xref: /linux-6.15/kernel/stop_machine.c (revision b80a2bfc)
1 /*
2  * kernel/stop_machine.c
3  *
4  * Copyright (C) 2008, 2005	IBM Corporation.
5  * Copyright (C) 2008, 2005	Rusty Russell [email protected]
6  * Copyright (C) 2010		SUSE Linux Products GmbH
7  * Copyright (C) 2010		Tejun Heo <[email protected]>
8  *
9  * This file is released under the GPLv2 and any later version.
10  */
11 #include <linux/completion.h>
12 #include <linux/cpu.h>
13 #include <linux/init.h>
14 #include <linux/kthread.h>
15 #include <linux/export.h>
16 #include <linux/percpu.h>
17 #include <linux/sched.h>
18 #include <linux/stop_machine.h>
19 #include <linux/interrupt.h>
20 #include <linux/kallsyms.h>
21 #include <linux/smpboot.h>
22 #include <linux/atomic.h>
23 #include <linux/nmi.h>
24 #include <linux/sched/wake_q.h>
25 
26 /*
27  * Structure to determine completion condition and record errors.  May
28  * be shared by works on different cpus.
29  */
30 struct cpu_stop_done {
31 	atomic_t		nr_todo;	/* nr left to execute */
32 	int			ret;		/* collected return value */
33 	struct completion	completion;	/* fired if nr_todo reaches 0 */
34 };
35 
36 /* the actual stopper, one per every possible cpu, enabled on online cpus */
37 struct cpu_stopper {
38 	struct task_struct	*thread;
39 
40 	raw_spinlock_t		lock;
41 	bool			enabled;	/* is this stopper enabled? */
42 	struct list_head	works;		/* list of pending works */
43 
44 	struct cpu_stop_work	stop_work;	/* for stop_cpus */
45 };
46 
47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
48 static bool stop_machine_initialized = false;
49 
50 /* static data for stop_cpus */
51 static DEFINE_MUTEX(stop_cpus_mutex);
52 static bool stop_cpus_in_progress;
53 
54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
55 {
56 	memset(done, 0, sizeof(*done));
57 	atomic_set(&done->nr_todo, nr_todo);
58 	init_completion(&done->completion);
59 }
60 
61 /* signal completion unless @done is NULL */
62 static void cpu_stop_signal_done(struct cpu_stop_done *done)
63 {
64 	if (atomic_dec_and_test(&done->nr_todo))
65 		complete(&done->completion);
66 }
67 
68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
69 					struct cpu_stop_work *work,
70 					struct wake_q_head *wakeq)
71 {
72 	list_add_tail(&work->list, &stopper->works);
73 	wake_q_add(wakeq, stopper->thread);
74 }
75 
76 /* queue @work to @stopper.  if offline, @work is completed immediately */
77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
78 {
79 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
80 	DEFINE_WAKE_Q(wakeq);
81 	unsigned long flags;
82 	bool enabled;
83 
84 	raw_spin_lock_irqsave(&stopper->lock, flags);
85 	enabled = stopper->enabled;
86 	if (enabled)
87 		__cpu_stop_queue_work(stopper, work, &wakeq);
88 	else if (work->done)
89 		cpu_stop_signal_done(work->done);
90 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
91 
92 	wake_up_q(&wakeq);
93 
94 	return enabled;
95 }
96 
97 /**
98  * stop_one_cpu - stop a cpu
99  * @cpu: cpu to stop
100  * @fn: function to execute
101  * @arg: argument to @fn
102  *
103  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
104  * the highest priority preempting any task on the cpu and
105  * monopolizing it.  This function returns after the execution is
106  * complete.
107  *
108  * This function doesn't guarantee @cpu stays online till @fn
109  * completes.  If @cpu goes down in the middle, execution may happen
110  * partially or fully on different cpus.  @fn should either be ready
111  * for that or the caller should ensure that @cpu stays online until
112  * this function completes.
113  *
114  * CONTEXT:
115  * Might sleep.
116  *
117  * RETURNS:
118  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
119  * otherwise, the return value of @fn.
120  */
121 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
122 {
123 	struct cpu_stop_done done;
124 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
125 
126 	cpu_stop_init_done(&done, 1);
127 	if (!cpu_stop_queue_work(cpu, &work))
128 		return -ENOENT;
129 	/*
130 	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
131 	 * cycle by doing a preemption:
132 	 */
133 	cond_resched();
134 	wait_for_completion(&done.completion);
135 	return done.ret;
136 }
137 
138 /* This controls the threads on each CPU. */
139 enum multi_stop_state {
140 	/* Dummy starting state for thread. */
141 	MULTI_STOP_NONE,
142 	/* Awaiting everyone to be scheduled. */
143 	MULTI_STOP_PREPARE,
144 	/* Disable interrupts. */
145 	MULTI_STOP_DISABLE_IRQ,
146 	/* Run the function */
147 	MULTI_STOP_RUN,
148 	/* Exit */
149 	MULTI_STOP_EXIT,
150 };
151 
152 struct multi_stop_data {
153 	cpu_stop_fn_t		fn;
154 	void			*data;
155 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
156 	unsigned int		num_threads;
157 	const struct cpumask	*active_cpus;
158 
159 	enum multi_stop_state	state;
160 	atomic_t		thread_ack;
161 };
162 
163 static void set_state(struct multi_stop_data *msdata,
164 		      enum multi_stop_state newstate)
165 {
166 	/* Reset ack counter. */
167 	atomic_set(&msdata->thread_ack, msdata->num_threads);
168 	smp_wmb();
169 	msdata->state = newstate;
170 }
171 
172 /* Last one to ack a state moves to the next state. */
173 static void ack_state(struct multi_stop_data *msdata)
174 {
175 	if (atomic_dec_and_test(&msdata->thread_ack))
176 		set_state(msdata, msdata->state + 1);
177 }
178 
179 /* This is the cpu_stop function which stops the CPU. */
180 static int multi_cpu_stop(void *data)
181 {
182 	struct multi_stop_data *msdata = data;
183 	enum multi_stop_state curstate = MULTI_STOP_NONE;
184 	int cpu = smp_processor_id(), err = 0;
185 	unsigned long flags;
186 	bool is_active;
187 
188 	/*
189 	 * When called from stop_machine_from_inactive_cpu(), irq might
190 	 * already be disabled.  Save the state and restore it on exit.
191 	 */
192 	local_save_flags(flags);
193 
194 	if (!msdata->active_cpus)
195 		is_active = cpu == cpumask_first(cpu_online_mask);
196 	else
197 		is_active = cpumask_test_cpu(cpu, msdata->active_cpus);
198 
199 	/* Simple state machine */
200 	do {
201 		/* Chill out and ensure we re-read multi_stop_state. */
202 		cpu_relax_yield();
203 		if (msdata->state != curstate) {
204 			curstate = msdata->state;
205 			switch (curstate) {
206 			case MULTI_STOP_DISABLE_IRQ:
207 				local_irq_disable();
208 				hard_irq_disable();
209 				break;
210 			case MULTI_STOP_RUN:
211 				if (is_active)
212 					err = msdata->fn(msdata->data);
213 				break;
214 			default:
215 				break;
216 			}
217 			ack_state(msdata);
218 		} else if (curstate > MULTI_STOP_PREPARE) {
219 			/*
220 			 * At this stage all other CPUs we depend on must spin
221 			 * in the same loop. Any reason for hard-lockup should
222 			 * be detected and reported on their side.
223 			 */
224 			touch_nmi_watchdog();
225 		}
226 	} while (curstate != MULTI_STOP_EXIT);
227 
228 	local_irq_restore(flags);
229 	return err;
230 }
231 
232 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
233 				    int cpu2, struct cpu_stop_work *work2)
234 {
235 	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
236 	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
237 	DEFINE_WAKE_Q(wakeq);
238 	int err;
239 
240 retry:
241 	/*
242 	 * The waking up of stopper threads has to happen in the same
243 	 * scheduling context as the queueing.  Otherwise, there is a
244 	 * possibility of one of the above stoppers being woken up by another
245 	 * CPU, and preempting us. This will cause us to not wake up the other
246 	 * stopper forever.
247 	 */
248 	preempt_disable();
249 	raw_spin_lock_irq(&stopper1->lock);
250 	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
251 
252 	if (!stopper1->enabled || !stopper2->enabled) {
253 		err = -ENOENT;
254 		goto unlock;
255 	}
256 
257 	/*
258 	 * Ensure that if we race with __stop_cpus() the stoppers won't get
259 	 * queued up in reverse order leading to system deadlock.
260 	 *
261 	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
262 	 * queued a work on cpu1 but not on cpu2, we hold both locks.
263 	 *
264 	 * It can be falsely true but it is safe to spin until it is cleared,
265 	 * queue_stop_cpus_work() does everything under preempt_disable().
266 	 */
267 	if (unlikely(stop_cpus_in_progress)) {
268 		err = -EDEADLK;
269 		goto unlock;
270 	}
271 
272 	err = 0;
273 	__cpu_stop_queue_work(stopper1, work1, &wakeq);
274 	__cpu_stop_queue_work(stopper2, work2, &wakeq);
275 
276 unlock:
277 	raw_spin_unlock(&stopper2->lock);
278 	raw_spin_unlock_irq(&stopper1->lock);
279 
280 	if (unlikely(err == -EDEADLK)) {
281 		preempt_enable();
282 
283 		while (stop_cpus_in_progress)
284 			cpu_relax();
285 
286 		goto retry;
287 	}
288 
289 	wake_up_q(&wakeq);
290 	preempt_enable();
291 
292 	return err;
293 }
294 /**
295  * stop_two_cpus - stops two cpus
296  * @cpu1: the cpu to stop
297  * @cpu2: the other cpu to stop
298  * @fn: function to execute
299  * @arg: argument to @fn
300  *
301  * Stops both the current and specified CPU and runs @fn on one of them.
302  *
303  * returns when both are completed.
304  */
305 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
306 {
307 	struct cpu_stop_done done;
308 	struct cpu_stop_work work1, work2;
309 	struct multi_stop_data msdata;
310 
311 	msdata = (struct multi_stop_data){
312 		.fn = fn,
313 		.data = arg,
314 		.num_threads = 2,
315 		.active_cpus = cpumask_of(cpu1),
316 	};
317 
318 	work1 = work2 = (struct cpu_stop_work){
319 		.fn = multi_cpu_stop,
320 		.arg = &msdata,
321 		.done = &done
322 	};
323 
324 	cpu_stop_init_done(&done, 2);
325 	set_state(&msdata, MULTI_STOP_PREPARE);
326 
327 	if (cpu1 > cpu2)
328 		swap(cpu1, cpu2);
329 	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
330 		return -ENOENT;
331 
332 	wait_for_completion(&done.completion);
333 	return done.ret;
334 }
335 
336 /**
337  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
338  * @cpu: cpu to stop
339  * @fn: function to execute
340  * @arg: argument to @fn
341  * @work_buf: pointer to cpu_stop_work structure
342  *
343  * Similar to stop_one_cpu() but doesn't wait for completion.  The
344  * caller is responsible for ensuring @work_buf is currently unused
345  * and will remain untouched until stopper starts executing @fn.
346  *
347  * CONTEXT:
348  * Don't care.
349  *
350  * RETURNS:
351  * true if cpu_stop_work was queued successfully and @fn will be called,
352  * false otherwise.
353  */
354 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
355 			struct cpu_stop_work *work_buf)
356 {
357 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
358 	return cpu_stop_queue_work(cpu, work_buf);
359 }
360 
361 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
362 				 cpu_stop_fn_t fn, void *arg,
363 				 struct cpu_stop_done *done)
364 {
365 	struct cpu_stop_work *work;
366 	unsigned int cpu;
367 	bool queued = false;
368 
369 	/*
370 	 * Disable preemption while queueing to avoid getting
371 	 * preempted by a stopper which might wait for other stoppers
372 	 * to enter @fn which can lead to deadlock.
373 	 */
374 	preempt_disable();
375 	stop_cpus_in_progress = true;
376 	for_each_cpu(cpu, cpumask) {
377 		work = &per_cpu(cpu_stopper.stop_work, cpu);
378 		work->fn = fn;
379 		work->arg = arg;
380 		work->done = done;
381 		if (cpu_stop_queue_work(cpu, work))
382 			queued = true;
383 	}
384 	stop_cpus_in_progress = false;
385 	preempt_enable();
386 
387 	return queued;
388 }
389 
390 static int __stop_cpus(const struct cpumask *cpumask,
391 		       cpu_stop_fn_t fn, void *arg)
392 {
393 	struct cpu_stop_done done;
394 
395 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
396 	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
397 		return -ENOENT;
398 	wait_for_completion(&done.completion);
399 	return done.ret;
400 }
401 
402 /**
403  * stop_cpus - stop multiple cpus
404  * @cpumask: cpus to stop
405  * @fn: function to execute
406  * @arg: argument to @fn
407  *
408  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
409  * @fn is run in a process context with the highest priority
410  * preempting any task on the cpu and monopolizing it.  This function
411  * returns after all executions are complete.
412  *
413  * This function doesn't guarantee the cpus in @cpumask stay online
414  * till @fn completes.  If some cpus go down in the middle, execution
415  * on the cpu may happen partially or fully on different cpus.  @fn
416  * should either be ready for that or the caller should ensure that
417  * the cpus stay online until this function completes.
418  *
419  * All stop_cpus() calls are serialized making it safe for @fn to wait
420  * for all cpus to start executing it.
421  *
422  * CONTEXT:
423  * Might sleep.
424  *
425  * RETURNS:
426  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
427  * @cpumask were offline; otherwise, 0 if all executions of @fn
428  * returned 0, any non zero return value if any returned non zero.
429  */
430 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
431 {
432 	int ret;
433 
434 	/* static works are used, process one request at a time */
435 	mutex_lock(&stop_cpus_mutex);
436 	ret = __stop_cpus(cpumask, fn, arg);
437 	mutex_unlock(&stop_cpus_mutex);
438 	return ret;
439 }
440 
441 /**
442  * try_stop_cpus - try to stop multiple cpus
443  * @cpumask: cpus to stop
444  * @fn: function to execute
445  * @arg: argument to @fn
446  *
447  * Identical to stop_cpus() except that it fails with -EAGAIN if
448  * someone else is already using the facility.
449  *
450  * CONTEXT:
451  * Might sleep.
452  *
453  * RETURNS:
454  * -EAGAIN if someone else is already stopping cpus, -ENOENT if
455  * @fn(@arg) was not executed at all because all cpus in @cpumask were
456  * offline; otherwise, 0 if all executions of @fn returned 0, any non
457  * zero return value if any returned non zero.
458  */
459 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
460 {
461 	int ret;
462 
463 	/* static works are used, process one request at a time */
464 	if (!mutex_trylock(&stop_cpus_mutex))
465 		return -EAGAIN;
466 	ret = __stop_cpus(cpumask, fn, arg);
467 	mutex_unlock(&stop_cpus_mutex);
468 	return ret;
469 }
470 
471 static int cpu_stop_should_run(unsigned int cpu)
472 {
473 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
474 	unsigned long flags;
475 	int run;
476 
477 	raw_spin_lock_irqsave(&stopper->lock, flags);
478 	run = !list_empty(&stopper->works);
479 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
480 	return run;
481 }
482 
483 static void cpu_stopper_thread(unsigned int cpu)
484 {
485 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
486 	struct cpu_stop_work *work;
487 
488 repeat:
489 	work = NULL;
490 	raw_spin_lock_irq(&stopper->lock);
491 	if (!list_empty(&stopper->works)) {
492 		work = list_first_entry(&stopper->works,
493 					struct cpu_stop_work, list);
494 		list_del_init(&work->list);
495 	}
496 	raw_spin_unlock_irq(&stopper->lock);
497 
498 	if (work) {
499 		cpu_stop_fn_t fn = work->fn;
500 		void *arg = work->arg;
501 		struct cpu_stop_done *done = work->done;
502 		int ret;
503 
504 		/* cpu stop callbacks must not sleep, make in_atomic() == T */
505 		preempt_count_inc();
506 		ret = fn(arg);
507 		if (done) {
508 			if (ret)
509 				done->ret = ret;
510 			cpu_stop_signal_done(done);
511 		}
512 		preempt_count_dec();
513 		WARN_ONCE(preempt_count(),
514 			  "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg);
515 		goto repeat;
516 	}
517 }
518 
519 void stop_machine_park(int cpu)
520 {
521 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
522 	/*
523 	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
524 	 * the pending works before it parks, until then it is fine to queue
525 	 * the new works.
526 	 */
527 	stopper->enabled = false;
528 	kthread_park(stopper->thread);
529 }
530 
531 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
532 
533 static void cpu_stop_create(unsigned int cpu)
534 {
535 	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
536 }
537 
538 static void cpu_stop_park(unsigned int cpu)
539 {
540 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
541 
542 	WARN_ON(!list_empty(&stopper->works));
543 }
544 
545 void stop_machine_unpark(int cpu)
546 {
547 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
548 
549 	stopper->enabled = true;
550 	kthread_unpark(stopper->thread);
551 }
552 
553 static struct smp_hotplug_thread cpu_stop_threads = {
554 	.store			= &cpu_stopper.thread,
555 	.thread_should_run	= cpu_stop_should_run,
556 	.thread_fn		= cpu_stopper_thread,
557 	.thread_comm		= "migration/%u",
558 	.create			= cpu_stop_create,
559 	.park			= cpu_stop_park,
560 	.selfparking		= true,
561 };
562 
563 static int __init cpu_stop_init(void)
564 {
565 	unsigned int cpu;
566 
567 	for_each_possible_cpu(cpu) {
568 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
569 
570 		raw_spin_lock_init(&stopper->lock);
571 		INIT_LIST_HEAD(&stopper->works);
572 	}
573 
574 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
575 	stop_machine_unpark(raw_smp_processor_id());
576 	stop_machine_initialized = true;
577 	return 0;
578 }
579 early_initcall(cpu_stop_init);
580 
581 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
582 			    const struct cpumask *cpus)
583 {
584 	struct multi_stop_data msdata = {
585 		.fn = fn,
586 		.data = data,
587 		.num_threads = num_online_cpus(),
588 		.active_cpus = cpus,
589 	};
590 
591 	lockdep_assert_cpus_held();
592 
593 	if (!stop_machine_initialized) {
594 		/*
595 		 * Handle the case where stop_machine() is called
596 		 * early in boot before stop_machine() has been
597 		 * initialized.
598 		 */
599 		unsigned long flags;
600 		int ret;
601 
602 		WARN_ON_ONCE(msdata.num_threads != 1);
603 
604 		local_irq_save(flags);
605 		hard_irq_disable();
606 		ret = (*fn)(data);
607 		local_irq_restore(flags);
608 
609 		return ret;
610 	}
611 
612 	/* Set the initial state and stop all online cpus. */
613 	set_state(&msdata, MULTI_STOP_PREPARE);
614 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
615 }
616 
617 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
618 {
619 	int ret;
620 
621 	/* No CPUs can come up or down during this. */
622 	cpus_read_lock();
623 	ret = stop_machine_cpuslocked(fn, data, cpus);
624 	cpus_read_unlock();
625 	return ret;
626 }
627 EXPORT_SYMBOL_GPL(stop_machine);
628 
629 /**
630  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
631  * @fn: the function to run
632  * @data: the data ptr for the @fn()
633  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
634  *
635  * This is identical to stop_machine() but can be called from a CPU which
636  * is not active.  The local CPU is in the process of hotplug (so no other
637  * CPU hotplug can start) and not marked active and doesn't have enough
638  * context to sleep.
639  *
640  * This function provides stop_machine() functionality for such state by
641  * using busy-wait for synchronization and executing @fn directly for local
642  * CPU.
643  *
644  * CONTEXT:
645  * Local CPU is inactive.  Temporarily stops all active CPUs.
646  *
647  * RETURNS:
648  * 0 if all executions of @fn returned 0, any non zero return value if any
649  * returned non zero.
650  */
651 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
652 				  const struct cpumask *cpus)
653 {
654 	struct multi_stop_data msdata = { .fn = fn, .data = data,
655 					    .active_cpus = cpus };
656 	struct cpu_stop_done done;
657 	int ret;
658 
659 	/* Local CPU must be inactive and CPU hotplug in progress. */
660 	BUG_ON(cpu_active(raw_smp_processor_id()));
661 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
662 
663 	/* No proper task established and can't sleep - busy wait for lock. */
664 	while (!mutex_trylock(&stop_cpus_mutex))
665 		cpu_relax();
666 
667 	/* Schedule work on other CPUs and execute directly for local CPU */
668 	set_state(&msdata, MULTI_STOP_PREPARE);
669 	cpu_stop_init_done(&done, num_active_cpus());
670 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
671 			     &done);
672 	ret = multi_cpu_stop(&msdata);
673 
674 	/* Busy wait for completion. */
675 	while (!completion_done(&done.completion))
676 		cpu_relax();
677 
678 	mutex_unlock(&stop_cpus_mutex);
679 	return ret ?: done.ret;
680 }
681