1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * linux/kernel/seccomp.c 4 * 5 * Copyright 2004-2005 Andrea Arcangeli <[email protected]> 6 * 7 * Copyright (C) 2012 Google, Inc. 8 * Will Drewry <[email protected]> 9 * 10 * This defines a simple but solid secure-computing facility. 11 * 12 * Mode 1 uses a fixed list of allowed system calls. 13 * Mode 2 allows user-defined system call filters in the form 14 * of Berkeley Packet Filters/Linux Socket Filters. 15 */ 16 #define pr_fmt(fmt) "seccomp: " fmt 17 18 #include <linux/refcount.h> 19 #include <linux/audit.h> 20 #include <linux/compat.h> 21 #include <linux/coredump.h> 22 #include <linux/kmemleak.h> 23 #include <linux/nospec.h> 24 #include <linux/prctl.h> 25 #include <linux/sched.h> 26 #include <linux/sched/task_stack.h> 27 #include <linux/seccomp.h> 28 #include <linux/slab.h> 29 #include <linux/syscalls.h> 30 #include <linux/sysctl.h> 31 32 #ifdef CONFIG_HAVE_ARCH_SECCOMP_FILTER 33 #include <asm/syscall.h> 34 #endif 35 36 #ifdef CONFIG_SECCOMP_FILTER 37 #include <linux/file.h> 38 #include <linux/filter.h> 39 #include <linux/pid.h> 40 #include <linux/ptrace.h> 41 #include <linux/capability.h> 42 #include <linux/uaccess.h> 43 #include <linux/anon_inodes.h> 44 #include <linux/lockdep.h> 45 46 /* 47 * When SECCOMP_IOCTL_NOTIF_ID_VALID was first introduced, it had the 48 * wrong direction flag in the ioctl number. This is the broken one, 49 * which the kernel needs to keep supporting until all userspaces stop 50 * using the wrong command number. 51 */ 52 #define SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR SECCOMP_IOR(2, __u64) 53 54 enum notify_state { 55 SECCOMP_NOTIFY_INIT, 56 SECCOMP_NOTIFY_SENT, 57 SECCOMP_NOTIFY_REPLIED, 58 }; 59 60 struct seccomp_knotif { 61 /* The struct pid of the task whose filter triggered the notification */ 62 struct task_struct *task; 63 64 /* The "cookie" for this request; this is unique for this filter. */ 65 u64 id; 66 67 /* 68 * The seccomp data. This pointer is valid the entire time this 69 * notification is active, since it comes from __seccomp_filter which 70 * eclipses the entire lifecycle here. 71 */ 72 const struct seccomp_data *data; 73 74 /* 75 * Notification states. When SECCOMP_RET_USER_NOTIF is returned, a 76 * struct seccomp_knotif is created and starts out in INIT. Once the 77 * handler reads the notification off of an FD, it transitions to SENT. 78 * If a signal is received the state transitions back to INIT and 79 * another message is sent. When the userspace handler replies, state 80 * transitions to REPLIED. 81 */ 82 enum notify_state state; 83 84 /* The return values, only valid when in SECCOMP_NOTIFY_REPLIED */ 85 int error; 86 long val; 87 u32 flags; 88 89 /* 90 * Signals when this has changed states, such as the listener 91 * dying, a new seccomp addfd message, or changing to REPLIED 92 */ 93 struct completion ready; 94 95 struct list_head list; 96 97 /* outstanding addfd requests */ 98 struct list_head addfd; 99 }; 100 101 /** 102 * struct seccomp_kaddfd - container for seccomp_addfd ioctl messages 103 * 104 * @file: A reference to the file to install in the other task 105 * @fd: The fd number to install it at. If the fd number is -1, it means the 106 * installing process should allocate the fd as normal. 107 * @flags: The flags for the new file descriptor. At the moment, only O_CLOEXEC 108 * is allowed. 109 * @ioctl_flags: The flags used for the seccomp_addfd ioctl. 110 * @ret: The return value of the installing process. It is set to the fd num 111 * upon success (>= 0). 112 * @completion: Indicates that the installing process has completed fd 113 * installation, or gone away (either due to successful 114 * reply, or signal) 115 * 116 */ 117 struct seccomp_kaddfd { 118 struct file *file; 119 int fd; 120 unsigned int flags; 121 __u32 ioctl_flags; 122 123 union { 124 bool setfd; 125 /* To only be set on reply */ 126 int ret; 127 }; 128 struct completion completion; 129 struct list_head list; 130 }; 131 132 /** 133 * struct notification - container for seccomp userspace notifications. Since 134 * most seccomp filters will not have notification listeners attached and this 135 * structure is fairly large, we store the notification-specific stuff in a 136 * separate structure. 137 * 138 * @request: A semaphore that users of this notification can wait on for 139 * changes. Actual reads and writes are still controlled with 140 * filter->notify_lock. 141 * @next_id: The id of the next request. 142 * @notifications: A list of struct seccomp_knotif elements. 143 */ 144 struct notification { 145 struct semaphore request; 146 u64 next_id; 147 struct list_head notifications; 148 }; 149 150 #ifdef SECCOMP_ARCH_NATIVE 151 /** 152 * struct action_cache - per-filter cache of seccomp actions per 153 * arch/syscall pair 154 * 155 * @allow_native: A bitmap where each bit represents whether the 156 * filter will always allow the syscall, for the 157 * native architecture. 158 * @allow_compat: A bitmap where each bit represents whether the 159 * filter will always allow the syscall, for the 160 * compat architecture. 161 */ 162 struct action_cache { 163 DECLARE_BITMAP(allow_native, SECCOMP_ARCH_NATIVE_NR); 164 #ifdef SECCOMP_ARCH_COMPAT 165 DECLARE_BITMAP(allow_compat, SECCOMP_ARCH_COMPAT_NR); 166 #endif 167 }; 168 #else 169 struct action_cache { }; 170 171 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 172 const struct seccomp_data *sd) 173 { 174 return false; 175 } 176 177 static inline void seccomp_cache_prepare(struct seccomp_filter *sfilter) 178 { 179 } 180 #endif /* SECCOMP_ARCH_NATIVE */ 181 182 /** 183 * struct seccomp_filter - container for seccomp BPF programs 184 * 185 * @refs: Reference count to manage the object lifetime. 186 * A filter's reference count is incremented for each directly 187 * attached task, once for the dependent filter, and if 188 * requested for the user notifier. When @refs reaches zero, 189 * the filter can be freed. 190 * @users: A filter's @users count is incremented for each directly 191 * attached task (filter installation, fork(), thread_sync), 192 * and once for the dependent filter (tracked in filter->prev). 193 * When it reaches zero it indicates that no direct or indirect 194 * users of that filter exist. No new tasks can get associated with 195 * this filter after reaching 0. The @users count is always smaller 196 * or equal to @refs. Hence, reaching 0 for @users does not mean 197 * the filter can be freed. 198 * @cache: cache of arch/syscall mappings to actions 199 * @log: true if all actions except for SECCOMP_RET_ALLOW should be logged 200 * @prev: points to a previously installed, or inherited, filter 201 * @prog: the BPF program to evaluate 202 * @notif: the struct that holds all notification related information 203 * @notify_lock: A lock for all notification-related accesses. 204 * @wqh: A wait queue for poll if a notifier is in use. 205 * 206 * seccomp_filter objects are organized in a tree linked via the @prev 207 * pointer. For any task, it appears to be a singly-linked list starting 208 * with current->seccomp.filter, the most recently attached or inherited filter. 209 * However, multiple filters may share a @prev node, by way of fork(), which 210 * results in a unidirectional tree existing in memory. This is similar to 211 * how namespaces work. 212 * 213 * seccomp_filter objects should never be modified after being attached 214 * to a task_struct (other than @refs). 215 */ 216 struct seccomp_filter { 217 refcount_t refs; 218 refcount_t users; 219 bool log; 220 struct action_cache cache; 221 struct seccomp_filter *prev; 222 struct bpf_prog *prog; 223 struct notification *notif; 224 struct mutex notify_lock; 225 wait_queue_head_t wqh; 226 }; 227 228 /* Limit any path through the tree to 256KB worth of instructions. */ 229 #define MAX_INSNS_PER_PATH ((1 << 18) / sizeof(struct sock_filter)) 230 231 /* 232 * Endianness is explicitly ignored and left for BPF program authors to manage 233 * as per the specific architecture. 234 */ 235 static void populate_seccomp_data(struct seccomp_data *sd) 236 { 237 /* 238 * Instead of using current_pt_reg(), we're already doing the work 239 * to safely fetch "current", so just use "task" everywhere below. 240 */ 241 struct task_struct *task = current; 242 struct pt_regs *regs = task_pt_regs(task); 243 unsigned long args[6]; 244 245 sd->nr = syscall_get_nr(task, regs); 246 sd->arch = syscall_get_arch(task); 247 syscall_get_arguments(task, regs, args); 248 sd->args[0] = args[0]; 249 sd->args[1] = args[1]; 250 sd->args[2] = args[2]; 251 sd->args[3] = args[3]; 252 sd->args[4] = args[4]; 253 sd->args[5] = args[5]; 254 sd->instruction_pointer = KSTK_EIP(task); 255 } 256 257 /** 258 * seccomp_check_filter - verify seccomp filter code 259 * @filter: filter to verify 260 * @flen: length of filter 261 * 262 * Takes a previously checked filter (by bpf_check_classic) and 263 * redirects all filter code that loads struct sk_buff data 264 * and related data through seccomp_bpf_load. It also 265 * enforces length and alignment checking of those loads. 266 * 267 * Returns 0 if the rule set is legal or -EINVAL if not. 268 */ 269 static int seccomp_check_filter(struct sock_filter *filter, unsigned int flen) 270 { 271 int pc; 272 for (pc = 0; pc < flen; pc++) { 273 struct sock_filter *ftest = &filter[pc]; 274 u16 code = ftest->code; 275 u32 k = ftest->k; 276 277 switch (code) { 278 case BPF_LD | BPF_W | BPF_ABS: 279 ftest->code = BPF_LDX | BPF_W | BPF_ABS; 280 /* 32-bit aligned and not out of bounds. */ 281 if (k >= sizeof(struct seccomp_data) || k & 3) 282 return -EINVAL; 283 continue; 284 case BPF_LD | BPF_W | BPF_LEN: 285 ftest->code = BPF_LD | BPF_IMM; 286 ftest->k = sizeof(struct seccomp_data); 287 continue; 288 case BPF_LDX | BPF_W | BPF_LEN: 289 ftest->code = BPF_LDX | BPF_IMM; 290 ftest->k = sizeof(struct seccomp_data); 291 continue; 292 /* Explicitly include allowed calls. */ 293 case BPF_RET | BPF_K: 294 case BPF_RET | BPF_A: 295 case BPF_ALU | BPF_ADD | BPF_K: 296 case BPF_ALU | BPF_ADD | BPF_X: 297 case BPF_ALU | BPF_SUB | BPF_K: 298 case BPF_ALU | BPF_SUB | BPF_X: 299 case BPF_ALU | BPF_MUL | BPF_K: 300 case BPF_ALU | BPF_MUL | BPF_X: 301 case BPF_ALU | BPF_DIV | BPF_K: 302 case BPF_ALU | BPF_DIV | BPF_X: 303 case BPF_ALU | BPF_AND | BPF_K: 304 case BPF_ALU | BPF_AND | BPF_X: 305 case BPF_ALU | BPF_OR | BPF_K: 306 case BPF_ALU | BPF_OR | BPF_X: 307 case BPF_ALU | BPF_XOR | BPF_K: 308 case BPF_ALU | BPF_XOR | BPF_X: 309 case BPF_ALU | BPF_LSH | BPF_K: 310 case BPF_ALU | BPF_LSH | BPF_X: 311 case BPF_ALU | BPF_RSH | BPF_K: 312 case BPF_ALU | BPF_RSH | BPF_X: 313 case BPF_ALU | BPF_NEG: 314 case BPF_LD | BPF_IMM: 315 case BPF_LDX | BPF_IMM: 316 case BPF_MISC | BPF_TAX: 317 case BPF_MISC | BPF_TXA: 318 case BPF_LD | BPF_MEM: 319 case BPF_LDX | BPF_MEM: 320 case BPF_ST: 321 case BPF_STX: 322 case BPF_JMP | BPF_JA: 323 case BPF_JMP | BPF_JEQ | BPF_K: 324 case BPF_JMP | BPF_JEQ | BPF_X: 325 case BPF_JMP | BPF_JGE | BPF_K: 326 case BPF_JMP | BPF_JGE | BPF_X: 327 case BPF_JMP | BPF_JGT | BPF_K: 328 case BPF_JMP | BPF_JGT | BPF_X: 329 case BPF_JMP | BPF_JSET | BPF_K: 330 case BPF_JMP | BPF_JSET | BPF_X: 331 continue; 332 default: 333 return -EINVAL; 334 } 335 } 336 return 0; 337 } 338 339 #ifdef SECCOMP_ARCH_NATIVE 340 static inline bool seccomp_cache_check_allow_bitmap(const void *bitmap, 341 size_t bitmap_size, 342 int syscall_nr) 343 { 344 if (unlikely(syscall_nr < 0 || syscall_nr >= bitmap_size)) 345 return false; 346 syscall_nr = array_index_nospec(syscall_nr, bitmap_size); 347 348 return test_bit(syscall_nr, bitmap); 349 } 350 351 /** 352 * seccomp_cache_check_allow - lookup seccomp cache 353 * @sfilter: The seccomp filter 354 * @sd: The seccomp data to lookup the cache with 355 * 356 * Returns true if the seccomp_data is cached and allowed. 357 */ 358 static inline bool seccomp_cache_check_allow(const struct seccomp_filter *sfilter, 359 const struct seccomp_data *sd) 360 { 361 int syscall_nr = sd->nr; 362 const struct action_cache *cache = &sfilter->cache; 363 364 #ifndef SECCOMP_ARCH_COMPAT 365 /* A native-only architecture doesn't need to check sd->arch. */ 366 return seccomp_cache_check_allow_bitmap(cache->allow_native, 367 SECCOMP_ARCH_NATIVE_NR, 368 syscall_nr); 369 #else 370 if (likely(sd->arch == SECCOMP_ARCH_NATIVE)) 371 return seccomp_cache_check_allow_bitmap(cache->allow_native, 372 SECCOMP_ARCH_NATIVE_NR, 373 syscall_nr); 374 if (likely(sd->arch == SECCOMP_ARCH_COMPAT)) 375 return seccomp_cache_check_allow_bitmap(cache->allow_compat, 376 SECCOMP_ARCH_COMPAT_NR, 377 syscall_nr); 378 #endif /* SECCOMP_ARCH_COMPAT */ 379 380 WARN_ON_ONCE(true); 381 return false; 382 } 383 #endif /* SECCOMP_ARCH_NATIVE */ 384 385 /** 386 * seccomp_run_filters - evaluates all seccomp filters against @sd 387 * @sd: optional seccomp data to be passed to filters 388 * @match: stores struct seccomp_filter that resulted in the return value, 389 * unless filter returned SECCOMP_RET_ALLOW, in which case it will 390 * be unchanged. 391 * 392 * Returns valid seccomp BPF response codes. 393 */ 394 #define ACTION_ONLY(ret) ((s32)((ret) & (SECCOMP_RET_ACTION_FULL))) 395 static u32 seccomp_run_filters(const struct seccomp_data *sd, 396 struct seccomp_filter **match) 397 { 398 u32 ret = SECCOMP_RET_ALLOW; 399 /* Make sure cross-thread synced filter points somewhere sane. */ 400 struct seccomp_filter *f = 401 READ_ONCE(current->seccomp.filter); 402 403 /* Ensure unexpected behavior doesn't result in failing open. */ 404 if (WARN_ON(f == NULL)) 405 return SECCOMP_RET_KILL_PROCESS; 406 407 if (seccomp_cache_check_allow(f, sd)) 408 return SECCOMP_RET_ALLOW; 409 410 /* 411 * All filters in the list are evaluated and the lowest BPF return 412 * value always takes priority (ignoring the DATA). 413 */ 414 for (; f; f = f->prev) { 415 u32 cur_ret = bpf_prog_run_pin_on_cpu(f->prog, sd); 416 417 if (ACTION_ONLY(cur_ret) < ACTION_ONLY(ret)) { 418 ret = cur_ret; 419 *match = f; 420 } 421 } 422 return ret; 423 } 424 #endif /* CONFIG_SECCOMP_FILTER */ 425 426 static inline bool seccomp_may_assign_mode(unsigned long seccomp_mode) 427 { 428 assert_spin_locked(¤t->sighand->siglock); 429 430 if (current->seccomp.mode && current->seccomp.mode != seccomp_mode) 431 return false; 432 433 return true; 434 } 435 436 void __weak arch_seccomp_spec_mitigate(struct task_struct *task) { } 437 438 static inline void seccomp_assign_mode(struct task_struct *task, 439 unsigned long seccomp_mode, 440 unsigned long flags) 441 { 442 assert_spin_locked(&task->sighand->siglock); 443 444 task->seccomp.mode = seccomp_mode; 445 /* 446 * Make sure SYSCALL_WORK_SECCOMP cannot be set before the mode (and 447 * filter) is set. 448 */ 449 smp_mb__before_atomic(); 450 /* Assume default seccomp processes want spec flaw mitigation. */ 451 if ((flags & SECCOMP_FILTER_FLAG_SPEC_ALLOW) == 0) 452 arch_seccomp_spec_mitigate(task); 453 set_task_syscall_work(task, SECCOMP); 454 } 455 456 #ifdef CONFIG_SECCOMP_FILTER 457 /* Returns 1 if the parent is an ancestor of the child. */ 458 static int is_ancestor(struct seccomp_filter *parent, 459 struct seccomp_filter *child) 460 { 461 /* NULL is the root ancestor. */ 462 if (parent == NULL) 463 return 1; 464 for (; child; child = child->prev) 465 if (child == parent) 466 return 1; 467 return 0; 468 } 469 470 /** 471 * seccomp_can_sync_threads: checks if all threads can be synchronized 472 * 473 * Expects sighand and cred_guard_mutex locks to be held. 474 * 475 * Returns 0 on success, -ve on error, or the pid of a thread which was 476 * either not in the correct seccomp mode or did not have an ancestral 477 * seccomp filter. 478 */ 479 static inline pid_t seccomp_can_sync_threads(void) 480 { 481 struct task_struct *thread, *caller; 482 483 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 484 assert_spin_locked(¤t->sighand->siglock); 485 486 /* Validate all threads being eligible for synchronization. */ 487 caller = current; 488 for_each_thread(caller, thread) { 489 pid_t failed; 490 491 /* Skip current, since it is initiating the sync. */ 492 if (thread == caller) 493 continue; 494 495 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED || 496 (thread->seccomp.mode == SECCOMP_MODE_FILTER && 497 is_ancestor(thread->seccomp.filter, 498 caller->seccomp.filter))) 499 continue; 500 501 /* Return the first thread that cannot be synchronized. */ 502 failed = task_pid_vnr(thread); 503 /* If the pid cannot be resolved, then return -ESRCH */ 504 if (WARN_ON(failed == 0)) 505 failed = -ESRCH; 506 return failed; 507 } 508 509 return 0; 510 } 511 512 static inline void seccomp_filter_free(struct seccomp_filter *filter) 513 { 514 if (filter) { 515 bpf_prog_destroy(filter->prog); 516 kfree(filter); 517 } 518 } 519 520 static void __seccomp_filter_orphan(struct seccomp_filter *orig) 521 { 522 while (orig && refcount_dec_and_test(&orig->users)) { 523 if (waitqueue_active(&orig->wqh)) 524 wake_up_poll(&orig->wqh, EPOLLHUP); 525 orig = orig->prev; 526 } 527 } 528 529 static void __put_seccomp_filter(struct seccomp_filter *orig) 530 { 531 /* Clean up single-reference branches iteratively. */ 532 while (orig && refcount_dec_and_test(&orig->refs)) { 533 struct seccomp_filter *freeme = orig; 534 orig = orig->prev; 535 seccomp_filter_free(freeme); 536 } 537 } 538 539 static void __seccomp_filter_release(struct seccomp_filter *orig) 540 { 541 /* Notify about any unused filters in the task's former filter tree. */ 542 __seccomp_filter_orphan(orig); 543 /* Finally drop all references to the task's former tree. */ 544 __put_seccomp_filter(orig); 545 } 546 547 /** 548 * seccomp_filter_release - Detach the task from its filter tree, 549 * drop its reference count, and notify 550 * about unused filters 551 * 552 * This function should only be called when the task is exiting as 553 * it detaches it from its filter tree. As such, READ_ONCE() and 554 * barriers are not needed here, as would normally be needed. 555 */ 556 void seccomp_filter_release(struct task_struct *tsk) 557 { 558 struct seccomp_filter *orig = tsk->seccomp.filter; 559 560 /* We are effectively holding the siglock by not having any sighand. */ 561 WARN_ON(tsk->sighand != NULL); 562 563 /* Detach task from its filter tree. */ 564 tsk->seccomp.filter = NULL; 565 __seccomp_filter_release(orig); 566 } 567 568 /** 569 * seccomp_sync_threads: sets all threads to use current's filter 570 * 571 * Expects sighand and cred_guard_mutex locks to be held, and for 572 * seccomp_can_sync_threads() to have returned success already 573 * without dropping the locks. 574 * 575 */ 576 static inline void seccomp_sync_threads(unsigned long flags) 577 { 578 struct task_struct *thread, *caller; 579 580 BUG_ON(!mutex_is_locked(¤t->signal->cred_guard_mutex)); 581 assert_spin_locked(¤t->sighand->siglock); 582 583 /* Synchronize all threads. */ 584 caller = current; 585 for_each_thread(caller, thread) { 586 /* Skip current, since it needs no changes. */ 587 if (thread == caller) 588 continue; 589 590 /* Get a task reference for the new leaf node. */ 591 get_seccomp_filter(caller); 592 593 /* 594 * Drop the task reference to the shared ancestor since 595 * current's path will hold a reference. (This also 596 * allows a put before the assignment.) 597 */ 598 __seccomp_filter_release(thread->seccomp.filter); 599 600 /* Make our new filter tree visible. */ 601 smp_store_release(&thread->seccomp.filter, 602 caller->seccomp.filter); 603 atomic_set(&thread->seccomp.filter_count, 604 atomic_read(&caller->seccomp.filter_count)); 605 606 /* 607 * Don't let an unprivileged task work around 608 * the no_new_privs restriction by creating 609 * a thread that sets it up, enters seccomp, 610 * then dies. 611 */ 612 if (task_no_new_privs(caller)) 613 task_set_no_new_privs(thread); 614 615 /* 616 * Opt the other thread into seccomp if needed. 617 * As threads are considered to be trust-realm 618 * equivalent (see ptrace_may_access), it is safe to 619 * allow one thread to transition the other. 620 */ 621 if (thread->seccomp.mode == SECCOMP_MODE_DISABLED) 622 seccomp_assign_mode(thread, SECCOMP_MODE_FILTER, 623 flags); 624 } 625 } 626 627 /** 628 * seccomp_prepare_filter: Prepares a seccomp filter for use. 629 * @fprog: BPF program to install 630 * 631 * Returns filter on success or an ERR_PTR on failure. 632 */ 633 static struct seccomp_filter *seccomp_prepare_filter(struct sock_fprog *fprog) 634 { 635 struct seccomp_filter *sfilter; 636 int ret; 637 const bool save_orig = 638 #if defined(CONFIG_CHECKPOINT_RESTORE) || defined(SECCOMP_ARCH_NATIVE) 639 true; 640 #else 641 false; 642 #endif 643 644 if (fprog->len == 0 || fprog->len > BPF_MAXINSNS) 645 return ERR_PTR(-EINVAL); 646 647 BUG_ON(INT_MAX / fprog->len < sizeof(struct sock_filter)); 648 649 /* 650 * Installing a seccomp filter requires that the task has 651 * CAP_SYS_ADMIN in its namespace or be running with no_new_privs. 652 * This avoids scenarios where unprivileged tasks can affect the 653 * behavior of privileged children. 654 */ 655 if (!task_no_new_privs(current) && 656 !ns_capable_noaudit(current_user_ns(), CAP_SYS_ADMIN)) 657 return ERR_PTR(-EACCES); 658 659 /* Allocate a new seccomp_filter */ 660 sfilter = kzalloc(sizeof(*sfilter), GFP_KERNEL | __GFP_NOWARN); 661 if (!sfilter) 662 return ERR_PTR(-ENOMEM); 663 664 mutex_init(&sfilter->notify_lock); 665 ret = bpf_prog_create_from_user(&sfilter->prog, fprog, 666 seccomp_check_filter, save_orig); 667 if (ret < 0) { 668 kfree(sfilter); 669 return ERR_PTR(ret); 670 } 671 672 refcount_set(&sfilter->refs, 1); 673 refcount_set(&sfilter->users, 1); 674 init_waitqueue_head(&sfilter->wqh); 675 676 return sfilter; 677 } 678 679 /** 680 * seccomp_prepare_user_filter - prepares a user-supplied sock_fprog 681 * @user_filter: pointer to the user data containing a sock_fprog. 682 * 683 * Returns 0 on success and non-zero otherwise. 684 */ 685 static struct seccomp_filter * 686 seccomp_prepare_user_filter(const char __user *user_filter) 687 { 688 struct sock_fprog fprog; 689 struct seccomp_filter *filter = ERR_PTR(-EFAULT); 690 691 #ifdef CONFIG_COMPAT 692 if (in_compat_syscall()) { 693 struct compat_sock_fprog fprog32; 694 if (copy_from_user(&fprog32, user_filter, sizeof(fprog32))) 695 goto out; 696 fprog.len = fprog32.len; 697 fprog.filter = compat_ptr(fprog32.filter); 698 } else /* falls through to the if below. */ 699 #endif 700 if (copy_from_user(&fprog, user_filter, sizeof(fprog))) 701 goto out; 702 filter = seccomp_prepare_filter(&fprog); 703 out: 704 return filter; 705 } 706 707 #ifdef SECCOMP_ARCH_NATIVE 708 /** 709 * seccomp_is_const_allow - check if filter is constant allow with given data 710 * @fprog: The BPF programs 711 * @sd: The seccomp data to check against, only syscall number and arch 712 * number are considered constant. 713 */ 714 static bool seccomp_is_const_allow(struct sock_fprog_kern *fprog, 715 struct seccomp_data *sd) 716 { 717 unsigned int reg_value = 0; 718 unsigned int pc; 719 bool op_res; 720 721 if (WARN_ON_ONCE(!fprog)) 722 return false; 723 724 for (pc = 0; pc < fprog->len; pc++) { 725 struct sock_filter *insn = &fprog->filter[pc]; 726 u16 code = insn->code; 727 u32 k = insn->k; 728 729 switch (code) { 730 case BPF_LD | BPF_W | BPF_ABS: 731 switch (k) { 732 case offsetof(struct seccomp_data, nr): 733 reg_value = sd->nr; 734 break; 735 case offsetof(struct seccomp_data, arch): 736 reg_value = sd->arch; 737 break; 738 default: 739 /* can't optimize (non-constant value load) */ 740 return false; 741 } 742 break; 743 case BPF_RET | BPF_K: 744 /* reached return with constant values only, check allow */ 745 return k == SECCOMP_RET_ALLOW; 746 case BPF_JMP | BPF_JA: 747 pc += insn->k; 748 break; 749 case BPF_JMP | BPF_JEQ | BPF_K: 750 case BPF_JMP | BPF_JGE | BPF_K: 751 case BPF_JMP | BPF_JGT | BPF_K: 752 case BPF_JMP | BPF_JSET | BPF_K: 753 switch (BPF_OP(code)) { 754 case BPF_JEQ: 755 op_res = reg_value == k; 756 break; 757 case BPF_JGE: 758 op_res = reg_value >= k; 759 break; 760 case BPF_JGT: 761 op_res = reg_value > k; 762 break; 763 case BPF_JSET: 764 op_res = !!(reg_value & k); 765 break; 766 default: 767 /* can't optimize (unknown jump) */ 768 return false; 769 } 770 771 pc += op_res ? insn->jt : insn->jf; 772 break; 773 case BPF_ALU | BPF_AND | BPF_K: 774 reg_value &= k; 775 break; 776 default: 777 /* can't optimize (unknown insn) */ 778 return false; 779 } 780 } 781 782 /* ran off the end of the filter?! */ 783 WARN_ON(1); 784 return false; 785 } 786 787 static void seccomp_cache_prepare_bitmap(struct seccomp_filter *sfilter, 788 void *bitmap, const void *bitmap_prev, 789 size_t bitmap_size, int arch) 790 { 791 struct sock_fprog_kern *fprog = sfilter->prog->orig_prog; 792 struct seccomp_data sd; 793 int nr; 794 795 if (bitmap_prev) { 796 /* The new filter must be as restrictive as the last. */ 797 bitmap_copy(bitmap, bitmap_prev, bitmap_size); 798 } else { 799 /* Before any filters, all syscalls are always allowed. */ 800 bitmap_fill(bitmap, bitmap_size); 801 } 802 803 for (nr = 0; nr < bitmap_size; nr++) { 804 /* No bitmap change: not a cacheable action. */ 805 if (!test_bit(nr, bitmap)) 806 continue; 807 808 sd.nr = nr; 809 sd.arch = arch; 810 811 /* No bitmap change: continue to always allow. */ 812 if (seccomp_is_const_allow(fprog, &sd)) 813 continue; 814 815 /* 816 * Not a cacheable action: always run filters. 817 * atomic clear_bit() not needed, filter not visible yet. 818 */ 819 __clear_bit(nr, bitmap); 820 } 821 } 822 823 /** 824 * seccomp_cache_prepare - emulate the filter to find cacheable syscalls 825 * @sfilter: The seccomp filter 826 * 827 * Returns 0 if successful or -errno if error occurred. 828 */ 829 static void seccomp_cache_prepare(struct seccomp_filter *sfilter) 830 { 831 struct action_cache *cache = &sfilter->cache; 832 const struct action_cache *cache_prev = 833 sfilter->prev ? &sfilter->prev->cache : NULL; 834 835 seccomp_cache_prepare_bitmap(sfilter, cache->allow_native, 836 cache_prev ? cache_prev->allow_native : NULL, 837 SECCOMP_ARCH_NATIVE_NR, 838 SECCOMP_ARCH_NATIVE); 839 840 #ifdef SECCOMP_ARCH_COMPAT 841 seccomp_cache_prepare_bitmap(sfilter, cache->allow_compat, 842 cache_prev ? cache_prev->allow_compat : NULL, 843 SECCOMP_ARCH_COMPAT_NR, 844 SECCOMP_ARCH_COMPAT); 845 #endif /* SECCOMP_ARCH_COMPAT */ 846 } 847 #endif /* SECCOMP_ARCH_NATIVE */ 848 849 /** 850 * seccomp_attach_filter: validate and attach filter 851 * @flags: flags to change filter behavior 852 * @filter: seccomp filter to add to the current process 853 * 854 * Caller must be holding current->sighand->siglock lock. 855 * 856 * Returns 0 on success, -ve on error, or 857 * - in TSYNC mode: the pid of a thread which was either not in the correct 858 * seccomp mode or did not have an ancestral seccomp filter 859 * - in NEW_LISTENER mode: the fd of the new listener 860 */ 861 static long seccomp_attach_filter(unsigned int flags, 862 struct seccomp_filter *filter) 863 { 864 unsigned long total_insns; 865 struct seccomp_filter *walker; 866 867 assert_spin_locked(¤t->sighand->siglock); 868 869 /* Validate resulting filter length. */ 870 total_insns = filter->prog->len; 871 for (walker = current->seccomp.filter; walker; walker = walker->prev) 872 total_insns += walker->prog->len + 4; /* 4 instr penalty */ 873 if (total_insns > MAX_INSNS_PER_PATH) 874 return -ENOMEM; 875 876 /* If thread sync has been requested, check that it is possible. */ 877 if (flags & SECCOMP_FILTER_FLAG_TSYNC) { 878 int ret; 879 880 ret = seccomp_can_sync_threads(); 881 if (ret) { 882 if (flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) 883 return -ESRCH; 884 else 885 return ret; 886 } 887 } 888 889 /* Set log flag, if present. */ 890 if (flags & SECCOMP_FILTER_FLAG_LOG) 891 filter->log = true; 892 893 /* 894 * If there is an existing filter, make it the prev and don't drop its 895 * task reference. 896 */ 897 filter->prev = current->seccomp.filter; 898 seccomp_cache_prepare(filter); 899 current->seccomp.filter = filter; 900 atomic_inc(¤t->seccomp.filter_count); 901 902 /* Now that the new filter is in place, synchronize to all threads. */ 903 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 904 seccomp_sync_threads(flags); 905 906 return 0; 907 } 908 909 static void __get_seccomp_filter(struct seccomp_filter *filter) 910 { 911 refcount_inc(&filter->refs); 912 } 913 914 /* get_seccomp_filter - increments the reference count of the filter on @tsk */ 915 void get_seccomp_filter(struct task_struct *tsk) 916 { 917 struct seccomp_filter *orig = tsk->seccomp.filter; 918 if (!orig) 919 return; 920 __get_seccomp_filter(orig); 921 refcount_inc(&orig->users); 922 } 923 924 #endif /* CONFIG_SECCOMP_FILTER */ 925 926 /* For use with seccomp_actions_logged */ 927 #define SECCOMP_LOG_KILL_PROCESS (1 << 0) 928 #define SECCOMP_LOG_KILL_THREAD (1 << 1) 929 #define SECCOMP_LOG_TRAP (1 << 2) 930 #define SECCOMP_LOG_ERRNO (1 << 3) 931 #define SECCOMP_LOG_TRACE (1 << 4) 932 #define SECCOMP_LOG_LOG (1 << 5) 933 #define SECCOMP_LOG_ALLOW (1 << 6) 934 #define SECCOMP_LOG_USER_NOTIF (1 << 7) 935 936 static u32 seccomp_actions_logged = SECCOMP_LOG_KILL_PROCESS | 937 SECCOMP_LOG_KILL_THREAD | 938 SECCOMP_LOG_TRAP | 939 SECCOMP_LOG_ERRNO | 940 SECCOMP_LOG_USER_NOTIF | 941 SECCOMP_LOG_TRACE | 942 SECCOMP_LOG_LOG; 943 944 static inline void seccomp_log(unsigned long syscall, long signr, u32 action, 945 bool requested) 946 { 947 bool log = false; 948 949 switch (action) { 950 case SECCOMP_RET_ALLOW: 951 break; 952 case SECCOMP_RET_TRAP: 953 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRAP; 954 break; 955 case SECCOMP_RET_ERRNO: 956 log = requested && seccomp_actions_logged & SECCOMP_LOG_ERRNO; 957 break; 958 case SECCOMP_RET_TRACE: 959 log = requested && seccomp_actions_logged & SECCOMP_LOG_TRACE; 960 break; 961 case SECCOMP_RET_USER_NOTIF: 962 log = requested && seccomp_actions_logged & SECCOMP_LOG_USER_NOTIF; 963 break; 964 case SECCOMP_RET_LOG: 965 log = seccomp_actions_logged & SECCOMP_LOG_LOG; 966 break; 967 case SECCOMP_RET_KILL_THREAD: 968 log = seccomp_actions_logged & SECCOMP_LOG_KILL_THREAD; 969 break; 970 case SECCOMP_RET_KILL_PROCESS: 971 default: 972 log = seccomp_actions_logged & SECCOMP_LOG_KILL_PROCESS; 973 } 974 975 /* 976 * Emit an audit message when the action is RET_KILL_*, RET_LOG, or the 977 * FILTER_FLAG_LOG bit was set. The admin has the ability to silence 978 * any action from being logged by removing the action name from the 979 * seccomp_actions_logged sysctl. 980 */ 981 if (!log) 982 return; 983 984 audit_seccomp(syscall, signr, action); 985 } 986 987 /* 988 * Secure computing mode 1 allows only read/write/exit/sigreturn. 989 * To be fully secure this must be combined with rlimit 990 * to limit the stack allocations too. 991 */ 992 static const int mode1_syscalls[] = { 993 __NR_seccomp_read, __NR_seccomp_write, __NR_seccomp_exit, __NR_seccomp_sigreturn, 994 -1, /* negative terminated */ 995 }; 996 997 static void __secure_computing_strict(int this_syscall) 998 { 999 const int *allowed_syscalls = mode1_syscalls; 1000 #ifdef CONFIG_COMPAT 1001 if (in_compat_syscall()) 1002 allowed_syscalls = get_compat_mode1_syscalls(); 1003 #endif 1004 do { 1005 if (*allowed_syscalls == this_syscall) 1006 return; 1007 } while (*++allowed_syscalls != -1); 1008 1009 #ifdef SECCOMP_DEBUG 1010 dump_stack(); 1011 #endif 1012 seccomp_log(this_syscall, SIGKILL, SECCOMP_RET_KILL_THREAD, true); 1013 do_exit(SIGKILL); 1014 } 1015 1016 #ifndef CONFIG_HAVE_ARCH_SECCOMP_FILTER 1017 void secure_computing_strict(int this_syscall) 1018 { 1019 int mode = current->seccomp.mode; 1020 1021 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1022 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1023 return; 1024 1025 if (mode == SECCOMP_MODE_DISABLED) 1026 return; 1027 else if (mode == SECCOMP_MODE_STRICT) 1028 __secure_computing_strict(this_syscall); 1029 else 1030 BUG(); 1031 } 1032 #else 1033 1034 #ifdef CONFIG_SECCOMP_FILTER 1035 static u64 seccomp_next_notify_id(struct seccomp_filter *filter) 1036 { 1037 /* 1038 * Note: overflow is ok here, the id just needs to be unique per 1039 * filter. 1040 */ 1041 lockdep_assert_held(&filter->notify_lock); 1042 return filter->notif->next_id++; 1043 } 1044 1045 static void seccomp_handle_addfd(struct seccomp_kaddfd *addfd, struct seccomp_knotif *n) 1046 { 1047 int fd; 1048 1049 /* 1050 * Remove the notification, and reset the list pointers, indicating 1051 * that it has been handled. 1052 */ 1053 list_del_init(&addfd->list); 1054 if (!addfd->setfd) 1055 fd = receive_fd(addfd->file, addfd->flags); 1056 else 1057 fd = receive_fd_replace(addfd->fd, addfd->file, addfd->flags); 1058 addfd->ret = fd; 1059 1060 if (addfd->ioctl_flags & SECCOMP_ADDFD_FLAG_SEND) { 1061 /* If we fail reset and return an error to the notifier */ 1062 if (fd < 0) { 1063 n->state = SECCOMP_NOTIFY_SENT; 1064 } else { 1065 /* Return the FD we just added */ 1066 n->flags = 0; 1067 n->error = 0; 1068 n->val = fd; 1069 } 1070 } 1071 1072 /* 1073 * Mark the notification as completed. From this point, addfd mem 1074 * might be invalidated and we can't safely read it anymore. 1075 */ 1076 complete(&addfd->completion); 1077 } 1078 1079 static int seccomp_do_user_notification(int this_syscall, 1080 struct seccomp_filter *match, 1081 const struct seccomp_data *sd) 1082 { 1083 int err; 1084 u32 flags = 0; 1085 long ret = 0; 1086 struct seccomp_knotif n = {}; 1087 struct seccomp_kaddfd *addfd, *tmp; 1088 1089 mutex_lock(&match->notify_lock); 1090 err = -ENOSYS; 1091 if (!match->notif) 1092 goto out; 1093 1094 n.task = current; 1095 n.state = SECCOMP_NOTIFY_INIT; 1096 n.data = sd; 1097 n.id = seccomp_next_notify_id(match); 1098 init_completion(&n.ready); 1099 list_add(&n.list, &match->notif->notifications); 1100 INIT_LIST_HEAD(&n.addfd); 1101 1102 up(&match->notif->request); 1103 wake_up_poll(&match->wqh, EPOLLIN | EPOLLRDNORM); 1104 1105 /* 1106 * This is where we wait for a reply from userspace. 1107 */ 1108 do { 1109 mutex_unlock(&match->notify_lock); 1110 err = wait_for_completion_interruptible(&n.ready); 1111 mutex_lock(&match->notify_lock); 1112 if (err != 0) 1113 goto interrupted; 1114 1115 addfd = list_first_entry_or_null(&n.addfd, 1116 struct seccomp_kaddfd, list); 1117 /* Check if we were woken up by a addfd message */ 1118 if (addfd) 1119 seccomp_handle_addfd(addfd, &n); 1120 1121 } while (n.state != SECCOMP_NOTIFY_REPLIED); 1122 1123 ret = n.val; 1124 err = n.error; 1125 flags = n.flags; 1126 1127 interrupted: 1128 /* If there were any pending addfd calls, clear them out */ 1129 list_for_each_entry_safe(addfd, tmp, &n.addfd, list) { 1130 /* The process went away before we got a chance to handle it */ 1131 addfd->ret = -ESRCH; 1132 list_del_init(&addfd->list); 1133 complete(&addfd->completion); 1134 } 1135 1136 /* 1137 * Note that it's possible the listener died in between the time when 1138 * we were notified of a response (or a signal) and when we were able to 1139 * re-acquire the lock, so only delete from the list if the 1140 * notification actually exists. 1141 * 1142 * Also note that this test is only valid because there's no way to 1143 * *reattach* to a notifier right now. If one is added, we'll need to 1144 * keep track of the notif itself and make sure they match here. 1145 */ 1146 if (match->notif) 1147 list_del(&n.list); 1148 out: 1149 mutex_unlock(&match->notify_lock); 1150 1151 /* Userspace requests to continue the syscall. */ 1152 if (flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1153 return 0; 1154 1155 syscall_set_return_value(current, current_pt_regs(), 1156 err, ret); 1157 return -1; 1158 } 1159 1160 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1161 const bool recheck_after_trace) 1162 { 1163 u32 filter_ret, action; 1164 struct seccomp_filter *match = NULL; 1165 int data; 1166 struct seccomp_data sd_local; 1167 1168 /* 1169 * Make sure that any changes to mode from another thread have 1170 * been seen after SYSCALL_WORK_SECCOMP was seen. 1171 */ 1172 smp_rmb(); 1173 1174 if (!sd) { 1175 populate_seccomp_data(&sd_local); 1176 sd = &sd_local; 1177 } 1178 1179 filter_ret = seccomp_run_filters(sd, &match); 1180 data = filter_ret & SECCOMP_RET_DATA; 1181 action = filter_ret & SECCOMP_RET_ACTION_FULL; 1182 1183 switch (action) { 1184 case SECCOMP_RET_ERRNO: 1185 /* Set low-order bits as an errno, capped at MAX_ERRNO. */ 1186 if (data > MAX_ERRNO) 1187 data = MAX_ERRNO; 1188 syscall_set_return_value(current, current_pt_regs(), 1189 -data, 0); 1190 goto skip; 1191 1192 case SECCOMP_RET_TRAP: 1193 /* Show the handler the original registers. */ 1194 syscall_rollback(current, current_pt_regs()); 1195 /* Let the filter pass back 16 bits of data. */ 1196 force_sig_seccomp(this_syscall, data, false); 1197 goto skip; 1198 1199 case SECCOMP_RET_TRACE: 1200 /* We've been put in this state by the ptracer already. */ 1201 if (recheck_after_trace) 1202 return 0; 1203 1204 /* ENOSYS these calls if there is no tracer attached. */ 1205 if (!ptrace_event_enabled(current, PTRACE_EVENT_SECCOMP)) { 1206 syscall_set_return_value(current, 1207 current_pt_regs(), 1208 -ENOSYS, 0); 1209 goto skip; 1210 } 1211 1212 /* Allow the BPF to provide the event message */ 1213 ptrace_event(PTRACE_EVENT_SECCOMP, data); 1214 /* 1215 * The delivery of a fatal signal during event 1216 * notification may silently skip tracer notification, 1217 * which could leave us with a potentially unmodified 1218 * syscall that the tracer would have liked to have 1219 * changed. Since the process is about to die, we just 1220 * force the syscall to be skipped and let the signal 1221 * kill the process and correctly handle any tracer exit 1222 * notifications. 1223 */ 1224 if (fatal_signal_pending(current)) 1225 goto skip; 1226 /* Check if the tracer forced the syscall to be skipped. */ 1227 this_syscall = syscall_get_nr(current, current_pt_regs()); 1228 if (this_syscall < 0) 1229 goto skip; 1230 1231 /* 1232 * Recheck the syscall, since it may have changed. This 1233 * intentionally uses a NULL struct seccomp_data to force 1234 * a reload of all registers. This does not goto skip since 1235 * a skip would have already been reported. 1236 */ 1237 if (__seccomp_filter(this_syscall, NULL, true)) 1238 return -1; 1239 1240 return 0; 1241 1242 case SECCOMP_RET_USER_NOTIF: 1243 if (seccomp_do_user_notification(this_syscall, match, sd)) 1244 goto skip; 1245 1246 return 0; 1247 1248 case SECCOMP_RET_LOG: 1249 seccomp_log(this_syscall, 0, action, true); 1250 return 0; 1251 1252 case SECCOMP_RET_ALLOW: 1253 /* 1254 * Note that the "match" filter will always be NULL for 1255 * this action since SECCOMP_RET_ALLOW is the starting 1256 * state in seccomp_run_filters(). 1257 */ 1258 return 0; 1259 1260 case SECCOMP_RET_KILL_THREAD: 1261 case SECCOMP_RET_KILL_PROCESS: 1262 default: 1263 seccomp_log(this_syscall, SIGSYS, action, true); 1264 /* Dump core only if this is the last remaining thread. */ 1265 if (action != SECCOMP_RET_KILL_THREAD || 1266 (atomic_read(¤t->signal->live) == 1)) { 1267 /* Show the original registers in the dump. */ 1268 syscall_rollback(current, current_pt_regs()); 1269 /* Trigger a coredump with SIGSYS */ 1270 force_sig_seccomp(this_syscall, data, true); 1271 } else { 1272 do_exit(SIGSYS); 1273 } 1274 return -1; /* skip the syscall go directly to signal handling */ 1275 } 1276 1277 unreachable(); 1278 1279 skip: 1280 seccomp_log(this_syscall, 0, action, match ? match->log : false); 1281 return -1; 1282 } 1283 #else 1284 static int __seccomp_filter(int this_syscall, const struct seccomp_data *sd, 1285 const bool recheck_after_trace) 1286 { 1287 BUG(); 1288 1289 return -1; 1290 } 1291 #endif 1292 1293 int __secure_computing(const struct seccomp_data *sd) 1294 { 1295 int mode = current->seccomp.mode; 1296 int this_syscall; 1297 1298 if (IS_ENABLED(CONFIG_CHECKPOINT_RESTORE) && 1299 unlikely(current->ptrace & PT_SUSPEND_SECCOMP)) 1300 return 0; 1301 1302 this_syscall = sd ? sd->nr : 1303 syscall_get_nr(current, current_pt_regs()); 1304 1305 switch (mode) { 1306 case SECCOMP_MODE_STRICT: 1307 __secure_computing_strict(this_syscall); /* may call do_exit */ 1308 return 0; 1309 case SECCOMP_MODE_FILTER: 1310 return __seccomp_filter(this_syscall, sd, false); 1311 default: 1312 BUG(); 1313 } 1314 } 1315 #endif /* CONFIG_HAVE_ARCH_SECCOMP_FILTER */ 1316 1317 long prctl_get_seccomp(void) 1318 { 1319 return current->seccomp.mode; 1320 } 1321 1322 /** 1323 * seccomp_set_mode_strict: internal function for setting strict seccomp 1324 * 1325 * Once current->seccomp.mode is non-zero, it may not be changed. 1326 * 1327 * Returns 0 on success or -EINVAL on failure. 1328 */ 1329 static long seccomp_set_mode_strict(void) 1330 { 1331 const unsigned long seccomp_mode = SECCOMP_MODE_STRICT; 1332 long ret = -EINVAL; 1333 1334 spin_lock_irq(¤t->sighand->siglock); 1335 1336 if (!seccomp_may_assign_mode(seccomp_mode)) 1337 goto out; 1338 1339 #ifdef TIF_NOTSC 1340 disable_TSC(); 1341 #endif 1342 seccomp_assign_mode(current, seccomp_mode, 0); 1343 ret = 0; 1344 1345 out: 1346 spin_unlock_irq(¤t->sighand->siglock); 1347 1348 return ret; 1349 } 1350 1351 #ifdef CONFIG_SECCOMP_FILTER 1352 static void seccomp_notify_free(struct seccomp_filter *filter) 1353 { 1354 kfree(filter->notif); 1355 filter->notif = NULL; 1356 } 1357 1358 static void seccomp_notify_detach(struct seccomp_filter *filter) 1359 { 1360 struct seccomp_knotif *knotif; 1361 1362 if (!filter) 1363 return; 1364 1365 mutex_lock(&filter->notify_lock); 1366 1367 /* 1368 * If this file is being closed because e.g. the task who owned it 1369 * died, let's wake everyone up who was waiting on us. 1370 */ 1371 list_for_each_entry(knotif, &filter->notif->notifications, list) { 1372 if (knotif->state == SECCOMP_NOTIFY_REPLIED) 1373 continue; 1374 1375 knotif->state = SECCOMP_NOTIFY_REPLIED; 1376 knotif->error = -ENOSYS; 1377 knotif->val = 0; 1378 1379 /* 1380 * We do not need to wake up any pending addfd messages, as 1381 * the notifier will do that for us, as this just looks 1382 * like a standard reply. 1383 */ 1384 complete(&knotif->ready); 1385 } 1386 1387 seccomp_notify_free(filter); 1388 mutex_unlock(&filter->notify_lock); 1389 } 1390 1391 static int seccomp_notify_release(struct inode *inode, struct file *file) 1392 { 1393 struct seccomp_filter *filter = file->private_data; 1394 1395 seccomp_notify_detach(filter); 1396 __put_seccomp_filter(filter); 1397 return 0; 1398 } 1399 1400 /* must be called with notif_lock held */ 1401 static inline struct seccomp_knotif * 1402 find_notification(struct seccomp_filter *filter, u64 id) 1403 { 1404 struct seccomp_knotif *cur; 1405 1406 lockdep_assert_held(&filter->notify_lock); 1407 1408 list_for_each_entry(cur, &filter->notif->notifications, list) { 1409 if (cur->id == id) 1410 return cur; 1411 } 1412 1413 return NULL; 1414 } 1415 1416 1417 static long seccomp_notify_recv(struct seccomp_filter *filter, 1418 void __user *buf) 1419 { 1420 struct seccomp_knotif *knotif = NULL, *cur; 1421 struct seccomp_notif unotif; 1422 ssize_t ret; 1423 1424 /* Verify that we're not given garbage to keep struct extensible. */ 1425 ret = check_zeroed_user(buf, sizeof(unotif)); 1426 if (ret < 0) 1427 return ret; 1428 if (!ret) 1429 return -EINVAL; 1430 1431 memset(&unotif, 0, sizeof(unotif)); 1432 1433 ret = down_interruptible(&filter->notif->request); 1434 if (ret < 0) 1435 return ret; 1436 1437 mutex_lock(&filter->notify_lock); 1438 list_for_each_entry(cur, &filter->notif->notifications, list) { 1439 if (cur->state == SECCOMP_NOTIFY_INIT) { 1440 knotif = cur; 1441 break; 1442 } 1443 } 1444 1445 /* 1446 * If we didn't find a notification, it could be that the task was 1447 * interrupted by a fatal signal between the time we were woken and 1448 * when we were able to acquire the rw lock. 1449 */ 1450 if (!knotif) { 1451 ret = -ENOENT; 1452 goto out; 1453 } 1454 1455 unotif.id = knotif->id; 1456 unotif.pid = task_pid_vnr(knotif->task); 1457 unotif.data = *(knotif->data); 1458 1459 knotif->state = SECCOMP_NOTIFY_SENT; 1460 wake_up_poll(&filter->wqh, EPOLLOUT | EPOLLWRNORM); 1461 ret = 0; 1462 out: 1463 mutex_unlock(&filter->notify_lock); 1464 1465 if (ret == 0 && copy_to_user(buf, &unotif, sizeof(unotif))) { 1466 ret = -EFAULT; 1467 1468 /* 1469 * Userspace screwed up. To make sure that we keep this 1470 * notification alive, let's reset it back to INIT. It 1471 * may have died when we released the lock, so we need to make 1472 * sure it's still around. 1473 */ 1474 mutex_lock(&filter->notify_lock); 1475 knotif = find_notification(filter, unotif.id); 1476 if (knotif) { 1477 knotif->state = SECCOMP_NOTIFY_INIT; 1478 up(&filter->notif->request); 1479 } 1480 mutex_unlock(&filter->notify_lock); 1481 } 1482 1483 return ret; 1484 } 1485 1486 static long seccomp_notify_send(struct seccomp_filter *filter, 1487 void __user *buf) 1488 { 1489 struct seccomp_notif_resp resp = {}; 1490 struct seccomp_knotif *knotif; 1491 long ret; 1492 1493 if (copy_from_user(&resp, buf, sizeof(resp))) 1494 return -EFAULT; 1495 1496 if (resp.flags & ~SECCOMP_USER_NOTIF_FLAG_CONTINUE) 1497 return -EINVAL; 1498 1499 if ((resp.flags & SECCOMP_USER_NOTIF_FLAG_CONTINUE) && 1500 (resp.error || resp.val)) 1501 return -EINVAL; 1502 1503 ret = mutex_lock_interruptible(&filter->notify_lock); 1504 if (ret < 0) 1505 return ret; 1506 1507 knotif = find_notification(filter, resp.id); 1508 if (!knotif) { 1509 ret = -ENOENT; 1510 goto out; 1511 } 1512 1513 /* Allow exactly one reply. */ 1514 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1515 ret = -EINPROGRESS; 1516 goto out; 1517 } 1518 1519 ret = 0; 1520 knotif->state = SECCOMP_NOTIFY_REPLIED; 1521 knotif->error = resp.error; 1522 knotif->val = resp.val; 1523 knotif->flags = resp.flags; 1524 complete(&knotif->ready); 1525 out: 1526 mutex_unlock(&filter->notify_lock); 1527 return ret; 1528 } 1529 1530 static long seccomp_notify_id_valid(struct seccomp_filter *filter, 1531 void __user *buf) 1532 { 1533 struct seccomp_knotif *knotif; 1534 u64 id; 1535 long ret; 1536 1537 if (copy_from_user(&id, buf, sizeof(id))) 1538 return -EFAULT; 1539 1540 ret = mutex_lock_interruptible(&filter->notify_lock); 1541 if (ret < 0) 1542 return ret; 1543 1544 knotif = find_notification(filter, id); 1545 if (knotif && knotif->state == SECCOMP_NOTIFY_SENT) 1546 ret = 0; 1547 else 1548 ret = -ENOENT; 1549 1550 mutex_unlock(&filter->notify_lock); 1551 return ret; 1552 } 1553 1554 static long seccomp_notify_addfd(struct seccomp_filter *filter, 1555 struct seccomp_notif_addfd __user *uaddfd, 1556 unsigned int size) 1557 { 1558 struct seccomp_notif_addfd addfd; 1559 struct seccomp_knotif *knotif; 1560 struct seccomp_kaddfd kaddfd; 1561 int ret; 1562 1563 BUILD_BUG_ON(sizeof(addfd) < SECCOMP_NOTIFY_ADDFD_SIZE_VER0); 1564 BUILD_BUG_ON(sizeof(addfd) != SECCOMP_NOTIFY_ADDFD_SIZE_LATEST); 1565 1566 if (size < SECCOMP_NOTIFY_ADDFD_SIZE_VER0 || size >= PAGE_SIZE) 1567 return -EINVAL; 1568 1569 ret = copy_struct_from_user(&addfd, sizeof(addfd), uaddfd, size); 1570 if (ret) 1571 return ret; 1572 1573 if (addfd.newfd_flags & ~O_CLOEXEC) 1574 return -EINVAL; 1575 1576 if (addfd.flags & ~(SECCOMP_ADDFD_FLAG_SETFD | SECCOMP_ADDFD_FLAG_SEND)) 1577 return -EINVAL; 1578 1579 if (addfd.newfd && !(addfd.flags & SECCOMP_ADDFD_FLAG_SETFD)) 1580 return -EINVAL; 1581 1582 kaddfd.file = fget(addfd.srcfd); 1583 if (!kaddfd.file) 1584 return -EBADF; 1585 1586 kaddfd.ioctl_flags = addfd.flags; 1587 kaddfd.flags = addfd.newfd_flags; 1588 kaddfd.setfd = addfd.flags & SECCOMP_ADDFD_FLAG_SETFD; 1589 kaddfd.fd = addfd.newfd; 1590 init_completion(&kaddfd.completion); 1591 1592 ret = mutex_lock_interruptible(&filter->notify_lock); 1593 if (ret < 0) 1594 goto out; 1595 1596 knotif = find_notification(filter, addfd.id); 1597 if (!knotif) { 1598 ret = -ENOENT; 1599 goto out_unlock; 1600 } 1601 1602 /* 1603 * We do not want to allow for FD injection to occur before the 1604 * notification has been picked up by a userspace handler, or after 1605 * the notification has been replied to. 1606 */ 1607 if (knotif->state != SECCOMP_NOTIFY_SENT) { 1608 ret = -EINPROGRESS; 1609 goto out_unlock; 1610 } 1611 1612 if (addfd.flags & SECCOMP_ADDFD_FLAG_SEND) { 1613 /* 1614 * Disallow queuing an atomic addfd + send reply while there are 1615 * some addfd requests still to process. 1616 * 1617 * There is no clear reason to support it and allows us to keep 1618 * the loop on the other side straight-forward. 1619 */ 1620 if (!list_empty(&knotif->addfd)) { 1621 ret = -EBUSY; 1622 goto out_unlock; 1623 } 1624 1625 /* Allow exactly only one reply */ 1626 knotif->state = SECCOMP_NOTIFY_REPLIED; 1627 } 1628 1629 list_add(&kaddfd.list, &knotif->addfd); 1630 complete(&knotif->ready); 1631 mutex_unlock(&filter->notify_lock); 1632 1633 /* Now we wait for it to be processed or be interrupted */ 1634 ret = wait_for_completion_interruptible(&kaddfd.completion); 1635 if (ret == 0) { 1636 /* 1637 * We had a successful completion. The other side has already 1638 * removed us from the addfd queue, and 1639 * wait_for_completion_interruptible has a memory barrier upon 1640 * success that lets us read this value directly without 1641 * locking. 1642 */ 1643 ret = kaddfd.ret; 1644 goto out; 1645 } 1646 1647 mutex_lock(&filter->notify_lock); 1648 /* 1649 * Even though we were woken up by a signal and not a successful 1650 * completion, a completion may have happened in the mean time. 1651 * 1652 * We need to check again if the addfd request has been handled, 1653 * and if not, we will remove it from the queue. 1654 */ 1655 if (list_empty(&kaddfd.list)) 1656 ret = kaddfd.ret; 1657 else 1658 list_del(&kaddfd.list); 1659 1660 out_unlock: 1661 mutex_unlock(&filter->notify_lock); 1662 out: 1663 fput(kaddfd.file); 1664 1665 return ret; 1666 } 1667 1668 static long seccomp_notify_ioctl(struct file *file, unsigned int cmd, 1669 unsigned long arg) 1670 { 1671 struct seccomp_filter *filter = file->private_data; 1672 void __user *buf = (void __user *)arg; 1673 1674 /* Fixed-size ioctls */ 1675 switch (cmd) { 1676 case SECCOMP_IOCTL_NOTIF_RECV: 1677 return seccomp_notify_recv(filter, buf); 1678 case SECCOMP_IOCTL_NOTIF_SEND: 1679 return seccomp_notify_send(filter, buf); 1680 case SECCOMP_IOCTL_NOTIF_ID_VALID_WRONG_DIR: 1681 case SECCOMP_IOCTL_NOTIF_ID_VALID: 1682 return seccomp_notify_id_valid(filter, buf); 1683 } 1684 1685 /* Extensible Argument ioctls */ 1686 #define EA_IOCTL(cmd) ((cmd) & ~(IOC_INOUT | IOCSIZE_MASK)) 1687 switch (EA_IOCTL(cmd)) { 1688 case EA_IOCTL(SECCOMP_IOCTL_NOTIF_ADDFD): 1689 return seccomp_notify_addfd(filter, buf, _IOC_SIZE(cmd)); 1690 default: 1691 return -EINVAL; 1692 } 1693 } 1694 1695 static __poll_t seccomp_notify_poll(struct file *file, 1696 struct poll_table_struct *poll_tab) 1697 { 1698 struct seccomp_filter *filter = file->private_data; 1699 __poll_t ret = 0; 1700 struct seccomp_knotif *cur; 1701 1702 poll_wait(file, &filter->wqh, poll_tab); 1703 1704 if (mutex_lock_interruptible(&filter->notify_lock) < 0) 1705 return EPOLLERR; 1706 1707 list_for_each_entry(cur, &filter->notif->notifications, list) { 1708 if (cur->state == SECCOMP_NOTIFY_INIT) 1709 ret |= EPOLLIN | EPOLLRDNORM; 1710 if (cur->state == SECCOMP_NOTIFY_SENT) 1711 ret |= EPOLLOUT | EPOLLWRNORM; 1712 if ((ret & EPOLLIN) && (ret & EPOLLOUT)) 1713 break; 1714 } 1715 1716 mutex_unlock(&filter->notify_lock); 1717 1718 if (refcount_read(&filter->users) == 0) 1719 ret |= EPOLLHUP; 1720 1721 return ret; 1722 } 1723 1724 static const struct file_operations seccomp_notify_ops = { 1725 .poll = seccomp_notify_poll, 1726 .release = seccomp_notify_release, 1727 .unlocked_ioctl = seccomp_notify_ioctl, 1728 .compat_ioctl = seccomp_notify_ioctl, 1729 }; 1730 1731 static struct file *init_listener(struct seccomp_filter *filter) 1732 { 1733 struct file *ret; 1734 1735 ret = ERR_PTR(-ENOMEM); 1736 filter->notif = kzalloc(sizeof(*(filter->notif)), GFP_KERNEL); 1737 if (!filter->notif) 1738 goto out; 1739 1740 sema_init(&filter->notif->request, 0); 1741 filter->notif->next_id = get_random_u64(); 1742 INIT_LIST_HEAD(&filter->notif->notifications); 1743 1744 ret = anon_inode_getfile("seccomp notify", &seccomp_notify_ops, 1745 filter, O_RDWR); 1746 if (IS_ERR(ret)) 1747 goto out_notif; 1748 1749 /* The file has a reference to it now */ 1750 __get_seccomp_filter(filter); 1751 1752 out_notif: 1753 if (IS_ERR(ret)) 1754 seccomp_notify_free(filter); 1755 out: 1756 return ret; 1757 } 1758 1759 /* 1760 * Does @new_child have a listener while an ancestor also has a listener? 1761 * If so, we'll want to reject this filter. 1762 * This only has to be tested for the current process, even in the TSYNC case, 1763 * because TSYNC installs @child with the same parent on all threads. 1764 * Note that @new_child is not hooked up to its parent at this point yet, so 1765 * we use current->seccomp.filter. 1766 */ 1767 static bool has_duplicate_listener(struct seccomp_filter *new_child) 1768 { 1769 struct seccomp_filter *cur; 1770 1771 /* must be protected against concurrent TSYNC */ 1772 lockdep_assert_held(¤t->sighand->siglock); 1773 1774 if (!new_child->notif) 1775 return false; 1776 for (cur = current->seccomp.filter; cur; cur = cur->prev) { 1777 if (cur->notif) 1778 return true; 1779 } 1780 1781 return false; 1782 } 1783 1784 /** 1785 * seccomp_set_mode_filter: internal function for setting seccomp filter 1786 * @flags: flags to change filter behavior 1787 * @filter: struct sock_fprog containing filter 1788 * 1789 * This function may be called repeatedly to install additional filters. 1790 * Every filter successfully installed will be evaluated (in reverse order) 1791 * for each system call the task makes. 1792 * 1793 * Once current->seccomp.mode is non-zero, it may not be changed. 1794 * 1795 * Returns 0 on success or -EINVAL on failure. 1796 */ 1797 static long seccomp_set_mode_filter(unsigned int flags, 1798 const char __user *filter) 1799 { 1800 const unsigned long seccomp_mode = SECCOMP_MODE_FILTER; 1801 struct seccomp_filter *prepared = NULL; 1802 long ret = -EINVAL; 1803 int listener = -1; 1804 struct file *listener_f = NULL; 1805 1806 /* Validate flags. */ 1807 if (flags & ~SECCOMP_FILTER_FLAG_MASK) 1808 return -EINVAL; 1809 1810 /* 1811 * In the successful case, NEW_LISTENER returns the new listener fd. 1812 * But in the failure case, TSYNC returns the thread that died. If you 1813 * combine these two flags, there's no way to tell whether something 1814 * succeeded or failed. So, let's disallow this combination if the user 1815 * has not explicitly requested no errors from TSYNC. 1816 */ 1817 if ((flags & SECCOMP_FILTER_FLAG_TSYNC) && 1818 (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) && 1819 ((flags & SECCOMP_FILTER_FLAG_TSYNC_ESRCH) == 0)) 1820 return -EINVAL; 1821 1822 /* Prepare the new filter before holding any locks. */ 1823 prepared = seccomp_prepare_user_filter(filter); 1824 if (IS_ERR(prepared)) 1825 return PTR_ERR(prepared); 1826 1827 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1828 listener = get_unused_fd_flags(O_CLOEXEC); 1829 if (listener < 0) { 1830 ret = listener; 1831 goto out_free; 1832 } 1833 1834 listener_f = init_listener(prepared); 1835 if (IS_ERR(listener_f)) { 1836 put_unused_fd(listener); 1837 ret = PTR_ERR(listener_f); 1838 goto out_free; 1839 } 1840 } 1841 1842 /* 1843 * Make sure we cannot change seccomp or nnp state via TSYNC 1844 * while another thread is in the middle of calling exec. 1845 */ 1846 if (flags & SECCOMP_FILTER_FLAG_TSYNC && 1847 mutex_lock_killable(¤t->signal->cred_guard_mutex)) 1848 goto out_put_fd; 1849 1850 spin_lock_irq(¤t->sighand->siglock); 1851 1852 if (!seccomp_may_assign_mode(seccomp_mode)) 1853 goto out; 1854 1855 if (has_duplicate_listener(prepared)) { 1856 ret = -EBUSY; 1857 goto out; 1858 } 1859 1860 ret = seccomp_attach_filter(flags, prepared); 1861 if (ret) 1862 goto out; 1863 /* Do not free the successfully attached filter. */ 1864 prepared = NULL; 1865 1866 seccomp_assign_mode(current, seccomp_mode, flags); 1867 out: 1868 spin_unlock_irq(¤t->sighand->siglock); 1869 if (flags & SECCOMP_FILTER_FLAG_TSYNC) 1870 mutex_unlock(¤t->signal->cred_guard_mutex); 1871 out_put_fd: 1872 if (flags & SECCOMP_FILTER_FLAG_NEW_LISTENER) { 1873 if (ret) { 1874 listener_f->private_data = NULL; 1875 fput(listener_f); 1876 put_unused_fd(listener); 1877 seccomp_notify_detach(prepared); 1878 } else { 1879 fd_install(listener, listener_f); 1880 ret = listener; 1881 } 1882 } 1883 out_free: 1884 seccomp_filter_free(prepared); 1885 return ret; 1886 } 1887 #else 1888 static inline long seccomp_set_mode_filter(unsigned int flags, 1889 const char __user *filter) 1890 { 1891 return -EINVAL; 1892 } 1893 #endif 1894 1895 static long seccomp_get_action_avail(const char __user *uaction) 1896 { 1897 u32 action; 1898 1899 if (copy_from_user(&action, uaction, sizeof(action))) 1900 return -EFAULT; 1901 1902 switch (action) { 1903 case SECCOMP_RET_KILL_PROCESS: 1904 case SECCOMP_RET_KILL_THREAD: 1905 case SECCOMP_RET_TRAP: 1906 case SECCOMP_RET_ERRNO: 1907 case SECCOMP_RET_USER_NOTIF: 1908 case SECCOMP_RET_TRACE: 1909 case SECCOMP_RET_LOG: 1910 case SECCOMP_RET_ALLOW: 1911 break; 1912 default: 1913 return -EOPNOTSUPP; 1914 } 1915 1916 return 0; 1917 } 1918 1919 static long seccomp_get_notif_sizes(void __user *usizes) 1920 { 1921 struct seccomp_notif_sizes sizes = { 1922 .seccomp_notif = sizeof(struct seccomp_notif), 1923 .seccomp_notif_resp = sizeof(struct seccomp_notif_resp), 1924 .seccomp_data = sizeof(struct seccomp_data), 1925 }; 1926 1927 if (copy_to_user(usizes, &sizes, sizeof(sizes))) 1928 return -EFAULT; 1929 1930 return 0; 1931 } 1932 1933 /* Common entry point for both prctl and syscall. */ 1934 static long do_seccomp(unsigned int op, unsigned int flags, 1935 void __user *uargs) 1936 { 1937 switch (op) { 1938 case SECCOMP_SET_MODE_STRICT: 1939 if (flags != 0 || uargs != NULL) 1940 return -EINVAL; 1941 return seccomp_set_mode_strict(); 1942 case SECCOMP_SET_MODE_FILTER: 1943 return seccomp_set_mode_filter(flags, uargs); 1944 case SECCOMP_GET_ACTION_AVAIL: 1945 if (flags != 0) 1946 return -EINVAL; 1947 1948 return seccomp_get_action_avail(uargs); 1949 case SECCOMP_GET_NOTIF_SIZES: 1950 if (flags != 0) 1951 return -EINVAL; 1952 1953 return seccomp_get_notif_sizes(uargs); 1954 default: 1955 return -EINVAL; 1956 } 1957 } 1958 1959 SYSCALL_DEFINE3(seccomp, unsigned int, op, unsigned int, flags, 1960 void __user *, uargs) 1961 { 1962 return do_seccomp(op, flags, uargs); 1963 } 1964 1965 /** 1966 * prctl_set_seccomp: configures current->seccomp.mode 1967 * @seccomp_mode: requested mode to use 1968 * @filter: optional struct sock_fprog for use with SECCOMP_MODE_FILTER 1969 * 1970 * Returns 0 on success or -EINVAL on failure. 1971 */ 1972 long prctl_set_seccomp(unsigned long seccomp_mode, void __user *filter) 1973 { 1974 unsigned int op; 1975 void __user *uargs; 1976 1977 switch (seccomp_mode) { 1978 case SECCOMP_MODE_STRICT: 1979 op = SECCOMP_SET_MODE_STRICT; 1980 /* 1981 * Setting strict mode through prctl always ignored filter, 1982 * so make sure it is always NULL here to pass the internal 1983 * check in do_seccomp(). 1984 */ 1985 uargs = NULL; 1986 break; 1987 case SECCOMP_MODE_FILTER: 1988 op = SECCOMP_SET_MODE_FILTER; 1989 uargs = filter; 1990 break; 1991 default: 1992 return -EINVAL; 1993 } 1994 1995 /* prctl interface doesn't have flags, so they are always zero. */ 1996 return do_seccomp(op, 0, uargs); 1997 } 1998 1999 #if defined(CONFIG_SECCOMP_FILTER) && defined(CONFIG_CHECKPOINT_RESTORE) 2000 static struct seccomp_filter *get_nth_filter(struct task_struct *task, 2001 unsigned long filter_off) 2002 { 2003 struct seccomp_filter *orig, *filter; 2004 unsigned long count; 2005 2006 /* 2007 * Note: this is only correct because the caller should be the (ptrace) 2008 * tracer of the task, otherwise lock_task_sighand is needed. 2009 */ 2010 spin_lock_irq(&task->sighand->siglock); 2011 2012 if (task->seccomp.mode != SECCOMP_MODE_FILTER) { 2013 spin_unlock_irq(&task->sighand->siglock); 2014 return ERR_PTR(-EINVAL); 2015 } 2016 2017 orig = task->seccomp.filter; 2018 __get_seccomp_filter(orig); 2019 spin_unlock_irq(&task->sighand->siglock); 2020 2021 count = 0; 2022 for (filter = orig; filter; filter = filter->prev) 2023 count++; 2024 2025 if (filter_off >= count) { 2026 filter = ERR_PTR(-ENOENT); 2027 goto out; 2028 } 2029 2030 count -= filter_off; 2031 for (filter = orig; filter && count > 1; filter = filter->prev) 2032 count--; 2033 2034 if (WARN_ON(count != 1 || !filter)) { 2035 filter = ERR_PTR(-ENOENT); 2036 goto out; 2037 } 2038 2039 __get_seccomp_filter(filter); 2040 2041 out: 2042 __put_seccomp_filter(orig); 2043 return filter; 2044 } 2045 2046 long seccomp_get_filter(struct task_struct *task, unsigned long filter_off, 2047 void __user *data) 2048 { 2049 struct seccomp_filter *filter; 2050 struct sock_fprog_kern *fprog; 2051 long ret; 2052 2053 if (!capable(CAP_SYS_ADMIN) || 2054 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2055 return -EACCES; 2056 } 2057 2058 filter = get_nth_filter(task, filter_off); 2059 if (IS_ERR(filter)) 2060 return PTR_ERR(filter); 2061 2062 fprog = filter->prog->orig_prog; 2063 if (!fprog) { 2064 /* This must be a new non-cBPF filter, since we save 2065 * every cBPF filter's orig_prog above when 2066 * CONFIG_CHECKPOINT_RESTORE is enabled. 2067 */ 2068 ret = -EMEDIUMTYPE; 2069 goto out; 2070 } 2071 2072 ret = fprog->len; 2073 if (!data) 2074 goto out; 2075 2076 if (copy_to_user(data, fprog->filter, bpf_classic_proglen(fprog))) 2077 ret = -EFAULT; 2078 2079 out: 2080 __put_seccomp_filter(filter); 2081 return ret; 2082 } 2083 2084 long seccomp_get_metadata(struct task_struct *task, 2085 unsigned long size, void __user *data) 2086 { 2087 long ret; 2088 struct seccomp_filter *filter; 2089 struct seccomp_metadata kmd = {}; 2090 2091 if (!capable(CAP_SYS_ADMIN) || 2092 current->seccomp.mode != SECCOMP_MODE_DISABLED) { 2093 return -EACCES; 2094 } 2095 2096 size = min_t(unsigned long, size, sizeof(kmd)); 2097 2098 if (size < sizeof(kmd.filter_off)) 2099 return -EINVAL; 2100 2101 if (copy_from_user(&kmd.filter_off, data, sizeof(kmd.filter_off))) 2102 return -EFAULT; 2103 2104 filter = get_nth_filter(task, kmd.filter_off); 2105 if (IS_ERR(filter)) 2106 return PTR_ERR(filter); 2107 2108 if (filter->log) 2109 kmd.flags |= SECCOMP_FILTER_FLAG_LOG; 2110 2111 ret = size; 2112 if (copy_to_user(data, &kmd, size)) 2113 ret = -EFAULT; 2114 2115 __put_seccomp_filter(filter); 2116 return ret; 2117 } 2118 #endif 2119 2120 #ifdef CONFIG_SYSCTL 2121 2122 /* Human readable action names for friendly sysctl interaction */ 2123 #define SECCOMP_RET_KILL_PROCESS_NAME "kill_process" 2124 #define SECCOMP_RET_KILL_THREAD_NAME "kill_thread" 2125 #define SECCOMP_RET_TRAP_NAME "trap" 2126 #define SECCOMP_RET_ERRNO_NAME "errno" 2127 #define SECCOMP_RET_USER_NOTIF_NAME "user_notif" 2128 #define SECCOMP_RET_TRACE_NAME "trace" 2129 #define SECCOMP_RET_LOG_NAME "log" 2130 #define SECCOMP_RET_ALLOW_NAME "allow" 2131 2132 static const char seccomp_actions_avail[] = 2133 SECCOMP_RET_KILL_PROCESS_NAME " " 2134 SECCOMP_RET_KILL_THREAD_NAME " " 2135 SECCOMP_RET_TRAP_NAME " " 2136 SECCOMP_RET_ERRNO_NAME " " 2137 SECCOMP_RET_USER_NOTIF_NAME " " 2138 SECCOMP_RET_TRACE_NAME " " 2139 SECCOMP_RET_LOG_NAME " " 2140 SECCOMP_RET_ALLOW_NAME; 2141 2142 struct seccomp_log_name { 2143 u32 log; 2144 const char *name; 2145 }; 2146 2147 static const struct seccomp_log_name seccomp_log_names[] = { 2148 { SECCOMP_LOG_KILL_PROCESS, SECCOMP_RET_KILL_PROCESS_NAME }, 2149 { SECCOMP_LOG_KILL_THREAD, SECCOMP_RET_KILL_THREAD_NAME }, 2150 { SECCOMP_LOG_TRAP, SECCOMP_RET_TRAP_NAME }, 2151 { SECCOMP_LOG_ERRNO, SECCOMP_RET_ERRNO_NAME }, 2152 { SECCOMP_LOG_USER_NOTIF, SECCOMP_RET_USER_NOTIF_NAME }, 2153 { SECCOMP_LOG_TRACE, SECCOMP_RET_TRACE_NAME }, 2154 { SECCOMP_LOG_LOG, SECCOMP_RET_LOG_NAME }, 2155 { SECCOMP_LOG_ALLOW, SECCOMP_RET_ALLOW_NAME }, 2156 { } 2157 }; 2158 2159 static bool seccomp_names_from_actions_logged(char *names, size_t size, 2160 u32 actions_logged, 2161 const char *sep) 2162 { 2163 const struct seccomp_log_name *cur; 2164 bool append_sep = false; 2165 2166 for (cur = seccomp_log_names; cur->name && size; cur++) { 2167 ssize_t ret; 2168 2169 if (!(actions_logged & cur->log)) 2170 continue; 2171 2172 if (append_sep) { 2173 ret = strscpy(names, sep, size); 2174 if (ret < 0) 2175 return false; 2176 2177 names += ret; 2178 size -= ret; 2179 } else 2180 append_sep = true; 2181 2182 ret = strscpy(names, cur->name, size); 2183 if (ret < 0) 2184 return false; 2185 2186 names += ret; 2187 size -= ret; 2188 } 2189 2190 return true; 2191 } 2192 2193 static bool seccomp_action_logged_from_name(u32 *action_logged, 2194 const char *name) 2195 { 2196 const struct seccomp_log_name *cur; 2197 2198 for (cur = seccomp_log_names; cur->name; cur++) { 2199 if (!strcmp(cur->name, name)) { 2200 *action_logged = cur->log; 2201 return true; 2202 } 2203 } 2204 2205 return false; 2206 } 2207 2208 static bool seccomp_actions_logged_from_names(u32 *actions_logged, char *names) 2209 { 2210 char *name; 2211 2212 *actions_logged = 0; 2213 while ((name = strsep(&names, " ")) && *name) { 2214 u32 action_logged = 0; 2215 2216 if (!seccomp_action_logged_from_name(&action_logged, name)) 2217 return false; 2218 2219 *actions_logged |= action_logged; 2220 } 2221 2222 return true; 2223 } 2224 2225 static int read_actions_logged(struct ctl_table *ro_table, void *buffer, 2226 size_t *lenp, loff_t *ppos) 2227 { 2228 char names[sizeof(seccomp_actions_avail)]; 2229 struct ctl_table table; 2230 2231 memset(names, 0, sizeof(names)); 2232 2233 if (!seccomp_names_from_actions_logged(names, sizeof(names), 2234 seccomp_actions_logged, " ")) 2235 return -EINVAL; 2236 2237 table = *ro_table; 2238 table.data = names; 2239 table.maxlen = sizeof(names); 2240 return proc_dostring(&table, 0, buffer, lenp, ppos); 2241 } 2242 2243 static int write_actions_logged(struct ctl_table *ro_table, void *buffer, 2244 size_t *lenp, loff_t *ppos, u32 *actions_logged) 2245 { 2246 char names[sizeof(seccomp_actions_avail)]; 2247 struct ctl_table table; 2248 int ret; 2249 2250 if (!capable(CAP_SYS_ADMIN)) 2251 return -EPERM; 2252 2253 memset(names, 0, sizeof(names)); 2254 2255 table = *ro_table; 2256 table.data = names; 2257 table.maxlen = sizeof(names); 2258 ret = proc_dostring(&table, 1, buffer, lenp, ppos); 2259 if (ret) 2260 return ret; 2261 2262 if (!seccomp_actions_logged_from_names(actions_logged, table.data)) 2263 return -EINVAL; 2264 2265 if (*actions_logged & SECCOMP_LOG_ALLOW) 2266 return -EINVAL; 2267 2268 seccomp_actions_logged = *actions_logged; 2269 return 0; 2270 } 2271 2272 static void audit_actions_logged(u32 actions_logged, u32 old_actions_logged, 2273 int ret) 2274 { 2275 char names[sizeof(seccomp_actions_avail)]; 2276 char old_names[sizeof(seccomp_actions_avail)]; 2277 const char *new = names; 2278 const char *old = old_names; 2279 2280 if (!audit_enabled) 2281 return; 2282 2283 memset(names, 0, sizeof(names)); 2284 memset(old_names, 0, sizeof(old_names)); 2285 2286 if (ret) 2287 new = "?"; 2288 else if (!actions_logged) 2289 new = "(none)"; 2290 else if (!seccomp_names_from_actions_logged(names, sizeof(names), 2291 actions_logged, ",")) 2292 new = "?"; 2293 2294 if (!old_actions_logged) 2295 old = "(none)"; 2296 else if (!seccomp_names_from_actions_logged(old_names, 2297 sizeof(old_names), 2298 old_actions_logged, ",")) 2299 old = "?"; 2300 2301 return audit_seccomp_actions_logged(new, old, !ret); 2302 } 2303 2304 static int seccomp_actions_logged_handler(struct ctl_table *ro_table, int write, 2305 void *buffer, size_t *lenp, 2306 loff_t *ppos) 2307 { 2308 int ret; 2309 2310 if (write) { 2311 u32 actions_logged = 0; 2312 u32 old_actions_logged = seccomp_actions_logged; 2313 2314 ret = write_actions_logged(ro_table, buffer, lenp, ppos, 2315 &actions_logged); 2316 audit_actions_logged(actions_logged, old_actions_logged, ret); 2317 } else 2318 ret = read_actions_logged(ro_table, buffer, lenp, ppos); 2319 2320 return ret; 2321 } 2322 2323 static struct ctl_path seccomp_sysctl_path[] = { 2324 { .procname = "kernel", }, 2325 { .procname = "seccomp", }, 2326 { } 2327 }; 2328 2329 static struct ctl_table seccomp_sysctl_table[] = { 2330 { 2331 .procname = "actions_avail", 2332 .data = (void *) &seccomp_actions_avail, 2333 .maxlen = sizeof(seccomp_actions_avail), 2334 .mode = 0444, 2335 .proc_handler = proc_dostring, 2336 }, 2337 { 2338 .procname = "actions_logged", 2339 .mode = 0644, 2340 .proc_handler = seccomp_actions_logged_handler, 2341 }, 2342 { } 2343 }; 2344 2345 static int __init seccomp_sysctl_init(void) 2346 { 2347 struct ctl_table_header *hdr; 2348 2349 hdr = register_sysctl_paths(seccomp_sysctl_path, seccomp_sysctl_table); 2350 if (!hdr) 2351 pr_warn("sysctl registration failed\n"); 2352 else 2353 kmemleak_not_leak(hdr); 2354 2355 return 0; 2356 } 2357 2358 device_initcall(seccomp_sysctl_init) 2359 2360 #endif /* CONFIG_SYSCTL */ 2361 2362 #ifdef CONFIG_SECCOMP_CACHE_DEBUG 2363 /* Currently CONFIG_SECCOMP_CACHE_DEBUG implies SECCOMP_ARCH_NATIVE */ 2364 static void proc_pid_seccomp_cache_arch(struct seq_file *m, const char *name, 2365 const void *bitmap, size_t bitmap_size) 2366 { 2367 int nr; 2368 2369 for (nr = 0; nr < bitmap_size; nr++) { 2370 bool cached = test_bit(nr, bitmap); 2371 char *status = cached ? "ALLOW" : "FILTER"; 2372 2373 seq_printf(m, "%s %d %s\n", name, nr, status); 2374 } 2375 } 2376 2377 int proc_pid_seccomp_cache(struct seq_file *m, struct pid_namespace *ns, 2378 struct pid *pid, struct task_struct *task) 2379 { 2380 struct seccomp_filter *f; 2381 unsigned long flags; 2382 2383 /* 2384 * We don't want some sandboxed process to know what their seccomp 2385 * filters consist of. 2386 */ 2387 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 2388 return -EACCES; 2389 2390 if (!lock_task_sighand(task, &flags)) 2391 return -ESRCH; 2392 2393 f = READ_ONCE(task->seccomp.filter); 2394 if (!f) { 2395 unlock_task_sighand(task, &flags); 2396 return 0; 2397 } 2398 2399 /* prevent filter from being freed while we are printing it */ 2400 __get_seccomp_filter(f); 2401 unlock_task_sighand(task, &flags); 2402 2403 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_NATIVE_NAME, 2404 f->cache.allow_native, 2405 SECCOMP_ARCH_NATIVE_NR); 2406 2407 #ifdef SECCOMP_ARCH_COMPAT 2408 proc_pid_seccomp_cache_arch(m, SECCOMP_ARCH_COMPAT_NAME, 2409 f->cache.allow_compat, 2410 SECCOMP_ARCH_COMPAT_NR); 2411 #endif /* SECCOMP_ARCH_COMPAT */ 2412 2413 __put_seccomp_filter(f); 2414 return 0; 2415 } 2416 #endif /* CONFIG_SECCOMP_CACHE_DEBUG */ 2417