xref: /linux-6.15/kernel/stop_machine.c (revision 366237e7)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * kernel/stop_machine.c
4  *
5  * Copyright (C) 2008, 2005	IBM Corporation.
6  * Copyright (C) 2008, 2005	Rusty Russell [email protected]
7  * Copyright (C) 2010		SUSE Linux Products GmbH
8  * Copyright (C) 2010		Tejun Heo <[email protected]>
9  */
10 #include <linux/completion.h>
11 #include <linux/cpu.h>
12 #include <linux/init.h>
13 #include <linux/kthread.h>
14 #include <linux/export.h>
15 #include <linux/percpu.h>
16 #include <linux/sched.h>
17 #include <linux/stop_machine.h>
18 #include <linux/interrupt.h>
19 #include <linux/kallsyms.h>
20 #include <linux/smpboot.h>
21 #include <linux/atomic.h>
22 #include <linux/nmi.h>
23 #include <linux/sched/wake_q.h>
24 
25 /*
26  * Structure to determine completion condition and record errors.  May
27  * be shared by works on different cpus.
28  */
29 struct cpu_stop_done {
30 	atomic_t		nr_todo;	/* nr left to execute */
31 	int			ret;		/* collected return value */
32 	struct completion	completion;	/* fired if nr_todo reaches 0 */
33 };
34 
35 /* the actual stopper, one per every possible cpu, enabled on online cpus */
36 struct cpu_stopper {
37 	struct task_struct	*thread;
38 
39 	raw_spinlock_t		lock;
40 	bool			enabled;	/* is this stopper enabled? */
41 	struct list_head	works;		/* list of pending works */
42 
43 	struct cpu_stop_work	stop_work;	/* for stop_cpus */
44 };
45 
46 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper);
47 static bool stop_machine_initialized = false;
48 
49 /* static data for stop_cpus */
50 static DEFINE_MUTEX(stop_cpus_mutex);
51 static bool stop_cpus_in_progress;
52 
53 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo)
54 {
55 	memset(done, 0, sizeof(*done));
56 	atomic_set(&done->nr_todo, nr_todo);
57 	init_completion(&done->completion);
58 }
59 
60 /* signal completion unless @done is NULL */
61 static void cpu_stop_signal_done(struct cpu_stop_done *done)
62 {
63 	if (atomic_dec_and_test(&done->nr_todo))
64 		complete(&done->completion);
65 }
66 
67 static void __cpu_stop_queue_work(struct cpu_stopper *stopper,
68 					struct cpu_stop_work *work,
69 					struct wake_q_head *wakeq)
70 {
71 	list_add_tail(&work->list, &stopper->works);
72 	wake_q_add(wakeq, stopper->thread);
73 }
74 
75 /* queue @work to @stopper.  if offline, @work is completed immediately */
76 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work)
77 {
78 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
79 	DEFINE_WAKE_Q(wakeq);
80 	unsigned long flags;
81 	bool enabled;
82 
83 	preempt_disable();
84 	raw_spin_lock_irqsave(&stopper->lock, flags);
85 	enabled = stopper->enabled;
86 	if (enabled)
87 		__cpu_stop_queue_work(stopper, work, &wakeq);
88 	else if (work->done)
89 		cpu_stop_signal_done(work->done);
90 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
91 
92 	wake_up_q(&wakeq);
93 	preempt_enable();
94 
95 	return enabled;
96 }
97 
98 /**
99  * stop_one_cpu - stop a cpu
100  * @cpu: cpu to stop
101  * @fn: function to execute
102  * @arg: argument to @fn
103  *
104  * Execute @fn(@arg) on @cpu.  @fn is run in a process context with
105  * the highest priority preempting any task on the cpu and
106  * monopolizing it.  This function returns after the execution is
107  * complete.
108  *
109  * This function doesn't guarantee @cpu stays online till @fn
110  * completes.  If @cpu goes down in the middle, execution may happen
111  * partially or fully on different cpus.  @fn should either be ready
112  * for that or the caller should ensure that @cpu stays online until
113  * this function completes.
114  *
115  * CONTEXT:
116  * Might sleep.
117  *
118  * RETURNS:
119  * -ENOENT if @fn(@arg) was not executed because @cpu was offline;
120  * otherwise, the return value of @fn.
121  */
122 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg)
123 {
124 	struct cpu_stop_done done;
125 	struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done };
126 
127 	cpu_stop_init_done(&done, 1);
128 	if (!cpu_stop_queue_work(cpu, &work))
129 		return -ENOENT;
130 	/*
131 	 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup
132 	 * cycle by doing a preemption:
133 	 */
134 	cond_resched();
135 	wait_for_completion(&done.completion);
136 	return done.ret;
137 }
138 
139 /* This controls the threads on each CPU. */
140 enum multi_stop_state {
141 	/* Dummy starting state for thread. */
142 	MULTI_STOP_NONE,
143 	/* Awaiting everyone to be scheduled. */
144 	MULTI_STOP_PREPARE,
145 	/* Disable interrupts. */
146 	MULTI_STOP_DISABLE_IRQ,
147 	/* Run the function */
148 	MULTI_STOP_RUN,
149 	/* Exit */
150 	MULTI_STOP_EXIT,
151 };
152 
153 struct multi_stop_data {
154 	cpu_stop_fn_t		fn;
155 	void			*data;
156 	/* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */
157 	unsigned int		num_threads;
158 	const struct cpumask	*active_cpus;
159 
160 	enum multi_stop_state	state;
161 	atomic_t		thread_ack;
162 };
163 
164 static void set_state(struct multi_stop_data *msdata,
165 		      enum multi_stop_state newstate)
166 {
167 	/* Reset ack counter. */
168 	atomic_set(&msdata->thread_ack, msdata->num_threads);
169 	smp_wmb();
170 	msdata->state = newstate;
171 }
172 
173 /* Last one to ack a state moves to the next state. */
174 static void ack_state(struct multi_stop_data *msdata)
175 {
176 	if (atomic_dec_and_test(&msdata->thread_ack))
177 		set_state(msdata, msdata->state + 1);
178 }
179 
180 void __weak stop_machine_yield(const struct cpumask *cpumask)
181 {
182 	cpu_relax();
183 }
184 
185 /* This is the cpu_stop function which stops the CPU. */
186 static int multi_cpu_stop(void *data)
187 {
188 	struct multi_stop_data *msdata = data;
189 	enum multi_stop_state curstate = MULTI_STOP_NONE;
190 	int cpu = smp_processor_id(), err = 0;
191 	const struct cpumask *cpumask;
192 	unsigned long flags;
193 	bool is_active;
194 
195 	/*
196 	 * When called from stop_machine_from_inactive_cpu(), irq might
197 	 * already be disabled.  Save the state and restore it on exit.
198 	 */
199 	local_save_flags(flags);
200 
201 	if (!msdata->active_cpus) {
202 		cpumask = cpu_online_mask;
203 		is_active = cpu == cpumask_first(cpumask);
204 	} else {
205 		cpumask = msdata->active_cpus;
206 		is_active = cpumask_test_cpu(cpu, cpumask);
207 	}
208 
209 	/* Simple state machine */
210 	do {
211 		/* Chill out and ensure we re-read multi_stop_state. */
212 		stop_machine_yield(cpumask);
213 		if (msdata->state != curstate) {
214 			curstate = msdata->state;
215 			switch (curstate) {
216 			case MULTI_STOP_DISABLE_IRQ:
217 				local_irq_disable();
218 				hard_irq_disable();
219 				break;
220 			case MULTI_STOP_RUN:
221 				if (is_active)
222 					err = msdata->fn(msdata->data);
223 				break;
224 			default:
225 				break;
226 			}
227 			ack_state(msdata);
228 		} else if (curstate > MULTI_STOP_PREPARE) {
229 			/*
230 			 * At this stage all other CPUs we depend on must spin
231 			 * in the same loop. Any reason for hard-lockup should
232 			 * be detected and reported on their side.
233 			 */
234 			touch_nmi_watchdog();
235 		}
236 		rcu_momentary_dyntick_idle();
237 	} while (curstate != MULTI_STOP_EXIT);
238 
239 	local_irq_restore(flags);
240 	return err;
241 }
242 
243 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1,
244 				    int cpu2, struct cpu_stop_work *work2)
245 {
246 	struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1);
247 	struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2);
248 	DEFINE_WAKE_Q(wakeq);
249 	int err;
250 
251 retry:
252 	/*
253 	 * The waking up of stopper threads has to happen in the same
254 	 * scheduling context as the queueing.  Otherwise, there is a
255 	 * possibility of one of the above stoppers being woken up by another
256 	 * CPU, and preempting us. This will cause us to not wake up the other
257 	 * stopper forever.
258 	 */
259 	preempt_disable();
260 	raw_spin_lock_irq(&stopper1->lock);
261 	raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING);
262 
263 	if (!stopper1->enabled || !stopper2->enabled) {
264 		err = -ENOENT;
265 		goto unlock;
266 	}
267 
268 	/*
269 	 * Ensure that if we race with __stop_cpus() the stoppers won't get
270 	 * queued up in reverse order leading to system deadlock.
271 	 *
272 	 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has
273 	 * queued a work on cpu1 but not on cpu2, we hold both locks.
274 	 *
275 	 * It can be falsely true but it is safe to spin until it is cleared,
276 	 * queue_stop_cpus_work() does everything under preempt_disable().
277 	 */
278 	if (unlikely(stop_cpus_in_progress)) {
279 		err = -EDEADLK;
280 		goto unlock;
281 	}
282 
283 	err = 0;
284 	__cpu_stop_queue_work(stopper1, work1, &wakeq);
285 	__cpu_stop_queue_work(stopper2, work2, &wakeq);
286 
287 unlock:
288 	raw_spin_unlock(&stopper2->lock);
289 	raw_spin_unlock_irq(&stopper1->lock);
290 
291 	if (unlikely(err == -EDEADLK)) {
292 		preempt_enable();
293 
294 		while (stop_cpus_in_progress)
295 			cpu_relax();
296 
297 		goto retry;
298 	}
299 
300 	wake_up_q(&wakeq);
301 	preempt_enable();
302 
303 	return err;
304 }
305 /**
306  * stop_two_cpus - stops two cpus
307  * @cpu1: the cpu to stop
308  * @cpu2: the other cpu to stop
309  * @fn: function to execute
310  * @arg: argument to @fn
311  *
312  * Stops both the current and specified CPU and runs @fn on one of them.
313  *
314  * returns when both are completed.
315  */
316 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg)
317 {
318 	struct cpu_stop_done done;
319 	struct cpu_stop_work work1, work2;
320 	struct multi_stop_data msdata;
321 
322 	msdata = (struct multi_stop_data){
323 		.fn = fn,
324 		.data = arg,
325 		.num_threads = 2,
326 		.active_cpus = cpumask_of(cpu1),
327 	};
328 
329 	work1 = work2 = (struct cpu_stop_work){
330 		.fn = multi_cpu_stop,
331 		.arg = &msdata,
332 		.done = &done
333 	};
334 
335 	cpu_stop_init_done(&done, 2);
336 	set_state(&msdata, MULTI_STOP_PREPARE);
337 
338 	if (cpu1 > cpu2)
339 		swap(cpu1, cpu2);
340 	if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2))
341 		return -ENOENT;
342 
343 	wait_for_completion(&done.completion);
344 	return done.ret;
345 }
346 
347 /**
348  * stop_one_cpu_nowait - stop a cpu but don't wait for completion
349  * @cpu: cpu to stop
350  * @fn: function to execute
351  * @arg: argument to @fn
352  * @work_buf: pointer to cpu_stop_work structure
353  *
354  * Similar to stop_one_cpu() but doesn't wait for completion.  The
355  * caller is responsible for ensuring @work_buf is currently unused
356  * and will remain untouched until stopper starts executing @fn.
357  *
358  * CONTEXT:
359  * Don't care.
360  *
361  * RETURNS:
362  * true if cpu_stop_work was queued successfully and @fn will be called,
363  * false otherwise.
364  */
365 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg,
366 			struct cpu_stop_work *work_buf)
367 {
368 	*work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, };
369 	return cpu_stop_queue_work(cpu, work_buf);
370 }
371 
372 static bool queue_stop_cpus_work(const struct cpumask *cpumask,
373 				 cpu_stop_fn_t fn, void *arg,
374 				 struct cpu_stop_done *done)
375 {
376 	struct cpu_stop_work *work;
377 	unsigned int cpu;
378 	bool queued = false;
379 
380 	/*
381 	 * Disable preemption while queueing to avoid getting
382 	 * preempted by a stopper which might wait for other stoppers
383 	 * to enter @fn which can lead to deadlock.
384 	 */
385 	preempt_disable();
386 	stop_cpus_in_progress = true;
387 	barrier();
388 	for_each_cpu(cpu, cpumask) {
389 		work = &per_cpu(cpu_stopper.stop_work, cpu);
390 		work->fn = fn;
391 		work->arg = arg;
392 		work->done = done;
393 		if (cpu_stop_queue_work(cpu, work))
394 			queued = true;
395 	}
396 	barrier();
397 	stop_cpus_in_progress = false;
398 	preempt_enable();
399 
400 	return queued;
401 }
402 
403 static int __stop_cpus(const struct cpumask *cpumask,
404 		       cpu_stop_fn_t fn, void *arg)
405 {
406 	struct cpu_stop_done done;
407 
408 	cpu_stop_init_done(&done, cpumask_weight(cpumask));
409 	if (!queue_stop_cpus_work(cpumask, fn, arg, &done))
410 		return -ENOENT;
411 	wait_for_completion(&done.completion);
412 	return done.ret;
413 }
414 
415 /**
416  * stop_cpus - stop multiple cpus
417  * @cpumask: cpus to stop
418  * @fn: function to execute
419  * @arg: argument to @fn
420  *
421  * Execute @fn(@arg) on online cpus in @cpumask.  On each target cpu,
422  * @fn is run in a process context with the highest priority
423  * preempting any task on the cpu and monopolizing it.  This function
424  * returns after all executions are complete.
425  *
426  * This function doesn't guarantee the cpus in @cpumask stay online
427  * till @fn completes.  If some cpus go down in the middle, execution
428  * on the cpu may happen partially or fully on different cpus.  @fn
429  * should either be ready for that or the caller should ensure that
430  * the cpus stay online until this function completes.
431  *
432  * All stop_cpus() calls are serialized making it safe for @fn to wait
433  * for all cpus to start executing it.
434  *
435  * CONTEXT:
436  * Might sleep.
437  *
438  * RETURNS:
439  * -ENOENT if @fn(@arg) was not executed at all because all cpus in
440  * @cpumask were offline; otherwise, 0 if all executions of @fn
441  * returned 0, any non zero return value if any returned non zero.
442  */
443 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
444 {
445 	int ret;
446 
447 	/* static works are used, process one request at a time */
448 	mutex_lock(&stop_cpus_mutex);
449 	ret = __stop_cpus(cpumask, fn, arg);
450 	mutex_unlock(&stop_cpus_mutex);
451 	return ret;
452 }
453 
454 /**
455  * try_stop_cpus - try to stop multiple cpus
456  * @cpumask: cpus to stop
457  * @fn: function to execute
458  * @arg: argument to @fn
459  *
460  * Identical to stop_cpus() except that it fails with -EAGAIN if
461  * someone else is already using the facility.
462  *
463  * CONTEXT:
464  * Might sleep.
465  *
466  * RETURNS:
467  * -EAGAIN if someone else is already stopping cpus, -ENOENT if
468  * @fn(@arg) was not executed at all because all cpus in @cpumask were
469  * offline; otherwise, 0 if all executions of @fn returned 0, any non
470  * zero return value if any returned non zero.
471  */
472 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg)
473 {
474 	int ret;
475 
476 	/* static works are used, process one request at a time */
477 	if (!mutex_trylock(&stop_cpus_mutex))
478 		return -EAGAIN;
479 	ret = __stop_cpus(cpumask, fn, arg);
480 	mutex_unlock(&stop_cpus_mutex);
481 	return ret;
482 }
483 
484 static int cpu_stop_should_run(unsigned int cpu)
485 {
486 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
487 	unsigned long flags;
488 	int run;
489 
490 	raw_spin_lock_irqsave(&stopper->lock, flags);
491 	run = !list_empty(&stopper->works);
492 	raw_spin_unlock_irqrestore(&stopper->lock, flags);
493 	return run;
494 }
495 
496 static void cpu_stopper_thread(unsigned int cpu)
497 {
498 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
499 	struct cpu_stop_work *work;
500 
501 repeat:
502 	work = NULL;
503 	raw_spin_lock_irq(&stopper->lock);
504 	if (!list_empty(&stopper->works)) {
505 		work = list_first_entry(&stopper->works,
506 					struct cpu_stop_work, list);
507 		list_del_init(&work->list);
508 	}
509 	raw_spin_unlock_irq(&stopper->lock);
510 
511 	if (work) {
512 		cpu_stop_fn_t fn = work->fn;
513 		void *arg = work->arg;
514 		struct cpu_stop_done *done = work->done;
515 		int ret;
516 
517 		/* cpu stop callbacks must not sleep, make in_atomic() == T */
518 		preempt_count_inc();
519 		ret = fn(arg);
520 		if (done) {
521 			if (ret)
522 				done->ret = ret;
523 			cpu_stop_signal_done(done);
524 		}
525 		preempt_count_dec();
526 		WARN_ONCE(preempt_count(),
527 			  "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg);
528 		goto repeat;
529 	}
530 }
531 
532 void stop_machine_park(int cpu)
533 {
534 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
535 	/*
536 	 * Lockless. cpu_stopper_thread() will take stopper->lock and flush
537 	 * the pending works before it parks, until then it is fine to queue
538 	 * the new works.
539 	 */
540 	stopper->enabled = false;
541 	kthread_park(stopper->thread);
542 }
543 
544 extern void sched_set_stop_task(int cpu, struct task_struct *stop);
545 
546 static void cpu_stop_create(unsigned int cpu)
547 {
548 	sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu));
549 }
550 
551 static void cpu_stop_park(unsigned int cpu)
552 {
553 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
554 
555 	WARN_ON(!list_empty(&stopper->works));
556 }
557 
558 void stop_machine_unpark(int cpu)
559 {
560 	struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
561 
562 	stopper->enabled = true;
563 	kthread_unpark(stopper->thread);
564 }
565 
566 static struct smp_hotplug_thread cpu_stop_threads = {
567 	.store			= &cpu_stopper.thread,
568 	.thread_should_run	= cpu_stop_should_run,
569 	.thread_fn		= cpu_stopper_thread,
570 	.thread_comm		= "migration/%u",
571 	.create			= cpu_stop_create,
572 	.park			= cpu_stop_park,
573 	.selfparking		= true,
574 };
575 
576 static int __init cpu_stop_init(void)
577 {
578 	unsigned int cpu;
579 
580 	for_each_possible_cpu(cpu) {
581 		struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu);
582 
583 		raw_spin_lock_init(&stopper->lock);
584 		INIT_LIST_HEAD(&stopper->works);
585 	}
586 
587 	BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads));
588 	stop_machine_unpark(raw_smp_processor_id());
589 	stop_machine_initialized = true;
590 	return 0;
591 }
592 early_initcall(cpu_stop_init);
593 
594 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data,
595 			    const struct cpumask *cpus)
596 {
597 	struct multi_stop_data msdata = {
598 		.fn = fn,
599 		.data = data,
600 		.num_threads = num_online_cpus(),
601 		.active_cpus = cpus,
602 	};
603 
604 	lockdep_assert_cpus_held();
605 
606 	if (!stop_machine_initialized) {
607 		/*
608 		 * Handle the case where stop_machine() is called
609 		 * early in boot before stop_machine() has been
610 		 * initialized.
611 		 */
612 		unsigned long flags;
613 		int ret;
614 
615 		WARN_ON_ONCE(msdata.num_threads != 1);
616 
617 		local_irq_save(flags);
618 		hard_irq_disable();
619 		ret = (*fn)(data);
620 		local_irq_restore(flags);
621 
622 		return ret;
623 	}
624 
625 	/* Set the initial state and stop all online cpus. */
626 	set_state(&msdata, MULTI_STOP_PREPARE);
627 	return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata);
628 }
629 
630 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus)
631 {
632 	int ret;
633 
634 	/* No CPUs can come up or down during this. */
635 	cpus_read_lock();
636 	ret = stop_machine_cpuslocked(fn, data, cpus);
637 	cpus_read_unlock();
638 	return ret;
639 }
640 EXPORT_SYMBOL_GPL(stop_machine);
641 
642 /**
643  * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU
644  * @fn: the function to run
645  * @data: the data ptr for the @fn()
646  * @cpus: the cpus to run the @fn() on (NULL = any online cpu)
647  *
648  * This is identical to stop_machine() but can be called from a CPU which
649  * is not active.  The local CPU is in the process of hotplug (so no other
650  * CPU hotplug can start) and not marked active and doesn't have enough
651  * context to sleep.
652  *
653  * This function provides stop_machine() functionality for such state by
654  * using busy-wait for synchronization and executing @fn directly for local
655  * CPU.
656  *
657  * CONTEXT:
658  * Local CPU is inactive.  Temporarily stops all active CPUs.
659  *
660  * RETURNS:
661  * 0 if all executions of @fn returned 0, any non zero return value if any
662  * returned non zero.
663  */
664 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data,
665 				  const struct cpumask *cpus)
666 {
667 	struct multi_stop_data msdata = { .fn = fn, .data = data,
668 					    .active_cpus = cpus };
669 	struct cpu_stop_done done;
670 	int ret;
671 
672 	/* Local CPU must be inactive and CPU hotplug in progress. */
673 	BUG_ON(cpu_active(raw_smp_processor_id()));
674 	msdata.num_threads = num_active_cpus() + 1;	/* +1 for local */
675 
676 	/* No proper task established and can't sleep - busy wait for lock. */
677 	while (!mutex_trylock(&stop_cpus_mutex))
678 		cpu_relax();
679 
680 	/* Schedule work on other CPUs and execute directly for local CPU */
681 	set_state(&msdata, MULTI_STOP_PREPARE);
682 	cpu_stop_init_done(&done, num_active_cpus());
683 	queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata,
684 			     &done);
685 	ret = multi_cpu_stop(&msdata);
686 
687 	/* Busy wait for completion. */
688 	while (!completion_done(&done.completion))
689 		cpu_relax();
690 
691 	mutex_unlock(&stop_cpus_mutex);
692 	return ret ?: done.ret;
693 }
694