1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * kernel/stop_machine.c 4 * 5 * Copyright (C) 2008, 2005 IBM Corporation. 6 * Copyright (C) 2008, 2005 Rusty Russell [email protected] 7 * Copyright (C) 2010 SUSE Linux Products GmbH 8 * Copyright (C) 2010 Tejun Heo <[email protected]> 9 */ 10 #include <linux/completion.h> 11 #include <linux/cpu.h> 12 #include <linux/init.h> 13 #include <linux/kthread.h> 14 #include <linux/export.h> 15 #include <linux/percpu.h> 16 #include <linux/sched.h> 17 #include <linux/stop_machine.h> 18 #include <linux/interrupt.h> 19 #include <linux/kallsyms.h> 20 #include <linux/smpboot.h> 21 #include <linux/atomic.h> 22 #include <linux/nmi.h> 23 #include <linux/sched/wake_q.h> 24 25 /* 26 * Structure to determine completion condition and record errors. May 27 * be shared by works on different cpus. 28 */ 29 struct cpu_stop_done { 30 atomic_t nr_todo; /* nr left to execute */ 31 int ret; /* collected return value */ 32 struct completion completion; /* fired if nr_todo reaches 0 */ 33 }; 34 35 /* the actual stopper, one per every possible cpu, enabled on online cpus */ 36 struct cpu_stopper { 37 struct task_struct *thread; 38 39 raw_spinlock_t lock; 40 bool enabled; /* is this stopper enabled? */ 41 struct list_head works; /* list of pending works */ 42 43 struct cpu_stop_work stop_work; /* for stop_cpus */ 44 }; 45 46 static DEFINE_PER_CPU(struct cpu_stopper, cpu_stopper); 47 static bool stop_machine_initialized = false; 48 49 /* static data for stop_cpus */ 50 static DEFINE_MUTEX(stop_cpus_mutex); 51 static bool stop_cpus_in_progress; 52 53 static void cpu_stop_init_done(struct cpu_stop_done *done, unsigned int nr_todo) 54 { 55 memset(done, 0, sizeof(*done)); 56 atomic_set(&done->nr_todo, nr_todo); 57 init_completion(&done->completion); 58 } 59 60 /* signal completion unless @done is NULL */ 61 static void cpu_stop_signal_done(struct cpu_stop_done *done) 62 { 63 if (atomic_dec_and_test(&done->nr_todo)) 64 complete(&done->completion); 65 } 66 67 static void __cpu_stop_queue_work(struct cpu_stopper *stopper, 68 struct cpu_stop_work *work, 69 struct wake_q_head *wakeq) 70 { 71 list_add_tail(&work->list, &stopper->works); 72 wake_q_add(wakeq, stopper->thread); 73 } 74 75 /* queue @work to @stopper. if offline, @work is completed immediately */ 76 static bool cpu_stop_queue_work(unsigned int cpu, struct cpu_stop_work *work) 77 { 78 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 79 DEFINE_WAKE_Q(wakeq); 80 unsigned long flags; 81 bool enabled; 82 83 preempt_disable(); 84 raw_spin_lock_irqsave(&stopper->lock, flags); 85 enabled = stopper->enabled; 86 if (enabled) 87 __cpu_stop_queue_work(stopper, work, &wakeq); 88 else if (work->done) 89 cpu_stop_signal_done(work->done); 90 raw_spin_unlock_irqrestore(&stopper->lock, flags); 91 92 wake_up_q(&wakeq); 93 preempt_enable(); 94 95 return enabled; 96 } 97 98 /** 99 * stop_one_cpu - stop a cpu 100 * @cpu: cpu to stop 101 * @fn: function to execute 102 * @arg: argument to @fn 103 * 104 * Execute @fn(@arg) on @cpu. @fn is run in a process context with 105 * the highest priority preempting any task on the cpu and 106 * monopolizing it. This function returns after the execution is 107 * complete. 108 * 109 * This function doesn't guarantee @cpu stays online till @fn 110 * completes. If @cpu goes down in the middle, execution may happen 111 * partially or fully on different cpus. @fn should either be ready 112 * for that or the caller should ensure that @cpu stays online until 113 * this function completes. 114 * 115 * CONTEXT: 116 * Might sleep. 117 * 118 * RETURNS: 119 * -ENOENT if @fn(@arg) was not executed because @cpu was offline; 120 * otherwise, the return value of @fn. 121 */ 122 int stop_one_cpu(unsigned int cpu, cpu_stop_fn_t fn, void *arg) 123 { 124 struct cpu_stop_done done; 125 struct cpu_stop_work work = { .fn = fn, .arg = arg, .done = &done }; 126 127 cpu_stop_init_done(&done, 1); 128 if (!cpu_stop_queue_work(cpu, &work)) 129 return -ENOENT; 130 /* 131 * In case @cpu == smp_proccessor_id() we can avoid a sleep+wakeup 132 * cycle by doing a preemption: 133 */ 134 cond_resched(); 135 wait_for_completion(&done.completion); 136 return done.ret; 137 } 138 139 /* This controls the threads on each CPU. */ 140 enum multi_stop_state { 141 /* Dummy starting state for thread. */ 142 MULTI_STOP_NONE, 143 /* Awaiting everyone to be scheduled. */ 144 MULTI_STOP_PREPARE, 145 /* Disable interrupts. */ 146 MULTI_STOP_DISABLE_IRQ, 147 /* Run the function */ 148 MULTI_STOP_RUN, 149 /* Exit */ 150 MULTI_STOP_EXIT, 151 }; 152 153 struct multi_stop_data { 154 cpu_stop_fn_t fn; 155 void *data; 156 /* Like num_online_cpus(), but hotplug cpu uses us, so we need this. */ 157 unsigned int num_threads; 158 const struct cpumask *active_cpus; 159 160 enum multi_stop_state state; 161 atomic_t thread_ack; 162 }; 163 164 static void set_state(struct multi_stop_data *msdata, 165 enum multi_stop_state newstate) 166 { 167 /* Reset ack counter. */ 168 atomic_set(&msdata->thread_ack, msdata->num_threads); 169 smp_wmb(); 170 msdata->state = newstate; 171 } 172 173 /* Last one to ack a state moves to the next state. */ 174 static void ack_state(struct multi_stop_data *msdata) 175 { 176 if (atomic_dec_and_test(&msdata->thread_ack)) 177 set_state(msdata, msdata->state + 1); 178 } 179 180 void __weak stop_machine_yield(const struct cpumask *cpumask) 181 { 182 cpu_relax(); 183 } 184 185 /* This is the cpu_stop function which stops the CPU. */ 186 static int multi_cpu_stop(void *data) 187 { 188 struct multi_stop_data *msdata = data; 189 enum multi_stop_state curstate = MULTI_STOP_NONE; 190 int cpu = smp_processor_id(), err = 0; 191 const struct cpumask *cpumask; 192 unsigned long flags; 193 bool is_active; 194 195 /* 196 * When called from stop_machine_from_inactive_cpu(), irq might 197 * already be disabled. Save the state and restore it on exit. 198 */ 199 local_save_flags(flags); 200 201 if (!msdata->active_cpus) { 202 cpumask = cpu_online_mask; 203 is_active = cpu == cpumask_first(cpumask); 204 } else { 205 cpumask = msdata->active_cpus; 206 is_active = cpumask_test_cpu(cpu, cpumask); 207 } 208 209 /* Simple state machine */ 210 do { 211 /* Chill out and ensure we re-read multi_stop_state. */ 212 stop_machine_yield(cpumask); 213 if (msdata->state != curstate) { 214 curstate = msdata->state; 215 switch (curstate) { 216 case MULTI_STOP_DISABLE_IRQ: 217 local_irq_disable(); 218 hard_irq_disable(); 219 break; 220 case MULTI_STOP_RUN: 221 if (is_active) 222 err = msdata->fn(msdata->data); 223 break; 224 default: 225 break; 226 } 227 ack_state(msdata); 228 } else if (curstate > MULTI_STOP_PREPARE) { 229 /* 230 * At this stage all other CPUs we depend on must spin 231 * in the same loop. Any reason for hard-lockup should 232 * be detected and reported on their side. 233 */ 234 touch_nmi_watchdog(); 235 } 236 rcu_momentary_dyntick_idle(); 237 } while (curstate != MULTI_STOP_EXIT); 238 239 local_irq_restore(flags); 240 return err; 241 } 242 243 static int cpu_stop_queue_two_works(int cpu1, struct cpu_stop_work *work1, 244 int cpu2, struct cpu_stop_work *work2) 245 { 246 struct cpu_stopper *stopper1 = per_cpu_ptr(&cpu_stopper, cpu1); 247 struct cpu_stopper *stopper2 = per_cpu_ptr(&cpu_stopper, cpu2); 248 DEFINE_WAKE_Q(wakeq); 249 int err; 250 251 retry: 252 /* 253 * The waking up of stopper threads has to happen in the same 254 * scheduling context as the queueing. Otherwise, there is a 255 * possibility of one of the above stoppers being woken up by another 256 * CPU, and preempting us. This will cause us to not wake up the other 257 * stopper forever. 258 */ 259 preempt_disable(); 260 raw_spin_lock_irq(&stopper1->lock); 261 raw_spin_lock_nested(&stopper2->lock, SINGLE_DEPTH_NESTING); 262 263 if (!stopper1->enabled || !stopper2->enabled) { 264 err = -ENOENT; 265 goto unlock; 266 } 267 268 /* 269 * Ensure that if we race with __stop_cpus() the stoppers won't get 270 * queued up in reverse order leading to system deadlock. 271 * 272 * We can't miss stop_cpus_in_progress if queue_stop_cpus_work() has 273 * queued a work on cpu1 but not on cpu2, we hold both locks. 274 * 275 * It can be falsely true but it is safe to spin until it is cleared, 276 * queue_stop_cpus_work() does everything under preempt_disable(). 277 */ 278 if (unlikely(stop_cpus_in_progress)) { 279 err = -EDEADLK; 280 goto unlock; 281 } 282 283 err = 0; 284 __cpu_stop_queue_work(stopper1, work1, &wakeq); 285 __cpu_stop_queue_work(stopper2, work2, &wakeq); 286 287 unlock: 288 raw_spin_unlock(&stopper2->lock); 289 raw_spin_unlock_irq(&stopper1->lock); 290 291 if (unlikely(err == -EDEADLK)) { 292 preempt_enable(); 293 294 while (stop_cpus_in_progress) 295 cpu_relax(); 296 297 goto retry; 298 } 299 300 wake_up_q(&wakeq); 301 preempt_enable(); 302 303 return err; 304 } 305 /** 306 * stop_two_cpus - stops two cpus 307 * @cpu1: the cpu to stop 308 * @cpu2: the other cpu to stop 309 * @fn: function to execute 310 * @arg: argument to @fn 311 * 312 * Stops both the current and specified CPU and runs @fn on one of them. 313 * 314 * returns when both are completed. 315 */ 316 int stop_two_cpus(unsigned int cpu1, unsigned int cpu2, cpu_stop_fn_t fn, void *arg) 317 { 318 struct cpu_stop_done done; 319 struct cpu_stop_work work1, work2; 320 struct multi_stop_data msdata; 321 322 msdata = (struct multi_stop_data){ 323 .fn = fn, 324 .data = arg, 325 .num_threads = 2, 326 .active_cpus = cpumask_of(cpu1), 327 }; 328 329 work1 = work2 = (struct cpu_stop_work){ 330 .fn = multi_cpu_stop, 331 .arg = &msdata, 332 .done = &done 333 }; 334 335 cpu_stop_init_done(&done, 2); 336 set_state(&msdata, MULTI_STOP_PREPARE); 337 338 if (cpu1 > cpu2) 339 swap(cpu1, cpu2); 340 if (cpu_stop_queue_two_works(cpu1, &work1, cpu2, &work2)) 341 return -ENOENT; 342 343 wait_for_completion(&done.completion); 344 return done.ret; 345 } 346 347 /** 348 * stop_one_cpu_nowait - stop a cpu but don't wait for completion 349 * @cpu: cpu to stop 350 * @fn: function to execute 351 * @arg: argument to @fn 352 * @work_buf: pointer to cpu_stop_work structure 353 * 354 * Similar to stop_one_cpu() but doesn't wait for completion. The 355 * caller is responsible for ensuring @work_buf is currently unused 356 * and will remain untouched until stopper starts executing @fn. 357 * 358 * CONTEXT: 359 * Don't care. 360 * 361 * RETURNS: 362 * true if cpu_stop_work was queued successfully and @fn will be called, 363 * false otherwise. 364 */ 365 bool stop_one_cpu_nowait(unsigned int cpu, cpu_stop_fn_t fn, void *arg, 366 struct cpu_stop_work *work_buf) 367 { 368 *work_buf = (struct cpu_stop_work){ .fn = fn, .arg = arg, }; 369 return cpu_stop_queue_work(cpu, work_buf); 370 } 371 372 static bool queue_stop_cpus_work(const struct cpumask *cpumask, 373 cpu_stop_fn_t fn, void *arg, 374 struct cpu_stop_done *done) 375 { 376 struct cpu_stop_work *work; 377 unsigned int cpu; 378 bool queued = false; 379 380 /* 381 * Disable preemption while queueing to avoid getting 382 * preempted by a stopper which might wait for other stoppers 383 * to enter @fn which can lead to deadlock. 384 */ 385 preempt_disable(); 386 stop_cpus_in_progress = true; 387 barrier(); 388 for_each_cpu(cpu, cpumask) { 389 work = &per_cpu(cpu_stopper.stop_work, cpu); 390 work->fn = fn; 391 work->arg = arg; 392 work->done = done; 393 if (cpu_stop_queue_work(cpu, work)) 394 queued = true; 395 } 396 barrier(); 397 stop_cpus_in_progress = false; 398 preempt_enable(); 399 400 return queued; 401 } 402 403 static int __stop_cpus(const struct cpumask *cpumask, 404 cpu_stop_fn_t fn, void *arg) 405 { 406 struct cpu_stop_done done; 407 408 cpu_stop_init_done(&done, cpumask_weight(cpumask)); 409 if (!queue_stop_cpus_work(cpumask, fn, arg, &done)) 410 return -ENOENT; 411 wait_for_completion(&done.completion); 412 return done.ret; 413 } 414 415 /** 416 * stop_cpus - stop multiple cpus 417 * @cpumask: cpus to stop 418 * @fn: function to execute 419 * @arg: argument to @fn 420 * 421 * Execute @fn(@arg) on online cpus in @cpumask. On each target cpu, 422 * @fn is run in a process context with the highest priority 423 * preempting any task on the cpu and monopolizing it. This function 424 * returns after all executions are complete. 425 * 426 * This function doesn't guarantee the cpus in @cpumask stay online 427 * till @fn completes. If some cpus go down in the middle, execution 428 * on the cpu may happen partially or fully on different cpus. @fn 429 * should either be ready for that or the caller should ensure that 430 * the cpus stay online until this function completes. 431 * 432 * All stop_cpus() calls are serialized making it safe for @fn to wait 433 * for all cpus to start executing it. 434 * 435 * CONTEXT: 436 * Might sleep. 437 * 438 * RETURNS: 439 * -ENOENT if @fn(@arg) was not executed at all because all cpus in 440 * @cpumask were offline; otherwise, 0 if all executions of @fn 441 * returned 0, any non zero return value if any returned non zero. 442 */ 443 int stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 444 { 445 int ret; 446 447 /* static works are used, process one request at a time */ 448 mutex_lock(&stop_cpus_mutex); 449 ret = __stop_cpus(cpumask, fn, arg); 450 mutex_unlock(&stop_cpus_mutex); 451 return ret; 452 } 453 454 /** 455 * try_stop_cpus - try to stop multiple cpus 456 * @cpumask: cpus to stop 457 * @fn: function to execute 458 * @arg: argument to @fn 459 * 460 * Identical to stop_cpus() except that it fails with -EAGAIN if 461 * someone else is already using the facility. 462 * 463 * CONTEXT: 464 * Might sleep. 465 * 466 * RETURNS: 467 * -EAGAIN if someone else is already stopping cpus, -ENOENT if 468 * @fn(@arg) was not executed at all because all cpus in @cpumask were 469 * offline; otherwise, 0 if all executions of @fn returned 0, any non 470 * zero return value if any returned non zero. 471 */ 472 int try_stop_cpus(const struct cpumask *cpumask, cpu_stop_fn_t fn, void *arg) 473 { 474 int ret; 475 476 /* static works are used, process one request at a time */ 477 if (!mutex_trylock(&stop_cpus_mutex)) 478 return -EAGAIN; 479 ret = __stop_cpus(cpumask, fn, arg); 480 mutex_unlock(&stop_cpus_mutex); 481 return ret; 482 } 483 484 static int cpu_stop_should_run(unsigned int cpu) 485 { 486 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 487 unsigned long flags; 488 int run; 489 490 raw_spin_lock_irqsave(&stopper->lock, flags); 491 run = !list_empty(&stopper->works); 492 raw_spin_unlock_irqrestore(&stopper->lock, flags); 493 return run; 494 } 495 496 static void cpu_stopper_thread(unsigned int cpu) 497 { 498 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 499 struct cpu_stop_work *work; 500 501 repeat: 502 work = NULL; 503 raw_spin_lock_irq(&stopper->lock); 504 if (!list_empty(&stopper->works)) { 505 work = list_first_entry(&stopper->works, 506 struct cpu_stop_work, list); 507 list_del_init(&work->list); 508 } 509 raw_spin_unlock_irq(&stopper->lock); 510 511 if (work) { 512 cpu_stop_fn_t fn = work->fn; 513 void *arg = work->arg; 514 struct cpu_stop_done *done = work->done; 515 int ret; 516 517 /* cpu stop callbacks must not sleep, make in_atomic() == T */ 518 preempt_count_inc(); 519 ret = fn(arg); 520 if (done) { 521 if (ret) 522 done->ret = ret; 523 cpu_stop_signal_done(done); 524 } 525 preempt_count_dec(); 526 WARN_ONCE(preempt_count(), 527 "cpu_stop: %ps(%p) leaked preempt count\n", fn, arg); 528 goto repeat; 529 } 530 } 531 532 void stop_machine_park(int cpu) 533 { 534 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 535 /* 536 * Lockless. cpu_stopper_thread() will take stopper->lock and flush 537 * the pending works before it parks, until then it is fine to queue 538 * the new works. 539 */ 540 stopper->enabled = false; 541 kthread_park(stopper->thread); 542 } 543 544 extern void sched_set_stop_task(int cpu, struct task_struct *stop); 545 546 static void cpu_stop_create(unsigned int cpu) 547 { 548 sched_set_stop_task(cpu, per_cpu(cpu_stopper.thread, cpu)); 549 } 550 551 static void cpu_stop_park(unsigned int cpu) 552 { 553 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 554 555 WARN_ON(!list_empty(&stopper->works)); 556 } 557 558 void stop_machine_unpark(int cpu) 559 { 560 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 561 562 stopper->enabled = true; 563 kthread_unpark(stopper->thread); 564 } 565 566 static struct smp_hotplug_thread cpu_stop_threads = { 567 .store = &cpu_stopper.thread, 568 .thread_should_run = cpu_stop_should_run, 569 .thread_fn = cpu_stopper_thread, 570 .thread_comm = "migration/%u", 571 .create = cpu_stop_create, 572 .park = cpu_stop_park, 573 .selfparking = true, 574 }; 575 576 static int __init cpu_stop_init(void) 577 { 578 unsigned int cpu; 579 580 for_each_possible_cpu(cpu) { 581 struct cpu_stopper *stopper = &per_cpu(cpu_stopper, cpu); 582 583 raw_spin_lock_init(&stopper->lock); 584 INIT_LIST_HEAD(&stopper->works); 585 } 586 587 BUG_ON(smpboot_register_percpu_thread(&cpu_stop_threads)); 588 stop_machine_unpark(raw_smp_processor_id()); 589 stop_machine_initialized = true; 590 return 0; 591 } 592 early_initcall(cpu_stop_init); 593 594 int stop_machine_cpuslocked(cpu_stop_fn_t fn, void *data, 595 const struct cpumask *cpus) 596 { 597 struct multi_stop_data msdata = { 598 .fn = fn, 599 .data = data, 600 .num_threads = num_online_cpus(), 601 .active_cpus = cpus, 602 }; 603 604 lockdep_assert_cpus_held(); 605 606 if (!stop_machine_initialized) { 607 /* 608 * Handle the case where stop_machine() is called 609 * early in boot before stop_machine() has been 610 * initialized. 611 */ 612 unsigned long flags; 613 int ret; 614 615 WARN_ON_ONCE(msdata.num_threads != 1); 616 617 local_irq_save(flags); 618 hard_irq_disable(); 619 ret = (*fn)(data); 620 local_irq_restore(flags); 621 622 return ret; 623 } 624 625 /* Set the initial state and stop all online cpus. */ 626 set_state(&msdata, MULTI_STOP_PREPARE); 627 return stop_cpus(cpu_online_mask, multi_cpu_stop, &msdata); 628 } 629 630 int stop_machine(cpu_stop_fn_t fn, void *data, const struct cpumask *cpus) 631 { 632 int ret; 633 634 /* No CPUs can come up or down during this. */ 635 cpus_read_lock(); 636 ret = stop_machine_cpuslocked(fn, data, cpus); 637 cpus_read_unlock(); 638 return ret; 639 } 640 EXPORT_SYMBOL_GPL(stop_machine); 641 642 /** 643 * stop_machine_from_inactive_cpu - stop_machine() from inactive CPU 644 * @fn: the function to run 645 * @data: the data ptr for the @fn() 646 * @cpus: the cpus to run the @fn() on (NULL = any online cpu) 647 * 648 * This is identical to stop_machine() but can be called from a CPU which 649 * is not active. The local CPU is in the process of hotplug (so no other 650 * CPU hotplug can start) and not marked active and doesn't have enough 651 * context to sleep. 652 * 653 * This function provides stop_machine() functionality for such state by 654 * using busy-wait for synchronization and executing @fn directly for local 655 * CPU. 656 * 657 * CONTEXT: 658 * Local CPU is inactive. Temporarily stops all active CPUs. 659 * 660 * RETURNS: 661 * 0 if all executions of @fn returned 0, any non zero return value if any 662 * returned non zero. 663 */ 664 int stop_machine_from_inactive_cpu(cpu_stop_fn_t fn, void *data, 665 const struct cpumask *cpus) 666 { 667 struct multi_stop_data msdata = { .fn = fn, .data = data, 668 .active_cpus = cpus }; 669 struct cpu_stop_done done; 670 int ret; 671 672 /* Local CPU must be inactive and CPU hotplug in progress. */ 673 BUG_ON(cpu_active(raw_smp_processor_id())); 674 msdata.num_threads = num_active_cpus() + 1; /* +1 for local */ 675 676 /* No proper task established and can't sleep - busy wait for lock. */ 677 while (!mutex_trylock(&stop_cpus_mutex)) 678 cpu_relax(); 679 680 /* Schedule work on other CPUs and execute directly for local CPU */ 681 set_state(&msdata, MULTI_STOP_PREPARE); 682 cpu_stop_init_done(&done, num_active_cpus()); 683 queue_stop_cpus_work(cpu_active_mask, multi_cpu_stop, &msdata, 684 &done); 685 ret = multi_cpu_stop(&msdata); 686 687 /* Busy wait for completion. */ 688 while (!completion_done(&done.completion)) 689 cpu_relax(); 690 691 mutex_unlock(&stop_cpus_mutex); 692 return ret ?: done.ret; 693 } 694