1 /* 2 * kernel/stop_machine.c 3 * 4 * Copyright (C) 2008, 2005 IBM Corporation. 5 * Copyright (C) 2008, 2005 Rusty Russell [email protected] 6 * Copyright (C) 2010 SUSE Linux Products GmbH 7 * Copyright (C) 2010 Tejun Heo <[email protected]> 8 * 9 * This file is released under the GPLv2 and any later version. 10 */ 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 23 #include <linux/nmi.h> 24 #include <linux/sched/wake_q.h> 25 26 /* 27 * Structure to determine completion condition and record errors. May 28 * be shared by works on different cpus. 29 */ 30 struct cpu_stop_done { 31 atomic_t nr_todo; /* nr left to execute */ 32 int ret; /* collected return value */ 33 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 35 36 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 38 struct task_struct *thread; 39 40 raw_spinlock_t lock; 41 bool enabled; /* is this stopper enabled? */ 42 struct list_head works; /* list of pending works */ 43 44 struct cpu_stop_work stop_work; /* for stop_cpus */ 45 }; 46 47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 48 static bool stop_machine_initialized = false; 49 50 /* static data for stop_cpus */ 51 static DEFINE_MUTEX(stop_cpus_mutex); 52 static bool stop_cpus_in_progress; 53 54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 55 { 56 memset(done, 0, sizeof(*done)); 57 atomic_set(&done->nr_todo, nr_todo); 58 init_completion(&done->completion); 59 } 60 61 /* signal completion unless @done is NULL */ 62 static void cpu_stop_signal_done(struct cpu_stop_done *done) 63 { 64 if (atomic_dec_and_test(&done->nr_todo)) 65 complete(&done->completion); 66 } 67 68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 69 struct cpu_stop_work *work, 70 struct wake_q_head *wakeq) 71 { 72 list_add_tail(&work->list, &stopper->works); 73 wake_q_add(wakeq, stopper->thread); 74 } 75 76 /* queue @work to @stopper. if offline, @work is completed immediately */ 77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 78 { 79 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 80 DEFINE_WAKE_Q(wakeq); 81 unsigned long flags; 82 bool enabled; 83 84 preempt_disable(); 85 raw_spin_lock_irqsave(&stopper->lock, flags); 86 enabled = stopper->enabled; 87 if (enabled) 88 __cpu_stop_queue_work(stopper, work, &wakeq); 89 else if (work->done) 90 cpu_stop_signal_done(work->done); 91 raw_spin_unlock_irqrestore(&stopper->lock, flags); 92 93 wake_up_q(&wakeq); 94 preempt_enable(); 95 96 return enabled; 97 } 98 99 /** 100 * stop_one_cpu - stop a cpu 101 * @cpu: cpu to stop 102 * @fn: function to execute 103 * @arg: argument to @fn 104 * 105 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 106 * the highest priority preempting any task on the cpu and 107 * monopolizing it. This function returns after the execution is 108 * complete. 109 * 110 * This function doesn't guarantee @cpu stays online till @fn 111 * completes. If @cpu goes down in the middle, execution may happen 112 * partially or fully on different cpus. @fn should either be ready 113 * for that or the caller should ensure that @cpu stays online until 114 * this function completes. 115 * 116 * CONTEXT: 117 * Might sleep. 118 * 119 * RETURNS: 120 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 121 * otherwise, the return value of @fn. 122 */ 123 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 124 { 125 struct cpu_stop_done done; 126 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 127 128 cpu_stop_init_done(&done, 1); 129 if (!cpu_stop_queue_work(cpu, &work)) 130 return -ENOENT; 131 /* 132 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 133 * cycle by doing a preemption: 134 */ 135 cond_resched(); 136 wait_for_completion(&done.completion); 137 return done.ret; 138 } 139 140 /* This controls the threads on each CPU. */ 141 enum multi_stop_state { 142 /* Dummy starting state for thread. */ 143 MULTI_STOP_NONE, 144 /* Awaiting everyone to be scheduled. */ 145 MULTI_STOP_PREPARE, 146 /* Disable interrupts. */ 147 MULTI_STOP_DISABLE_IRQ, 148 /* Run the function */ 149 MULTI_STOP_RUN, 150 /* Exit */ 151 MULTI_STOP_EXIT, 152 }; 153 154 struct multi_stop_data { 155 cpu_stop_fn_t fn; 156 void *data; 157 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 158 unsigned int num_threads; 159 const struct cpumask *active_cpus; 160 161 enum multi_stop_state state; 162 atomic_t thread_ack; 163 }; 164 165 static void set_state(struct multi_stop_data *msdata, 166 enum multi_stop_state newstate) 167 { 168 /* Reset ack counter. */ 169 atomic_set(&msdata->thread_ack, msdata->num_threads); 170 smp_wmb(); 171 msdata->state = newstate; 172 } 173 174 /* Last one to ack a state moves to the next state. */ 175 static void ack_state(struct multi_stop_data *msdata) 176 { 177 if (atomic_dec_and_test(&msdata->thread_ack)) 178 set_state(msdata, msdata->state + 1); 179 } 180 181 /* This is the cpu_stop function which stops the CPU. */ 182 static int multi_cpu_stop(void *data) 183 { 184 struct multi_stop_data *msdata = data; 185 enum multi_stop_state curstate = MULTI_STOP_NONE; 186 int cpu = smp_processor_id(), err = 0; 187 unsigned long flags; 188 bool is_active; 189 190 /* 191 * When called from stop_machine_from_inactive_cpu(), irq might 192 * already be disabled. Save the state and restore it on exit. 193 */ 194 local_save_flags(flags); 195 196 if (!msdata->active_cpus) 197 is_active = cpu == cpumask_first(cpu_online_mask); 198 else 199 is_active = cpumask_test_cpu(cpu, msdata->active_cpus); 200 201 /* Simple state machine */ 202 do { 203 /* Chill out and ensure we re-read multi_stop_state. */ 204 cpu_relax_yield(); 205 if (msdata->state != curstate) { 206 curstate = msdata->state; 207 switch (curstate) { 208 case MULTI_STOP_DISABLE_IRQ: 209 local_irq_disable(); 210 hard_irq_disable(); 211 break; 212 case MULTI_STOP_RUN: 213 if (is_active) 214 err = msdata->fn(msdata->data); 215 break; 216 default: 217 break; 218 } 219 ack_state(msdata); 220 } else if (curstate > MULTI_STOP_PREPARE) { 221 /* 222 * At this stage all other CPUs we depend on must spin 223 * in the same loop. Any reason for hard-lockup should 224 * be detected and reported on their side. 225 */ 226 touch_nmi_watchdog(); 227 } 228 } while (curstate != MULTI_STOP_EXIT); 229 230 local_irq_restore(flags); 231 return err; 232 } 233 234 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 235 int cpu2, struct cpu_stop_work *work2) 236 { 237 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 238 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 239 DEFINE_WAKE_Q(wakeq); 240 int err; 241 retry: 242 raw_spin_lock_irq(&stopper1->lock); 243 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 244 245 err = -ENOENT; 246 if (!stopper1->enabled || !stopper2->enabled) 247 goto unlock; 248 /* 249 * Ensure that if we race with __stop_cpus() the stoppers won't get 250 * queued up in reverse order leading to system deadlock. 251 * 252 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 253 * queued a work on cpu1 but not on cpu2, we hold both locks. 254 * 255 * It can be falsely true but it is safe to spin until it is cleared, 256 * queue_stop_cpus_work() does everything under preempt_disable(). 257 */ 258 err = -EDEADLK; 259 if (unlikely(stop_cpus_in_progress)) 260 goto unlock; 261 262 err = 0; 263 __cpu_stop_queue_work(stopper1, work1, &wakeq); 264 __cpu_stop_queue_work(stopper2, work2, &wakeq); 265 /* 266 * The waking up of stopper threads has to happen 267 * in the same scheduling context as the queueing. 268 * Otherwise, there is a possibility of one of the 269 * above stoppers being woken up by another CPU, 270 * and preempting us. This will cause us to n ot 271 * wake up the other stopper forever. 272 */ 273 preempt_disable(); 274 unlock: 275 raw_spin_unlock(&stopper2->lock); 276 raw_spin_unlock_irq(&stopper1->lock); 277 278 if (unlikely(err == -EDEADLK)) { 279 while (stop_cpus_in_progress) 280 cpu_relax(); 281 goto retry; 282 } 283 284 if (!err) { 285 wake_up_q(&wakeq); 286 preempt_enable(); 287 } 288 289 return err; 290 } 291 /** 292 * stop_two_cpus - stops two cpus 293 * @cpu1: the cpu to stop 294 * @cpu2: the other cpu to stop 295 * @fn: function to execute 296 * @arg: argument to @fn 297 * 298 * Stops both the current and specified CPU and runs @fn on one of them. 299 * 300 * returns when both are completed. 301 */ 302 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 303 { 304 struct cpu_stop_done done; 305 struct cpu_stop_work work1, work2; 306 struct multi_stop_data msdata; 307 308 msdata = (struct multi_stop_data){ 309 .fn = fn, 310 .data = arg, 311 .num_threads = 2, 312 .active_cpus = cpumask_of(cpu1), 313 }; 314 315 work1 = work2 = (struct cpu_stop_work){ 316 .fn = multi_cpu_stop, 317 .arg = &msdata, 318 .done = &done 319 }; 320 321 cpu_stop_init_done(&done, 2); 322 set_state(&msdata, MULTI_STOP_PREPARE); 323 324 if (cpu1 > cpu2) 325 swap(cpu1, cpu2); 326 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 327 return -ENOENT; 328 329 wait_for_completion(&done.completion); 330 return done.ret; 331 } 332 333 /** 334 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 335 * @cpu: cpu to stop 336 * @fn: function to execute 337 * @arg: argument to @fn 338 * @work_buf: pointer to cpu_stop_work structure 339 * 340 * Similar to stop_one_cpu() but doesn't wait for completion. The 341 * caller is responsible for ensuring @work_buf is currently unused 342 * and will remain untouched until stopper starts executing @fn. 343 * 344 * CONTEXT: 345 * Don't care. 346 * 347 * RETURNS: 348 * true if cpu_stop_work was queued successfully and @fn will be called, 349 * false otherwise. 350 */ 351 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 352 struct cpu_stop_work *work_buf) 353 { 354 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 355 return cpu_stop_queue_work(cpu, work_buf); 356 } 357 358 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 359 cpu_stop_fn_t fn, void *arg, 360 struct cpu_stop_done *done) 361 { 362 struct cpu_stop_work *work; 363 unsigned int cpu; 364 bool queued = false; 365 366 /* 367 * Disable preemption while queueing to avoid getting 368 * preempted by a stopper which might wait for other stoppers 369 * to enter @fn which can lead to deadlock. 370 */ 371 preempt_disable(); 372 stop_cpus_in_progress = true; 373 for_each_cpu(cpu, cpumask) { 374 work = &per_cpu(cpu_stopper.stop_work, cpu); 375 work->fn = fn; 376 work->arg = arg; 377 work->done = done; 378 if (cpu_stop_queue_work(cpu, work)) 379 queued = true; 380 } 381 stop_cpus_in_progress = false; 382 preempt_enable(); 383 384 return queued; 385 } 386 387 static int __stop_cpus(const struct cpumask *cpumask, 388 cpu_stop_fn_t fn, void *arg) 389 { 390 struct cpu_stop_done done; 391 392 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 393 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 394 return -ENOENT; 395 wait_for_completion(&done.completion); 396 return done.ret; 397 } 398 399 /** 400 * stop_cpus - stop multiple cpus 401 * @cpumask: cpus to stop 402 * @fn: function to execute 403 * @arg: argument to @fn 404 * 405 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 406 * @fn is run in a process context with the highest priority 407 * preempting any task on the cpu and monopolizing it. This function 408 * returns after all executions are complete. 409 * 410 * This function doesn't guarantee the cpus in @cpumask stay online 411 * till @fn completes. If some cpus go down in the middle, execution 412 * on the cpu may happen partially or fully on different cpus. @fn 413 * should either be ready for that or the caller should ensure that 414 * the cpus stay online until this function completes. 415 * 416 * All stop_cpus() calls are serialized making it safe for @fn to wait 417 * for all cpus to start executing it. 418 * 419 * CONTEXT: 420 * Might sleep. 421 * 422 * RETURNS: 423 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 424 * @cpumask were offline; otherwise, 0 if all executions of @fn 425 * returned 0, any non zero return value if any returned non zero. 426 */ 427 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 428 { 429 int ret; 430 431 /* static works are used, process one request at a time */ 432 mutex_lock(&stop_cpus_mutex); 433 ret = __stop_cpus(cpumask, fn, arg); 434 mutex_unlock(&stop_cpus_mutex); 435 return ret; 436 } 437 438 /** 439 * try_stop_cpus - try to stop multiple cpus 440 * @cpumask: cpus to stop 441 * @fn: function to execute 442 * @arg: argument to @fn 443 * 444 * Identical to stop_cpus() except that it fails with -EAGAIN if 445 * someone else is already using the facility. 446 * 447 * CONTEXT: 448 * Might sleep. 449 * 450 * RETURNS: 451 * -EAGAIN if someone else is already stopping cpus, -ENOENT if 452 * @fn(@arg) was not executed at all because all cpus in @cpumask were 453 * offline; otherwise, 0 if all executions of @fn returned 0, any non 454 * zero return value if any returned non zero. 455 */ 456 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 457 { 458 int ret; 459 460 /* static works are used, process one request at a time */ 461 if (!mutex_trylock(&stop_cpus_mutex)) 462 return -EAGAIN; 463 ret = __stop_cpus(cpumask, fn, arg); 464 mutex_unlock(&stop_cpus_mutex); 465 return ret; 466 } 467 468 static int cpu_stop_should_run(unsigned int cpu) 469 { 470 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 471 unsigned long flags; 472 int run; 473 474 raw_spin_lock_irqsave(&stopper->lock, flags); 475 run = !list_empty(&stopper->works); 476 raw_spin_unlock_irqrestore(&stopper->lock, flags); 477 return run; 478 } 479 480 static void cpu_stopper_thread(unsigned int cpu) 481 { 482 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 483 struct cpu_stop_work *work; 484 485 repeat: 486 work = NULL; 487 raw_spin_lock_irq(&stopper->lock); 488 if (!list_empty(&stopper->works)) { 489 work = list_first_entry(&stopper->works, 490 struct cpu_stop_work, list); 491 list_del_init(&work->list); 492 } 493 raw_spin_unlock_irq(&stopper->lock); 494 495 if (work) { 496 cpu_stop_fn_t fn = work->fn; 497 void *arg = work->arg; 498 struct cpu_stop_done *done = work->done; 499 int ret; 500 501 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 502 preempt_count_inc(); 503 ret = fn(arg); 504 if (done) { 505 if (ret) 506 done->ret = ret; 507 cpu_stop_signal_done(done); 508 } 509 preempt_count_dec(); 510 WARN_ONCE(preempt_count(), 511 "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg); 512 goto repeat; 513 } 514 } 515 516 void stop_machine_park(int cpu) 517 { 518 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 519 /* 520 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 521 * the pending works before it parks, until then it is fine to queue 522 * the new works. 523 */ 524 stopper->enabled = false; 525 kthread_park(stopper->thread); 526 } 527 528 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 529 530 static void cpu_stop_create(unsigned int cpu) 531 { 532 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 533 } 534 535 static void cpu_stop_park(unsigned int cpu) 536 { 537 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 538 539 WARN_ON(!list_empty(&stopper->works)); 540 } 541 542 void stop_machine_unpark(int cpu) 543 { 544 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 545 546 stopper->enabled = true; 547 kthread_unpark(stopper->thread); 548 } 549 550 static struct smp_hotplug_thread cpu_stop_threads = { 551 .store = &cpu_stopper.thread, 552 .thread_should_run = cpu_stop_should_run, 553 .thread_fn = cpu_stopper_thread, 554 .thread_comm = "migration/%u", 555 .create = cpu_stop_create, 556 .park = cpu_stop_park, 557 .selfparking = true, 558 }; 559 560 static int __init cpu_stop_init(void) 561 { 562 unsigned int cpu; 563 564 for_each_possible_cpu(cpu) { 565 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 566 567 raw_spin_lock_init(&stopper->lock); 568 INIT_LIST_HEAD(&stopper->works); 569 } 570 571 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 572 stop_machine_unpark(raw_smp_processor_id()); 573 stop_machine_initialized = true; 574 return 0; 575 } 576 early_initcall(cpu_stop_init); 577 578 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, 579 const struct cpumask *cpus) 580 { 581 struct multi_stop_data msdata = { 582 .fn = fn, 583 .data = data, 584 .num_threads = num_online_cpus(), 585 .active_cpus = cpus, 586 }; 587 588 lockdep_assert_cpus_held(); 589 590 if (!stop_machine_initialized) { 591 /* 592 * Handle the case where stop_machine() is called 593 * early in boot before stop_machine() has been 594 * initialized. 595 */ 596 unsigned long flags; 597 int ret; 598 599 WARN_ON_ONCE(msdata.num_threads != 1); 600 601 local_irq_save(flags); 602 hard_irq_disable(); 603 ret = (*fn)(data); 604 local_irq_restore(flags); 605 606 return ret; 607 } 608 609 /* Set the initial state and stop all online cpus. */ 610 set_state(&msdata, MULTI_STOP_PREPARE); 611 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 612 } 613 614 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 615 { 616 int ret; 617 618 /* No CPUs can come up or down during this. */ 619 cpus_read_lock(); 620 ret = stop_machine_cpuslocked(fn, data, cpus); 621 cpus_read_unlock(); 622 return ret; 623 } 624 EXPORT_SYMBOL_GPL(stop_machine); 625 626 /** 627 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 628 * @fn: the function to run 629 * @data: the data ptr for the @fn() 630 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 631 * 632 * This is identical to stop_machine() but can be called from a CPU which 633 * is not active. The local CPU is in the process of hotplug (so no other 634 * CPU hotplug can start) and not marked active and doesn't have enough 635 * context to sleep. 636 * 637 * This function provides stop_machine() functionality for such state by 638 * using busy-wait for synchronization and executing @fn directly for local 639 * CPU. 640 * 641 * CONTEXT: 642 * Local CPU is inactive. Temporarily stops all active CPUs. 643 * 644 * RETURNS: 645 * 0 if all executions of @fn returned 0, any non zero return value if any 646 * returned non zero. 647 */ 648 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 649 const struct cpumask *cpus) 650 { 651 struct multi_stop_data msdata = { .fn = fn, .data = data, 652 .active_cpus = cpus }; 653 struct cpu_stop_done done; 654 int ret; 655 656 /* Local CPU must be inactive and CPU hotplug in progress. */ 657 BUG_ON(cpu_active(raw_smp_processor_id())); 658 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 659 660 /* No proper task established and can't sleep - busy wait for lock. */ 661 while (!mutex_trylock(&stop_cpus_mutex)) 662 cpu_relax(); 663 664 /* Schedule work on other CPUs and execute directly for local CPU */ 665 set_state(&msdata, MULTI_STOP_PREPARE); 666 cpu_stop_init_done(&done, num_active_cpus()); 667 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 668 &done); 669 ret = multi_cpu_stop(&msdata); 670 671 /* Busy wait for completion. */ 672 while (!completion_done(&done.completion)) 673 cpu_relax(); 674 675 mutex_unlock(&stop_cpus_mutex); 676 return ret ?: done.ret; 677 } 678