1 /* 2 * linux/kernel/sys.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 */ 6 7 #include <linux/config.h> 8 #include <linux/module.h> 9 #include <linux/mm.h> 10 #include <linux/utsname.h> 11 #include <linux/mman.h> 12 #include <linux/smp_lock.h> 13 #include <linux/notifier.h> 14 #include <linux/reboot.h> 15 #include <linux/prctl.h> 16 #include <linux/init.h> 17 #include <linux/highuid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kexec.h> 21 #include <linux/workqueue.h> 22 #include <linux/capability.h> 23 #include <linux/device.h> 24 #include <linux/key.h> 25 #include <linux/times.h> 26 #include <linux/posix-timers.h> 27 #include <linux/security.h> 28 #include <linux/dcookies.h> 29 #include <linux/suspend.h> 30 #include <linux/tty.h> 31 #include <linux/signal.h> 32 #include <linux/cn_proc.h> 33 34 #include <linux/compat.h> 35 #include <linux/syscalls.h> 36 #include <linux/kprobes.h> 37 38 #include <asm/uaccess.h> 39 #include <asm/io.h> 40 #include <asm/unistd.h> 41 42 #ifndef SET_UNALIGN_CTL 43 # define SET_UNALIGN_CTL(a,b) (-EINVAL) 44 #endif 45 #ifndef GET_UNALIGN_CTL 46 # define GET_UNALIGN_CTL(a,b) (-EINVAL) 47 #endif 48 #ifndef SET_FPEMU_CTL 49 # define SET_FPEMU_CTL(a,b) (-EINVAL) 50 #endif 51 #ifndef GET_FPEMU_CTL 52 # define GET_FPEMU_CTL(a,b) (-EINVAL) 53 #endif 54 #ifndef SET_FPEXC_CTL 55 # define SET_FPEXC_CTL(a,b) (-EINVAL) 56 #endif 57 #ifndef GET_FPEXC_CTL 58 # define GET_FPEXC_CTL(a,b) (-EINVAL) 59 #endif 60 61 /* 62 * this is where the system-wide overflow UID and GID are defined, for 63 * architectures that now have 32-bit UID/GID but didn't in the past 64 */ 65 66 int overflowuid = DEFAULT_OVERFLOWUID; 67 int overflowgid = DEFAULT_OVERFLOWGID; 68 69 #ifdef CONFIG_UID16 70 EXPORT_SYMBOL(overflowuid); 71 EXPORT_SYMBOL(overflowgid); 72 #endif 73 74 /* 75 * the same as above, but for filesystems which can only store a 16-bit 76 * UID and GID. as such, this is needed on all architectures 77 */ 78 79 int fs_overflowuid = DEFAULT_FS_OVERFLOWUID; 80 int fs_overflowgid = DEFAULT_FS_OVERFLOWUID; 81 82 EXPORT_SYMBOL(fs_overflowuid); 83 EXPORT_SYMBOL(fs_overflowgid); 84 85 /* 86 * this indicates whether you can reboot with ctrl-alt-del: the default is yes 87 */ 88 89 int C_A_D = 1; 90 int cad_pid = 1; 91 92 /* 93 * Notifier list for kernel code which wants to be called 94 * at shutdown. This is used to stop any idling DMA operations 95 * and the like. 96 */ 97 98 static struct notifier_block *reboot_notifier_list; 99 static DEFINE_RWLOCK(notifier_lock); 100 101 /** 102 * notifier_chain_register - Add notifier to a notifier chain 103 * @list: Pointer to root list pointer 104 * @n: New entry in notifier chain 105 * 106 * Adds a notifier to a notifier chain. 107 * 108 * Currently always returns zero. 109 */ 110 111 int notifier_chain_register(struct notifier_block **list, struct notifier_block *n) 112 { 113 write_lock(¬ifier_lock); 114 while(*list) 115 { 116 if(n->priority > (*list)->priority) 117 break; 118 list= &((*list)->next); 119 } 120 n->next = *list; 121 *list=n; 122 write_unlock(¬ifier_lock); 123 return 0; 124 } 125 126 EXPORT_SYMBOL(notifier_chain_register); 127 128 /** 129 * notifier_chain_unregister - Remove notifier from a notifier chain 130 * @nl: Pointer to root list pointer 131 * @n: New entry in notifier chain 132 * 133 * Removes a notifier from a notifier chain. 134 * 135 * Returns zero on success, or %-ENOENT on failure. 136 */ 137 138 int notifier_chain_unregister(struct notifier_block **nl, struct notifier_block *n) 139 { 140 write_lock(¬ifier_lock); 141 while((*nl)!=NULL) 142 { 143 if((*nl)==n) 144 { 145 *nl=n->next; 146 write_unlock(¬ifier_lock); 147 return 0; 148 } 149 nl=&((*nl)->next); 150 } 151 write_unlock(¬ifier_lock); 152 return -ENOENT; 153 } 154 155 EXPORT_SYMBOL(notifier_chain_unregister); 156 157 /** 158 * notifier_call_chain - Call functions in a notifier chain 159 * @n: Pointer to root pointer of notifier chain 160 * @val: Value passed unmodified to notifier function 161 * @v: Pointer passed unmodified to notifier function 162 * 163 * Calls each function in a notifier chain in turn. 164 * 165 * If the return value of the notifier can be and'd 166 * with %NOTIFY_STOP_MASK, then notifier_call_chain 167 * will return immediately, with the return value of 168 * the notifier function which halted execution. 169 * Otherwise, the return value is the return value 170 * of the last notifier function called. 171 */ 172 173 int __kprobes notifier_call_chain(struct notifier_block **n, unsigned long val, void *v) 174 { 175 int ret=NOTIFY_DONE; 176 struct notifier_block *nb = *n; 177 178 while(nb) 179 { 180 ret=nb->notifier_call(nb,val,v); 181 if(ret&NOTIFY_STOP_MASK) 182 { 183 return ret; 184 } 185 nb=nb->next; 186 } 187 return ret; 188 } 189 190 EXPORT_SYMBOL(notifier_call_chain); 191 192 /** 193 * register_reboot_notifier - Register function to be called at reboot time 194 * @nb: Info about notifier function to be called 195 * 196 * Registers a function with the list of functions 197 * to be called at reboot time. 198 * 199 * Currently always returns zero, as notifier_chain_register 200 * always returns zero. 201 */ 202 203 int register_reboot_notifier(struct notifier_block * nb) 204 { 205 return notifier_chain_register(&reboot_notifier_list, nb); 206 } 207 208 EXPORT_SYMBOL(register_reboot_notifier); 209 210 /** 211 * unregister_reboot_notifier - Unregister previously registered reboot notifier 212 * @nb: Hook to be unregistered 213 * 214 * Unregisters a previously registered reboot 215 * notifier function. 216 * 217 * Returns zero on success, or %-ENOENT on failure. 218 */ 219 220 int unregister_reboot_notifier(struct notifier_block * nb) 221 { 222 return notifier_chain_unregister(&reboot_notifier_list, nb); 223 } 224 225 EXPORT_SYMBOL(unregister_reboot_notifier); 226 227 static int set_one_prio(struct task_struct *p, int niceval, int error) 228 { 229 int no_nice; 230 231 if (p->uid != current->euid && 232 p->euid != current->euid && !capable(CAP_SYS_NICE)) { 233 error = -EPERM; 234 goto out; 235 } 236 if (niceval < task_nice(p) && !can_nice(p, niceval)) { 237 error = -EACCES; 238 goto out; 239 } 240 no_nice = security_task_setnice(p, niceval); 241 if (no_nice) { 242 error = no_nice; 243 goto out; 244 } 245 if (error == -ESRCH) 246 error = 0; 247 set_user_nice(p, niceval); 248 out: 249 return error; 250 } 251 252 asmlinkage long sys_setpriority(int which, int who, int niceval) 253 { 254 struct task_struct *g, *p; 255 struct user_struct *user; 256 int error = -EINVAL; 257 258 if (which > 2 || which < 0) 259 goto out; 260 261 /* normalize: avoid signed division (rounding problems) */ 262 error = -ESRCH; 263 if (niceval < -20) 264 niceval = -20; 265 if (niceval > 19) 266 niceval = 19; 267 268 read_lock(&tasklist_lock); 269 switch (which) { 270 case PRIO_PROCESS: 271 if (!who) 272 who = current->pid; 273 p = find_task_by_pid(who); 274 if (p) 275 error = set_one_prio(p, niceval, error); 276 break; 277 case PRIO_PGRP: 278 if (!who) 279 who = process_group(current); 280 do_each_task_pid(who, PIDTYPE_PGID, p) { 281 error = set_one_prio(p, niceval, error); 282 } while_each_task_pid(who, PIDTYPE_PGID, p); 283 break; 284 case PRIO_USER: 285 user = current->user; 286 if (!who) 287 who = current->uid; 288 else 289 if ((who != current->uid) && !(user = find_user(who))) 290 goto out_unlock; /* No processes for this user */ 291 292 do_each_thread(g, p) 293 if (p->uid == who) 294 error = set_one_prio(p, niceval, error); 295 while_each_thread(g, p); 296 if (who != current->uid) 297 free_uid(user); /* For find_user() */ 298 break; 299 } 300 out_unlock: 301 read_unlock(&tasklist_lock); 302 out: 303 return error; 304 } 305 306 /* 307 * Ugh. To avoid negative return values, "getpriority()" will 308 * not return the normal nice-value, but a negated value that 309 * has been offset by 20 (ie it returns 40..1 instead of -20..19) 310 * to stay compatible. 311 */ 312 asmlinkage long sys_getpriority(int which, int who) 313 { 314 struct task_struct *g, *p; 315 struct user_struct *user; 316 long niceval, retval = -ESRCH; 317 318 if (which > 2 || which < 0) 319 return -EINVAL; 320 321 read_lock(&tasklist_lock); 322 switch (which) { 323 case PRIO_PROCESS: 324 if (!who) 325 who = current->pid; 326 p = find_task_by_pid(who); 327 if (p) { 328 niceval = 20 - task_nice(p); 329 if (niceval > retval) 330 retval = niceval; 331 } 332 break; 333 case PRIO_PGRP: 334 if (!who) 335 who = process_group(current); 336 do_each_task_pid(who, PIDTYPE_PGID, p) { 337 niceval = 20 - task_nice(p); 338 if (niceval > retval) 339 retval = niceval; 340 } while_each_task_pid(who, PIDTYPE_PGID, p); 341 break; 342 case PRIO_USER: 343 user = current->user; 344 if (!who) 345 who = current->uid; 346 else 347 if ((who != current->uid) && !(user = find_user(who))) 348 goto out_unlock; /* No processes for this user */ 349 350 do_each_thread(g, p) 351 if (p->uid == who) { 352 niceval = 20 - task_nice(p); 353 if (niceval > retval) 354 retval = niceval; 355 } 356 while_each_thread(g, p); 357 if (who != current->uid) 358 free_uid(user); /* for find_user() */ 359 break; 360 } 361 out_unlock: 362 read_unlock(&tasklist_lock); 363 364 return retval; 365 } 366 367 /** 368 * emergency_restart - reboot the system 369 * 370 * Without shutting down any hardware or taking any locks 371 * reboot the system. This is called when we know we are in 372 * trouble so this is our best effort to reboot. This is 373 * safe to call in interrupt context. 374 */ 375 void emergency_restart(void) 376 { 377 machine_emergency_restart(); 378 } 379 EXPORT_SYMBOL_GPL(emergency_restart); 380 381 void kernel_restart_prepare(char *cmd) 382 { 383 notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd); 384 system_state = SYSTEM_RESTART; 385 device_shutdown(); 386 } 387 388 /** 389 * kernel_restart - reboot the system 390 * @cmd: pointer to buffer containing command to execute for restart 391 * or %NULL 392 * 393 * Shutdown everything and perform a clean reboot. 394 * This is not safe to call in interrupt context. 395 */ 396 void kernel_restart(char *cmd) 397 { 398 kernel_restart_prepare(cmd); 399 if (!cmd) { 400 printk(KERN_EMERG "Restarting system.\n"); 401 } else { 402 printk(KERN_EMERG "Restarting system with command '%s'.\n", cmd); 403 } 404 printk(".\n"); 405 machine_restart(cmd); 406 } 407 EXPORT_SYMBOL_GPL(kernel_restart); 408 409 /** 410 * kernel_kexec - reboot the system 411 * 412 * Move into place and start executing a preloaded standalone 413 * executable. If nothing was preloaded return an error. 414 */ 415 void kernel_kexec(void) 416 { 417 #ifdef CONFIG_KEXEC 418 struct kimage *image; 419 image = xchg(&kexec_image, NULL); 420 if (!image) { 421 return; 422 } 423 kernel_restart_prepare(NULL); 424 printk(KERN_EMERG "Starting new kernel\n"); 425 machine_shutdown(); 426 machine_kexec(image); 427 #endif 428 } 429 EXPORT_SYMBOL_GPL(kernel_kexec); 430 431 void kernel_shutdown_prepare(enum system_states state) 432 { 433 notifier_call_chain(&reboot_notifier_list, 434 (state == SYSTEM_HALT)?SYS_HALT:SYS_POWER_OFF, NULL); 435 system_state = state; 436 device_shutdown(); 437 } 438 /** 439 * kernel_halt - halt the system 440 * 441 * Shutdown everything and perform a clean system halt. 442 */ 443 void kernel_halt(void) 444 { 445 kernel_shutdown_prepare(SYSTEM_HALT); 446 printk(KERN_EMERG "System halted.\n"); 447 machine_halt(); 448 } 449 450 EXPORT_SYMBOL_GPL(kernel_halt); 451 452 /** 453 * kernel_power_off - power_off the system 454 * 455 * Shutdown everything and perform a clean system power_off. 456 */ 457 void kernel_power_off(void) 458 { 459 kernel_shutdown_prepare(SYSTEM_POWER_OFF); 460 printk(KERN_EMERG "Power down.\n"); 461 machine_power_off(); 462 } 463 EXPORT_SYMBOL_GPL(kernel_power_off); 464 /* 465 * Reboot system call: for obvious reasons only root may call it, 466 * and even root needs to set up some magic numbers in the registers 467 * so that some mistake won't make this reboot the whole machine. 468 * You can also set the meaning of the ctrl-alt-del-key here. 469 * 470 * reboot doesn't sync: do that yourself before calling this. 471 */ 472 asmlinkage long sys_reboot(int magic1, int magic2, unsigned int cmd, void __user * arg) 473 { 474 char buffer[256]; 475 476 /* We only trust the superuser with rebooting the system. */ 477 if (!capable(CAP_SYS_BOOT)) 478 return -EPERM; 479 480 /* For safety, we require "magic" arguments. */ 481 if (magic1 != LINUX_REBOOT_MAGIC1 || 482 (magic2 != LINUX_REBOOT_MAGIC2 && 483 magic2 != LINUX_REBOOT_MAGIC2A && 484 magic2 != LINUX_REBOOT_MAGIC2B && 485 magic2 != LINUX_REBOOT_MAGIC2C)) 486 return -EINVAL; 487 488 /* Instead of trying to make the power_off code look like 489 * halt when pm_power_off is not set do it the easy way. 490 */ 491 if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !pm_power_off) 492 cmd = LINUX_REBOOT_CMD_HALT; 493 494 lock_kernel(); 495 switch (cmd) { 496 case LINUX_REBOOT_CMD_RESTART: 497 kernel_restart(NULL); 498 break; 499 500 case LINUX_REBOOT_CMD_CAD_ON: 501 C_A_D = 1; 502 break; 503 504 case LINUX_REBOOT_CMD_CAD_OFF: 505 C_A_D = 0; 506 break; 507 508 case LINUX_REBOOT_CMD_HALT: 509 kernel_halt(); 510 unlock_kernel(); 511 do_exit(0); 512 break; 513 514 case LINUX_REBOOT_CMD_POWER_OFF: 515 kernel_power_off(); 516 unlock_kernel(); 517 do_exit(0); 518 break; 519 520 case LINUX_REBOOT_CMD_RESTART2: 521 if (strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1) < 0) { 522 unlock_kernel(); 523 return -EFAULT; 524 } 525 buffer[sizeof(buffer) - 1] = '\0'; 526 527 kernel_restart(buffer); 528 break; 529 530 case LINUX_REBOOT_CMD_KEXEC: 531 kernel_kexec(); 532 unlock_kernel(); 533 return -EINVAL; 534 535 #ifdef CONFIG_SOFTWARE_SUSPEND 536 case LINUX_REBOOT_CMD_SW_SUSPEND: 537 { 538 int ret = software_suspend(); 539 unlock_kernel(); 540 return ret; 541 } 542 #endif 543 544 default: 545 unlock_kernel(); 546 return -EINVAL; 547 } 548 unlock_kernel(); 549 return 0; 550 } 551 552 static void deferred_cad(void *dummy) 553 { 554 kernel_restart(NULL); 555 } 556 557 /* 558 * This function gets called by ctrl-alt-del - ie the keyboard interrupt. 559 * As it's called within an interrupt, it may NOT sync: the only choice 560 * is whether to reboot at once, or just ignore the ctrl-alt-del. 561 */ 562 void ctrl_alt_del(void) 563 { 564 static DECLARE_WORK(cad_work, deferred_cad, NULL); 565 566 if (C_A_D) 567 schedule_work(&cad_work); 568 else 569 kill_proc(cad_pid, SIGINT, 1); 570 } 571 572 573 /* 574 * Unprivileged users may change the real gid to the effective gid 575 * or vice versa. (BSD-style) 576 * 577 * If you set the real gid at all, or set the effective gid to a value not 578 * equal to the real gid, then the saved gid is set to the new effective gid. 579 * 580 * This makes it possible for a setgid program to completely drop its 581 * privileges, which is often a useful assertion to make when you are doing 582 * a security audit over a program. 583 * 584 * The general idea is that a program which uses just setregid() will be 585 * 100% compatible with BSD. A program which uses just setgid() will be 586 * 100% compatible with POSIX with saved IDs. 587 * 588 * SMP: There are not races, the GIDs are checked only by filesystem 589 * operations (as far as semantic preservation is concerned). 590 */ 591 asmlinkage long sys_setregid(gid_t rgid, gid_t egid) 592 { 593 int old_rgid = current->gid; 594 int old_egid = current->egid; 595 int new_rgid = old_rgid; 596 int new_egid = old_egid; 597 int retval; 598 599 retval = security_task_setgid(rgid, egid, (gid_t)-1, LSM_SETID_RE); 600 if (retval) 601 return retval; 602 603 if (rgid != (gid_t) -1) { 604 if ((old_rgid == rgid) || 605 (current->egid==rgid) || 606 capable(CAP_SETGID)) 607 new_rgid = rgid; 608 else 609 return -EPERM; 610 } 611 if (egid != (gid_t) -1) { 612 if ((old_rgid == egid) || 613 (current->egid == egid) || 614 (current->sgid == egid) || 615 capable(CAP_SETGID)) 616 new_egid = egid; 617 else { 618 return -EPERM; 619 } 620 } 621 if (new_egid != old_egid) 622 { 623 current->mm->dumpable = suid_dumpable; 624 smp_wmb(); 625 } 626 if (rgid != (gid_t) -1 || 627 (egid != (gid_t) -1 && egid != old_rgid)) 628 current->sgid = new_egid; 629 current->fsgid = new_egid; 630 current->egid = new_egid; 631 current->gid = new_rgid; 632 key_fsgid_changed(current); 633 proc_id_connector(current, PROC_EVENT_GID); 634 return 0; 635 } 636 637 /* 638 * setgid() is implemented like SysV w/ SAVED_IDS 639 * 640 * SMP: Same implicit races as above. 641 */ 642 asmlinkage long sys_setgid(gid_t gid) 643 { 644 int old_egid = current->egid; 645 int retval; 646 647 retval = security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_ID); 648 if (retval) 649 return retval; 650 651 if (capable(CAP_SETGID)) 652 { 653 if(old_egid != gid) 654 { 655 current->mm->dumpable = suid_dumpable; 656 smp_wmb(); 657 } 658 current->gid = current->egid = current->sgid = current->fsgid = gid; 659 } 660 else if ((gid == current->gid) || (gid == current->sgid)) 661 { 662 if(old_egid != gid) 663 { 664 current->mm->dumpable = suid_dumpable; 665 smp_wmb(); 666 } 667 current->egid = current->fsgid = gid; 668 } 669 else 670 return -EPERM; 671 672 key_fsgid_changed(current); 673 proc_id_connector(current, PROC_EVENT_GID); 674 return 0; 675 } 676 677 static int set_user(uid_t new_ruid, int dumpclear) 678 { 679 struct user_struct *new_user; 680 681 new_user = alloc_uid(new_ruid); 682 if (!new_user) 683 return -EAGAIN; 684 685 if (atomic_read(&new_user->processes) >= 686 current->signal->rlim[RLIMIT_NPROC].rlim_cur && 687 new_user != &root_user) { 688 free_uid(new_user); 689 return -EAGAIN; 690 } 691 692 switch_uid(new_user); 693 694 if(dumpclear) 695 { 696 current->mm->dumpable = suid_dumpable; 697 smp_wmb(); 698 } 699 current->uid = new_ruid; 700 return 0; 701 } 702 703 /* 704 * Unprivileged users may change the real uid to the effective uid 705 * or vice versa. (BSD-style) 706 * 707 * If you set the real uid at all, or set the effective uid to a value not 708 * equal to the real uid, then the saved uid is set to the new effective uid. 709 * 710 * This makes it possible for a setuid program to completely drop its 711 * privileges, which is often a useful assertion to make when you are doing 712 * a security audit over a program. 713 * 714 * The general idea is that a program which uses just setreuid() will be 715 * 100% compatible with BSD. A program which uses just setuid() will be 716 * 100% compatible with POSIX with saved IDs. 717 */ 718 asmlinkage long sys_setreuid(uid_t ruid, uid_t euid) 719 { 720 int old_ruid, old_euid, old_suid, new_ruid, new_euid; 721 int retval; 722 723 retval = security_task_setuid(ruid, euid, (uid_t)-1, LSM_SETID_RE); 724 if (retval) 725 return retval; 726 727 new_ruid = old_ruid = current->uid; 728 new_euid = old_euid = current->euid; 729 old_suid = current->suid; 730 731 if (ruid != (uid_t) -1) { 732 new_ruid = ruid; 733 if ((old_ruid != ruid) && 734 (current->euid != ruid) && 735 !capable(CAP_SETUID)) 736 return -EPERM; 737 } 738 739 if (euid != (uid_t) -1) { 740 new_euid = euid; 741 if ((old_ruid != euid) && 742 (current->euid != euid) && 743 (current->suid != euid) && 744 !capable(CAP_SETUID)) 745 return -EPERM; 746 } 747 748 if (new_ruid != old_ruid && set_user(new_ruid, new_euid != old_euid) < 0) 749 return -EAGAIN; 750 751 if (new_euid != old_euid) 752 { 753 current->mm->dumpable = suid_dumpable; 754 smp_wmb(); 755 } 756 current->fsuid = current->euid = new_euid; 757 if (ruid != (uid_t) -1 || 758 (euid != (uid_t) -1 && euid != old_ruid)) 759 current->suid = current->euid; 760 current->fsuid = current->euid; 761 762 key_fsuid_changed(current); 763 proc_id_connector(current, PROC_EVENT_UID); 764 765 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RE); 766 } 767 768 769 770 /* 771 * setuid() is implemented like SysV with SAVED_IDS 772 * 773 * Note that SAVED_ID's is deficient in that a setuid root program 774 * like sendmail, for example, cannot set its uid to be a normal 775 * user and then switch back, because if you're root, setuid() sets 776 * the saved uid too. If you don't like this, blame the bright people 777 * in the POSIX committee and/or USG. Note that the BSD-style setreuid() 778 * will allow a root program to temporarily drop privileges and be able to 779 * regain them by swapping the real and effective uid. 780 */ 781 asmlinkage long sys_setuid(uid_t uid) 782 { 783 int old_euid = current->euid; 784 int old_ruid, old_suid, new_ruid, new_suid; 785 int retval; 786 787 retval = security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_ID); 788 if (retval) 789 return retval; 790 791 old_ruid = new_ruid = current->uid; 792 old_suid = current->suid; 793 new_suid = old_suid; 794 795 if (capable(CAP_SETUID)) { 796 if (uid != old_ruid && set_user(uid, old_euid != uid) < 0) 797 return -EAGAIN; 798 new_suid = uid; 799 } else if ((uid != current->uid) && (uid != new_suid)) 800 return -EPERM; 801 802 if (old_euid != uid) 803 { 804 current->mm->dumpable = suid_dumpable; 805 smp_wmb(); 806 } 807 current->fsuid = current->euid = uid; 808 current->suid = new_suid; 809 810 key_fsuid_changed(current); 811 proc_id_connector(current, PROC_EVENT_UID); 812 813 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_ID); 814 } 815 816 817 /* 818 * This function implements a generic ability to update ruid, euid, 819 * and suid. This allows you to implement the 4.4 compatible seteuid(). 820 */ 821 asmlinkage long sys_setresuid(uid_t ruid, uid_t euid, uid_t suid) 822 { 823 int old_ruid = current->uid; 824 int old_euid = current->euid; 825 int old_suid = current->suid; 826 int retval; 827 828 retval = security_task_setuid(ruid, euid, suid, LSM_SETID_RES); 829 if (retval) 830 return retval; 831 832 if (!capable(CAP_SETUID)) { 833 if ((ruid != (uid_t) -1) && (ruid != current->uid) && 834 (ruid != current->euid) && (ruid != current->suid)) 835 return -EPERM; 836 if ((euid != (uid_t) -1) && (euid != current->uid) && 837 (euid != current->euid) && (euid != current->suid)) 838 return -EPERM; 839 if ((suid != (uid_t) -1) && (suid != current->uid) && 840 (suid != current->euid) && (suid != current->suid)) 841 return -EPERM; 842 } 843 if (ruid != (uid_t) -1) { 844 if (ruid != current->uid && set_user(ruid, euid != current->euid) < 0) 845 return -EAGAIN; 846 } 847 if (euid != (uid_t) -1) { 848 if (euid != current->euid) 849 { 850 current->mm->dumpable = suid_dumpable; 851 smp_wmb(); 852 } 853 current->euid = euid; 854 } 855 current->fsuid = current->euid; 856 if (suid != (uid_t) -1) 857 current->suid = suid; 858 859 key_fsuid_changed(current); 860 proc_id_connector(current, PROC_EVENT_UID); 861 862 return security_task_post_setuid(old_ruid, old_euid, old_suid, LSM_SETID_RES); 863 } 864 865 asmlinkage long sys_getresuid(uid_t __user *ruid, uid_t __user *euid, uid_t __user *suid) 866 { 867 int retval; 868 869 if (!(retval = put_user(current->uid, ruid)) && 870 !(retval = put_user(current->euid, euid))) 871 retval = put_user(current->suid, suid); 872 873 return retval; 874 } 875 876 /* 877 * Same as above, but for rgid, egid, sgid. 878 */ 879 asmlinkage long sys_setresgid(gid_t rgid, gid_t egid, gid_t sgid) 880 { 881 int retval; 882 883 retval = security_task_setgid(rgid, egid, sgid, LSM_SETID_RES); 884 if (retval) 885 return retval; 886 887 if (!capable(CAP_SETGID)) { 888 if ((rgid != (gid_t) -1) && (rgid != current->gid) && 889 (rgid != current->egid) && (rgid != current->sgid)) 890 return -EPERM; 891 if ((egid != (gid_t) -1) && (egid != current->gid) && 892 (egid != current->egid) && (egid != current->sgid)) 893 return -EPERM; 894 if ((sgid != (gid_t) -1) && (sgid != current->gid) && 895 (sgid != current->egid) && (sgid != current->sgid)) 896 return -EPERM; 897 } 898 if (egid != (gid_t) -1) { 899 if (egid != current->egid) 900 { 901 current->mm->dumpable = suid_dumpable; 902 smp_wmb(); 903 } 904 current->egid = egid; 905 } 906 current->fsgid = current->egid; 907 if (rgid != (gid_t) -1) 908 current->gid = rgid; 909 if (sgid != (gid_t) -1) 910 current->sgid = sgid; 911 912 key_fsgid_changed(current); 913 proc_id_connector(current, PROC_EVENT_GID); 914 return 0; 915 } 916 917 asmlinkage long sys_getresgid(gid_t __user *rgid, gid_t __user *egid, gid_t __user *sgid) 918 { 919 int retval; 920 921 if (!(retval = put_user(current->gid, rgid)) && 922 !(retval = put_user(current->egid, egid))) 923 retval = put_user(current->sgid, sgid); 924 925 return retval; 926 } 927 928 929 /* 930 * "setfsuid()" sets the fsuid - the uid used for filesystem checks. This 931 * is used for "access()" and for the NFS daemon (letting nfsd stay at 932 * whatever uid it wants to). It normally shadows "euid", except when 933 * explicitly set by setfsuid() or for access.. 934 */ 935 asmlinkage long sys_setfsuid(uid_t uid) 936 { 937 int old_fsuid; 938 939 old_fsuid = current->fsuid; 940 if (security_task_setuid(uid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS)) 941 return old_fsuid; 942 943 if (uid == current->uid || uid == current->euid || 944 uid == current->suid || uid == current->fsuid || 945 capable(CAP_SETUID)) 946 { 947 if (uid != old_fsuid) 948 { 949 current->mm->dumpable = suid_dumpable; 950 smp_wmb(); 951 } 952 current->fsuid = uid; 953 } 954 955 key_fsuid_changed(current); 956 proc_id_connector(current, PROC_EVENT_UID); 957 958 security_task_post_setuid(old_fsuid, (uid_t)-1, (uid_t)-1, LSM_SETID_FS); 959 960 return old_fsuid; 961 } 962 963 /* 964 * Samma p� svenska.. 965 */ 966 asmlinkage long sys_setfsgid(gid_t gid) 967 { 968 int old_fsgid; 969 970 old_fsgid = current->fsgid; 971 if (security_task_setgid(gid, (gid_t)-1, (gid_t)-1, LSM_SETID_FS)) 972 return old_fsgid; 973 974 if (gid == current->gid || gid == current->egid || 975 gid == current->sgid || gid == current->fsgid || 976 capable(CAP_SETGID)) 977 { 978 if (gid != old_fsgid) 979 { 980 current->mm->dumpable = suid_dumpable; 981 smp_wmb(); 982 } 983 current->fsgid = gid; 984 key_fsgid_changed(current); 985 proc_id_connector(current, PROC_EVENT_GID); 986 } 987 return old_fsgid; 988 } 989 990 asmlinkage long sys_times(struct tms __user * tbuf) 991 { 992 /* 993 * In the SMP world we might just be unlucky and have one of 994 * the times increment as we use it. Since the value is an 995 * atomically safe type this is just fine. Conceptually its 996 * as if the syscall took an instant longer to occur. 997 */ 998 if (tbuf) { 999 struct tms tmp; 1000 cputime_t utime, stime, cutime, cstime; 1001 1002 #ifdef CONFIG_SMP 1003 if (thread_group_empty(current)) { 1004 /* 1005 * Single thread case without the use of any locks. 1006 * 1007 * We may race with release_task if two threads are 1008 * executing. However, release task first adds up the 1009 * counters (__exit_signal) before removing the task 1010 * from the process tasklist (__unhash_process). 1011 * __exit_signal also acquires and releases the 1012 * siglock which results in the proper memory ordering 1013 * so that the list modifications are always visible 1014 * after the counters have been updated. 1015 * 1016 * If the counters have been updated by the second thread 1017 * but the thread has not yet been removed from the list 1018 * then the other branch will be executing which will 1019 * block on tasklist_lock until the exit handling of the 1020 * other task is finished. 1021 * 1022 * This also implies that the sighand->siglock cannot 1023 * be held by another processor. So we can also 1024 * skip acquiring that lock. 1025 */ 1026 utime = cputime_add(current->signal->utime, current->utime); 1027 stime = cputime_add(current->signal->utime, current->stime); 1028 cutime = current->signal->cutime; 1029 cstime = current->signal->cstime; 1030 } else 1031 #endif 1032 { 1033 1034 /* Process with multiple threads */ 1035 struct task_struct *tsk = current; 1036 struct task_struct *t; 1037 1038 read_lock(&tasklist_lock); 1039 utime = tsk->signal->utime; 1040 stime = tsk->signal->stime; 1041 t = tsk; 1042 do { 1043 utime = cputime_add(utime, t->utime); 1044 stime = cputime_add(stime, t->stime); 1045 t = next_thread(t); 1046 } while (t != tsk); 1047 1048 /* 1049 * While we have tasklist_lock read-locked, no dying thread 1050 * can be updating current->signal->[us]time. Instead, 1051 * we got their counts included in the live thread loop. 1052 * However, another thread can come in right now and 1053 * do a wait call that updates current->signal->c[us]time. 1054 * To make sure we always see that pair updated atomically, 1055 * we take the siglock around fetching them. 1056 */ 1057 spin_lock_irq(&tsk->sighand->siglock); 1058 cutime = tsk->signal->cutime; 1059 cstime = tsk->signal->cstime; 1060 spin_unlock_irq(&tsk->sighand->siglock); 1061 read_unlock(&tasklist_lock); 1062 } 1063 tmp.tms_utime = cputime_to_clock_t(utime); 1064 tmp.tms_stime = cputime_to_clock_t(stime); 1065 tmp.tms_cutime = cputime_to_clock_t(cutime); 1066 tmp.tms_cstime = cputime_to_clock_t(cstime); 1067 if (copy_to_user(tbuf, &tmp, sizeof(struct tms))) 1068 return -EFAULT; 1069 } 1070 return (long) jiffies_64_to_clock_t(get_jiffies_64()); 1071 } 1072 1073 /* 1074 * This needs some heavy checking ... 1075 * I just haven't the stomach for it. I also don't fully 1076 * understand sessions/pgrp etc. Let somebody who does explain it. 1077 * 1078 * OK, I think I have the protection semantics right.... this is really 1079 * only important on a multi-user system anyway, to make sure one user 1080 * can't send a signal to a process owned by another. -TYT, 12/12/91 1081 * 1082 * Auch. Had to add the 'did_exec' flag to conform completely to POSIX. 1083 * LBT 04.03.94 1084 */ 1085 1086 asmlinkage long sys_setpgid(pid_t pid, pid_t pgid) 1087 { 1088 struct task_struct *p; 1089 struct task_struct *group_leader = current->group_leader; 1090 int err = -EINVAL; 1091 1092 if (!pid) 1093 pid = group_leader->pid; 1094 if (!pgid) 1095 pgid = pid; 1096 if (pgid < 0) 1097 return -EINVAL; 1098 1099 /* From this point forward we keep holding onto the tasklist lock 1100 * so that our parent does not change from under us. -DaveM 1101 */ 1102 write_lock_irq(&tasklist_lock); 1103 1104 err = -ESRCH; 1105 p = find_task_by_pid(pid); 1106 if (!p) 1107 goto out; 1108 1109 err = -EINVAL; 1110 if (!thread_group_leader(p)) 1111 goto out; 1112 1113 if (p->real_parent == group_leader) { 1114 err = -EPERM; 1115 if (p->signal->session != group_leader->signal->session) 1116 goto out; 1117 err = -EACCES; 1118 if (p->did_exec) 1119 goto out; 1120 } else { 1121 err = -ESRCH; 1122 if (p != group_leader) 1123 goto out; 1124 } 1125 1126 err = -EPERM; 1127 if (p->signal->leader) 1128 goto out; 1129 1130 if (pgid != pid) { 1131 struct task_struct *p; 1132 1133 do_each_task_pid(pgid, PIDTYPE_PGID, p) { 1134 if (p->signal->session == group_leader->signal->session) 1135 goto ok_pgid; 1136 } while_each_task_pid(pgid, PIDTYPE_PGID, p); 1137 goto out; 1138 } 1139 1140 ok_pgid: 1141 err = security_task_setpgid(p, pgid); 1142 if (err) 1143 goto out; 1144 1145 if (process_group(p) != pgid) { 1146 detach_pid(p, PIDTYPE_PGID); 1147 p->signal->pgrp = pgid; 1148 attach_pid(p, PIDTYPE_PGID, pgid); 1149 } 1150 1151 err = 0; 1152 out: 1153 /* All paths lead to here, thus we are safe. -DaveM */ 1154 write_unlock_irq(&tasklist_lock); 1155 return err; 1156 } 1157 1158 asmlinkage long sys_getpgid(pid_t pid) 1159 { 1160 if (!pid) { 1161 return process_group(current); 1162 } else { 1163 int retval; 1164 struct task_struct *p; 1165 1166 read_lock(&tasklist_lock); 1167 p = find_task_by_pid(pid); 1168 1169 retval = -ESRCH; 1170 if (p) { 1171 retval = security_task_getpgid(p); 1172 if (!retval) 1173 retval = process_group(p); 1174 } 1175 read_unlock(&tasklist_lock); 1176 return retval; 1177 } 1178 } 1179 1180 #ifdef __ARCH_WANT_SYS_GETPGRP 1181 1182 asmlinkage long sys_getpgrp(void) 1183 { 1184 /* SMP - assuming writes are word atomic this is fine */ 1185 return process_group(current); 1186 } 1187 1188 #endif 1189 1190 asmlinkage long sys_getsid(pid_t pid) 1191 { 1192 if (!pid) { 1193 return current->signal->session; 1194 } else { 1195 int retval; 1196 struct task_struct *p; 1197 1198 read_lock(&tasklist_lock); 1199 p = find_task_by_pid(pid); 1200 1201 retval = -ESRCH; 1202 if(p) { 1203 retval = security_task_getsid(p); 1204 if (!retval) 1205 retval = p->signal->session; 1206 } 1207 read_unlock(&tasklist_lock); 1208 return retval; 1209 } 1210 } 1211 1212 asmlinkage long sys_setsid(void) 1213 { 1214 struct task_struct *group_leader = current->group_leader; 1215 struct pid *pid; 1216 int err = -EPERM; 1217 1218 mutex_lock(&tty_mutex); 1219 write_lock_irq(&tasklist_lock); 1220 1221 pid = find_pid(PIDTYPE_PGID, group_leader->pid); 1222 if (pid) 1223 goto out; 1224 1225 group_leader->signal->leader = 1; 1226 __set_special_pids(group_leader->pid, group_leader->pid); 1227 group_leader->signal->tty = NULL; 1228 group_leader->signal->tty_old_pgrp = 0; 1229 err = process_group(group_leader); 1230 out: 1231 write_unlock_irq(&tasklist_lock); 1232 mutex_unlock(&tty_mutex); 1233 return err; 1234 } 1235 1236 /* 1237 * Supplementary group IDs 1238 */ 1239 1240 /* init to 2 - one for init_task, one to ensure it is never freed */ 1241 struct group_info init_groups = { .usage = ATOMIC_INIT(2) }; 1242 1243 struct group_info *groups_alloc(int gidsetsize) 1244 { 1245 struct group_info *group_info; 1246 int nblocks; 1247 int i; 1248 1249 nblocks = (gidsetsize + NGROUPS_PER_BLOCK - 1) / NGROUPS_PER_BLOCK; 1250 /* Make sure we always allocate at least one indirect block pointer */ 1251 nblocks = nblocks ? : 1; 1252 group_info = kmalloc(sizeof(*group_info) + nblocks*sizeof(gid_t *), GFP_USER); 1253 if (!group_info) 1254 return NULL; 1255 group_info->ngroups = gidsetsize; 1256 group_info->nblocks = nblocks; 1257 atomic_set(&group_info->usage, 1); 1258 1259 if (gidsetsize <= NGROUPS_SMALL) { 1260 group_info->blocks[0] = group_info->small_block; 1261 } else { 1262 for (i = 0; i < nblocks; i++) { 1263 gid_t *b; 1264 b = (void *)__get_free_page(GFP_USER); 1265 if (!b) 1266 goto out_undo_partial_alloc; 1267 group_info->blocks[i] = b; 1268 } 1269 } 1270 return group_info; 1271 1272 out_undo_partial_alloc: 1273 while (--i >= 0) { 1274 free_page((unsigned long)group_info->blocks[i]); 1275 } 1276 kfree(group_info); 1277 return NULL; 1278 } 1279 1280 EXPORT_SYMBOL(groups_alloc); 1281 1282 void groups_free(struct group_info *group_info) 1283 { 1284 if (group_info->blocks[0] != group_info->small_block) { 1285 int i; 1286 for (i = 0; i < group_info->nblocks; i++) 1287 free_page((unsigned long)group_info->blocks[i]); 1288 } 1289 kfree(group_info); 1290 } 1291 1292 EXPORT_SYMBOL(groups_free); 1293 1294 /* export the group_info to a user-space array */ 1295 static int groups_to_user(gid_t __user *grouplist, 1296 struct group_info *group_info) 1297 { 1298 int i; 1299 int count = group_info->ngroups; 1300 1301 for (i = 0; i < group_info->nblocks; i++) { 1302 int cp_count = min(NGROUPS_PER_BLOCK, count); 1303 int off = i * NGROUPS_PER_BLOCK; 1304 int len = cp_count * sizeof(*grouplist); 1305 1306 if (copy_to_user(grouplist+off, group_info->blocks[i], len)) 1307 return -EFAULT; 1308 1309 count -= cp_count; 1310 } 1311 return 0; 1312 } 1313 1314 /* fill a group_info from a user-space array - it must be allocated already */ 1315 static int groups_from_user(struct group_info *group_info, 1316 gid_t __user *grouplist) 1317 { 1318 int i; 1319 int count = group_info->ngroups; 1320 1321 for (i = 0; i < group_info->nblocks; i++) { 1322 int cp_count = min(NGROUPS_PER_BLOCK, count); 1323 int off = i * NGROUPS_PER_BLOCK; 1324 int len = cp_count * sizeof(*grouplist); 1325 1326 if (copy_from_user(group_info->blocks[i], grouplist+off, len)) 1327 return -EFAULT; 1328 1329 count -= cp_count; 1330 } 1331 return 0; 1332 } 1333 1334 /* a simple Shell sort */ 1335 static void groups_sort(struct group_info *group_info) 1336 { 1337 int base, max, stride; 1338 int gidsetsize = group_info->ngroups; 1339 1340 for (stride = 1; stride < gidsetsize; stride = 3 * stride + 1) 1341 ; /* nothing */ 1342 stride /= 3; 1343 1344 while (stride) { 1345 max = gidsetsize - stride; 1346 for (base = 0; base < max; base++) { 1347 int left = base; 1348 int right = left + stride; 1349 gid_t tmp = GROUP_AT(group_info, right); 1350 1351 while (left >= 0 && GROUP_AT(group_info, left) > tmp) { 1352 GROUP_AT(group_info, right) = 1353 GROUP_AT(group_info, left); 1354 right = left; 1355 left -= stride; 1356 } 1357 GROUP_AT(group_info, right) = tmp; 1358 } 1359 stride /= 3; 1360 } 1361 } 1362 1363 /* a simple bsearch */ 1364 int groups_search(struct group_info *group_info, gid_t grp) 1365 { 1366 unsigned int left, right; 1367 1368 if (!group_info) 1369 return 0; 1370 1371 left = 0; 1372 right = group_info->ngroups; 1373 while (left < right) { 1374 unsigned int mid = (left+right)/2; 1375 int cmp = grp - GROUP_AT(group_info, mid); 1376 if (cmp > 0) 1377 left = mid + 1; 1378 else if (cmp < 0) 1379 right = mid; 1380 else 1381 return 1; 1382 } 1383 return 0; 1384 } 1385 1386 /* validate and set current->group_info */ 1387 int set_current_groups(struct group_info *group_info) 1388 { 1389 int retval; 1390 struct group_info *old_info; 1391 1392 retval = security_task_setgroups(group_info); 1393 if (retval) 1394 return retval; 1395 1396 groups_sort(group_info); 1397 get_group_info(group_info); 1398 1399 task_lock(current); 1400 old_info = current->group_info; 1401 current->group_info = group_info; 1402 task_unlock(current); 1403 1404 put_group_info(old_info); 1405 1406 return 0; 1407 } 1408 1409 EXPORT_SYMBOL(set_current_groups); 1410 1411 asmlinkage long sys_getgroups(int gidsetsize, gid_t __user *grouplist) 1412 { 1413 int i = 0; 1414 1415 /* 1416 * SMP: Nobody else can change our grouplist. Thus we are 1417 * safe. 1418 */ 1419 1420 if (gidsetsize < 0) 1421 return -EINVAL; 1422 1423 /* no need to grab task_lock here; it cannot change */ 1424 i = current->group_info->ngroups; 1425 if (gidsetsize) { 1426 if (i > gidsetsize) { 1427 i = -EINVAL; 1428 goto out; 1429 } 1430 if (groups_to_user(grouplist, current->group_info)) { 1431 i = -EFAULT; 1432 goto out; 1433 } 1434 } 1435 out: 1436 return i; 1437 } 1438 1439 /* 1440 * SMP: Our groups are copy-on-write. We can set them safely 1441 * without another task interfering. 1442 */ 1443 1444 asmlinkage long sys_setgroups(int gidsetsize, gid_t __user *grouplist) 1445 { 1446 struct group_info *group_info; 1447 int retval; 1448 1449 if (!capable(CAP_SETGID)) 1450 return -EPERM; 1451 if ((unsigned)gidsetsize > NGROUPS_MAX) 1452 return -EINVAL; 1453 1454 group_info = groups_alloc(gidsetsize); 1455 if (!group_info) 1456 return -ENOMEM; 1457 retval = groups_from_user(group_info, grouplist); 1458 if (retval) { 1459 put_group_info(group_info); 1460 return retval; 1461 } 1462 1463 retval = set_current_groups(group_info); 1464 put_group_info(group_info); 1465 1466 return retval; 1467 } 1468 1469 /* 1470 * Check whether we're fsgid/egid or in the supplemental group.. 1471 */ 1472 int in_group_p(gid_t grp) 1473 { 1474 int retval = 1; 1475 if (grp != current->fsgid) { 1476 retval = groups_search(current->group_info, grp); 1477 } 1478 return retval; 1479 } 1480 1481 EXPORT_SYMBOL(in_group_p); 1482 1483 int in_egroup_p(gid_t grp) 1484 { 1485 int retval = 1; 1486 if (grp != current->egid) { 1487 retval = groups_search(current->group_info, grp); 1488 } 1489 return retval; 1490 } 1491 1492 EXPORT_SYMBOL(in_egroup_p); 1493 1494 DECLARE_RWSEM(uts_sem); 1495 1496 EXPORT_SYMBOL(uts_sem); 1497 1498 asmlinkage long sys_newuname(struct new_utsname __user * name) 1499 { 1500 int errno = 0; 1501 1502 down_read(&uts_sem); 1503 if (copy_to_user(name,&system_utsname,sizeof *name)) 1504 errno = -EFAULT; 1505 up_read(&uts_sem); 1506 return errno; 1507 } 1508 1509 asmlinkage long sys_sethostname(char __user *name, int len) 1510 { 1511 int errno; 1512 char tmp[__NEW_UTS_LEN]; 1513 1514 if (!capable(CAP_SYS_ADMIN)) 1515 return -EPERM; 1516 if (len < 0 || len > __NEW_UTS_LEN) 1517 return -EINVAL; 1518 down_write(&uts_sem); 1519 errno = -EFAULT; 1520 if (!copy_from_user(tmp, name, len)) { 1521 memcpy(system_utsname.nodename, tmp, len); 1522 system_utsname.nodename[len] = 0; 1523 errno = 0; 1524 } 1525 up_write(&uts_sem); 1526 return errno; 1527 } 1528 1529 #ifdef __ARCH_WANT_SYS_GETHOSTNAME 1530 1531 asmlinkage long sys_gethostname(char __user *name, int len) 1532 { 1533 int i, errno; 1534 1535 if (len < 0) 1536 return -EINVAL; 1537 down_read(&uts_sem); 1538 i = 1 + strlen(system_utsname.nodename); 1539 if (i > len) 1540 i = len; 1541 errno = 0; 1542 if (copy_to_user(name, system_utsname.nodename, i)) 1543 errno = -EFAULT; 1544 up_read(&uts_sem); 1545 return errno; 1546 } 1547 1548 #endif 1549 1550 /* 1551 * Only setdomainname; getdomainname can be implemented by calling 1552 * uname() 1553 */ 1554 asmlinkage long sys_setdomainname(char __user *name, int len) 1555 { 1556 int errno; 1557 char tmp[__NEW_UTS_LEN]; 1558 1559 if (!capable(CAP_SYS_ADMIN)) 1560 return -EPERM; 1561 if (len < 0 || len > __NEW_UTS_LEN) 1562 return -EINVAL; 1563 1564 down_write(&uts_sem); 1565 errno = -EFAULT; 1566 if (!copy_from_user(tmp, name, len)) { 1567 memcpy(system_utsname.domainname, tmp, len); 1568 system_utsname.domainname[len] = 0; 1569 errno = 0; 1570 } 1571 up_write(&uts_sem); 1572 return errno; 1573 } 1574 1575 asmlinkage long sys_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1576 { 1577 if (resource >= RLIM_NLIMITS) 1578 return -EINVAL; 1579 else { 1580 struct rlimit value; 1581 task_lock(current->group_leader); 1582 value = current->signal->rlim[resource]; 1583 task_unlock(current->group_leader); 1584 return copy_to_user(rlim, &value, sizeof(*rlim)) ? -EFAULT : 0; 1585 } 1586 } 1587 1588 #ifdef __ARCH_WANT_SYS_OLD_GETRLIMIT 1589 1590 /* 1591 * Back compatibility for getrlimit. Needed for some apps. 1592 */ 1593 1594 asmlinkage long sys_old_getrlimit(unsigned int resource, struct rlimit __user *rlim) 1595 { 1596 struct rlimit x; 1597 if (resource >= RLIM_NLIMITS) 1598 return -EINVAL; 1599 1600 task_lock(current->group_leader); 1601 x = current->signal->rlim[resource]; 1602 task_unlock(current->group_leader); 1603 if(x.rlim_cur > 0x7FFFFFFF) 1604 x.rlim_cur = 0x7FFFFFFF; 1605 if(x.rlim_max > 0x7FFFFFFF) 1606 x.rlim_max = 0x7FFFFFFF; 1607 return copy_to_user(rlim, &x, sizeof(x))?-EFAULT:0; 1608 } 1609 1610 #endif 1611 1612 asmlinkage long sys_setrlimit(unsigned int resource, struct rlimit __user *rlim) 1613 { 1614 struct rlimit new_rlim, *old_rlim; 1615 unsigned long it_prof_secs; 1616 int retval; 1617 1618 if (resource >= RLIM_NLIMITS) 1619 return -EINVAL; 1620 if (copy_from_user(&new_rlim, rlim, sizeof(*rlim))) 1621 return -EFAULT; 1622 if (new_rlim.rlim_cur > new_rlim.rlim_max) 1623 return -EINVAL; 1624 old_rlim = current->signal->rlim + resource; 1625 if ((new_rlim.rlim_max > old_rlim->rlim_max) && 1626 !capable(CAP_SYS_RESOURCE)) 1627 return -EPERM; 1628 if (resource == RLIMIT_NOFILE && new_rlim.rlim_max > NR_OPEN) 1629 return -EPERM; 1630 1631 retval = security_task_setrlimit(resource, &new_rlim); 1632 if (retval) 1633 return retval; 1634 1635 task_lock(current->group_leader); 1636 *old_rlim = new_rlim; 1637 task_unlock(current->group_leader); 1638 1639 if (resource != RLIMIT_CPU) 1640 goto out; 1641 1642 /* 1643 * RLIMIT_CPU handling. Note that the kernel fails to return an error 1644 * code if it rejected the user's attempt to set RLIMIT_CPU. This is a 1645 * very long-standing error, and fixing it now risks breakage of 1646 * applications, so we live with it 1647 */ 1648 if (new_rlim.rlim_cur == RLIM_INFINITY) 1649 goto out; 1650 1651 it_prof_secs = cputime_to_secs(current->signal->it_prof_expires); 1652 if (it_prof_secs == 0 || new_rlim.rlim_cur <= it_prof_secs) { 1653 unsigned long rlim_cur = new_rlim.rlim_cur; 1654 cputime_t cputime; 1655 1656 if (rlim_cur == 0) { 1657 /* 1658 * The caller is asking for an immediate RLIMIT_CPU 1659 * expiry. But we use the zero value to mean "it was 1660 * never set". So let's cheat and make it one second 1661 * instead 1662 */ 1663 rlim_cur = 1; 1664 } 1665 cputime = secs_to_cputime(rlim_cur); 1666 read_lock(&tasklist_lock); 1667 spin_lock_irq(¤t->sighand->siglock); 1668 set_process_cpu_timer(current, CPUCLOCK_PROF, &cputime, NULL); 1669 spin_unlock_irq(¤t->sighand->siglock); 1670 read_unlock(&tasklist_lock); 1671 } 1672 out: 1673 return 0; 1674 } 1675 1676 /* 1677 * It would make sense to put struct rusage in the task_struct, 1678 * except that would make the task_struct be *really big*. After 1679 * task_struct gets moved into malloc'ed memory, it would 1680 * make sense to do this. It will make moving the rest of the information 1681 * a lot simpler! (Which we're not doing right now because we're not 1682 * measuring them yet). 1683 * 1684 * When sampling multiple threads for RUSAGE_SELF, under SMP we might have 1685 * races with threads incrementing their own counters. But since word 1686 * reads are atomic, we either get new values or old values and we don't 1687 * care which for the sums. We always take the siglock to protect reading 1688 * the c* fields from p->signal from races with exit.c updating those 1689 * fields when reaping, so a sample either gets all the additions of a 1690 * given child after it's reaped, or none so this sample is before reaping. 1691 * 1692 * tasklist_lock locking optimisation: 1693 * If we are current and single threaded, we do not need to take the tasklist 1694 * lock or the siglock. No one else can take our signal_struct away, 1695 * no one else can reap the children to update signal->c* counters, and 1696 * no one else can race with the signal-> fields. 1697 * If we do not take the tasklist_lock, the signal-> fields could be read 1698 * out of order while another thread was just exiting. So we place a 1699 * read memory barrier when we avoid the lock. On the writer side, 1700 * write memory barrier is implied in __exit_signal as __exit_signal releases 1701 * the siglock spinlock after updating the signal-> fields. 1702 * 1703 * We don't really need the siglock when we access the non c* fields 1704 * of the signal_struct (for RUSAGE_SELF) even in multithreaded 1705 * case, since we take the tasklist lock for read and the non c* signal-> 1706 * fields are updated only in __exit_signal, which is called with 1707 * tasklist_lock taken for write, hence these two threads cannot execute 1708 * concurrently. 1709 * 1710 */ 1711 1712 static void k_getrusage(struct task_struct *p, int who, struct rusage *r) 1713 { 1714 struct task_struct *t; 1715 unsigned long flags; 1716 cputime_t utime, stime; 1717 int need_lock = 0; 1718 1719 memset((char *) r, 0, sizeof *r); 1720 utime = stime = cputime_zero; 1721 1722 if (p != current || !thread_group_empty(p)) 1723 need_lock = 1; 1724 1725 if (need_lock) { 1726 read_lock(&tasklist_lock); 1727 if (unlikely(!p->signal)) { 1728 read_unlock(&tasklist_lock); 1729 return; 1730 } 1731 } else 1732 /* See locking comments above */ 1733 smp_rmb(); 1734 1735 switch (who) { 1736 case RUSAGE_BOTH: 1737 case RUSAGE_CHILDREN: 1738 spin_lock_irqsave(&p->sighand->siglock, flags); 1739 utime = p->signal->cutime; 1740 stime = p->signal->cstime; 1741 r->ru_nvcsw = p->signal->cnvcsw; 1742 r->ru_nivcsw = p->signal->cnivcsw; 1743 r->ru_minflt = p->signal->cmin_flt; 1744 r->ru_majflt = p->signal->cmaj_flt; 1745 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1746 1747 if (who == RUSAGE_CHILDREN) 1748 break; 1749 1750 case RUSAGE_SELF: 1751 utime = cputime_add(utime, p->signal->utime); 1752 stime = cputime_add(stime, p->signal->stime); 1753 r->ru_nvcsw += p->signal->nvcsw; 1754 r->ru_nivcsw += p->signal->nivcsw; 1755 r->ru_minflt += p->signal->min_flt; 1756 r->ru_majflt += p->signal->maj_flt; 1757 t = p; 1758 do { 1759 utime = cputime_add(utime, t->utime); 1760 stime = cputime_add(stime, t->stime); 1761 r->ru_nvcsw += t->nvcsw; 1762 r->ru_nivcsw += t->nivcsw; 1763 r->ru_minflt += t->min_flt; 1764 r->ru_majflt += t->maj_flt; 1765 t = next_thread(t); 1766 } while (t != p); 1767 break; 1768 1769 default: 1770 BUG(); 1771 } 1772 1773 if (need_lock) 1774 read_unlock(&tasklist_lock); 1775 cputime_to_timeval(utime, &r->ru_utime); 1776 cputime_to_timeval(stime, &r->ru_stime); 1777 } 1778 1779 int getrusage(struct task_struct *p, int who, struct rusage __user *ru) 1780 { 1781 struct rusage r; 1782 k_getrusage(p, who, &r); 1783 return copy_to_user(ru, &r, sizeof(r)) ? -EFAULT : 0; 1784 } 1785 1786 asmlinkage long sys_getrusage(int who, struct rusage __user *ru) 1787 { 1788 if (who != RUSAGE_SELF && who != RUSAGE_CHILDREN) 1789 return -EINVAL; 1790 return getrusage(current, who, ru); 1791 } 1792 1793 asmlinkage long sys_umask(int mask) 1794 { 1795 mask = xchg(¤t->fs->umask, mask & S_IRWXUGO); 1796 return mask; 1797 } 1798 1799 asmlinkage long sys_prctl(int option, unsigned long arg2, unsigned long arg3, 1800 unsigned long arg4, unsigned long arg5) 1801 { 1802 long error; 1803 1804 error = security_task_prctl(option, arg2, arg3, arg4, arg5); 1805 if (error) 1806 return error; 1807 1808 switch (option) { 1809 case PR_SET_PDEATHSIG: 1810 if (!valid_signal(arg2)) { 1811 error = -EINVAL; 1812 break; 1813 } 1814 current->pdeath_signal = arg2; 1815 break; 1816 case PR_GET_PDEATHSIG: 1817 error = put_user(current->pdeath_signal, (int __user *)arg2); 1818 break; 1819 case PR_GET_DUMPABLE: 1820 error = current->mm->dumpable; 1821 break; 1822 case PR_SET_DUMPABLE: 1823 if (arg2 < 0 || arg2 > 2) { 1824 error = -EINVAL; 1825 break; 1826 } 1827 current->mm->dumpable = arg2; 1828 break; 1829 1830 case PR_SET_UNALIGN: 1831 error = SET_UNALIGN_CTL(current, arg2); 1832 break; 1833 case PR_GET_UNALIGN: 1834 error = GET_UNALIGN_CTL(current, arg2); 1835 break; 1836 case PR_SET_FPEMU: 1837 error = SET_FPEMU_CTL(current, arg2); 1838 break; 1839 case PR_GET_FPEMU: 1840 error = GET_FPEMU_CTL(current, arg2); 1841 break; 1842 case PR_SET_FPEXC: 1843 error = SET_FPEXC_CTL(current, arg2); 1844 break; 1845 case PR_GET_FPEXC: 1846 error = GET_FPEXC_CTL(current, arg2); 1847 break; 1848 case PR_GET_TIMING: 1849 error = PR_TIMING_STATISTICAL; 1850 break; 1851 case PR_SET_TIMING: 1852 if (arg2 == PR_TIMING_STATISTICAL) 1853 error = 0; 1854 else 1855 error = -EINVAL; 1856 break; 1857 1858 case PR_GET_KEEPCAPS: 1859 if (current->keep_capabilities) 1860 error = 1; 1861 break; 1862 case PR_SET_KEEPCAPS: 1863 if (arg2 != 0 && arg2 != 1) { 1864 error = -EINVAL; 1865 break; 1866 } 1867 current->keep_capabilities = arg2; 1868 break; 1869 case PR_SET_NAME: { 1870 struct task_struct *me = current; 1871 unsigned char ncomm[sizeof(me->comm)]; 1872 1873 ncomm[sizeof(me->comm)-1] = 0; 1874 if (strncpy_from_user(ncomm, (char __user *)arg2, 1875 sizeof(me->comm)-1) < 0) 1876 return -EFAULT; 1877 set_task_comm(me, ncomm); 1878 return 0; 1879 } 1880 case PR_GET_NAME: { 1881 struct task_struct *me = current; 1882 unsigned char tcomm[sizeof(me->comm)]; 1883 1884 get_task_comm(tcomm, me); 1885 if (copy_to_user((char __user *)arg2, tcomm, sizeof(tcomm))) 1886 return -EFAULT; 1887 return 0; 1888 } 1889 default: 1890 error = -EINVAL; 1891 break; 1892 } 1893 return error; 1894 } 1895