1 /* SPDX-License-Identifier: GPL-2.0 */ 2 /* 3 * BPF extensible scheduler class: Documentation/scheduler/sched-ext.rst 4 * 5 * Copyright (c) 2022 Meta Platforms, Inc. and affiliates. 6 * Copyright (c) 2022 Tejun Heo <[email protected]> 7 * Copyright (c) 2022 David Vernet <[email protected]> 8 */ 9 #include <linux/btf_ids.h> 10 #include "ext_idle.h" 11 12 #define SCX_OP_IDX(op) (offsetof(struct sched_ext_ops, op) / sizeof(void (*)(void))) 13 14 enum scx_consts { 15 SCX_DSP_DFL_MAX_BATCH = 32, 16 SCX_DSP_MAX_LOOPS = 32, 17 SCX_WATCHDOG_MAX_TIMEOUT = 30 * HZ, 18 19 SCX_EXIT_BT_LEN = 64, 20 SCX_EXIT_MSG_LEN = 1024, 21 SCX_EXIT_DUMP_DFL_LEN = 32768, 22 23 SCX_CPUPERF_ONE = SCHED_CAPACITY_SCALE, 24 25 /* 26 * Iterating all tasks may take a while. Periodically drop 27 * scx_tasks_lock to avoid causing e.g. CSD and RCU stalls. 28 */ 29 SCX_OPS_TASK_ITER_BATCH = 32, 30 }; 31 32 enum scx_exit_kind { 33 SCX_EXIT_NONE, 34 SCX_EXIT_DONE, 35 36 SCX_EXIT_UNREG = 64, /* user-space initiated unregistration */ 37 SCX_EXIT_UNREG_BPF, /* BPF-initiated unregistration */ 38 SCX_EXIT_UNREG_KERN, /* kernel-initiated unregistration */ 39 SCX_EXIT_SYSRQ, /* requested by 'S' sysrq */ 40 41 SCX_EXIT_ERROR = 1024, /* runtime error, error msg contains details */ 42 SCX_EXIT_ERROR_BPF, /* ERROR but triggered through scx_bpf_error() */ 43 SCX_EXIT_ERROR_STALL, /* watchdog detected stalled runnable tasks */ 44 }; 45 46 /* 47 * An exit code can be specified when exiting with scx_bpf_exit() or 48 * scx_ops_exit(), corresponding to exit_kind UNREG_BPF and UNREG_KERN 49 * respectively. The codes are 64bit of the format: 50 * 51 * Bits: [63 .. 48 47 .. 32 31 .. 0] 52 * [ SYS ACT ] [ SYS RSN ] [ USR ] 53 * 54 * SYS ACT: System-defined exit actions 55 * SYS RSN: System-defined exit reasons 56 * USR : User-defined exit codes and reasons 57 * 58 * Using the above, users may communicate intention and context by ORing system 59 * actions and/or system reasons with a user-defined exit code. 60 */ 61 enum scx_exit_code { 62 /* Reasons */ 63 SCX_ECODE_RSN_HOTPLUG = 1LLU << 32, 64 65 /* Actions */ 66 SCX_ECODE_ACT_RESTART = 1LLU << 48, 67 }; 68 69 /* 70 * scx_exit_info is passed to ops.exit() to describe why the BPF scheduler is 71 * being disabled. 72 */ 73 struct scx_exit_info { 74 /* %SCX_EXIT_* - broad category of the exit reason */ 75 enum scx_exit_kind kind; 76 77 /* exit code if gracefully exiting */ 78 s64 exit_code; 79 80 /* textual representation of the above */ 81 const char *reason; 82 83 /* backtrace if exiting due to an error */ 84 unsigned long *bt; 85 u32 bt_len; 86 87 /* informational message */ 88 char *msg; 89 90 /* debug dump */ 91 char *dump; 92 }; 93 94 /* sched_ext_ops.flags */ 95 enum scx_ops_flags { 96 /* 97 * Keep built-in idle tracking even if ops.update_idle() is implemented. 98 */ 99 SCX_OPS_KEEP_BUILTIN_IDLE = 1LLU << 0, 100 101 /* 102 * By default, if there are no other task to run on the CPU, ext core 103 * keeps running the current task even after its slice expires. If this 104 * flag is specified, such tasks are passed to ops.enqueue() with 105 * %SCX_ENQ_LAST. See the comment above %SCX_ENQ_LAST for more info. 106 */ 107 SCX_OPS_ENQ_LAST = 1LLU << 1, 108 109 /* 110 * An exiting task may schedule after PF_EXITING is set. In such cases, 111 * bpf_task_from_pid() may not be able to find the task and if the BPF 112 * scheduler depends on pid lookup for dispatching, the task will be 113 * lost leading to various issues including RCU grace period stalls. 114 * 115 * To mask this problem, by default, unhashed tasks are automatically 116 * dispatched to the local DSQ on enqueue. If the BPF scheduler doesn't 117 * depend on pid lookups and wants to handle these tasks directly, the 118 * following flag can be used. 119 */ 120 SCX_OPS_ENQ_EXITING = 1LLU << 2, 121 122 /* 123 * If set, only tasks with policy set to SCHED_EXT are attached to 124 * sched_ext. If clear, SCHED_NORMAL tasks are also included. 125 */ 126 SCX_OPS_SWITCH_PARTIAL = 1LLU << 3, 127 128 /* 129 * A migration disabled task can only execute on its current CPU. By 130 * default, such tasks are automatically put on the CPU's local DSQ with 131 * the default slice on enqueue. If this ops flag is set, they also go 132 * through ops.enqueue(). 133 * 134 * A migration disabled task never invokes ops.select_cpu() as it can 135 * only select the current CPU. Also, p->cpus_ptr will only contain its 136 * current CPU while p->nr_cpus_allowed keeps tracking p->user_cpus_ptr 137 * and thus may disagree with cpumask_weight(p->cpus_ptr). 138 */ 139 SCX_OPS_ENQ_MIGRATION_DISABLED = 1LLU << 4, 140 141 /* 142 * Queued wakeup (ttwu_queue) is a wakeup optimization that invokes 143 * ops.enqueue() on the ops.select_cpu() selected or the wakee's 144 * previous CPU via IPI (inter-processor interrupt) to reduce cacheline 145 * transfers. When this optimization is enabled, ops.select_cpu() is 146 * skipped in some cases (when racing against the wakee switching out). 147 * As the BPF scheduler may depend on ops.select_cpu() being invoked 148 * during wakeups, queued wakeup is disabled by default. 149 * 150 * If this ops flag is set, queued wakeup optimization is enabled and 151 * the BPF scheduler must be able to handle ops.enqueue() invoked on the 152 * wakee's CPU without preceding ops.select_cpu() even for tasks which 153 * may be executed on multiple CPUs. 154 */ 155 SCX_OPS_ALLOW_QUEUED_WAKEUP = 1LLU << 5, 156 157 /* 158 * CPU cgroup support flags 159 */ 160 SCX_OPS_HAS_CGROUP_WEIGHT = 1LLU << 16, /* cpu.weight */ 161 162 SCX_OPS_ALL_FLAGS = SCX_OPS_KEEP_BUILTIN_IDLE | 163 SCX_OPS_ENQ_LAST | 164 SCX_OPS_ENQ_EXITING | 165 SCX_OPS_ENQ_MIGRATION_DISABLED | 166 SCX_OPS_ALLOW_QUEUED_WAKEUP | 167 SCX_OPS_SWITCH_PARTIAL | 168 SCX_OPS_HAS_CGROUP_WEIGHT, 169 }; 170 171 /* argument container for ops.init_task() */ 172 struct scx_init_task_args { 173 /* 174 * Set if ops.init_task() is being invoked on the fork path, as opposed 175 * to the scheduler transition path. 176 */ 177 bool fork; 178 #ifdef CONFIG_EXT_GROUP_SCHED 179 /* the cgroup the task is joining */ 180 struct cgroup *cgroup; 181 #endif 182 }; 183 184 /* argument container for ops.exit_task() */ 185 struct scx_exit_task_args { 186 /* Whether the task exited before running on sched_ext. */ 187 bool cancelled; 188 }; 189 190 /* argument container for ops->cgroup_init() */ 191 struct scx_cgroup_init_args { 192 /* the weight of the cgroup [1..10000] */ 193 u32 weight; 194 }; 195 196 enum scx_cpu_preempt_reason { 197 /* next task is being scheduled by &sched_class_rt */ 198 SCX_CPU_PREEMPT_RT, 199 /* next task is being scheduled by &sched_class_dl */ 200 SCX_CPU_PREEMPT_DL, 201 /* next task is being scheduled by &sched_class_stop */ 202 SCX_CPU_PREEMPT_STOP, 203 /* unknown reason for SCX being preempted */ 204 SCX_CPU_PREEMPT_UNKNOWN, 205 }; 206 207 /* 208 * Argument container for ops->cpu_acquire(). Currently empty, but may be 209 * expanded in the future. 210 */ 211 struct scx_cpu_acquire_args {}; 212 213 /* argument container for ops->cpu_release() */ 214 struct scx_cpu_release_args { 215 /* the reason the CPU was preempted */ 216 enum scx_cpu_preempt_reason reason; 217 218 /* the task that's going to be scheduled on the CPU */ 219 struct task_struct *task; 220 }; 221 222 /* 223 * Informational context provided to dump operations. 224 */ 225 struct scx_dump_ctx { 226 enum scx_exit_kind kind; 227 s64 exit_code; 228 const char *reason; 229 u64 at_ns; 230 u64 at_jiffies; 231 }; 232 233 /** 234 * struct sched_ext_ops - Operation table for BPF scheduler implementation 235 * 236 * A BPF scheduler can implement an arbitrary scheduling policy by 237 * implementing and loading operations in this table. Note that a userland 238 * scheduling policy can also be implemented using the BPF scheduler 239 * as a shim layer. 240 */ 241 struct sched_ext_ops { 242 /** 243 * @select_cpu: Pick the target CPU for a task which is being woken up 244 * @p: task being woken up 245 * @prev_cpu: the cpu @p was on before sleeping 246 * @wake_flags: SCX_WAKE_* 247 * 248 * Decision made here isn't final. @p may be moved to any CPU while it 249 * is getting dispatched for execution later. However, as @p is not on 250 * the rq at this point, getting the eventual execution CPU right here 251 * saves a small bit of overhead down the line. 252 * 253 * If an idle CPU is returned, the CPU is kicked and will try to 254 * dispatch. While an explicit custom mechanism can be added, 255 * select_cpu() serves as the default way to wake up idle CPUs. 256 * 257 * @p may be inserted into a DSQ directly by calling 258 * scx_bpf_dsq_insert(). If so, the ops.enqueue() will be skipped. 259 * Directly inserting into %SCX_DSQ_LOCAL will put @p in the local DSQ 260 * of the CPU returned by this operation. 261 * 262 * Note that select_cpu() is never called for tasks that can only run 263 * on a single CPU or tasks with migration disabled, as they don't have 264 * the option to select a different CPU. See select_task_rq() for 265 * details. 266 */ 267 s32 (*select_cpu)(struct task_struct *p, s32 prev_cpu, u64 wake_flags); 268 269 /** 270 * @enqueue: Enqueue a task on the BPF scheduler 271 * @p: task being enqueued 272 * @enq_flags: %SCX_ENQ_* 273 * 274 * @p is ready to run. Insert directly into a DSQ by calling 275 * scx_bpf_dsq_insert() or enqueue on the BPF scheduler. If not directly 276 * inserted, the bpf scheduler owns @p and if it fails to dispatch @p, 277 * the task will stall. 278 * 279 * If @p was inserted into a DSQ from ops.select_cpu(), this callback is 280 * skipped. 281 */ 282 void (*enqueue)(struct task_struct *p, u64 enq_flags); 283 284 /** 285 * @dequeue: Remove a task from the BPF scheduler 286 * @p: task being dequeued 287 * @deq_flags: %SCX_DEQ_* 288 * 289 * Remove @p from the BPF scheduler. This is usually called to isolate 290 * the task while updating its scheduling properties (e.g. priority). 291 * 292 * The ext core keeps track of whether the BPF side owns a given task or 293 * not and can gracefully ignore spurious dispatches from BPF side, 294 * which makes it safe to not implement this method. However, depending 295 * on the scheduling logic, this can lead to confusing behaviors - e.g. 296 * scheduling position not being updated across a priority change. 297 */ 298 void (*dequeue)(struct task_struct *p, u64 deq_flags); 299 300 /** 301 * @dispatch: Dispatch tasks from the BPF scheduler and/or user DSQs 302 * @cpu: CPU to dispatch tasks for 303 * @prev: previous task being switched out 304 * 305 * Called when a CPU's local dsq is empty. The operation should dispatch 306 * one or more tasks from the BPF scheduler into the DSQs using 307 * scx_bpf_dsq_insert() and/or move from user DSQs into the local DSQ 308 * using scx_bpf_dsq_move_to_local(). 309 * 310 * The maximum number of times scx_bpf_dsq_insert() can be called 311 * without an intervening scx_bpf_dsq_move_to_local() is specified by 312 * ops.dispatch_max_batch. See the comments on top of the two functions 313 * for more details. 314 * 315 * When not %NULL, @prev is an SCX task with its slice depleted. If 316 * @prev is still runnable as indicated by set %SCX_TASK_QUEUED in 317 * @prev->scx.flags, it is not enqueued yet and will be enqueued after 318 * ops.dispatch() returns. To keep executing @prev, return without 319 * dispatching or moving any tasks. Also see %SCX_OPS_ENQ_LAST. 320 */ 321 void (*dispatch)(s32 cpu, struct task_struct *prev); 322 323 /** 324 * @tick: Periodic tick 325 * @p: task running currently 326 * 327 * This operation is called every 1/HZ seconds on CPUs which are 328 * executing an SCX task. Setting @p->scx.slice to 0 will trigger an 329 * immediate dispatch cycle on the CPU. 330 */ 331 void (*tick)(struct task_struct *p); 332 333 /** 334 * @runnable: A task is becoming runnable on its associated CPU 335 * @p: task becoming runnable 336 * @enq_flags: %SCX_ENQ_* 337 * 338 * This and the following three functions can be used to track a task's 339 * execution state transitions. A task becomes ->runnable() on a CPU, 340 * and then goes through one or more ->running() and ->stopping() pairs 341 * as it runs on the CPU, and eventually becomes ->quiescent() when it's 342 * done running on the CPU. 343 * 344 * @p is becoming runnable on the CPU because it's 345 * 346 * - waking up (%SCX_ENQ_WAKEUP) 347 * - being moved from another CPU 348 * - being restored after temporarily taken off the queue for an 349 * attribute change. 350 * 351 * This and ->enqueue() are related but not coupled. This operation 352 * notifies @p's state transition and may not be followed by ->enqueue() 353 * e.g. when @p is being dispatched to a remote CPU, or when @p is 354 * being enqueued on a CPU experiencing a hotplug event. Likewise, a 355 * task may be ->enqueue()'d without being preceded by this operation 356 * e.g. after exhausting its slice. 357 */ 358 void (*runnable)(struct task_struct *p, u64 enq_flags); 359 360 /** 361 * @running: A task is starting to run on its associated CPU 362 * @p: task starting to run 363 * 364 * See ->runnable() for explanation on the task state notifiers. 365 */ 366 void (*running)(struct task_struct *p); 367 368 /** 369 * @stopping: A task is stopping execution 370 * @p: task stopping to run 371 * @runnable: is task @p still runnable? 372 * 373 * See ->runnable() for explanation on the task state notifiers. If 374 * !@runnable, ->quiescent() will be invoked after this operation 375 * returns. 376 */ 377 void (*stopping)(struct task_struct *p, bool runnable); 378 379 /** 380 * @quiescent: A task is becoming not runnable on its associated CPU 381 * @p: task becoming not runnable 382 * @deq_flags: %SCX_DEQ_* 383 * 384 * See ->runnable() for explanation on the task state notifiers. 385 * 386 * @p is becoming quiescent on the CPU because it's 387 * 388 * - sleeping (%SCX_DEQ_SLEEP) 389 * - being moved to another CPU 390 * - being temporarily taken off the queue for an attribute change 391 * (%SCX_DEQ_SAVE) 392 * 393 * This and ->dequeue() are related but not coupled. This operation 394 * notifies @p's state transition and may not be preceded by ->dequeue() 395 * e.g. when @p is being dispatched to a remote CPU. 396 */ 397 void (*quiescent)(struct task_struct *p, u64 deq_flags); 398 399 /** 400 * @yield: Yield CPU 401 * @from: yielding task 402 * @to: optional yield target task 403 * 404 * If @to is NULL, @from is yielding the CPU to other runnable tasks. 405 * The BPF scheduler should ensure that other available tasks are 406 * dispatched before the yielding task. Return value is ignored in this 407 * case. 408 * 409 * If @to is not-NULL, @from wants to yield the CPU to @to. If the bpf 410 * scheduler can implement the request, return %true; otherwise, %false. 411 */ 412 bool (*yield)(struct task_struct *from, struct task_struct *to); 413 414 /** 415 * @core_sched_before: Task ordering for core-sched 416 * @a: task A 417 * @b: task B 418 * 419 * Used by core-sched to determine the ordering between two tasks. See 420 * Documentation/admin-guide/hw-vuln/core-scheduling.rst for details on 421 * core-sched. 422 * 423 * Both @a and @b are runnable and may or may not currently be queued on 424 * the BPF scheduler. Should return %true if @a should run before @b. 425 * %false if there's no required ordering or @b should run before @a. 426 * 427 * If not specified, the default is ordering them according to when they 428 * became runnable. 429 */ 430 bool (*core_sched_before)(struct task_struct *a, struct task_struct *b); 431 432 /** 433 * @set_weight: Set task weight 434 * @p: task to set weight for 435 * @weight: new weight [1..10000] 436 * 437 * Update @p's weight to @weight. 438 */ 439 void (*set_weight)(struct task_struct *p, u32 weight); 440 441 /** 442 * @set_cpumask: Set CPU affinity 443 * @p: task to set CPU affinity for 444 * @cpumask: cpumask of cpus that @p can run on 445 * 446 * Update @p's CPU affinity to @cpumask. 447 */ 448 void (*set_cpumask)(struct task_struct *p, 449 const struct cpumask *cpumask); 450 451 /** 452 * @update_idle: Update the idle state of a CPU 453 * @cpu: CPU to update the idle state for 454 * @idle: whether entering or exiting the idle state 455 * 456 * This operation is called when @rq's CPU goes or leaves the idle 457 * state. By default, implementing this operation disables the built-in 458 * idle CPU tracking and the following helpers become unavailable: 459 * 460 * - scx_bpf_select_cpu_dfl() 461 * - scx_bpf_test_and_clear_cpu_idle() 462 * - scx_bpf_pick_idle_cpu() 463 * 464 * The user also must implement ops.select_cpu() as the default 465 * implementation relies on scx_bpf_select_cpu_dfl(). 466 * 467 * Specify the %SCX_OPS_KEEP_BUILTIN_IDLE flag to keep the built-in idle 468 * tracking. 469 */ 470 void (*update_idle)(s32 cpu, bool idle); 471 472 /** 473 * @cpu_acquire: A CPU is becoming available to the BPF scheduler 474 * @cpu: The CPU being acquired by the BPF scheduler. 475 * @args: Acquire arguments, see the struct definition. 476 * 477 * A CPU that was previously released from the BPF scheduler is now once 478 * again under its control. 479 */ 480 void (*cpu_acquire)(s32 cpu, struct scx_cpu_acquire_args *args); 481 482 /** 483 * @cpu_release: A CPU is taken away from the BPF scheduler 484 * @cpu: The CPU being released by the BPF scheduler. 485 * @args: Release arguments, see the struct definition. 486 * 487 * The specified CPU is no longer under the control of the BPF 488 * scheduler. This could be because it was preempted by a higher 489 * priority sched_class, though there may be other reasons as well. The 490 * caller should consult @args->reason to determine the cause. 491 */ 492 void (*cpu_release)(s32 cpu, struct scx_cpu_release_args *args); 493 494 /** 495 * @init_task: Initialize a task to run in a BPF scheduler 496 * @p: task to initialize for BPF scheduling 497 * @args: init arguments, see the struct definition 498 * 499 * Either we're loading a BPF scheduler or a new task is being forked. 500 * Initialize @p for BPF scheduling. This operation may block and can 501 * be used for allocations, and is called exactly once for a task. 502 * 503 * Return 0 for success, -errno for failure. An error return while 504 * loading will abort loading of the BPF scheduler. During a fork, it 505 * will abort that specific fork. 506 */ 507 s32 (*init_task)(struct task_struct *p, struct scx_init_task_args *args); 508 509 /** 510 * @exit_task: Exit a previously-running task from the system 511 * @p: task to exit 512 * @args: exit arguments, see the struct definition 513 * 514 * @p is exiting or the BPF scheduler is being unloaded. Perform any 515 * necessary cleanup for @p. 516 */ 517 void (*exit_task)(struct task_struct *p, struct scx_exit_task_args *args); 518 519 /** 520 * @enable: Enable BPF scheduling for a task 521 * @p: task to enable BPF scheduling for 522 * 523 * Enable @p for BPF scheduling. enable() is called on @p any time it 524 * enters SCX, and is always paired with a matching disable(). 525 */ 526 void (*enable)(struct task_struct *p); 527 528 /** 529 * @disable: Disable BPF scheduling for a task 530 * @p: task to disable BPF scheduling for 531 * 532 * @p is exiting, leaving SCX or the BPF scheduler is being unloaded. 533 * Disable BPF scheduling for @p. A disable() call is always matched 534 * with a prior enable() call. 535 */ 536 void (*disable)(struct task_struct *p); 537 538 /** 539 * @dump: Dump BPF scheduler state on error 540 * @ctx: debug dump context 541 * 542 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump. 543 */ 544 void (*dump)(struct scx_dump_ctx *ctx); 545 546 /** 547 * @dump_cpu: Dump BPF scheduler state for a CPU on error 548 * @ctx: debug dump context 549 * @cpu: CPU to generate debug dump for 550 * @idle: @cpu is currently idle without any runnable tasks 551 * 552 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 553 * @cpu. If @idle is %true and this operation doesn't produce any 554 * output, @cpu is skipped for dump. 555 */ 556 void (*dump_cpu)(struct scx_dump_ctx *ctx, s32 cpu, bool idle); 557 558 /** 559 * @dump_task: Dump BPF scheduler state for a runnable task on error 560 * @ctx: debug dump context 561 * @p: runnable task to generate debug dump for 562 * 563 * Use scx_bpf_dump() to generate BPF scheduler specific debug dump for 564 * @p. 565 */ 566 void (*dump_task)(struct scx_dump_ctx *ctx, struct task_struct *p); 567 568 #ifdef CONFIG_EXT_GROUP_SCHED 569 /** 570 * @cgroup_init: Initialize a cgroup 571 * @cgrp: cgroup being initialized 572 * @args: init arguments, see the struct definition 573 * 574 * Either the BPF scheduler is being loaded or @cgrp created, initialize 575 * @cgrp for sched_ext. This operation may block. 576 * 577 * Return 0 for success, -errno for failure. An error return while 578 * loading will abort loading of the BPF scheduler. During cgroup 579 * creation, it will abort the specific cgroup creation. 580 */ 581 s32 (*cgroup_init)(struct cgroup *cgrp, 582 struct scx_cgroup_init_args *args); 583 584 /** 585 * @cgroup_exit: Exit a cgroup 586 * @cgrp: cgroup being exited 587 * 588 * Either the BPF scheduler is being unloaded or @cgrp destroyed, exit 589 * @cgrp for sched_ext. This operation my block. 590 */ 591 void (*cgroup_exit)(struct cgroup *cgrp); 592 593 /** 594 * @cgroup_prep_move: Prepare a task to be moved to a different cgroup 595 * @p: task being moved 596 * @from: cgroup @p is being moved from 597 * @to: cgroup @p is being moved to 598 * 599 * Prepare @p for move from cgroup @from to @to. This operation may 600 * block and can be used for allocations. 601 * 602 * Return 0 for success, -errno for failure. An error return aborts the 603 * migration. 604 */ 605 s32 (*cgroup_prep_move)(struct task_struct *p, 606 struct cgroup *from, struct cgroup *to); 607 608 /** 609 * @cgroup_move: Commit cgroup move 610 * @p: task being moved 611 * @from: cgroup @p is being moved from 612 * @to: cgroup @p is being moved to 613 * 614 * Commit the move. @p is dequeued during this operation. 615 */ 616 void (*cgroup_move)(struct task_struct *p, 617 struct cgroup *from, struct cgroup *to); 618 619 /** 620 * @cgroup_cancel_move: Cancel cgroup move 621 * @p: task whose cgroup move is being canceled 622 * @from: cgroup @p was being moved from 623 * @to: cgroup @p was being moved to 624 * 625 * @p was cgroup_prep_move()'d but failed before reaching cgroup_move(). 626 * Undo the preparation. 627 */ 628 void (*cgroup_cancel_move)(struct task_struct *p, 629 struct cgroup *from, struct cgroup *to); 630 631 /** 632 * @cgroup_set_weight: A cgroup's weight is being changed 633 * @cgrp: cgroup whose weight is being updated 634 * @weight: new weight [1..10000] 635 * 636 * Update @tg's weight to @weight. 637 */ 638 void (*cgroup_set_weight)(struct cgroup *cgrp, u32 weight); 639 #endif /* CONFIG_EXT_GROUP_SCHED */ 640 641 /* 642 * All online ops must come before ops.cpu_online(). 643 */ 644 645 /** 646 * @cpu_online: A CPU became online 647 * @cpu: CPU which just came up 648 * 649 * @cpu just came online. @cpu will not call ops.enqueue() or 650 * ops.dispatch(), nor run tasks associated with other CPUs beforehand. 651 */ 652 void (*cpu_online)(s32 cpu); 653 654 /** 655 * @cpu_offline: A CPU is going offline 656 * @cpu: CPU which is going offline 657 * 658 * @cpu is going offline. @cpu will not call ops.enqueue() or 659 * ops.dispatch(), nor run tasks associated with other CPUs afterwards. 660 */ 661 void (*cpu_offline)(s32 cpu); 662 663 /* 664 * All CPU hotplug ops must come before ops.init(). 665 */ 666 667 /** 668 * @init: Initialize the BPF scheduler 669 */ 670 s32 (*init)(void); 671 672 /** 673 * @exit: Clean up after the BPF scheduler 674 * @info: Exit info 675 * 676 * ops.exit() is also called on ops.init() failure, which is a bit 677 * unusual. This is to allow rich reporting through @info on how 678 * ops.init() failed. 679 */ 680 void (*exit)(struct scx_exit_info *info); 681 682 /** 683 * @dispatch_max_batch: Max nr of tasks that dispatch() can dispatch 684 */ 685 u32 dispatch_max_batch; 686 687 /** 688 * @flags: %SCX_OPS_* flags 689 */ 690 u64 flags; 691 692 /** 693 * @timeout_ms: The maximum amount of time, in milliseconds, that a 694 * runnable task should be able to wait before being scheduled. The 695 * maximum timeout may not exceed the default timeout of 30 seconds. 696 * 697 * Defaults to the maximum allowed timeout value of 30 seconds. 698 */ 699 u32 timeout_ms; 700 701 /** 702 * @exit_dump_len: scx_exit_info.dump buffer length. If 0, the default 703 * value of 32768 is used. 704 */ 705 u32 exit_dump_len; 706 707 /** 708 * @hotplug_seq: A sequence number that may be set by the scheduler to 709 * detect when a hotplug event has occurred during the loading process. 710 * If 0, no detection occurs. Otherwise, the scheduler will fail to 711 * load if the sequence number does not match @scx_hotplug_seq on the 712 * enable path. 713 */ 714 u64 hotplug_seq; 715 716 /** 717 * @name: BPF scheduler's name 718 * 719 * Must be a non-zero valid BPF object name including only isalnum(), 720 * '_' and '.' chars. Shows up in kernel.sched_ext_ops sysctl while the 721 * BPF scheduler is enabled. 722 */ 723 char name[SCX_OPS_NAME_LEN]; 724 }; 725 726 enum scx_opi { 727 SCX_OPI_BEGIN = 0, 728 SCX_OPI_NORMAL_BEGIN = 0, 729 SCX_OPI_NORMAL_END = SCX_OP_IDX(cpu_online), 730 SCX_OPI_CPU_HOTPLUG_BEGIN = SCX_OP_IDX(cpu_online), 731 SCX_OPI_CPU_HOTPLUG_END = SCX_OP_IDX(init), 732 SCX_OPI_END = SCX_OP_IDX(init), 733 }; 734 735 enum scx_wake_flags { 736 /* expose select WF_* flags as enums */ 737 SCX_WAKE_FORK = WF_FORK, 738 SCX_WAKE_TTWU = WF_TTWU, 739 SCX_WAKE_SYNC = WF_SYNC, 740 }; 741 742 enum scx_enq_flags { 743 /* expose select ENQUEUE_* flags as enums */ 744 SCX_ENQ_WAKEUP = ENQUEUE_WAKEUP, 745 SCX_ENQ_HEAD = ENQUEUE_HEAD, 746 SCX_ENQ_CPU_SELECTED = ENQUEUE_RQ_SELECTED, 747 748 /* high 32bits are SCX specific */ 749 750 /* 751 * Set the following to trigger preemption when calling 752 * scx_bpf_dsq_insert() with a local dsq as the target. The slice of the 753 * current task is cleared to zero and the CPU is kicked into the 754 * scheduling path. Implies %SCX_ENQ_HEAD. 755 */ 756 SCX_ENQ_PREEMPT = 1LLU << 32, 757 758 /* 759 * The task being enqueued was previously enqueued on the current CPU's 760 * %SCX_DSQ_LOCAL, but was removed from it in a call to the 761 * bpf_scx_reenqueue_local() kfunc. If bpf_scx_reenqueue_local() was 762 * invoked in a ->cpu_release() callback, and the task is again 763 * dispatched back to %SCX_LOCAL_DSQ by this current ->enqueue(), the 764 * task will not be scheduled on the CPU until at least the next invocation 765 * of the ->cpu_acquire() callback. 766 */ 767 SCX_ENQ_REENQ = 1LLU << 40, 768 769 /* 770 * The task being enqueued is the only task available for the cpu. By 771 * default, ext core keeps executing such tasks but when 772 * %SCX_OPS_ENQ_LAST is specified, they're ops.enqueue()'d with the 773 * %SCX_ENQ_LAST flag set. 774 * 775 * The BPF scheduler is responsible for triggering a follow-up 776 * scheduling event. Otherwise, Execution may stall. 777 */ 778 SCX_ENQ_LAST = 1LLU << 41, 779 780 /* high 8 bits are internal */ 781 __SCX_ENQ_INTERNAL_MASK = 0xffLLU << 56, 782 783 SCX_ENQ_CLEAR_OPSS = 1LLU << 56, 784 SCX_ENQ_DSQ_PRIQ = 1LLU << 57, 785 }; 786 787 enum scx_deq_flags { 788 /* expose select DEQUEUE_* flags as enums */ 789 SCX_DEQ_SLEEP = DEQUEUE_SLEEP, 790 791 /* high 32bits are SCX specific */ 792 793 /* 794 * The generic core-sched layer decided to execute the task even though 795 * it hasn't been dispatched yet. Dequeue from the BPF side. 796 */ 797 SCX_DEQ_CORE_SCHED_EXEC = 1LLU << 32, 798 }; 799 800 enum scx_pick_idle_cpu_flags { 801 SCX_PICK_IDLE_CORE = 1LLU << 0, /* pick a CPU whose SMT siblings are also idle */ 802 }; 803 804 enum scx_kick_flags { 805 /* 806 * Kick the target CPU if idle. Guarantees that the target CPU goes 807 * through at least one full scheduling cycle before going idle. If the 808 * target CPU can be determined to be currently not idle and going to go 809 * through a scheduling cycle before going idle, noop. 810 */ 811 SCX_KICK_IDLE = 1LLU << 0, 812 813 /* 814 * Preempt the current task and execute the dispatch path. If the 815 * current task of the target CPU is an SCX task, its ->scx.slice is 816 * cleared to zero before the scheduling path is invoked so that the 817 * task expires and the dispatch path is invoked. 818 */ 819 SCX_KICK_PREEMPT = 1LLU << 1, 820 821 /* 822 * Wait for the CPU to be rescheduled. The scx_bpf_kick_cpu() call will 823 * return after the target CPU finishes picking the next task. 824 */ 825 SCX_KICK_WAIT = 1LLU << 2, 826 }; 827 828 enum scx_tg_flags { 829 SCX_TG_ONLINE = 1U << 0, 830 SCX_TG_INITED = 1U << 1, 831 }; 832 833 enum scx_ops_enable_state { 834 SCX_OPS_ENABLING, 835 SCX_OPS_ENABLED, 836 SCX_OPS_DISABLING, 837 SCX_OPS_DISABLED, 838 }; 839 840 static const char *scx_ops_enable_state_str[] = { 841 [SCX_OPS_ENABLING] = "enabling", 842 [SCX_OPS_ENABLED] = "enabled", 843 [SCX_OPS_DISABLING] = "disabling", 844 [SCX_OPS_DISABLED] = "disabled", 845 }; 846 847 /* 848 * sched_ext_entity->ops_state 849 * 850 * Used to track the task ownership between the SCX core and the BPF scheduler. 851 * State transitions look as follows: 852 * 853 * NONE -> QUEUEING -> QUEUED -> DISPATCHING 854 * ^ | | 855 * | v v 856 * \-------------------------------/ 857 * 858 * QUEUEING and DISPATCHING states can be waited upon. See wait_ops_state() call 859 * sites for explanations on the conditions being waited upon and why they are 860 * safe. Transitions out of them into NONE or QUEUED must store_release and the 861 * waiters should load_acquire. 862 * 863 * Tracking scx_ops_state enables sched_ext core to reliably determine whether 864 * any given task can be dispatched by the BPF scheduler at all times and thus 865 * relaxes the requirements on the BPF scheduler. This allows the BPF scheduler 866 * to try to dispatch any task anytime regardless of its state as the SCX core 867 * can safely reject invalid dispatches. 868 */ 869 enum scx_ops_state { 870 SCX_OPSS_NONE, /* owned by the SCX core */ 871 SCX_OPSS_QUEUEING, /* in transit to the BPF scheduler */ 872 SCX_OPSS_QUEUED, /* owned by the BPF scheduler */ 873 SCX_OPSS_DISPATCHING, /* in transit back to the SCX core */ 874 875 /* 876 * QSEQ brands each QUEUED instance so that, when dispatch races 877 * dequeue/requeue, the dispatcher can tell whether it still has a claim 878 * on the task being dispatched. 879 * 880 * As some 32bit archs can't do 64bit store_release/load_acquire, 881 * p->scx.ops_state is atomic_long_t which leaves 30 bits for QSEQ on 882 * 32bit machines. The dispatch race window QSEQ protects is very narrow 883 * and runs with IRQ disabled. 30 bits should be sufficient. 884 */ 885 SCX_OPSS_QSEQ_SHIFT = 2, 886 }; 887 888 /* Use macros to ensure that the type is unsigned long for the masks */ 889 #define SCX_OPSS_STATE_MASK ((1LU << SCX_OPSS_QSEQ_SHIFT) - 1) 890 #define SCX_OPSS_QSEQ_MASK (~SCX_OPSS_STATE_MASK) 891 892 /* 893 * During exit, a task may schedule after losing its PIDs. When disabling the 894 * BPF scheduler, we need to be able to iterate tasks in every state to 895 * guarantee system safety. Maintain a dedicated task list which contains every 896 * task between its fork and eventual free. 897 */ 898 static DEFINE_SPINLOCK(scx_tasks_lock); 899 static LIST_HEAD(scx_tasks); 900 901 /* ops enable/disable */ 902 static struct kthread_worker *scx_ops_helper; 903 static DEFINE_MUTEX(scx_ops_enable_mutex); 904 DEFINE_STATIC_KEY_FALSE(__scx_ops_enabled); 905 DEFINE_STATIC_PERCPU_RWSEM(scx_fork_rwsem); 906 static atomic_t scx_ops_enable_state_var = ATOMIC_INIT(SCX_OPS_DISABLED); 907 static unsigned long scx_in_softlockup; 908 static atomic_t scx_ops_breather_depth = ATOMIC_INIT(0); 909 static int scx_ops_bypass_depth; 910 static bool scx_ops_init_task_enabled; 911 static bool scx_switching_all; 912 DEFINE_STATIC_KEY_FALSE(__scx_switched_all); 913 914 static struct sched_ext_ops scx_ops; 915 static bool scx_warned_zero_slice; 916 917 DEFINE_STATIC_KEY_FALSE(scx_ops_allow_queued_wakeup); 918 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_last); 919 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_exiting); 920 static DEFINE_STATIC_KEY_FALSE(scx_ops_enq_migration_disabled); 921 static DEFINE_STATIC_KEY_FALSE(scx_ops_cpu_preempt); 922 923 static struct static_key_false scx_has_op[SCX_OPI_END] = 924 { [0 ... SCX_OPI_END-1] = STATIC_KEY_FALSE_INIT }; 925 926 static atomic_t scx_exit_kind = ATOMIC_INIT(SCX_EXIT_DONE); 927 static struct scx_exit_info *scx_exit_info; 928 929 static atomic_long_t scx_nr_rejected = ATOMIC_LONG_INIT(0); 930 static atomic_long_t scx_hotplug_seq = ATOMIC_LONG_INIT(0); 931 932 /* 933 * A monotically increasing sequence number that is incremented every time a 934 * scheduler is enabled. This can be used by to check if any custom sched_ext 935 * scheduler has ever been used in the system. 936 */ 937 static atomic_long_t scx_enable_seq = ATOMIC_LONG_INIT(0); 938 939 /* 940 * The maximum amount of time in jiffies that a task may be runnable without 941 * being scheduled on a CPU. If this timeout is exceeded, it will trigger 942 * scx_ops_error(). 943 */ 944 static unsigned long scx_watchdog_timeout; 945 946 /* 947 * The last time the delayed work was run. This delayed work relies on 948 * ksoftirqd being able to run to service timer interrupts, so it's possible 949 * that this work itself could get wedged. To account for this, we check that 950 * it's not stalled in the timer tick, and trigger an error if it is. 951 */ 952 static unsigned long scx_watchdog_timestamp = INITIAL_JIFFIES; 953 954 static struct delayed_work scx_watchdog_work; 955 956 /* for %SCX_KICK_WAIT */ 957 static unsigned long __percpu *scx_kick_cpus_pnt_seqs; 958 959 /* 960 * Direct dispatch marker. 961 * 962 * Non-NULL values are used for direct dispatch from enqueue path. A valid 963 * pointer points to the task currently being enqueued. An ERR_PTR value is used 964 * to indicate that direct dispatch has already happened. 965 */ 966 static DEFINE_PER_CPU(struct task_struct *, direct_dispatch_task); 967 968 /* 969 * Dispatch queues. 970 * 971 * The global DSQ (%SCX_DSQ_GLOBAL) is split per-node for scalability. This is 972 * to avoid live-locking in bypass mode where all tasks are dispatched to 973 * %SCX_DSQ_GLOBAL and all CPUs consume from it. If per-node split isn't 974 * sufficient, it can be further split. 975 */ 976 static struct scx_dispatch_q **global_dsqs; 977 978 static const struct rhashtable_params dsq_hash_params = { 979 .key_len = sizeof_field(struct scx_dispatch_q, id), 980 .key_offset = offsetof(struct scx_dispatch_q, id), 981 .head_offset = offsetof(struct scx_dispatch_q, hash_node), 982 }; 983 984 static struct rhashtable dsq_hash; 985 static LLIST_HEAD(dsqs_to_free); 986 987 /* dispatch buf */ 988 struct scx_dsp_buf_ent { 989 struct task_struct *task; 990 unsigned long qseq; 991 u64 dsq_id; 992 u64 enq_flags; 993 }; 994 995 static u32 scx_dsp_max_batch; 996 997 struct scx_dsp_ctx { 998 struct rq *rq; 999 u32 cursor; 1000 u32 nr_tasks; 1001 struct scx_dsp_buf_ent buf[]; 1002 }; 1003 1004 static struct scx_dsp_ctx __percpu *scx_dsp_ctx; 1005 1006 /* string formatting from BPF */ 1007 struct scx_bstr_buf { 1008 u64 data[MAX_BPRINTF_VARARGS]; 1009 char line[SCX_EXIT_MSG_LEN]; 1010 }; 1011 1012 static DEFINE_RAW_SPINLOCK(scx_exit_bstr_buf_lock); 1013 static struct scx_bstr_buf scx_exit_bstr_buf; 1014 1015 /* ops debug dump */ 1016 struct scx_dump_data { 1017 s32 cpu; 1018 bool first; 1019 s32 cursor; 1020 struct seq_buf *s; 1021 const char *prefix; 1022 struct scx_bstr_buf buf; 1023 }; 1024 1025 static struct scx_dump_data scx_dump_data = { 1026 .cpu = -1, 1027 }; 1028 1029 /* /sys/kernel/sched_ext interface */ 1030 static struct kset *scx_kset; 1031 static struct kobject *scx_root_kobj; 1032 1033 #define CREATE_TRACE_POINTS 1034 #include <trace/events/sched_ext.h> 1035 1036 static void process_ddsp_deferred_locals(struct rq *rq); 1037 static void scx_bpf_kick_cpu(s32 cpu, u64 flags); 1038 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 1039 s64 exit_code, 1040 const char *fmt, ...); 1041 1042 #define scx_ops_error_kind(err, fmt, args...) \ 1043 scx_ops_exit_kind((err), 0, fmt, ##args) 1044 1045 #define scx_ops_exit(code, fmt, args...) \ 1046 scx_ops_exit_kind(SCX_EXIT_UNREG_KERN, (code), fmt, ##args) 1047 1048 #define scx_ops_error(fmt, args...) \ 1049 scx_ops_error_kind(SCX_EXIT_ERROR, fmt, ##args) 1050 1051 #define SCX_HAS_OP(op) static_branch_likely(&scx_has_op[SCX_OP_IDX(op)]) 1052 1053 static long jiffies_delta_msecs(unsigned long at, unsigned long now) 1054 { 1055 if (time_after(at, now)) 1056 return jiffies_to_msecs(at - now); 1057 else 1058 return -(long)jiffies_to_msecs(now - at); 1059 } 1060 1061 /* if the highest set bit is N, return a mask with bits [N+1, 31] set */ 1062 static u32 higher_bits(u32 flags) 1063 { 1064 return ~((1 << fls(flags)) - 1); 1065 } 1066 1067 /* return the mask with only the highest bit set */ 1068 static u32 highest_bit(u32 flags) 1069 { 1070 int bit = fls(flags); 1071 return ((u64)1 << bit) >> 1; 1072 } 1073 1074 static bool u32_before(u32 a, u32 b) 1075 { 1076 return (s32)(a - b) < 0; 1077 } 1078 1079 static struct scx_dispatch_q *find_global_dsq(struct task_struct *p) 1080 { 1081 return global_dsqs[cpu_to_node(task_cpu(p))]; 1082 } 1083 1084 static struct scx_dispatch_q *find_user_dsq(u64 dsq_id) 1085 { 1086 return rhashtable_lookup_fast(&dsq_hash, &dsq_id, dsq_hash_params); 1087 } 1088 1089 /* 1090 * scx_kf_mask enforcement. Some kfuncs can only be called from specific SCX 1091 * ops. When invoking SCX ops, SCX_CALL_OP[_RET]() should be used to indicate 1092 * the allowed kfuncs and those kfuncs should use scx_kf_allowed() to check 1093 * whether it's running from an allowed context. 1094 * 1095 * @mask is constant, always inline to cull the mask calculations. 1096 */ 1097 static __always_inline void scx_kf_allow(u32 mask) 1098 { 1099 /* nesting is allowed only in increasing scx_kf_mask order */ 1100 WARN_ONCE((mask | higher_bits(mask)) & current->scx.kf_mask, 1101 "invalid nesting current->scx.kf_mask=0x%x mask=0x%x\n", 1102 current->scx.kf_mask, mask); 1103 current->scx.kf_mask |= mask; 1104 barrier(); 1105 } 1106 1107 static void scx_kf_disallow(u32 mask) 1108 { 1109 barrier(); 1110 current->scx.kf_mask &= ~mask; 1111 } 1112 1113 #define SCX_CALL_OP(mask, op, args...) \ 1114 do { \ 1115 if (mask) { \ 1116 scx_kf_allow(mask); \ 1117 scx_ops.op(args); \ 1118 scx_kf_disallow(mask); \ 1119 } else { \ 1120 scx_ops.op(args); \ 1121 } \ 1122 } while (0) 1123 1124 #define SCX_CALL_OP_RET(mask, op, args...) \ 1125 ({ \ 1126 __typeof__(scx_ops.op(args)) __ret; \ 1127 if (mask) { \ 1128 scx_kf_allow(mask); \ 1129 __ret = scx_ops.op(args); \ 1130 scx_kf_disallow(mask); \ 1131 } else { \ 1132 __ret = scx_ops.op(args); \ 1133 } \ 1134 __ret; \ 1135 }) 1136 1137 /* 1138 * Some kfuncs are allowed only on the tasks that are subjects of the 1139 * in-progress scx_ops operation for, e.g., locking guarantees. To enforce such 1140 * restrictions, the following SCX_CALL_OP_*() variants should be used when 1141 * invoking scx_ops operations that take task arguments. These can only be used 1142 * for non-nesting operations due to the way the tasks are tracked. 1143 * 1144 * kfuncs which can only operate on such tasks can in turn use 1145 * scx_kf_allowed_on_arg_tasks() to test whether the invocation is allowed on 1146 * the specific task. 1147 */ 1148 #define SCX_CALL_OP_TASK(mask, op, task, args...) \ 1149 do { \ 1150 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1151 current->scx.kf_tasks[0] = task; \ 1152 SCX_CALL_OP(mask, op, task, ##args); \ 1153 current->scx.kf_tasks[0] = NULL; \ 1154 } while (0) 1155 1156 #define SCX_CALL_OP_TASK_RET(mask, op, task, args...) \ 1157 ({ \ 1158 __typeof__(scx_ops.op(task, ##args)) __ret; \ 1159 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1160 current->scx.kf_tasks[0] = task; \ 1161 __ret = SCX_CALL_OP_RET(mask, op, task, ##args); \ 1162 current->scx.kf_tasks[0] = NULL; \ 1163 __ret; \ 1164 }) 1165 1166 #define SCX_CALL_OP_2TASKS_RET(mask, op, task0, task1, args...) \ 1167 ({ \ 1168 __typeof__(scx_ops.op(task0, task1, ##args)) __ret; \ 1169 BUILD_BUG_ON((mask) & ~__SCX_KF_TERMINAL); \ 1170 current->scx.kf_tasks[0] = task0; \ 1171 current->scx.kf_tasks[1] = task1; \ 1172 __ret = SCX_CALL_OP_RET(mask, op, task0, task1, ##args); \ 1173 current->scx.kf_tasks[0] = NULL; \ 1174 current->scx.kf_tasks[1] = NULL; \ 1175 __ret; \ 1176 }) 1177 1178 /* @mask is constant, always inline to cull unnecessary branches */ 1179 static __always_inline bool scx_kf_allowed(u32 mask) 1180 { 1181 if (unlikely(!(current->scx.kf_mask & mask))) { 1182 scx_ops_error("kfunc with mask 0x%x called from an operation only allowing 0x%x", 1183 mask, current->scx.kf_mask); 1184 return false; 1185 } 1186 1187 /* 1188 * Enforce nesting boundaries. e.g. A kfunc which can be called from 1189 * DISPATCH must not be called if we're running DEQUEUE which is nested 1190 * inside ops.dispatch(). We don't need to check boundaries for any 1191 * blocking kfuncs as the verifier ensures they're only called from 1192 * sleepable progs. 1193 */ 1194 if (unlikely(highest_bit(mask) == SCX_KF_CPU_RELEASE && 1195 (current->scx.kf_mask & higher_bits(SCX_KF_CPU_RELEASE)))) { 1196 scx_ops_error("cpu_release kfunc called from a nested operation"); 1197 return false; 1198 } 1199 1200 if (unlikely(highest_bit(mask) == SCX_KF_DISPATCH && 1201 (current->scx.kf_mask & higher_bits(SCX_KF_DISPATCH)))) { 1202 scx_ops_error("dispatch kfunc called from a nested operation"); 1203 return false; 1204 } 1205 1206 return true; 1207 } 1208 1209 /* see SCX_CALL_OP_TASK() */ 1210 static __always_inline bool scx_kf_allowed_on_arg_tasks(u32 mask, 1211 struct task_struct *p) 1212 { 1213 if (!scx_kf_allowed(mask)) 1214 return false; 1215 1216 if (unlikely((p != current->scx.kf_tasks[0] && 1217 p != current->scx.kf_tasks[1]))) { 1218 scx_ops_error("called on a task not being operated on"); 1219 return false; 1220 } 1221 1222 return true; 1223 } 1224 1225 static bool scx_kf_allowed_if_unlocked(void) 1226 { 1227 return !current->scx.kf_mask; 1228 } 1229 1230 /** 1231 * nldsq_next_task - Iterate to the next task in a non-local DSQ 1232 * @dsq: user dsq being iterated 1233 * @cur: current position, %NULL to start iteration 1234 * @rev: walk backwards 1235 * 1236 * Returns %NULL when iteration is finished. 1237 */ 1238 static struct task_struct *nldsq_next_task(struct scx_dispatch_q *dsq, 1239 struct task_struct *cur, bool rev) 1240 { 1241 struct list_head *list_node; 1242 struct scx_dsq_list_node *dsq_lnode; 1243 1244 lockdep_assert_held(&dsq->lock); 1245 1246 if (cur) 1247 list_node = &cur->scx.dsq_list.node; 1248 else 1249 list_node = &dsq->list; 1250 1251 /* find the next task, need to skip BPF iteration cursors */ 1252 do { 1253 if (rev) 1254 list_node = list_node->prev; 1255 else 1256 list_node = list_node->next; 1257 1258 if (list_node == &dsq->list) 1259 return NULL; 1260 1261 dsq_lnode = container_of(list_node, struct scx_dsq_list_node, 1262 node); 1263 } while (dsq_lnode->flags & SCX_DSQ_LNODE_ITER_CURSOR); 1264 1265 return container_of(dsq_lnode, struct task_struct, scx.dsq_list); 1266 } 1267 1268 #define nldsq_for_each_task(p, dsq) \ 1269 for ((p) = nldsq_next_task((dsq), NULL, false); (p); \ 1270 (p) = nldsq_next_task((dsq), (p), false)) 1271 1272 1273 /* 1274 * BPF DSQ iterator. Tasks in a non-local DSQ can be iterated in [reverse] 1275 * dispatch order. BPF-visible iterator is opaque and larger to allow future 1276 * changes without breaking backward compatibility. Can be used with 1277 * bpf_for_each(). See bpf_iter_scx_dsq_*(). 1278 */ 1279 enum scx_dsq_iter_flags { 1280 /* iterate in the reverse dispatch order */ 1281 SCX_DSQ_ITER_REV = 1U << 16, 1282 1283 __SCX_DSQ_ITER_HAS_SLICE = 1U << 30, 1284 __SCX_DSQ_ITER_HAS_VTIME = 1U << 31, 1285 1286 __SCX_DSQ_ITER_USER_FLAGS = SCX_DSQ_ITER_REV, 1287 __SCX_DSQ_ITER_ALL_FLAGS = __SCX_DSQ_ITER_USER_FLAGS | 1288 __SCX_DSQ_ITER_HAS_SLICE | 1289 __SCX_DSQ_ITER_HAS_VTIME, 1290 }; 1291 1292 struct bpf_iter_scx_dsq_kern { 1293 struct scx_dsq_list_node cursor; 1294 struct scx_dispatch_q *dsq; 1295 u64 slice; 1296 u64 vtime; 1297 } __attribute__((aligned(8))); 1298 1299 struct bpf_iter_scx_dsq { 1300 u64 __opaque[6]; 1301 } __attribute__((aligned(8))); 1302 1303 1304 /* 1305 * SCX task iterator. 1306 */ 1307 struct scx_task_iter { 1308 struct sched_ext_entity cursor; 1309 struct task_struct *locked; 1310 struct rq *rq; 1311 struct rq_flags rf; 1312 u32 cnt; 1313 }; 1314 1315 /** 1316 * scx_task_iter_start - Lock scx_tasks_lock and start a task iteration 1317 * @iter: iterator to init 1318 * 1319 * Initialize @iter and return with scx_tasks_lock held. Once initialized, @iter 1320 * must eventually be stopped with scx_task_iter_stop(). 1321 * 1322 * scx_tasks_lock and the rq lock may be released using scx_task_iter_unlock() 1323 * between this and the first next() call or between any two next() calls. If 1324 * the locks are released between two next() calls, the caller is responsible 1325 * for ensuring that the task being iterated remains accessible either through 1326 * RCU read lock or obtaining a reference count. 1327 * 1328 * All tasks which existed when the iteration started are guaranteed to be 1329 * visited as long as they still exist. 1330 */ 1331 static void scx_task_iter_start(struct scx_task_iter *iter) 1332 { 1333 BUILD_BUG_ON(__SCX_DSQ_ITER_ALL_FLAGS & 1334 ((1U << __SCX_DSQ_LNODE_PRIV_SHIFT) - 1)); 1335 1336 spin_lock_irq(&scx_tasks_lock); 1337 1338 iter->cursor = (struct sched_ext_entity){ .flags = SCX_TASK_CURSOR }; 1339 list_add(&iter->cursor.tasks_node, &scx_tasks); 1340 iter->locked = NULL; 1341 iter->cnt = 0; 1342 } 1343 1344 static void __scx_task_iter_rq_unlock(struct scx_task_iter *iter) 1345 { 1346 if (iter->locked) { 1347 task_rq_unlock(iter->rq, iter->locked, &iter->rf); 1348 iter->locked = NULL; 1349 } 1350 } 1351 1352 /** 1353 * scx_task_iter_unlock - Unlock rq and scx_tasks_lock held by a task iterator 1354 * @iter: iterator to unlock 1355 * 1356 * If @iter is in the middle of a locked iteration, it may be locking the rq of 1357 * the task currently being visited in addition to scx_tasks_lock. Unlock both. 1358 * This function can be safely called anytime during an iteration. 1359 */ 1360 static void scx_task_iter_unlock(struct scx_task_iter *iter) 1361 { 1362 __scx_task_iter_rq_unlock(iter); 1363 spin_unlock_irq(&scx_tasks_lock); 1364 } 1365 1366 /** 1367 * scx_task_iter_relock - Lock scx_tasks_lock released by scx_task_iter_unlock() 1368 * @iter: iterator to re-lock 1369 * 1370 * Re-lock scx_tasks_lock unlocked by scx_task_iter_unlock(). Note that it 1371 * doesn't re-lock the rq lock. Must be called before other iterator operations. 1372 */ 1373 static void scx_task_iter_relock(struct scx_task_iter *iter) 1374 { 1375 spin_lock_irq(&scx_tasks_lock); 1376 } 1377 1378 /** 1379 * scx_task_iter_stop - Stop a task iteration and unlock scx_tasks_lock 1380 * @iter: iterator to exit 1381 * 1382 * Exit a previously initialized @iter. Must be called with scx_tasks_lock held 1383 * which is released on return. If the iterator holds a task's rq lock, that rq 1384 * lock is also released. See scx_task_iter_start() for details. 1385 */ 1386 static void scx_task_iter_stop(struct scx_task_iter *iter) 1387 { 1388 list_del_init(&iter->cursor.tasks_node); 1389 scx_task_iter_unlock(iter); 1390 } 1391 1392 /** 1393 * scx_task_iter_next - Next task 1394 * @iter: iterator to walk 1395 * 1396 * Visit the next task. See scx_task_iter_start() for details. Locks are dropped 1397 * and re-acquired every %SCX_OPS_TASK_ITER_BATCH iterations to avoid causing 1398 * stalls by holding scx_tasks_lock for too long. 1399 */ 1400 static struct task_struct *scx_task_iter_next(struct scx_task_iter *iter) 1401 { 1402 struct list_head *cursor = &iter->cursor.tasks_node; 1403 struct sched_ext_entity *pos; 1404 1405 if (!(++iter->cnt % SCX_OPS_TASK_ITER_BATCH)) { 1406 scx_task_iter_unlock(iter); 1407 cond_resched(); 1408 scx_task_iter_relock(iter); 1409 } 1410 1411 list_for_each_entry(pos, cursor, tasks_node) { 1412 if (&pos->tasks_node == &scx_tasks) 1413 return NULL; 1414 if (!(pos->flags & SCX_TASK_CURSOR)) { 1415 list_move(cursor, &pos->tasks_node); 1416 return container_of(pos, struct task_struct, scx); 1417 } 1418 } 1419 1420 /* can't happen, should always terminate at scx_tasks above */ 1421 BUG(); 1422 } 1423 1424 /** 1425 * scx_task_iter_next_locked - Next non-idle task with its rq locked 1426 * @iter: iterator to walk 1427 * 1428 * Visit the non-idle task with its rq lock held. Allows callers to specify 1429 * whether they would like to filter out dead tasks. See scx_task_iter_start() 1430 * for details. 1431 */ 1432 static struct task_struct *scx_task_iter_next_locked(struct scx_task_iter *iter) 1433 { 1434 struct task_struct *p; 1435 1436 __scx_task_iter_rq_unlock(iter); 1437 1438 while ((p = scx_task_iter_next(iter))) { 1439 /* 1440 * scx_task_iter is used to prepare and move tasks into SCX 1441 * while loading the BPF scheduler and vice-versa while 1442 * unloading. The init_tasks ("swappers") should be excluded 1443 * from the iteration because: 1444 * 1445 * - It's unsafe to use __setschduler_prio() on an init_task to 1446 * determine the sched_class to use as it won't preserve its 1447 * idle_sched_class. 1448 * 1449 * - ops.init/exit_task() can easily be confused if called with 1450 * init_tasks as they, e.g., share PID 0. 1451 * 1452 * As init_tasks are never scheduled through SCX, they can be 1453 * skipped safely. Note that is_idle_task() which tests %PF_IDLE 1454 * doesn't work here: 1455 * 1456 * - %PF_IDLE may not be set for an init_task whose CPU hasn't 1457 * yet been onlined. 1458 * 1459 * - %PF_IDLE can be set on tasks that are not init_tasks. See 1460 * play_idle_precise() used by CONFIG_IDLE_INJECT. 1461 * 1462 * Test for idle_sched_class as only init_tasks are on it. 1463 */ 1464 if (p->sched_class != &idle_sched_class) 1465 break; 1466 } 1467 if (!p) 1468 return NULL; 1469 1470 iter->rq = task_rq_lock(p, &iter->rf); 1471 iter->locked = p; 1472 1473 return p; 1474 } 1475 1476 /* 1477 * Collection of event counters. Event types are placed in descending order. 1478 */ 1479 struct scx_event_stats { 1480 /* 1481 * If ops.select_cpu() returns a CPU which can't be used by the task, 1482 * the core scheduler code silently picks a fallback CPU. 1483 */ 1484 u64 SCX_EV_SELECT_CPU_FALLBACK; 1485 1486 /* 1487 * When dispatching to a local DSQ, the CPU may have gone offline in 1488 * the meantime. In this case, the task is bounced to the global DSQ. 1489 */ 1490 u64 SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE; 1491 1492 /* 1493 * If SCX_OPS_ENQ_LAST is not set, the number of times that a task 1494 * continued to run because there were no other tasks on the CPU. 1495 */ 1496 u64 SCX_EV_DISPATCH_KEEP_LAST; 1497 1498 /* 1499 * If SCX_OPS_ENQ_EXITING is not set, the number of times that a task 1500 * is dispatched to a local DSQ when exiting. 1501 */ 1502 u64 SCX_EV_ENQ_SKIP_EXITING; 1503 1504 /* 1505 * If SCX_OPS_ENQ_MIGRATION_DISABLED is not set, the number of times a 1506 * migration disabled task skips ops.enqueue() and is dispatched to its 1507 * local DSQ. 1508 */ 1509 u64 SCX_EV_ENQ_SKIP_MIGRATION_DISABLED; 1510 1511 /* 1512 * The total number of tasks enqueued (or pick_task-ed) with a 1513 * default time slice (SCX_SLICE_DFL). 1514 */ 1515 u64 SCX_EV_ENQ_SLICE_DFL; 1516 1517 /* 1518 * The total duration of bypass modes in nanoseconds. 1519 */ 1520 u64 SCX_EV_BYPASS_DURATION; 1521 1522 /* 1523 * The number of tasks dispatched in the bypassing mode. 1524 */ 1525 u64 SCX_EV_BYPASS_DISPATCH; 1526 1527 /* 1528 * The number of times the bypassing mode has been activated. 1529 */ 1530 u64 SCX_EV_BYPASS_ACTIVATE; 1531 }; 1532 1533 /* 1534 * The event counter is organized by a per-CPU variable to minimize the 1535 * accounting overhead without synchronization. A system-wide view on the 1536 * event counter is constructed when requested by scx_bpf_get_event_stat(). 1537 */ 1538 static DEFINE_PER_CPU(struct scx_event_stats, event_stats_cpu); 1539 1540 /** 1541 * scx_add_event - Increase an event counter for 'name' by 'cnt' 1542 * @name: an event name defined in struct scx_event_stats 1543 * @cnt: the number of the event occured 1544 * 1545 * This can be used when preemption is not disabled. 1546 */ 1547 #define scx_add_event(name, cnt) do { \ 1548 this_cpu_add(event_stats_cpu.name, cnt); \ 1549 } while(0) 1550 1551 /** 1552 * __scx_add_event - Increase an event counter for 'name' by 'cnt' 1553 * @name: an event name defined in struct scx_event_stats 1554 * @cnt: the number of the event occured 1555 * 1556 * This should be used only when preemption is disabled. 1557 */ 1558 #define __scx_add_event(name, cnt) do { \ 1559 __this_cpu_add(event_stats_cpu.name, cnt); \ 1560 } while(0) 1561 1562 /** 1563 * scx_agg_event - Aggregate an event counter 'kind' from 'src_e' to 'dst_e' 1564 * @dst_e: destination event stats 1565 * @src_e: source event stats 1566 * @kind: a kind of event to be aggregated 1567 */ 1568 #define scx_agg_event(dst_e, src_e, kind) do { \ 1569 (dst_e)->kind += READ_ONCE((src_e)->kind); \ 1570 } while(0) 1571 1572 /** 1573 * scx_dump_event - Dump an event 'kind' in 'events' to 's' 1574 * @s: output seq_buf 1575 * @events: event stats 1576 * @kind: a kind of event to dump 1577 */ 1578 #define scx_dump_event(s, events, kind) do { \ 1579 dump_line(&(s), "%40s: %16llu", #kind, (events)->kind); \ 1580 } while (0) 1581 1582 1583 static void scx_bpf_events(struct scx_event_stats *events, size_t events__sz); 1584 1585 static enum scx_ops_enable_state scx_ops_enable_state(void) 1586 { 1587 return atomic_read(&scx_ops_enable_state_var); 1588 } 1589 1590 static enum scx_ops_enable_state 1591 scx_ops_set_enable_state(enum scx_ops_enable_state to) 1592 { 1593 return atomic_xchg(&scx_ops_enable_state_var, to); 1594 } 1595 1596 static bool scx_ops_tryset_enable_state(enum scx_ops_enable_state to, 1597 enum scx_ops_enable_state from) 1598 { 1599 int from_v = from; 1600 1601 return atomic_try_cmpxchg(&scx_ops_enable_state_var, &from_v, to); 1602 } 1603 1604 static bool scx_rq_bypassing(struct rq *rq) 1605 { 1606 return unlikely(rq->scx.flags & SCX_RQ_BYPASSING); 1607 } 1608 1609 /** 1610 * wait_ops_state - Busy-wait the specified ops state to end 1611 * @p: target task 1612 * @opss: state to wait the end of 1613 * 1614 * Busy-wait for @p to transition out of @opss. This can only be used when the 1615 * state part of @opss is %SCX_QUEUEING or %SCX_DISPATCHING. This function also 1616 * has load_acquire semantics to ensure that the caller can see the updates made 1617 * in the enqueueing and dispatching paths. 1618 */ 1619 static void wait_ops_state(struct task_struct *p, unsigned long opss) 1620 { 1621 do { 1622 cpu_relax(); 1623 } while (atomic_long_read_acquire(&p->scx.ops_state) == opss); 1624 } 1625 1626 /** 1627 * ops_cpu_valid - Verify a cpu number 1628 * @cpu: cpu number which came from a BPF ops 1629 * @where: extra information reported on error 1630 * 1631 * @cpu is a cpu number which came from the BPF scheduler and can be any value. 1632 * Verify that it is in range and one of the possible cpus. If invalid, trigger 1633 * an ops error. 1634 */ 1635 static bool ops_cpu_valid(s32 cpu, const char *where) 1636 { 1637 if (likely(cpu >= 0 && cpu < nr_cpu_ids && cpu_possible(cpu))) { 1638 return true; 1639 } else { 1640 scx_ops_error("invalid CPU %d%s%s", cpu, 1641 where ? " " : "", where ?: ""); 1642 return false; 1643 } 1644 } 1645 1646 /** 1647 * ops_sanitize_err - Sanitize a -errno value 1648 * @ops_name: operation to blame on failure 1649 * @err: -errno value to sanitize 1650 * 1651 * Verify @err is a valid -errno. If not, trigger scx_ops_error() and return 1652 * -%EPROTO. This is necessary because returning a rogue -errno up the chain can 1653 * cause misbehaviors. For an example, a large negative return from 1654 * ops.init_task() triggers an oops when passed up the call chain because the 1655 * value fails IS_ERR() test after being encoded with ERR_PTR() and then is 1656 * handled as a pointer. 1657 */ 1658 static int ops_sanitize_err(const char *ops_name, s32 err) 1659 { 1660 if (err < 0 && err >= -MAX_ERRNO) 1661 return err; 1662 1663 scx_ops_error("ops.%s() returned an invalid errno %d", ops_name, err); 1664 return -EPROTO; 1665 } 1666 1667 static void run_deferred(struct rq *rq) 1668 { 1669 process_ddsp_deferred_locals(rq); 1670 } 1671 1672 #ifdef CONFIG_SMP 1673 static void deferred_bal_cb_workfn(struct rq *rq) 1674 { 1675 run_deferred(rq); 1676 } 1677 #endif 1678 1679 static void deferred_irq_workfn(struct irq_work *irq_work) 1680 { 1681 struct rq *rq = container_of(irq_work, struct rq, scx.deferred_irq_work); 1682 1683 raw_spin_rq_lock(rq); 1684 run_deferred(rq); 1685 raw_spin_rq_unlock(rq); 1686 } 1687 1688 /** 1689 * schedule_deferred - Schedule execution of deferred actions on an rq 1690 * @rq: target rq 1691 * 1692 * Schedule execution of deferred actions on @rq. Must be called with @rq 1693 * locked. Deferred actions are executed with @rq locked but unpinned, and thus 1694 * can unlock @rq to e.g. migrate tasks to other rqs. 1695 */ 1696 static void schedule_deferred(struct rq *rq) 1697 { 1698 lockdep_assert_rq_held(rq); 1699 1700 #ifdef CONFIG_SMP 1701 /* 1702 * If in the middle of waking up a task, task_woken_scx() will be called 1703 * afterwards which will then run the deferred actions, no need to 1704 * schedule anything. 1705 */ 1706 if (rq->scx.flags & SCX_RQ_IN_WAKEUP) 1707 return; 1708 1709 /* 1710 * If in balance, the balance callbacks will be called before rq lock is 1711 * released. Schedule one. 1712 */ 1713 if (rq->scx.flags & SCX_RQ_IN_BALANCE) { 1714 queue_balance_callback(rq, &rq->scx.deferred_bal_cb, 1715 deferred_bal_cb_workfn); 1716 return; 1717 } 1718 #endif 1719 /* 1720 * No scheduler hooks available. Queue an irq work. They are executed on 1721 * IRQ re-enable which may take a bit longer than the scheduler hooks. 1722 * The above WAKEUP and BALANCE paths should cover most of the cases and 1723 * the time to IRQ re-enable shouldn't be long. 1724 */ 1725 irq_work_queue(&rq->scx.deferred_irq_work); 1726 } 1727 1728 /** 1729 * touch_core_sched - Update timestamp used for core-sched task ordering 1730 * @rq: rq to read clock from, must be locked 1731 * @p: task to update the timestamp for 1732 * 1733 * Update @p->scx.core_sched_at timestamp. This is used by scx_prio_less() to 1734 * implement global or local-DSQ FIFO ordering for core-sched. Should be called 1735 * when a task becomes runnable and its turn on the CPU ends (e.g. slice 1736 * exhaustion). 1737 */ 1738 static void touch_core_sched(struct rq *rq, struct task_struct *p) 1739 { 1740 lockdep_assert_rq_held(rq); 1741 1742 #ifdef CONFIG_SCHED_CORE 1743 /* 1744 * It's okay to update the timestamp spuriously. Use 1745 * sched_core_disabled() which is cheaper than enabled(). 1746 * 1747 * As this is used to determine ordering between tasks of sibling CPUs, 1748 * it may be better to use per-core dispatch sequence instead. 1749 */ 1750 if (!sched_core_disabled()) 1751 p->scx.core_sched_at = sched_clock_cpu(cpu_of(rq)); 1752 #endif 1753 } 1754 1755 /** 1756 * touch_core_sched_dispatch - Update core-sched timestamp on dispatch 1757 * @rq: rq to read clock from, must be locked 1758 * @p: task being dispatched 1759 * 1760 * If the BPF scheduler implements custom core-sched ordering via 1761 * ops.core_sched_before(), @p->scx.core_sched_at is used to implement FIFO 1762 * ordering within each local DSQ. This function is called from dispatch paths 1763 * and updates @p->scx.core_sched_at if custom core-sched ordering is in effect. 1764 */ 1765 static void touch_core_sched_dispatch(struct rq *rq, struct task_struct *p) 1766 { 1767 lockdep_assert_rq_held(rq); 1768 1769 #ifdef CONFIG_SCHED_CORE 1770 if (SCX_HAS_OP(core_sched_before)) 1771 touch_core_sched(rq, p); 1772 #endif 1773 } 1774 1775 static void update_curr_scx(struct rq *rq) 1776 { 1777 struct task_struct *curr = rq->curr; 1778 s64 delta_exec; 1779 1780 delta_exec = update_curr_common(rq); 1781 if (unlikely(delta_exec <= 0)) 1782 return; 1783 1784 if (curr->scx.slice != SCX_SLICE_INF) { 1785 curr->scx.slice -= min_t(u64, curr->scx.slice, delta_exec); 1786 if (!curr->scx.slice) 1787 touch_core_sched(rq, curr); 1788 } 1789 } 1790 1791 static bool scx_dsq_priq_less(struct rb_node *node_a, 1792 const struct rb_node *node_b) 1793 { 1794 const struct task_struct *a = 1795 container_of(node_a, struct task_struct, scx.dsq_priq); 1796 const struct task_struct *b = 1797 container_of(node_b, struct task_struct, scx.dsq_priq); 1798 1799 return time_before64(a->scx.dsq_vtime, b->scx.dsq_vtime); 1800 } 1801 1802 static void dsq_mod_nr(struct scx_dispatch_q *dsq, s32 delta) 1803 { 1804 /* scx_bpf_dsq_nr_queued() reads ->nr without locking, use WRITE_ONCE() */ 1805 WRITE_ONCE(dsq->nr, dsq->nr + delta); 1806 } 1807 1808 static void dispatch_enqueue(struct scx_dispatch_q *dsq, struct task_struct *p, 1809 u64 enq_flags) 1810 { 1811 bool is_local = dsq->id == SCX_DSQ_LOCAL; 1812 1813 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 1814 WARN_ON_ONCE((p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) || 1815 !RB_EMPTY_NODE(&p->scx.dsq_priq)); 1816 1817 if (!is_local) { 1818 raw_spin_lock(&dsq->lock); 1819 if (unlikely(dsq->id == SCX_DSQ_INVALID)) { 1820 scx_ops_error("attempting to dispatch to a destroyed dsq"); 1821 /* fall back to the global dsq */ 1822 raw_spin_unlock(&dsq->lock); 1823 dsq = find_global_dsq(p); 1824 raw_spin_lock(&dsq->lock); 1825 } 1826 } 1827 1828 if (unlikely((dsq->id & SCX_DSQ_FLAG_BUILTIN) && 1829 (enq_flags & SCX_ENQ_DSQ_PRIQ))) { 1830 /* 1831 * SCX_DSQ_LOCAL and SCX_DSQ_GLOBAL DSQs always consume from 1832 * their FIFO queues. To avoid confusion and accidentally 1833 * starving vtime-dispatched tasks by FIFO-dispatched tasks, we 1834 * disallow any internal DSQ from doing vtime ordering of 1835 * tasks. 1836 */ 1837 scx_ops_error("cannot use vtime ordering for built-in DSQs"); 1838 enq_flags &= ~SCX_ENQ_DSQ_PRIQ; 1839 } 1840 1841 if (enq_flags & SCX_ENQ_DSQ_PRIQ) { 1842 struct rb_node *rbp; 1843 1844 /* 1845 * A PRIQ DSQ shouldn't be using FIFO enqueueing. As tasks are 1846 * linked to both the rbtree and list on PRIQs, this can only be 1847 * tested easily when adding the first task. 1848 */ 1849 if (unlikely(RB_EMPTY_ROOT(&dsq->priq) && 1850 nldsq_next_task(dsq, NULL, false))) 1851 scx_ops_error("DSQ ID 0x%016llx already had FIFO-enqueued tasks", 1852 dsq->id); 1853 1854 p->scx.dsq_flags |= SCX_TASK_DSQ_ON_PRIQ; 1855 rb_add(&p->scx.dsq_priq, &dsq->priq, scx_dsq_priq_less); 1856 1857 /* 1858 * Find the previous task and insert after it on the list so 1859 * that @dsq->list is vtime ordered. 1860 */ 1861 rbp = rb_prev(&p->scx.dsq_priq); 1862 if (rbp) { 1863 struct task_struct *prev = 1864 container_of(rbp, struct task_struct, 1865 scx.dsq_priq); 1866 list_add(&p->scx.dsq_list.node, &prev->scx.dsq_list.node); 1867 } else { 1868 list_add(&p->scx.dsq_list.node, &dsq->list); 1869 } 1870 } else { 1871 /* a FIFO DSQ shouldn't be using PRIQ enqueuing */ 1872 if (unlikely(!RB_EMPTY_ROOT(&dsq->priq))) 1873 scx_ops_error("DSQ ID 0x%016llx already had PRIQ-enqueued tasks", 1874 dsq->id); 1875 1876 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 1877 list_add(&p->scx.dsq_list.node, &dsq->list); 1878 else 1879 list_add_tail(&p->scx.dsq_list.node, &dsq->list); 1880 } 1881 1882 /* seq records the order tasks are queued, used by BPF DSQ iterator */ 1883 dsq->seq++; 1884 p->scx.dsq_seq = dsq->seq; 1885 1886 dsq_mod_nr(dsq, 1); 1887 p->scx.dsq = dsq; 1888 1889 /* 1890 * scx.ddsp_dsq_id and scx.ddsp_enq_flags are only relevant on the 1891 * direct dispatch path, but we clear them here because the direct 1892 * dispatch verdict may be overridden on the enqueue path during e.g. 1893 * bypass. 1894 */ 1895 p->scx.ddsp_dsq_id = SCX_DSQ_INVALID; 1896 p->scx.ddsp_enq_flags = 0; 1897 1898 /* 1899 * We're transitioning out of QUEUEING or DISPATCHING. store_release to 1900 * match waiters' load_acquire. 1901 */ 1902 if (enq_flags & SCX_ENQ_CLEAR_OPSS) 1903 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 1904 1905 if (is_local) { 1906 struct rq *rq = container_of(dsq, struct rq, scx.local_dsq); 1907 bool preempt = false; 1908 1909 if ((enq_flags & SCX_ENQ_PREEMPT) && p != rq->curr && 1910 rq->curr->sched_class == &ext_sched_class) { 1911 rq->curr->scx.slice = 0; 1912 preempt = true; 1913 } 1914 1915 if (preempt || sched_class_above(&ext_sched_class, 1916 rq->curr->sched_class)) 1917 resched_curr(rq); 1918 } else { 1919 raw_spin_unlock(&dsq->lock); 1920 } 1921 } 1922 1923 static void task_unlink_from_dsq(struct task_struct *p, 1924 struct scx_dispatch_q *dsq) 1925 { 1926 WARN_ON_ONCE(list_empty(&p->scx.dsq_list.node)); 1927 1928 if (p->scx.dsq_flags & SCX_TASK_DSQ_ON_PRIQ) { 1929 rb_erase(&p->scx.dsq_priq, &dsq->priq); 1930 RB_CLEAR_NODE(&p->scx.dsq_priq); 1931 p->scx.dsq_flags &= ~SCX_TASK_DSQ_ON_PRIQ; 1932 } 1933 1934 list_del_init(&p->scx.dsq_list.node); 1935 dsq_mod_nr(dsq, -1); 1936 } 1937 1938 static void dispatch_dequeue(struct rq *rq, struct task_struct *p) 1939 { 1940 struct scx_dispatch_q *dsq = p->scx.dsq; 1941 bool is_local = dsq == &rq->scx.local_dsq; 1942 1943 if (!dsq) { 1944 /* 1945 * If !dsq && on-list, @p is on @rq's ddsp_deferred_locals. 1946 * Unlinking is all that's needed to cancel. 1947 */ 1948 if (unlikely(!list_empty(&p->scx.dsq_list.node))) 1949 list_del_init(&p->scx.dsq_list.node); 1950 1951 /* 1952 * When dispatching directly from the BPF scheduler to a local 1953 * DSQ, the task isn't associated with any DSQ but 1954 * @p->scx.holding_cpu may be set under the protection of 1955 * %SCX_OPSS_DISPATCHING. 1956 */ 1957 if (p->scx.holding_cpu >= 0) 1958 p->scx.holding_cpu = -1; 1959 1960 return; 1961 } 1962 1963 if (!is_local) 1964 raw_spin_lock(&dsq->lock); 1965 1966 /* 1967 * Now that we hold @dsq->lock, @p->holding_cpu and @p->scx.dsq_* can't 1968 * change underneath us. 1969 */ 1970 if (p->scx.holding_cpu < 0) { 1971 /* @p must still be on @dsq, dequeue */ 1972 task_unlink_from_dsq(p, dsq); 1973 } else { 1974 /* 1975 * We're racing against dispatch_to_local_dsq() which already 1976 * removed @p from @dsq and set @p->scx.holding_cpu. Clear the 1977 * holding_cpu which tells dispatch_to_local_dsq() that it lost 1978 * the race. 1979 */ 1980 WARN_ON_ONCE(!list_empty(&p->scx.dsq_list.node)); 1981 p->scx.holding_cpu = -1; 1982 } 1983 p->scx.dsq = NULL; 1984 1985 if (!is_local) 1986 raw_spin_unlock(&dsq->lock); 1987 } 1988 1989 static struct scx_dispatch_q *find_dsq_for_dispatch(struct rq *rq, u64 dsq_id, 1990 struct task_struct *p) 1991 { 1992 struct scx_dispatch_q *dsq; 1993 1994 if (dsq_id == SCX_DSQ_LOCAL) 1995 return &rq->scx.local_dsq; 1996 1997 if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 1998 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 1999 2000 if (!ops_cpu_valid(cpu, "in SCX_DSQ_LOCAL_ON dispatch verdict")) 2001 return find_global_dsq(p); 2002 2003 return &cpu_rq(cpu)->scx.local_dsq; 2004 } 2005 2006 if (dsq_id == SCX_DSQ_GLOBAL) 2007 dsq = find_global_dsq(p); 2008 else 2009 dsq = find_user_dsq(dsq_id); 2010 2011 if (unlikely(!dsq)) { 2012 scx_ops_error("non-existent DSQ 0x%llx for %s[%d]", 2013 dsq_id, p->comm, p->pid); 2014 return find_global_dsq(p); 2015 } 2016 2017 return dsq; 2018 } 2019 2020 static void mark_direct_dispatch(struct task_struct *ddsp_task, 2021 struct task_struct *p, u64 dsq_id, 2022 u64 enq_flags) 2023 { 2024 /* 2025 * Mark that dispatch already happened from ops.select_cpu() or 2026 * ops.enqueue() by spoiling direct_dispatch_task with a non-NULL value 2027 * which can never match a valid task pointer. 2028 */ 2029 __this_cpu_write(direct_dispatch_task, ERR_PTR(-ESRCH)); 2030 2031 /* @p must match the task on the enqueue path */ 2032 if (unlikely(p != ddsp_task)) { 2033 if (IS_ERR(ddsp_task)) 2034 scx_ops_error("%s[%d] already direct-dispatched", 2035 p->comm, p->pid); 2036 else 2037 scx_ops_error("scheduling for %s[%d] but trying to direct-dispatch %s[%d]", 2038 ddsp_task->comm, ddsp_task->pid, 2039 p->comm, p->pid); 2040 return; 2041 } 2042 2043 WARN_ON_ONCE(p->scx.ddsp_dsq_id != SCX_DSQ_INVALID); 2044 WARN_ON_ONCE(p->scx.ddsp_enq_flags); 2045 2046 p->scx.ddsp_dsq_id = dsq_id; 2047 p->scx.ddsp_enq_flags = enq_flags; 2048 } 2049 2050 static void direct_dispatch(struct task_struct *p, u64 enq_flags) 2051 { 2052 struct rq *rq = task_rq(p); 2053 struct scx_dispatch_q *dsq = 2054 find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 2055 2056 touch_core_sched_dispatch(rq, p); 2057 2058 p->scx.ddsp_enq_flags |= enq_flags; 2059 2060 /* 2061 * We are in the enqueue path with @rq locked and pinned, and thus can't 2062 * double lock a remote rq and enqueue to its local DSQ. For 2063 * DSQ_LOCAL_ON verdicts targeting the local DSQ of a remote CPU, defer 2064 * the enqueue so that it's executed when @rq can be unlocked. 2065 */ 2066 if (dsq->id == SCX_DSQ_LOCAL && dsq != &rq->scx.local_dsq) { 2067 unsigned long opss; 2068 2069 opss = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_STATE_MASK; 2070 2071 switch (opss & SCX_OPSS_STATE_MASK) { 2072 case SCX_OPSS_NONE: 2073 break; 2074 case SCX_OPSS_QUEUEING: 2075 /* 2076 * As @p was never passed to the BPF side, _release is 2077 * not strictly necessary. Still do it for consistency. 2078 */ 2079 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2080 break; 2081 default: 2082 WARN_ONCE(true, "sched_ext: %s[%d] has invalid ops state 0x%lx in direct_dispatch()", 2083 p->comm, p->pid, opss); 2084 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2085 break; 2086 } 2087 2088 WARN_ON_ONCE(p->scx.dsq || !list_empty(&p->scx.dsq_list.node)); 2089 list_add_tail(&p->scx.dsq_list.node, 2090 &rq->scx.ddsp_deferred_locals); 2091 schedule_deferred(rq); 2092 return; 2093 } 2094 2095 dispatch_enqueue(dsq, p, p->scx.ddsp_enq_flags | SCX_ENQ_CLEAR_OPSS); 2096 } 2097 2098 static bool scx_rq_online(struct rq *rq) 2099 { 2100 /* 2101 * Test both cpu_active() and %SCX_RQ_ONLINE. %SCX_RQ_ONLINE indicates 2102 * the online state as seen from the BPF scheduler. cpu_active() test 2103 * guarantees that, if this function returns %true, %SCX_RQ_ONLINE will 2104 * stay set until the current scheduling operation is complete even if 2105 * we aren't locking @rq. 2106 */ 2107 return likely((rq->scx.flags & SCX_RQ_ONLINE) && cpu_active(cpu_of(rq))); 2108 } 2109 2110 static void do_enqueue_task(struct rq *rq, struct task_struct *p, u64 enq_flags, 2111 int sticky_cpu) 2112 { 2113 struct task_struct **ddsp_taskp; 2114 unsigned long qseq; 2115 2116 WARN_ON_ONCE(!(p->scx.flags & SCX_TASK_QUEUED)); 2117 2118 /* rq migration */ 2119 if (sticky_cpu == cpu_of(rq)) 2120 goto local_norefill; 2121 2122 /* 2123 * If !scx_rq_online(), we already told the BPF scheduler that the CPU 2124 * is offline and are just running the hotplug path. Don't bother the 2125 * BPF scheduler. 2126 */ 2127 if (!scx_rq_online(rq)) 2128 goto local; 2129 2130 if (scx_rq_bypassing(rq)) { 2131 __scx_add_event(SCX_EV_BYPASS_DISPATCH, 1); 2132 goto global; 2133 } 2134 2135 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2136 goto direct; 2137 2138 /* see %SCX_OPS_ENQ_EXITING */ 2139 if (!static_branch_unlikely(&scx_ops_enq_exiting) && 2140 unlikely(p->flags & PF_EXITING)) { 2141 __scx_add_event(SCX_EV_ENQ_SKIP_EXITING, 1); 2142 goto local; 2143 } 2144 2145 /* see %SCX_OPS_ENQ_MIGRATION_DISABLED */ 2146 if (!static_branch_unlikely(&scx_ops_enq_migration_disabled) && 2147 is_migration_disabled(p)) { 2148 __scx_add_event(SCX_EV_ENQ_SKIP_MIGRATION_DISABLED, 1); 2149 goto local; 2150 } 2151 2152 if (!SCX_HAS_OP(enqueue)) 2153 goto global; 2154 2155 /* DSQ bypass didn't trigger, enqueue on the BPF scheduler */ 2156 qseq = rq->scx.ops_qseq++ << SCX_OPSS_QSEQ_SHIFT; 2157 2158 WARN_ON_ONCE(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2159 atomic_long_set(&p->scx.ops_state, SCX_OPSS_QUEUEING | qseq); 2160 2161 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 2162 WARN_ON_ONCE(*ddsp_taskp); 2163 *ddsp_taskp = p; 2164 2165 SCX_CALL_OP_TASK(SCX_KF_ENQUEUE, enqueue, p, enq_flags); 2166 2167 *ddsp_taskp = NULL; 2168 if (p->scx.ddsp_dsq_id != SCX_DSQ_INVALID) 2169 goto direct; 2170 2171 /* 2172 * If not directly dispatched, QUEUEING isn't clear yet and dispatch or 2173 * dequeue may be waiting. The store_release matches their load_acquire. 2174 */ 2175 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_QUEUED | qseq); 2176 return; 2177 2178 direct: 2179 direct_dispatch(p, enq_flags); 2180 return; 2181 2182 local: 2183 /* 2184 * For task-ordering, slice refill must be treated as implying the end 2185 * of the current slice. Otherwise, the longer @p stays on the CPU, the 2186 * higher priority it becomes from scx_prio_less()'s POV. 2187 */ 2188 touch_core_sched(rq, p); 2189 p->scx.slice = SCX_SLICE_DFL; 2190 __scx_add_event(SCX_EV_ENQ_SLICE_DFL, 1); 2191 local_norefill: 2192 dispatch_enqueue(&rq->scx.local_dsq, p, enq_flags); 2193 return; 2194 2195 global: 2196 touch_core_sched(rq, p); /* see the comment in local: */ 2197 p->scx.slice = SCX_SLICE_DFL; 2198 __scx_add_event(SCX_EV_ENQ_SLICE_DFL, 1); 2199 dispatch_enqueue(find_global_dsq(p), p, enq_flags); 2200 } 2201 2202 static bool task_runnable(const struct task_struct *p) 2203 { 2204 return !list_empty(&p->scx.runnable_node); 2205 } 2206 2207 static void set_task_runnable(struct rq *rq, struct task_struct *p) 2208 { 2209 lockdep_assert_rq_held(rq); 2210 2211 if (p->scx.flags & SCX_TASK_RESET_RUNNABLE_AT) { 2212 p->scx.runnable_at = jiffies; 2213 p->scx.flags &= ~SCX_TASK_RESET_RUNNABLE_AT; 2214 } 2215 2216 /* 2217 * list_add_tail() must be used. scx_ops_bypass() depends on tasks being 2218 * appended to the runnable_list. 2219 */ 2220 list_add_tail(&p->scx.runnable_node, &rq->scx.runnable_list); 2221 } 2222 2223 static void clr_task_runnable(struct task_struct *p, bool reset_runnable_at) 2224 { 2225 list_del_init(&p->scx.runnable_node); 2226 if (reset_runnable_at) 2227 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 2228 } 2229 2230 static void enqueue_task_scx(struct rq *rq, struct task_struct *p, int enq_flags) 2231 { 2232 int sticky_cpu = p->scx.sticky_cpu; 2233 2234 if (enq_flags & ENQUEUE_WAKEUP) 2235 rq->scx.flags |= SCX_RQ_IN_WAKEUP; 2236 2237 enq_flags |= rq->scx.extra_enq_flags; 2238 2239 if (sticky_cpu >= 0) 2240 p->scx.sticky_cpu = -1; 2241 2242 /* 2243 * Restoring a running task will be immediately followed by 2244 * set_next_task_scx() which expects the task to not be on the BPF 2245 * scheduler as tasks can only start running through local DSQs. Force 2246 * direct-dispatch into the local DSQ by setting the sticky_cpu. 2247 */ 2248 if (unlikely(enq_flags & ENQUEUE_RESTORE) && task_current(rq, p)) 2249 sticky_cpu = cpu_of(rq); 2250 2251 if (p->scx.flags & SCX_TASK_QUEUED) { 2252 WARN_ON_ONCE(!task_runnable(p)); 2253 goto out; 2254 } 2255 2256 set_task_runnable(rq, p); 2257 p->scx.flags |= SCX_TASK_QUEUED; 2258 rq->scx.nr_running++; 2259 add_nr_running(rq, 1); 2260 2261 if (SCX_HAS_OP(runnable) && !task_on_rq_migrating(p)) 2262 SCX_CALL_OP_TASK(SCX_KF_REST, runnable, p, enq_flags); 2263 2264 if (enq_flags & SCX_ENQ_WAKEUP) 2265 touch_core_sched(rq, p); 2266 2267 do_enqueue_task(rq, p, enq_flags, sticky_cpu); 2268 out: 2269 rq->scx.flags &= ~SCX_RQ_IN_WAKEUP; 2270 2271 if ((enq_flags & SCX_ENQ_CPU_SELECTED) && 2272 unlikely(cpu_of(rq) != p->scx.selected_cpu)) 2273 __scx_add_event(SCX_EV_SELECT_CPU_FALLBACK, 1); 2274 } 2275 2276 static void ops_dequeue(struct task_struct *p, u64 deq_flags) 2277 { 2278 unsigned long opss; 2279 2280 /* dequeue is always temporary, don't reset runnable_at */ 2281 clr_task_runnable(p, false); 2282 2283 /* acquire ensures that we see the preceding updates on QUEUED */ 2284 opss = atomic_long_read_acquire(&p->scx.ops_state); 2285 2286 switch (opss & SCX_OPSS_STATE_MASK) { 2287 case SCX_OPSS_NONE: 2288 break; 2289 case SCX_OPSS_QUEUEING: 2290 /* 2291 * QUEUEING is started and finished while holding @p's rq lock. 2292 * As we're holding the rq lock now, we shouldn't see QUEUEING. 2293 */ 2294 BUG(); 2295 case SCX_OPSS_QUEUED: 2296 if (SCX_HAS_OP(dequeue)) 2297 SCX_CALL_OP_TASK(SCX_KF_REST, dequeue, p, deq_flags); 2298 2299 if (atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2300 SCX_OPSS_NONE)) 2301 break; 2302 fallthrough; 2303 case SCX_OPSS_DISPATCHING: 2304 /* 2305 * If @p is being dispatched from the BPF scheduler to a DSQ, 2306 * wait for the transfer to complete so that @p doesn't get 2307 * added to its DSQ after dequeueing is complete. 2308 * 2309 * As we're waiting on DISPATCHING with the rq locked, the 2310 * dispatching side shouldn't try to lock the rq while 2311 * DISPATCHING is set. See dispatch_to_local_dsq(). 2312 * 2313 * DISPATCHING shouldn't have qseq set and control can reach 2314 * here with NONE @opss from the above QUEUED case block. 2315 * Explicitly wait on %SCX_OPSS_DISPATCHING instead of @opss. 2316 */ 2317 wait_ops_state(p, SCX_OPSS_DISPATCHING); 2318 BUG_ON(atomic_long_read(&p->scx.ops_state) != SCX_OPSS_NONE); 2319 break; 2320 } 2321 } 2322 2323 static bool dequeue_task_scx(struct rq *rq, struct task_struct *p, int deq_flags) 2324 { 2325 if (!(p->scx.flags & SCX_TASK_QUEUED)) { 2326 WARN_ON_ONCE(task_runnable(p)); 2327 return true; 2328 } 2329 2330 ops_dequeue(p, deq_flags); 2331 2332 /* 2333 * A currently running task which is going off @rq first gets dequeued 2334 * and then stops running. As we want running <-> stopping transitions 2335 * to be contained within runnable <-> quiescent transitions, trigger 2336 * ->stopping() early here instead of in put_prev_task_scx(). 2337 * 2338 * @p may go through multiple stopping <-> running transitions between 2339 * here and put_prev_task_scx() if task attribute changes occur while 2340 * balance_scx() leaves @rq unlocked. However, they don't contain any 2341 * information meaningful to the BPF scheduler and can be suppressed by 2342 * skipping the callbacks if the task is !QUEUED. 2343 */ 2344 if (SCX_HAS_OP(stopping) && task_current(rq, p)) { 2345 update_curr_scx(rq); 2346 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, false); 2347 } 2348 2349 if (SCX_HAS_OP(quiescent) && !task_on_rq_migrating(p)) 2350 SCX_CALL_OP_TASK(SCX_KF_REST, quiescent, p, deq_flags); 2351 2352 if (deq_flags & SCX_DEQ_SLEEP) 2353 p->scx.flags |= SCX_TASK_DEQD_FOR_SLEEP; 2354 else 2355 p->scx.flags &= ~SCX_TASK_DEQD_FOR_SLEEP; 2356 2357 p->scx.flags &= ~SCX_TASK_QUEUED; 2358 rq->scx.nr_running--; 2359 sub_nr_running(rq, 1); 2360 2361 dispatch_dequeue(rq, p); 2362 return true; 2363 } 2364 2365 static void yield_task_scx(struct rq *rq) 2366 { 2367 struct task_struct *p = rq->curr; 2368 2369 if (SCX_HAS_OP(yield)) 2370 SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, p, NULL); 2371 else 2372 p->scx.slice = 0; 2373 } 2374 2375 static bool yield_to_task_scx(struct rq *rq, struct task_struct *to) 2376 { 2377 struct task_struct *from = rq->curr; 2378 2379 if (SCX_HAS_OP(yield)) 2380 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, yield, from, to); 2381 else 2382 return false; 2383 } 2384 2385 static void move_local_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2386 struct scx_dispatch_q *src_dsq, 2387 struct rq *dst_rq) 2388 { 2389 struct scx_dispatch_q *dst_dsq = &dst_rq->scx.local_dsq; 2390 2391 /* @dsq is locked and @p is on @dst_rq */ 2392 lockdep_assert_held(&src_dsq->lock); 2393 lockdep_assert_rq_held(dst_rq); 2394 2395 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2396 2397 if (enq_flags & (SCX_ENQ_HEAD | SCX_ENQ_PREEMPT)) 2398 list_add(&p->scx.dsq_list.node, &dst_dsq->list); 2399 else 2400 list_add_tail(&p->scx.dsq_list.node, &dst_dsq->list); 2401 2402 dsq_mod_nr(dst_dsq, 1); 2403 p->scx.dsq = dst_dsq; 2404 } 2405 2406 #ifdef CONFIG_SMP 2407 /** 2408 * move_remote_task_to_local_dsq - Move a task from a foreign rq to a local DSQ 2409 * @p: task to move 2410 * @enq_flags: %SCX_ENQ_* 2411 * @src_rq: rq to move the task from, locked on entry, released on return 2412 * @dst_rq: rq to move the task into, locked on return 2413 * 2414 * Move @p which is currently on @src_rq to @dst_rq's local DSQ. 2415 */ 2416 static void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, 2417 struct rq *src_rq, struct rq *dst_rq) 2418 { 2419 lockdep_assert_rq_held(src_rq); 2420 2421 /* the following marks @p MIGRATING which excludes dequeue */ 2422 deactivate_task(src_rq, p, 0); 2423 set_task_cpu(p, cpu_of(dst_rq)); 2424 p->scx.sticky_cpu = cpu_of(dst_rq); 2425 2426 raw_spin_rq_unlock(src_rq); 2427 raw_spin_rq_lock(dst_rq); 2428 2429 /* 2430 * We want to pass scx-specific enq_flags but activate_task() will 2431 * truncate the upper 32 bit. As we own @rq, we can pass them through 2432 * @rq->scx.extra_enq_flags instead. 2433 */ 2434 WARN_ON_ONCE(!cpumask_test_cpu(cpu_of(dst_rq), p->cpus_ptr)); 2435 WARN_ON_ONCE(dst_rq->scx.extra_enq_flags); 2436 dst_rq->scx.extra_enq_flags = enq_flags; 2437 activate_task(dst_rq, p, 0); 2438 dst_rq->scx.extra_enq_flags = 0; 2439 } 2440 2441 /* 2442 * Similar to kernel/sched/core.c::is_cpu_allowed(). However, there are two 2443 * differences: 2444 * 2445 * - is_cpu_allowed() asks "Can this task run on this CPU?" while 2446 * task_can_run_on_remote_rq() asks "Can the BPF scheduler migrate the task to 2447 * this CPU?". 2448 * 2449 * While migration is disabled, is_cpu_allowed() has to say "yes" as the task 2450 * must be allowed to finish on the CPU that it's currently on regardless of 2451 * the CPU state. However, task_can_run_on_remote_rq() must say "no" as the 2452 * BPF scheduler shouldn't attempt to migrate a task which has migration 2453 * disabled. 2454 * 2455 * - The BPF scheduler is bypassed while the rq is offline and we can always say 2456 * no to the BPF scheduler initiated migrations while offline. 2457 * 2458 * The caller must ensure that @p and @rq are on different CPUs. 2459 */ 2460 static bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, 2461 bool enforce) 2462 { 2463 int cpu = cpu_of(rq); 2464 2465 SCHED_WARN_ON(task_cpu(p) == cpu); 2466 2467 /* 2468 * If @p has migration disabled, @p->cpus_ptr is updated to contain only 2469 * the pinned CPU in migrate_disable_switch() while @p is being switched 2470 * out. However, put_prev_task_scx() is called before @p->cpus_ptr is 2471 * updated and thus another CPU may see @p on a DSQ inbetween leading to 2472 * @p passing the below task_allowed_on_cpu() check while migration is 2473 * disabled. 2474 * 2475 * Test the migration disabled state first as the race window is narrow 2476 * and the BPF scheduler failing to check migration disabled state can 2477 * easily be masked if task_allowed_on_cpu() is done first. 2478 */ 2479 if (unlikely(is_migration_disabled(p))) { 2480 if (enforce) 2481 scx_ops_error("SCX_DSQ_LOCAL[_ON] cannot move migration disabled %s[%d] from CPU %d to %d", 2482 p->comm, p->pid, task_cpu(p), cpu); 2483 return false; 2484 } 2485 2486 /* 2487 * We don't require the BPF scheduler to avoid dispatching to offline 2488 * CPUs mostly for convenience but also because CPUs can go offline 2489 * between scx_bpf_dsq_insert() calls and here. Trigger error iff the 2490 * picked CPU is outside the allowed mask. 2491 */ 2492 if (!task_allowed_on_cpu(p, cpu)) { 2493 if (enforce) 2494 scx_ops_error("SCX_DSQ_LOCAL[_ON] target CPU %d not allowed for %s[%d]", 2495 cpu, p->comm, p->pid); 2496 return false; 2497 } 2498 2499 if (!scx_rq_online(rq)) { 2500 if (enforce) 2501 __scx_add_event(SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE, 1); 2502 return false; 2503 } 2504 2505 return true; 2506 } 2507 2508 /** 2509 * unlink_dsq_and_lock_src_rq() - Unlink task from its DSQ and lock its task_rq 2510 * @p: target task 2511 * @dsq: locked DSQ @p is currently on 2512 * @src_rq: rq @p is currently on, stable with @dsq locked 2513 * 2514 * Called with @dsq locked but no rq's locked. We want to move @p to a different 2515 * DSQ, including any local DSQ, but are not locking @src_rq. Locking @src_rq is 2516 * required when transferring into a local DSQ. Even when transferring into a 2517 * non-local DSQ, it's better to use the same mechanism to protect against 2518 * dequeues and maintain the invariant that @p->scx.dsq can only change while 2519 * @src_rq is locked, which e.g. scx_dump_task() depends on. 2520 * 2521 * We want to grab @src_rq but that can deadlock if we try while locking @dsq, 2522 * so we want to unlink @p from @dsq, drop its lock and then lock @src_rq. As 2523 * this may race with dequeue, which can't drop the rq lock or fail, do a little 2524 * dancing from our side. 2525 * 2526 * @p->scx.holding_cpu is set to this CPU before @dsq is unlocked. If @p gets 2527 * dequeued after we unlock @dsq but before locking @src_rq, the holding_cpu 2528 * would be cleared to -1. While other cpus may have updated it to different 2529 * values afterwards, as this operation can't be preempted or recurse, the 2530 * holding_cpu can never become this CPU again before we're done. Thus, we can 2531 * tell whether we lost to dequeue by testing whether the holding_cpu still 2532 * points to this CPU. See dispatch_dequeue() for the counterpart. 2533 * 2534 * On return, @dsq is unlocked and @src_rq is locked. Returns %true if @p is 2535 * still valid. %false if lost to dequeue. 2536 */ 2537 static bool unlink_dsq_and_lock_src_rq(struct task_struct *p, 2538 struct scx_dispatch_q *dsq, 2539 struct rq *src_rq) 2540 { 2541 s32 cpu = raw_smp_processor_id(); 2542 2543 lockdep_assert_held(&dsq->lock); 2544 2545 WARN_ON_ONCE(p->scx.holding_cpu >= 0); 2546 task_unlink_from_dsq(p, dsq); 2547 p->scx.holding_cpu = cpu; 2548 2549 raw_spin_unlock(&dsq->lock); 2550 raw_spin_rq_lock(src_rq); 2551 2552 /* task_rq couldn't have changed if we're still the holding cpu */ 2553 return likely(p->scx.holding_cpu == cpu) && 2554 !WARN_ON_ONCE(src_rq != task_rq(p)); 2555 } 2556 2557 static bool consume_remote_task(struct rq *this_rq, struct task_struct *p, 2558 struct scx_dispatch_q *dsq, struct rq *src_rq) 2559 { 2560 raw_spin_rq_unlock(this_rq); 2561 2562 if (unlink_dsq_and_lock_src_rq(p, dsq, src_rq)) { 2563 move_remote_task_to_local_dsq(p, 0, src_rq, this_rq); 2564 return true; 2565 } else { 2566 raw_spin_rq_unlock(src_rq); 2567 raw_spin_rq_lock(this_rq); 2568 return false; 2569 } 2570 } 2571 #else /* CONFIG_SMP */ 2572 static inline void move_remote_task_to_local_dsq(struct task_struct *p, u64 enq_flags, struct rq *src_rq, struct rq *dst_rq) { WARN_ON_ONCE(1); } 2573 static inline bool task_can_run_on_remote_rq(struct task_struct *p, struct rq *rq, bool enforce) { return false; } 2574 static inline bool consume_remote_task(struct rq *this_rq, struct task_struct *p, struct scx_dispatch_q *dsq, struct rq *task_rq) { return false; } 2575 #endif /* CONFIG_SMP */ 2576 2577 /** 2578 * move_task_between_dsqs() - Move a task from one DSQ to another 2579 * @p: target task 2580 * @enq_flags: %SCX_ENQ_* 2581 * @src_dsq: DSQ @p is currently on, must not be a local DSQ 2582 * @dst_dsq: DSQ @p is being moved to, can be any DSQ 2583 * 2584 * Must be called with @p's task_rq and @src_dsq locked. If @dst_dsq is a local 2585 * DSQ and @p is on a different CPU, @p will be migrated and thus its task_rq 2586 * will change. As @p's task_rq is locked, this function doesn't need to use the 2587 * holding_cpu mechanism. 2588 * 2589 * On return, @src_dsq is unlocked and only @p's new task_rq, which is the 2590 * return value, is locked. 2591 */ 2592 static struct rq *move_task_between_dsqs(struct task_struct *p, u64 enq_flags, 2593 struct scx_dispatch_q *src_dsq, 2594 struct scx_dispatch_q *dst_dsq) 2595 { 2596 struct rq *src_rq = task_rq(p), *dst_rq; 2597 2598 BUG_ON(src_dsq->id == SCX_DSQ_LOCAL); 2599 lockdep_assert_held(&src_dsq->lock); 2600 lockdep_assert_rq_held(src_rq); 2601 2602 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2603 dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2604 if (src_rq != dst_rq && 2605 unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2606 dst_dsq = find_global_dsq(p); 2607 dst_rq = src_rq; 2608 } 2609 } else { 2610 /* no need to migrate if destination is a non-local DSQ */ 2611 dst_rq = src_rq; 2612 } 2613 2614 /* 2615 * Move @p into $dst_dsq. If $dst_dsq is the local DSQ of a different 2616 * CPU, @p will be migrated. 2617 */ 2618 if (dst_dsq->id == SCX_DSQ_LOCAL) { 2619 /* @p is going from a non-local DSQ to a local DSQ */ 2620 if (src_rq == dst_rq) { 2621 task_unlink_from_dsq(p, src_dsq); 2622 move_local_task_to_local_dsq(p, enq_flags, 2623 src_dsq, dst_rq); 2624 raw_spin_unlock(&src_dsq->lock); 2625 } else { 2626 raw_spin_unlock(&src_dsq->lock); 2627 move_remote_task_to_local_dsq(p, enq_flags, 2628 src_rq, dst_rq); 2629 } 2630 } else { 2631 /* 2632 * @p is going from a non-local DSQ to a non-local DSQ. As 2633 * $src_dsq is already locked, do an abbreviated dequeue. 2634 */ 2635 task_unlink_from_dsq(p, src_dsq); 2636 p->scx.dsq = NULL; 2637 raw_spin_unlock(&src_dsq->lock); 2638 2639 dispatch_enqueue(dst_dsq, p, enq_flags); 2640 } 2641 2642 return dst_rq; 2643 } 2644 2645 /* 2646 * A poorly behaving BPF scheduler can live-lock the system by e.g. incessantly 2647 * banging on the same DSQ on a large NUMA system to the point where switching 2648 * to the bypass mode can take a long time. Inject artificial delays while the 2649 * bypass mode is switching to guarantee timely completion. 2650 */ 2651 static void scx_ops_breather(struct rq *rq) 2652 { 2653 u64 until; 2654 2655 lockdep_assert_rq_held(rq); 2656 2657 if (likely(!atomic_read(&scx_ops_breather_depth))) 2658 return; 2659 2660 raw_spin_rq_unlock(rq); 2661 2662 until = ktime_get_ns() + NSEC_PER_MSEC; 2663 2664 do { 2665 int cnt = 1024; 2666 while (atomic_read(&scx_ops_breather_depth) && --cnt) 2667 cpu_relax(); 2668 } while (atomic_read(&scx_ops_breather_depth) && 2669 time_before64(ktime_get_ns(), until)); 2670 2671 raw_spin_rq_lock(rq); 2672 } 2673 2674 static bool consume_dispatch_q(struct rq *rq, struct scx_dispatch_q *dsq) 2675 { 2676 struct task_struct *p; 2677 retry: 2678 /* 2679 * This retry loop can repeatedly race against scx_ops_bypass() 2680 * dequeueing tasks from @dsq trying to put the system into the bypass 2681 * mode. On some multi-socket machines (e.g. 2x Intel 8480c), this can 2682 * live-lock the machine into soft lockups. Give a breather. 2683 */ 2684 scx_ops_breather(rq); 2685 2686 /* 2687 * The caller can't expect to successfully consume a task if the task's 2688 * addition to @dsq isn't guaranteed to be visible somehow. Test 2689 * @dsq->list without locking and skip if it seems empty. 2690 */ 2691 if (list_empty(&dsq->list)) 2692 return false; 2693 2694 raw_spin_lock(&dsq->lock); 2695 2696 nldsq_for_each_task(p, dsq) { 2697 struct rq *task_rq = task_rq(p); 2698 2699 if (rq == task_rq) { 2700 task_unlink_from_dsq(p, dsq); 2701 move_local_task_to_local_dsq(p, 0, dsq, rq); 2702 raw_spin_unlock(&dsq->lock); 2703 return true; 2704 } 2705 2706 if (task_can_run_on_remote_rq(p, rq, false)) { 2707 if (likely(consume_remote_task(rq, p, dsq, task_rq))) 2708 return true; 2709 goto retry; 2710 } 2711 } 2712 2713 raw_spin_unlock(&dsq->lock); 2714 return false; 2715 } 2716 2717 static bool consume_global_dsq(struct rq *rq) 2718 { 2719 int node = cpu_to_node(cpu_of(rq)); 2720 2721 return consume_dispatch_q(rq, global_dsqs[node]); 2722 } 2723 2724 /** 2725 * dispatch_to_local_dsq - Dispatch a task to a local dsq 2726 * @rq: current rq which is locked 2727 * @dst_dsq: destination DSQ 2728 * @p: task to dispatch 2729 * @enq_flags: %SCX_ENQ_* 2730 * 2731 * We're holding @rq lock and want to dispatch @p to @dst_dsq which is a local 2732 * DSQ. This function performs all the synchronization dancing needed because 2733 * local DSQs are protected with rq locks. 2734 * 2735 * The caller must have exclusive ownership of @p (e.g. through 2736 * %SCX_OPSS_DISPATCHING). 2737 */ 2738 static void dispatch_to_local_dsq(struct rq *rq, struct scx_dispatch_q *dst_dsq, 2739 struct task_struct *p, u64 enq_flags) 2740 { 2741 struct rq *src_rq = task_rq(p); 2742 struct rq *dst_rq = container_of(dst_dsq, struct rq, scx.local_dsq); 2743 #ifdef CONFIG_SMP 2744 struct rq *locked_rq = rq; 2745 #endif 2746 2747 /* 2748 * We're synchronized against dequeue through DISPATCHING. As @p can't 2749 * be dequeued, its task_rq and cpus_allowed are stable too. 2750 * 2751 * If dispatching to @rq that @p is already on, no lock dancing needed. 2752 */ 2753 if (rq == src_rq && rq == dst_rq) { 2754 dispatch_enqueue(dst_dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2755 return; 2756 } 2757 2758 #ifdef CONFIG_SMP 2759 if (src_rq != dst_rq && 2760 unlikely(!task_can_run_on_remote_rq(p, dst_rq, true))) { 2761 dispatch_enqueue(find_global_dsq(p), p, 2762 enq_flags | SCX_ENQ_CLEAR_OPSS); 2763 return; 2764 } 2765 2766 /* 2767 * @p is on a possibly remote @src_rq which we need to lock to move the 2768 * task. If dequeue is in progress, it'd be locking @src_rq and waiting 2769 * on DISPATCHING, so we can't grab @src_rq lock while holding 2770 * DISPATCHING. 2771 * 2772 * As DISPATCHING guarantees that @p is wholly ours, we can pretend that 2773 * we're moving from a DSQ and use the same mechanism - mark the task 2774 * under transfer with holding_cpu, release DISPATCHING and then follow 2775 * the same protocol. See unlink_dsq_and_lock_src_rq(). 2776 */ 2777 p->scx.holding_cpu = raw_smp_processor_id(); 2778 2779 /* store_release ensures that dequeue sees the above */ 2780 atomic_long_set_release(&p->scx.ops_state, SCX_OPSS_NONE); 2781 2782 /* switch to @src_rq lock */ 2783 if (locked_rq != src_rq) { 2784 raw_spin_rq_unlock(locked_rq); 2785 locked_rq = src_rq; 2786 raw_spin_rq_lock(src_rq); 2787 } 2788 2789 /* task_rq couldn't have changed if we're still the holding cpu */ 2790 if (likely(p->scx.holding_cpu == raw_smp_processor_id()) && 2791 !WARN_ON_ONCE(src_rq != task_rq(p))) { 2792 /* 2793 * If @p is staying on the same rq, there's no need to go 2794 * through the full deactivate/activate cycle. Optimize by 2795 * abbreviating move_remote_task_to_local_dsq(). 2796 */ 2797 if (src_rq == dst_rq) { 2798 p->scx.holding_cpu = -1; 2799 dispatch_enqueue(&dst_rq->scx.local_dsq, p, enq_flags); 2800 } else { 2801 move_remote_task_to_local_dsq(p, enq_flags, 2802 src_rq, dst_rq); 2803 /* task has been moved to dst_rq, which is now locked */ 2804 locked_rq = dst_rq; 2805 } 2806 2807 /* if the destination CPU is idle, wake it up */ 2808 if (sched_class_above(p->sched_class, dst_rq->curr->sched_class)) 2809 resched_curr(dst_rq); 2810 } 2811 2812 /* switch back to @rq lock */ 2813 if (locked_rq != rq) { 2814 raw_spin_rq_unlock(locked_rq); 2815 raw_spin_rq_lock(rq); 2816 } 2817 #else /* CONFIG_SMP */ 2818 BUG(); /* control can not reach here on UP */ 2819 #endif /* CONFIG_SMP */ 2820 } 2821 2822 /** 2823 * finish_dispatch - Asynchronously finish dispatching a task 2824 * @rq: current rq which is locked 2825 * @p: task to finish dispatching 2826 * @qseq_at_dispatch: qseq when @p started getting dispatched 2827 * @dsq_id: destination DSQ ID 2828 * @enq_flags: %SCX_ENQ_* 2829 * 2830 * Dispatching to local DSQs may need to wait for queueing to complete or 2831 * require rq lock dancing. As we don't wanna do either while inside 2832 * ops.dispatch() to avoid locking order inversion, we split dispatching into 2833 * two parts. scx_bpf_dsq_insert() which is called by ops.dispatch() records the 2834 * task and its qseq. Once ops.dispatch() returns, this function is called to 2835 * finish up. 2836 * 2837 * There is no guarantee that @p is still valid for dispatching or even that it 2838 * was valid in the first place. Make sure that the task is still owned by the 2839 * BPF scheduler and claim the ownership before dispatching. 2840 */ 2841 static void finish_dispatch(struct rq *rq, struct task_struct *p, 2842 unsigned long qseq_at_dispatch, 2843 u64 dsq_id, u64 enq_flags) 2844 { 2845 struct scx_dispatch_q *dsq; 2846 unsigned long opss; 2847 2848 touch_core_sched_dispatch(rq, p); 2849 retry: 2850 /* 2851 * No need for _acquire here. @p is accessed only after a successful 2852 * try_cmpxchg to DISPATCHING. 2853 */ 2854 opss = atomic_long_read(&p->scx.ops_state); 2855 2856 switch (opss & SCX_OPSS_STATE_MASK) { 2857 case SCX_OPSS_DISPATCHING: 2858 case SCX_OPSS_NONE: 2859 /* someone else already got to it */ 2860 return; 2861 case SCX_OPSS_QUEUED: 2862 /* 2863 * If qseq doesn't match, @p has gone through at least one 2864 * dispatch/dequeue and re-enqueue cycle between 2865 * scx_bpf_dsq_insert() and here and we have no claim on it. 2866 */ 2867 if ((opss & SCX_OPSS_QSEQ_MASK) != qseq_at_dispatch) 2868 return; 2869 2870 /* 2871 * While we know @p is accessible, we don't yet have a claim on 2872 * it - the BPF scheduler is allowed to dispatch tasks 2873 * spuriously and there can be a racing dequeue attempt. Let's 2874 * claim @p by atomically transitioning it from QUEUED to 2875 * DISPATCHING. 2876 */ 2877 if (likely(atomic_long_try_cmpxchg(&p->scx.ops_state, &opss, 2878 SCX_OPSS_DISPATCHING))) 2879 break; 2880 goto retry; 2881 case SCX_OPSS_QUEUEING: 2882 /* 2883 * do_enqueue_task() is in the process of transferring the task 2884 * to the BPF scheduler while holding @p's rq lock. As we aren't 2885 * holding any kernel or BPF resource that the enqueue path may 2886 * depend upon, it's safe to wait. 2887 */ 2888 wait_ops_state(p, opss); 2889 goto retry; 2890 } 2891 2892 BUG_ON(!(p->scx.flags & SCX_TASK_QUEUED)); 2893 2894 dsq = find_dsq_for_dispatch(this_rq(), dsq_id, p); 2895 2896 if (dsq->id == SCX_DSQ_LOCAL) 2897 dispatch_to_local_dsq(rq, dsq, p, enq_flags); 2898 else 2899 dispatch_enqueue(dsq, p, enq_flags | SCX_ENQ_CLEAR_OPSS); 2900 } 2901 2902 static void flush_dispatch_buf(struct rq *rq) 2903 { 2904 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2905 u32 u; 2906 2907 for (u = 0; u < dspc->cursor; u++) { 2908 struct scx_dsp_buf_ent *ent = &dspc->buf[u]; 2909 2910 finish_dispatch(rq, ent->task, ent->qseq, ent->dsq_id, 2911 ent->enq_flags); 2912 } 2913 2914 dspc->nr_tasks += dspc->cursor; 2915 dspc->cursor = 0; 2916 } 2917 2918 static int balance_one(struct rq *rq, struct task_struct *prev) 2919 { 2920 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 2921 bool prev_on_scx = prev->sched_class == &ext_sched_class; 2922 bool prev_on_rq = prev->scx.flags & SCX_TASK_QUEUED; 2923 int nr_loops = SCX_DSP_MAX_LOOPS; 2924 2925 lockdep_assert_rq_held(rq); 2926 rq->scx.flags |= SCX_RQ_IN_BALANCE; 2927 rq->scx.flags &= ~(SCX_RQ_BAL_PENDING | SCX_RQ_BAL_KEEP); 2928 2929 if (static_branch_unlikely(&scx_ops_cpu_preempt) && 2930 unlikely(rq->scx.cpu_released)) { 2931 /* 2932 * If the previous sched_class for the current CPU was not SCX, 2933 * notify the BPF scheduler that it again has control of the 2934 * core. This callback complements ->cpu_release(), which is 2935 * emitted in switch_class(). 2936 */ 2937 if (SCX_HAS_OP(cpu_acquire)) 2938 SCX_CALL_OP(SCX_KF_REST, cpu_acquire, cpu_of(rq), NULL); 2939 rq->scx.cpu_released = false; 2940 } 2941 2942 if (prev_on_scx) { 2943 update_curr_scx(rq); 2944 2945 /* 2946 * If @prev is runnable & has slice left, it has priority and 2947 * fetching more just increases latency for the fetched tasks. 2948 * Tell pick_task_scx() to keep running @prev. If the BPF 2949 * scheduler wants to handle this explicitly, it should 2950 * implement ->cpu_release(). 2951 * 2952 * See scx_ops_disable_workfn() for the explanation on the 2953 * bypassing test. 2954 */ 2955 if (prev_on_rq && prev->scx.slice && !scx_rq_bypassing(rq)) { 2956 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2957 goto has_tasks; 2958 } 2959 } 2960 2961 /* if there already are tasks to run, nothing to do */ 2962 if (rq->scx.local_dsq.nr) 2963 goto has_tasks; 2964 2965 if (consume_global_dsq(rq)) 2966 goto has_tasks; 2967 2968 if (!SCX_HAS_OP(dispatch) || scx_rq_bypassing(rq) || !scx_rq_online(rq)) 2969 goto no_tasks; 2970 2971 dspc->rq = rq; 2972 2973 /* 2974 * The dispatch loop. Because flush_dispatch_buf() may drop the rq lock, 2975 * the local DSQ might still end up empty after a successful 2976 * ops.dispatch(). If the local DSQ is empty even after ops.dispatch() 2977 * produced some tasks, retry. The BPF scheduler may depend on this 2978 * looping behavior to simplify its implementation. 2979 */ 2980 do { 2981 dspc->nr_tasks = 0; 2982 2983 SCX_CALL_OP(SCX_KF_DISPATCH, dispatch, cpu_of(rq), 2984 prev_on_scx ? prev : NULL); 2985 2986 flush_dispatch_buf(rq); 2987 2988 if (prev_on_rq && prev->scx.slice) { 2989 rq->scx.flags |= SCX_RQ_BAL_KEEP; 2990 goto has_tasks; 2991 } 2992 if (rq->scx.local_dsq.nr) 2993 goto has_tasks; 2994 if (consume_global_dsq(rq)) 2995 goto has_tasks; 2996 2997 /* 2998 * ops.dispatch() can trap us in this loop by repeatedly 2999 * dispatching ineligible tasks. Break out once in a while to 3000 * allow the watchdog to run. As IRQ can't be enabled in 3001 * balance(), we want to complete this scheduling cycle and then 3002 * start a new one. IOW, we want to call resched_curr() on the 3003 * next, most likely idle, task, not the current one. Use 3004 * scx_bpf_kick_cpu() for deferred kicking. 3005 */ 3006 if (unlikely(!--nr_loops)) { 3007 scx_bpf_kick_cpu(cpu_of(rq), 0); 3008 break; 3009 } 3010 } while (dspc->nr_tasks); 3011 3012 no_tasks: 3013 /* 3014 * Didn't find another task to run. Keep running @prev unless 3015 * %SCX_OPS_ENQ_LAST is in effect. 3016 */ 3017 if (prev_on_rq && (!static_branch_unlikely(&scx_ops_enq_last) || 3018 scx_rq_bypassing(rq))) { 3019 rq->scx.flags |= SCX_RQ_BAL_KEEP; 3020 __scx_add_event(SCX_EV_DISPATCH_KEEP_LAST, 1); 3021 goto has_tasks; 3022 } 3023 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 3024 return false; 3025 3026 has_tasks: 3027 rq->scx.flags &= ~SCX_RQ_IN_BALANCE; 3028 return true; 3029 } 3030 3031 static int balance_scx(struct rq *rq, struct task_struct *prev, 3032 struct rq_flags *rf) 3033 { 3034 int ret; 3035 3036 rq_unpin_lock(rq, rf); 3037 3038 ret = balance_one(rq, prev); 3039 3040 #ifdef CONFIG_SCHED_SMT 3041 /* 3042 * When core-sched is enabled, this ops.balance() call will be followed 3043 * by pick_task_scx() on this CPU and the SMT siblings. Balance the 3044 * siblings too. 3045 */ 3046 if (sched_core_enabled(rq)) { 3047 const struct cpumask *smt_mask = cpu_smt_mask(cpu_of(rq)); 3048 int scpu; 3049 3050 for_each_cpu_andnot(scpu, smt_mask, cpumask_of(cpu_of(rq))) { 3051 struct rq *srq = cpu_rq(scpu); 3052 struct task_struct *sprev = srq->curr; 3053 3054 WARN_ON_ONCE(__rq_lockp(rq) != __rq_lockp(srq)); 3055 update_rq_clock(srq); 3056 balance_one(srq, sprev); 3057 } 3058 } 3059 #endif 3060 rq_repin_lock(rq, rf); 3061 3062 return ret; 3063 } 3064 3065 static void process_ddsp_deferred_locals(struct rq *rq) 3066 { 3067 struct task_struct *p; 3068 3069 lockdep_assert_rq_held(rq); 3070 3071 /* 3072 * Now that @rq can be unlocked, execute the deferred enqueueing of 3073 * tasks directly dispatched to the local DSQs of other CPUs. See 3074 * direct_dispatch(). Keep popping from the head instead of using 3075 * list_for_each_entry_safe() as dispatch_local_dsq() may unlock @rq 3076 * temporarily. 3077 */ 3078 while ((p = list_first_entry_or_null(&rq->scx.ddsp_deferred_locals, 3079 struct task_struct, scx.dsq_list.node))) { 3080 struct scx_dispatch_q *dsq; 3081 3082 list_del_init(&p->scx.dsq_list.node); 3083 3084 dsq = find_dsq_for_dispatch(rq, p->scx.ddsp_dsq_id, p); 3085 if (!WARN_ON_ONCE(dsq->id != SCX_DSQ_LOCAL)) 3086 dispatch_to_local_dsq(rq, dsq, p, p->scx.ddsp_enq_flags); 3087 } 3088 } 3089 3090 static void set_next_task_scx(struct rq *rq, struct task_struct *p, bool first) 3091 { 3092 if (p->scx.flags & SCX_TASK_QUEUED) { 3093 /* 3094 * Core-sched might decide to execute @p before it is 3095 * dispatched. Call ops_dequeue() to notify the BPF scheduler. 3096 */ 3097 ops_dequeue(p, SCX_DEQ_CORE_SCHED_EXEC); 3098 dispatch_dequeue(rq, p); 3099 } 3100 3101 p->se.exec_start = rq_clock_task(rq); 3102 3103 /* see dequeue_task_scx() on why we skip when !QUEUED */ 3104 if (SCX_HAS_OP(running) && (p->scx.flags & SCX_TASK_QUEUED)) 3105 SCX_CALL_OP_TASK(SCX_KF_REST, running, p); 3106 3107 clr_task_runnable(p, true); 3108 3109 /* 3110 * @p is getting newly scheduled or got kicked after someone updated its 3111 * slice. Refresh whether tick can be stopped. See scx_can_stop_tick(). 3112 */ 3113 if ((p->scx.slice == SCX_SLICE_INF) != 3114 (bool)(rq->scx.flags & SCX_RQ_CAN_STOP_TICK)) { 3115 if (p->scx.slice == SCX_SLICE_INF) 3116 rq->scx.flags |= SCX_RQ_CAN_STOP_TICK; 3117 else 3118 rq->scx.flags &= ~SCX_RQ_CAN_STOP_TICK; 3119 3120 sched_update_tick_dependency(rq); 3121 3122 /* 3123 * For now, let's refresh the load_avgs just when transitioning 3124 * in and out of nohz. In the future, we might want to add a 3125 * mechanism which calls the following periodically on 3126 * tick-stopped CPUs. 3127 */ 3128 update_other_load_avgs(rq); 3129 } 3130 } 3131 3132 static enum scx_cpu_preempt_reason 3133 preempt_reason_from_class(const struct sched_class *class) 3134 { 3135 #ifdef CONFIG_SMP 3136 if (class == &stop_sched_class) 3137 return SCX_CPU_PREEMPT_STOP; 3138 #endif 3139 if (class == &dl_sched_class) 3140 return SCX_CPU_PREEMPT_DL; 3141 if (class == &rt_sched_class) 3142 return SCX_CPU_PREEMPT_RT; 3143 return SCX_CPU_PREEMPT_UNKNOWN; 3144 } 3145 3146 static void switch_class(struct rq *rq, struct task_struct *next) 3147 { 3148 const struct sched_class *next_class = next->sched_class; 3149 3150 #ifdef CONFIG_SMP 3151 /* 3152 * Pairs with the smp_load_acquire() issued by a CPU in 3153 * kick_cpus_irq_workfn() who is waiting for this CPU to perform a 3154 * resched. 3155 */ 3156 smp_store_release(&rq->scx.pnt_seq, rq->scx.pnt_seq + 1); 3157 #endif 3158 if (!static_branch_unlikely(&scx_ops_cpu_preempt)) 3159 return; 3160 3161 /* 3162 * The callback is conceptually meant to convey that the CPU is no 3163 * longer under the control of SCX. Therefore, don't invoke the callback 3164 * if the next class is below SCX (in which case the BPF scheduler has 3165 * actively decided not to schedule any tasks on the CPU). 3166 */ 3167 if (sched_class_above(&ext_sched_class, next_class)) 3168 return; 3169 3170 /* 3171 * At this point we know that SCX was preempted by a higher priority 3172 * sched_class, so invoke the ->cpu_release() callback if we have not 3173 * done so already. We only send the callback once between SCX being 3174 * preempted, and it regaining control of the CPU. 3175 * 3176 * ->cpu_release() complements ->cpu_acquire(), which is emitted the 3177 * next time that balance_scx() is invoked. 3178 */ 3179 if (!rq->scx.cpu_released) { 3180 if (SCX_HAS_OP(cpu_release)) { 3181 struct scx_cpu_release_args args = { 3182 .reason = preempt_reason_from_class(next_class), 3183 .task = next, 3184 }; 3185 3186 SCX_CALL_OP(SCX_KF_CPU_RELEASE, 3187 cpu_release, cpu_of(rq), &args); 3188 } 3189 rq->scx.cpu_released = true; 3190 } 3191 } 3192 3193 static void put_prev_task_scx(struct rq *rq, struct task_struct *p, 3194 struct task_struct *next) 3195 { 3196 update_curr_scx(rq); 3197 3198 /* see dequeue_task_scx() on why we skip when !QUEUED */ 3199 if (SCX_HAS_OP(stopping) && (p->scx.flags & SCX_TASK_QUEUED)) 3200 SCX_CALL_OP_TASK(SCX_KF_REST, stopping, p, true); 3201 3202 if (p->scx.flags & SCX_TASK_QUEUED) { 3203 set_task_runnable(rq, p); 3204 3205 /* 3206 * If @p has slice left and is being put, @p is getting 3207 * preempted by a higher priority scheduler class or core-sched 3208 * forcing a different task. Leave it at the head of the local 3209 * DSQ. 3210 */ 3211 if (p->scx.slice && !scx_rq_bypassing(rq)) { 3212 dispatch_enqueue(&rq->scx.local_dsq, p, SCX_ENQ_HEAD); 3213 goto switch_class; 3214 } 3215 3216 /* 3217 * If @p is runnable but we're about to enter a lower 3218 * sched_class, %SCX_OPS_ENQ_LAST must be set. Tell 3219 * ops.enqueue() that @p is the only one available for this cpu, 3220 * which should trigger an explicit follow-up scheduling event. 3221 */ 3222 if (sched_class_above(&ext_sched_class, next->sched_class)) { 3223 WARN_ON_ONCE(!static_branch_unlikely(&scx_ops_enq_last)); 3224 do_enqueue_task(rq, p, SCX_ENQ_LAST, -1); 3225 } else { 3226 do_enqueue_task(rq, p, 0, -1); 3227 } 3228 } 3229 3230 switch_class: 3231 if (next && next->sched_class != &ext_sched_class) 3232 switch_class(rq, next); 3233 } 3234 3235 static struct task_struct *first_local_task(struct rq *rq) 3236 { 3237 return list_first_entry_or_null(&rq->scx.local_dsq.list, 3238 struct task_struct, scx.dsq_list.node); 3239 } 3240 3241 static struct task_struct *pick_task_scx(struct rq *rq) 3242 { 3243 struct task_struct *prev = rq->curr; 3244 struct task_struct *p; 3245 bool prev_on_scx = prev->sched_class == &ext_sched_class; 3246 bool keep_prev = rq->scx.flags & SCX_RQ_BAL_KEEP; 3247 bool kick_idle = false; 3248 3249 /* 3250 * WORKAROUND: 3251 * 3252 * %SCX_RQ_BAL_KEEP should be set iff $prev is on SCX as it must just 3253 * have gone through balance_scx(). Unfortunately, there currently is a 3254 * bug where fair could say yes on balance() but no on pick_task(), 3255 * which then ends up calling pick_task_scx() without preceding 3256 * balance_scx(). 3257 * 3258 * Keep running @prev if possible and avoid stalling from entering idle 3259 * without balancing. 3260 * 3261 * Once fair is fixed, remove the workaround and trigger WARN_ON_ONCE() 3262 * if pick_task_scx() is called without preceding balance_scx(). 3263 */ 3264 if (unlikely(rq->scx.flags & SCX_RQ_BAL_PENDING)) { 3265 if (prev_on_scx) { 3266 keep_prev = true; 3267 } else { 3268 keep_prev = false; 3269 kick_idle = true; 3270 } 3271 } else if (unlikely(keep_prev && !prev_on_scx)) { 3272 /* only allowed during transitions */ 3273 WARN_ON_ONCE(scx_ops_enable_state() == SCX_OPS_ENABLED); 3274 keep_prev = false; 3275 } 3276 3277 /* 3278 * If balance_scx() is telling us to keep running @prev, replenish slice 3279 * if necessary and keep running @prev. Otherwise, pop the first one 3280 * from the local DSQ. 3281 */ 3282 if (keep_prev) { 3283 p = prev; 3284 if (!p->scx.slice) { 3285 p->scx.slice = SCX_SLICE_DFL; 3286 __scx_add_event(SCX_EV_ENQ_SLICE_DFL, 1); 3287 } 3288 } else { 3289 p = first_local_task(rq); 3290 if (!p) { 3291 if (kick_idle) 3292 scx_bpf_kick_cpu(cpu_of(rq), SCX_KICK_IDLE); 3293 return NULL; 3294 } 3295 3296 if (unlikely(!p->scx.slice)) { 3297 if (!scx_rq_bypassing(rq) && !scx_warned_zero_slice) { 3298 printk_deferred(KERN_WARNING "sched_ext: %s[%d] has zero slice in %s()\n", 3299 p->comm, p->pid, __func__); 3300 scx_warned_zero_slice = true; 3301 } 3302 p->scx.slice = SCX_SLICE_DFL; 3303 __scx_add_event(SCX_EV_ENQ_SLICE_DFL, 1); 3304 } 3305 } 3306 3307 return p; 3308 } 3309 3310 #ifdef CONFIG_SCHED_CORE 3311 /** 3312 * scx_prio_less - Task ordering for core-sched 3313 * @a: task A 3314 * @b: task B 3315 * @in_fi: in forced idle state 3316 * 3317 * Core-sched is implemented as an additional scheduling layer on top of the 3318 * usual sched_class'es and needs to find out the expected task ordering. For 3319 * SCX, core-sched calls this function to interrogate the task ordering. 3320 * 3321 * Unless overridden by ops.core_sched_before(), @p->scx.core_sched_at is used 3322 * to implement the default task ordering. The older the timestamp, the higher 3323 * priority the task - the global FIFO ordering matching the default scheduling 3324 * behavior. 3325 * 3326 * When ops.core_sched_before() is enabled, @p->scx.core_sched_at is used to 3327 * implement FIFO ordering within each local DSQ. See pick_task_scx(). 3328 */ 3329 bool scx_prio_less(const struct task_struct *a, const struct task_struct *b, 3330 bool in_fi) 3331 { 3332 /* 3333 * The const qualifiers are dropped from task_struct pointers when 3334 * calling ops.core_sched_before(). Accesses are controlled by the 3335 * verifier. 3336 */ 3337 if (SCX_HAS_OP(core_sched_before) && !scx_rq_bypassing(task_rq(a))) 3338 return SCX_CALL_OP_2TASKS_RET(SCX_KF_REST, core_sched_before, 3339 (struct task_struct *)a, 3340 (struct task_struct *)b); 3341 else 3342 return time_after64(a->scx.core_sched_at, b->scx.core_sched_at); 3343 } 3344 #endif /* CONFIG_SCHED_CORE */ 3345 3346 #ifdef CONFIG_SMP 3347 3348 static int select_task_rq_scx(struct task_struct *p, int prev_cpu, int wake_flags) 3349 { 3350 bool rq_bypass; 3351 3352 /* 3353 * sched_exec() calls with %WF_EXEC when @p is about to exec(2) as it 3354 * can be a good migration opportunity with low cache and memory 3355 * footprint. Returning a CPU different than @prev_cpu triggers 3356 * immediate rq migration. However, for SCX, as the current rq 3357 * association doesn't dictate where the task is going to run, this 3358 * doesn't fit well. If necessary, we can later add a dedicated method 3359 * which can decide to preempt self to force it through the regular 3360 * scheduling path. 3361 */ 3362 if (unlikely(wake_flags & WF_EXEC)) 3363 return prev_cpu; 3364 3365 rq_bypass = scx_rq_bypassing(task_rq(p)); 3366 if (SCX_HAS_OP(select_cpu) && !rq_bypass) { 3367 s32 cpu; 3368 struct task_struct **ddsp_taskp; 3369 3370 ddsp_taskp = this_cpu_ptr(&direct_dispatch_task); 3371 WARN_ON_ONCE(*ddsp_taskp); 3372 *ddsp_taskp = p; 3373 3374 cpu = SCX_CALL_OP_TASK_RET(SCX_KF_ENQUEUE | SCX_KF_SELECT_CPU, 3375 select_cpu, p, prev_cpu, wake_flags); 3376 p->scx.selected_cpu = cpu; 3377 *ddsp_taskp = NULL; 3378 if (ops_cpu_valid(cpu, "from ops.select_cpu()")) 3379 return cpu; 3380 else 3381 return prev_cpu; 3382 } else { 3383 bool found; 3384 s32 cpu; 3385 3386 cpu = scx_select_cpu_dfl(p, prev_cpu, wake_flags, &found); 3387 p->scx.selected_cpu = cpu; 3388 if (found) { 3389 p->scx.slice = SCX_SLICE_DFL; 3390 p->scx.ddsp_dsq_id = SCX_DSQ_LOCAL; 3391 __scx_add_event(SCX_EV_ENQ_SLICE_DFL, 1); 3392 } 3393 3394 if (rq_bypass) 3395 __scx_add_event(SCX_EV_BYPASS_DISPATCH, 1); 3396 return cpu; 3397 } 3398 } 3399 3400 static void task_woken_scx(struct rq *rq, struct task_struct *p) 3401 { 3402 run_deferred(rq); 3403 } 3404 3405 static void set_cpus_allowed_scx(struct task_struct *p, 3406 struct affinity_context *ac) 3407 { 3408 set_cpus_allowed_common(p, ac); 3409 3410 /* 3411 * The effective cpumask is stored in @p->cpus_ptr which may temporarily 3412 * differ from the configured one in @p->cpus_mask. Always tell the bpf 3413 * scheduler the effective one. 3414 * 3415 * Fine-grained memory write control is enforced by BPF making the const 3416 * designation pointless. Cast it away when calling the operation. 3417 */ 3418 if (SCX_HAS_OP(set_cpumask)) 3419 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3420 (struct cpumask *)p->cpus_ptr); 3421 } 3422 3423 static void handle_hotplug(struct rq *rq, bool online) 3424 { 3425 int cpu = cpu_of(rq); 3426 3427 atomic_long_inc(&scx_hotplug_seq); 3428 3429 if (scx_enabled()) 3430 scx_idle_update_selcpu_topology(); 3431 3432 if (online && SCX_HAS_OP(cpu_online)) 3433 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_online, cpu); 3434 else if (!online && SCX_HAS_OP(cpu_offline)) 3435 SCX_CALL_OP(SCX_KF_UNLOCKED, cpu_offline, cpu); 3436 else 3437 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 3438 "cpu %d going %s, exiting scheduler", cpu, 3439 online ? "online" : "offline"); 3440 } 3441 3442 void scx_rq_activate(struct rq *rq) 3443 { 3444 handle_hotplug(rq, true); 3445 } 3446 3447 void scx_rq_deactivate(struct rq *rq) 3448 { 3449 handle_hotplug(rq, false); 3450 } 3451 3452 static void rq_online_scx(struct rq *rq) 3453 { 3454 rq->scx.flags |= SCX_RQ_ONLINE; 3455 } 3456 3457 static void rq_offline_scx(struct rq *rq) 3458 { 3459 rq->scx.flags &= ~SCX_RQ_ONLINE; 3460 } 3461 3462 #endif /* CONFIG_SMP */ 3463 3464 static bool check_rq_for_timeouts(struct rq *rq) 3465 { 3466 struct task_struct *p; 3467 struct rq_flags rf; 3468 bool timed_out = false; 3469 3470 rq_lock_irqsave(rq, &rf); 3471 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) { 3472 unsigned long last_runnable = p->scx.runnable_at; 3473 3474 if (unlikely(time_after(jiffies, 3475 last_runnable + scx_watchdog_timeout))) { 3476 u32 dur_ms = jiffies_to_msecs(jiffies - last_runnable); 3477 3478 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3479 "%s[%d] failed to run for %u.%03us", 3480 p->comm, p->pid, 3481 dur_ms / 1000, dur_ms % 1000); 3482 timed_out = true; 3483 break; 3484 } 3485 } 3486 rq_unlock_irqrestore(rq, &rf); 3487 3488 return timed_out; 3489 } 3490 3491 static void scx_watchdog_workfn(struct work_struct *work) 3492 { 3493 int cpu; 3494 3495 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 3496 3497 for_each_online_cpu(cpu) { 3498 if (unlikely(check_rq_for_timeouts(cpu_rq(cpu)))) 3499 break; 3500 3501 cond_resched(); 3502 } 3503 queue_delayed_work(system_unbound_wq, to_delayed_work(work), 3504 scx_watchdog_timeout / 2); 3505 } 3506 3507 void scx_tick(struct rq *rq) 3508 { 3509 unsigned long last_check; 3510 3511 if (!scx_enabled()) 3512 return; 3513 3514 last_check = READ_ONCE(scx_watchdog_timestamp); 3515 if (unlikely(time_after(jiffies, 3516 last_check + READ_ONCE(scx_watchdog_timeout)))) { 3517 u32 dur_ms = jiffies_to_msecs(jiffies - last_check); 3518 3519 scx_ops_error_kind(SCX_EXIT_ERROR_STALL, 3520 "watchdog failed to check in for %u.%03us", 3521 dur_ms / 1000, dur_ms % 1000); 3522 } 3523 3524 update_other_load_avgs(rq); 3525 } 3526 3527 static void task_tick_scx(struct rq *rq, struct task_struct *curr, int queued) 3528 { 3529 update_curr_scx(rq); 3530 3531 /* 3532 * While disabling, always resched and refresh core-sched timestamp as 3533 * we can't trust the slice management or ops.core_sched_before(). 3534 */ 3535 if (scx_rq_bypassing(rq)) { 3536 curr->scx.slice = 0; 3537 touch_core_sched(rq, curr); 3538 } else if (SCX_HAS_OP(tick)) { 3539 SCX_CALL_OP(SCX_KF_REST, tick, curr); 3540 } 3541 3542 if (!curr->scx.slice) 3543 resched_curr(rq); 3544 } 3545 3546 #ifdef CONFIG_EXT_GROUP_SCHED 3547 static struct cgroup *tg_cgrp(struct task_group *tg) 3548 { 3549 /* 3550 * If CGROUP_SCHED is disabled, @tg is NULL. If @tg is an autogroup, 3551 * @tg->css.cgroup is NULL. In both cases, @tg can be treated as the 3552 * root cgroup. 3553 */ 3554 if (tg && tg->css.cgroup) 3555 return tg->css.cgroup; 3556 else 3557 return &cgrp_dfl_root.cgrp; 3558 } 3559 3560 #define SCX_INIT_TASK_ARGS_CGROUP(tg) .cgroup = tg_cgrp(tg), 3561 3562 #else /* CONFIG_EXT_GROUP_SCHED */ 3563 3564 #define SCX_INIT_TASK_ARGS_CGROUP(tg) 3565 3566 #endif /* CONFIG_EXT_GROUP_SCHED */ 3567 3568 static enum scx_task_state scx_get_task_state(const struct task_struct *p) 3569 { 3570 return (p->scx.flags & SCX_TASK_STATE_MASK) >> SCX_TASK_STATE_SHIFT; 3571 } 3572 3573 static void scx_set_task_state(struct task_struct *p, enum scx_task_state state) 3574 { 3575 enum scx_task_state prev_state = scx_get_task_state(p); 3576 bool warn = false; 3577 3578 BUILD_BUG_ON(SCX_TASK_NR_STATES > (1 << SCX_TASK_STATE_BITS)); 3579 3580 switch (state) { 3581 case SCX_TASK_NONE: 3582 break; 3583 case SCX_TASK_INIT: 3584 warn = prev_state != SCX_TASK_NONE; 3585 break; 3586 case SCX_TASK_READY: 3587 warn = prev_state == SCX_TASK_NONE; 3588 break; 3589 case SCX_TASK_ENABLED: 3590 warn = prev_state != SCX_TASK_READY; 3591 break; 3592 default: 3593 warn = true; 3594 return; 3595 } 3596 3597 WARN_ONCE(warn, "sched_ext: Invalid task state transition %d -> %d for %s[%d]", 3598 prev_state, state, p->comm, p->pid); 3599 3600 p->scx.flags &= ~SCX_TASK_STATE_MASK; 3601 p->scx.flags |= state << SCX_TASK_STATE_SHIFT; 3602 } 3603 3604 static int scx_ops_init_task(struct task_struct *p, struct task_group *tg, bool fork) 3605 { 3606 int ret; 3607 3608 p->scx.disallow = false; 3609 3610 if (SCX_HAS_OP(init_task)) { 3611 struct scx_init_task_args args = { 3612 SCX_INIT_TASK_ARGS_CGROUP(tg) 3613 .fork = fork, 3614 }; 3615 3616 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init_task, p, &args); 3617 if (unlikely(ret)) { 3618 ret = ops_sanitize_err("init_task", ret); 3619 return ret; 3620 } 3621 } 3622 3623 scx_set_task_state(p, SCX_TASK_INIT); 3624 3625 if (p->scx.disallow) { 3626 if (!fork) { 3627 struct rq *rq; 3628 struct rq_flags rf; 3629 3630 rq = task_rq_lock(p, &rf); 3631 3632 /* 3633 * We're in the load path and @p->policy will be applied 3634 * right after. Reverting @p->policy here and rejecting 3635 * %SCHED_EXT transitions from scx_check_setscheduler() 3636 * guarantees that if ops.init_task() sets @p->disallow, 3637 * @p can never be in SCX. 3638 */ 3639 if (p->policy == SCHED_EXT) { 3640 p->policy = SCHED_NORMAL; 3641 atomic_long_inc(&scx_nr_rejected); 3642 } 3643 3644 task_rq_unlock(rq, p, &rf); 3645 } else if (p->policy == SCHED_EXT) { 3646 scx_ops_error("ops.init_task() set task->scx.disallow for %s[%d] during fork", 3647 p->comm, p->pid); 3648 } 3649 } 3650 3651 p->scx.flags |= SCX_TASK_RESET_RUNNABLE_AT; 3652 return 0; 3653 } 3654 3655 static void scx_ops_enable_task(struct task_struct *p) 3656 { 3657 u32 weight; 3658 3659 lockdep_assert_rq_held(task_rq(p)); 3660 3661 /* 3662 * Set the weight before calling ops.enable() so that the scheduler 3663 * doesn't see a stale value if they inspect the task struct. 3664 */ 3665 if (task_has_idle_policy(p)) 3666 weight = WEIGHT_IDLEPRIO; 3667 else 3668 weight = sched_prio_to_weight[p->static_prio - MAX_RT_PRIO]; 3669 3670 p->scx.weight = sched_weight_to_cgroup(weight); 3671 3672 if (SCX_HAS_OP(enable)) 3673 SCX_CALL_OP_TASK(SCX_KF_REST, enable, p); 3674 scx_set_task_state(p, SCX_TASK_ENABLED); 3675 3676 if (SCX_HAS_OP(set_weight)) 3677 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3678 } 3679 3680 static void scx_ops_disable_task(struct task_struct *p) 3681 { 3682 lockdep_assert_rq_held(task_rq(p)); 3683 WARN_ON_ONCE(scx_get_task_state(p) != SCX_TASK_ENABLED); 3684 3685 if (SCX_HAS_OP(disable)) 3686 SCX_CALL_OP(SCX_KF_REST, disable, p); 3687 scx_set_task_state(p, SCX_TASK_READY); 3688 } 3689 3690 static void scx_ops_exit_task(struct task_struct *p) 3691 { 3692 struct scx_exit_task_args args = { 3693 .cancelled = false, 3694 }; 3695 3696 lockdep_assert_rq_held(task_rq(p)); 3697 3698 switch (scx_get_task_state(p)) { 3699 case SCX_TASK_NONE: 3700 return; 3701 case SCX_TASK_INIT: 3702 args.cancelled = true; 3703 break; 3704 case SCX_TASK_READY: 3705 break; 3706 case SCX_TASK_ENABLED: 3707 scx_ops_disable_task(p); 3708 break; 3709 default: 3710 WARN_ON_ONCE(true); 3711 return; 3712 } 3713 3714 if (SCX_HAS_OP(exit_task)) 3715 SCX_CALL_OP(SCX_KF_REST, exit_task, p, &args); 3716 scx_set_task_state(p, SCX_TASK_NONE); 3717 } 3718 3719 void init_scx_entity(struct sched_ext_entity *scx) 3720 { 3721 memset(scx, 0, sizeof(*scx)); 3722 INIT_LIST_HEAD(&scx->dsq_list.node); 3723 RB_CLEAR_NODE(&scx->dsq_priq); 3724 scx->sticky_cpu = -1; 3725 scx->holding_cpu = -1; 3726 INIT_LIST_HEAD(&scx->runnable_node); 3727 scx->runnable_at = jiffies; 3728 scx->ddsp_dsq_id = SCX_DSQ_INVALID; 3729 scx->slice = SCX_SLICE_DFL; 3730 } 3731 3732 void scx_pre_fork(struct task_struct *p) 3733 { 3734 /* 3735 * BPF scheduler enable/disable paths want to be able to iterate and 3736 * update all tasks which can become complex when racing forks. As 3737 * enable/disable are very cold paths, let's use a percpu_rwsem to 3738 * exclude forks. 3739 */ 3740 percpu_down_read(&scx_fork_rwsem); 3741 } 3742 3743 int scx_fork(struct task_struct *p) 3744 { 3745 percpu_rwsem_assert_held(&scx_fork_rwsem); 3746 3747 if (scx_ops_init_task_enabled) 3748 return scx_ops_init_task(p, task_group(p), true); 3749 else 3750 return 0; 3751 } 3752 3753 void scx_post_fork(struct task_struct *p) 3754 { 3755 if (scx_ops_init_task_enabled) { 3756 scx_set_task_state(p, SCX_TASK_READY); 3757 3758 /* 3759 * Enable the task immediately if it's running on sched_ext. 3760 * Otherwise, it'll be enabled in switching_to_scx() if and 3761 * when it's ever configured to run with a SCHED_EXT policy. 3762 */ 3763 if (p->sched_class == &ext_sched_class) { 3764 struct rq_flags rf; 3765 struct rq *rq; 3766 3767 rq = task_rq_lock(p, &rf); 3768 scx_ops_enable_task(p); 3769 task_rq_unlock(rq, p, &rf); 3770 } 3771 } 3772 3773 spin_lock_irq(&scx_tasks_lock); 3774 list_add_tail(&p->scx.tasks_node, &scx_tasks); 3775 spin_unlock_irq(&scx_tasks_lock); 3776 3777 percpu_up_read(&scx_fork_rwsem); 3778 } 3779 3780 void scx_cancel_fork(struct task_struct *p) 3781 { 3782 if (scx_enabled()) { 3783 struct rq *rq; 3784 struct rq_flags rf; 3785 3786 rq = task_rq_lock(p, &rf); 3787 WARN_ON_ONCE(scx_get_task_state(p) >= SCX_TASK_READY); 3788 scx_ops_exit_task(p); 3789 task_rq_unlock(rq, p, &rf); 3790 } 3791 3792 percpu_up_read(&scx_fork_rwsem); 3793 } 3794 3795 void sched_ext_free(struct task_struct *p) 3796 { 3797 unsigned long flags; 3798 3799 spin_lock_irqsave(&scx_tasks_lock, flags); 3800 list_del_init(&p->scx.tasks_node); 3801 spin_unlock_irqrestore(&scx_tasks_lock, flags); 3802 3803 /* 3804 * @p is off scx_tasks and wholly ours. scx_ops_enable()'s READY -> 3805 * ENABLED transitions can't race us. Disable ops for @p. 3806 */ 3807 if (scx_get_task_state(p) != SCX_TASK_NONE) { 3808 struct rq_flags rf; 3809 struct rq *rq; 3810 3811 rq = task_rq_lock(p, &rf); 3812 scx_ops_exit_task(p); 3813 task_rq_unlock(rq, p, &rf); 3814 } 3815 } 3816 3817 static void reweight_task_scx(struct rq *rq, struct task_struct *p, 3818 const struct load_weight *lw) 3819 { 3820 lockdep_assert_rq_held(task_rq(p)); 3821 3822 p->scx.weight = sched_weight_to_cgroup(scale_load_down(lw->weight)); 3823 if (SCX_HAS_OP(set_weight)) 3824 SCX_CALL_OP_TASK(SCX_KF_REST, set_weight, p, p->scx.weight); 3825 } 3826 3827 static void prio_changed_scx(struct rq *rq, struct task_struct *p, int oldprio) 3828 { 3829 } 3830 3831 static void switching_to_scx(struct rq *rq, struct task_struct *p) 3832 { 3833 scx_ops_enable_task(p); 3834 3835 /* 3836 * set_cpus_allowed_scx() is not called while @p is associated with a 3837 * different scheduler class. Keep the BPF scheduler up-to-date. 3838 */ 3839 if (SCX_HAS_OP(set_cpumask)) 3840 SCX_CALL_OP_TASK(SCX_KF_REST, set_cpumask, p, 3841 (struct cpumask *)p->cpus_ptr); 3842 } 3843 3844 static void switched_from_scx(struct rq *rq, struct task_struct *p) 3845 { 3846 scx_ops_disable_task(p); 3847 } 3848 3849 static void wakeup_preempt_scx(struct rq *rq, struct task_struct *p,int wake_flags) {} 3850 static void switched_to_scx(struct rq *rq, struct task_struct *p) {} 3851 3852 int scx_check_setscheduler(struct task_struct *p, int policy) 3853 { 3854 lockdep_assert_rq_held(task_rq(p)); 3855 3856 /* if disallow, reject transitioning into SCX */ 3857 if (scx_enabled() && READ_ONCE(p->scx.disallow) && 3858 p->policy != policy && policy == SCHED_EXT) 3859 return -EACCES; 3860 3861 return 0; 3862 } 3863 3864 #ifdef CONFIG_NO_HZ_FULL 3865 bool scx_can_stop_tick(struct rq *rq) 3866 { 3867 struct task_struct *p = rq->curr; 3868 3869 if (scx_rq_bypassing(rq)) 3870 return false; 3871 3872 if (p->sched_class != &ext_sched_class) 3873 return true; 3874 3875 /* 3876 * @rq can dispatch from different DSQs, so we can't tell whether it 3877 * needs the tick or not by looking at nr_running. Allow stopping ticks 3878 * iff the BPF scheduler indicated so. See set_next_task_scx(). 3879 */ 3880 return rq->scx.flags & SCX_RQ_CAN_STOP_TICK; 3881 } 3882 #endif 3883 3884 #ifdef CONFIG_EXT_GROUP_SCHED 3885 3886 DEFINE_STATIC_PERCPU_RWSEM(scx_cgroup_rwsem); 3887 static bool scx_cgroup_enabled; 3888 static bool cgroup_warned_missing_weight; 3889 static bool cgroup_warned_missing_idle; 3890 3891 static void scx_cgroup_warn_missing_weight(struct task_group *tg) 3892 { 3893 if (scx_ops_enable_state() == SCX_OPS_DISABLED || 3894 cgroup_warned_missing_weight) 3895 return; 3896 3897 if ((scx_ops.flags & SCX_OPS_HAS_CGROUP_WEIGHT) || !tg->css.parent) 3898 return; 3899 3900 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.weight\n", 3901 scx_ops.name); 3902 cgroup_warned_missing_weight = true; 3903 } 3904 3905 static void scx_cgroup_warn_missing_idle(struct task_group *tg) 3906 { 3907 if (!scx_cgroup_enabled || cgroup_warned_missing_idle) 3908 return; 3909 3910 if (!tg->idle) 3911 return; 3912 3913 pr_warn("sched_ext: \"%s\" does not implement cgroup cpu.idle\n", 3914 scx_ops.name); 3915 cgroup_warned_missing_idle = true; 3916 } 3917 3918 int scx_tg_online(struct task_group *tg) 3919 { 3920 int ret = 0; 3921 3922 WARN_ON_ONCE(tg->scx_flags & (SCX_TG_ONLINE | SCX_TG_INITED)); 3923 3924 percpu_down_read(&scx_cgroup_rwsem); 3925 3926 scx_cgroup_warn_missing_weight(tg); 3927 3928 if (scx_cgroup_enabled) { 3929 if (SCX_HAS_OP(cgroup_init)) { 3930 struct scx_cgroup_init_args args = 3931 { .weight = tg->scx_weight }; 3932 3933 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 3934 tg->css.cgroup, &args); 3935 if (ret) 3936 ret = ops_sanitize_err("cgroup_init", ret); 3937 } 3938 if (ret == 0) 3939 tg->scx_flags |= SCX_TG_ONLINE | SCX_TG_INITED; 3940 } else { 3941 tg->scx_flags |= SCX_TG_ONLINE; 3942 } 3943 3944 percpu_up_read(&scx_cgroup_rwsem); 3945 return ret; 3946 } 3947 3948 void scx_tg_offline(struct task_group *tg) 3949 { 3950 WARN_ON_ONCE(!(tg->scx_flags & SCX_TG_ONLINE)); 3951 3952 percpu_down_read(&scx_cgroup_rwsem); 3953 3954 if (SCX_HAS_OP(cgroup_exit) && (tg->scx_flags & SCX_TG_INITED)) 3955 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, tg->css.cgroup); 3956 tg->scx_flags &= ~(SCX_TG_ONLINE | SCX_TG_INITED); 3957 3958 percpu_up_read(&scx_cgroup_rwsem); 3959 } 3960 3961 int scx_cgroup_can_attach(struct cgroup_taskset *tset) 3962 { 3963 struct cgroup_subsys_state *css; 3964 struct task_struct *p; 3965 int ret; 3966 3967 /* released in scx_finish/cancel_attach() */ 3968 percpu_down_read(&scx_cgroup_rwsem); 3969 3970 if (!scx_cgroup_enabled) 3971 return 0; 3972 3973 cgroup_taskset_for_each(p, css, tset) { 3974 struct cgroup *from = tg_cgrp(task_group(p)); 3975 struct cgroup *to = tg_cgrp(css_tg(css)); 3976 3977 WARN_ON_ONCE(p->scx.cgrp_moving_from); 3978 3979 /* 3980 * sched_move_task() omits identity migrations. Let's match the 3981 * behavior so that ops.cgroup_prep_move() and ops.cgroup_move() 3982 * always match one-to-one. 3983 */ 3984 if (from == to) 3985 continue; 3986 3987 if (SCX_HAS_OP(cgroup_prep_move)) { 3988 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_prep_move, 3989 p, from, css->cgroup); 3990 if (ret) 3991 goto err; 3992 } 3993 3994 p->scx.cgrp_moving_from = from; 3995 } 3996 3997 return 0; 3998 3999 err: 4000 cgroup_taskset_for_each(p, css, tset) { 4001 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4002 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4003 p->scx.cgrp_moving_from, css->cgroup); 4004 p->scx.cgrp_moving_from = NULL; 4005 } 4006 4007 percpu_up_read(&scx_cgroup_rwsem); 4008 return ops_sanitize_err("cgroup_prep_move", ret); 4009 } 4010 4011 void scx_cgroup_move_task(struct task_struct *p) 4012 { 4013 if (!scx_cgroup_enabled) 4014 return; 4015 4016 /* 4017 * @p must have ops.cgroup_prep_move() called on it and thus 4018 * cgrp_moving_from set. 4019 */ 4020 if (SCX_HAS_OP(cgroup_move) && !WARN_ON_ONCE(!p->scx.cgrp_moving_from)) 4021 SCX_CALL_OP_TASK(SCX_KF_UNLOCKED, cgroup_move, p, 4022 p->scx.cgrp_moving_from, tg_cgrp(task_group(p))); 4023 p->scx.cgrp_moving_from = NULL; 4024 } 4025 4026 void scx_cgroup_finish_attach(void) 4027 { 4028 percpu_up_read(&scx_cgroup_rwsem); 4029 } 4030 4031 void scx_cgroup_cancel_attach(struct cgroup_taskset *tset) 4032 { 4033 struct cgroup_subsys_state *css; 4034 struct task_struct *p; 4035 4036 if (!scx_cgroup_enabled) 4037 goto out_unlock; 4038 4039 cgroup_taskset_for_each(p, css, tset) { 4040 if (SCX_HAS_OP(cgroup_cancel_move) && p->scx.cgrp_moving_from) 4041 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_cancel_move, p, 4042 p->scx.cgrp_moving_from, css->cgroup); 4043 p->scx.cgrp_moving_from = NULL; 4044 } 4045 out_unlock: 4046 percpu_up_read(&scx_cgroup_rwsem); 4047 } 4048 4049 void scx_group_set_weight(struct task_group *tg, unsigned long weight) 4050 { 4051 percpu_down_read(&scx_cgroup_rwsem); 4052 4053 if (scx_cgroup_enabled && tg->scx_weight != weight) { 4054 if (SCX_HAS_OP(cgroup_set_weight)) 4055 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_set_weight, 4056 tg_cgrp(tg), weight); 4057 tg->scx_weight = weight; 4058 } 4059 4060 percpu_up_read(&scx_cgroup_rwsem); 4061 } 4062 4063 void scx_group_set_idle(struct task_group *tg, bool idle) 4064 { 4065 percpu_down_read(&scx_cgroup_rwsem); 4066 scx_cgroup_warn_missing_idle(tg); 4067 percpu_up_read(&scx_cgroup_rwsem); 4068 } 4069 4070 static void scx_cgroup_lock(void) 4071 { 4072 percpu_down_write(&scx_cgroup_rwsem); 4073 } 4074 4075 static void scx_cgroup_unlock(void) 4076 { 4077 percpu_up_write(&scx_cgroup_rwsem); 4078 } 4079 4080 #else /* CONFIG_EXT_GROUP_SCHED */ 4081 4082 static inline void scx_cgroup_lock(void) {} 4083 static inline void scx_cgroup_unlock(void) {} 4084 4085 #endif /* CONFIG_EXT_GROUP_SCHED */ 4086 4087 /* 4088 * Omitted operations: 4089 * 4090 * - wakeup_preempt: NOOP as it isn't useful in the wakeup path because the task 4091 * isn't tied to the CPU at that point. Preemption is implemented by resetting 4092 * the victim task's slice to 0 and triggering reschedule on the target CPU. 4093 * 4094 * - migrate_task_rq: Unnecessary as task to cpu mapping is transient. 4095 * 4096 * - task_fork/dead: We need fork/dead notifications for all tasks regardless of 4097 * their current sched_class. Call them directly from sched core instead. 4098 */ 4099 DEFINE_SCHED_CLASS(ext) = { 4100 .enqueue_task = enqueue_task_scx, 4101 .dequeue_task = dequeue_task_scx, 4102 .yield_task = yield_task_scx, 4103 .yield_to_task = yield_to_task_scx, 4104 4105 .wakeup_preempt = wakeup_preempt_scx, 4106 4107 .balance = balance_scx, 4108 .pick_task = pick_task_scx, 4109 4110 .put_prev_task = put_prev_task_scx, 4111 .set_next_task = set_next_task_scx, 4112 4113 #ifdef CONFIG_SMP 4114 .select_task_rq = select_task_rq_scx, 4115 .task_woken = task_woken_scx, 4116 .set_cpus_allowed = set_cpus_allowed_scx, 4117 4118 .rq_online = rq_online_scx, 4119 .rq_offline = rq_offline_scx, 4120 #endif 4121 4122 .task_tick = task_tick_scx, 4123 4124 .switching_to = switching_to_scx, 4125 .switched_from = switched_from_scx, 4126 .switched_to = switched_to_scx, 4127 .reweight_task = reweight_task_scx, 4128 .prio_changed = prio_changed_scx, 4129 4130 .update_curr = update_curr_scx, 4131 4132 #ifdef CONFIG_UCLAMP_TASK 4133 .uclamp_enabled = 1, 4134 #endif 4135 }; 4136 4137 static void init_dsq(struct scx_dispatch_q *dsq, u64 dsq_id) 4138 { 4139 memset(dsq, 0, sizeof(*dsq)); 4140 4141 raw_spin_lock_init(&dsq->lock); 4142 INIT_LIST_HEAD(&dsq->list); 4143 dsq->id = dsq_id; 4144 } 4145 4146 static struct scx_dispatch_q *create_dsq(u64 dsq_id, int node) 4147 { 4148 struct scx_dispatch_q *dsq; 4149 int ret; 4150 4151 if (dsq_id & SCX_DSQ_FLAG_BUILTIN) 4152 return ERR_PTR(-EINVAL); 4153 4154 dsq = kmalloc_node(sizeof(*dsq), GFP_KERNEL, node); 4155 if (!dsq) 4156 return ERR_PTR(-ENOMEM); 4157 4158 init_dsq(dsq, dsq_id); 4159 4160 ret = rhashtable_insert_fast(&dsq_hash, &dsq->hash_node, 4161 dsq_hash_params); 4162 if (ret) { 4163 kfree(dsq); 4164 return ERR_PTR(ret); 4165 } 4166 return dsq; 4167 } 4168 4169 static void free_dsq_irq_workfn(struct irq_work *irq_work) 4170 { 4171 struct llist_node *to_free = llist_del_all(&dsqs_to_free); 4172 struct scx_dispatch_q *dsq, *tmp_dsq; 4173 4174 llist_for_each_entry_safe(dsq, tmp_dsq, to_free, free_node) 4175 kfree_rcu(dsq, rcu); 4176 } 4177 4178 static DEFINE_IRQ_WORK(free_dsq_irq_work, free_dsq_irq_workfn); 4179 4180 static void destroy_dsq(u64 dsq_id) 4181 { 4182 struct scx_dispatch_q *dsq; 4183 unsigned long flags; 4184 4185 rcu_read_lock(); 4186 4187 dsq = find_user_dsq(dsq_id); 4188 if (!dsq) 4189 goto out_unlock_rcu; 4190 4191 raw_spin_lock_irqsave(&dsq->lock, flags); 4192 4193 if (dsq->nr) { 4194 scx_ops_error("attempting to destroy in-use dsq 0x%016llx (nr=%u)", 4195 dsq->id, dsq->nr); 4196 goto out_unlock_dsq; 4197 } 4198 4199 if (rhashtable_remove_fast(&dsq_hash, &dsq->hash_node, dsq_hash_params)) 4200 goto out_unlock_dsq; 4201 4202 /* 4203 * Mark dead by invalidating ->id to prevent dispatch_enqueue() from 4204 * queueing more tasks. As this function can be called from anywhere, 4205 * freeing is bounced through an irq work to avoid nesting RCU 4206 * operations inside scheduler locks. 4207 */ 4208 dsq->id = SCX_DSQ_INVALID; 4209 llist_add(&dsq->free_node, &dsqs_to_free); 4210 irq_work_queue(&free_dsq_irq_work); 4211 4212 out_unlock_dsq: 4213 raw_spin_unlock_irqrestore(&dsq->lock, flags); 4214 out_unlock_rcu: 4215 rcu_read_unlock(); 4216 } 4217 4218 #ifdef CONFIG_EXT_GROUP_SCHED 4219 static void scx_cgroup_exit(void) 4220 { 4221 struct cgroup_subsys_state *css; 4222 4223 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4224 4225 scx_cgroup_enabled = false; 4226 4227 /* 4228 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4229 * cgroups and exit all the inited ones, all online cgroups are exited. 4230 */ 4231 rcu_read_lock(); 4232 css_for_each_descendant_post(css, &root_task_group.css) { 4233 struct task_group *tg = css_tg(css); 4234 4235 if (!(tg->scx_flags & SCX_TG_INITED)) 4236 continue; 4237 tg->scx_flags &= ~SCX_TG_INITED; 4238 4239 if (!scx_ops.cgroup_exit) 4240 continue; 4241 4242 if (WARN_ON_ONCE(!css_tryget(css))) 4243 continue; 4244 rcu_read_unlock(); 4245 4246 SCX_CALL_OP(SCX_KF_UNLOCKED, cgroup_exit, css->cgroup); 4247 4248 rcu_read_lock(); 4249 css_put(css); 4250 } 4251 rcu_read_unlock(); 4252 } 4253 4254 static int scx_cgroup_init(void) 4255 { 4256 struct cgroup_subsys_state *css; 4257 int ret; 4258 4259 percpu_rwsem_assert_held(&scx_cgroup_rwsem); 4260 4261 cgroup_warned_missing_weight = false; 4262 cgroup_warned_missing_idle = false; 4263 4264 /* 4265 * scx_tg_on/offline() are excluded through scx_cgroup_rwsem. If we walk 4266 * cgroups and init, all online cgroups are initialized. 4267 */ 4268 rcu_read_lock(); 4269 css_for_each_descendant_pre(css, &root_task_group.css) { 4270 struct task_group *tg = css_tg(css); 4271 struct scx_cgroup_init_args args = { .weight = tg->scx_weight }; 4272 4273 scx_cgroup_warn_missing_weight(tg); 4274 scx_cgroup_warn_missing_idle(tg); 4275 4276 if ((tg->scx_flags & 4277 (SCX_TG_ONLINE | SCX_TG_INITED)) != SCX_TG_ONLINE) 4278 continue; 4279 4280 if (!scx_ops.cgroup_init) { 4281 tg->scx_flags |= SCX_TG_INITED; 4282 continue; 4283 } 4284 4285 if (WARN_ON_ONCE(!css_tryget(css))) 4286 continue; 4287 rcu_read_unlock(); 4288 4289 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, cgroup_init, 4290 css->cgroup, &args); 4291 if (ret) { 4292 css_put(css); 4293 scx_ops_error("ops.cgroup_init() failed (%d)", ret); 4294 return ret; 4295 } 4296 tg->scx_flags |= SCX_TG_INITED; 4297 4298 rcu_read_lock(); 4299 css_put(css); 4300 } 4301 rcu_read_unlock(); 4302 4303 WARN_ON_ONCE(scx_cgroup_enabled); 4304 scx_cgroup_enabled = true; 4305 4306 return 0; 4307 } 4308 4309 #else 4310 static void scx_cgroup_exit(void) {} 4311 static int scx_cgroup_init(void) { return 0; } 4312 #endif 4313 4314 4315 /******************************************************************************** 4316 * Sysfs interface and ops enable/disable. 4317 */ 4318 4319 #define SCX_ATTR(_name) \ 4320 static struct kobj_attribute scx_attr_##_name = { \ 4321 .attr = { .name = __stringify(_name), .mode = 0444 }, \ 4322 .show = scx_attr_##_name##_show, \ 4323 } 4324 4325 static ssize_t scx_attr_state_show(struct kobject *kobj, 4326 struct kobj_attribute *ka, char *buf) 4327 { 4328 return sysfs_emit(buf, "%s\n", 4329 scx_ops_enable_state_str[scx_ops_enable_state()]); 4330 } 4331 SCX_ATTR(state); 4332 4333 static ssize_t scx_attr_switch_all_show(struct kobject *kobj, 4334 struct kobj_attribute *ka, char *buf) 4335 { 4336 return sysfs_emit(buf, "%d\n", READ_ONCE(scx_switching_all)); 4337 } 4338 SCX_ATTR(switch_all); 4339 4340 static ssize_t scx_attr_nr_rejected_show(struct kobject *kobj, 4341 struct kobj_attribute *ka, char *buf) 4342 { 4343 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_nr_rejected)); 4344 } 4345 SCX_ATTR(nr_rejected); 4346 4347 static ssize_t scx_attr_hotplug_seq_show(struct kobject *kobj, 4348 struct kobj_attribute *ka, char *buf) 4349 { 4350 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_hotplug_seq)); 4351 } 4352 SCX_ATTR(hotplug_seq); 4353 4354 static ssize_t scx_attr_enable_seq_show(struct kobject *kobj, 4355 struct kobj_attribute *ka, char *buf) 4356 { 4357 return sysfs_emit(buf, "%ld\n", atomic_long_read(&scx_enable_seq)); 4358 } 4359 SCX_ATTR(enable_seq); 4360 4361 static struct attribute *scx_global_attrs[] = { 4362 &scx_attr_state.attr, 4363 &scx_attr_switch_all.attr, 4364 &scx_attr_nr_rejected.attr, 4365 &scx_attr_hotplug_seq.attr, 4366 &scx_attr_enable_seq.attr, 4367 NULL, 4368 }; 4369 4370 static const struct attribute_group scx_global_attr_group = { 4371 .attrs = scx_global_attrs, 4372 }; 4373 4374 static void scx_kobj_release(struct kobject *kobj) 4375 { 4376 kfree(kobj); 4377 } 4378 4379 static ssize_t scx_attr_ops_show(struct kobject *kobj, 4380 struct kobj_attribute *ka, char *buf) 4381 { 4382 return sysfs_emit(buf, "%s\n", scx_ops.name); 4383 } 4384 SCX_ATTR(ops); 4385 4386 #define scx_attr_event_show(buf, at, events, kind) ({ \ 4387 sysfs_emit_at(buf, at, "%s %llu\n", #kind, (events)->kind); \ 4388 }) 4389 4390 static ssize_t scx_attr_events_show(struct kobject *kobj, 4391 struct kobj_attribute *ka, char *buf) 4392 { 4393 struct scx_event_stats events; 4394 int at = 0; 4395 4396 scx_bpf_events(&events, sizeof(events)); 4397 at += scx_attr_event_show(buf, at, &events, SCX_EV_SELECT_CPU_FALLBACK); 4398 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 4399 at += scx_attr_event_show(buf, at, &events, SCX_EV_DISPATCH_KEEP_LAST); 4400 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_EXITING); 4401 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 4402 at += scx_attr_event_show(buf, at, &events, SCX_EV_ENQ_SLICE_DFL); 4403 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DURATION); 4404 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_DISPATCH); 4405 at += scx_attr_event_show(buf, at, &events, SCX_EV_BYPASS_ACTIVATE); 4406 return at; 4407 } 4408 SCX_ATTR(events); 4409 4410 static struct attribute *scx_sched_attrs[] = { 4411 &scx_attr_ops.attr, 4412 &scx_attr_events.attr, 4413 NULL, 4414 }; 4415 ATTRIBUTE_GROUPS(scx_sched); 4416 4417 static const struct kobj_type scx_ktype = { 4418 .release = scx_kobj_release, 4419 .sysfs_ops = &kobj_sysfs_ops, 4420 .default_groups = scx_sched_groups, 4421 }; 4422 4423 static int scx_uevent(const struct kobject *kobj, struct kobj_uevent_env *env) 4424 { 4425 return add_uevent_var(env, "SCXOPS=%s", scx_ops.name); 4426 } 4427 4428 static const struct kset_uevent_ops scx_uevent_ops = { 4429 .uevent = scx_uevent, 4430 }; 4431 4432 /* 4433 * Used by sched_fork() and __setscheduler_prio() to pick the matching 4434 * sched_class. dl/rt are already handled. 4435 */ 4436 bool task_should_scx(int policy) 4437 { 4438 if (!scx_enabled() || 4439 unlikely(scx_ops_enable_state() == SCX_OPS_DISABLING)) 4440 return false; 4441 if (READ_ONCE(scx_switching_all)) 4442 return true; 4443 return policy == SCHED_EXT; 4444 } 4445 4446 /** 4447 * scx_softlockup - sched_ext softlockup handler 4448 * @dur_s: number of seconds of CPU stuck due to soft lockup 4449 * 4450 * On some multi-socket setups (e.g. 2x Intel 8480c), the BPF scheduler can 4451 * live-lock the system by making many CPUs target the same DSQ to the point 4452 * where soft-lockup detection triggers. This function is called from 4453 * soft-lockup watchdog when the triggering point is close and tries to unjam 4454 * the system by enabling the breather and aborting the BPF scheduler. 4455 */ 4456 void scx_softlockup(u32 dur_s) 4457 { 4458 switch (scx_ops_enable_state()) { 4459 case SCX_OPS_ENABLING: 4460 case SCX_OPS_ENABLED: 4461 break; 4462 default: 4463 return; 4464 } 4465 4466 /* allow only one instance, cleared at the end of scx_ops_bypass() */ 4467 if (test_and_set_bit(0, &scx_in_softlockup)) 4468 return; 4469 4470 printk_deferred(KERN_ERR "sched_ext: Soft lockup - CPU%d stuck for %us, disabling \"%s\"\n", 4471 smp_processor_id(), dur_s, scx_ops.name); 4472 4473 /* 4474 * Some CPUs may be trapped in the dispatch paths. Enable breather 4475 * immediately; otherwise, we might even be able to get to 4476 * scx_ops_bypass(). 4477 */ 4478 atomic_inc(&scx_ops_breather_depth); 4479 4480 scx_ops_error("soft lockup - CPU#%d stuck for %us", 4481 smp_processor_id(), dur_s); 4482 } 4483 4484 static void scx_clear_softlockup(void) 4485 { 4486 if (test_and_clear_bit(0, &scx_in_softlockup)) 4487 atomic_dec(&scx_ops_breather_depth); 4488 } 4489 4490 /** 4491 * scx_ops_bypass - [Un]bypass scx_ops and guarantee forward progress 4492 * @bypass: true for bypass, false for unbypass 4493 * 4494 * Bypassing guarantees that all runnable tasks make forward progress without 4495 * trusting the BPF scheduler. We can't grab any mutexes or rwsems as they might 4496 * be held by tasks that the BPF scheduler is forgetting to run, which 4497 * unfortunately also excludes toggling the static branches. 4498 * 4499 * Let's work around by overriding a couple ops and modifying behaviors based on 4500 * the DISABLING state and then cycling the queued tasks through dequeue/enqueue 4501 * to force global FIFO scheduling. 4502 * 4503 * - ops.select_cpu() is ignored and the default select_cpu() is used. 4504 * 4505 * - ops.enqueue() is ignored and tasks are queued in simple global FIFO order. 4506 * %SCX_OPS_ENQ_LAST is also ignored. 4507 * 4508 * - ops.dispatch() is ignored. 4509 * 4510 * - balance_scx() does not set %SCX_RQ_BAL_KEEP on non-zero slice as slice 4511 * can't be trusted. Whenever a tick triggers, the running task is rotated to 4512 * the tail of the queue with core_sched_at touched. 4513 * 4514 * - pick_next_task() suppresses zero slice warning. 4515 * 4516 * - scx_bpf_kick_cpu() is disabled to avoid irq_work malfunction during PM 4517 * operations. 4518 * 4519 * - scx_prio_less() reverts to the default core_sched_at order. 4520 */ 4521 static void scx_ops_bypass(bool bypass) 4522 { 4523 static DEFINE_RAW_SPINLOCK(bypass_lock); 4524 static unsigned long bypass_timestamp; 4525 4526 int cpu; 4527 unsigned long flags; 4528 4529 raw_spin_lock_irqsave(&bypass_lock, flags); 4530 if (bypass) { 4531 scx_ops_bypass_depth++; 4532 WARN_ON_ONCE(scx_ops_bypass_depth <= 0); 4533 if (scx_ops_bypass_depth != 1) 4534 goto unlock; 4535 bypass_timestamp = ktime_get_ns(); 4536 scx_add_event(SCX_EV_BYPASS_ACTIVATE, 1); 4537 } else { 4538 scx_ops_bypass_depth--; 4539 WARN_ON_ONCE(scx_ops_bypass_depth < 0); 4540 if (scx_ops_bypass_depth != 0) 4541 goto unlock; 4542 scx_add_event(SCX_EV_BYPASS_DURATION, 4543 ktime_get_ns() - bypass_timestamp); 4544 } 4545 4546 atomic_inc(&scx_ops_breather_depth); 4547 4548 /* 4549 * No task property is changing. We just need to make sure all currently 4550 * queued tasks are re-queued according to the new scx_rq_bypassing() 4551 * state. As an optimization, walk each rq's runnable_list instead of 4552 * the scx_tasks list. 4553 * 4554 * This function can't trust the scheduler and thus can't use 4555 * cpus_read_lock(). Walk all possible CPUs instead of online. 4556 */ 4557 for_each_possible_cpu(cpu) { 4558 struct rq *rq = cpu_rq(cpu); 4559 struct task_struct *p, *n; 4560 4561 raw_spin_rq_lock(rq); 4562 4563 if (bypass) { 4564 WARN_ON_ONCE(rq->scx.flags & SCX_RQ_BYPASSING); 4565 rq->scx.flags |= SCX_RQ_BYPASSING; 4566 } else { 4567 WARN_ON_ONCE(!(rq->scx.flags & SCX_RQ_BYPASSING)); 4568 rq->scx.flags &= ~SCX_RQ_BYPASSING; 4569 } 4570 4571 /* 4572 * We need to guarantee that no tasks are on the BPF scheduler 4573 * while bypassing. Either we see enabled or the enable path 4574 * sees scx_rq_bypassing() before moving tasks to SCX. 4575 */ 4576 if (!scx_enabled()) { 4577 raw_spin_rq_unlock(rq); 4578 continue; 4579 } 4580 4581 /* 4582 * The use of list_for_each_entry_safe_reverse() is required 4583 * because each task is going to be removed from and added back 4584 * to the runnable_list during iteration. Because they're added 4585 * to the tail of the list, safe reverse iteration can still 4586 * visit all nodes. 4587 */ 4588 list_for_each_entry_safe_reverse(p, n, &rq->scx.runnable_list, 4589 scx.runnable_node) { 4590 struct sched_enq_and_set_ctx ctx; 4591 4592 /* cycling deq/enq is enough, see the function comment */ 4593 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4594 sched_enq_and_set_task(&ctx); 4595 } 4596 4597 /* resched to restore ticks and idle state */ 4598 if (cpu_online(cpu) || cpu == smp_processor_id()) 4599 resched_curr(rq); 4600 4601 raw_spin_rq_unlock(rq); 4602 } 4603 4604 atomic_dec(&scx_ops_breather_depth); 4605 unlock: 4606 raw_spin_unlock_irqrestore(&bypass_lock, flags); 4607 scx_clear_softlockup(); 4608 } 4609 4610 static void free_exit_info(struct scx_exit_info *ei) 4611 { 4612 kfree(ei->dump); 4613 kfree(ei->msg); 4614 kfree(ei->bt); 4615 kfree(ei); 4616 } 4617 4618 static struct scx_exit_info *alloc_exit_info(size_t exit_dump_len) 4619 { 4620 struct scx_exit_info *ei; 4621 4622 ei = kzalloc(sizeof(*ei), GFP_KERNEL); 4623 if (!ei) 4624 return NULL; 4625 4626 ei->bt = kcalloc(SCX_EXIT_BT_LEN, sizeof(ei->bt[0]), GFP_KERNEL); 4627 ei->msg = kzalloc(SCX_EXIT_MSG_LEN, GFP_KERNEL); 4628 ei->dump = kzalloc(exit_dump_len, GFP_KERNEL); 4629 4630 if (!ei->bt || !ei->msg || !ei->dump) { 4631 free_exit_info(ei); 4632 return NULL; 4633 } 4634 4635 return ei; 4636 } 4637 4638 static const char *scx_exit_reason(enum scx_exit_kind kind) 4639 { 4640 switch (kind) { 4641 case SCX_EXIT_UNREG: 4642 return "unregistered from user space"; 4643 case SCX_EXIT_UNREG_BPF: 4644 return "unregistered from BPF"; 4645 case SCX_EXIT_UNREG_KERN: 4646 return "unregistered from the main kernel"; 4647 case SCX_EXIT_SYSRQ: 4648 return "disabled by sysrq-S"; 4649 case SCX_EXIT_ERROR: 4650 return "runtime error"; 4651 case SCX_EXIT_ERROR_BPF: 4652 return "scx_bpf_error"; 4653 case SCX_EXIT_ERROR_STALL: 4654 return "runnable task stall"; 4655 default: 4656 return "<UNKNOWN>"; 4657 } 4658 } 4659 4660 static void scx_ops_disable_workfn(struct kthread_work *work) 4661 { 4662 struct scx_exit_info *ei = scx_exit_info; 4663 struct scx_task_iter sti; 4664 struct task_struct *p; 4665 struct rhashtable_iter rht_iter; 4666 struct scx_dispatch_q *dsq; 4667 int i, kind, cpu; 4668 4669 kind = atomic_read(&scx_exit_kind); 4670 while (true) { 4671 /* 4672 * NONE indicates that a new scx_ops has been registered since 4673 * disable was scheduled - don't kill the new ops. DONE 4674 * indicates that the ops has already been disabled. 4675 */ 4676 if (kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE) 4677 return; 4678 if (atomic_try_cmpxchg(&scx_exit_kind, &kind, SCX_EXIT_DONE)) 4679 break; 4680 } 4681 ei->kind = kind; 4682 ei->reason = scx_exit_reason(ei->kind); 4683 4684 /* guarantee forward progress by bypassing scx_ops */ 4685 scx_ops_bypass(true); 4686 4687 switch (scx_ops_set_enable_state(SCX_OPS_DISABLING)) { 4688 case SCX_OPS_DISABLING: 4689 WARN_ONCE(true, "sched_ext: duplicate disabling instance?"); 4690 break; 4691 case SCX_OPS_DISABLED: 4692 pr_warn("sched_ext: ops error detected without ops (%s)\n", 4693 scx_exit_info->msg); 4694 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4695 SCX_OPS_DISABLING); 4696 goto done; 4697 default: 4698 break; 4699 } 4700 4701 /* 4702 * Here, every runnable task is guaranteed to make forward progress and 4703 * we can safely use blocking synchronization constructs. Actually 4704 * disable ops. 4705 */ 4706 mutex_lock(&scx_ops_enable_mutex); 4707 4708 static_branch_disable(&__scx_switched_all); 4709 WRITE_ONCE(scx_switching_all, false); 4710 4711 /* 4712 * Shut down cgroup support before tasks so that the cgroup attach path 4713 * doesn't race against scx_ops_exit_task(). 4714 */ 4715 scx_cgroup_lock(); 4716 scx_cgroup_exit(); 4717 scx_cgroup_unlock(); 4718 4719 /* 4720 * The BPF scheduler is going away. All tasks including %TASK_DEAD ones 4721 * must be switched out and exited synchronously. 4722 */ 4723 percpu_down_write(&scx_fork_rwsem); 4724 4725 scx_ops_init_task_enabled = false; 4726 4727 scx_task_iter_start(&sti); 4728 while ((p = scx_task_iter_next_locked(&sti))) { 4729 const struct sched_class *old_class = p->sched_class; 4730 const struct sched_class *new_class = 4731 __setscheduler_class(p->policy, p->prio); 4732 struct sched_enq_and_set_ctx ctx; 4733 4734 if (old_class != new_class && p->se.sched_delayed) 4735 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 4736 4737 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 4738 4739 p->sched_class = new_class; 4740 check_class_changing(task_rq(p), p, old_class); 4741 4742 sched_enq_and_set_task(&ctx); 4743 4744 check_class_changed(task_rq(p), p, old_class, p->prio); 4745 scx_ops_exit_task(p); 4746 } 4747 scx_task_iter_stop(&sti); 4748 percpu_up_write(&scx_fork_rwsem); 4749 4750 /* 4751 * Invalidate all the rq clocks to prevent getting outdated 4752 * rq clocks from a previous scx scheduler. 4753 */ 4754 for_each_possible_cpu(cpu) { 4755 struct rq *rq = cpu_rq(cpu); 4756 scx_rq_clock_invalidate(rq); 4757 } 4758 4759 /* no task is on scx, turn off all the switches and flush in-progress calls */ 4760 static_branch_disable(&__scx_ops_enabled); 4761 for (i = SCX_OPI_BEGIN; i < SCX_OPI_END; i++) 4762 static_branch_disable(&scx_has_op[i]); 4763 static_branch_disable(&scx_ops_allow_queued_wakeup); 4764 static_branch_disable(&scx_ops_enq_last); 4765 static_branch_disable(&scx_ops_enq_exiting); 4766 static_branch_disable(&scx_ops_enq_migration_disabled); 4767 static_branch_disable(&scx_ops_cpu_preempt); 4768 static_branch_disable(&scx_builtin_idle_enabled); 4769 synchronize_rcu(); 4770 4771 if (ei->kind >= SCX_EXIT_ERROR) { 4772 pr_err("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4773 scx_ops.name, ei->reason); 4774 4775 if (ei->msg[0] != '\0') 4776 pr_err("sched_ext: %s: %s\n", scx_ops.name, ei->msg); 4777 #ifdef CONFIG_STACKTRACE 4778 stack_trace_print(ei->bt, ei->bt_len, 2); 4779 #endif 4780 } else { 4781 pr_info("sched_ext: BPF scheduler \"%s\" disabled (%s)\n", 4782 scx_ops.name, ei->reason); 4783 } 4784 4785 if (scx_ops.exit) 4786 SCX_CALL_OP(SCX_KF_UNLOCKED, exit, ei); 4787 4788 cancel_delayed_work_sync(&scx_watchdog_work); 4789 4790 /* 4791 * Delete the kobject from the hierarchy eagerly in addition to just 4792 * dropping a reference. Otherwise, if the object is deleted 4793 * asynchronously, sysfs could observe an object of the same name still 4794 * in the hierarchy when another scheduler is loaded. 4795 */ 4796 kobject_del(scx_root_kobj); 4797 kobject_put(scx_root_kobj); 4798 scx_root_kobj = NULL; 4799 4800 memset(&scx_ops, 0, sizeof(scx_ops)); 4801 4802 rhashtable_walk_enter(&dsq_hash, &rht_iter); 4803 do { 4804 rhashtable_walk_start(&rht_iter); 4805 4806 while ((dsq = rhashtable_walk_next(&rht_iter)) && !IS_ERR(dsq)) 4807 destroy_dsq(dsq->id); 4808 4809 rhashtable_walk_stop(&rht_iter); 4810 } while (dsq == ERR_PTR(-EAGAIN)); 4811 rhashtable_walk_exit(&rht_iter); 4812 4813 free_percpu(scx_dsp_ctx); 4814 scx_dsp_ctx = NULL; 4815 scx_dsp_max_batch = 0; 4816 4817 free_exit_info(scx_exit_info); 4818 scx_exit_info = NULL; 4819 4820 mutex_unlock(&scx_ops_enable_mutex); 4821 4822 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_DISABLED) != 4823 SCX_OPS_DISABLING); 4824 done: 4825 scx_ops_bypass(false); 4826 } 4827 4828 static DEFINE_KTHREAD_WORK(scx_ops_disable_work, scx_ops_disable_workfn); 4829 4830 static void schedule_scx_ops_disable_work(void) 4831 { 4832 struct kthread_worker *helper = READ_ONCE(scx_ops_helper); 4833 4834 /* 4835 * We may be called spuriously before the first bpf_sched_ext_reg(). If 4836 * scx_ops_helper isn't set up yet, there's nothing to do. 4837 */ 4838 if (helper) 4839 kthread_queue_work(helper, &scx_ops_disable_work); 4840 } 4841 4842 static void scx_ops_disable(enum scx_exit_kind kind) 4843 { 4844 int none = SCX_EXIT_NONE; 4845 4846 if (WARN_ON_ONCE(kind == SCX_EXIT_NONE || kind == SCX_EXIT_DONE)) 4847 kind = SCX_EXIT_ERROR; 4848 4849 atomic_try_cmpxchg(&scx_exit_kind, &none, kind); 4850 4851 schedule_scx_ops_disable_work(); 4852 } 4853 4854 static void dump_newline(struct seq_buf *s) 4855 { 4856 trace_sched_ext_dump(""); 4857 4858 /* @s may be zero sized and seq_buf triggers WARN if so */ 4859 if (s->size) 4860 seq_buf_putc(s, '\n'); 4861 } 4862 4863 static __printf(2, 3) void dump_line(struct seq_buf *s, const char *fmt, ...) 4864 { 4865 va_list args; 4866 4867 #ifdef CONFIG_TRACEPOINTS 4868 if (trace_sched_ext_dump_enabled()) { 4869 /* protected by scx_dump_state()::dump_lock */ 4870 static char line_buf[SCX_EXIT_MSG_LEN]; 4871 4872 va_start(args, fmt); 4873 vscnprintf(line_buf, sizeof(line_buf), fmt, args); 4874 va_end(args); 4875 4876 trace_sched_ext_dump(line_buf); 4877 } 4878 #endif 4879 /* @s may be zero sized and seq_buf triggers WARN if so */ 4880 if (s->size) { 4881 va_start(args, fmt); 4882 seq_buf_vprintf(s, fmt, args); 4883 va_end(args); 4884 4885 seq_buf_putc(s, '\n'); 4886 } 4887 } 4888 4889 static void dump_stack_trace(struct seq_buf *s, const char *prefix, 4890 const unsigned long *bt, unsigned int len) 4891 { 4892 unsigned int i; 4893 4894 for (i = 0; i < len; i++) 4895 dump_line(s, "%s%pS", prefix, (void *)bt[i]); 4896 } 4897 4898 static void ops_dump_init(struct seq_buf *s, const char *prefix) 4899 { 4900 struct scx_dump_data *dd = &scx_dump_data; 4901 4902 lockdep_assert_irqs_disabled(); 4903 4904 dd->cpu = smp_processor_id(); /* allow scx_bpf_dump() */ 4905 dd->first = true; 4906 dd->cursor = 0; 4907 dd->s = s; 4908 dd->prefix = prefix; 4909 } 4910 4911 static void ops_dump_flush(void) 4912 { 4913 struct scx_dump_data *dd = &scx_dump_data; 4914 char *line = dd->buf.line; 4915 4916 if (!dd->cursor) 4917 return; 4918 4919 /* 4920 * There's something to flush and this is the first line. Insert a blank 4921 * line to distinguish ops dump. 4922 */ 4923 if (dd->first) { 4924 dump_newline(dd->s); 4925 dd->first = false; 4926 } 4927 4928 /* 4929 * There may be multiple lines in $line. Scan and emit each line 4930 * separately. 4931 */ 4932 while (true) { 4933 char *end = line; 4934 char c; 4935 4936 while (*end != '\n' && *end != '\0') 4937 end++; 4938 4939 /* 4940 * If $line overflowed, it may not have newline at the end. 4941 * Always emit with a newline. 4942 */ 4943 c = *end; 4944 *end = '\0'; 4945 dump_line(dd->s, "%s%s", dd->prefix, line); 4946 if (c == '\0') 4947 break; 4948 4949 /* move to the next line */ 4950 end++; 4951 if (*end == '\0') 4952 break; 4953 line = end; 4954 } 4955 4956 dd->cursor = 0; 4957 } 4958 4959 static void ops_dump_exit(void) 4960 { 4961 ops_dump_flush(); 4962 scx_dump_data.cpu = -1; 4963 } 4964 4965 static void scx_dump_task(struct seq_buf *s, struct scx_dump_ctx *dctx, 4966 struct task_struct *p, char marker) 4967 { 4968 static unsigned long bt[SCX_EXIT_BT_LEN]; 4969 char dsq_id_buf[19] = "(n/a)"; 4970 unsigned long ops_state = atomic_long_read(&p->scx.ops_state); 4971 unsigned int bt_len = 0; 4972 4973 if (p->scx.dsq) 4974 scnprintf(dsq_id_buf, sizeof(dsq_id_buf), "0x%llx", 4975 (unsigned long long)p->scx.dsq->id); 4976 4977 dump_newline(s); 4978 dump_line(s, " %c%c %s[%d] %+ldms", 4979 marker, task_state_to_char(p), p->comm, p->pid, 4980 jiffies_delta_msecs(p->scx.runnable_at, dctx->at_jiffies)); 4981 dump_line(s, " scx_state/flags=%u/0x%x dsq_flags=0x%x ops_state/qseq=%lu/%lu", 4982 scx_get_task_state(p), p->scx.flags & ~SCX_TASK_STATE_MASK, 4983 p->scx.dsq_flags, ops_state & SCX_OPSS_STATE_MASK, 4984 ops_state >> SCX_OPSS_QSEQ_SHIFT); 4985 dump_line(s, " sticky/holding_cpu=%d/%d dsq_id=%s", 4986 p->scx.sticky_cpu, p->scx.holding_cpu, dsq_id_buf); 4987 dump_line(s, " dsq_vtime=%llu slice=%llu weight=%u", 4988 p->scx.dsq_vtime, p->scx.slice, p->scx.weight); 4989 dump_line(s, " cpus=%*pb", cpumask_pr_args(p->cpus_ptr)); 4990 4991 if (SCX_HAS_OP(dump_task)) { 4992 ops_dump_init(s, " "); 4993 SCX_CALL_OP(SCX_KF_REST, dump_task, dctx, p); 4994 ops_dump_exit(); 4995 } 4996 4997 #ifdef CONFIG_STACKTRACE 4998 bt_len = stack_trace_save_tsk(p, bt, SCX_EXIT_BT_LEN, 1); 4999 #endif 5000 if (bt_len) { 5001 dump_newline(s); 5002 dump_stack_trace(s, " ", bt, bt_len); 5003 } 5004 } 5005 5006 static void scx_dump_state(struct scx_exit_info *ei, size_t dump_len) 5007 { 5008 static DEFINE_SPINLOCK(dump_lock); 5009 static const char trunc_marker[] = "\n\n~~~~ TRUNCATED ~~~~\n"; 5010 struct scx_dump_ctx dctx = { 5011 .kind = ei->kind, 5012 .exit_code = ei->exit_code, 5013 .reason = ei->reason, 5014 .at_ns = ktime_get_ns(), 5015 .at_jiffies = jiffies, 5016 }; 5017 struct seq_buf s; 5018 struct scx_event_stats events; 5019 unsigned long flags; 5020 char *buf; 5021 int cpu; 5022 5023 spin_lock_irqsave(&dump_lock, flags); 5024 5025 seq_buf_init(&s, ei->dump, dump_len); 5026 5027 if (ei->kind == SCX_EXIT_NONE) { 5028 dump_line(&s, "Debug dump triggered by %s", ei->reason); 5029 } else { 5030 dump_line(&s, "%s[%d] triggered exit kind %d:", 5031 current->comm, current->pid, ei->kind); 5032 dump_line(&s, " %s (%s)", ei->reason, ei->msg); 5033 dump_newline(&s); 5034 dump_line(&s, "Backtrace:"); 5035 dump_stack_trace(&s, " ", ei->bt, ei->bt_len); 5036 } 5037 5038 if (SCX_HAS_OP(dump)) { 5039 ops_dump_init(&s, ""); 5040 SCX_CALL_OP(SCX_KF_UNLOCKED, dump, &dctx); 5041 ops_dump_exit(); 5042 } 5043 5044 dump_newline(&s); 5045 dump_line(&s, "CPU states"); 5046 dump_line(&s, "----------"); 5047 5048 for_each_possible_cpu(cpu) { 5049 struct rq *rq = cpu_rq(cpu); 5050 struct rq_flags rf; 5051 struct task_struct *p; 5052 struct seq_buf ns; 5053 size_t avail, used; 5054 bool idle; 5055 5056 rq_lock(rq, &rf); 5057 5058 idle = list_empty(&rq->scx.runnable_list) && 5059 rq->curr->sched_class == &idle_sched_class; 5060 5061 if (idle && !SCX_HAS_OP(dump_cpu)) 5062 goto next; 5063 5064 /* 5065 * We don't yet know whether ops.dump_cpu() will produce output 5066 * and we may want to skip the default CPU dump if it doesn't. 5067 * Use a nested seq_buf to generate the standard dump so that we 5068 * can decide whether to commit later. 5069 */ 5070 avail = seq_buf_get_buf(&s, &buf); 5071 seq_buf_init(&ns, buf, avail); 5072 5073 dump_newline(&ns); 5074 dump_line(&ns, "CPU %-4d: nr_run=%u flags=0x%x cpu_rel=%d ops_qseq=%lu pnt_seq=%lu", 5075 cpu, rq->scx.nr_running, rq->scx.flags, 5076 rq->scx.cpu_released, rq->scx.ops_qseq, 5077 rq->scx.pnt_seq); 5078 dump_line(&ns, " curr=%s[%d] class=%ps", 5079 rq->curr->comm, rq->curr->pid, 5080 rq->curr->sched_class); 5081 if (!cpumask_empty(rq->scx.cpus_to_kick)) 5082 dump_line(&ns, " cpus_to_kick : %*pb", 5083 cpumask_pr_args(rq->scx.cpus_to_kick)); 5084 if (!cpumask_empty(rq->scx.cpus_to_kick_if_idle)) 5085 dump_line(&ns, " idle_to_kick : %*pb", 5086 cpumask_pr_args(rq->scx.cpus_to_kick_if_idle)); 5087 if (!cpumask_empty(rq->scx.cpus_to_preempt)) 5088 dump_line(&ns, " cpus_to_preempt: %*pb", 5089 cpumask_pr_args(rq->scx.cpus_to_preempt)); 5090 if (!cpumask_empty(rq->scx.cpus_to_wait)) 5091 dump_line(&ns, " cpus_to_wait : %*pb", 5092 cpumask_pr_args(rq->scx.cpus_to_wait)); 5093 5094 used = seq_buf_used(&ns); 5095 if (SCX_HAS_OP(dump_cpu)) { 5096 ops_dump_init(&ns, " "); 5097 SCX_CALL_OP(SCX_KF_REST, dump_cpu, &dctx, cpu, idle); 5098 ops_dump_exit(); 5099 } 5100 5101 /* 5102 * If idle && nothing generated by ops.dump_cpu(), there's 5103 * nothing interesting. Skip. 5104 */ 5105 if (idle && used == seq_buf_used(&ns)) 5106 goto next; 5107 5108 /* 5109 * $s may already have overflowed when $ns was created. If so, 5110 * calling commit on it will trigger BUG. 5111 */ 5112 if (avail) { 5113 seq_buf_commit(&s, seq_buf_used(&ns)); 5114 if (seq_buf_has_overflowed(&ns)) 5115 seq_buf_set_overflow(&s); 5116 } 5117 5118 if (rq->curr->sched_class == &ext_sched_class) 5119 scx_dump_task(&s, &dctx, rq->curr, '*'); 5120 5121 list_for_each_entry(p, &rq->scx.runnable_list, scx.runnable_node) 5122 scx_dump_task(&s, &dctx, p, ' '); 5123 next: 5124 rq_unlock(rq, &rf); 5125 } 5126 5127 dump_newline(&s); 5128 dump_line(&s, "Event counters"); 5129 dump_line(&s, "--------------"); 5130 5131 scx_bpf_events(&events, sizeof(events)); 5132 scx_dump_event(s, &events, SCX_EV_SELECT_CPU_FALLBACK); 5133 scx_dump_event(s, &events, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 5134 scx_dump_event(s, &events, SCX_EV_DISPATCH_KEEP_LAST); 5135 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_EXITING); 5136 scx_dump_event(s, &events, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 5137 scx_dump_event(s, &events, SCX_EV_ENQ_SLICE_DFL); 5138 scx_dump_event(s, &events, SCX_EV_BYPASS_DURATION); 5139 scx_dump_event(s, &events, SCX_EV_BYPASS_DISPATCH); 5140 scx_dump_event(s, &events, SCX_EV_BYPASS_ACTIVATE); 5141 5142 if (seq_buf_has_overflowed(&s) && dump_len >= sizeof(trunc_marker)) 5143 memcpy(ei->dump + dump_len - sizeof(trunc_marker), 5144 trunc_marker, sizeof(trunc_marker)); 5145 5146 spin_unlock_irqrestore(&dump_lock, flags); 5147 } 5148 5149 static void scx_ops_error_irq_workfn(struct irq_work *irq_work) 5150 { 5151 struct scx_exit_info *ei = scx_exit_info; 5152 5153 if (ei->kind >= SCX_EXIT_ERROR) 5154 scx_dump_state(ei, scx_ops.exit_dump_len); 5155 5156 schedule_scx_ops_disable_work(); 5157 } 5158 5159 static DEFINE_IRQ_WORK(scx_ops_error_irq_work, scx_ops_error_irq_workfn); 5160 5161 static __printf(3, 4) void scx_ops_exit_kind(enum scx_exit_kind kind, 5162 s64 exit_code, 5163 const char *fmt, ...) 5164 { 5165 struct scx_exit_info *ei = scx_exit_info; 5166 int none = SCX_EXIT_NONE; 5167 va_list args; 5168 5169 if (!atomic_try_cmpxchg(&scx_exit_kind, &none, kind)) 5170 return; 5171 5172 ei->exit_code = exit_code; 5173 #ifdef CONFIG_STACKTRACE 5174 if (kind >= SCX_EXIT_ERROR) 5175 ei->bt_len = stack_trace_save(ei->bt, SCX_EXIT_BT_LEN, 1); 5176 #endif 5177 va_start(args, fmt); 5178 vscnprintf(ei->msg, SCX_EXIT_MSG_LEN, fmt, args); 5179 va_end(args); 5180 5181 /* 5182 * Set ei->kind and ->reason for scx_dump_state(). They'll be set again 5183 * in scx_ops_disable_workfn(). 5184 */ 5185 ei->kind = kind; 5186 ei->reason = scx_exit_reason(ei->kind); 5187 5188 irq_work_queue(&scx_ops_error_irq_work); 5189 } 5190 5191 static struct kthread_worker *scx_create_rt_helper(const char *name) 5192 { 5193 struct kthread_worker *helper; 5194 5195 helper = kthread_run_worker(0, name); 5196 if (helper) 5197 sched_set_fifo(helper->task); 5198 return helper; 5199 } 5200 5201 static void check_hotplug_seq(const struct sched_ext_ops *ops) 5202 { 5203 unsigned long long global_hotplug_seq; 5204 5205 /* 5206 * If a hotplug event has occurred between when a scheduler was 5207 * initialized, and when we were able to attach, exit and notify user 5208 * space about it. 5209 */ 5210 if (ops->hotplug_seq) { 5211 global_hotplug_seq = atomic_long_read(&scx_hotplug_seq); 5212 if (ops->hotplug_seq != global_hotplug_seq) { 5213 scx_ops_exit(SCX_ECODE_ACT_RESTART | SCX_ECODE_RSN_HOTPLUG, 5214 "expected hotplug seq %llu did not match actual %llu", 5215 ops->hotplug_seq, global_hotplug_seq); 5216 } 5217 } 5218 } 5219 5220 static int validate_ops(const struct sched_ext_ops *ops) 5221 { 5222 /* 5223 * It doesn't make sense to specify the SCX_OPS_ENQ_LAST flag if the 5224 * ops.enqueue() callback isn't implemented. 5225 */ 5226 if ((ops->flags & SCX_OPS_ENQ_LAST) && !ops->enqueue) { 5227 scx_ops_error("SCX_OPS_ENQ_LAST requires ops.enqueue() to be implemented"); 5228 return -EINVAL; 5229 } 5230 5231 return 0; 5232 } 5233 5234 static int scx_ops_enable(struct sched_ext_ops *ops, struct bpf_link *link) 5235 { 5236 struct scx_task_iter sti; 5237 struct task_struct *p; 5238 unsigned long timeout; 5239 int i, cpu, node, ret; 5240 5241 if (!cpumask_equal(housekeeping_cpumask(HK_TYPE_DOMAIN), 5242 cpu_possible_mask)) { 5243 pr_err("sched_ext: Not compatible with \"isolcpus=\" domain isolation\n"); 5244 return -EINVAL; 5245 } 5246 5247 mutex_lock(&scx_ops_enable_mutex); 5248 5249 /* 5250 * Clear event counters so a new scx scheduler gets 5251 * fresh event counter values. 5252 */ 5253 for_each_possible_cpu(cpu) { 5254 struct scx_event_stats *e = per_cpu_ptr(&event_stats_cpu, cpu); 5255 memset(e, 0, sizeof(*e)); 5256 } 5257 5258 if (!scx_ops_helper) { 5259 WRITE_ONCE(scx_ops_helper, 5260 scx_create_rt_helper("sched_ext_ops_helper")); 5261 if (!scx_ops_helper) { 5262 ret = -ENOMEM; 5263 goto err_unlock; 5264 } 5265 } 5266 5267 if (!global_dsqs) { 5268 struct scx_dispatch_q **dsqs; 5269 5270 dsqs = kcalloc(nr_node_ids, sizeof(dsqs[0]), GFP_KERNEL); 5271 if (!dsqs) { 5272 ret = -ENOMEM; 5273 goto err_unlock; 5274 } 5275 5276 for_each_node_state(node, N_POSSIBLE) { 5277 struct scx_dispatch_q *dsq; 5278 5279 dsq = kzalloc_node(sizeof(*dsq), GFP_KERNEL, node); 5280 if (!dsq) { 5281 for_each_node_state(node, N_POSSIBLE) 5282 kfree(dsqs[node]); 5283 kfree(dsqs); 5284 ret = -ENOMEM; 5285 goto err_unlock; 5286 } 5287 5288 init_dsq(dsq, SCX_DSQ_GLOBAL); 5289 dsqs[node] = dsq; 5290 } 5291 5292 global_dsqs = dsqs; 5293 } 5294 5295 if (scx_ops_enable_state() != SCX_OPS_DISABLED) { 5296 ret = -EBUSY; 5297 goto err_unlock; 5298 } 5299 5300 scx_root_kobj = kzalloc(sizeof(*scx_root_kobj), GFP_KERNEL); 5301 if (!scx_root_kobj) { 5302 ret = -ENOMEM; 5303 goto err_unlock; 5304 } 5305 5306 scx_root_kobj->kset = scx_kset; 5307 ret = kobject_init_and_add(scx_root_kobj, &scx_ktype, NULL, "root"); 5308 if (ret < 0) 5309 goto err; 5310 5311 scx_exit_info = alloc_exit_info(ops->exit_dump_len); 5312 if (!scx_exit_info) { 5313 ret = -ENOMEM; 5314 goto err_del; 5315 } 5316 5317 /* 5318 * Set scx_ops, transition to ENABLING and clear exit info to arm the 5319 * disable path. Failure triggers full disabling from here on. 5320 */ 5321 scx_ops = *ops; 5322 5323 WARN_ON_ONCE(scx_ops_set_enable_state(SCX_OPS_ENABLING) != 5324 SCX_OPS_DISABLED); 5325 5326 atomic_set(&scx_exit_kind, SCX_EXIT_NONE); 5327 scx_warned_zero_slice = false; 5328 5329 atomic_long_set(&scx_nr_rejected, 0); 5330 5331 for_each_possible_cpu(cpu) 5332 cpu_rq(cpu)->scx.cpuperf_target = SCX_CPUPERF_ONE; 5333 5334 /* 5335 * Keep CPUs stable during enable so that the BPF scheduler can track 5336 * online CPUs by watching ->on/offline_cpu() after ->init(). 5337 */ 5338 cpus_read_lock(); 5339 5340 if (scx_ops.init) { 5341 ret = SCX_CALL_OP_RET(SCX_KF_UNLOCKED, init); 5342 if (ret) { 5343 ret = ops_sanitize_err("init", ret); 5344 cpus_read_unlock(); 5345 scx_ops_error("ops.init() failed (%d)", ret); 5346 goto err_disable; 5347 } 5348 } 5349 5350 for (i = SCX_OPI_CPU_HOTPLUG_BEGIN; i < SCX_OPI_CPU_HOTPLUG_END; i++) 5351 if (((void (**)(void))ops)[i]) 5352 static_branch_enable_cpuslocked(&scx_has_op[i]); 5353 5354 check_hotplug_seq(ops); 5355 scx_idle_update_selcpu_topology(); 5356 5357 cpus_read_unlock(); 5358 5359 ret = validate_ops(ops); 5360 if (ret) 5361 goto err_disable; 5362 5363 WARN_ON_ONCE(scx_dsp_ctx); 5364 scx_dsp_max_batch = ops->dispatch_max_batch ?: SCX_DSP_DFL_MAX_BATCH; 5365 scx_dsp_ctx = __alloc_percpu(struct_size_t(struct scx_dsp_ctx, buf, 5366 scx_dsp_max_batch), 5367 __alignof__(struct scx_dsp_ctx)); 5368 if (!scx_dsp_ctx) { 5369 ret = -ENOMEM; 5370 goto err_disable; 5371 } 5372 5373 if (ops->timeout_ms) 5374 timeout = msecs_to_jiffies(ops->timeout_ms); 5375 else 5376 timeout = SCX_WATCHDOG_MAX_TIMEOUT; 5377 5378 WRITE_ONCE(scx_watchdog_timeout, timeout); 5379 WRITE_ONCE(scx_watchdog_timestamp, jiffies); 5380 queue_delayed_work(system_unbound_wq, &scx_watchdog_work, 5381 scx_watchdog_timeout / 2); 5382 5383 /* 5384 * Once __scx_ops_enabled is set, %current can be switched to SCX 5385 * anytime. This can lead to stalls as some BPF schedulers (e.g. 5386 * userspace scheduling) may not function correctly before all tasks are 5387 * switched. Init in bypass mode to guarantee forward progress. 5388 */ 5389 scx_ops_bypass(true); 5390 5391 for (i = SCX_OPI_NORMAL_BEGIN; i < SCX_OPI_NORMAL_END; i++) 5392 if (((void (**)(void))ops)[i]) 5393 static_branch_enable(&scx_has_op[i]); 5394 5395 if (ops->flags & SCX_OPS_ALLOW_QUEUED_WAKEUP) 5396 static_branch_enable(&scx_ops_allow_queued_wakeup); 5397 if (ops->flags & SCX_OPS_ENQ_LAST) 5398 static_branch_enable(&scx_ops_enq_last); 5399 if (ops->flags & SCX_OPS_ENQ_EXITING) 5400 static_branch_enable(&scx_ops_enq_exiting); 5401 if (ops->flags & SCX_OPS_ENQ_MIGRATION_DISABLED) 5402 static_branch_enable(&scx_ops_enq_migration_disabled); 5403 if (scx_ops.cpu_acquire || scx_ops.cpu_release) 5404 static_branch_enable(&scx_ops_cpu_preempt); 5405 5406 if (!ops->update_idle || (ops->flags & SCX_OPS_KEEP_BUILTIN_IDLE)) { 5407 scx_idle_reset_masks(); 5408 static_branch_enable(&scx_builtin_idle_enabled); 5409 } else { 5410 static_branch_disable(&scx_builtin_idle_enabled); 5411 } 5412 5413 /* 5414 * Lock out forks, cgroup on/offlining and moves before opening the 5415 * floodgate so that they don't wander into the operations prematurely. 5416 */ 5417 percpu_down_write(&scx_fork_rwsem); 5418 5419 WARN_ON_ONCE(scx_ops_init_task_enabled); 5420 scx_ops_init_task_enabled = true; 5421 5422 /* 5423 * Enable ops for every task. Fork is excluded by scx_fork_rwsem 5424 * preventing new tasks from being added. No need to exclude tasks 5425 * leaving as sched_ext_free() can handle both prepped and enabled 5426 * tasks. Prep all tasks first and then enable them with preemption 5427 * disabled. 5428 * 5429 * All cgroups should be initialized before scx_ops_init_task() so that 5430 * the BPF scheduler can reliably track each task's cgroup membership 5431 * from scx_ops_init_task(). Lock out cgroup on/offlining and task 5432 * migrations while tasks are being initialized so that 5433 * scx_cgroup_can_attach() never sees uninitialized tasks. 5434 */ 5435 scx_cgroup_lock(); 5436 ret = scx_cgroup_init(); 5437 if (ret) 5438 goto err_disable_unlock_all; 5439 5440 scx_task_iter_start(&sti); 5441 while ((p = scx_task_iter_next_locked(&sti))) { 5442 /* 5443 * @p may already be dead, have lost all its usages counts and 5444 * be waiting for RCU grace period before being freed. @p can't 5445 * be initialized for SCX in such cases and should be ignored. 5446 */ 5447 if (!tryget_task_struct(p)) 5448 continue; 5449 5450 scx_task_iter_unlock(&sti); 5451 5452 ret = scx_ops_init_task(p, task_group(p), false); 5453 if (ret) { 5454 put_task_struct(p); 5455 scx_task_iter_relock(&sti); 5456 scx_task_iter_stop(&sti); 5457 scx_ops_error("ops.init_task() failed (%d) for %s[%d]", 5458 ret, p->comm, p->pid); 5459 goto err_disable_unlock_all; 5460 } 5461 5462 scx_set_task_state(p, SCX_TASK_READY); 5463 5464 put_task_struct(p); 5465 scx_task_iter_relock(&sti); 5466 } 5467 scx_task_iter_stop(&sti); 5468 scx_cgroup_unlock(); 5469 percpu_up_write(&scx_fork_rwsem); 5470 5471 /* 5472 * All tasks are READY. It's safe to turn on scx_enabled() and switch 5473 * all eligible tasks. 5474 */ 5475 WRITE_ONCE(scx_switching_all, !(ops->flags & SCX_OPS_SWITCH_PARTIAL)); 5476 static_branch_enable(&__scx_ops_enabled); 5477 5478 /* 5479 * We're fully committed and can't fail. The task READY -> ENABLED 5480 * transitions here are synchronized against sched_ext_free() through 5481 * scx_tasks_lock. 5482 */ 5483 percpu_down_write(&scx_fork_rwsem); 5484 scx_task_iter_start(&sti); 5485 while ((p = scx_task_iter_next_locked(&sti))) { 5486 const struct sched_class *old_class = p->sched_class; 5487 const struct sched_class *new_class = 5488 __setscheduler_class(p->policy, p->prio); 5489 struct sched_enq_and_set_ctx ctx; 5490 5491 if (old_class != new_class && p->se.sched_delayed) 5492 dequeue_task(task_rq(p), p, DEQUEUE_SLEEP | DEQUEUE_DELAYED); 5493 5494 sched_deq_and_put_task(p, DEQUEUE_SAVE | DEQUEUE_MOVE, &ctx); 5495 5496 p->scx.slice = SCX_SLICE_DFL; 5497 p->sched_class = new_class; 5498 check_class_changing(task_rq(p), p, old_class); 5499 5500 sched_enq_and_set_task(&ctx); 5501 5502 check_class_changed(task_rq(p), p, old_class, p->prio); 5503 } 5504 scx_task_iter_stop(&sti); 5505 percpu_up_write(&scx_fork_rwsem); 5506 5507 scx_ops_bypass(false); 5508 5509 if (!scx_ops_tryset_enable_state(SCX_OPS_ENABLED, SCX_OPS_ENABLING)) { 5510 WARN_ON_ONCE(atomic_read(&scx_exit_kind) == SCX_EXIT_NONE); 5511 goto err_disable; 5512 } 5513 5514 if (!(ops->flags & SCX_OPS_SWITCH_PARTIAL)) 5515 static_branch_enable(&__scx_switched_all); 5516 5517 pr_info("sched_ext: BPF scheduler \"%s\" enabled%s\n", 5518 scx_ops.name, scx_switched_all() ? "" : " (partial)"); 5519 kobject_uevent(scx_root_kobj, KOBJ_ADD); 5520 mutex_unlock(&scx_ops_enable_mutex); 5521 5522 atomic_long_inc(&scx_enable_seq); 5523 5524 return 0; 5525 5526 err_del: 5527 kobject_del(scx_root_kobj); 5528 err: 5529 kobject_put(scx_root_kobj); 5530 scx_root_kobj = NULL; 5531 if (scx_exit_info) { 5532 free_exit_info(scx_exit_info); 5533 scx_exit_info = NULL; 5534 } 5535 err_unlock: 5536 mutex_unlock(&scx_ops_enable_mutex); 5537 return ret; 5538 5539 err_disable_unlock_all: 5540 scx_cgroup_unlock(); 5541 percpu_up_write(&scx_fork_rwsem); 5542 scx_ops_bypass(false); 5543 err_disable: 5544 mutex_unlock(&scx_ops_enable_mutex); 5545 /* 5546 * Returning an error code here would not pass all the error information 5547 * to userspace. Record errno using scx_ops_error() for cases 5548 * scx_ops_error() wasn't already invoked and exit indicating success so 5549 * that the error is notified through ops.exit() with all the details. 5550 * 5551 * Flush scx_ops_disable_work to ensure that error is reported before 5552 * init completion. 5553 */ 5554 scx_ops_error("scx_ops_enable() failed (%d)", ret); 5555 kthread_flush_work(&scx_ops_disable_work); 5556 return 0; 5557 } 5558 5559 5560 /******************************************************************************** 5561 * bpf_struct_ops plumbing. 5562 */ 5563 #include <linux/bpf_verifier.h> 5564 #include <linux/bpf.h> 5565 #include <linux/btf.h> 5566 5567 static const struct btf_type *task_struct_type; 5568 5569 static bool bpf_scx_is_valid_access(int off, int size, 5570 enum bpf_access_type type, 5571 const struct bpf_prog *prog, 5572 struct bpf_insn_access_aux *info) 5573 { 5574 if (type != BPF_READ) 5575 return false; 5576 if (off < 0 || off >= sizeof(__u64) * MAX_BPF_FUNC_ARGS) 5577 return false; 5578 if (off % size != 0) 5579 return false; 5580 5581 return btf_ctx_access(off, size, type, prog, info); 5582 } 5583 5584 static int bpf_scx_btf_struct_access(struct bpf_verifier_log *log, 5585 const struct bpf_reg_state *reg, int off, 5586 int size) 5587 { 5588 const struct btf_type *t; 5589 5590 t = btf_type_by_id(reg->btf, reg->btf_id); 5591 if (t == task_struct_type) { 5592 if (off >= offsetof(struct task_struct, scx.slice) && 5593 off + size <= offsetofend(struct task_struct, scx.slice)) 5594 return SCALAR_VALUE; 5595 if (off >= offsetof(struct task_struct, scx.dsq_vtime) && 5596 off + size <= offsetofend(struct task_struct, scx.dsq_vtime)) 5597 return SCALAR_VALUE; 5598 if (off >= offsetof(struct task_struct, scx.disallow) && 5599 off + size <= offsetofend(struct task_struct, scx.disallow)) 5600 return SCALAR_VALUE; 5601 } 5602 5603 return -EACCES; 5604 } 5605 5606 static const struct bpf_func_proto * 5607 bpf_scx_get_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog) 5608 { 5609 switch (func_id) { 5610 case BPF_FUNC_task_storage_get: 5611 return &bpf_task_storage_get_proto; 5612 case BPF_FUNC_task_storage_delete: 5613 return &bpf_task_storage_delete_proto; 5614 default: 5615 return bpf_base_func_proto(func_id, prog); 5616 } 5617 } 5618 5619 static const struct bpf_verifier_ops bpf_scx_verifier_ops = { 5620 .get_func_proto = bpf_scx_get_func_proto, 5621 .is_valid_access = bpf_scx_is_valid_access, 5622 .btf_struct_access = bpf_scx_btf_struct_access, 5623 }; 5624 5625 static int bpf_scx_init_member(const struct btf_type *t, 5626 const struct btf_member *member, 5627 void *kdata, const void *udata) 5628 { 5629 const struct sched_ext_ops *uops = udata; 5630 struct sched_ext_ops *ops = kdata; 5631 u32 moff = __btf_member_bit_offset(t, member) / 8; 5632 int ret; 5633 5634 switch (moff) { 5635 case offsetof(struct sched_ext_ops, dispatch_max_batch): 5636 if (*(u32 *)(udata + moff) > INT_MAX) 5637 return -E2BIG; 5638 ops->dispatch_max_batch = *(u32 *)(udata + moff); 5639 return 1; 5640 case offsetof(struct sched_ext_ops, flags): 5641 if (*(u64 *)(udata + moff) & ~SCX_OPS_ALL_FLAGS) 5642 return -EINVAL; 5643 ops->flags = *(u64 *)(udata + moff); 5644 return 1; 5645 case offsetof(struct sched_ext_ops, name): 5646 ret = bpf_obj_name_cpy(ops->name, uops->name, 5647 sizeof(ops->name)); 5648 if (ret < 0) 5649 return ret; 5650 if (ret == 0) 5651 return -EINVAL; 5652 return 1; 5653 case offsetof(struct sched_ext_ops, timeout_ms): 5654 if (msecs_to_jiffies(*(u32 *)(udata + moff)) > 5655 SCX_WATCHDOG_MAX_TIMEOUT) 5656 return -E2BIG; 5657 ops->timeout_ms = *(u32 *)(udata + moff); 5658 return 1; 5659 case offsetof(struct sched_ext_ops, exit_dump_len): 5660 ops->exit_dump_len = 5661 *(u32 *)(udata + moff) ?: SCX_EXIT_DUMP_DFL_LEN; 5662 return 1; 5663 case offsetof(struct sched_ext_ops, hotplug_seq): 5664 ops->hotplug_seq = *(u64 *)(udata + moff); 5665 return 1; 5666 } 5667 5668 return 0; 5669 } 5670 5671 static int bpf_scx_check_member(const struct btf_type *t, 5672 const struct btf_member *member, 5673 const struct bpf_prog *prog) 5674 { 5675 u32 moff = __btf_member_bit_offset(t, member) / 8; 5676 5677 switch (moff) { 5678 case offsetof(struct sched_ext_ops, init_task): 5679 #ifdef CONFIG_EXT_GROUP_SCHED 5680 case offsetof(struct sched_ext_ops, cgroup_init): 5681 case offsetof(struct sched_ext_ops, cgroup_exit): 5682 case offsetof(struct sched_ext_ops, cgroup_prep_move): 5683 #endif 5684 case offsetof(struct sched_ext_ops, cpu_online): 5685 case offsetof(struct sched_ext_ops, cpu_offline): 5686 case offsetof(struct sched_ext_ops, init): 5687 case offsetof(struct sched_ext_ops, exit): 5688 break; 5689 default: 5690 if (prog->sleepable) 5691 return -EINVAL; 5692 } 5693 5694 return 0; 5695 } 5696 5697 static int bpf_scx_reg(void *kdata, struct bpf_link *link) 5698 { 5699 return scx_ops_enable(kdata, link); 5700 } 5701 5702 static void bpf_scx_unreg(void *kdata, struct bpf_link *link) 5703 { 5704 scx_ops_disable(SCX_EXIT_UNREG); 5705 kthread_flush_work(&scx_ops_disable_work); 5706 } 5707 5708 static int bpf_scx_init(struct btf *btf) 5709 { 5710 task_struct_type = btf_type_by_id(btf, btf_tracing_ids[BTF_TRACING_TYPE_TASK]); 5711 5712 return 0; 5713 } 5714 5715 static int bpf_scx_update(void *kdata, void *old_kdata, struct bpf_link *link) 5716 { 5717 /* 5718 * sched_ext does not support updating the actively-loaded BPF 5719 * scheduler, as registering a BPF scheduler can always fail if the 5720 * scheduler returns an error code for e.g. ops.init(), ops.init_task(), 5721 * etc. Similarly, we can always race with unregistration happening 5722 * elsewhere, such as with sysrq. 5723 */ 5724 return -EOPNOTSUPP; 5725 } 5726 5727 static int bpf_scx_validate(void *kdata) 5728 { 5729 return 0; 5730 } 5731 5732 static s32 sched_ext_ops__select_cpu(struct task_struct *p, s32 prev_cpu, u64 wake_flags) { return -EINVAL; } 5733 static void sched_ext_ops__enqueue(struct task_struct *p, u64 enq_flags) {} 5734 static void sched_ext_ops__dequeue(struct task_struct *p, u64 enq_flags) {} 5735 static void sched_ext_ops__dispatch(s32 prev_cpu, struct task_struct *prev__nullable) {} 5736 static void sched_ext_ops__tick(struct task_struct *p) {} 5737 static void sched_ext_ops__runnable(struct task_struct *p, u64 enq_flags) {} 5738 static void sched_ext_ops__running(struct task_struct *p) {} 5739 static void sched_ext_ops__stopping(struct task_struct *p, bool runnable) {} 5740 static void sched_ext_ops__quiescent(struct task_struct *p, u64 deq_flags) {} 5741 static bool sched_ext_ops__yield(struct task_struct *from, struct task_struct *to__nullable) { return false; } 5742 static bool sched_ext_ops__core_sched_before(struct task_struct *a, struct task_struct *b) { return false; } 5743 static void sched_ext_ops__set_weight(struct task_struct *p, u32 weight) {} 5744 static void sched_ext_ops__set_cpumask(struct task_struct *p, const struct cpumask *mask) {} 5745 static void sched_ext_ops__update_idle(s32 cpu, bool idle) {} 5746 static void sched_ext_ops__cpu_acquire(s32 cpu, struct scx_cpu_acquire_args *args) {} 5747 static void sched_ext_ops__cpu_release(s32 cpu, struct scx_cpu_release_args *args) {} 5748 static s32 sched_ext_ops__init_task(struct task_struct *p, struct scx_init_task_args *args) { return -EINVAL; } 5749 static void sched_ext_ops__exit_task(struct task_struct *p, struct scx_exit_task_args *args) {} 5750 static void sched_ext_ops__enable(struct task_struct *p) {} 5751 static void sched_ext_ops__disable(struct task_struct *p) {} 5752 #ifdef CONFIG_EXT_GROUP_SCHED 5753 static s32 sched_ext_ops__cgroup_init(struct cgroup *cgrp, struct scx_cgroup_init_args *args) { return -EINVAL; } 5754 static void sched_ext_ops__cgroup_exit(struct cgroup *cgrp) {} 5755 static s32 sched_ext_ops__cgroup_prep_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) { return -EINVAL; } 5756 static void sched_ext_ops__cgroup_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5757 static void sched_ext_ops__cgroup_cancel_move(struct task_struct *p, struct cgroup *from, struct cgroup *to) {} 5758 static void sched_ext_ops__cgroup_set_weight(struct cgroup *cgrp, u32 weight) {} 5759 #endif 5760 static void sched_ext_ops__cpu_online(s32 cpu) {} 5761 static void sched_ext_ops__cpu_offline(s32 cpu) {} 5762 static s32 sched_ext_ops__init(void) { return -EINVAL; } 5763 static void sched_ext_ops__exit(struct scx_exit_info *info) {} 5764 static void sched_ext_ops__dump(struct scx_dump_ctx *ctx) {} 5765 static void sched_ext_ops__dump_cpu(struct scx_dump_ctx *ctx, s32 cpu, bool idle) {} 5766 static void sched_ext_ops__dump_task(struct scx_dump_ctx *ctx, struct task_struct *p) {} 5767 5768 static struct sched_ext_ops __bpf_ops_sched_ext_ops = { 5769 .select_cpu = sched_ext_ops__select_cpu, 5770 .enqueue = sched_ext_ops__enqueue, 5771 .dequeue = sched_ext_ops__dequeue, 5772 .dispatch = sched_ext_ops__dispatch, 5773 .tick = sched_ext_ops__tick, 5774 .runnable = sched_ext_ops__runnable, 5775 .running = sched_ext_ops__running, 5776 .stopping = sched_ext_ops__stopping, 5777 .quiescent = sched_ext_ops__quiescent, 5778 .yield = sched_ext_ops__yield, 5779 .core_sched_before = sched_ext_ops__core_sched_before, 5780 .set_weight = sched_ext_ops__set_weight, 5781 .set_cpumask = sched_ext_ops__set_cpumask, 5782 .update_idle = sched_ext_ops__update_idle, 5783 .cpu_acquire = sched_ext_ops__cpu_acquire, 5784 .cpu_release = sched_ext_ops__cpu_release, 5785 .init_task = sched_ext_ops__init_task, 5786 .exit_task = sched_ext_ops__exit_task, 5787 .enable = sched_ext_ops__enable, 5788 .disable = sched_ext_ops__disable, 5789 #ifdef CONFIG_EXT_GROUP_SCHED 5790 .cgroup_init = sched_ext_ops__cgroup_init, 5791 .cgroup_exit = sched_ext_ops__cgroup_exit, 5792 .cgroup_prep_move = sched_ext_ops__cgroup_prep_move, 5793 .cgroup_move = sched_ext_ops__cgroup_move, 5794 .cgroup_cancel_move = sched_ext_ops__cgroup_cancel_move, 5795 .cgroup_set_weight = sched_ext_ops__cgroup_set_weight, 5796 #endif 5797 .cpu_online = sched_ext_ops__cpu_online, 5798 .cpu_offline = sched_ext_ops__cpu_offline, 5799 .init = sched_ext_ops__init, 5800 .exit = sched_ext_ops__exit, 5801 .dump = sched_ext_ops__dump, 5802 .dump_cpu = sched_ext_ops__dump_cpu, 5803 .dump_task = sched_ext_ops__dump_task, 5804 }; 5805 5806 static struct bpf_struct_ops bpf_sched_ext_ops = { 5807 .verifier_ops = &bpf_scx_verifier_ops, 5808 .reg = bpf_scx_reg, 5809 .unreg = bpf_scx_unreg, 5810 .check_member = bpf_scx_check_member, 5811 .init_member = bpf_scx_init_member, 5812 .init = bpf_scx_init, 5813 .update = bpf_scx_update, 5814 .validate = bpf_scx_validate, 5815 .name = "sched_ext_ops", 5816 .owner = THIS_MODULE, 5817 .cfi_stubs = &__bpf_ops_sched_ext_ops 5818 }; 5819 5820 5821 /******************************************************************************** 5822 * System integration and init. 5823 */ 5824 5825 static void sysrq_handle_sched_ext_reset(u8 key) 5826 { 5827 if (scx_ops_helper) 5828 scx_ops_disable(SCX_EXIT_SYSRQ); 5829 else 5830 pr_info("sched_ext: BPF scheduler not yet used\n"); 5831 } 5832 5833 static const struct sysrq_key_op sysrq_sched_ext_reset_op = { 5834 .handler = sysrq_handle_sched_ext_reset, 5835 .help_msg = "reset-sched-ext(S)", 5836 .action_msg = "Disable sched_ext and revert all tasks to CFS", 5837 .enable_mask = SYSRQ_ENABLE_RTNICE, 5838 }; 5839 5840 static void sysrq_handle_sched_ext_dump(u8 key) 5841 { 5842 struct scx_exit_info ei = { .kind = SCX_EXIT_NONE, .reason = "SysRq-D" }; 5843 5844 if (scx_enabled()) 5845 scx_dump_state(&ei, 0); 5846 } 5847 5848 static const struct sysrq_key_op sysrq_sched_ext_dump_op = { 5849 .handler = sysrq_handle_sched_ext_dump, 5850 .help_msg = "dump-sched-ext(D)", 5851 .action_msg = "Trigger sched_ext debug dump", 5852 .enable_mask = SYSRQ_ENABLE_RTNICE, 5853 }; 5854 5855 static bool can_skip_idle_kick(struct rq *rq) 5856 { 5857 lockdep_assert_rq_held(rq); 5858 5859 /* 5860 * We can skip idle kicking if @rq is going to go through at least one 5861 * full SCX scheduling cycle before going idle. Just checking whether 5862 * curr is not idle is insufficient because we could be racing 5863 * balance_one() trying to pull the next task from a remote rq, which 5864 * may fail, and @rq may become idle afterwards. 5865 * 5866 * The race window is small and we don't and can't guarantee that @rq is 5867 * only kicked while idle anyway. Skip only when sure. 5868 */ 5869 return !is_idle_task(rq->curr) && !(rq->scx.flags & SCX_RQ_IN_BALANCE); 5870 } 5871 5872 static bool kick_one_cpu(s32 cpu, struct rq *this_rq, unsigned long *pseqs) 5873 { 5874 struct rq *rq = cpu_rq(cpu); 5875 struct scx_rq *this_scx = &this_rq->scx; 5876 bool should_wait = false; 5877 unsigned long flags; 5878 5879 raw_spin_rq_lock_irqsave(rq, flags); 5880 5881 /* 5882 * During CPU hotplug, a CPU may depend on kicking itself to make 5883 * forward progress. Allow kicking self regardless of online state. 5884 */ 5885 if (cpu_online(cpu) || cpu == cpu_of(this_rq)) { 5886 if (cpumask_test_cpu(cpu, this_scx->cpus_to_preempt)) { 5887 if (rq->curr->sched_class == &ext_sched_class) 5888 rq->curr->scx.slice = 0; 5889 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5890 } 5891 5892 if (cpumask_test_cpu(cpu, this_scx->cpus_to_wait)) { 5893 pseqs[cpu] = rq->scx.pnt_seq; 5894 should_wait = true; 5895 } 5896 5897 resched_curr(rq); 5898 } else { 5899 cpumask_clear_cpu(cpu, this_scx->cpus_to_preempt); 5900 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5901 } 5902 5903 raw_spin_rq_unlock_irqrestore(rq, flags); 5904 5905 return should_wait; 5906 } 5907 5908 static void kick_one_cpu_if_idle(s32 cpu, struct rq *this_rq) 5909 { 5910 struct rq *rq = cpu_rq(cpu); 5911 unsigned long flags; 5912 5913 raw_spin_rq_lock_irqsave(rq, flags); 5914 5915 if (!can_skip_idle_kick(rq) && 5916 (cpu_online(cpu) || cpu == cpu_of(this_rq))) 5917 resched_curr(rq); 5918 5919 raw_spin_rq_unlock_irqrestore(rq, flags); 5920 } 5921 5922 static void kick_cpus_irq_workfn(struct irq_work *irq_work) 5923 { 5924 struct rq *this_rq = this_rq(); 5925 struct scx_rq *this_scx = &this_rq->scx; 5926 unsigned long *pseqs = this_cpu_ptr(scx_kick_cpus_pnt_seqs); 5927 bool should_wait = false; 5928 s32 cpu; 5929 5930 for_each_cpu(cpu, this_scx->cpus_to_kick) { 5931 should_wait |= kick_one_cpu(cpu, this_rq, pseqs); 5932 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick); 5933 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5934 } 5935 5936 for_each_cpu(cpu, this_scx->cpus_to_kick_if_idle) { 5937 kick_one_cpu_if_idle(cpu, this_rq); 5938 cpumask_clear_cpu(cpu, this_scx->cpus_to_kick_if_idle); 5939 } 5940 5941 if (!should_wait) 5942 return; 5943 5944 for_each_cpu(cpu, this_scx->cpus_to_wait) { 5945 unsigned long *wait_pnt_seq = &cpu_rq(cpu)->scx.pnt_seq; 5946 5947 if (cpu != cpu_of(this_rq)) { 5948 /* 5949 * Pairs with smp_store_release() issued by this CPU in 5950 * switch_class() on the resched path. 5951 * 5952 * We busy-wait here to guarantee that no other task can 5953 * be scheduled on our core before the target CPU has 5954 * entered the resched path. 5955 */ 5956 while (smp_load_acquire(wait_pnt_seq) == pseqs[cpu]) 5957 cpu_relax(); 5958 } 5959 5960 cpumask_clear_cpu(cpu, this_scx->cpus_to_wait); 5961 } 5962 } 5963 5964 /** 5965 * print_scx_info - print out sched_ext scheduler state 5966 * @log_lvl: the log level to use when printing 5967 * @p: target task 5968 * 5969 * If a sched_ext scheduler is enabled, print the name and state of the 5970 * scheduler. If @p is on sched_ext, print further information about the task. 5971 * 5972 * This function can be safely called on any task as long as the task_struct 5973 * itself is accessible. While safe, this function isn't synchronized and may 5974 * print out mixups or garbages of limited length. 5975 */ 5976 void print_scx_info(const char *log_lvl, struct task_struct *p) 5977 { 5978 enum scx_ops_enable_state state = scx_ops_enable_state(); 5979 const char *all = READ_ONCE(scx_switching_all) ? "+all" : ""; 5980 char runnable_at_buf[22] = "?"; 5981 struct sched_class *class; 5982 unsigned long runnable_at; 5983 5984 if (state == SCX_OPS_DISABLED) 5985 return; 5986 5987 /* 5988 * Carefully check if the task was running on sched_ext, and then 5989 * carefully copy the time it's been runnable, and its state. 5990 */ 5991 if (copy_from_kernel_nofault(&class, &p->sched_class, sizeof(class)) || 5992 class != &ext_sched_class) { 5993 printk("%sSched_ext: %s (%s%s)", log_lvl, scx_ops.name, 5994 scx_ops_enable_state_str[state], all); 5995 return; 5996 } 5997 5998 if (!copy_from_kernel_nofault(&runnable_at, &p->scx.runnable_at, 5999 sizeof(runnable_at))) 6000 scnprintf(runnable_at_buf, sizeof(runnable_at_buf), "%+ldms", 6001 jiffies_delta_msecs(runnable_at, jiffies)); 6002 6003 /* print everything onto one line to conserve console space */ 6004 printk("%sSched_ext: %s (%s%s), task: runnable_at=%s", 6005 log_lvl, scx_ops.name, scx_ops_enable_state_str[state], all, 6006 runnable_at_buf); 6007 } 6008 6009 static int scx_pm_handler(struct notifier_block *nb, unsigned long event, void *ptr) 6010 { 6011 /* 6012 * SCX schedulers often have userspace components which are sometimes 6013 * involved in critial scheduling paths. PM operations involve freezing 6014 * userspace which can lead to scheduling misbehaviors including stalls. 6015 * Let's bypass while PM operations are in progress. 6016 */ 6017 switch (event) { 6018 case PM_HIBERNATION_PREPARE: 6019 case PM_SUSPEND_PREPARE: 6020 case PM_RESTORE_PREPARE: 6021 scx_ops_bypass(true); 6022 break; 6023 case PM_POST_HIBERNATION: 6024 case PM_POST_SUSPEND: 6025 case PM_POST_RESTORE: 6026 scx_ops_bypass(false); 6027 break; 6028 } 6029 6030 return NOTIFY_OK; 6031 } 6032 6033 static struct notifier_block scx_pm_notifier = { 6034 .notifier_call = scx_pm_handler, 6035 }; 6036 6037 void __init init_sched_ext_class(void) 6038 { 6039 s32 cpu, v; 6040 6041 /* 6042 * The following is to prevent the compiler from optimizing out the enum 6043 * definitions so that BPF scheduler implementations can use them 6044 * through the generated vmlinux.h. 6045 */ 6046 WRITE_ONCE(v, SCX_ENQ_WAKEUP | SCX_DEQ_SLEEP | SCX_KICK_PREEMPT | 6047 SCX_TG_ONLINE); 6048 6049 BUG_ON(rhashtable_init(&dsq_hash, &dsq_hash_params)); 6050 scx_idle_init_masks(); 6051 6052 scx_kick_cpus_pnt_seqs = 6053 __alloc_percpu(sizeof(scx_kick_cpus_pnt_seqs[0]) * nr_cpu_ids, 6054 __alignof__(scx_kick_cpus_pnt_seqs[0])); 6055 BUG_ON(!scx_kick_cpus_pnt_seqs); 6056 6057 for_each_possible_cpu(cpu) { 6058 struct rq *rq = cpu_rq(cpu); 6059 int n = cpu_to_node(cpu); 6060 6061 init_dsq(&rq->scx.local_dsq, SCX_DSQ_LOCAL); 6062 INIT_LIST_HEAD(&rq->scx.runnable_list); 6063 INIT_LIST_HEAD(&rq->scx.ddsp_deferred_locals); 6064 6065 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick, GFP_KERNEL, n)); 6066 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_kick_if_idle, GFP_KERNEL, n)); 6067 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_preempt, GFP_KERNEL, n)); 6068 BUG_ON(!zalloc_cpumask_var_node(&rq->scx.cpus_to_wait, GFP_KERNEL, n)); 6069 init_irq_work(&rq->scx.deferred_irq_work, deferred_irq_workfn); 6070 init_irq_work(&rq->scx.kick_cpus_irq_work, kick_cpus_irq_workfn); 6071 6072 if (cpu_online(cpu)) 6073 cpu_rq(cpu)->scx.flags |= SCX_RQ_ONLINE; 6074 } 6075 6076 register_sysrq_key('S', &sysrq_sched_ext_reset_op); 6077 register_sysrq_key('D', &sysrq_sched_ext_dump_op); 6078 INIT_DELAYED_WORK(&scx_watchdog_work, scx_watchdog_workfn); 6079 } 6080 6081 6082 /******************************************************************************** 6083 * Helpers that can be called from the BPF scheduler. 6084 */ 6085 static bool scx_dsq_insert_preamble(struct task_struct *p, u64 enq_flags) 6086 { 6087 if (!scx_kf_allowed(SCX_KF_ENQUEUE | SCX_KF_DISPATCH)) 6088 return false; 6089 6090 lockdep_assert_irqs_disabled(); 6091 6092 if (unlikely(!p)) { 6093 scx_ops_error("called with NULL task"); 6094 return false; 6095 } 6096 6097 if (unlikely(enq_flags & __SCX_ENQ_INTERNAL_MASK)) { 6098 scx_ops_error("invalid enq_flags 0x%llx", enq_flags); 6099 return false; 6100 } 6101 6102 return true; 6103 } 6104 6105 static void scx_dsq_insert_commit(struct task_struct *p, u64 dsq_id, 6106 u64 enq_flags) 6107 { 6108 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6109 struct task_struct *ddsp_task; 6110 6111 ddsp_task = __this_cpu_read(direct_dispatch_task); 6112 if (ddsp_task) { 6113 mark_direct_dispatch(ddsp_task, p, dsq_id, enq_flags); 6114 return; 6115 } 6116 6117 if (unlikely(dspc->cursor >= scx_dsp_max_batch)) { 6118 scx_ops_error("dispatch buffer overflow"); 6119 return; 6120 } 6121 6122 dspc->buf[dspc->cursor++] = (struct scx_dsp_buf_ent){ 6123 .task = p, 6124 .qseq = atomic_long_read(&p->scx.ops_state) & SCX_OPSS_QSEQ_MASK, 6125 .dsq_id = dsq_id, 6126 .enq_flags = enq_flags, 6127 }; 6128 } 6129 6130 __bpf_kfunc_start_defs(); 6131 6132 /** 6133 * scx_bpf_dsq_insert - Insert a task into the FIFO queue of a DSQ 6134 * @p: task_struct to insert 6135 * @dsq_id: DSQ to insert into 6136 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6137 * @enq_flags: SCX_ENQ_* 6138 * 6139 * Insert @p into the FIFO queue of the DSQ identified by @dsq_id. It is safe to 6140 * call this function spuriously. Can be called from ops.enqueue(), 6141 * ops.select_cpu(), and ops.dispatch(). 6142 * 6143 * When called from ops.select_cpu() or ops.enqueue(), it's for direct dispatch 6144 * and @p must match the task being enqueued. 6145 * 6146 * When called from ops.select_cpu(), @enq_flags and @dsp_id are stored, and @p 6147 * will be directly inserted into the corresponding dispatch queue after 6148 * ops.select_cpu() returns. If @p is inserted into SCX_DSQ_LOCAL, it will be 6149 * inserted into the local DSQ of the CPU returned by ops.select_cpu(). 6150 * @enq_flags are OR'd with the enqueue flags on the enqueue path before the 6151 * task is inserted. 6152 * 6153 * When called from ops.dispatch(), there are no restrictions on @p or @dsq_id 6154 * and this function can be called upto ops.dispatch_max_batch times to insert 6155 * multiple tasks. scx_bpf_dispatch_nr_slots() returns the number of the 6156 * remaining slots. scx_bpf_consume() flushes the batch and resets the counter. 6157 * 6158 * This function doesn't have any locking restrictions and may be called under 6159 * BPF locks (in the future when BPF introduces more flexible locking). 6160 * 6161 * @p is allowed to run for @slice. The scheduling path is triggered on slice 6162 * exhaustion. If zero, the current residual slice is maintained. If 6163 * %SCX_SLICE_INF, @p never expires and the BPF scheduler must kick the CPU with 6164 * scx_bpf_kick_cpu() to trigger scheduling. 6165 */ 6166 __bpf_kfunc void scx_bpf_dsq_insert(struct task_struct *p, u64 dsq_id, u64 slice, 6167 u64 enq_flags) 6168 { 6169 if (!scx_dsq_insert_preamble(p, enq_flags)) 6170 return; 6171 6172 if (slice) 6173 p->scx.slice = slice; 6174 else 6175 p->scx.slice = p->scx.slice ?: 1; 6176 6177 scx_dsq_insert_commit(p, dsq_id, enq_flags); 6178 } 6179 6180 /* for backward compatibility, will be removed in v6.15 */ 6181 __bpf_kfunc void scx_bpf_dispatch(struct task_struct *p, u64 dsq_id, u64 slice, 6182 u64 enq_flags) 6183 { 6184 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch() renamed to scx_bpf_dsq_insert()"); 6185 scx_bpf_dsq_insert(p, dsq_id, slice, enq_flags); 6186 } 6187 6188 /** 6189 * scx_bpf_dsq_insert_vtime - Insert a task into the vtime priority queue of a DSQ 6190 * @p: task_struct to insert 6191 * @dsq_id: DSQ to insert into 6192 * @slice: duration @p can run for in nsecs, 0 to keep the current value 6193 * @vtime: @p's ordering inside the vtime-sorted queue of the target DSQ 6194 * @enq_flags: SCX_ENQ_* 6195 * 6196 * Insert @p into the vtime priority queue of the DSQ identified by @dsq_id. 6197 * Tasks queued into the priority queue are ordered by @vtime. All other aspects 6198 * are identical to scx_bpf_dsq_insert(). 6199 * 6200 * @vtime ordering is according to time_before64() which considers wrapping. A 6201 * numerically larger vtime may indicate an earlier position in the ordering and 6202 * vice-versa. 6203 * 6204 * A DSQ can only be used as a FIFO or priority queue at any given time and this 6205 * function must not be called on a DSQ which already has one or more FIFO tasks 6206 * queued and vice-versa. Also, the built-in DSQs (SCX_DSQ_LOCAL and 6207 * SCX_DSQ_GLOBAL) cannot be used as priority queues. 6208 */ 6209 __bpf_kfunc void scx_bpf_dsq_insert_vtime(struct task_struct *p, u64 dsq_id, 6210 u64 slice, u64 vtime, u64 enq_flags) 6211 { 6212 if (!scx_dsq_insert_preamble(p, enq_flags)) 6213 return; 6214 6215 if (slice) 6216 p->scx.slice = slice; 6217 else 6218 p->scx.slice = p->scx.slice ?: 1; 6219 6220 p->scx.dsq_vtime = vtime; 6221 6222 scx_dsq_insert_commit(p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6223 } 6224 6225 /* for backward compatibility, will be removed in v6.15 */ 6226 __bpf_kfunc void scx_bpf_dispatch_vtime(struct task_struct *p, u64 dsq_id, 6227 u64 slice, u64 vtime, u64 enq_flags) 6228 { 6229 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_vtime() renamed to scx_bpf_dsq_insert_vtime()"); 6230 scx_bpf_dsq_insert_vtime(p, dsq_id, slice, vtime, enq_flags); 6231 } 6232 6233 __bpf_kfunc_end_defs(); 6234 6235 BTF_KFUNCS_START(scx_kfunc_ids_enqueue_dispatch) 6236 BTF_ID_FLAGS(func, scx_bpf_dsq_insert, KF_RCU) 6237 BTF_ID_FLAGS(func, scx_bpf_dsq_insert_vtime, KF_RCU) 6238 BTF_ID_FLAGS(func, scx_bpf_dispatch, KF_RCU) 6239 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime, KF_RCU) 6240 BTF_KFUNCS_END(scx_kfunc_ids_enqueue_dispatch) 6241 6242 static const struct btf_kfunc_id_set scx_kfunc_set_enqueue_dispatch = { 6243 .owner = THIS_MODULE, 6244 .set = &scx_kfunc_ids_enqueue_dispatch, 6245 }; 6246 6247 static bool scx_dsq_move(struct bpf_iter_scx_dsq_kern *kit, 6248 struct task_struct *p, u64 dsq_id, u64 enq_flags) 6249 { 6250 struct scx_dispatch_q *src_dsq = kit->dsq, *dst_dsq; 6251 struct rq *this_rq, *src_rq, *locked_rq; 6252 bool dispatched = false; 6253 bool in_balance; 6254 unsigned long flags; 6255 6256 if (!scx_kf_allowed_if_unlocked() && !scx_kf_allowed(SCX_KF_DISPATCH)) 6257 return false; 6258 6259 /* 6260 * Can be called from either ops.dispatch() locking this_rq() or any 6261 * context where no rq lock is held. If latter, lock @p's task_rq which 6262 * we'll likely need anyway. 6263 */ 6264 src_rq = task_rq(p); 6265 6266 local_irq_save(flags); 6267 this_rq = this_rq(); 6268 in_balance = this_rq->scx.flags & SCX_RQ_IN_BALANCE; 6269 6270 if (in_balance) { 6271 if (this_rq != src_rq) { 6272 raw_spin_rq_unlock(this_rq); 6273 raw_spin_rq_lock(src_rq); 6274 } 6275 } else { 6276 raw_spin_rq_lock(src_rq); 6277 } 6278 6279 /* 6280 * If the BPF scheduler keeps calling this function repeatedly, it can 6281 * cause similar live-lock conditions as consume_dispatch_q(). Insert a 6282 * breather if necessary. 6283 */ 6284 scx_ops_breather(src_rq); 6285 6286 locked_rq = src_rq; 6287 raw_spin_lock(&src_dsq->lock); 6288 6289 /* 6290 * Did someone else get to it? @p could have already left $src_dsq, got 6291 * re-enqueud, or be in the process of being consumed by someone else. 6292 */ 6293 if (unlikely(p->scx.dsq != src_dsq || 6294 u32_before(kit->cursor.priv, p->scx.dsq_seq) || 6295 p->scx.holding_cpu >= 0) || 6296 WARN_ON_ONCE(src_rq != task_rq(p))) { 6297 raw_spin_unlock(&src_dsq->lock); 6298 goto out; 6299 } 6300 6301 /* @p is still on $src_dsq and stable, determine the destination */ 6302 dst_dsq = find_dsq_for_dispatch(this_rq, dsq_id, p); 6303 6304 /* 6305 * Apply vtime and slice updates before moving so that the new time is 6306 * visible before inserting into $dst_dsq. @p is still on $src_dsq but 6307 * this is safe as we're locking it. 6308 */ 6309 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_VTIME) 6310 p->scx.dsq_vtime = kit->vtime; 6311 if (kit->cursor.flags & __SCX_DSQ_ITER_HAS_SLICE) 6312 p->scx.slice = kit->slice; 6313 6314 /* execute move */ 6315 locked_rq = move_task_between_dsqs(p, enq_flags, src_dsq, dst_dsq); 6316 dispatched = true; 6317 out: 6318 if (in_balance) { 6319 if (this_rq != locked_rq) { 6320 raw_spin_rq_unlock(locked_rq); 6321 raw_spin_rq_lock(this_rq); 6322 } 6323 } else { 6324 raw_spin_rq_unlock_irqrestore(locked_rq, flags); 6325 } 6326 6327 kit->cursor.flags &= ~(__SCX_DSQ_ITER_HAS_SLICE | 6328 __SCX_DSQ_ITER_HAS_VTIME); 6329 return dispatched; 6330 } 6331 6332 __bpf_kfunc_start_defs(); 6333 6334 /** 6335 * scx_bpf_dispatch_nr_slots - Return the number of remaining dispatch slots 6336 * 6337 * Can only be called from ops.dispatch(). 6338 */ 6339 __bpf_kfunc u32 scx_bpf_dispatch_nr_slots(void) 6340 { 6341 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6342 return 0; 6343 6344 return scx_dsp_max_batch - __this_cpu_read(scx_dsp_ctx->cursor); 6345 } 6346 6347 /** 6348 * scx_bpf_dispatch_cancel - Cancel the latest dispatch 6349 * 6350 * Cancel the latest dispatch. Can be called multiple times to cancel further 6351 * dispatches. Can only be called from ops.dispatch(). 6352 */ 6353 __bpf_kfunc void scx_bpf_dispatch_cancel(void) 6354 { 6355 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6356 6357 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6358 return; 6359 6360 if (dspc->cursor > 0) 6361 dspc->cursor--; 6362 else 6363 scx_ops_error("dispatch buffer underflow"); 6364 } 6365 6366 /** 6367 * scx_bpf_dsq_move_to_local - move a task from a DSQ to the current CPU's local DSQ 6368 * @dsq_id: DSQ to move task from 6369 * 6370 * Move a task from the non-local DSQ identified by @dsq_id to the current CPU's 6371 * local DSQ for execution. Can only be called from ops.dispatch(). 6372 * 6373 * This function flushes the in-flight dispatches from scx_bpf_dsq_insert() 6374 * before trying to move from the specified DSQ. It may also grab rq locks and 6375 * thus can't be called under any BPF locks. 6376 * 6377 * Returns %true if a task has been moved, %false if there isn't any task to 6378 * move. 6379 */ 6380 __bpf_kfunc bool scx_bpf_dsq_move_to_local(u64 dsq_id) 6381 { 6382 struct scx_dsp_ctx *dspc = this_cpu_ptr(scx_dsp_ctx); 6383 struct scx_dispatch_q *dsq; 6384 6385 if (!scx_kf_allowed(SCX_KF_DISPATCH)) 6386 return false; 6387 6388 flush_dispatch_buf(dspc->rq); 6389 6390 dsq = find_user_dsq(dsq_id); 6391 if (unlikely(!dsq)) { 6392 scx_ops_error("invalid DSQ ID 0x%016llx", dsq_id); 6393 return false; 6394 } 6395 6396 if (consume_dispatch_q(dspc->rq, dsq)) { 6397 /* 6398 * A successfully consumed task can be dequeued before it starts 6399 * running while the CPU is trying to migrate other dispatched 6400 * tasks. Bump nr_tasks to tell balance_scx() to retry on empty 6401 * local DSQ. 6402 */ 6403 dspc->nr_tasks++; 6404 return true; 6405 } else { 6406 return false; 6407 } 6408 } 6409 6410 /* for backward compatibility, will be removed in v6.15 */ 6411 __bpf_kfunc bool scx_bpf_consume(u64 dsq_id) 6412 { 6413 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_consume() renamed to scx_bpf_dsq_move_to_local()"); 6414 return scx_bpf_dsq_move_to_local(dsq_id); 6415 } 6416 6417 /** 6418 * scx_bpf_dsq_move_set_slice - Override slice when moving between DSQs 6419 * @it__iter: DSQ iterator in progress 6420 * @slice: duration the moved task can run for in nsecs 6421 * 6422 * Override the slice of the next task that will be moved from @it__iter using 6423 * scx_bpf_dsq_move[_vtime](). If this function is not called, the previous 6424 * slice duration is kept. 6425 */ 6426 __bpf_kfunc void scx_bpf_dsq_move_set_slice(struct bpf_iter_scx_dsq *it__iter, 6427 u64 slice) 6428 { 6429 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6430 6431 kit->slice = slice; 6432 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_SLICE; 6433 } 6434 6435 /* for backward compatibility, will be removed in v6.15 */ 6436 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_slice( 6437 struct bpf_iter_scx_dsq *it__iter, u64 slice) 6438 { 6439 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_slice() renamed to scx_bpf_dsq_move_set_slice()"); 6440 scx_bpf_dsq_move_set_slice(it__iter, slice); 6441 } 6442 6443 /** 6444 * scx_bpf_dsq_move_set_vtime - Override vtime when moving between DSQs 6445 * @it__iter: DSQ iterator in progress 6446 * @vtime: task's ordering inside the vtime-sorted queue of the target DSQ 6447 * 6448 * Override the vtime of the next task that will be moved from @it__iter using 6449 * scx_bpf_dsq_move_vtime(). If this function is not called, the previous slice 6450 * vtime is kept. If scx_bpf_dsq_move() is used to dispatch the next task, the 6451 * override is ignored and cleared. 6452 */ 6453 __bpf_kfunc void scx_bpf_dsq_move_set_vtime(struct bpf_iter_scx_dsq *it__iter, 6454 u64 vtime) 6455 { 6456 struct bpf_iter_scx_dsq_kern *kit = (void *)it__iter; 6457 6458 kit->vtime = vtime; 6459 kit->cursor.flags |= __SCX_DSQ_ITER_HAS_VTIME; 6460 } 6461 6462 /* for backward compatibility, will be removed in v6.15 */ 6463 __bpf_kfunc void scx_bpf_dispatch_from_dsq_set_vtime( 6464 struct bpf_iter_scx_dsq *it__iter, u64 vtime) 6465 { 6466 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_set_vtime() renamed to scx_bpf_dsq_move_set_vtime()"); 6467 scx_bpf_dsq_move_set_vtime(it__iter, vtime); 6468 } 6469 6470 /** 6471 * scx_bpf_dsq_move - Move a task from DSQ iteration to a DSQ 6472 * @it__iter: DSQ iterator in progress 6473 * @p: task to transfer 6474 * @dsq_id: DSQ to move @p to 6475 * @enq_flags: SCX_ENQ_* 6476 * 6477 * Transfer @p which is on the DSQ currently iterated by @it__iter to the DSQ 6478 * specified by @dsq_id. All DSQs - local DSQs, global DSQ and user DSQs - can 6479 * be the destination. 6480 * 6481 * For the transfer to be successful, @p must still be on the DSQ and have been 6482 * queued before the DSQ iteration started. This function doesn't care whether 6483 * @p was obtained from the DSQ iteration. @p just has to be on the DSQ and have 6484 * been queued before the iteration started. 6485 * 6486 * @p's slice is kept by default. Use scx_bpf_dsq_move_set_slice() to update. 6487 * 6488 * Can be called from ops.dispatch() or any BPF context which doesn't hold a rq 6489 * lock (e.g. BPF timers or SYSCALL programs). 6490 * 6491 * Returns %true if @p has been consumed, %false if @p had already been consumed 6492 * or dequeued. 6493 */ 6494 __bpf_kfunc bool scx_bpf_dsq_move(struct bpf_iter_scx_dsq *it__iter, 6495 struct task_struct *p, u64 dsq_id, 6496 u64 enq_flags) 6497 { 6498 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6499 p, dsq_id, enq_flags); 6500 } 6501 6502 /* for backward compatibility, will be removed in v6.15 */ 6503 __bpf_kfunc bool scx_bpf_dispatch_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6504 struct task_struct *p, u64 dsq_id, 6505 u64 enq_flags) 6506 { 6507 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq() renamed to scx_bpf_dsq_move()"); 6508 return scx_bpf_dsq_move(it__iter, p, dsq_id, enq_flags); 6509 } 6510 6511 /** 6512 * scx_bpf_dsq_move_vtime - Move a task from DSQ iteration to a PRIQ DSQ 6513 * @it__iter: DSQ iterator in progress 6514 * @p: task to transfer 6515 * @dsq_id: DSQ to move @p to 6516 * @enq_flags: SCX_ENQ_* 6517 * 6518 * Transfer @p which is on the DSQ currently iterated by @it__iter to the 6519 * priority queue of the DSQ specified by @dsq_id. The destination must be a 6520 * user DSQ as only user DSQs support priority queue. 6521 * 6522 * @p's slice and vtime are kept by default. Use scx_bpf_dsq_move_set_slice() 6523 * and scx_bpf_dsq_move_set_vtime() to update. 6524 * 6525 * All other aspects are identical to scx_bpf_dsq_move(). See 6526 * scx_bpf_dsq_insert_vtime() for more information on @vtime. 6527 */ 6528 __bpf_kfunc bool scx_bpf_dsq_move_vtime(struct bpf_iter_scx_dsq *it__iter, 6529 struct task_struct *p, u64 dsq_id, 6530 u64 enq_flags) 6531 { 6532 return scx_dsq_move((struct bpf_iter_scx_dsq_kern *)it__iter, 6533 p, dsq_id, enq_flags | SCX_ENQ_DSQ_PRIQ); 6534 } 6535 6536 /* for backward compatibility, will be removed in v6.15 */ 6537 __bpf_kfunc bool scx_bpf_dispatch_vtime_from_dsq(struct bpf_iter_scx_dsq *it__iter, 6538 struct task_struct *p, u64 dsq_id, 6539 u64 enq_flags) 6540 { 6541 printk_deferred_once(KERN_WARNING "sched_ext: scx_bpf_dispatch_from_dsq_vtime() renamed to scx_bpf_dsq_move_vtime()"); 6542 return scx_bpf_dsq_move_vtime(it__iter, p, dsq_id, enq_flags); 6543 } 6544 6545 __bpf_kfunc_end_defs(); 6546 6547 BTF_KFUNCS_START(scx_kfunc_ids_dispatch) 6548 BTF_ID_FLAGS(func, scx_bpf_dispatch_nr_slots) 6549 BTF_ID_FLAGS(func, scx_bpf_dispatch_cancel) 6550 BTF_ID_FLAGS(func, scx_bpf_dsq_move_to_local) 6551 BTF_ID_FLAGS(func, scx_bpf_consume) 6552 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6553 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6554 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6555 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6556 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6557 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6558 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6559 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6560 BTF_KFUNCS_END(scx_kfunc_ids_dispatch) 6561 6562 static const struct btf_kfunc_id_set scx_kfunc_set_dispatch = { 6563 .owner = THIS_MODULE, 6564 .set = &scx_kfunc_ids_dispatch, 6565 }; 6566 6567 __bpf_kfunc_start_defs(); 6568 6569 /** 6570 * scx_bpf_reenqueue_local - Re-enqueue tasks on a local DSQ 6571 * 6572 * Iterate over all of the tasks currently enqueued on the local DSQ of the 6573 * caller's CPU, and re-enqueue them in the BPF scheduler. Returns the number of 6574 * processed tasks. Can only be called from ops.cpu_release(). 6575 */ 6576 __bpf_kfunc u32 scx_bpf_reenqueue_local(void) 6577 { 6578 LIST_HEAD(tasks); 6579 u32 nr_enqueued = 0; 6580 struct rq *rq; 6581 struct task_struct *p, *n; 6582 6583 if (!scx_kf_allowed(SCX_KF_CPU_RELEASE)) 6584 return 0; 6585 6586 rq = cpu_rq(smp_processor_id()); 6587 lockdep_assert_rq_held(rq); 6588 6589 /* 6590 * The BPF scheduler may choose to dispatch tasks back to 6591 * @rq->scx.local_dsq. Move all candidate tasks off to a private list 6592 * first to avoid processing the same tasks repeatedly. 6593 */ 6594 list_for_each_entry_safe(p, n, &rq->scx.local_dsq.list, 6595 scx.dsq_list.node) { 6596 /* 6597 * If @p is being migrated, @p's current CPU may not agree with 6598 * its allowed CPUs and the migration_cpu_stop is about to 6599 * deactivate and re-activate @p anyway. Skip re-enqueueing. 6600 * 6601 * While racing sched property changes may also dequeue and 6602 * re-enqueue a migrating task while its current CPU and allowed 6603 * CPUs disagree, they use %ENQUEUE_RESTORE which is bypassed to 6604 * the current local DSQ for running tasks and thus are not 6605 * visible to the BPF scheduler. 6606 */ 6607 if (p->migration_pending) 6608 continue; 6609 6610 dispatch_dequeue(rq, p); 6611 list_add_tail(&p->scx.dsq_list.node, &tasks); 6612 } 6613 6614 list_for_each_entry_safe(p, n, &tasks, scx.dsq_list.node) { 6615 list_del_init(&p->scx.dsq_list.node); 6616 do_enqueue_task(rq, p, SCX_ENQ_REENQ, -1); 6617 nr_enqueued++; 6618 } 6619 6620 return nr_enqueued; 6621 } 6622 6623 __bpf_kfunc_end_defs(); 6624 6625 BTF_KFUNCS_START(scx_kfunc_ids_cpu_release) 6626 BTF_ID_FLAGS(func, scx_bpf_reenqueue_local) 6627 BTF_KFUNCS_END(scx_kfunc_ids_cpu_release) 6628 6629 static const struct btf_kfunc_id_set scx_kfunc_set_cpu_release = { 6630 .owner = THIS_MODULE, 6631 .set = &scx_kfunc_ids_cpu_release, 6632 }; 6633 6634 __bpf_kfunc_start_defs(); 6635 6636 /** 6637 * scx_bpf_create_dsq - Create a custom DSQ 6638 * @dsq_id: DSQ to create 6639 * @node: NUMA node to allocate from 6640 * 6641 * Create a custom DSQ identified by @dsq_id. Can be called from any sleepable 6642 * scx callback, and any BPF_PROG_TYPE_SYSCALL prog. 6643 */ 6644 __bpf_kfunc s32 scx_bpf_create_dsq(u64 dsq_id, s32 node) 6645 { 6646 if (unlikely(node >= (int)nr_node_ids || 6647 (node < 0 && node != NUMA_NO_NODE))) 6648 return -EINVAL; 6649 return PTR_ERR_OR_ZERO(create_dsq(dsq_id, node)); 6650 } 6651 6652 __bpf_kfunc_end_defs(); 6653 6654 BTF_KFUNCS_START(scx_kfunc_ids_unlocked) 6655 BTF_ID_FLAGS(func, scx_bpf_create_dsq, KF_SLEEPABLE) 6656 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_slice) 6657 BTF_ID_FLAGS(func, scx_bpf_dsq_move_set_vtime) 6658 BTF_ID_FLAGS(func, scx_bpf_dsq_move, KF_RCU) 6659 BTF_ID_FLAGS(func, scx_bpf_dsq_move_vtime, KF_RCU) 6660 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_slice) 6661 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq_set_vtime) 6662 BTF_ID_FLAGS(func, scx_bpf_dispatch_from_dsq, KF_RCU) 6663 BTF_ID_FLAGS(func, scx_bpf_dispatch_vtime_from_dsq, KF_RCU) 6664 BTF_KFUNCS_END(scx_kfunc_ids_unlocked) 6665 6666 static const struct btf_kfunc_id_set scx_kfunc_set_unlocked = { 6667 .owner = THIS_MODULE, 6668 .set = &scx_kfunc_ids_unlocked, 6669 }; 6670 6671 __bpf_kfunc_start_defs(); 6672 6673 /** 6674 * scx_bpf_kick_cpu - Trigger reschedule on a CPU 6675 * @cpu: cpu to kick 6676 * @flags: %SCX_KICK_* flags 6677 * 6678 * Kick @cpu into rescheduling. This can be used to wake up an idle CPU or 6679 * trigger rescheduling on a busy CPU. This can be called from any online 6680 * scx_ops operation and the actual kicking is performed asynchronously through 6681 * an irq work. 6682 */ 6683 __bpf_kfunc void scx_bpf_kick_cpu(s32 cpu, u64 flags) 6684 { 6685 struct rq *this_rq; 6686 unsigned long irq_flags; 6687 6688 if (!ops_cpu_valid(cpu, NULL)) 6689 return; 6690 6691 local_irq_save(irq_flags); 6692 6693 this_rq = this_rq(); 6694 6695 /* 6696 * While bypassing for PM ops, IRQ handling may not be online which can 6697 * lead to irq_work_queue() malfunction such as infinite busy wait for 6698 * IRQ status update. Suppress kicking. 6699 */ 6700 if (scx_rq_bypassing(this_rq)) 6701 goto out; 6702 6703 /* 6704 * Actual kicking is bounced to kick_cpus_irq_workfn() to avoid nesting 6705 * rq locks. We can probably be smarter and avoid bouncing if called 6706 * from ops which don't hold a rq lock. 6707 */ 6708 if (flags & SCX_KICK_IDLE) { 6709 struct rq *target_rq = cpu_rq(cpu); 6710 6711 if (unlikely(flags & (SCX_KICK_PREEMPT | SCX_KICK_WAIT))) 6712 scx_ops_error("PREEMPT/WAIT cannot be used with SCX_KICK_IDLE"); 6713 6714 if (raw_spin_rq_trylock(target_rq)) { 6715 if (can_skip_idle_kick(target_rq)) { 6716 raw_spin_rq_unlock(target_rq); 6717 goto out; 6718 } 6719 raw_spin_rq_unlock(target_rq); 6720 } 6721 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick_if_idle); 6722 } else { 6723 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_kick); 6724 6725 if (flags & SCX_KICK_PREEMPT) 6726 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_preempt); 6727 if (flags & SCX_KICK_WAIT) 6728 cpumask_set_cpu(cpu, this_rq->scx.cpus_to_wait); 6729 } 6730 6731 irq_work_queue(&this_rq->scx.kick_cpus_irq_work); 6732 out: 6733 local_irq_restore(irq_flags); 6734 } 6735 6736 /** 6737 * scx_bpf_dsq_nr_queued - Return the number of queued tasks 6738 * @dsq_id: id of the DSQ 6739 * 6740 * Return the number of tasks in the DSQ matching @dsq_id. If not found, 6741 * -%ENOENT is returned. 6742 */ 6743 __bpf_kfunc s32 scx_bpf_dsq_nr_queued(u64 dsq_id) 6744 { 6745 struct scx_dispatch_q *dsq; 6746 s32 ret; 6747 6748 preempt_disable(); 6749 6750 if (dsq_id == SCX_DSQ_LOCAL) { 6751 ret = READ_ONCE(this_rq()->scx.local_dsq.nr); 6752 goto out; 6753 } else if ((dsq_id & SCX_DSQ_LOCAL_ON) == SCX_DSQ_LOCAL_ON) { 6754 s32 cpu = dsq_id & SCX_DSQ_LOCAL_CPU_MASK; 6755 6756 if (ops_cpu_valid(cpu, NULL)) { 6757 ret = READ_ONCE(cpu_rq(cpu)->scx.local_dsq.nr); 6758 goto out; 6759 } 6760 } else { 6761 dsq = find_user_dsq(dsq_id); 6762 if (dsq) { 6763 ret = READ_ONCE(dsq->nr); 6764 goto out; 6765 } 6766 } 6767 ret = -ENOENT; 6768 out: 6769 preempt_enable(); 6770 return ret; 6771 } 6772 6773 /** 6774 * scx_bpf_destroy_dsq - Destroy a custom DSQ 6775 * @dsq_id: DSQ to destroy 6776 * 6777 * Destroy the custom DSQ identified by @dsq_id. Only DSQs created with 6778 * scx_bpf_create_dsq() can be destroyed. The caller must ensure that the DSQ is 6779 * empty and no further tasks are dispatched to it. Ignored if called on a DSQ 6780 * which doesn't exist. Can be called from any online scx_ops operations. 6781 */ 6782 __bpf_kfunc void scx_bpf_destroy_dsq(u64 dsq_id) 6783 { 6784 destroy_dsq(dsq_id); 6785 } 6786 6787 /** 6788 * bpf_iter_scx_dsq_new - Create a DSQ iterator 6789 * @it: iterator to initialize 6790 * @dsq_id: DSQ to iterate 6791 * @flags: %SCX_DSQ_ITER_* 6792 * 6793 * Initialize BPF iterator @it which can be used with bpf_for_each() to walk 6794 * tasks in the DSQ specified by @dsq_id. Iteration using @it only includes 6795 * tasks which are already queued when this function is invoked. 6796 */ 6797 __bpf_kfunc int bpf_iter_scx_dsq_new(struct bpf_iter_scx_dsq *it, u64 dsq_id, 6798 u64 flags) 6799 { 6800 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6801 6802 BUILD_BUG_ON(sizeof(struct bpf_iter_scx_dsq_kern) > 6803 sizeof(struct bpf_iter_scx_dsq)); 6804 BUILD_BUG_ON(__alignof__(struct bpf_iter_scx_dsq_kern) != 6805 __alignof__(struct bpf_iter_scx_dsq)); 6806 6807 if (flags & ~__SCX_DSQ_ITER_USER_FLAGS) 6808 return -EINVAL; 6809 6810 kit->dsq = find_user_dsq(dsq_id); 6811 if (!kit->dsq) 6812 return -ENOENT; 6813 6814 INIT_LIST_HEAD(&kit->cursor.node); 6815 kit->cursor.flags = SCX_DSQ_LNODE_ITER_CURSOR | flags; 6816 kit->cursor.priv = READ_ONCE(kit->dsq->seq); 6817 6818 return 0; 6819 } 6820 6821 /** 6822 * bpf_iter_scx_dsq_next - Progress a DSQ iterator 6823 * @it: iterator to progress 6824 * 6825 * Return the next task. See bpf_iter_scx_dsq_new(). 6826 */ 6827 __bpf_kfunc struct task_struct *bpf_iter_scx_dsq_next(struct bpf_iter_scx_dsq *it) 6828 { 6829 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6830 bool rev = kit->cursor.flags & SCX_DSQ_ITER_REV; 6831 struct task_struct *p; 6832 unsigned long flags; 6833 6834 if (!kit->dsq) 6835 return NULL; 6836 6837 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6838 6839 if (list_empty(&kit->cursor.node)) 6840 p = NULL; 6841 else 6842 p = container_of(&kit->cursor, struct task_struct, scx.dsq_list); 6843 6844 /* 6845 * Only tasks which were queued before the iteration started are 6846 * visible. This bounds BPF iterations and guarantees that vtime never 6847 * jumps in the other direction while iterating. 6848 */ 6849 do { 6850 p = nldsq_next_task(kit->dsq, p, rev); 6851 } while (p && unlikely(u32_before(kit->cursor.priv, p->scx.dsq_seq))); 6852 6853 if (p) { 6854 if (rev) 6855 list_move_tail(&kit->cursor.node, &p->scx.dsq_list.node); 6856 else 6857 list_move(&kit->cursor.node, &p->scx.dsq_list.node); 6858 } else { 6859 list_del_init(&kit->cursor.node); 6860 } 6861 6862 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6863 6864 return p; 6865 } 6866 6867 /** 6868 * bpf_iter_scx_dsq_destroy - Destroy a DSQ iterator 6869 * @it: iterator to destroy 6870 * 6871 * Undo scx_iter_scx_dsq_new(). 6872 */ 6873 __bpf_kfunc void bpf_iter_scx_dsq_destroy(struct bpf_iter_scx_dsq *it) 6874 { 6875 struct bpf_iter_scx_dsq_kern *kit = (void *)it; 6876 6877 if (!kit->dsq) 6878 return; 6879 6880 if (!list_empty(&kit->cursor.node)) { 6881 unsigned long flags; 6882 6883 raw_spin_lock_irqsave(&kit->dsq->lock, flags); 6884 list_del_init(&kit->cursor.node); 6885 raw_spin_unlock_irqrestore(&kit->dsq->lock, flags); 6886 } 6887 kit->dsq = NULL; 6888 } 6889 6890 __bpf_kfunc_end_defs(); 6891 6892 static s32 __bstr_format(u64 *data_buf, char *line_buf, size_t line_size, 6893 char *fmt, unsigned long long *data, u32 data__sz) 6894 { 6895 struct bpf_bprintf_data bprintf_data = { .get_bin_args = true }; 6896 s32 ret; 6897 6898 if (data__sz % 8 || data__sz > MAX_BPRINTF_VARARGS * 8 || 6899 (data__sz && !data)) { 6900 scx_ops_error("invalid data=%p and data__sz=%u", 6901 (void *)data, data__sz); 6902 return -EINVAL; 6903 } 6904 6905 ret = copy_from_kernel_nofault(data_buf, data, data__sz); 6906 if (ret < 0) { 6907 scx_ops_error("failed to read data fields (%d)", ret); 6908 return ret; 6909 } 6910 6911 ret = bpf_bprintf_prepare(fmt, UINT_MAX, data_buf, data__sz / 8, 6912 &bprintf_data); 6913 if (ret < 0) { 6914 scx_ops_error("format preparation failed (%d)", ret); 6915 return ret; 6916 } 6917 6918 ret = bstr_printf(line_buf, line_size, fmt, 6919 bprintf_data.bin_args); 6920 bpf_bprintf_cleanup(&bprintf_data); 6921 if (ret < 0) { 6922 scx_ops_error("(\"%s\", %p, %u) failed to format", 6923 fmt, data, data__sz); 6924 return ret; 6925 } 6926 6927 return ret; 6928 } 6929 6930 static s32 bstr_format(struct scx_bstr_buf *buf, 6931 char *fmt, unsigned long long *data, u32 data__sz) 6932 { 6933 return __bstr_format(buf->data, buf->line, sizeof(buf->line), 6934 fmt, data, data__sz); 6935 } 6936 6937 __bpf_kfunc_start_defs(); 6938 6939 /** 6940 * scx_bpf_exit_bstr - Gracefully exit the BPF scheduler. 6941 * @exit_code: Exit value to pass to user space via struct scx_exit_info. 6942 * @fmt: error message format string 6943 * @data: format string parameters packaged using ___bpf_fill() macro 6944 * @data__sz: @data len, must end in '__sz' for the verifier 6945 * 6946 * Indicate that the BPF scheduler wants to exit gracefully, and initiate ops 6947 * disabling. 6948 */ 6949 __bpf_kfunc void scx_bpf_exit_bstr(s64 exit_code, char *fmt, 6950 unsigned long long *data, u32 data__sz) 6951 { 6952 unsigned long flags; 6953 6954 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6955 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6956 scx_ops_exit_kind(SCX_EXIT_UNREG_BPF, exit_code, "%s", 6957 scx_exit_bstr_buf.line); 6958 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6959 } 6960 6961 /** 6962 * scx_bpf_error_bstr - Indicate fatal error 6963 * @fmt: error message format string 6964 * @data: format string parameters packaged using ___bpf_fill() macro 6965 * @data__sz: @data len, must end in '__sz' for the verifier 6966 * 6967 * Indicate that the BPF scheduler encountered a fatal error and initiate ops 6968 * disabling. 6969 */ 6970 __bpf_kfunc void scx_bpf_error_bstr(char *fmt, unsigned long long *data, 6971 u32 data__sz) 6972 { 6973 unsigned long flags; 6974 6975 raw_spin_lock_irqsave(&scx_exit_bstr_buf_lock, flags); 6976 if (bstr_format(&scx_exit_bstr_buf, fmt, data, data__sz) >= 0) 6977 scx_ops_exit_kind(SCX_EXIT_ERROR_BPF, 0, "%s", 6978 scx_exit_bstr_buf.line); 6979 raw_spin_unlock_irqrestore(&scx_exit_bstr_buf_lock, flags); 6980 } 6981 6982 /** 6983 * scx_bpf_dump_bstr - Generate extra debug dump specific to the BPF scheduler 6984 * @fmt: format string 6985 * @data: format string parameters packaged using ___bpf_fill() macro 6986 * @data__sz: @data len, must end in '__sz' for the verifier 6987 * 6988 * To be called through scx_bpf_dump() helper from ops.dump(), dump_cpu() and 6989 * dump_task() to generate extra debug dump specific to the BPF scheduler. 6990 * 6991 * The extra dump may be multiple lines. A single line may be split over 6992 * multiple calls. The last line is automatically terminated. 6993 */ 6994 __bpf_kfunc void scx_bpf_dump_bstr(char *fmt, unsigned long long *data, 6995 u32 data__sz) 6996 { 6997 struct scx_dump_data *dd = &scx_dump_data; 6998 struct scx_bstr_buf *buf = &dd->buf; 6999 s32 ret; 7000 7001 if (raw_smp_processor_id() != dd->cpu) { 7002 scx_ops_error("scx_bpf_dump() must only be called from ops.dump() and friends"); 7003 return; 7004 } 7005 7006 /* append the formatted string to the line buf */ 7007 ret = __bstr_format(buf->data, buf->line + dd->cursor, 7008 sizeof(buf->line) - dd->cursor, fmt, data, data__sz); 7009 if (ret < 0) { 7010 dump_line(dd->s, "%s[!] (\"%s\", %p, %u) failed to format (%d)", 7011 dd->prefix, fmt, data, data__sz, ret); 7012 return; 7013 } 7014 7015 dd->cursor += ret; 7016 dd->cursor = min_t(s32, dd->cursor, sizeof(buf->line)); 7017 7018 if (!dd->cursor) 7019 return; 7020 7021 /* 7022 * If the line buf overflowed or ends in a newline, flush it into the 7023 * dump. This is to allow the caller to generate a single line over 7024 * multiple calls. As ops_dump_flush() can also handle multiple lines in 7025 * the line buf, the only case which can lead to an unexpected 7026 * truncation is when the caller keeps generating newlines in the middle 7027 * instead of the end consecutively. Don't do that. 7028 */ 7029 if (dd->cursor >= sizeof(buf->line) || buf->line[dd->cursor - 1] == '\n') 7030 ops_dump_flush(); 7031 } 7032 7033 /** 7034 * scx_bpf_cpuperf_cap - Query the maximum relative capacity of a CPU 7035 * @cpu: CPU of interest 7036 * 7037 * Return the maximum relative capacity of @cpu in relation to the most 7038 * performant CPU in the system. The return value is in the range [1, 7039 * %SCX_CPUPERF_ONE]. See scx_bpf_cpuperf_cur(). 7040 */ 7041 __bpf_kfunc u32 scx_bpf_cpuperf_cap(s32 cpu) 7042 { 7043 if (ops_cpu_valid(cpu, NULL)) 7044 return arch_scale_cpu_capacity(cpu); 7045 else 7046 return SCX_CPUPERF_ONE; 7047 } 7048 7049 /** 7050 * scx_bpf_cpuperf_cur - Query the current relative performance of a CPU 7051 * @cpu: CPU of interest 7052 * 7053 * Return the current relative performance of @cpu in relation to its maximum. 7054 * The return value is in the range [1, %SCX_CPUPERF_ONE]. 7055 * 7056 * The current performance level of a CPU in relation to the maximum performance 7057 * available in the system can be calculated as follows: 7058 * 7059 * scx_bpf_cpuperf_cap() * scx_bpf_cpuperf_cur() / %SCX_CPUPERF_ONE 7060 * 7061 * The result is in the range [1, %SCX_CPUPERF_ONE]. 7062 */ 7063 __bpf_kfunc u32 scx_bpf_cpuperf_cur(s32 cpu) 7064 { 7065 if (ops_cpu_valid(cpu, NULL)) 7066 return arch_scale_freq_capacity(cpu); 7067 else 7068 return SCX_CPUPERF_ONE; 7069 } 7070 7071 /** 7072 * scx_bpf_cpuperf_set - Set the relative performance target of a CPU 7073 * @cpu: CPU of interest 7074 * @perf: target performance level [0, %SCX_CPUPERF_ONE] 7075 * 7076 * Set the target performance level of @cpu to @perf. @perf is in linear 7077 * relative scale between 0 and %SCX_CPUPERF_ONE. This determines how the 7078 * schedutil cpufreq governor chooses the target frequency. 7079 * 7080 * The actual performance level chosen, CPU grouping, and the overhead and 7081 * latency of the operations are dependent on the hardware and cpufreq driver in 7082 * use. Consult hardware and cpufreq documentation for more information. The 7083 * current performance level can be monitored using scx_bpf_cpuperf_cur(). 7084 */ 7085 __bpf_kfunc void scx_bpf_cpuperf_set(s32 cpu, u32 perf) 7086 { 7087 if (unlikely(perf > SCX_CPUPERF_ONE)) { 7088 scx_ops_error("Invalid cpuperf target %u for CPU %d", perf, cpu); 7089 return; 7090 } 7091 7092 if (ops_cpu_valid(cpu, NULL)) { 7093 struct rq *rq = cpu_rq(cpu); 7094 7095 rq->scx.cpuperf_target = perf; 7096 7097 rcu_read_lock_sched_notrace(); 7098 cpufreq_update_util(cpu_rq(cpu), 0); 7099 rcu_read_unlock_sched_notrace(); 7100 } 7101 } 7102 7103 /** 7104 * scx_bpf_nr_cpu_ids - Return the number of possible CPU IDs 7105 * 7106 * All valid CPU IDs in the system are smaller than the returned value. 7107 */ 7108 __bpf_kfunc u32 scx_bpf_nr_cpu_ids(void) 7109 { 7110 return nr_cpu_ids; 7111 } 7112 7113 /** 7114 * scx_bpf_get_possible_cpumask - Get a referenced kptr to cpu_possible_mask 7115 */ 7116 __bpf_kfunc const struct cpumask *scx_bpf_get_possible_cpumask(void) 7117 { 7118 return cpu_possible_mask; 7119 } 7120 7121 /** 7122 * scx_bpf_get_online_cpumask - Get a referenced kptr to cpu_online_mask 7123 */ 7124 __bpf_kfunc const struct cpumask *scx_bpf_get_online_cpumask(void) 7125 { 7126 return cpu_online_mask; 7127 } 7128 7129 /** 7130 * scx_bpf_put_cpumask - Release a possible/online cpumask 7131 * @cpumask: cpumask to release 7132 */ 7133 __bpf_kfunc void scx_bpf_put_cpumask(const struct cpumask *cpumask) 7134 { 7135 /* 7136 * Empty function body because we aren't actually acquiring or releasing 7137 * a reference to a global cpumask, which is read-only in the caller and 7138 * is never released. The acquire / release semantics here are just used 7139 * to make the cpumask is a trusted pointer in the caller. 7140 */ 7141 } 7142 7143 /** 7144 * scx_bpf_task_running - Is task currently running? 7145 * @p: task of interest 7146 */ 7147 __bpf_kfunc bool scx_bpf_task_running(const struct task_struct *p) 7148 { 7149 return task_rq(p)->curr == p; 7150 } 7151 7152 /** 7153 * scx_bpf_task_cpu - CPU a task is currently associated with 7154 * @p: task of interest 7155 */ 7156 __bpf_kfunc s32 scx_bpf_task_cpu(const struct task_struct *p) 7157 { 7158 return task_cpu(p); 7159 } 7160 7161 /** 7162 * scx_bpf_cpu_rq - Fetch the rq of a CPU 7163 * @cpu: CPU of the rq 7164 */ 7165 __bpf_kfunc struct rq *scx_bpf_cpu_rq(s32 cpu) 7166 { 7167 if (!ops_cpu_valid(cpu, NULL)) 7168 return NULL; 7169 7170 return cpu_rq(cpu); 7171 } 7172 7173 /** 7174 * scx_bpf_task_cgroup - Return the sched cgroup of a task 7175 * @p: task of interest 7176 * 7177 * @p->sched_task_group->css.cgroup represents the cgroup @p is associated with 7178 * from the scheduler's POV. SCX operations should use this function to 7179 * determine @p's current cgroup as, unlike following @p->cgroups, 7180 * @p->sched_task_group is protected by @p's rq lock and thus atomic w.r.t. all 7181 * rq-locked operations. Can be called on the parameter tasks of rq-locked 7182 * operations. The restriction guarantees that @p's rq is locked by the caller. 7183 */ 7184 #ifdef CONFIG_CGROUP_SCHED 7185 __bpf_kfunc struct cgroup *scx_bpf_task_cgroup(struct task_struct *p) 7186 { 7187 struct task_group *tg = p->sched_task_group; 7188 struct cgroup *cgrp = &cgrp_dfl_root.cgrp; 7189 7190 if (!scx_kf_allowed_on_arg_tasks(__SCX_KF_RQ_LOCKED, p)) 7191 goto out; 7192 7193 cgrp = tg_cgrp(tg); 7194 7195 out: 7196 cgroup_get(cgrp); 7197 return cgrp; 7198 } 7199 #endif 7200 7201 /** 7202 * scx_bpf_now - Returns a high-performance monotonically non-decreasing 7203 * clock for the current CPU. The clock returned is in nanoseconds. 7204 * 7205 * It provides the following properties: 7206 * 7207 * 1) High performance: Many BPF schedulers call bpf_ktime_get_ns() frequently 7208 * to account for execution time and track tasks' runtime properties. 7209 * Unfortunately, in some hardware platforms, bpf_ktime_get_ns() -- which 7210 * eventually reads a hardware timestamp counter -- is neither performant nor 7211 * scalable. scx_bpf_now() aims to provide a high-performance clock by 7212 * using the rq clock in the scheduler core whenever possible. 7213 * 7214 * 2) High enough resolution for the BPF scheduler use cases: In most BPF 7215 * scheduler use cases, the required clock resolution is lower than the most 7216 * accurate hardware clock (e.g., rdtsc in x86). scx_bpf_now() basically 7217 * uses the rq clock in the scheduler core whenever it is valid. It considers 7218 * that the rq clock is valid from the time the rq clock is updated 7219 * (update_rq_clock) until the rq is unlocked (rq_unpin_lock). 7220 * 7221 * 3) Monotonically non-decreasing clock for the same CPU: scx_bpf_now() 7222 * guarantees the clock never goes backward when comparing them in the same 7223 * CPU. On the other hand, when comparing clocks in different CPUs, there 7224 * is no such guarantee -- the clock can go backward. It provides a 7225 * monotonically *non-decreasing* clock so that it would provide the same 7226 * clock values in two different scx_bpf_now() calls in the same CPU 7227 * during the same period of when the rq clock is valid. 7228 */ 7229 __bpf_kfunc u64 scx_bpf_now(void) 7230 { 7231 struct rq *rq; 7232 u64 clock; 7233 7234 preempt_disable(); 7235 7236 rq = this_rq(); 7237 if (smp_load_acquire(&rq->scx.flags) & SCX_RQ_CLK_VALID) { 7238 /* 7239 * If the rq clock is valid, use the cached rq clock. 7240 * 7241 * Note that scx_bpf_now() is re-entrant between a process 7242 * context and an interrupt context (e.g., timer interrupt). 7243 * However, we don't need to consider the race between them 7244 * because such race is not observable from a caller. 7245 */ 7246 clock = READ_ONCE(rq->scx.clock); 7247 } else { 7248 /* 7249 * Otherwise, return a fresh rq clock. 7250 * 7251 * The rq clock is updated outside of the rq lock. 7252 * In this case, keep the updated rq clock invalid so the next 7253 * kfunc call outside the rq lock gets a fresh rq clock. 7254 */ 7255 clock = sched_clock_cpu(cpu_of(rq)); 7256 } 7257 7258 preempt_enable(); 7259 7260 return clock; 7261 } 7262 7263 /* 7264 * scx_bpf_events - Get a system-wide event counter to 7265 * @events: output buffer from a BPF program 7266 * @events__sz: @events len, must end in '__sz'' for the verifier 7267 */ 7268 __bpf_kfunc void scx_bpf_events(struct scx_event_stats *events, 7269 size_t events__sz) 7270 { 7271 struct scx_event_stats e_sys, *e_cpu; 7272 int cpu; 7273 7274 /* Aggregate per-CPU event counters into the system-wide counters. */ 7275 memset(&e_sys, 0, sizeof(e_sys)); 7276 for_each_possible_cpu(cpu) { 7277 e_cpu = per_cpu_ptr(&event_stats_cpu, cpu); 7278 scx_agg_event(&e_sys, e_cpu, SCX_EV_SELECT_CPU_FALLBACK); 7279 scx_agg_event(&e_sys, e_cpu, SCX_EV_DISPATCH_LOCAL_DSQ_OFFLINE); 7280 scx_agg_event(&e_sys, e_cpu, SCX_EV_DISPATCH_KEEP_LAST); 7281 scx_agg_event(&e_sys, e_cpu, SCX_EV_ENQ_SKIP_EXITING); 7282 scx_agg_event(&e_sys, e_cpu, SCX_EV_ENQ_SKIP_MIGRATION_DISABLED); 7283 scx_agg_event(&e_sys, e_cpu, SCX_EV_ENQ_SLICE_DFL); 7284 scx_agg_event(&e_sys, e_cpu, SCX_EV_BYPASS_DURATION); 7285 scx_agg_event(&e_sys, e_cpu, SCX_EV_BYPASS_DISPATCH); 7286 scx_agg_event(&e_sys, e_cpu, SCX_EV_BYPASS_ACTIVATE); 7287 } 7288 7289 /* 7290 * We cannot entirely trust a BPF-provided size since a BPF program 7291 * might be compiled against a different vmlinux.h, of which 7292 * scx_event_stats would be larger (a newer vmlinux.h) or smaller 7293 * (an older vmlinux.h). Hence, we use the smaller size to avoid 7294 * memory corruption. 7295 */ 7296 events__sz = min(events__sz, sizeof(*events)); 7297 memcpy(events, &e_sys, events__sz); 7298 } 7299 7300 __bpf_kfunc_end_defs(); 7301 7302 BTF_KFUNCS_START(scx_kfunc_ids_any) 7303 BTF_ID_FLAGS(func, scx_bpf_kick_cpu) 7304 BTF_ID_FLAGS(func, scx_bpf_dsq_nr_queued) 7305 BTF_ID_FLAGS(func, scx_bpf_destroy_dsq) 7306 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_new, KF_ITER_NEW | KF_RCU_PROTECTED) 7307 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_next, KF_ITER_NEXT | KF_RET_NULL) 7308 BTF_ID_FLAGS(func, bpf_iter_scx_dsq_destroy, KF_ITER_DESTROY) 7309 BTF_ID_FLAGS(func, scx_bpf_exit_bstr, KF_TRUSTED_ARGS) 7310 BTF_ID_FLAGS(func, scx_bpf_error_bstr, KF_TRUSTED_ARGS) 7311 BTF_ID_FLAGS(func, scx_bpf_dump_bstr, KF_TRUSTED_ARGS) 7312 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cap) 7313 BTF_ID_FLAGS(func, scx_bpf_cpuperf_cur) 7314 BTF_ID_FLAGS(func, scx_bpf_cpuperf_set) 7315 BTF_ID_FLAGS(func, scx_bpf_nr_cpu_ids) 7316 BTF_ID_FLAGS(func, scx_bpf_get_possible_cpumask, KF_ACQUIRE) 7317 BTF_ID_FLAGS(func, scx_bpf_get_online_cpumask, KF_ACQUIRE) 7318 BTF_ID_FLAGS(func, scx_bpf_put_cpumask, KF_RELEASE) 7319 BTF_ID_FLAGS(func, scx_bpf_get_idle_cpumask, KF_ACQUIRE) 7320 BTF_ID_FLAGS(func, scx_bpf_get_idle_smtmask, KF_ACQUIRE) 7321 BTF_ID_FLAGS(func, scx_bpf_put_idle_cpumask, KF_RELEASE) 7322 BTF_ID_FLAGS(func, scx_bpf_test_and_clear_cpu_idle) 7323 BTF_ID_FLAGS(func, scx_bpf_pick_idle_cpu, KF_RCU) 7324 BTF_ID_FLAGS(func, scx_bpf_pick_any_cpu, KF_RCU) 7325 BTF_ID_FLAGS(func, scx_bpf_task_running, KF_RCU) 7326 BTF_ID_FLAGS(func, scx_bpf_task_cpu, KF_RCU) 7327 BTF_ID_FLAGS(func, scx_bpf_cpu_rq) 7328 #ifdef CONFIG_CGROUP_SCHED 7329 BTF_ID_FLAGS(func, scx_bpf_task_cgroup, KF_RCU | KF_ACQUIRE) 7330 #endif 7331 BTF_ID_FLAGS(func, scx_bpf_now) 7332 BTF_ID_FLAGS(func, scx_bpf_events, KF_TRUSTED_ARGS) 7333 BTF_KFUNCS_END(scx_kfunc_ids_any) 7334 7335 static const struct btf_kfunc_id_set scx_kfunc_set_any = { 7336 .owner = THIS_MODULE, 7337 .set = &scx_kfunc_ids_any, 7338 }; 7339 7340 static int __init scx_init(void) 7341 { 7342 int ret; 7343 7344 /* 7345 * kfunc registration can't be done from init_sched_ext_class() as 7346 * register_btf_kfunc_id_set() needs most of the system to be up. 7347 * 7348 * Some kfuncs are context-sensitive and can only be called from 7349 * specific SCX ops. They are grouped into BTF sets accordingly. 7350 * Unfortunately, BPF currently doesn't have a way of enforcing such 7351 * restrictions. Eventually, the verifier should be able to enforce 7352 * them. For now, register them the same and make each kfunc explicitly 7353 * check using scx_kf_allowed(). 7354 */ 7355 if ((ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7356 &scx_kfunc_set_enqueue_dispatch)) || 7357 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7358 &scx_kfunc_set_dispatch)) || 7359 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7360 &scx_kfunc_set_cpu_release)) || 7361 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7362 &scx_kfunc_set_unlocked)) || 7363 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7364 &scx_kfunc_set_unlocked)) || 7365 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_STRUCT_OPS, 7366 &scx_kfunc_set_any)) || 7367 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_TRACING, 7368 &scx_kfunc_set_any)) || 7369 (ret = register_btf_kfunc_id_set(BPF_PROG_TYPE_SYSCALL, 7370 &scx_kfunc_set_any))) { 7371 pr_err("sched_ext: Failed to register kfunc sets (%d)\n", ret); 7372 return ret; 7373 } 7374 7375 ret = scx_idle_init(); 7376 if (ret) { 7377 pr_err("sched_ext: Failed to initialize idle tracking (%d)\n", ret); 7378 return ret; 7379 } 7380 7381 ret = register_bpf_struct_ops(&bpf_sched_ext_ops, sched_ext_ops); 7382 if (ret) { 7383 pr_err("sched_ext: Failed to register struct_ops (%d)\n", ret); 7384 return ret; 7385 } 7386 7387 ret = register_pm_notifier(&scx_pm_notifier); 7388 if (ret) { 7389 pr_err("sched_ext: Failed to register PM notifier (%d)\n", ret); 7390 return ret; 7391 } 7392 7393 scx_kset = kset_create_and_add("sched_ext", &scx_uevent_ops, kernel_kobj); 7394 if (!scx_kset) { 7395 pr_err("sched_ext: Failed to create /sys/kernel/sched_ext\n"); 7396 return -ENOMEM; 7397 } 7398 7399 ret = sysfs_create_group(&scx_kset->kobj, &scx_global_attr_group); 7400 if (ret < 0) { 7401 pr_err("sched_ext: Failed to add global attributes\n"); 7402 return ret; 7403 } 7404 7405 return 0; 7406 } 7407 __initcall(scx_init); 7408