1 /* 2 * kernel/stop_machine.c 3 * 4 * Copyright (C) 2008, 2005 IBM Corporation. 5 * Copyright (C) 2008, 2005 Rusty Russell [email protected] 6 * Copyright (C) 2010 SUSE Linux Products GmbH 7 * Copyright (C) 2010 Tejun Heo <[email protected]> 8 * 9 * This file is released under the GPLv2 and any later version. 10 */ 11 #include <linux/completion.h> 12 #include <linux/cpu.h> 13 #include <linux/init.h> 14 #include <linux/kthread.h> 15 #include <linux/export.h> 16 #include <linux/percpu.h> 17 #include <linux/sched.h> 18 #include <linux/stop_machine.h> 19 #include <linux/interrupt.h> 20 #include <linux/kallsyms.h> 21 #include <linux/smpboot.h> 22 #include <linux/atomic.h> 23 #include <linux/nmi.h> 24 #include <linux/sched/wake_q.h> 25 26 /* 27 * Structure to determine completion condition and record errors. May 28 * be shared by works on different cpus. 29 */ 30 struct cpu_stop_done { 31 atomic_t nr_todo; /* nr left to execute */ 32 int ret; /* collected return value */ 33 struct completion completion; /* fired if nr_todo reaches 0 */ 34 }; 35 36 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 37 struct cpu_stopper { 38 struct task_struct *thread; 39 40 raw_spinlock_t lock; 41 bool enabled; /* is this stopper enabled? */ 42 struct list_head works; /* list of pending works */ 43 44 struct cpu_stop_work stop_work; /* for stop_cpus */ 45 }; 46 47 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 48 static bool stop_machine_initialized = false; 49 50 /* static data for stop_cpus */ 51 static DEFINE_MUTEX(stop_cpus_mutex); 52 static bool stop_cpus_in_progress; 53 54 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 55 { 56 memset(done, 0, sizeof(*done)); 57 atomic_set(&done->nr_todo, nr_todo); 58 init_completion(&done->completion); 59 } 60 61 /* signal completion unless @done is NULL */ 62 static void cpu_stop_signal_done(struct cpu_stop_done *done) 63 { 64 if (atomic_dec_and_test(&done->nr_todo)) 65 complete(&done->completion); 66 } 67 68 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 69 struct cpu_stop_work *work, 70 struct wake_q_head *wakeq) 71 { 72 list_add_tail(&work->list, &stopper->works); 73 wake_q_add(wakeq, stopper->thread); 74 } 75 76 /* queue @work to @stopper. if offline, @work is completed immediately */ 77 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 78 { 79 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 80 DEFINE_WAKE_Q(wakeq); 81 unsigned long flags; 82 bool enabled; 83 84 raw_spin_lock_irqsave(&stopper->lock, flags); 85 enabled = stopper->enabled; 86 if (enabled) 87 __cpu_stop_queue_work(stopper, work, &wakeq); 88 else if (work->done) 89 cpu_stop_signal_done(work->done); 90 raw_spin_unlock_irqrestore(&stopper->lock, flags); 91 92 wake_up_q(&wakeq); 93 94 return enabled; 95 } 96 97 /** 98 * stop_one_cpu - stop a cpu 99 * @cpu: cpu to stop 100 * @fn: function to execute 101 * @arg: argument to @fn 102 * 103 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 104 * the highest priority preempting any task on the cpu and 105 * monopolizing it. This function returns after the execution is 106 * complete. 107 * 108 * This function doesn't guarantee @cpu stays online till @fn 109 * completes. If @cpu goes down in the middle, execution may happen 110 * partially or fully on different cpus. @fn should either be ready 111 * for that or the caller should ensure that @cpu stays online until 112 * this function completes. 113 * 114 * CONTEXT: 115 * Might sleep. 116 * 117 * RETURNS: 118 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 119 * otherwise, the return value of @fn. 120 */ 121 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 122 { 123 struct cpu_stop_done done; 124 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 125 126 cpu_stop_init_done(&done, 1); 127 if (!cpu_stop_queue_work(cpu, &work)) 128 return -ENOENT; 129 /* 130 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 131 * cycle by doing a preemption: 132 */ 133 cond_resched(); 134 wait_for_completion(&done.completion); 135 return done.ret; 136 } 137 138 /* This controls the threads on each CPU. */ 139 enum multi_stop_state { 140 /* Dummy starting state for thread. */ 141 MULTI_STOP_NONE, 142 /* Awaiting everyone to be scheduled. */ 143 MULTI_STOP_PREPARE, 144 /* Disable interrupts. */ 145 MULTI_STOP_DISABLE_IRQ, 146 /* Run the function */ 147 MULTI_STOP_RUN, 148 /* Exit */ 149 MULTI_STOP_EXIT, 150 }; 151 152 struct multi_stop_data { 153 cpu_stop_fn_t fn; 154 void *data; 155 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 156 unsigned int num_threads; 157 const struct cpumask *active_cpus; 158 159 enum multi_stop_state state; 160 atomic_t thread_ack; 161 }; 162 163 static void set_state(struct multi_stop_data *msdata, 164 enum multi_stop_state newstate) 165 { 166 /* Reset ack counter. */ 167 atomic_set(&msdata->thread_ack, msdata->num_threads); 168 smp_wmb(); 169 msdata->state = newstate; 170 } 171 172 /* Last one to ack a state moves to the next state. */ 173 static void ack_state(struct multi_stop_data *msdata) 174 { 175 if (atomic_dec_and_test(&msdata->thread_ack)) 176 set_state(msdata, msdata->state + 1); 177 } 178 179 /* This is the cpu_stop function which stops the CPU. */ 180 static int multi_cpu_stop(void *data) 181 { 182 struct multi_stop_data *msdata = data; 183 enum multi_stop_state curstate = MULTI_STOP_NONE; 184 int cpu = smp_processor_id(), err = 0; 185 unsigned long flags; 186 bool is_active; 187 188 /* 189 * When called from stop_machine_from_inactive_cpu(), irq might 190 * already be disabled. Save the state and restore it on exit. 191 */ 192 local_save_flags(flags); 193 194 if (!msdata->active_cpus) 195 is_active = cpu == cpumask_first(cpu_online_mask); 196 else 197 is_active = cpumask_test_cpu(cpu, msdata->active_cpus); 198 199 /* Simple state machine */ 200 do { 201 /* Chill out and ensure we re-read multi_stop_state. */ 202 cpu_relax_yield(); 203 if (msdata->state != curstate) { 204 curstate = msdata->state; 205 switch (curstate) { 206 case MULTI_STOP_DISABLE_IRQ: 207 local_irq_disable(); 208 hard_irq_disable(); 209 break; 210 case MULTI_STOP_RUN: 211 if (is_active) 212 err = msdata->fn(msdata->data); 213 break; 214 default: 215 break; 216 } 217 ack_state(msdata); 218 } else if (curstate > MULTI_STOP_PREPARE) { 219 /* 220 * At this stage all other CPUs we depend on must spin 221 * in the same loop. Any reason for hard-lockup should 222 * be detected and reported on their side. 223 */ 224 touch_nmi_watchdog(); 225 } 226 } while (curstate != MULTI_STOP_EXIT); 227 228 local_irq_restore(flags); 229 return err; 230 } 231 232 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 233 int cpu2, struct cpu_stop_work *work2) 234 { 235 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 236 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 237 DEFINE_WAKE_Q(wakeq); 238 int err; 239 240 retry: 241 /* 242 * The waking up of stopper threads has to happen in the same 243 * scheduling context as the queueing. Otherwise, there is a 244 * possibility of one of the above stoppers being woken up by another 245 * CPU, and preempting us. This will cause us to not wake up the other 246 * stopper forever. 247 */ 248 preempt_disable(); 249 raw_spin_lock_irq(&stopper1->lock); 250 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 251 252 if (!stopper1->enabled || !stopper2->enabled) { 253 err = -ENOENT; 254 goto unlock; 255 } 256 257 /* 258 * Ensure that if we race with __stop_cpus() the stoppers won't get 259 * queued up in reverse order leading to system deadlock. 260 * 261 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 262 * queued a work on cpu1 but not on cpu2, we hold both locks. 263 * 264 * It can be falsely true but it is safe to spin until it is cleared, 265 * queue_stop_cpus_work() does everything under preempt_disable(). 266 */ 267 if (unlikely(stop_cpus_in_progress)) { 268 err = -EDEADLK; 269 goto unlock; 270 } 271 272 err = 0; 273 __cpu_stop_queue_work(stopper1, work1, &wakeq); 274 __cpu_stop_queue_work(stopper2, work2, &wakeq); 275 276 unlock: 277 raw_spin_unlock(&stopper2->lock); 278 raw_spin_unlock_irq(&stopper1->lock); 279 280 if (unlikely(err == -EDEADLK)) { 281 preempt_enable(); 282 283 while (stop_cpus_in_progress) 284 cpu_relax(); 285 286 goto retry; 287 } 288 289 wake_up_q(&wakeq); 290 preempt_enable(); 291 292 return err; 293 } 294 /** 295 * stop_two_cpus - stops two cpus 296 * @cpu1: the cpu to stop 297 * @cpu2: the other cpu to stop 298 * @fn: function to execute 299 * @arg: argument to @fn 300 * 301 * Stops both the current and specified CPU and runs @fn on one of them. 302 * 303 * returns when both are completed. 304 */ 305 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 306 { 307 struct cpu_stop_done done; 308 struct cpu_stop_work work1, work2; 309 struct multi_stop_data msdata; 310 311 msdata = (struct multi_stop_data){ 312 .fn = fn, 313 .data = arg, 314 .num_threads = 2, 315 .active_cpus = cpumask_of(cpu1), 316 }; 317 318 work1 = work2 = (struct cpu_stop_work){ 319 .fn = multi_cpu_stop, 320 .arg = &msdata, 321 .done = &done 322 }; 323 324 cpu_stop_init_done(&done, 2); 325 set_state(&msdata, MULTI_STOP_PREPARE); 326 327 if (cpu1 > cpu2) 328 swap(cpu1, cpu2); 329 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 330 return -ENOENT; 331 332 wait_for_completion(&done.completion); 333 return done.ret; 334 } 335 336 /** 337 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 338 * @cpu: cpu to stop 339 * @fn: function to execute 340 * @arg: argument to @fn 341 * @work_buf: pointer to cpu_stop_work structure 342 * 343 * Similar to stop_one_cpu() but doesn't wait for completion. The 344 * caller is responsible for ensuring @work_buf is currently unused 345 * and will remain untouched until stopper starts executing @fn. 346 * 347 * CONTEXT: 348 * Don't care. 349 * 350 * RETURNS: 351 * true if cpu_stop_work was queued successfully and @fn will be called, 352 * false otherwise. 353 */ 354 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 355 struct cpu_stop_work *work_buf) 356 { 357 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 358 return cpu_stop_queue_work(cpu, work_buf); 359 } 360 361 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 362 cpu_stop_fn_t fn, void *arg, 363 struct cpu_stop_done *done) 364 { 365 struct cpu_stop_work *work; 366 unsigned int cpu; 367 bool queued = false; 368 369 /* 370 * Disable preemption while queueing to avoid getting 371 * preempted by a stopper which might wait for other stoppers 372 * to enter @fn which can lead to deadlock. 373 */ 374 preempt_disable(); 375 stop_cpus_in_progress = true; 376 for_each_cpu(cpu, cpumask) { 377 work = &per_cpu(cpu_stopper.stop_work, cpu); 378 work->fn = fn; 379 work->arg = arg; 380 work->done = done; 381 if (cpu_stop_queue_work(cpu, work)) 382 queued = true; 383 } 384 stop_cpus_in_progress = false; 385 preempt_enable(); 386 387 return queued; 388 } 389 390 static int __stop_cpus(const struct cpumask *cpumask, 391 cpu_stop_fn_t fn, void *arg) 392 { 393 struct cpu_stop_done done; 394 395 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 396 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 397 return -ENOENT; 398 wait_for_completion(&done.completion); 399 return done.ret; 400 } 401 402 /** 403 * stop_cpus - stop multiple cpus 404 * @cpumask: cpus to stop 405 * @fn: function to execute 406 * @arg: argument to @fn 407 * 408 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 409 * @fn is run in a process context with the highest priority 410 * preempting any task on the cpu and monopolizing it. This function 411 * returns after all executions are complete. 412 * 413 * This function doesn't guarantee the cpus in @cpumask stay online 414 * till @fn completes. If some cpus go down in the middle, execution 415 * on the cpu may happen partially or fully on different cpus. @fn 416 * should either be ready for that or the caller should ensure that 417 * the cpus stay online until this function completes. 418 * 419 * All stop_cpus() calls are serialized making it safe for @fn to wait 420 * for all cpus to start executing it. 421 * 422 * CONTEXT: 423 * Might sleep. 424 * 425 * RETURNS: 426 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 427 * @cpumask were offline; otherwise, 0 if all executions of @fn 428 * returned 0, any non zero return value if any returned non zero. 429 */ 430 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 431 { 432 int ret; 433 434 /* static works are used, process one request at a time */ 435 mutex_lock(&stop_cpus_mutex); 436 ret = __stop_cpus(cpumask, fn, arg); 437 mutex_unlock(&stop_cpus_mutex); 438 return ret; 439 } 440 441 /** 442 * try_stop_cpus - try to stop multiple cpus 443 * @cpumask: cpus to stop 444 * @fn: function to execute 445 * @arg: argument to @fn 446 * 447 * Identical to stop_cpus() except that it fails with -EAGAIN if 448 * someone else is already using the facility. 449 * 450 * CONTEXT: 451 * Might sleep. 452 * 453 * RETURNS: 454 * -EAGAIN if someone else is already stopping cpus, -ENOENT if 455 * @fn(@arg) was not executed at all because all cpus in @cpumask were 456 * offline; otherwise, 0 if all executions of @fn returned 0, any non 457 * zero return value if any returned non zero. 458 */ 459 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 460 { 461 int ret; 462 463 /* static works are used, process one request at a time */ 464 if (!mutex_trylock(&stop_cpus_mutex)) 465 return -EAGAIN; 466 ret = __stop_cpus(cpumask, fn, arg); 467 mutex_unlock(&stop_cpus_mutex); 468 return ret; 469 } 470 471 static int cpu_stop_should_run(unsigned int cpu) 472 { 473 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 474 unsigned long flags; 475 int run; 476 477 raw_spin_lock_irqsave(&stopper->lock, flags); 478 run = !list_empty(&stopper->works); 479 raw_spin_unlock_irqrestore(&stopper->lock, flags); 480 return run; 481 } 482 483 static void cpu_stopper_thread(unsigned int cpu) 484 { 485 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 486 struct cpu_stop_work *work; 487 488 repeat: 489 work = NULL; 490 raw_spin_lock_irq(&stopper->lock); 491 if (!list_empty(&stopper->works)) { 492 work = list_first_entry(&stopper->works, 493 struct cpu_stop_work, list); 494 list_del_init(&work->list); 495 } 496 raw_spin_unlock_irq(&stopper->lock); 497 498 if (work) { 499 cpu_stop_fn_t fn = work->fn; 500 void *arg = work->arg; 501 struct cpu_stop_done *done = work->done; 502 int ret; 503 504 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 505 preempt_count_inc(); 506 ret = fn(arg); 507 if (done) { 508 if (ret) 509 done->ret = ret; 510 cpu_stop_signal_done(done); 511 } 512 preempt_count_dec(); 513 WARN_ONCE(preempt_count(), 514 "cpu_stop: %pf(%p) leaked preempt count\n", fn, arg); 515 goto repeat; 516 } 517 } 518 519 void stop_machine_park(int cpu) 520 { 521 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 522 /* 523 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 524 * the pending works before it parks, until then it is fine to queue 525 * the new works. 526 */ 527 stopper->enabled = false; 528 kthread_park(stopper->thread); 529 } 530 531 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 532 533 static void cpu_stop_create(unsigned int cpu) 534 { 535 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 536 } 537 538 static void cpu_stop_park(unsigned int cpu) 539 { 540 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 541 542 WARN_ON(!list_empty(&stopper->works)); 543 } 544 545 void stop_machine_unpark(int cpu) 546 { 547 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 548 549 stopper->enabled = true; 550 kthread_unpark(stopper->thread); 551 } 552 553 static struct smp_hotplug_thread cpu_stop_threads = { 554 .store = &cpu_stopper.thread, 555 .thread_should_run = cpu_stop_should_run, 556 .thread_fn = cpu_stopper_thread, 557 .thread_comm = "migration/%u", 558 .create = cpu_stop_create, 559 .park = cpu_stop_park, 560 .selfparking = true, 561 }; 562 563 static int __init cpu_stop_init(void) 564 { 565 unsigned int cpu; 566 567 for_each_possible_cpu(cpu) { 568 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 569 570 raw_spin_lock_init(&stopper->lock); 571 INIT_LIST_HEAD(&stopper->works); 572 } 573 574 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 575 stop_machine_unpark(raw_smp_processor_id()); 576 stop_machine_initialized = true; 577 return 0; 578 } 579 early_initcall(cpu_stop_init); 580 581 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, 582 const struct cpumask *cpus) 583 { 584 struct multi_stop_data msdata = { 585 .fn = fn, 586 .data = data, 587 .num_threads = num_online_cpus(), 588 .active_cpus = cpus, 589 }; 590 591 lockdep_assert_cpus_held(); 592 593 if (!stop_machine_initialized) { 594 /* 595 * Handle the case where stop_machine() is called 596 * early in boot before stop_machine() has been 597 * initialized. 598 */ 599 unsigned long flags; 600 int ret; 601 602 WARN_ON_ONCE(msdata.num_threads != 1); 603 604 local_irq_save(flags); 605 hard_irq_disable(); 606 ret = (*fn)(data); 607 local_irq_restore(flags); 608 609 return ret; 610 } 611 612 /* Set the initial state and stop all online cpus. */ 613 set_state(&msdata, MULTI_STOP_PREPARE); 614 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 615 } 616 617 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 618 { 619 int ret; 620 621 /* No CPUs can come up or down during this. */ 622 cpus_read_lock(); 623 ret = stop_machine_cpuslocked(fn, data, cpus); 624 cpus_read_unlock(); 625 return ret; 626 } 627 EXPORT_SYMBOL_GPL(stop_machine); 628 629 /** 630 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 631 * @fn: the function to run 632 * @data: the data ptr for the @fn() 633 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 634 * 635 * This is identical to stop_machine() but can be called from a CPU which 636 * is not active. The local CPU is in the process of hotplug (so no other 637 * CPU hotplug can start) and not marked active and doesn't have enough 638 * context to sleep. 639 * 640 * This function provides stop_machine() functionality for such state by 641 * using busy-wait for synchronization and executing @fn directly for local 642 * CPU. 643 * 644 * CONTEXT: 645 * Local CPU is inactive. Temporarily stops all active CPUs. 646 * 647 * RETURNS: 648 * 0 if all executions of @fn returned 0, any non zero return value if any 649 * returned non zero. 650 */ 651 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 652 const struct cpumask *cpus) 653 { 654 struct multi_stop_data msdata = { .fn = fn, .data = data, 655 .active_cpus = cpus }; 656 struct cpu_stop_done done; 657 int ret; 658 659 /* Local CPU must be inactive and CPU hotplug in progress. */ 660 BUG_ON(cpu_active(raw_smp_processor_id())); 661 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 662 663 /* No proper task established and can't sleep - busy wait for lock. */ 664 while (!mutex_trylock(&stop_cpus_mutex)) 665 cpu_relax(); 666 667 /* Schedule work on other CPUs and execute directly for local CPU */ 668 set_state(&msdata, MULTI_STOP_PREPARE); 669 cpu_stop_init_done(&done, num_active_cpus()); 670 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 671 &done); 672 ret = multi_cpu_stop(&msdata); 673 674 /* Busy wait for completion. */ 675 while (!completion_done(&done.completion)) 676 cpu_relax(); 677 678 mutex_unlock(&stop_cpus_mutex); 679 return ret ?: done.ret; 680 } 681