xref: /linux-6.15/kernel/stop_machine.c (revision cfd35514)
1 /*
2  * kernel/stop_machine.c
3  *
4  * Copyright (C) 2008, 2005	IBM Corporation.
5  * Copyright (C) 2008, 2005	Rusty Russell [email protected]
6  * Copyright (C) 2010		SUSE Linux Products GmbH
7  * Copyright (C) 2010		Tejun Heo <[email protected]>
8  *
9  * This file is released under the GPLv2 and any later version.
10  */
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/nmi.h>
24 #include <linux/sched/wake_q.h>
25 
26 /*
27  * Structure to determine completion condition and record errors.  May
28  * be shared by works on different cpus.
29  */
30 struct cpu_stop_done {
31 	atomic_t		nr_todo;	/* nr left to execute */
32 	int			ret;		/* collected return value */
33 	struct completion	completion;	/* fired if nr_todo reaches 0 */
34 };
35 
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 	struct task_struct	*thread;
39 
40 	raw_spinlock_t		lock;
41 	bool			enabled;	/* is this stopper enabled? */
42 	struct list_head	works;		/* list of pending works */
43 
44 	struct cpu_stop_work	stop_work;	/* for stop_cpus */
45 };
46 
47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48 static bool stop_machine_initialized = false;
49 
50 /* static data for stop_cpus */
51 static DEFINE_MUTEX(stop_cpus_mutex);
52 static bool stop_cpus_in_progress;
53 
54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
55 {
56 	memset(done, 0, sizeof(*done));
57 	atomic_set(&done->nr_todo, nr_todo);
58 	init_completion(&done->completion);
59 }
60 
61 /* signal completion unless @done is NULL */
62 static void cpu_stop_signal_done(struct cpu_stop_done *done)
63 {
64 	if (atomic_dec_and_test(&done->nr_todo))
65 		complete(&done->completion);
66 }
67 
68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
69 					struct cpu_stop_work *work,
70 					struct wake_q_head *wakeq)
71 {
72 	list_add_tail(&work->list, &stopper->works);
73 	wake_q_add(wakeq, stopper->thread);
74 }
75 
76 /* queue @work to @stopper.  if offline, @work is completed immediately */
77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
78 {
79 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
80 	DEFINE_WAKE_Q(wakeq);
81 	unsigned long flags;
82 	bool enabled;
83 
84 	preempt_disable();
85 	raw_spin_lock_irqsave(&stopper->lock, flags);
86 	enabled = stopper->enabled;
87 	if (enabled)
88 		__cpu_stop_queue_work(stopper, work, &wakeq);
89 	else if (work->done)
90 		cpu_stop_signal_done(work->done);
91 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
92 
93 	wake_up_q(&wakeq);
94 	preempt_enable();
95 
96 	return enabled;
97 }
98 
99 /**
100  * stop_one_cpu - stop a cpu
101  * @cpu: cpu to stop
102  * @fn: function to execute
103  * @arg: argument to @fn
104  *
105  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
106  * the highest priority preempting any task on the cpu and
107  * monopolizing it.  This function returns after the execution is
108  * complete.
109  *
110  * This function doesn't guarantee @cpu stays online till @fn
111  * completes.  If @cpu goes down in the middle, execution may happen
112  * partially or fully on different cpus.  @fn should either be ready
113  * for that or the caller should ensure that @cpu stays online until
114  * this function completes.
115  *
116  * CONTEXT:
117  * Might sleep.
118  *
119  * RETURNS:
120  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
121  * otherwise, the return value of @fn.
122  */
123 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
124 {
125 	struct cpu_stop_done done;
126 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
127 
128 	cpu_stop_init_done(&done, 1);
129 	if (!cpu_stop_queue_work(cpu, &work))
130 		return -ENOENT;
131 	/*
132 	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
133 	 * cycle by doing a preemption:
134 	 */
135 	cond_resched();
136 	wait_for_completion(&done.completion);
137 	return done.ret;
138 }
139 
140 /* This controls the threads on each CPU. */
141 enum multi_stop_state {
142 	/* Dummy starting state for thread. */
143 	MULTI_STOP_NONE,
144 	/* Awaiting everyone to be scheduled. */
145 	MULTI_STOP_PREPARE,
146 	/* Disable interrupts. */
147 	MULTI_STOP_DISABLE_IRQ,
148 	/* Run the function */
149 	MULTI_STOP_RUN,
150 	/* Exit */
151 	MULTI_STOP_EXIT,
152 };
153 
154 struct multi_stop_data {
155 	cpu_stop_fn_t		fn;
156 	void			*data;
157 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
158 	unsigned int		num_threads;
159 	const struct cpumask	*active_cpus;
160 
161 	enum multi_stop_state	state;
162 	atomic_t		thread_ack;
163 };
164 
165 static void set_state(struct multi_stop_data *msdata,
166 		      enum multi_stop_state newstate)
167 {
168 	/* Reset ack counter. */
169 	atomic_set(&msdata->thread_ack, msdata->num_threads);
170 	smp_wmb();
171 	msdata->state = newstate;
172 }
173 
174 /* Last one to ack a state moves to the next state. */
175 static void ack_state(struct multi_stop_data *msdata)
176 {
177 	if (atomic_dec_and_test(&msdata->thread_ack))
178 		set_state(msdata, msdata->state + 1);
179 }
180 
181 /* This is the cpu_stop function which stops the CPU. */
182 static int multi_cpu_stop(void *data)
183 {
184 	struct multi_stop_data *msdata = data;
185 	enum multi_stop_state curstate = MULTI_STOP_NONE;
186 	int cpu = smp_processor_id(), err = 0;
187 	unsigned long flags;
188 	bool is_active;
189 
190 	/*
191 	 * When called from stop_machine_from_inactive_cpu(), irq might
192 	 * already be disabled.  Save the state and restore it on exit.
193 	 */
194 	local_save_flags(flags);
195 
196 	if (!msdata->active_cpus)
197 		is_active = cpu == cpumask_first(cpu_online_mask);
198 	else
199 		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
200 
201 	/* Simple state machine */
202 	do {
203 		/* Chill out and ensure we re-read multi_stop_state. */
204 		cpu_relax_yield();
205 		if (msdata->state != curstate) {
206 			curstate = msdata->state;
207 			switch (curstate) {
208 			case MULTI_STOP_DISABLE_IRQ:
209 				local_irq_disable();
210 				hard_irq_disable();
211 				break;
212 			case MULTI_STOP_RUN:
213 				if (is_active)
214 					err = msdata->fn(msdata->data);
215 				break;
216 			default:
217 				break;
218 			}
219 			ack_state(msdata);
220 		} else if (curstate > MULTI_STOP_PREPARE) {
221 			/*
222 			 * At this stage all other CPUs we depend on must spin
223 			 * in the same loop. Any reason for hard-lockup should
224 			 * be detected and reported on their side.
225 			 */
226 			touch_nmi_watchdog();
227 		}
228 	} while (curstate != MULTI_STOP_EXIT);
229 
230 	local_irq_restore(flags);
231 	return err;
232 }
233 
234 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
235 				    int cpu2, struct cpu_stop_work *work2)
236 {
237 	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
238 	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
239 	DEFINE_WAKE_Q(wakeq);
240 	int err;
241 retry:
242 	raw_spin_lock_irq(&stopper1->lock);
243 	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
244 
245 	err = -ENOENT;
246 	if (!stopper1->enabled || !stopper2->enabled)
247 		goto unlock;
248 	/*
249 	 * Ensure that if we race with __stop_cpus() the stoppers won't get
250 	 * queued up in reverse order leading to system deadlock.
251 	 *
252 	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
253 	 * queued a work on cpu1 but not on cpu2, we hold both locks.
254 	 *
255 	 * It can be falsely true but it is safe to spin until it is cleared,
256 	 * queue_stop_cpus_work() does everything under preempt_disable().
257 	 */
258 	err = -EDEADLK;
259 	if (unlikely(stop_cpus_in_progress))
260 			goto unlock;
261 
262 	err = 0;
263 	__cpu_stop_queue_work(stopper1, work1, &wakeq);
264 	__cpu_stop_queue_work(stopper2, work2, &wakeq);
265 	/*
266 	 * The waking up of stopper threads has to happen
267 	 * in the same scheduling context as the queueing.
268 	 * Otherwise, there is a possibility of one of the
269 	 * above stoppers being woken up by another CPU,
270 	 * and preempting us. This will cause us to n ot
271 	 * wake up the other stopper forever.
272 	 */
273 	preempt_disable();
274 unlock:
275 	raw_spin_unlock(&stopper2->lock);
276 	raw_spin_unlock_irq(&stopper1->lock);
277 
278 	if (unlikely(err == -EDEADLK)) {
279 		while (stop_cpus_in_progress)
280 			cpu_relax();
281 		goto retry;
282 	}
283 
284 	if (!err) {
285 		wake_up_q(&wakeq);
286 		preempt_enable();
287 	}
288 
289 	return err;
290 }
291 /**
292  * stop_two_cpus - stops two cpus
293  * @cpu1: the cpu to stop
294  * @cpu2: the other cpu to stop
295  * @fn: function to execute
296  * @arg: argument to @fn
297  *
298  * Stops both the current and specified CPU and runs @fn on one of them.
299  *
300  * returns when both are completed.
301  */
302 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
303 {
304 	struct cpu_stop_done done;
305 	struct cpu_stop_work work1, work2;
306 	struct multi_stop_data msdata;
307 
308 	msdata = (struct multi_stop_data){
309 		.fn = fn,
310 		.data = arg,
311 		.num_threads = 2,
312 		.active_cpus = cpumask_of(cpu1),
313 	};
314 
315 	work1 = work2 = (struct cpu_stop_work){
316 		.fn = multi_cpu_stop,
317 		.arg = &msdata,
318 		.done = &done
319 	};
320 
321 	cpu_stop_init_done(&done, 2);
322 	set_state(&msdata, MULTI_STOP_PREPARE);
323 
324 	if (cpu1 > cpu2)
325 		swap(cpu1, cpu2);
326 	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
327 		return -ENOENT;
328 
329 	wait_for_completion(&done.completion);
330 	return done.ret;
331 }
332 
333 /**
334  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
335  * @cpu: cpu to stop
336  * @fn: function to execute
337  * @arg: argument to @fn
338  * @work_buf: pointer to cpu_stop_work structure
339  *
340  * Similar to stop_one_cpu() but doesn't wait for completion.  The
341  * caller is responsible for ensuring @work_buf is currently unused
342  * and will remain untouched until stopper starts executing @fn.
343  *
344  * CONTEXT:
345  * Don't care.
346  *
347  * RETURNS:
348  * true if cpu_stop_work was queued successfully and @fn will be called,
349  * false otherwise.
350  */
351 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
352 			struct cpu_stop_work *work_buf)
353 {
354 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
355 	return cpu_stop_queue_work(cpu, work_buf);
356 }
357 
358 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
359 				 cpu_stop_fn_t fn, void *arg,
360 				 struct cpu_stop_done *done)
361 {
362 	struct cpu_stop_work *work;
363 	unsigned int cpu;
364 	bool queued = false;
365 
366 	/*
367 	 * Disable preemption while queueing to avoid getting
368 	 * preempted by a stopper which might wait for other stoppers
369 	 * to enter @fn which can lead to deadlock.
370 	 */
371 	preempt_disable();
372 	stop_cpus_in_progress = true;
373 	for_each_cpu(cpu, cpumask) {
374 		work = &per_cpu(cpu_stopper.stop_work, cpu);
375 		work->fn = fn;
376 		work->arg = arg;
377 		work->done = done;
378 		if (cpu_stop_queue_work(cpu, work))
379 			queued = true;
380 	}
381 	stop_cpus_in_progress = false;
382 	preempt_enable();
383 
384 	return queued;
385 }
386 
387 static int __stop_cpus(const struct cpumask *cpumask,
388 		       cpu_stop_fn_t fn, void *arg)
389 {
390 	struct cpu_stop_done done;
391 
392 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
393 	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
394 		return -ENOENT;
395 	wait_for_completion(&done.completion);
396 	return done.ret;
397 }
398 
399 /**
400  * stop_cpus - stop multiple cpus
401  * @cpumask: cpus to stop
402  * @fn: function to execute
403  * @arg: argument to @fn
404  *
405  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
406  * @fn is run in a process context with the highest priority
407  * preempting any task on the cpu and monopolizing it.  This function
408  * returns after all executions are complete.
409  *
410  * This function doesn't guarantee the cpus in @cpumask stay online
411  * till @fn completes.  If some cpus go down in the middle, execution
412  * on the cpu may happen partially or fully on different cpus.  @fn
413  * should either be ready for that or the caller should ensure that
414  * the cpus stay online until this function completes.
415  *
416  * All stop_cpus() calls are serialized making it safe for @fn to wait
417  * for all cpus to start executing it.
418  *
419  * CONTEXT:
420  * Might sleep.
421  *
422  * RETURNS:
423  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
424  * @cpumask were offline; otherwise, 0 if all executions of @fn
425  * returned 0, any non zero return value if any returned non zero.
426  */
427 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
428 {
429 	int ret;
430 
431 	/* static works are used, process one request at a time */
432 	mutex_lock(&stop_cpus_mutex);
433 	ret = __stop_cpus(cpumask, fn, arg);
434 	mutex_unlock(&stop_cpus_mutex);
435 	return ret;
436 }
437 
438 /**
439  * try_stop_cpus - try to stop multiple cpus
440  * @cpumask: cpus to stop
441  * @fn: function to execute
442  * @arg: argument to @fn
443  *
444  * Identical to stop_cpus() except that it fails with -EAGAIN if
445  * someone else is already using the facility.
446  *
447  * CONTEXT:
448  * Might sleep.
449  *
450  * RETURNS:
451  * -EAGAIN if someone else is already stopping cpus, -ENOENT if
452  * @fn(@arg) was not executed at all because all cpus in @cpumask were
453  * offline; otherwise, 0 if all executions of @fn returned 0, any non
454  * zero return value if any returned non zero.
455  */
456 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
457 {
458 	int ret;
459 
460 	/* static works are used, process one request at a time */
461 	if (!mutex_trylock(&stop_cpus_mutex))
462 		return -EAGAIN;
463 	ret = __stop_cpus(cpumask, fn, arg);
464 	mutex_unlock(&stop_cpus_mutex);
465 	return ret;
466 }
467 
468 static int cpu_stop_should_run(unsigned int cpu)
469 {
470 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
471 	unsigned long flags;
472 	int run;
473 
474 	raw_spin_lock_irqsave(&stopper->lock, flags);
475 	run = !list_empty(&stopper->works);
476 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
477 	return run;
478 }
479 
480 static void cpu_stopper_thread(unsigned int cpu)
481 {
482 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
483 	struct cpu_stop_work *work;
484 
485 repeat:
486 	work = NULL;
487 	raw_spin_lock_irq(&stopper->lock);
488 	if (!list_empty(&stopper->works)) {
489 		work = list_first_entry(&stopper->works,
490 					struct cpu_stop_work, list);
491 		list_del_init(&work->list);
492 	}
493 	raw_spin_unlock_irq(&stopper->lock);
494 
495 	if (work) {
496 		cpu_stop_fn_t fn = work->fn;
497 		void *arg = work->arg;
498 		struct cpu_stop_done *done = work->done;
499 		int ret;
500 
501 		/* cpu stop callbacks must not sleep, make in_atomic() == T */
502 		preempt_count_inc();
503 		ret = fn(arg);
504 		if (done) {
505 			if (ret)
506 				done->ret = ret;
507 			cpu_stop_signal_done(done);
508 		}
509 		preempt_count_dec();
510 		WARN_ONCE(preempt_count(),
511 			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
512 		goto repeat;
513 	}
514 }
515 
516 void stop_machine_park(int cpu)
517 {
518 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
519 	/*
520 	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
521 	 * the pending works before it parks, until then it is fine to queue
522 	 * the new works.
523 	 */
524 	stopper->enabled = false;
525 	kthread_park(stopper->thread);
526 }
527 
528 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
529 
530 static void cpu_stop_create(unsigned int cpu)
531 {
532 	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
533 }
534 
535 static void cpu_stop_park(unsigned int cpu)
536 {
537 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
538 
539 	WARN_ON(!list_empty(&stopper->works));
540 }
541 
542 void stop_machine_unpark(int cpu)
543 {
544 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
545 
546 	stopper->enabled = true;
547 	kthread_unpark(stopper->thread);
548 }
549 
550 static struct smp_hotplug_thread cpu_stop_threads = {
551 	.store			= &cpu_stopper.thread,
552 	.thread_should_run	= cpu_stop_should_run,
553 	.thread_fn		= cpu_stopper_thread,
554 	.thread_comm		= "migration/%u",
555 	.create			= cpu_stop_create,
556 	.park			= cpu_stop_park,
557 	.selfparking		= true,
558 };
559 
560 static int __init cpu_stop_init(void)
561 {
562 	unsigned int cpu;
563 
564 	for_each_possible_cpu(cpu) {
565 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
566 
567 		raw_spin_lock_init(&stopper->lock);
568 		INIT_LIST_HEAD(&stopper->works);
569 	}
570 
571 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
572 	stop_machine_unpark(raw_smp_processor_id());
573 	stop_machine_initialized = true;
574 	return 0;
575 }
576 early_initcall(cpu_stop_init);
577 
578 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
579 			    const struct cpumask *cpus)
580 {
581 	struct multi_stop_data msdata = {
582 		.fn = fn,
583 		.data = data,
584 		.num_threads = num_online_cpus(),
585 		.active_cpus = cpus,
586 	};
587 
588 	lockdep_assert_cpus_held();
589 
590 	if (!stop_machine_initialized) {
591 		/*
592 		 * Handle the case where stop_machine() is called
593 		 * early in boot before stop_machine() has been
594 		 * initialized.
595 		 */
596 		unsigned long flags;
597 		int ret;
598 
599 		WARN_ON_ONCE(msdata.num_threads != 1);
600 
601 		local_irq_save(flags);
602 		hard_irq_disable();
603 		ret = (*fn)(data);
604 		local_irq_restore(flags);
605 
606 		return ret;
607 	}
608 
609 	/* Set the initial state and stop all online cpus. */
610 	set_state(&msdata, MULTI_STOP_PREPARE);
611 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
612 }
613 
614 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
615 {
616 	int ret;
617 
618 	/* No CPUs can come up or down during this. */
619 	cpus_read_lock();
620 	ret = stop_machine_cpuslocked(fn, data, cpus);
621 	cpus_read_unlock();
622 	return ret;
623 }
624 EXPORT_SYMBOL_GPL(stop_machine);
625 
626 /**
627  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
628  * @fn: the function to run
629  * @data: the data ptr for the @fn()
630  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
631  *
632  * This is identical to stop_machine() but can be called from a CPU which
633  * is not active.  The local CPU is in the process of hotplug (so no other
634  * CPU hotplug can start) and not marked active and doesn't have enough
635  * context to sleep.
636  *
637  * This function provides stop_machine() functionality for such state by
638  * using busy-wait for synchronization and executing @fn directly for local
639  * CPU.
640  *
641  * CONTEXT:
642  * Local CPU is inactive.  Temporarily stops all active CPUs.
643  *
644  * RETURNS:
645  * 0 if all executions of @fn returned 0, any non zero return value if any
646  * returned non zero.
647  */
648 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
649 				  const struct cpumask *cpus)
650 {
651 	struct multi_stop_data msdata = { .fn = fn, .data = data,
652 					    .active_cpus = cpus };
653 	struct cpu_stop_done done;
654 	int ret;
655 
656 	/* Local CPU must be inactive and CPU hotplug in progress. */
657 	BUG_ON(cpu_active(raw_smp_processor_id()));
658 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
659 
660 	/* No proper task established and can't sleep - busy wait for lock. */
661 	while (!mutex_trylock(&stop_cpus_mutex))
662 		cpu_relax();
663 
664 	/* Schedule work on other CPUs and execute directly for local CPU */
665 	set_state(&msdata, MULTI_STOP_PREPARE);
666 	cpu_stop_init_done(&done, num_active_cpus());
667 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
668 			     &done);
669 	ret = multi_cpu_stop(&msdata);
670 
671 	/* Busy wait for completion. */
672 	while (!completion_done(&done.completion))
673 		cpu_relax();
674 
675 	mutex_unlock(&stop_cpus_mutex);
676 	return ret ?: done.ret;
677 }
678