note that the BSD-style setreuid()
661  * will allow a root program to temporarily drop privileges and be able to
662  * regain them by swapping the real and effective uid.
663  */
664 asmlinkage long sys_setuid(uid_t uid)
665 {
666 	const struct cred *old;
667 	struct cred *new;
668 	int retval;
669 
670 	new = prepare_creds();
671 	if (!new)
672 		return -ENOMEM;
673 	old = current_cred();
674 
675 	retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID);
676 	if (retval)
677 		goto error;
678 
679 	retval = -EPERM;
680 	if (capable(CAP_SETUID)) {
681 		new->suid = new->uid = uid;
682 		if (uid != old->uid && set_user(new) < 0) {
683 			retval = -EAGAIN;
684 			goto error;
685 		}
686 	} else if (uid != old->uid && uid != new->suid) {
687 		goto error;
688 	}
689 
690 	new->fsuid = new->euid = uid;
691 
692 	retval = security_task_fix_setuid(new, old, LSM_SETID_ID);
693 	if (retval < 0)
694 		goto error;
695 
696 	return commit_creds(new);
697 
698 error:
699 	abort_creds(new);
700 	return retval;
701 }
702 
703 
704 /*
705  * This function implements a generic ability to update ruid, euid,
706  * and suid.  This allows you to implement the 4.4 compatible seteuid().
707  */
708 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid)
709 {
710 	const struct cred *old;
711 	struct cred *new;
712 	int retval;
713 
714 	new = prepare_creds();
715 	if (!new)
716 		return -ENOMEM;
717 
718 	retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES);
719 	if (retval)
720 		goto error;
721 	old = current_cred();
722 
723 	retval = -EPERM;
724 	if (!capable(CAP_SETUID)) {
725 		if (ruid != (uid_t) -1 && ruid != old->uid &&
726 		    ruid != old->euid  && ruid != old->suid)
727 			goto error;
728 		if (euid != (uid_t) -1 && euid != old->uid &&
729 		    euid != old->euid  && euid != old->suid)
730 			goto error;
731 		if (suid != (uid_t) -1 && suid != old->uid &&
732 		    suid != old->euid  && suid != old->suid)
733 			goto error;
734 	}
735 
736 	retval = -EAGAIN;
737 	if (ruid != (uid_t) -1) {
738 		new->uid = ruid;
739 		if (ruid != old->uid && set_user(new) < 0)
740 			goto error;
741 	}
742 	if (euid != (uid_t) -1)
743 		new->euid = euid;
744 	if (suid != (uid_t) -1)
745 		new->suid = suid;
746 	new->fsuid = new->euid;
747 
748 	retval = security_task_fix_setuid(new, old, LSM_SETID_RES);
749 	if (retval < 0)
750 		goto error;
751 
752 	return commit_creds(new);
753 
754 error:
755 	abort_creds(new);
756 	return retval;
757 }
758 
759 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid)
760 {
761 	const struct cred *cred = current_cred();
762 	int retval;
763 
764 	if (!(retval   = put_user(cred->uid,  ruid)) &&
765 	    !(retval   = put_user(cred->euid, euid)))
766 		retval = put_user(cred->suid, suid);
767 
768 	return retval;
769 }
770 
771 /*
772  * Same as above, but for rgid, egid, sgid.
773  */
774 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid)
775 {
776 	const struct cred *old;
777 	struct cred *new;
778 	int retval;
779 
780 	new = prepare_creds();
781 	if (!new)
782 		return -ENOMEM;
783 	old = current_cred();
784 
785 	retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES);
786 	if (retval)
787 		goto error;
788 
789 	retval = -EPERM;
790 	if (!capable(CAP_SETGID)) {
791 		if (rgid != (gid_t) -1 && rgid != old->gid &&
792 		    rgid != old->egid  && rgid != old->sgid)
793 			goto error;
794 		if (egid != (gid_t) -1 && egid != old->gid &&
795 		    egid != old->egid  && egid != old->sgid)
796 			goto error;
797 		if (sgid != (gid_t) -1 && sgid != old->gid &&
798 		    sgid != old->egid  && sgid != old->sgid)
799 			goto error;
800 	}
801 
802 	if (rgid != (gid_t) -1)
803 		new->gid = rgid;
804 	if (egid != (gid_t) -1)
805 		new->egid = egid;
806 	if (sgid != (gid_t) -1)
807 		new->sgid = sgid;
808 	new->fsgid = new->egid;
809 
810 	return commit_creds(new);
811 
812 error:
813 	abort_creds(new);
814 	return retval;
815 }
816 
817 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid)
818 {
819 	const struct cred *cred = current_cred();
820 	int retval;
821 
822 	if (!(retval   = put_user(cred->gid,  rgid)) &&
823 	    !(retval   = put_user(cred->egid, egid)))
824 		retval = put_user(cred->sgid, sgid);
825 
826 	return retval;
827 }
828 
829 
830 /*
831  * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This
832  * is used for "access()" and for the NFS daemon (letting nfsd stay at
833  * whatever uid it wants to). It normally shadows "euid", except when
834  * explicitly set by setfsuid() or for access..
835  */
836 asmlinkage long sys_setfsuid(uid_t uid)
837 {
838 	const struct cred *old;
839 	struct cred *new;
840 	uid_t old_fsuid;
841 
842 	new = prepare_creds();
843 	if (!new)
844 		return current_fsuid();
845 	old = current_cred();
846 	old_fsuid = old->fsuid;
847 
848 	if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS) < 0)
849 		goto error;
850 
851 	if (uid == old->uid  || uid == old->euid  ||
852 	    uid == old->suid || uid == old->fsuid ||
853 	    capable(CAP_SETUID)) {
854 		if (uid != old_fsuid) {
855 			new->fsuid = uid;
856 			if (security_task_fix_setuid(new, old, LSM_SETID_FS) == 0)
857 				goto change_okay;
858 		}
859 	}
860 
861 error:
862 	abort_creds(new);
863 	return old_fsuid;
864 
865 change_okay:
866 	commit_creds(new);
867 	return old_fsuid;
868 }
869 
870 /*
871  * Samma på svenska..
872  */
873 asmlinkage long sys_setfsgid(gid_t gid)
874 {
875 	const struct cred *old;
876 	struct cred *new;
877 	gid_t old_fsgid;
878 
879 	new = prepare_creds();
880 	if (!new)
881 		return current_fsgid();
882 	old = current_cred();
883 	old_fsgid = old->fsgid;
884 
885 	if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS))
886 		goto error;
887 
888 	if (gid == old->gid  || gid == old->egid  ||
889 	    gid == old->sgid || gid == old->fsgid ||
890 	    capable(CAP_SETGID)) {
891 		if (gid != old_fsgid) {
892 			new->fsgid = gid;
893 			goto change_okay;
894 		}
895 	}
896 
897 error:
898 	abort_creds(new);
899 	return old_fsgid;
900 
901 change_okay:
902 	commit_creds(new);
903 	return old_fsgid;
904 }
905 
906 void do_sys_times(struct tms *tms)
907 {
908 	struct task_cputime cputime;
909 	cputime_t cutime, cstime;
910 
911 	thread_group_cputime(current, &cputime);
912 	spin_lock_irq(&current->sighand->siglock);
913 	cutime = current->signal->cutime;
914 	cstime = current->signal->cstime;
915 	spin_unlock_irq(&current->sighand->siglock);
916 	tms->tms_utime = cputime_to_clock_t(cputime.utime);
917 	tms->tms_stime = cputime_to_clock_t(cputime.stime);
918 	tms->tms_cutime = cputime_to_clock_t(cutime);
919 	tms->tms_cstime = cputime_to_clock_t(cstime);
920 }
921 
922 asmlinkage long sys_times(struct tms __user * tbuf)
923 {
924 	if (tbuf) {
925 		struct tms tmp;
926 
927 		do_sys_times(&tmp);
928 		if (copy_to_user(tbuf, &tmp, sizeof(struct tms)))
929 			return -EFAULT;
930 	}
931 	force_successful_syscall_return();
932 	return (long) jiffies_64_to_clock_t(get_jiffies_64());
933 }
934 
935 /*
936  * This needs some heavy checking ...
937  * I just haven't the stomach for it. I also don't fully
938  * understand sessions/pgrp etc. Let somebody who does explain it.
939  *
940  * OK, I think I have the protection semantics right.... this is really
941  * only important on a multi-user system anyway, to make sure one user
942  * can't send a signal to a process owned by another.  -TYT, 12/12/91
943  *
944  * Auch. Had to add the 'did_exec' flag to conform completely to POSIX.
945  * LBT 04.03.94
946  */
947 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid)
948 {
949 	struct task_struct *p;
950 	struct task_struct *group_leader = current->group_leader;
951 	struct pid *pgrp;
952 	int err;
953 
954 	if (!pid)
955 		pid = task_pid_vnr(group_leader);
956 	if (!pgid)
957 		pgid = pid;
958 	if (pgid < 0)
959 		return -EINVAL;
960 
961 	/* From this point forward we keep holding onto the tasklist lock
962 	 * so that our parent does not change from under us. -DaveM
963 	 */
964 	write_lock_irq(&tasklist_lock);
965 
966 	err = -ESRCH;
967 	p = find_task_by_vpid(pid);
968 	if (!p)
969 		goto out;
970 
971 	err = -EINVAL;
972 	if (!thread_group_leader(p))
973 		goto out;
974 
975 	if (same_thread_group(p->real_parent, group_leader)) {
976 		err = -EPERM;
977 		if (task_session(p) != task_session(group_leader))
978 			goto out;
979 		err = -EACCES;
980 		if (p->did_exec)
981 			goto out;
982 	} else {
983 		err = -ESRCH;
984 		if (p != group_leader)
985 			goto out;
986 	}
987 
988 	err = -EPERM;
989 	if (p->signal->leader)
990 		goto out;
991 
992 	pgrp = task_pid(p);
993 	if (pgid != pid) {
994 		struct task_struct *g;
995 
996 		pgrp = find_vpid(pgid);
997 		g = pid_task(pgrp, PIDTYPE_PGID);
998 		if (!g || task_session(g) != task_session(group_leader))
999 			goto out;
1000 	}
1001 
1002 	err = security_task_setpgid(p, pgid);
1003 	if (err)
1004 		goto out;
1005 
1006 	if (task_pgrp(p) != pgrp) {
1007 		change_pid(p, PIDTYPE_PGID, pgrp);
1008 		set_task_pgrp(p, pid_nr(pgrp));
1009 	}
1010 
1011 	err = 0;
1012 out:
1013 	/* All paths lead to here, thus we are safe. -DaveM */
1014 	write_unlock_irq(&tasklist_lock);
1015 	return err;
1016 }
1017 
1018 asmlinkage long sys_getpgid(pid_t pid)
1019 {
1020 	struct task_struct *p;
1021 	struct pid *grp;
1022 	int retval;
1023 
1024 	rcu_read_lock();
1025 	if (!pid)
1026 		grp = task_pgrp(current);
1027 	else {
1028 		retval = -ESRCH;
1029 		p = find_task_by_vpid(pid);
1030 		if (!p)
1031 			goto out;
1032 		grp = task_pgrp(p);
1033 		if (!grp)
1034 			goto out;
1035 
1036 		retval = security_task_getpgid(p);
1037 		if (retval)
1038 			goto out;
1039 	}
1040 	retval = pid_vnr(grp);
1041 out:
1042 	rcu_read_unlock();
1043 	return retval;
1044 }
1045 
1046 #ifdef __ARCH_WANT_SYS_GETPGRP
1047 
1048 asmlinkage long sys_getpgrp(void)
1049 {
1050 	return sys_getpgid(0);
1051 }
1052 
1053 #endif
1054 
1055 asmlinkage long sys_getsid(pid_t pid)
1056 {
1057 	struct task_struct *p;
1058 	struct pid *sid;
1059 	int retval;
1060 
1061 	rcu_read_lock();
1062 	if (!pid)
1063 		sid = task_session(current);
1064 	else {
1065 		retval = -ESRCH;
1066 		p = find_task_by_vpid(pid);
1067 		if (!p)
1068 			goto out;
1069 		sid = task_session(p);
1070 		if (!sid)
1071 			goto out;
1072 
1073 		retval = security_task_getsid(p);
1074 		if (retval)
1075 			goto out;
1076 	}
1077 	retval = pid_vnr(sid);
1078 out:
1079 	rcu_read_unlock();
1080 	return retval;
1081 }
1082 
1083 asmlinkage long sys_setsid(void)
1084 {
1085 	struct task_struct *group_leader = current->group_leader;
1086 	struct pid *sid = task_pid(group_leader);
1087 	pid_t session = pid_vnr(sid);
1088 	int err = -EPERM;
1089 
1090 	write_lock_irq(&tasklist_lock);
1091 	/* Fail if I am already a session leader */
1092 	if (group_leader->signal->leader)
1093 		goto out;
1094 
1095 	/* Fail if a process group id already exists that equals the
1096 	 * proposed session id.
1097 	 */
1098 	if (pid_task(sid, PIDTYPE_PGID))
1099 		goto out;
1100 
1101 	group_leader->signal->leader = 1;
1102 	__set_special_pids(sid);
1103 
1104 	proc_clear_tty(group_leader);
1105 
1106 	err = session;
1107 out:
1108 	write_unlock_irq(&tasklist_lock);
1109 	return err;
1110 }
1111 
1112 /*
1113  * Supplementary group IDs
1114  */
1115 
1116 /* init to 2 - one for init_task, one to ensure it is never freed */
1117 struct group_info init_groups = { .usage = ATOMIC_INIT(2) };
1118 
1119 struct group_info *groups_alloc(int gidsetsize)
1120 {
1121 	struct group_info *group_info;
1122 	int nblocks;
1123 	int i;
1124 
1125 	nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK;
1126 	/* Make sure we always allocate at least one indirect block pointer */
1127 	nblocks = nblocks ? : 1;
1128 	group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER);
1129 	if (!group_info)
1130 		return NULL;
1131 	group_info->ngroups = gidsetsize;
1132 	group_info->nblocks = nblocks;
1133 	atomic_set(&group_info->usage, 1);
1134 
1135 	if (gidsetsize <= NGROUPS_SMALL)
1136 		group_info->blocks[0] = group_info->small_block;
1137 	else {
1138 		for (i = 0; i < nblocks; i++) {
1139 			gid_t *b;
1140 			b = (void *)__get_free_page(GFP_USER);
1141 			if (!b)
1142 				goto out_undo_partial_alloc;
1143 			group_info->blocks[i] = b;
1144 		}
1145 	}
1146 	return group_info;
1147 
1148 out_undo_partial_alloc:
1149 	while (--i >= 0) {
1150 		free_page((unsigned long)group_info->blocks[i]);
1151 	}
1152 	kfree(group_info);
1153 	return NULL;
1154 }
1155 
1156 EXPORT_SYMBOL(groups_alloc);
1157 
1158 void groups_free(struct group_info *group_info)
1159 {
1160 	if (group_info->blocks[0] != group_info->small_block) {
1161 		int i;
1162 		for (i = 0; i < group_info->nblocks; i++)
1163 			free_page((unsigned long)group_info->blocks[i]);
1164 	}
1165 	kfree(group_info);
1166 }
1167 
1168 EXPORT_SYMBOL(groups_free);
1169 
1170 /* export the group_info to a user-space array */
1171 static int groups_to_user(gid_t __user *grouplist,
1172 			  const struct group_info *group_info)
1173 {
1174 	int i;
1175 	unsigned int count = group_info->ngroups;
1176 
1177 	for (i = 0; i < group_info->nblocks; i++) {
1178 		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1179 		unsigned int len = cp_count * sizeof(*grouplist);
1180 
1181 		if (copy_to_user(grouplist, group_info->blocks[i], len))
1182 			return -EFAULT;
1183 
1184 		grouplist += NGROUPS_PER_BLOCK;
1185 		count -= cp_count;
1186 	}
1187 	return 0;
1188 }
1189 
1190 /* fill a group_info from a user-space array - it must be allocated already */
1191 static int groups_from_user(struct group_info *group_info,
1192     gid_t __user *grouplist)
1193 {
1194 	int i;
1195 	unsigned int count = group_info->ngroups;
1196 
1197 	for (i = 0; i < group_info->nblocks; i++) {
1198 		unsigned int cp_count = min(NGROUPS_PER_BLOCK, count);
1199 		unsigned int len = cp_count * sizeof(*grouplist);
1200 
1201 		if (copy_from_user(group_info->blocks[i], grouplist, len))
1202 			return -EFAULT;
1203 
1204 		grouplist += NGROUPS_PER_BLOCK;
1205 		count -= cp_count;
1206 	}
1207 	return 0;
1208 }
1209 
1210 /* a simple Shell sort */
1211 static void groups_sort(struct group_info *group_info)
1212 {
1213 	int base, max, stride;
1214 	int gidsetsize = group_info->ngroups;
1215 
1216 	for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1)
1217 		; /* nothing */
1218 	stride /= 3;
1219 
1220 	while (stride) {
1221 		max = gidsetsize - stride;
1222 		for (base = 0; base < max; base++) {
1223 			int left = base;
1224 			int right = left + stride;
1225 			gid_t tmp = GROUP_AT(group_info, right);
1226 
1227 			while (left >= 0 && GROUP_AT(group_info, left) > tmp) {
1228 				GROUP_AT(group_info, right) =
1229 				    GROUP_AT(group_info, left);
1230 				right = left;
1231 				left -= stride;
1232 			}
1233 			GROUP_AT(group_info, right) = tmp;
1234 		}
1235 		stride /= 3;
1236 	}
1237 }
1238 
1239 /* a simple bsearch */
1240 int groups_search(const struct group_info *group_info, gid_t grp)
1241 {
1242 	unsigned int left, right;
1243 
1244 	if (!group_info)
1245 		return 0;
1246 
1247 	left = 0;
1248 	right = group_info->ngroups;
1249 	while (left < right) {
1250 		unsigned int mid = (left+right)/2;
1251 		int cmp = grp - GROUP_AT(group_info, mid);
1252 		if (cmp > 0)
1253 			left = mid + 1;
1254 		else if (cmp < 0)
1255 			right = mid;
1256 		else
1257 			return 1;
1258 	}
1259 	return 0;
1260 }
1261 
1262 /**
1263  * set_groups - Change a group subscription in a set of credentials
1264  * @new: The newly prepared set of credentials to alter
1265  * @group_info: The group list to install
1266  *
1267  * Validate a group subscription and, if valid, insert it into a set
1268  * of credentials.
1269  */
1270 int set_groups(struct cred *new, struct group_info *group_info)
1271 {
1272 	int retval;
1273 
1274 	retval = security_task_setgroups(group_info);
1275 	if (retval)
1276 		return retval;
1277 
1278 	put_group_info(new->group_info);
1279 	groups_sort(group_info);
1280 	get_group_info(group_info);
1281 	new->group_info = group_info;
1282 	return 0;
1283 }
1284 
1285 EXPORT_SYMBOL(set_groups);
1286 
1287 /**
1288  * set_current_groups - Change current's group subscription
1289  * @group_info: The group list to impose
1290  *
1291  * Validate a group subscription and, if valid, impose it upon current's task
1292  * security record.
1293  */
1294 int set_current_groups(struct group_info *group_info)
1295 {
1296 	struct cred *new;
1297 	int ret;
1298 
1299 	new = prepare_creds();
1300 	if (!new)
1301 		return -ENOMEM;
1302 
1303 	ret = set_groups(new, group_info);
1304 	if (ret < 0) {
1305 		abort_creds(new);
1306 		return ret;
1307 	}
1308 
1309 	return commit_creds(new);
1310 }
1311 
1312 EXPORT_SYMBOL(set_current_groups);
1313 
1314 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist)
1315 {
1316 	const struct cred *cred = current_cred();
1317 	int i;
1318 
1319 	if (gidsetsize < 0)
1320 		return -EINVAL;
1321 
1322 	/* no need to grab task_lock here; it cannot change */
1323 	i = cred->group_info->ngroups;
1324 	if (gidsetsize) {
1325 		if (i > gidsetsize) {
1326 			i = -EINVAL;
1327 			goto out;
1328 		}
1329 		if (groups_to_user(grouplist, cred->group_info)) {
1330 			i = -EFAULT;
1331 			goto out;
1332 		}
1333 	}
1334 out:
1335 	return i;
1336 }
1337 
1338 /*
1339  *	SMP: Our groups are copy-on-write. We can set them safely
1340  *	without another task interfering.
1341  */
1342 
1343 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist)
1344 {
1345 	struct group_info *group_info;
1346 	int retval;
1347 
1348 	if (!capable(CAP_SETGID))
1349 		return -EPERM;
1350 	if ((unsigned)gidsetsize > NGROUPS_MAX)
1351 		return -EINVAL;
1352 
1353 	group_info = groups_alloc(gidsetsize);
1354 	if (!group_info)
1355 		return -ENOMEM;
1356 	retval = groups_from_user(group_info, grouplist);
1357 	if (retval) {
1358 		put_group_info(group_info);
1359 		return retval;
1360 	}
1361 
1362 	retval = set_current_groups(group_info);
1363 	put_group_info(group_info);
1364 
1365 	return retval;
1366 }
1367 
1368 /*
1369  * Check whether we're fsgid/egid or in the supplemental group..
1370  */
1371 int in_group_p(gid_t grp)
1372 {
1373 	const struct cred *cred = current_cred();
1374 	int retval = 1;
1375 
1376 	if (grp != cred->fsgid)
1377 		retval = groups_search(cred->group_info, grp);
1378 	return retval;
1379 }
1380 
1381 EXPORT_SYMBOL(in_group_p);
1382 
1383 int in_egroup_p(gid_t grp)
1384 {
1385 	const struct cred *cred = current_cred();
1386 	int retval = 1;
1387 
1388 	if (grp != cred->egid)
1389 		retval = groups_search(cred->group_info, grp);
1390 	return retval;
1391 }
1392 
1393 EXPORT_SYMBOL(in_egroup_p);
1394 
1395 DECLARE_RWSEM(uts_sem);
1396 
1397 asmlinkage long sys_newuname(struct new_utsname __user * name)
1398 {
1399 	int errno = 0;
1400 
1401 	down_read(&uts_sem);
1402 	if (copy_to_user(name, utsname(), sizeof *name))
1403 		errno = -EFAULT;
1404 	up_read(&uts_sem);
1405 	return errno;
1406 }
1407 
1408 asmlinkage long sys_sethostname(char __user *name, int len)
1409 {
1410 	int errno;
1411 	char tmp[__NEW_UTS_LEN];
1412 
1413 	if (!capable(CAP_SYS_ADMIN))
1414 		return -EPERM;
1415 	if (len < 0 || len > __NEW_UTS_LEN)
1416 		return -EINVAL;
1417 	down_write(&uts_sem);
1418 	errno = -EFAULT;
1419 	if (!copy_from_user(tmp, name, len)) {
1420 		struct new_utsname *u = utsname();
1421 
1422 		memcpy(u->nodename, tmp, len);
1423 		memset(u->nodename + len, 0, sizeof(u->nodename) - len);
1424 		errno = 0;
1425 	}
1426 	up_write(&uts_sem);
1427 	return errno;
1428 }
1429 
1430 #ifdef __ARCH_WANT_SYS_GETHOSTNAME
1431 
1432 asmlinkage long sys_gethostname(char __user *name, int len)
1433 {
1434 	int i, errno;
1435 	struct new_utsname *u;
1436 
1437 	if (len < 0)
1438 		return -EINVAL;
1439 	down_read(&uts_sem);
1440 	u = utsname();
1441 	i = 1 + strlen(u->nodename);
1442 	if (i > len)
1443 		i = len;
1444 	errno = 0;
1445 	if (copy_to_user(name, u->nodename, i))
1446 		errno = -EFAULT;
1447 	up_read(&uts_sem);
1448 	return errno;
1449 }
1450 
1451 #endif
1452 
1453 /*
1454  * Only setdomainname; getdomainname can be implemented by calling
1455  * uname()
1456  */
1457 asmlinkage long sys_setdomainname(char __user *name, int len)
1458 {
1459 	int errno;
1460 	char tmp[__NEW_UTS_LEN];
1461 
1462 	if (!capable(CAP_SYS_ADMIN))
1463 		return -EPERM;
1464 	if (len < 0 || len > __NEW_UTS_LEN)
1465 		return -EINVAL;
1466 
1467 	down_write(&uts_sem);
1468 	errno = -EFAULT;
1469 	if (!copy_from_user(tmp, name, len)) {
1470 		struct new_utsname *u = utsname();
1471 
1472 		memcpy(u->domainname, tmp, len);
1473 		memset(u->domainname + len, 0, sizeof(u->domainname) - len);
1474 		errno = 0;
1475 	}
1476 	up_write(&uts_sem);
1477 	return errno;
1478 }
1479 
1480 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1481 {
1482 	if (resource >= RLIM_NLIMITS)
1483 		return -EINVAL;
1484 	else {
1485 		struct rlimit value;
1486 		task_lock(current->group_leader);
1487 		value = current->signal->rlim[resource];
1488 		task_unlock(current->group_leader);
1489 		return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0;
1490 	}
1491 }
1492 
1493 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT
1494 
1495 /*
1496  *	Back compatibility for getrlimit. Needed for some apps.
1497  */
1498 
1499 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim)
1500 {
1501 	struct rlimit x;
1502 	if (resource >= RLIM_NLIMITS)
1503 		return -EINVAL;
1504 
1505 	task_lock(current->group_leader);
1506 	x = current->signal->rlim[resource];
1507 	task_unlock(current->group_leader);
1508 	if (x.rlim_cur > 0x7FFFFFFF)
1509 		x.rlim_cur = 0x7FFFFFFF;
1510 	if (x.rlim_max > 0x7FFFFFFF)
1511 		x.rlim_max = 0x7FFFFFFF;
1512 	return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0;
1513 }
1514 
1515 #endif
1516 
1517 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim)
1518 {
1519 	struct rlimit new_rlim, *old_rlim;
1520 	int retval;
1521 
1522 	if (resource >= RLIM_NLIMITS)
1523 		return -EINVAL;
1524 	if (copy_from_user(&new_rlim, rlim, sizeof(*rlim)))
1525 		return -EFAULT;
1526 	old_rlim = current->signal->rlim + resource;
1527 	if ((new_rlim.rlim_max > old_rlim->rlim_max) &&
1528 	    !capable(CAP_SYS_RESOURCE))
1529 		return -EPERM;
1530 
1531 	if (resource == RLIMIT_NOFILE) {
1532 		if (new_rlim.rlim_max == RLIM_INFINITY)
1533 			new_rlim.rlim_max = sysctl_nr_open;
1534 		if (new_rlim.rlim_cur == RLIM_INFINITY)
1535 			new_rlim.rlim_cur = sysctl_nr_open;
1536 		if (new_rlim.rlim_max > sysctl_nr_open)
1537 			return -EPERM;
1538 	}
1539 
1540 	if (new_rlim.rlim_cur > new_rlim.rlim_max)
1541 		return -EINVAL;
1542 
1543 	retval = security_task_setrlimit(resource, &new_rlim);
1544 	if (retval)
1545 		return retval;
1546 
1547 	if (resource == RLIMIT_CPU && new_rlim.rlim_cur == 0) {
1548 		/*
1549 		 * The caller is asking for an immediate RLIMIT_CPU
1550 		 * expiry.  But we use the zero value to mean "it was
1551 		 * never set".  So let's cheat and make it one second
1552 		 * instead
1553 		 */
1554 		new_rlim.rlim_cur = 1;
1555 	}
1556 
1557 	task_lock(current->group_leader);
1558 	*old_rlim = new_rlim;
1559 	task_unlock(current->group_leader);
1560 
1561 	if (resource != RLIMIT_CPU)
1562 		goto out;
1563 
1564 	/*
1565 	 * RLIMIT_CPU handling.   Note that the kernel fails to return an error
1566 	 * code if it rejected the user's attempt to set RLIMIT_CPU.  This is a
1567 	 * very long-standing error, and fixing it now risks breakage of
1568 	 * applications, so we live with it
1569 	 */
1570 	if (new_rlim.rlim_cur == RLIM_INFINITY)
1571 		goto out;
1572 
1573 	update_rlimit_cpu(new_rlim.rlim_cur);
1574 out:
1575 	return 0;
1576 }
1577 
1578 /*
1579  * It would make sense to put struct rusage in the task_struct,
1580  * except that would make the task_struct be *really big*.  After
1581  * task_struct gets moved into malloc'ed memory, it would
1582  * make sense to do this.  It will make moving the rest of the information
1583  * a lot simpler!  (Which we're not doing right now because we're not
1584  * measuring them yet).
1585  *
1586  * When sampling multiple threads for RUSAGE_SELF, under SMP we might have
1587  * races with threads incrementing their own counters.  But since word
1588  * reads are atomic, we either get new values or old values and we don't
1589  * care which for the sums.  We always take the siglock to protect reading
1590  * the c* fields from p->signal from races with exit.c updating those
1591  * fields when reaping, so a sample either gets all the additions of a
1592  * given child after it's reaped, or none so this sample is before reaping.
1593  *
1594  * Locking:
1595  * We need to take the siglock for CHILDEREN, SELF and BOTH
1596  * for  the cases current multithreaded, non-current single threaded
1597  * non-current multithreaded.  Thread traversal is now safe with
1598  * the siglock held.
1599  * Strictly speaking, we donot need to take the siglock if we are current and
1600  * single threaded,  as no one else can take our signal_struct away, no one
1601  * else can  reap the  children to update signal->c* counters, and no one else
1602  * can race with the signal-> fields. If we do not take any lock, the
1603  * signal-> fields could be read out of order while another thread was just
1604  * exiting. So we should  place a read memory barrier when we avoid the lock.
1605  * On the writer side,  write memory barrier is implied in  __exit_signal
1606  * as __exit_signal releases  the siglock spinlock after updating the signal->
1607  * fields. But we don't do this yet to keep things simple.
1608  *
1609  */
1610 
1611 static void accumulate_thread_rusage(struct task_struct *t, struct rusage *r)
1612 {
1613 	r->ru_nvcsw += t->nvcsw;
1614 	r->ru_nivcsw += t->nivcsw;
1615 	r->ru_minflt += t->min_flt;
1616 	r->ru_majflt += t->maj_flt;
1617 	r->ru_inblock += task_io_get_inblock(t);
1618 	r->ru_oublock += task_io_get_oublock(t);
1619 }
1620 
1621 static void k_getrusage(struct task_struct *p, int who, struct rusage *r)
1622 {
1623 	struct task_struct *t;
1624 	unsigned long flags;
1625 	cputime_t utime, stime;
1626 	struct task_cputime cputime;
1627 
1628 	memset((char *) r, 0, sizeof *r);
1629 	utime = stime = cputime_zero;
1630 
1631 	if (who == RUSAGE_THREAD) {
1632 		utime = task_utime(current);
1633 		stime = task_stime(current);
1634 		accumulate_thread_rusage(p, r);
1635 		goto out;
1636 	}
1637 
1638 	if (!lock_task_sighand(p, &flags))
1639 		return;
1640 
1641 	switch (who) {
1642 		case RUSAGE_BOTH:
1643 		case RUSAGE_CHILDREN:
1644 			utime = p->signal->cutime;
1645 			stime = p->signal->cstime;
1646 			r->ru_nvcsw = p->signal->cnvcsw;
1647 			r->ru_nivcsw = p->signal->cnivcsw;
1648 			r->ru_minflt = p->signal->cmin_flt;
1649 			r->ru_majflt = p->signal->cmaj_flt;
1650 			r->ru_inblock = p->signal->cinblock;
1651 			r->ru_oublock = p->signal->coublock;
1652 
1653 			if (who == RUSAGE_CHILDREN)
1654 				break;
1655 
1656 		case RUSAGE_SELF:
1657 			thread_group_cputime(p, &cputime);
1658 			utime = cputime_add(utime, cputime.utime);
1659 			stime = cputime_add(stime, cputime.stime);
1660 			r->ru_nvcsw += p->signal->nvcsw;
1661 			r->ru_nivcsw += p->signal->nivcsw;
1662 			r->ru_minflt += p->signal->min_flt;
1663 			r->ru_majflt += p->signal->maj_flt;
1664 			r->ru_inblock += p->signal->inblock;
1665 			r->ru_oublock += p->signal->oublock;
1666 			t = p;
1667 			do {
1668 				accumulate_thread_rusage(t, r);
1669 				t = next_thread(t);
1670 			} while (t != p);
1671 			break;
1672 
1673 		default:
1674 			BUG();
1675 	}
1676 	unlock_task_sighand(p, &flags);
1677 
1678 out:
1679 	cputime_to_timeval(utime, &r->ru_utime);
1680 	cputime_to_timeval(stime, &r->ru_stime);
1681 }
1682 
1683 int getrusage(struct task_struct *p, int who, struct rusage __user *ru)
1684 {
1685 	struct rusage r;
1686 	k_getrusage(p, who, &r);
1687 	return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0;
1688 }
1689 
1690 asmlinkage long sys_getrusage(int who, struct rusage __user *ru)
1691 {
1692 	if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN &&
1693 	    who != RUSAGE_THREAD)
1694 		return -EINVAL;
1695 	return getrusage(current, who, ru);
1696 }
1697 
1698 asmlinkage long sys_umask(int mask)
1699 {
1700 	mask = xchg(&current->fs->umask, mask & S_IRWXUGO);
1701 	return mask;
1702 }
1703 
1704 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3,
1705 			  unsigned long arg4, unsigned long arg5)
1706 {
1707 	struct task_struct *me = current;
1708 	unsigned char comm[sizeof(me->comm)];
1709 	long error;
1710 
1711 	error = security_task_prctl(option, arg2, arg3, arg4, arg5);
1712 	if (error != -ENOSYS)
1713 		return error;
1714 
1715 	error = 0;
1716 	switch (option) {
1717 		case PR_SET_PDEATHSIG:
1718 			if (!valid_signal(arg2)) {
1719 				error = -EINVAL;
1720 				break;
1721 			}
1722 			me->pdeath_signal = arg2;
1723 			error = 0;
1724 			break;
1725 		case PR_GET_PDEATHSIG:
1726 			error = put_user(me->pdeath_signal, (int __user *)arg2);
1727 			break;
1728 		case PR_GET_DUMPABLE:
1729 			error = get_dumpable(me->mm);
1730 			break;
1731 		case PR_SET_DUMPABLE:
1732 			if (arg2 < 0 || arg2 > 1) {
1733 				error = -EINVAL;
1734 				break;
1735 			}
1736 			set_dumpable(me->mm, arg2);
1737 			error = 0;
1738 			break;
1739 
1740 		case PR_SET_UNALIGN:
1741 			error = SET_UNALIGN_CTL(me, arg2);
1742 			break;
1743 		case PR_GET_UNALIGN:
1744 			error = GET_UNALIGN_CTL(me, arg2);
1745 			break;
1746 		case PR_SET_FPEMU:
1747 			error = SET_FPEMU_CTL(me, arg2);
1748 			break;
1749 		case PR_GET_FPEMU:
1750 			error = GET_FPEMU_CTL(me, arg2);
1751 			break;
1752 		case PR_SET_FPEXC:
1753 			error = SET_FPEXC_CTL(me, arg2);
1754 			break;
1755 		case PR_GET_FPEXC:
1756 			error = GET_FPEXC_CTL(me, arg2);
1757 			break;
1758 		case PR_GET_TIMING:
1759 			error = PR_TIMING_STATISTICAL;
1760 			break;
1761 		case PR_SET_TIMING:
1762 			if (arg2 != PR_TIMING_STATISTICAL)
1763 				error = -EINVAL;
1764 			else
1765 				error = 0;
1766 			break;
1767 
1768 		case PR_SET_NAME:
1769 			comm[sizeof(me->comm)-1] = 0;
1770 			if (strncpy_from_user(comm, (char __user *)arg2,
1771 					      sizeof(me->comm) - 1) < 0)
1772 				return -EFAULT;
1773 			set_task_comm(me, comm);
1774 			return 0;
1775 		case PR_GET_NAME:
1776 			get_task_comm(comm, me);
1777 			if (copy_to_user((char __user *)arg2, comm,
1778 					 sizeof(comm)))
1779 				return -EFAULT;
1780 			return 0;
1781 		case PR_GET_ENDIAN:
1782 			error = GET_ENDIAN(me, arg2);
1783 			break;
1784 		case PR_SET_ENDIAN:
1785 			error = SET_ENDIAN(me, arg2);
1786 			break;
1787 
1788 		case PR_GET_SECCOMP:
1789 			error = prctl_get_seccomp();
1790 			break;
1791 		case PR_SET_SECCOMP:
1792 			error = prctl_set_seccomp(arg2);
1793 			break;
1794 		case PR_GET_TSC:
1795 			error = GET_TSC_CTL(arg2);
1796 			break;
1797 		case PR_SET_TSC:
1798 			error = SET_TSC_CTL(arg2);
1799 			break;
1800 		case PR_GET_TIMERSLACK:
1801 			error = current->timer_slack_ns;
1802 			break;
1803 		case PR_SET_TIMERSLACK:
1804 			if (arg2 <= 0)
1805 				current->timer_slack_ns =
1806 					current->default_timer_slack_ns;
1807 			else
1808 				current->timer_slack_ns = arg2;
1809 			error = 0;
1810 			break;
1811 		default:
1812 			error = -EINVAL;
1813 			break;
1814 	}
1815 	return error;
1816 }
1817 
1818 asmlinkage long sys_getcpu(unsigned __user *cpup, unsigned __user *nodep,
1819 			   struct getcpu_cache __user *unused)
1820 {
1821 	int err = 0;
1822 	int cpu = raw_smp_processor_id();
1823 	if (cpup)
1824 		err |= put_user(cpu, cpup);
1825 	if (nodep)
1826 		err |= put_user(cpu_to_node(cpu), nodep);
1827 	return err ? -EFAULT : 0;
1828 }
1829 
1830 char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
1831 
1832 static void argv_cleanup(char **argv, char **envp)
1833 {
1834 	argv_free(argv);
1835 }
1836 
1837 /**
1838  * orderly_poweroff - Trigger an orderly system poweroff
1839  * @force: force poweroff if command execution fails
1840  *
1841  * This may be called from any context to trigger a system shutdown.
1842  * If the orderly shutdown fails, it will force an immediate shutdown.
1843  */
1844 int orderly_poweroff(bool force)
1845 {
1846 	int argc;
1847 	char **argv = argv_split(GFP_ATOMIC, poweroff_cmd, &argc);
1848 	static char *envp[] = {
1849 		"HOME=/",
1850 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
1851 		NULL
1852 	};
1853 	int ret = -ENOMEM;
1854 	struct subprocess_info *info;
1855 
1856 	if (argv == NULL) {
1857 		printk(KERN_WARNING "%s failed to allocate memory for \"%s\"\n",
1858 		       __func__, poweroff_cmd);
1859 		goto out;
1860 	}
1861 
1862 	info = call_usermodehelper_setup(argv[0], argv, envp, GFP_ATOMIC);
1863 	if (info == NULL) {
1864 		argv_free(argv);
1865 		goto out;
1866 	}
1867 
1868 	call_usermodehelper_setcleanup(info, argv_cleanup);
1869 
1870 	ret = call_usermodehelper_exec(info, UMH_NO_WAIT);
1871 
1872   out:
1873 	if (ret && force) {
1874 		printk(KERN_WARNING "Failed to start orderly shutdown: "
1875 		       "forcing the issue\n");
1876 
1877 		/* I guess this should try to kick off some daemon to
1878 		   sync and poweroff asap.  Or not even bother syncing
1879 		   if we're doing an emergency shutdown? */
1880 		emergency_sync();
1881 		kernel_power_off();
1882 	}
1883 
1884 	return ret;
1885 }
1886 EXPORT_SYMBOL_GPL(orderly_poweroff);
1887