1 /* 2 * linux/kernel/signal.c 3 * 4 * Copyright (C) 1991, 1992 Linus Torvalds 5 * 6 * 1997-11-02 Modified for POSIX.1b signals by Richard Henderson 7 * 8 * 2003-06-02 Jim Houston - Concurrent Computer Corp. 9 * Changes to use preallocated sigqueue structures 10 * to allow signals to be sent reliably. 11 */ 12 13 #include <linux/slab.h> 14 #include <linux/module.h> 15 #include <linux/init.h> 16 #include <linux/sched.h> 17 #include <linux/fs.h> 18 #include <linux/tty.h> 19 #include <linux/binfmts.h> 20 #include <linux/security.h> 21 #include <linux/syscalls.h> 22 #include <linux/ptrace.h> 23 #include <linux/signal.h> 24 #include <linux/signalfd.h> 25 #include <linux/tracehook.h> 26 #include <linux/capability.h> 27 #include <linux/freezer.h> 28 #include <linux/pid_namespace.h> 29 #include <linux/nsproxy.h> 30 #define CREATE_TRACE_POINTS 31 #include <trace/events/signal.h> 32 33 #include <asm/param.h> 34 #include <asm/uaccess.h> 35 #include <asm/unistd.h> 36 #include <asm/siginfo.h> 37 #include "audit.h" /* audit_signal_info() */ 38 39 /* 40 * SLAB caches for signal bits. 41 */ 42 43 static struct kmem_cache *sigqueue_cachep; 44 45 static void __user *sig_handler(struct task_struct *t, int sig) 46 { 47 return t->sighand->action[sig - 1].sa.sa_handler; 48 } 49 50 static int sig_handler_ignored(void __user *handler, int sig) 51 { 52 /* Is it explicitly or implicitly ignored? */ 53 return handler == SIG_IGN || 54 (handler == SIG_DFL && sig_kernel_ignore(sig)); 55 } 56 57 static int sig_task_ignored(struct task_struct *t, int sig, 58 int from_ancestor_ns) 59 { 60 void __user *handler; 61 62 handler = sig_handler(t, sig); 63 64 if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) && 65 handler == SIG_DFL && !from_ancestor_ns) 66 return 1; 67 68 return sig_handler_ignored(handler, sig); 69 } 70 71 static int sig_ignored(struct task_struct *t, int sig, int from_ancestor_ns) 72 { 73 /* 74 * Blocked signals are never ignored, since the 75 * signal handler may change by the time it is 76 * unblocked. 77 */ 78 if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig)) 79 return 0; 80 81 if (!sig_task_ignored(t, sig, from_ancestor_ns)) 82 return 0; 83 84 /* 85 * Tracers may want to know about even ignored signals. 86 */ 87 return !tracehook_consider_ignored_signal(t, sig); 88 } 89 90 /* 91 * Re-calculate pending state from the set of locally pending 92 * signals, globally pending signals, and blocked signals. 93 */ 94 static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked) 95 { 96 unsigned long ready; 97 long i; 98 99 switch (_NSIG_WORDS) { 100 default: 101 for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;) 102 ready |= signal->sig[i] &~ blocked->sig[i]; 103 break; 104 105 case 4: ready = signal->sig[3] &~ blocked->sig[3]; 106 ready |= signal->sig[2] &~ blocked->sig[2]; 107 ready |= signal->sig[1] &~ blocked->sig[1]; 108 ready |= signal->sig[0] &~ blocked->sig[0]; 109 break; 110 111 case 2: ready = signal->sig[1] &~ blocked->sig[1]; 112 ready |= signal->sig[0] &~ blocked->sig[0]; 113 break; 114 115 case 1: ready = signal->sig[0] &~ blocked->sig[0]; 116 } 117 return ready != 0; 118 } 119 120 #define PENDING(p,b) has_pending_signals(&(p)->signal, (b)) 121 122 static int recalc_sigpending_tsk(struct task_struct *t) 123 { 124 if (t->signal->group_stop_count > 0 || 125 PENDING(&t->pending, &t->blocked) || 126 PENDING(&t->signal->shared_pending, &t->blocked)) { 127 set_tsk_thread_flag(t, TIF_SIGPENDING); 128 return 1; 129 } 130 /* 131 * We must never clear the flag in another thread, or in current 132 * when it's possible the current syscall is returning -ERESTART*. 133 * So we don't clear it here, and only callers who know they should do. 134 */ 135 return 0; 136 } 137 138 /* 139 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up. 140 * This is superfluous when called on current, the wakeup is a harmless no-op. 141 */ 142 void recalc_sigpending_and_wake(struct task_struct *t) 143 { 144 if (recalc_sigpending_tsk(t)) 145 signal_wake_up(t, 0); 146 } 147 148 void recalc_sigpending(void) 149 { 150 if (unlikely(tracehook_force_sigpending())) 151 set_thread_flag(TIF_SIGPENDING); 152 else if (!recalc_sigpending_tsk(current) && !freezing(current)) 153 clear_thread_flag(TIF_SIGPENDING); 154 155 } 156 157 /* Given the mask, find the first available signal that should be serviced. */ 158 159 int next_signal(struct sigpending *pending, sigset_t *mask) 160 { 161 unsigned long i, *s, *m, x; 162 int sig = 0; 163 164 s = pending->signal.sig; 165 m = mask->sig; 166 switch (_NSIG_WORDS) { 167 default: 168 for (i = 0; i < _NSIG_WORDS; ++i, ++s, ++m) 169 if ((x = *s &~ *m) != 0) { 170 sig = ffz(~x) + i*_NSIG_BPW + 1; 171 break; 172 } 173 break; 174 175 case 2: if ((x = s[0] &~ m[0]) != 0) 176 sig = 1; 177 else if ((x = s[1] &~ m[1]) != 0) 178 sig = _NSIG_BPW + 1; 179 else 180 break; 181 sig += ffz(~x); 182 break; 183 184 case 1: if ((x = *s &~ *m) != 0) 185 sig = ffz(~x) + 1; 186 break; 187 } 188 189 return sig; 190 } 191 192 /* 193 * allocate a new signal queue record 194 * - this may be called without locks if and only if t == current, otherwise an 195 * appopriate lock must be held to stop the target task from exiting 196 */ 197 static struct sigqueue *__sigqueue_alloc(struct task_struct *t, gfp_t flags, 198 int override_rlimit) 199 { 200 struct sigqueue *q = NULL; 201 struct user_struct *user; 202 203 /* 204 * We won't get problems with the target's UID changing under us 205 * because changing it requires RCU be used, and if t != current, the 206 * caller must be holding the RCU readlock (by way of a spinlock) and 207 * we use RCU protection here 208 */ 209 user = get_uid(__task_cred(t)->user); 210 atomic_inc(&user->sigpending); 211 if (override_rlimit || 212 atomic_read(&user->sigpending) <= 213 t->signal->rlim[RLIMIT_SIGPENDING].rlim_cur) 214 q = kmem_cache_alloc(sigqueue_cachep, flags); 215 if (unlikely(q == NULL)) { 216 atomic_dec(&user->sigpending); 217 free_uid(user); 218 } else { 219 INIT_LIST_HEAD(&q->list); 220 q->flags = 0; 221 q->user = user; 222 } 223 224 return q; 225 } 226 227 static void __sigqueue_free(struct sigqueue *q) 228 { 229 if (q->flags & SIGQUEUE_PREALLOC) 230 return; 231 atomic_dec(&q->user->sigpending); 232 free_uid(q->user); 233 kmem_cache_free(sigqueue_cachep, q); 234 } 235 236 void flush_sigqueue(struct sigpending *queue) 237 { 238 struct sigqueue *q; 239 240 sigemptyset(&queue->signal); 241 while (!list_empty(&queue->list)) { 242 q = list_entry(queue->list.next, struct sigqueue , list); 243 list_del_init(&q->list); 244 __sigqueue_free(q); 245 } 246 } 247 248 /* 249 * Flush all pending signals for a task. 250 */ 251 void __flush_signals(struct task_struct *t) 252 { 253 clear_tsk_thread_flag(t, TIF_SIGPENDING); 254 flush_sigqueue(&t->pending); 255 flush_sigqueue(&t->signal->shared_pending); 256 } 257 258 void flush_signals(struct task_struct *t) 259 { 260 unsigned long flags; 261 262 spin_lock_irqsave(&t->sighand->siglock, flags); 263 __flush_signals(t); 264 spin_unlock_irqrestore(&t->sighand->siglock, flags); 265 } 266 267 static void __flush_itimer_signals(struct sigpending *pending) 268 { 269 sigset_t signal, retain; 270 struct sigqueue *q, *n; 271 272 signal = pending->signal; 273 sigemptyset(&retain); 274 275 list_for_each_entry_safe(q, n, &pending->list, list) { 276 int sig = q->info.si_signo; 277 278 if (likely(q->info.si_code != SI_TIMER)) { 279 sigaddset(&retain, sig); 280 } else { 281 sigdelset(&signal, sig); 282 list_del_init(&q->list); 283 __sigqueue_free(q); 284 } 285 } 286 287 sigorsets(&pending->signal, &signal, &retain); 288 } 289 290 void flush_itimer_signals(void) 291 { 292 struct task_struct *tsk = current; 293 unsigned long flags; 294 295 spin_lock_irqsave(&tsk->sighand->siglock, flags); 296 __flush_itimer_signals(&tsk->pending); 297 __flush_itimer_signals(&tsk->signal->shared_pending); 298 spin_unlock_irqrestore(&tsk->sighand->siglock, flags); 299 } 300 301 void ignore_signals(struct task_struct *t) 302 { 303 int i; 304 305 for (i = 0; i < _NSIG; ++i) 306 t->sighand->action[i].sa.sa_handler = SIG_IGN; 307 308 flush_signals(t); 309 } 310 311 /* 312 * Flush all handlers for a task. 313 */ 314 315 void 316 flush_signal_handlers(struct task_struct *t, int force_default) 317 { 318 int i; 319 struct k_sigaction *ka = &t->sighand->action[0]; 320 for (i = _NSIG ; i != 0 ; i--) { 321 if (force_default || ka->sa.sa_handler != SIG_IGN) 322 ka->sa.sa_handler = SIG_DFL; 323 ka->sa.sa_flags = 0; 324 sigemptyset(&ka->sa.sa_mask); 325 ka++; 326 } 327 } 328 329 int unhandled_signal(struct task_struct *tsk, int sig) 330 { 331 void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler; 332 if (is_global_init(tsk)) 333 return 1; 334 if (handler != SIG_IGN && handler != SIG_DFL) 335 return 0; 336 return !tracehook_consider_fatal_signal(tsk, sig); 337 } 338 339 340 /* Notify the system that a driver wants to block all signals for this 341 * process, and wants to be notified if any signals at all were to be 342 * sent/acted upon. If the notifier routine returns non-zero, then the 343 * signal will be acted upon after all. If the notifier routine returns 0, 344 * then then signal will be blocked. Only one block per process is 345 * allowed. priv is a pointer to private data that the notifier routine 346 * can use to determine if the signal should be blocked or not. */ 347 348 void 349 block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask) 350 { 351 unsigned long flags; 352 353 spin_lock_irqsave(¤t->sighand->siglock, flags); 354 current->notifier_mask = mask; 355 current->notifier_data = priv; 356 current->notifier = notifier; 357 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 358 } 359 360 /* Notify the system that blocking has ended. */ 361 362 void 363 unblock_all_signals(void) 364 { 365 unsigned long flags; 366 367 spin_lock_irqsave(¤t->sighand->siglock, flags); 368 current->notifier = NULL; 369 current->notifier_data = NULL; 370 recalc_sigpending(); 371 spin_unlock_irqrestore(¤t->sighand->siglock, flags); 372 } 373 374 static void collect_signal(int sig, struct sigpending *list, siginfo_t *info) 375 { 376 struct sigqueue *q, *first = NULL; 377 378 /* 379 * Collect the siginfo appropriate to this signal. Check if 380 * there is another siginfo for the same signal. 381 */ 382 list_for_each_entry(q, &list->list, list) { 383 if (q->info.si_signo == sig) { 384 if (first) 385 goto still_pending; 386 first = q; 387 } 388 } 389 390 sigdelset(&list->signal, sig); 391 392 if (first) { 393 still_pending: 394 list_del_init(&first->list); 395 copy_siginfo(info, &first->info); 396 __sigqueue_free(first); 397 } else { 398 /* Ok, it wasn't in the queue. This must be 399 a fast-pathed signal or we must have been 400 out of queue space. So zero out the info. 401 */ 402 info->si_signo = sig; 403 info->si_errno = 0; 404 info->si_code = 0; 405 info->si_pid = 0; 406 info->si_uid = 0; 407 } 408 } 409 410 static int __dequeue_signal(struct sigpending *pending, sigset_t *mask, 411 siginfo_t *info) 412 { 413 int sig = next_signal(pending, mask); 414 415 if (sig) { 416 if (current->notifier) { 417 if (sigismember(current->notifier_mask, sig)) { 418 if (!(current->notifier)(current->notifier_data)) { 419 clear_thread_flag(TIF_SIGPENDING); 420 return 0; 421 } 422 } 423 } 424 425 collect_signal(sig, pending, info); 426 } 427 428 return sig; 429 } 430 431 /* 432 * Dequeue a signal and return the element to the caller, which is 433 * expected to free it. 434 * 435 * All callers have to hold the siglock. 436 */ 437 int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info) 438 { 439 int signr; 440 441 /* We only dequeue private signals from ourselves, we don't let 442 * signalfd steal them 443 */ 444 signr = __dequeue_signal(&tsk->pending, mask, info); 445 if (!signr) { 446 signr = __dequeue_signal(&tsk->signal->shared_pending, 447 mask, info); 448 /* 449 * itimer signal ? 450 * 451 * itimers are process shared and we restart periodic 452 * itimers in the signal delivery path to prevent DoS 453 * attacks in the high resolution timer case. This is 454 * compliant with the old way of self restarting 455 * itimers, as the SIGALRM is a legacy signal and only 456 * queued once. Changing the restart behaviour to 457 * restart the timer in the signal dequeue path is 458 * reducing the timer noise on heavy loaded !highres 459 * systems too. 460 */ 461 if (unlikely(signr == SIGALRM)) { 462 struct hrtimer *tmr = &tsk->signal->real_timer; 463 464 if (!hrtimer_is_queued(tmr) && 465 tsk->signal->it_real_incr.tv64 != 0) { 466 hrtimer_forward(tmr, tmr->base->get_time(), 467 tsk->signal->it_real_incr); 468 hrtimer_restart(tmr); 469 } 470 } 471 } 472 473 recalc_sigpending(); 474 if (!signr) 475 return 0; 476 477 if (unlikely(sig_kernel_stop(signr))) { 478 /* 479 * Set a marker that we have dequeued a stop signal. Our 480 * caller might release the siglock and then the pending 481 * stop signal it is about to process is no longer in the 482 * pending bitmasks, but must still be cleared by a SIGCONT 483 * (and overruled by a SIGKILL). So those cases clear this 484 * shared flag after we've set it. Note that this flag may 485 * remain set after the signal we return is ignored or 486 * handled. That doesn't matter because its only purpose 487 * is to alert stop-signal processing code when another 488 * processor has come along and cleared the flag. 489 */ 490 tsk->signal->flags |= SIGNAL_STOP_DEQUEUED; 491 } 492 if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) { 493 /* 494 * Release the siglock to ensure proper locking order 495 * of timer locks outside of siglocks. Note, we leave 496 * irqs disabled here, since the posix-timers code is 497 * about to disable them again anyway. 498 */ 499 spin_unlock(&tsk->sighand->siglock); 500 do_schedule_next_timer(info); 501 spin_lock(&tsk->sighand->siglock); 502 } 503 return signr; 504 } 505 506 /* 507 * Tell a process that it has a new active signal.. 508 * 509 * NOTE! we rely on the previous spin_lock to 510 * lock interrupts for us! We can only be called with 511 * "siglock" held, and the local interrupt must 512 * have been disabled when that got acquired! 513 * 514 * No need to set need_resched since signal event passing 515 * goes through ->blocked 516 */ 517 void signal_wake_up(struct task_struct *t, int resume) 518 { 519 unsigned int mask; 520 521 set_tsk_thread_flag(t, TIF_SIGPENDING); 522 523 /* 524 * For SIGKILL, we want to wake it up in the stopped/traced/killable 525 * case. We don't check t->state here because there is a race with it 526 * executing another processor and just now entering stopped state. 527 * By using wake_up_state, we ensure the process will wake up and 528 * handle its death signal. 529 */ 530 mask = TASK_INTERRUPTIBLE; 531 if (resume) 532 mask |= TASK_WAKEKILL; 533 if (!wake_up_state(t, mask)) 534 kick_process(t); 535 } 536 537 /* 538 * Remove signals in mask from the pending set and queue. 539 * Returns 1 if any signals were found. 540 * 541 * All callers must be holding the siglock. 542 * 543 * This version takes a sigset mask and looks at all signals, 544 * not just those in the first mask word. 545 */ 546 static int rm_from_queue_full(sigset_t *mask, struct sigpending *s) 547 { 548 struct sigqueue *q, *n; 549 sigset_t m; 550 551 sigandsets(&m, mask, &s->signal); 552 if (sigisemptyset(&m)) 553 return 0; 554 555 signandsets(&s->signal, &s->signal, mask); 556 list_for_each_entry_safe(q, n, &s->list, list) { 557 if (sigismember(mask, q->info.si_signo)) { 558 list_del_init(&q->list); 559 __sigqueue_free(q); 560 } 561 } 562 return 1; 563 } 564 /* 565 * Remove signals in mask from the pending set and queue. 566 * Returns 1 if any signals were found. 567 * 568 * All callers must be holding the siglock. 569 */ 570 static int rm_from_queue(unsigned long mask, struct sigpending *s) 571 { 572 struct sigqueue *q, *n; 573 574 if (!sigtestsetmask(&s->signal, mask)) 575 return 0; 576 577 sigdelsetmask(&s->signal, mask); 578 list_for_each_entry_safe(q, n, &s->list, list) { 579 if (q->info.si_signo < SIGRTMIN && 580 (mask & sigmask(q->info.si_signo))) { 581 list_del_init(&q->list); 582 __sigqueue_free(q); 583 } 584 } 585 return 1; 586 } 587 588 /* 589 * Bad permissions for sending the signal 590 * - the caller must hold at least the RCU read lock 591 */ 592 static int check_kill_permission(int sig, struct siginfo *info, 593 struct task_struct *t) 594 { 595 const struct cred *cred = current_cred(), *tcred; 596 struct pid *sid; 597 int error; 598 599 if (!valid_signal(sig)) 600 return -EINVAL; 601 602 if (info != SEND_SIG_NOINFO && (is_si_special(info) || SI_FROMKERNEL(info))) 603 return 0; 604 605 error = audit_signal_info(sig, t); /* Let audit system see the signal */ 606 if (error) 607 return error; 608 609 tcred = __task_cred(t); 610 if ((cred->euid ^ tcred->suid) && 611 (cred->euid ^ tcred->uid) && 612 (cred->uid ^ tcred->suid) && 613 (cred->uid ^ tcred->uid) && 614 !capable(CAP_KILL)) { 615 switch (sig) { 616 case SIGCONT: 617 sid = task_session(t); 618 /* 619 * We don't return the error if sid == NULL. The 620 * task was unhashed, the caller must notice this. 621 */ 622 if (!sid || sid == task_session(current)) 623 break; 624 default: 625 return -EPERM; 626 } 627 } 628 629 return security_task_kill(t, info, sig, 0); 630 } 631 632 /* 633 * Handle magic process-wide effects of stop/continue signals. Unlike 634 * the signal actions, these happen immediately at signal-generation 635 * time regardless of blocking, ignoring, or handling. This does the 636 * actual continuing for SIGCONT, but not the actual stopping for stop 637 * signals. The process stop is done as a signal action for SIG_DFL. 638 * 639 * Returns true if the signal should be actually delivered, otherwise 640 * it should be dropped. 641 */ 642 static int prepare_signal(int sig, struct task_struct *p, int from_ancestor_ns) 643 { 644 struct signal_struct *signal = p->signal; 645 struct task_struct *t; 646 647 if (unlikely(signal->flags & SIGNAL_GROUP_EXIT)) { 648 /* 649 * The process is in the middle of dying, nothing to do. 650 */ 651 } else if (sig_kernel_stop(sig)) { 652 /* 653 * This is a stop signal. Remove SIGCONT from all queues. 654 */ 655 rm_from_queue(sigmask(SIGCONT), &signal->shared_pending); 656 t = p; 657 do { 658 rm_from_queue(sigmask(SIGCONT), &t->pending); 659 } while_each_thread(p, t); 660 } else if (sig == SIGCONT) { 661 unsigned int why; 662 /* 663 * Remove all stop signals from all queues, 664 * and wake all threads. 665 */ 666 rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending); 667 t = p; 668 do { 669 unsigned int state; 670 rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending); 671 /* 672 * If there is a handler for SIGCONT, we must make 673 * sure that no thread returns to user mode before 674 * we post the signal, in case it was the only 675 * thread eligible to run the signal handler--then 676 * it must not do anything between resuming and 677 * running the handler. With the TIF_SIGPENDING 678 * flag set, the thread will pause and acquire the 679 * siglock that we hold now and until we've queued 680 * the pending signal. 681 * 682 * Wake up the stopped thread _after_ setting 683 * TIF_SIGPENDING 684 */ 685 state = __TASK_STOPPED; 686 if (sig_user_defined(t, SIGCONT) && !sigismember(&t->blocked, SIGCONT)) { 687 set_tsk_thread_flag(t, TIF_SIGPENDING); 688 state |= TASK_INTERRUPTIBLE; 689 } 690 wake_up_state(t, state); 691 } while_each_thread(p, t); 692 693 /* 694 * Notify the parent with CLD_CONTINUED if we were stopped. 695 * 696 * If we were in the middle of a group stop, we pretend it 697 * was already finished, and then continued. Since SIGCHLD 698 * doesn't queue we report only CLD_STOPPED, as if the next 699 * CLD_CONTINUED was dropped. 700 */ 701 why = 0; 702 if (signal->flags & SIGNAL_STOP_STOPPED) 703 why |= SIGNAL_CLD_CONTINUED; 704 else if (signal->group_stop_count) 705 why |= SIGNAL_CLD_STOPPED; 706 707 if (why) { 708 /* 709 * The first thread which returns from do_signal_stop() 710 * will take ->siglock, notice SIGNAL_CLD_MASK, and 711 * notify its parent. See get_signal_to_deliver(). 712 */ 713 signal->flags = why | SIGNAL_STOP_CONTINUED; 714 signal->group_stop_count = 0; 715 signal->group_exit_code = 0; 716 } else { 717 /* 718 * We are not stopped, but there could be a stop 719 * signal in the middle of being processed after 720 * being removed from the queue. Clear that too. 721 */ 722 signal->flags &= ~SIGNAL_STOP_DEQUEUED; 723 } 724 } 725 726 return !sig_ignored(p, sig, from_ancestor_ns); 727 } 728 729 /* 730 * Test if P wants to take SIG. After we've checked all threads with this, 731 * it's equivalent to finding no threads not blocking SIG. Any threads not 732 * blocking SIG were ruled out because they are not running and already 733 * have pending signals. Such threads will dequeue from the shared queue 734 * as soon as they're available, so putting the signal on the shared queue 735 * will be equivalent to sending it to one such thread. 736 */ 737 static inline int wants_signal(int sig, struct task_struct *p) 738 { 739 if (sigismember(&p->blocked, sig)) 740 return 0; 741 if (p->flags & PF_EXITING) 742 return 0; 743 if (sig == SIGKILL) 744 return 1; 745 if (task_is_stopped_or_traced(p)) 746 return 0; 747 return task_curr(p) || !signal_pending(p); 748 } 749 750 static void complete_signal(int sig, struct task_struct *p, int group) 751 { 752 struct signal_struct *signal = p->signal; 753 struct task_struct *t; 754 755 /* 756 * Now find a thread we can wake up to take the signal off the queue. 757 * 758 * If the main thread wants the signal, it gets first crack. 759 * Probably the least surprising to the average bear. 760 */ 761 if (wants_signal(sig, p)) 762 t = p; 763 else if (!group || thread_group_empty(p)) 764 /* 765 * There is just one thread and it does not need to be woken. 766 * It will dequeue unblocked signals before it runs again. 767 */ 768 return; 769 else { 770 /* 771 * Otherwise try to find a suitable thread. 772 */ 773 t = signal->curr_target; 774 while (!wants_signal(sig, t)) { 775 t = next_thread(t); 776 if (t == signal->curr_target) 777 /* 778 * No thread needs to be woken. 779 * Any eligible threads will see 780 * the signal in the queue soon. 781 */ 782 return; 783 } 784 signal->curr_target = t; 785 } 786 787 /* 788 * Found a killable thread. If the signal will be fatal, 789 * then start taking the whole group down immediately. 790 */ 791 if (sig_fatal(p, sig) && 792 !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) && 793 !sigismember(&t->real_blocked, sig) && 794 (sig == SIGKILL || 795 !tracehook_consider_fatal_signal(t, sig))) { 796 /* 797 * This signal will be fatal to the whole group. 798 */ 799 if (!sig_kernel_coredump(sig)) { 800 /* 801 * Start a group exit and wake everybody up. 802 * This way we don't have other threads 803 * running and doing things after a slower 804 * thread has the fatal signal pending. 805 */ 806 signal->flags = SIGNAL_GROUP_EXIT; 807 signal->group_exit_code = sig; 808 signal->group_stop_count = 0; 809 t = p; 810 do { 811 sigaddset(&t->pending.signal, SIGKILL); 812 signal_wake_up(t, 1); 813 } while_each_thread(p, t); 814 return; 815 } 816 } 817 818 /* 819 * The signal is already in the shared-pending queue. 820 * Tell the chosen thread to wake up and dequeue it. 821 */ 822 signal_wake_up(t, sig == SIGKILL); 823 return; 824 } 825 826 static inline int legacy_queue(struct sigpending *signals, int sig) 827 { 828 return (sig < SIGRTMIN) && sigismember(&signals->signal, sig); 829 } 830 831 static int __send_signal(int sig, struct siginfo *info, struct task_struct *t, 832 int group, int from_ancestor_ns) 833 { 834 struct sigpending *pending; 835 struct sigqueue *q; 836 int override_rlimit; 837 838 trace_signal_generate(sig, info, t); 839 840 assert_spin_locked(&t->sighand->siglock); 841 842 if (!prepare_signal(sig, t, from_ancestor_ns)) 843 return 0; 844 845 pending = group ? &t->signal->shared_pending : &t->pending; 846 /* 847 * Short-circuit ignored signals and support queuing 848 * exactly one non-rt signal, so that we can get more 849 * detailed information about the cause of the signal. 850 */ 851 if (legacy_queue(pending, sig)) 852 return 0; 853 /* 854 * fast-pathed signals for kernel-internal things like SIGSTOP 855 * or SIGKILL. 856 */ 857 if (info == SEND_SIG_FORCED) 858 goto out_set; 859 860 /* Real-time signals must be queued if sent by sigqueue, or 861 some other real-time mechanism. It is implementation 862 defined whether kill() does so. We attempt to do so, on 863 the principle of least surprise, but since kill is not 864 allowed to fail with EAGAIN when low on memory we just 865 make sure at least one signal gets delivered and don't 866 pass on the info struct. */ 867 868 if (sig < SIGRTMIN) 869 override_rlimit = (is_si_special(info) || info->si_code >= 0); 870 else 871 override_rlimit = 0; 872 873 q = __sigqueue_alloc(t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE, 874 override_rlimit); 875 if (q) { 876 list_add_tail(&q->list, &pending->list); 877 switch ((unsigned long) info) { 878 case (unsigned long) SEND_SIG_NOINFO: 879 q->info.si_signo = sig; 880 q->info.si_errno = 0; 881 q->info.si_code = SI_USER; 882 q->info.si_pid = task_tgid_nr_ns(current, 883 task_active_pid_ns(t)); 884 q->info.si_uid = current_uid(); 885 break; 886 case (unsigned long) SEND_SIG_PRIV: 887 q->info.si_signo = sig; 888 q->info.si_errno = 0; 889 q->info.si_code = SI_KERNEL; 890 q->info.si_pid = 0; 891 q->info.si_uid = 0; 892 break; 893 default: 894 copy_siginfo(&q->info, info); 895 if (from_ancestor_ns) 896 q->info.si_pid = 0; 897 break; 898 } 899 } else if (!is_si_special(info)) { 900 if (sig >= SIGRTMIN && info->si_code != SI_USER) { 901 /* 902 * Queue overflow, abort. We may abort if the 903 * signal was rt and sent by user using something 904 * other than kill(). 905 */ 906 trace_signal_overflow_fail(sig, group, info); 907 return -EAGAIN; 908 } else { 909 /* 910 * This is a silent loss of information. We still 911 * send the signal, but the *info bits are lost. 912 */ 913 trace_signal_lose_info(sig, group, info); 914 } 915 } 916 917 out_set: 918 signalfd_notify(t, sig); 919 sigaddset(&pending->signal, sig); 920 complete_signal(sig, t, group); 921 return 0; 922 } 923 924 static int send_signal(int sig, struct siginfo *info, struct task_struct *t, 925 int group) 926 { 927 int from_ancestor_ns = 0; 928 929 #ifdef CONFIG_PID_NS 930 if (!is_si_special(info) && SI_FROMUSER(info) && 931 task_pid_nr_ns(current, task_active_pid_ns(t)) <= 0) 932 from_ancestor_ns = 1; 933 #endif 934 935 return __send_signal(sig, info, t, group, from_ancestor_ns); 936 } 937 938 int print_fatal_signals; 939 940 static void print_fatal_signal(struct pt_regs *regs, int signr) 941 { 942 printk("%s/%d: potentially unexpected fatal signal %d.\n", 943 current->comm, task_pid_nr(current), signr); 944 945 #if defined(__i386__) && !defined(__arch_um__) 946 printk("code at %08lx: ", regs->ip); 947 { 948 int i; 949 for (i = 0; i < 16; i++) { 950 unsigned char insn; 951 952 __get_user(insn, (unsigned char *)(regs->ip + i)); 953 printk("%02x ", insn); 954 } 955 } 956 #endif 957 printk("\n"); 958 preempt_disable(); 959 show_regs(regs); 960 preempt_enable(); 961 } 962 963 static int __init setup_print_fatal_signals(char *str) 964 { 965 get_option (&str, &print_fatal_signals); 966 967 return 1; 968 } 969 970 __setup("print-fatal-signals=", setup_print_fatal_signals); 971 972 int 973 __group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 974 { 975 return send_signal(sig, info, p, 1); 976 } 977 978 static int 979 specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t) 980 { 981 return send_signal(sig, info, t, 0); 982 } 983 984 int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p, 985 bool group) 986 { 987 unsigned long flags; 988 int ret = -ESRCH; 989 990 if (lock_task_sighand(p, &flags)) { 991 ret = send_signal(sig, info, p, group); 992 unlock_task_sighand(p, &flags); 993 } 994 995 return ret; 996 } 997 998 /* 999 * Force a signal that the process can't ignore: if necessary 1000 * we unblock the signal and change any SIG_IGN to SIG_DFL. 1001 * 1002 * Note: If we unblock the signal, we always reset it to SIG_DFL, 1003 * since we do not want to have a signal handler that was blocked 1004 * be invoked when user space had explicitly blocked it. 1005 * 1006 * We don't want to have recursive SIGSEGV's etc, for example, 1007 * that is why we also clear SIGNAL_UNKILLABLE. 1008 */ 1009 int 1010 force_sig_info(int sig, struct siginfo *info, struct task_struct *t) 1011 { 1012 unsigned long int flags; 1013 int ret, blocked, ignored; 1014 struct k_sigaction *action; 1015 1016 spin_lock_irqsave(&t->sighand->siglock, flags); 1017 action = &t->sighand->action[sig-1]; 1018 ignored = action->sa.sa_handler == SIG_IGN; 1019 blocked = sigismember(&t->blocked, sig); 1020 if (blocked || ignored) { 1021 action->sa.sa_handler = SIG_DFL; 1022 if (blocked) { 1023 sigdelset(&t->blocked, sig); 1024 recalc_sigpending_and_wake(t); 1025 } 1026 } 1027 if (action->sa.sa_handler == SIG_DFL) 1028 t->signal->flags &= ~SIGNAL_UNKILLABLE; 1029 ret = specific_send_sig_info(sig, info, t); 1030 spin_unlock_irqrestore(&t->sighand->siglock, flags); 1031 1032 return ret; 1033 } 1034 1035 void 1036 force_sig_specific(int sig, struct task_struct *t) 1037 { 1038 force_sig_info(sig, SEND_SIG_FORCED, t); 1039 } 1040 1041 /* 1042 * Nuke all other threads in the group. 1043 */ 1044 void zap_other_threads(struct task_struct *p) 1045 { 1046 struct task_struct *t; 1047 1048 p->signal->group_stop_count = 0; 1049 1050 for (t = next_thread(p); t != p; t = next_thread(t)) { 1051 /* 1052 * Don't bother with already dead threads 1053 */ 1054 if (t->exit_state) 1055 continue; 1056 1057 /* SIGKILL will be handled before any pending SIGSTOP */ 1058 sigaddset(&t->pending.signal, SIGKILL); 1059 signal_wake_up(t, 1); 1060 } 1061 } 1062 1063 struct sighand_struct *lock_task_sighand(struct task_struct *tsk, unsigned long *flags) 1064 { 1065 struct sighand_struct *sighand; 1066 1067 rcu_read_lock(); 1068 for (;;) { 1069 sighand = rcu_dereference(tsk->sighand); 1070 if (unlikely(sighand == NULL)) 1071 break; 1072 1073 spin_lock_irqsave(&sighand->siglock, *flags); 1074 if (likely(sighand == tsk->sighand)) 1075 break; 1076 spin_unlock_irqrestore(&sighand->siglock, *flags); 1077 } 1078 rcu_read_unlock(); 1079 1080 return sighand; 1081 } 1082 1083 /* 1084 * send signal info to all the members of a group 1085 * - the caller must hold the RCU read lock at least 1086 */ 1087 int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1088 { 1089 int ret = check_kill_permission(sig, info, p); 1090 1091 if (!ret && sig) 1092 ret = do_send_sig_info(sig, info, p, true); 1093 1094 return ret; 1095 } 1096 1097 /* 1098 * __kill_pgrp_info() sends a signal to a process group: this is what the tty 1099 * control characters do (^C, ^Z etc) 1100 * - the caller must hold at least a readlock on tasklist_lock 1101 */ 1102 int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp) 1103 { 1104 struct task_struct *p = NULL; 1105 int retval, success; 1106 1107 success = 0; 1108 retval = -ESRCH; 1109 do_each_pid_task(pgrp, PIDTYPE_PGID, p) { 1110 int err = group_send_sig_info(sig, info, p); 1111 success |= !err; 1112 retval = err; 1113 } while_each_pid_task(pgrp, PIDTYPE_PGID, p); 1114 return success ? 0 : retval; 1115 } 1116 1117 int kill_pid_info(int sig, struct siginfo *info, struct pid *pid) 1118 { 1119 int error = -ESRCH; 1120 struct task_struct *p; 1121 1122 rcu_read_lock(); 1123 retry: 1124 p = pid_task(pid, PIDTYPE_PID); 1125 if (p) { 1126 error = group_send_sig_info(sig, info, p); 1127 if (unlikely(error == -ESRCH)) 1128 /* 1129 * The task was unhashed in between, try again. 1130 * If it is dead, pid_task() will return NULL, 1131 * if we race with de_thread() it will find the 1132 * new leader. 1133 */ 1134 goto retry; 1135 } 1136 rcu_read_unlock(); 1137 1138 return error; 1139 } 1140 1141 int 1142 kill_proc_info(int sig, struct siginfo *info, pid_t pid) 1143 { 1144 int error; 1145 rcu_read_lock(); 1146 error = kill_pid_info(sig, info, find_vpid(pid)); 1147 rcu_read_unlock(); 1148 return error; 1149 } 1150 1151 /* like kill_pid_info(), but doesn't use uid/euid of "current" */ 1152 int kill_pid_info_as_uid(int sig, struct siginfo *info, struct pid *pid, 1153 uid_t uid, uid_t euid, u32 secid) 1154 { 1155 int ret = -EINVAL; 1156 struct task_struct *p; 1157 const struct cred *pcred; 1158 1159 if (!valid_signal(sig)) 1160 return ret; 1161 1162 read_lock(&tasklist_lock); 1163 p = pid_task(pid, PIDTYPE_PID); 1164 if (!p) { 1165 ret = -ESRCH; 1166 goto out_unlock; 1167 } 1168 pcred = __task_cred(p); 1169 if ((info == SEND_SIG_NOINFO || 1170 (!is_si_special(info) && SI_FROMUSER(info))) && 1171 euid != pcred->suid && euid != pcred->uid && 1172 uid != pcred->suid && uid != pcred->uid) { 1173 ret = -EPERM; 1174 goto out_unlock; 1175 } 1176 ret = security_task_kill(p, info, sig, secid); 1177 if (ret) 1178 goto out_unlock; 1179 if (sig && p->sighand) { 1180 unsigned long flags; 1181 spin_lock_irqsave(&p->sighand->siglock, flags); 1182 ret = __send_signal(sig, info, p, 1, 0); 1183 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1184 } 1185 out_unlock: 1186 read_unlock(&tasklist_lock); 1187 return ret; 1188 } 1189 EXPORT_SYMBOL_GPL(kill_pid_info_as_uid); 1190 1191 /* 1192 * kill_something_info() interprets pid in interesting ways just like kill(2). 1193 * 1194 * POSIX specifies that kill(-1,sig) is unspecified, but what we have 1195 * is probably wrong. Should make it like BSD or SYSV. 1196 */ 1197 1198 static int kill_something_info(int sig, struct siginfo *info, pid_t pid) 1199 { 1200 int ret; 1201 1202 if (pid > 0) { 1203 rcu_read_lock(); 1204 ret = kill_pid_info(sig, info, find_vpid(pid)); 1205 rcu_read_unlock(); 1206 return ret; 1207 } 1208 1209 read_lock(&tasklist_lock); 1210 if (pid != -1) { 1211 ret = __kill_pgrp_info(sig, info, 1212 pid ? find_vpid(-pid) : task_pgrp(current)); 1213 } else { 1214 int retval = 0, count = 0; 1215 struct task_struct * p; 1216 1217 for_each_process(p) { 1218 if (task_pid_vnr(p) > 1 && 1219 !same_thread_group(p, current)) { 1220 int err = group_send_sig_info(sig, info, p); 1221 ++count; 1222 if (err != -EPERM) 1223 retval = err; 1224 } 1225 } 1226 ret = count ? retval : -ESRCH; 1227 } 1228 read_unlock(&tasklist_lock); 1229 1230 return ret; 1231 } 1232 1233 /* 1234 * These are for backward compatibility with the rest of the kernel source. 1235 */ 1236 1237 int 1238 send_sig_info(int sig, struct siginfo *info, struct task_struct *p) 1239 { 1240 /* 1241 * Make sure legacy kernel users don't send in bad values 1242 * (normal paths check this in check_kill_permission). 1243 */ 1244 if (!valid_signal(sig)) 1245 return -EINVAL; 1246 1247 return do_send_sig_info(sig, info, p, false); 1248 } 1249 1250 #define __si_special(priv) \ 1251 ((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO) 1252 1253 int 1254 send_sig(int sig, struct task_struct *p, int priv) 1255 { 1256 return send_sig_info(sig, __si_special(priv), p); 1257 } 1258 1259 void 1260 force_sig(int sig, struct task_struct *p) 1261 { 1262 force_sig_info(sig, SEND_SIG_PRIV, p); 1263 } 1264 1265 /* 1266 * When things go south during signal handling, we 1267 * will force a SIGSEGV. And if the signal that caused 1268 * the problem was already a SIGSEGV, we'll want to 1269 * make sure we don't even try to deliver the signal.. 1270 */ 1271 int 1272 force_sigsegv(int sig, struct task_struct *p) 1273 { 1274 if (sig == SIGSEGV) { 1275 unsigned long flags; 1276 spin_lock_irqsave(&p->sighand->siglock, flags); 1277 p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL; 1278 spin_unlock_irqrestore(&p->sighand->siglock, flags); 1279 } 1280 force_sig(SIGSEGV, p); 1281 return 0; 1282 } 1283 1284 int kill_pgrp(struct pid *pid, int sig, int priv) 1285 { 1286 int ret; 1287 1288 read_lock(&tasklist_lock); 1289 ret = __kill_pgrp_info(sig, __si_special(priv), pid); 1290 read_unlock(&tasklist_lock); 1291 1292 return ret; 1293 } 1294 EXPORT_SYMBOL(kill_pgrp); 1295 1296 int kill_pid(struct pid *pid, int sig, int priv) 1297 { 1298 return kill_pid_info(sig, __si_special(priv), pid); 1299 } 1300 EXPORT_SYMBOL(kill_pid); 1301 1302 /* 1303 * These functions support sending signals using preallocated sigqueue 1304 * structures. This is needed "because realtime applications cannot 1305 * afford to lose notifications of asynchronous events, like timer 1306 * expirations or I/O completions". In the case of Posix Timers 1307 * we allocate the sigqueue structure from the timer_create. If this 1308 * allocation fails we are able to report the failure to the application 1309 * with an EAGAIN error. 1310 */ 1311 1312 struct sigqueue *sigqueue_alloc(void) 1313 { 1314 struct sigqueue *q; 1315 1316 if ((q = __sigqueue_alloc(current, GFP_KERNEL, 0))) 1317 q->flags |= SIGQUEUE_PREALLOC; 1318 return(q); 1319 } 1320 1321 void sigqueue_free(struct sigqueue *q) 1322 { 1323 unsigned long flags; 1324 spinlock_t *lock = ¤t->sighand->siglock; 1325 1326 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1327 /* 1328 * We must hold ->siglock while testing q->list 1329 * to serialize with collect_signal() or with 1330 * __exit_signal()->flush_sigqueue(). 1331 */ 1332 spin_lock_irqsave(lock, flags); 1333 q->flags &= ~SIGQUEUE_PREALLOC; 1334 /* 1335 * If it is queued it will be freed when dequeued, 1336 * like the "regular" sigqueue. 1337 */ 1338 if (!list_empty(&q->list)) 1339 q = NULL; 1340 spin_unlock_irqrestore(lock, flags); 1341 1342 if (q) 1343 __sigqueue_free(q); 1344 } 1345 1346 int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group) 1347 { 1348 int sig = q->info.si_signo; 1349 struct sigpending *pending; 1350 unsigned long flags; 1351 int ret; 1352 1353 BUG_ON(!(q->flags & SIGQUEUE_PREALLOC)); 1354 1355 ret = -1; 1356 if (!likely(lock_task_sighand(t, &flags))) 1357 goto ret; 1358 1359 ret = 1; /* the signal is ignored */ 1360 if (!prepare_signal(sig, t, 0)) 1361 goto out; 1362 1363 ret = 0; 1364 if (unlikely(!list_empty(&q->list))) { 1365 /* 1366 * If an SI_TIMER entry is already queue just increment 1367 * the overrun count. 1368 */ 1369 BUG_ON(q->info.si_code != SI_TIMER); 1370 q->info.si_overrun++; 1371 goto out; 1372 } 1373 q->info.si_overrun = 0; 1374 1375 signalfd_notify(t, sig); 1376 pending = group ? &t->signal->shared_pending : &t->pending; 1377 list_add_tail(&q->list, &pending->list); 1378 sigaddset(&pending->signal, sig); 1379 complete_signal(sig, t, group); 1380 out: 1381 unlock_task_sighand(t, &flags); 1382 ret: 1383 return ret; 1384 } 1385 1386 /* 1387 * Let a parent know about the death of a child. 1388 * For a stopped/continued status change, use do_notify_parent_cldstop instead. 1389 * 1390 * Returns -1 if our parent ignored us and so we've switched to 1391 * self-reaping, or else @sig. 1392 */ 1393 int do_notify_parent(struct task_struct *tsk, int sig) 1394 { 1395 struct siginfo info; 1396 unsigned long flags; 1397 struct sighand_struct *psig; 1398 int ret = sig; 1399 1400 BUG_ON(sig == -1); 1401 1402 /* do_notify_parent_cldstop should have been called instead. */ 1403 BUG_ON(task_is_stopped_or_traced(tsk)); 1404 1405 BUG_ON(!task_ptrace(tsk) && 1406 (tsk->group_leader != tsk || !thread_group_empty(tsk))); 1407 1408 info.si_signo = sig; 1409 info.si_errno = 0; 1410 /* 1411 * we are under tasklist_lock here so our parent is tied to 1412 * us and cannot exit and release its namespace. 1413 * 1414 * the only it can is to switch its nsproxy with sys_unshare, 1415 * bu uncharing pid namespaces is not allowed, so we'll always 1416 * see relevant namespace 1417 * 1418 * write_lock() currently calls preempt_disable() which is the 1419 * same as rcu_read_lock(), but according to Oleg, this is not 1420 * correct to rely on this 1421 */ 1422 rcu_read_lock(); 1423 info.si_pid = task_pid_nr_ns(tsk, tsk->parent->nsproxy->pid_ns); 1424 info.si_uid = __task_cred(tsk)->uid; 1425 rcu_read_unlock(); 1426 1427 info.si_utime = cputime_to_clock_t(cputime_add(tsk->utime, 1428 tsk->signal->utime)); 1429 info.si_stime = cputime_to_clock_t(cputime_add(tsk->stime, 1430 tsk->signal->stime)); 1431 1432 info.si_status = tsk->exit_code & 0x7f; 1433 if (tsk->exit_code & 0x80) 1434 info.si_code = CLD_DUMPED; 1435 else if (tsk->exit_code & 0x7f) 1436 info.si_code = CLD_KILLED; 1437 else { 1438 info.si_code = CLD_EXITED; 1439 info.si_status = tsk->exit_code >> 8; 1440 } 1441 1442 psig = tsk->parent->sighand; 1443 spin_lock_irqsave(&psig->siglock, flags); 1444 if (!task_ptrace(tsk) && sig == SIGCHLD && 1445 (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN || 1446 (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) { 1447 /* 1448 * We are exiting and our parent doesn't care. POSIX.1 1449 * defines special semantics for setting SIGCHLD to SIG_IGN 1450 * or setting the SA_NOCLDWAIT flag: we should be reaped 1451 * automatically and not left for our parent's wait4 call. 1452 * Rather than having the parent do it as a magic kind of 1453 * signal handler, we just set this to tell do_exit that we 1454 * can be cleaned up without becoming a zombie. Note that 1455 * we still call __wake_up_parent in this case, because a 1456 * blocked sys_wait4 might now return -ECHILD. 1457 * 1458 * Whether we send SIGCHLD or not for SA_NOCLDWAIT 1459 * is implementation-defined: we do (if you don't want 1460 * it, just use SIG_IGN instead). 1461 */ 1462 ret = tsk->exit_signal = -1; 1463 if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN) 1464 sig = -1; 1465 } 1466 if (valid_signal(sig) && sig > 0) 1467 __group_send_sig_info(sig, &info, tsk->parent); 1468 __wake_up_parent(tsk, tsk->parent); 1469 spin_unlock_irqrestore(&psig->siglock, flags); 1470 1471 return ret; 1472 } 1473 1474 static void do_notify_parent_cldstop(struct task_struct *tsk, int why) 1475 { 1476 struct siginfo info; 1477 unsigned long flags; 1478 struct task_struct *parent; 1479 struct sighand_struct *sighand; 1480 1481 if (task_ptrace(tsk)) 1482 parent = tsk->parent; 1483 else { 1484 tsk = tsk->group_leader; 1485 parent = tsk->real_parent; 1486 } 1487 1488 info.si_signo = SIGCHLD; 1489 info.si_errno = 0; 1490 /* 1491 * see comment in do_notify_parent() abot the following 3 lines 1492 */ 1493 rcu_read_lock(); 1494 info.si_pid = task_pid_nr_ns(tsk, parent->nsproxy->pid_ns); 1495 info.si_uid = __task_cred(tsk)->uid; 1496 rcu_read_unlock(); 1497 1498 info.si_utime = cputime_to_clock_t(tsk->utime); 1499 info.si_stime = cputime_to_clock_t(tsk->stime); 1500 1501 info.si_code = why; 1502 switch (why) { 1503 case CLD_CONTINUED: 1504 info.si_status = SIGCONT; 1505 break; 1506 case CLD_STOPPED: 1507 info.si_status = tsk->signal->group_exit_code & 0x7f; 1508 break; 1509 case CLD_TRAPPED: 1510 info.si_status = tsk->exit_code & 0x7f; 1511 break; 1512 default: 1513 BUG(); 1514 } 1515 1516 sighand = parent->sighand; 1517 spin_lock_irqsave(&sighand->siglock, flags); 1518 if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN && 1519 !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP)) 1520 __group_send_sig_info(SIGCHLD, &info, parent); 1521 /* 1522 * Even if SIGCHLD is not generated, we must wake up wait4 calls. 1523 */ 1524 __wake_up_parent(tsk, parent); 1525 spin_unlock_irqrestore(&sighand->siglock, flags); 1526 } 1527 1528 static inline int may_ptrace_stop(void) 1529 { 1530 if (!likely(task_ptrace(current))) 1531 return 0; 1532 /* 1533 * Are we in the middle of do_coredump? 1534 * If so and our tracer is also part of the coredump stopping 1535 * is a deadlock situation, and pointless because our tracer 1536 * is dead so don't allow us to stop. 1537 * If SIGKILL was already sent before the caller unlocked 1538 * ->siglock we must see ->core_state != NULL. Otherwise it 1539 * is safe to enter schedule(). 1540 */ 1541 if (unlikely(current->mm->core_state) && 1542 unlikely(current->mm == current->parent->mm)) 1543 return 0; 1544 1545 return 1; 1546 } 1547 1548 /* 1549 * Return nonzero if there is a SIGKILL that should be waking us up. 1550 * Called with the siglock held. 1551 */ 1552 static int sigkill_pending(struct task_struct *tsk) 1553 { 1554 return sigismember(&tsk->pending.signal, SIGKILL) || 1555 sigismember(&tsk->signal->shared_pending.signal, SIGKILL); 1556 } 1557 1558 /* 1559 * This must be called with current->sighand->siglock held. 1560 * 1561 * This should be the path for all ptrace stops. 1562 * We always set current->last_siginfo while stopped here. 1563 * That makes it a way to test a stopped process for 1564 * being ptrace-stopped vs being job-control-stopped. 1565 * 1566 * If we actually decide not to stop at all because the tracer 1567 * is gone, we keep current->exit_code unless clear_code. 1568 */ 1569 static void ptrace_stop(int exit_code, int clear_code, siginfo_t *info) 1570 { 1571 if (arch_ptrace_stop_needed(exit_code, info)) { 1572 /* 1573 * The arch code has something special to do before a 1574 * ptrace stop. This is allowed to block, e.g. for faults 1575 * on user stack pages. We can't keep the siglock while 1576 * calling arch_ptrace_stop, so we must release it now. 1577 * To preserve proper semantics, we must do this before 1578 * any signal bookkeeping like checking group_stop_count. 1579 * Meanwhile, a SIGKILL could come in before we retake the 1580 * siglock. That must prevent us from sleeping in TASK_TRACED. 1581 * So after regaining the lock, we must check for SIGKILL. 1582 */ 1583 spin_unlock_irq(¤t->sighand->siglock); 1584 arch_ptrace_stop(exit_code, info); 1585 spin_lock_irq(¤t->sighand->siglock); 1586 if (sigkill_pending(current)) 1587 return; 1588 } 1589 1590 /* 1591 * If there is a group stop in progress, 1592 * we must participate in the bookkeeping. 1593 */ 1594 if (current->signal->group_stop_count > 0) 1595 --current->signal->group_stop_count; 1596 1597 current->last_siginfo = info; 1598 current->exit_code = exit_code; 1599 1600 /* Let the debugger run. */ 1601 __set_current_state(TASK_TRACED); 1602 spin_unlock_irq(¤t->sighand->siglock); 1603 read_lock(&tasklist_lock); 1604 if (may_ptrace_stop()) { 1605 do_notify_parent_cldstop(current, CLD_TRAPPED); 1606 /* 1607 * Don't want to allow preemption here, because 1608 * sys_ptrace() needs this task to be inactive. 1609 * 1610 * XXX: implement read_unlock_no_resched(). 1611 */ 1612 preempt_disable(); 1613 read_unlock(&tasklist_lock); 1614 preempt_enable_no_resched(); 1615 schedule(); 1616 } else { 1617 /* 1618 * By the time we got the lock, our tracer went away. 1619 * Don't drop the lock yet, another tracer may come. 1620 */ 1621 __set_current_state(TASK_RUNNING); 1622 if (clear_code) 1623 current->exit_code = 0; 1624 read_unlock(&tasklist_lock); 1625 } 1626 1627 /* 1628 * While in TASK_TRACED, we were considered "frozen enough". 1629 * Now that we woke up, it's crucial if we're supposed to be 1630 * frozen that we freeze now before running anything substantial. 1631 */ 1632 try_to_freeze(); 1633 1634 /* 1635 * We are back. Now reacquire the siglock before touching 1636 * last_siginfo, so that we are sure to have synchronized with 1637 * any signal-sending on another CPU that wants to examine it. 1638 */ 1639 spin_lock_irq(¤t->sighand->siglock); 1640 current->last_siginfo = NULL; 1641 1642 /* 1643 * Queued signals ignored us while we were stopped for tracing. 1644 * So check for any that we should take before resuming user mode. 1645 * This sets TIF_SIGPENDING, but never clears it. 1646 */ 1647 recalc_sigpending_tsk(current); 1648 } 1649 1650 void ptrace_notify(int exit_code) 1651 { 1652 siginfo_t info; 1653 1654 BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP); 1655 1656 memset(&info, 0, sizeof info); 1657 info.si_signo = SIGTRAP; 1658 info.si_code = exit_code; 1659 info.si_pid = task_pid_vnr(current); 1660 info.si_uid = current_uid(); 1661 1662 /* Let the debugger run. */ 1663 spin_lock_irq(¤t->sighand->siglock); 1664 ptrace_stop(exit_code, 1, &info); 1665 spin_unlock_irq(¤t->sighand->siglock); 1666 } 1667 1668 /* 1669 * This performs the stopping for SIGSTOP and other stop signals. 1670 * We have to stop all threads in the thread group. 1671 * Returns nonzero if we've actually stopped and released the siglock. 1672 * Returns zero if we didn't stop and still hold the siglock. 1673 */ 1674 static int do_signal_stop(int signr) 1675 { 1676 struct signal_struct *sig = current->signal; 1677 int notify; 1678 1679 if (!sig->group_stop_count) { 1680 struct task_struct *t; 1681 1682 if (!likely(sig->flags & SIGNAL_STOP_DEQUEUED) || 1683 unlikely(signal_group_exit(sig))) 1684 return 0; 1685 /* 1686 * There is no group stop already in progress. 1687 * We must initiate one now. 1688 */ 1689 sig->group_exit_code = signr; 1690 1691 sig->group_stop_count = 1; 1692 for (t = next_thread(current); t != current; t = next_thread(t)) 1693 /* 1694 * Setting state to TASK_STOPPED for a group 1695 * stop is always done with the siglock held, 1696 * so this check has no races. 1697 */ 1698 if (!(t->flags & PF_EXITING) && 1699 !task_is_stopped_or_traced(t)) { 1700 sig->group_stop_count++; 1701 signal_wake_up(t, 0); 1702 } 1703 } 1704 /* 1705 * If there are no other threads in the group, or if there is 1706 * a group stop in progress and we are the last to stop, report 1707 * to the parent. When ptraced, every thread reports itself. 1708 */ 1709 notify = sig->group_stop_count == 1 ? CLD_STOPPED : 0; 1710 notify = tracehook_notify_jctl(notify, CLD_STOPPED); 1711 /* 1712 * tracehook_notify_jctl() can drop and reacquire siglock, so 1713 * we keep ->group_stop_count != 0 before the call. If SIGCONT 1714 * or SIGKILL comes in between ->group_stop_count == 0. 1715 */ 1716 if (sig->group_stop_count) { 1717 if (!--sig->group_stop_count) 1718 sig->flags = SIGNAL_STOP_STOPPED; 1719 current->exit_code = sig->group_exit_code; 1720 __set_current_state(TASK_STOPPED); 1721 } 1722 spin_unlock_irq(¤t->sighand->siglock); 1723 1724 if (notify) { 1725 read_lock(&tasklist_lock); 1726 do_notify_parent_cldstop(current, notify); 1727 read_unlock(&tasklist_lock); 1728 } 1729 1730 /* Now we don't run again until woken by SIGCONT or SIGKILL */ 1731 do { 1732 schedule(); 1733 } while (try_to_freeze()); 1734 1735 tracehook_finish_jctl(); 1736 current->exit_code = 0; 1737 1738 return 1; 1739 } 1740 1741 static int ptrace_signal(int signr, siginfo_t *info, 1742 struct pt_regs *regs, void *cookie) 1743 { 1744 if (!task_ptrace(current)) 1745 return signr; 1746 1747 ptrace_signal_deliver(regs, cookie); 1748 1749 /* Let the debugger run. */ 1750 ptrace_stop(signr, 0, info); 1751 1752 /* We're back. Did the debugger cancel the sig? */ 1753 signr = current->exit_code; 1754 if (signr == 0) 1755 return signr; 1756 1757 current->exit_code = 0; 1758 1759 /* Update the siginfo structure if the signal has 1760 changed. If the debugger wanted something 1761 specific in the siginfo structure then it should 1762 have updated *info via PTRACE_SETSIGINFO. */ 1763 if (signr != info->si_signo) { 1764 info->si_signo = signr; 1765 info->si_errno = 0; 1766 info->si_code = SI_USER; 1767 info->si_pid = task_pid_vnr(current->parent); 1768 info->si_uid = task_uid(current->parent); 1769 } 1770 1771 /* If the (new) signal is now blocked, requeue it. */ 1772 if (sigismember(¤t->blocked, signr)) { 1773 specific_send_sig_info(signr, info, current); 1774 signr = 0; 1775 } 1776 1777 return signr; 1778 } 1779 1780 int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka, 1781 struct pt_regs *regs, void *cookie) 1782 { 1783 struct sighand_struct *sighand = current->sighand; 1784 struct signal_struct *signal = current->signal; 1785 int signr; 1786 1787 relock: 1788 /* 1789 * We'll jump back here after any time we were stopped in TASK_STOPPED. 1790 * While in TASK_STOPPED, we were considered "frozen enough". 1791 * Now that we woke up, it's crucial if we're supposed to be 1792 * frozen that we freeze now before running anything substantial. 1793 */ 1794 try_to_freeze(); 1795 1796 spin_lock_irq(&sighand->siglock); 1797 /* 1798 * Every stopped thread goes here after wakeup. Check to see if 1799 * we should notify the parent, prepare_signal(SIGCONT) encodes 1800 * the CLD_ si_code into SIGNAL_CLD_MASK bits. 1801 */ 1802 if (unlikely(signal->flags & SIGNAL_CLD_MASK)) { 1803 int why = (signal->flags & SIGNAL_STOP_CONTINUED) 1804 ? CLD_CONTINUED : CLD_STOPPED; 1805 signal->flags &= ~SIGNAL_CLD_MASK; 1806 1807 why = tracehook_notify_jctl(why, CLD_CONTINUED); 1808 spin_unlock_irq(&sighand->siglock); 1809 1810 if (why) { 1811 read_lock(&tasklist_lock); 1812 do_notify_parent_cldstop(current->group_leader, why); 1813 read_unlock(&tasklist_lock); 1814 } 1815 goto relock; 1816 } 1817 1818 for (;;) { 1819 struct k_sigaction *ka; 1820 1821 if (unlikely(signal->group_stop_count > 0) && 1822 do_signal_stop(0)) 1823 goto relock; 1824 1825 /* 1826 * Tracing can induce an artifical signal and choose sigaction. 1827 * The return value in @signr determines the default action, 1828 * but @info->si_signo is the signal number we will report. 1829 */ 1830 signr = tracehook_get_signal(current, regs, info, return_ka); 1831 if (unlikely(signr < 0)) 1832 goto relock; 1833 if (unlikely(signr != 0)) 1834 ka = return_ka; 1835 else { 1836 signr = dequeue_signal(current, ¤t->blocked, 1837 info); 1838 1839 if (!signr) 1840 break; /* will return 0 */ 1841 1842 if (signr != SIGKILL) { 1843 signr = ptrace_signal(signr, info, 1844 regs, cookie); 1845 if (!signr) 1846 continue; 1847 } 1848 1849 ka = &sighand->action[signr-1]; 1850 } 1851 1852 /* Trace actually delivered signals. */ 1853 trace_signal_deliver(signr, info, ka); 1854 1855 if (ka->sa.sa_handler == SIG_IGN) /* Do nothing. */ 1856 continue; 1857 if (ka->sa.sa_handler != SIG_DFL) { 1858 /* Run the handler. */ 1859 *return_ka = *ka; 1860 1861 if (ka->sa.sa_flags & SA_ONESHOT) 1862 ka->sa.sa_handler = SIG_DFL; 1863 1864 break; /* will return non-zero "signr" value */ 1865 } 1866 1867 /* 1868 * Now we are doing the default action for this signal. 1869 */ 1870 if (sig_kernel_ignore(signr)) /* Default is nothing. */ 1871 continue; 1872 1873 /* 1874 * Global init gets no signals it doesn't want. 1875 * Container-init gets no signals it doesn't want from same 1876 * container. 1877 * 1878 * Note that if global/container-init sees a sig_kernel_only() 1879 * signal here, the signal must have been generated internally 1880 * or must have come from an ancestor namespace. In either 1881 * case, the signal cannot be dropped. 1882 */ 1883 if (unlikely(signal->flags & SIGNAL_UNKILLABLE) && 1884 !sig_kernel_only(signr)) 1885 continue; 1886 1887 if (sig_kernel_stop(signr)) { 1888 /* 1889 * The default action is to stop all threads in 1890 * the thread group. The job control signals 1891 * do nothing in an orphaned pgrp, but SIGSTOP 1892 * always works. Note that siglock needs to be 1893 * dropped during the call to is_orphaned_pgrp() 1894 * because of lock ordering with tasklist_lock. 1895 * This allows an intervening SIGCONT to be posted. 1896 * We need to check for that and bail out if necessary. 1897 */ 1898 if (signr != SIGSTOP) { 1899 spin_unlock_irq(&sighand->siglock); 1900 1901 /* signals can be posted during this window */ 1902 1903 if (is_current_pgrp_orphaned()) 1904 goto relock; 1905 1906 spin_lock_irq(&sighand->siglock); 1907 } 1908 1909 if (likely(do_signal_stop(info->si_signo))) { 1910 /* It released the siglock. */ 1911 goto relock; 1912 } 1913 1914 /* 1915 * We didn't actually stop, due to a race 1916 * with SIGCONT or something like that. 1917 */ 1918 continue; 1919 } 1920 1921 spin_unlock_irq(&sighand->siglock); 1922 1923 /* 1924 * Anything else is fatal, maybe with a core dump. 1925 */ 1926 current->flags |= PF_SIGNALED; 1927 1928 if (sig_kernel_coredump(signr)) { 1929 if (print_fatal_signals) 1930 print_fatal_signal(regs, info->si_signo); 1931 /* 1932 * If it was able to dump core, this kills all 1933 * other threads in the group and synchronizes with 1934 * their demise. If we lost the race with another 1935 * thread getting here, it set group_exit_code 1936 * first and our do_group_exit call below will use 1937 * that value and ignore the one we pass it. 1938 */ 1939 do_coredump(info->si_signo, info->si_signo, regs); 1940 } 1941 1942 /* 1943 * Death signals, no core dump. 1944 */ 1945 do_group_exit(info->si_signo); 1946 /* NOTREACHED */ 1947 } 1948 spin_unlock_irq(&sighand->siglock); 1949 return signr; 1950 } 1951 1952 void exit_signals(struct task_struct *tsk) 1953 { 1954 int group_stop = 0; 1955 struct task_struct *t; 1956 1957 if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) { 1958 tsk->flags |= PF_EXITING; 1959 return; 1960 } 1961 1962 spin_lock_irq(&tsk->sighand->siglock); 1963 /* 1964 * From now this task is not visible for group-wide signals, 1965 * see wants_signal(), do_signal_stop(). 1966 */ 1967 tsk->flags |= PF_EXITING; 1968 if (!signal_pending(tsk)) 1969 goto out; 1970 1971 /* It could be that __group_complete_signal() choose us to 1972 * notify about group-wide signal. Another thread should be 1973 * woken now to take the signal since we will not. 1974 */ 1975 for (t = tsk; (t = next_thread(t)) != tsk; ) 1976 if (!signal_pending(t) && !(t->flags & PF_EXITING)) 1977 recalc_sigpending_and_wake(t); 1978 1979 if (unlikely(tsk->signal->group_stop_count) && 1980 !--tsk->signal->group_stop_count) { 1981 tsk->signal->flags = SIGNAL_STOP_STOPPED; 1982 group_stop = tracehook_notify_jctl(CLD_STOPPED, CLD_STOPPED); 1983 } 1984 out: 1985 spin_unlock_irq(&tsk->sighand->siglock); 1986 1987 if (unlikely(group_stop)) { 1988 read_lock(&tasklist_lock); 1989 do_notify_parent_cldstop(tsk, group_stop); 1990 read_unlock(&tasklist_lock); 1991 } 1992 } 1993 1994 EXPORT_SYMBOL(recalc_sigpending); 1995 EXPORT_SYMBOL_GPL(dequeue_signal); 1996 EXPORT_SYMBOL(flush_signals); 1997 EXPORT_SYMBOL(force_sig); 1998 EXPORT_SYMBOL(send_sig); 1999 EXPORT_SYMBOL(send_sig_info); 2000 EXPORT_SYMBOL(sigprocmask); 2001 EXPORT_SYMBOL(block_all_signals); 2002 EXPORT_SYMBOL(unblock_all_signals); 2003 2004 2005 /* 2006 * System call entry points. 2007 */ 2008 2009 SYSCALL_DEFINE0(restart_syscall) 2010 { 2011 struct restart_block *restart = ¤t_thread_info()->restart_block; 2012 return restart->fn(restart); 2013 } 2014 2015 long do_no_restart_syscall(struct restart_block *param) 2016 { 2017 return -EINTR; 2018 } 2019 2020 /* 2021 * We don't need to get the kernel lock - this is all local to this 2022 * particular thread.. (and that's good, because this is _heavily_ 2023 * used by various programs) 2024 */ 2025 2026 /* 2027 * This is also useful for kernel threads that want to temporarily 2028 * (or permanently) block certain signals. 2029 * 2030 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel 2031 * interface happily blocks "unblockable" signals like SIGKILL 2032 * and friends. 2033 */ 2034 int sigprocmask(int how, sigset_t *set, sigset_t *oldset) 2035 { 2036 int error; 2037 2038 spin_lock_irq(¤t->sighand->siglock); 2039 if (oldset) 2040 *oldset = current->blocked; 2041 2042 error = 0; 2043 switch (how) { 2044 case SIG_BLOCK: 2045 sigorsets(¤t->blocked, ¤t->blocked, set); 2046 break; 2047 case SIG_UNBLOCK: 2048 signandsets(¤t->blocked, ¤t->blocked, set); 2049 break; 2050 case SIG_SETMASK: 2051 current->blocked = *set; 2052 break; 2053 default: 2054 error = -EINVAL; 2055 } 2056 recalc_sigpending(); 2057 spin_unlock_irq(¤t->sighand->siglock); 2058 2059 return error; 2060 } 2061 2062 SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, set, 2063 sigset_t __user *, oset, size_t, sigsetsize) 2064 { 2065 int error = -EINVAL; 2066 sigset_t old_set, new_set; 2067 2068 /* XXX: Don't preclude handling different sized sigset_t's. */ 2069 if (sigsetsize != sizeof(sigset_t)) 2070 goto out; 2071 2072 if (set) { 2073 error = -EFAULT; 2074 if (copy_from_user(&new_set, set, sizeof(*set))) 2075 goto out; 2076 sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2077 2078 error = sigprocmask(how, &new_set, &old_set); 2079 if (error) 2080 goto out; 2081 if (oset) 2082 goto set_old; 2083 } else if (oset) { 2084 spin_lock_irq(¤t->sighand->siglock); 2085 old_set = current->blocked; 2086 spin_unlock_irq(¤t->sighand->siglock); 2087 2088 set_old: 2089 error = -EFAULT; 2090 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2091 goto out; 2092 } 2093 error = 0; 2094 out: 2095 return error; 2096 } 2097 2098 long do_sigpending(void __user *set, unsigned long sigsetsize) 2099 { 2100 long error = -EINVAL; 2101 sigset_t pending; 2102 2103 if (sigsetsize > sizeof(sigset_t)) 2104 goto out; 2105 2106 spin_lock_irq(¤t->sighand->siglock); 2107 sigorsets(&pending, ¤t->pending.signal, 2108 ¤t->signal->shared_pending.signal); 2109 spin_unlock_irq(¤t->sighand->siglock); 2110 2111 /* Outside the lock because only this thread touches it. */ 2112 sigandsets(&pending, ¤t->blocked, &pending); 2113 2114 error = -EFAULT; 2115 if (!copy_to_user(set, &pending, sigsetsize)) 2116 error = 0; 2117 2118 out: 2119 return error; 2120 } 2121 2122 SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, set, size_t, sigsetsize) 2123 { 2124 return do_sigpending(set, sigsetsize); 2125 } 2126 2127 #ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER 2128 2129 int copy_siginfo_to_user(siginfo_t __user *to, siginfo_t *from) 2130 { 2131 int err; 2132 2133 if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t))) 2134 return -EFAULT; 2135 if (from->si_code < 0) 2136 return __copy_to_user(to, from, sizeof(siginfo_t)) 2137 ? -EFAULT : 0; 2138 /* 2139 * If you change siginfo_t structure, please be sure 2140 * this code is fixed accordingly. 2141 * Please remember to update the signalfd_copyinfo() function 2142 * inside fs/signalfd.c too, in case siginfo_t changes. 2143 * It should never copy any pad contained in the structure 2144 * to avoid security leaks, but must copy the generic 2145 * 3 ints plus the relevant union member. 2146 */ 2147 err = __put_user(from->si_signo, &to->si_signo); 2148 err |= __put_user(from->si_errno, &to->si_errno); 2149 err |= __put_user((short)from->si_code, &to->si_code); 2150 switch (from->si_code & __SI_MASK) { 2151 case __SI_KILL: 2152 err |= __put_user(from->si_pid, &to->si_pid); 2153 err |= __put_user(from->si_uid, &to->si_uid); 2154 break; 2155 case __SI_TIMER: 2156 err |= __put_user(from->si_tid, &to->si_tid); 2157 err |= __put_user(from->si_overrun, &to->si_overrun); 2158 err |= __put_user(from->si_ptr, &to->si_ptr); 2159 break; 2160 case __SI_POLL: 2161 err |= __put_user(from->si_band, &to->si_band); 2162 err |= __put_user(from->si_fd, &to->si_fd); 2163 break; 2164 case __SI_FAULT: 2165 err |= __put_user(from->si_addr, &to->si_addr); 2166 #ifdef __ARCH_SI_TRAPNO 2167 err |= __put_user(from->si_trapno, &to->si_trapno); 2168 #endif 2169 break; 2170 case __SI_CHLD: 2171 err |= __put_user(from->si_pid, &to->si_pid); 2172 err |= __put_user(from->si_uid, &to->si_uid); 2173 err |= __put_user(from->si_status, &to->si_status); 2174 err |= __put_user(from->si_utime, &to->si_utime); 2175 err |= __put_user(from->si_stime, &to->si_stime); 2176 break; 2177 case __SI_RT: /* This is not generated by the kernel as of now. */ 2178 case __SI_MESGQ: /* But this is */ 2179 err |= __put_user(from->si_pid, &to->si_pid); 2180 err |= __put_user(from->si_uid, &to->si_uid); 2181 err |= __put_user(from->si_ptr, &to->si_ptr); 2182 break; 2183 default: /* this is just in case for now ... */ 2184 err |= __put_user(from->si_pid, &to->si_pid); 2185 err |= __put_user(from->si_uid, &to->si_uid); 2186 break; 2187 } 2188 return err; 2189 } 2190 2191 #endif 2192 2193 SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese, 2194 siginfo_t __user *, uinfo, const struct timespec __user *, uts, 2195 size_t, sigsetsize) 2196 { 2197 int ret, sig; 2198 sigset_t these; 2199 struct timespec ts; 2200 siginfo_t info; 2201 long timeout = 0; 2202 2203 /* XXX: Don't preclude handling different sized sigset_t's. */ 2204 if (sigsetsize != sizeof(sigset_t)) 2205 return -EINVAL; 2206 2207 if (copy_from_user(&these, uthese, sizeof(these))) 2208 return -EFAULT; 2209 2210 /* 2211 * Invert the set of allowed signals to get those we 2212 * want to block. 2213 */ 2214 sigdelsetmask(&these, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2215 signotset(&these); 2216 2217 if (uts) { 2218 if (copy_from_user(&ts, uts, sizeof(ts))) 2219 return -EFAULT; 2220 if (ts.tv_nsec >= 1000000000L || ts.tv_nsec < 0 2221 || ts.tv_sec < 0) 2222 return -EINVAL; 2223 } 2224 2225 spin_lock_irq(¤t->sighand->siglock); 2226 sig = dequeue_signal(current, &these, &info); 2227 if (!sig) { 2228 timeout = MAX_SCHEDULE_TIMEOUT; 2229 if (uts) 2230 timeout = (timespec_to_jiffies(&ts) 2231 + (ts.tv_sec || ts.tv_nsec)); 2232 2233 if (timeout) { 2234 /* None ready -- temporarily unblock those we're 2235 * interested while we are sleeping in so that we'll 2236 * be awakened when they arrive. */ 2237 current->real_blocked = current->blocked; 2238 sigandsets(¤t->blocked, ¤t->blocked, &these); 2239 recalc_sigpending(); 2240 spin_unlock_irq(¤t->sighand->siglock); 2241 2242 timeout = schedule_timeout_interruptible(timeout); 2243 2244 spin_lock_irq(¤t->sighand->siglock); 2245 sig = dequeue_signal(current, &these, &info); 2246 current->blocked = current->real_blocked; 2247 siginitset(¤t->real_blocked, 0); 2248 recalc_sigpending(); 2249 } 2250 } 2251 spin_unlock_irq(¤t->sighand->siglock); 2252 2253 if (sig) { 2254 ret = sig; 2255 if (uinfo) { 2256 if (copy_siginfo_to_user(uinfo, &info)) 2257 ret = -EFAULT; 2258 } 2259 } else { 2260 ret = -EAGAIN; 2261 if (timeout) 2262 ret = -EINTR; 2263 } 2264 2265 return ret; 2266 } 2267 2268 SYSCALL_DEFINE2(kill, pid_t, pid, int, sig) 2269 { 2270 struct siginfo info; 2271 2272 info.si_signo = sig; 2273 info.si_errno = 0; 2274 info.si_code = SI_USER; 2275 info.si_pid = task_tgid_vnr(current); 2276 info.si_uid = current_uid(); 2277 2278 return kill_something_info(sig, &info, pid); 2279 } 2280 2281 static int 2282 do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info) 2283 { 2284 struct task_struct *p; 2285 int error = -ESRCH; 2286 2287 rcu_read_lock(); 2288 p = find_task_by_vpid(pid); 2289 if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) { 2290 error = check_kill_permission(sig, info, p); 2291 /* 2292 * The null signal is a permissions and process existence 2293 * probe. No signal is actually delivered. 2294 */ 2295 if (!error && sig) { 2296 error = do_send_sig_info(sig, info, p, false); 2297 /* 2298 * If lock_task_sighand() failed we pretend the task 2299 * dies after receiving the signal. The window is tiny, 2300 * and the signal is private anyway. 2301 */ 2302 if (unlikely(error == -ESRCH)) 2303 error = 0; 2304 } 2305 } 2306 rcu_read_unlock(); 2307 2308 return error; 2309 } 2310 2311 static int do_tkill(pid_t tgid, pid_t pid, int sig) 2312 { 2313 struct siginfo info; 2314 2315 info.si_signo = sig; 2316 info.si_errno = 0; 2317 info.si_code = SI_TKILL; 2318 info.si_pid = task_tgid_vnr(current); 2319 info.si_uid = current_uid(); 2320 2321 return do_send_specific(tgid, pid, sig, &info); 2322 } 2323 2324 /** 2325 * sys_tgkill - send signal to one specific thread 2326 * @tgid: the thread group ID of the thread 2327 * @pid: the PID of the thread 2328 * @sig: signal to be sent 2329 * 2330 * This syscall also checks the @tgid and returns -ESRCH even if the PID 2331 * exists but it's not belonging to the target process anymore. This 2332 * method solves the problem of threads exiting and PIDs getting reused. 2333 */ 2334 SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig) 2335 { 2336 /* This is only valid for single tasks */ 2337 if (pid <= 0 || tgid <= 0) 2338 return -EINVAL; 2339 2340 return do_tkill(tgid, pid, sig); 2341 } 2342 2343 /* 2344 * Send a signal to only one task, even if it's a CLONE_THREAD task. 2345 */ 2346 SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig) 2347 { 2348 /* This is only valid for single tasks */ 2349 if (pid <= 0) 2350 return -EINVAL; 2351 2352 return do_tkill(0, pid, sig); 2353 } 2354 2355 SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig, 2356 siginfo_t __user *, uinfo) 2357 { 2358 siginfo_t info; 2359 2360 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2361 return -EFAULT; 2362 2363 /* Not even root can pretend to send signals from the kernel. 2364 Nor can they impersonate a kill(), which adds source info. */ 2365 if (info.si_code >= 0) 2366 return -EPERM; 2367 info.si_signo = sig; 2368 2369 /* POSIX.1b doesn't mention process groups. */ 2370 return kill_proc_info(sig, &info, pid); 2371 } 2372 2373 long do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info) 2374 { 2375 /* This is only valid for single tasks */ 2376 if (pid <= 0 || tgid <= 0) 2377 return -EINVAL; 2378 2379 /* Not even root can pretend to send signals from the kernel. 2380 Nor can they impersonate a kill(), which adds source info. */ 2381 if (info->si_code >= 0) 2382 return -EPERM; 2383 info->si_signo = sig; 2384 2385 return do_send_specific(tgid, pid, sig, info); 2386 } 2387 2388 SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig, 2389 siginfo_t __user *, uinfo) 2390 { 2391 siginfo_t info; 2392 2393 if (copy_from_user(&info, uinfo, sizeof(siginfo_t))) 2394 return -EFAULT; 2395 2396 return do_rt_tgsigqueueinfo(tgid, pid, sig, &info); 2397 } 2398 2399 int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact) 2400 { 2401 struct task_struct *t = current; 2402 struct k_sigaction *k; 2403 sigset_t mask; 2404 2405 if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig))) 2406 return -EINVAL; 2407 2408 k = &t->sighand->action[sig-1]; 2409 2410 spin_lock_irq(¤t->sighand->siglock); 2411 if (oact) 2412 *oact = *k; 2413 2414 if (act) { 2415 sigdelsetmask(&act->sa.sa_mask, 2416 sigmask(SIGKILL) | sigmask(SIGSTOP)); 2417 *k = *act; 2418 /* 2419 * POSIX 3.3.1.3: 2420 * "Setting a signal action to SIG_IGN for a signal that is 2421 * pending shall cause the pending signal to be discarded, 2422 * whether or not it is blocked." 2423 * 2424 * "Setting a signal action to SIG_DFL for a signal that is 2425 * pending and whose default action is to ignore the signal 2426 * (for example, SIGCHLD), shall cause the pending signal to 2427 * be discarded, whether or not it is blocked" 2428 */ 2429 if (sig_handler_ignored(sig_handler(t, sig), sig)) { 2430 sigemptyset(&mask); 2431 sigaddset(&mask, sig); 2432 rm_from_queue_full(&mask, &t->signal->shared_pending); 2433 do { 2434 rm_from_queue_full(&mask, &t->pending); 2435 t = next_thread(t); 2436 } while (t != current); 2437 } 2438 } 2439 2440 spin_unlock_irq(¤t->sighand->siglock); 2441 return 0; 2442 } 2443 2444 int 2445 do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp) 2446 { 2447 stack_t oss; 2448 int error; 2449 2450 oss.ss_sp = (void __user *) current->sas_ss_sp; 2451 oss.ss_size = current->sas_ss_size; 2452 oss.ss_flags = sas_ss_flags(sp); 2453 2454 if (uss) { 2455 void __user *ss_sp; 2456 size_t ss_size; 2457 int ss_flags; 2458 2459 error = -EFAULT; 2460 if (!access_ok(VERIFY_READ, uss, sizeof(*uss))) 2461 goto out; 2462 error = __get_user(ss_sp, &uss->ss_sp) | 2463 __get_user(ss_flags, &uss->ss_flags) | 2464 __get_user(ss_size, &uss->ss_size); 2465 if (error) 2466 goto out; 2467 2468 error = -EPERM; 2469 if (on_sig_stack(sp)) 2470 goto out; 2471 2472 error = -EINVAL; 2473 /* 2474 * 2475 * Note - this code used to test ss_flags incorrectly 2476 * old code may have been written using ss_flags==0 2477 * to mean ss_flags==SS_ONSTACK (as this was the only 2478 * way that worked) - this fix preserves that older 2479 * mechanism 2480 */ 2481 if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0) 2482 goto out; 2483 2484 if (ss_flags == SS_DISABLE) { 2485 ss_size = 0; 2486 ss_sp = NULL; 2487 } else { 2488 error = -ENOMEM; 2489 if (ss_size < MINSIGSTKSZ) 2490 goto out; 2491 } 2492 2493 current->sas_ss_sp = (unsigned long) ss_sp; 2494 current->sas_ss_size = ss_size; 2495 } 2496 2497 error = 0; 2498 if (uoss) { 2499 error = -EFAULT; 2500 if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss))) 2501 goto out; 2502 error = __put_user(oss.ss_sp, &uoss->ss_sp) | 2503 __put_user(oss.ss_size, &uoss->ss_size) | 2504 __put_user(oss.ss_flags, &uoss->ss_flags); 2505 } 2506 2507 out: 2508 return error; 2509 } 2510 2511 #ifdef __ARCH_WANT_SYS_SIGPENDING 2512 2513 SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set) 2514 { 2515 return do_sigpending(set, sizeof(*set)); 2516 } 2517 2518 #endif 2519 2520 #ifdef __ARCH_WANT_SYS_SIGPROCMASK 2521 /* Some platforms have their own version with special arguments others 2522 support only sys_rt_sigprocmask. */ 2523 2524 SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, set, 2525 old_sigset_t __user *, oset) 2526 { 2527 int error; 2528 old_sigset_t old_set, new_set; 2529 2530 if (set) { 2531 error = -EFAULT; 2532 if (copy_from_user(&new_set, set, sizeof(*set))) 2533 goto out; 2534 new_set &= ~(sigmask(SIGKILL) | sigmask(SIGSTOP)); 2535 2536 spin_lock_irq(¤t->sighand->siglock); 2537 old_set = current->blocked.sig[0]; 2538 2539 error = 0; 2540 switch (how) { 2541 default: 2542 error = -EINVAL; 2543 break; 2544 case SIG_BLOCK: 2545 sigaddsetmask(¤t->blocked, new_set); 2546 break; 2547 case SIG_UNBLOCK: 2548 sigdelsetmask(¤t->blocked, new_set); 2549 break; 2550 case SIG_SETMASK: 2551 current->blocked.sig[0] = new_set; 2552 break; 2553 } 2554 2555 recalc_sigpending(); 2556 spin_unlock_irq(¤t->sighand->siglock); 2557 if (error) 2558 goto out; 2559 if (oset) 2560 goto set_old; 2561 } else if (oset) { 2562 old_set = current->blocked.sig[0]; 2563 set_old: 2564 error = -EFAULT; 2565 if (copy_to_user(oset, &old_set, sizeof(*oset))) 2566 goto out; 2567 } 2568 error = 0; 2569 out: 2570 return error; 2571 } 2572 #endif /* __ARCH_WANT_SYS_SIGPROCMASK */ 2573 2574 #ifdef __ARCH_WANT_SYS_RT_SIGACTION 2575 SYSCALL_DEFINE4(rt_sigaction, int, sig, 2576 const struct sigaction __user *, act, 2577 struct sigaction __user *, oact, 2578 size_t, sigsetsize) 2579 { 2580 struct k_sigaction new_sa, old_sa; 2581 int ret = -EINVAL; 2582 2583 /* XXX: Don't preclude handling different sized sigset_t's. */ 2584 if (sigsetsize != sizeof(sigset_t)) 2585 goto out; 2586 2587 if (act) { 2588 if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa))) 2589 return -EFAULT; 2590 } 2591 2592 ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL); 2593 2594 if (!ret && oact) { 2595 if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa))) 2596 return -EFAULT; 2597 } 2598 out: 2599 return ret; 2600 } 2601 #endif /* __ARCH_WANT_SYS_RT_SIGACTION */ 2602 2603 #ifdef __ARCH_WANT_SYS_SGETMASK 2604 2605 /* 2606 * For backwards compatibility. Functionality superseded by sigprocmask. 2607 */ 2608 SYSCALL_DEFINE0(sgetmask) 2609 { 2610 /* SMP safe */ 2611 return current->blocked.sig[0]; 2612 } 2613 2614 SYSCALL_DEFINE1(ssetmask, int, newmask) 2615 { 2616 int old; 2617 2618 spin_lock_irq(¤t->sighand->siglock); 2619 old = current->blocked.sig[0]; 2620 2621 siginitset(¤t->blocked, newmask & ~(sigmask(SIGKILL)| 2622 sigmask(SIGSTOP))); 2623 recalc_sigpending(); 2624 spin_unlock_irq(¤t->sighand->siglock); 2625 2626 return old; 2627 } 2628 #endif /* __ARCH_WANT_SGETMASK */ 2629 2630 #ifdef __ARCH_WANT_SYS_SIGNAL 2631 /* 2632 * For backwards compatibility. Functionality superseded by sigaction. 2633 */ 2634 SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler) 2635 { 2636 struct k_sigaction new_sa, old_sa; 2637 int ret; 2638 2639 new_sa.sa.sa_handler = handler; 2640 new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK; 2641 sigemptyset(&new_sa.sa.sa_mask); 2642 2643 ret = do_sigaction(sig, &new_sa, &old_sa); 2644 2645 return ret ? ret : (unsigned long)old_sa.sa.sa_handler; 2646 } 2647 #endif /* __ARCH_WANT_SYS_SIGNAL */ 2648 2649 #ifdef __ARCH_WANT_SYS_PAUSE 2650 2651 SYSCALL_DEFINE0(pause) 2652 { 2653 current->state = TASK_INTERRUPTIBLE; 2654 schedule(); 2655 return -ERESTARTNOHAND; 2656 } 2657 2658 #endif 2659 2660 #ifdef __ARCH_WANT_SYS_RT_SIGSUSPEND 2661 SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize) 2662 { 2663 sigset_t newset; 2664 2665 /* XXX: Don't preclude handling different sized sigset_t's. */ 2666 if (sigsetsize != sizeof(sigset_t)) 2667 return -EINVAL; 2668 2669 if (copy_from_user(&newset, unewset, sizeof(newset))) 2670 return -EFAULT; 2671 sigdelsetmask(&newset, sigmask(SIGKILL)|sigmask(SIGSTOP)); 2672 2673 spin_lock_irq(¤t->sighand->siglock); 2674 current->saved_sigmask = current->blocked; 2675 current->blocked = newset; 2676 recalc_sigpending(); 2677 spin_unlock_irq(¤t->sighand->siglock); 2678 2679 current->state = TASK_INTERRUPTIBLE; 2680 schedule(); 2681 set_restore_sigmask(); 2682 return -ERESTARTNOHAND; 2683 } 2684 #endif /* __ARCH_WANT_SYS_RT_SIGSUSPEND */ 2685 2686 __attribute__((weak)) const char *arch_vma_name(struct vm_area_struct *vma) 2687 { 2688 return NULL; 2689 } 2690 2691 void __init signals_init(void) 2692 { 2693 sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC); 2694 } 2695