1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/debug.c 4 * 5 * Print the CFS rbtree and other debugging details 6 * 7 * Copyright(C) 2007, Red Hat, Inc., Ingo Molnar 8 */ 9 #include "sched.h" 10 11 /* 12 * This allows printing both to /proc/sched_debug and 13 * to the console 14 */ 15 #define SEQ_printf(m, x...) \ 16 do { \ 17 if (m) \ 18 seq_printf(m, x); \ 19 else \ 20 pr_cont(x); \ 21 } while (0) 22 23 /* 24 * Ease the printing of nsec fields: 25 */ 26 static long long nsec_high(unsigned long long nsec) 27 { 28 if ((long long)nsec < 0) { 29 nsec = -nsec; 30 do_div(nsec, 1000000); 31 return -nsec; 32 } 33 do_div(nsec, 1000000); 34 35 return nsec; 36 } 37 38 static unsigned long nsec_low(unsigned long long nsec) 39 { 40 if ((long long)nsec < 0) 41 nsec = -nsec; 42 43 return do_div(nsec, 1000000); 44 } 45 46 #define SPLIT_NS(x) nsec_high(x), nsec_low(x) 47 48 #define SCHED_FEAT(name, enabled) \ 49 #name , 50 51 static const char * const sched_feat_names[] = { 52 #include "features.h" 53 }; 54 55 #undef SCHED_FEAT 56 57 static int sched_feat_show(struct seq_file *m, void *v) 58 { 59 int i; 60 61 for (i = 0; i < __SCHED_FEAT_NR; i++) { 62 if (!(sysctl_sched_features & (1UL << i))) 63 seq_puts(m, "NO_"); 64 seq_printf(m, "%s ", sched_feat_names[i]); 65 } 66 seq_puts(m, "\n"); 67 68 return 0; 69 } 70 71 #ifdef CONFIG_JUMP_LABEL 72 73 #define jump_label_key__true STATIC_KEY_INIT_TRUE 74 #define jump_label_key__false STATIC_KEY_INIT_FALSE 75 76 #define SCHED_FEAT(name, enabled) \ 77 jump_label_key__##enabled , 78 79 struct static_key sched_feat_keys[__SCHED_FEAT_NR] = { 80 #include "features.h" 81 }; 82 83 #undef SCHED_FEAT 84 85 static void sched_feat_disable(int i) 86 { 87 static_key_disable_cpuslocked(&sched_feat_keys[i]); 88 } 89 90 static void sched_feat_enable(int i) 91 { 92 static_key_enable_cpuslocked(&sched_feat_keys[i]); 93 } 94 #else 95 static void sched_feat_disable(int i) { }; 96 static void sched_feat_enable(int i) { }; 97 #endif /* CONFIG_JUMP_LABEL */ 98 99 static int sched_feat_set(char *cmp) 100 { 101 int i; 102 int neg = 0; 103 104 if (strncmp(cmp, "NO_", 3) == 0) { 105 neg = 1; 106 cmp += 3; 107 } 108 109 i = match_string(sched_feat_names, __SCHED_FEAT_NR, cmp); 110 if (i < 0) 111 return i; 112 113 if (neg) { 114 sysctl_sched_features &= ~(1UL << i); 115 sched_feat_disable(i); 116 } else { 117 sysctl_sched_features |= (1UL << i); 118 sched_feat_enable(i); 119 } 120 121 return 0; 122 } 123 124 static ssize_t 125 sched_feat_write(struct file *filp, const char __user *ubuf, 126 size_t cnt, loff_t *ppos) 127 { 128 char buf[64]; 129 char *cmp; 130 int ret; 131 struct inode *inode; 132 133 if (cnt > 63) 134 cnt = 63; 135 136 if (copy_from_user(&buf, ubuf, cnt)) 137 return -EFAULT; 138 139 buf[cnt] = 0; 140 cmp = strstrip(buf); 141 142 /* Ensure the static_key remains in a consistent state */ 143 inode = file_inode(filp); 144 cpus_read_lock(); 145 inode_lock(inode); 146 ret = sched_feat_set(cmp); 147 inode_unlock(inode); 148 cpus_read_unlock(); 149 if (ret < 0) 150 return ret; 151 152 *ppos += cnt; 153 154 return cnt; 155 } 156 157 static int sched_feat_open(struct inode *inode, struct file *filp) 158 { 159 return single_open(filp, sched_feat_show, NULL); 160 } 161 162 static const struct file_operations sched_feat_fops = { 163 .open = sched_feat_open, 164 .write = sched_feat_write, 165 .read = seq_read, 166 .llseek = seq_lseek, 167 .release = single_release, 168 }; 169 170 #ifdef CONFIG_SMP 171 172 static ssize_t sched_scaling_write(struct file *filp, const char __user *ubuf, 173 size_t cnt, loff_t *ppos) 174 { 175 char buf[16]; 176 unsigned int scaling; 177 178 if (cnt > 15) 179 cnt = 15; 180 181 if (copy_from_user(&buf, ubuf, cnt)) 182 return -EFAULT; 183 buf[cnt] = '\0'; 184 185 if (kstrtouint(buf, 10, &scaling)) 186 return -EINVAL; 187 188 if (scaling >= SCHED_TUNABLESCALING_END) 189 return -EINVAL; 190 191 sysctl_sched_tunable_scaling = scaling; 192 if (sched_update_scaling()) 193 return -EINVAL; 194 195 *ppos += cnt; 196 return cnt; 197 } 198 199 static int sched_scaling_show(struct seq_file *m, void *v) 200 { 201 seq_printf(m, "%d\n", sysctl_sched_tunable_scaling); 202 return 0; 203 } 204 205 static int sched_scaling_open(struct inode *inode, struct file *filp) 206 { 207 return single_open(filp, sched_scaling_show, NULL); 208 } 209 210 static const struct file_operations sched_scaling_fops = { 211 .open = sched_scaling_open, 212 .write = sched_scaling_write, 213 .read = seq_read, 214 .llseek = seq_lseek, 215 .release = single_release, 216 }; 217 218 #endif /* SMP */ 219 220 #ifdef CONFIG_PREEMPT_DYNAMIC 221 222 static ssize_t sched_dynamic_write(struct file *filp, const char __user *ubuf, 223 size_t cnt, loff_t *ppos) 224 { 225 char buf[16]; 226 int mode; 227 228 if (cnt > 15) 229 cnt = 15; 230 231 if (copy_from_user(&buf, ubuf, cnt)) 232 return -EFAULT; 233 234 buf[cnt] = 0; 235 mode = sched_dynamic_mode(strstrip(buf)); 236 if (mode < 0) 237 return mode; 238 239 sched_dynamic_update(mode); 240 241 *ppos += cnt; 242 243 return cnt; 244 } 245 246 static int sched_dynamic_show(struct seq_file *m, void *v) 247 { 248 static const char * preempt_modes[] = { 249 "none", "voluntary", "full" 250 }; 251 int i; 252 253 for (i = 0; i < ARRAY_SIZE(preempt_modes); i++) { 254 if (preempt_dynamic_mode == i) 255 seq_puts(m, "("); 256 seq_puts(m, preempt_modes[i]); 257 if (preempt_dynamic_mode == i) 258 seq_puts(m, ")"); 259 260 seq_puts(m, " "); 261 } 262 263 seq_puts(m, "\n"); 264 return 0; 265 } 266 267 static int sched_dynamic_open(struct inode *inode, struct file *filp) 268 { 269 return single_open(filp, sched_dynamic_show, NULL); 270 } 271 272 static const struct file_operations sched_dynamic_fops = { 273 .open = sched_dynamic_open, 274 .write = sched_dynamic_write, 275 .read = seq_read, 276 .llseek = seq_lseek, 277 .release = single_release, 278 }; 279 280 #endif /* CONFIG_PREEMPT_DYNAMIC */ 281 282 __read_mostly bool sched_debug_verbose; 283 284 static const struct seq_operations sched_debug_sops; 285 286 static int sched_debug_open(struct inode *inode, struct file *filp) 287 { 288 return seq_open(filp, &sched_debug_sops); 289 } 290 291 static const struct file_operations sched_debug_fops = { 292 .open = sched_debug_open, 293 .read = seq_read, 294 .llseek = seq_lseek, 295 .release = seq_release, 296 }; 297 298 static struct dentry *debugfs_sched; 299 300 static __init int sched_init_debug(void) 301 { 302 struct dentry __maybe_unused *numa; 303 304 debugfs_sched = debugfs_create_dir("sched", NULL); 305 306 debugfs_create_file("features", 0644, debugfs_sched, NULL, &sched_feat_fops); 307 debugfs_create_bool("verbose", 0644, debugfs_sched, &sched_debug_verbose); 308 #ifdef CONFIG_PREEMPT_DYNAMIC 309 debugfs_create_file("preempt", 0644, debugfs_sched, NULL, &sched_dynamic_fops); 310 #endif 311 312 debugfs_create_u32("latency_ns", 0644, debugfs_sched, &sysctl_sched_latency); 313 debugfs_create_u32("min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_min_granularity); 314 debugfs_create_u32("idle_min_granularity_ns", 0644, debugfs_sched, &sysctl_sched_idle_min_granularity); 315 debugfs_create_u32("wakeup_granularity_ns", 0644, debugfs_sched, &sysctl_sched_wakeup_granularity); 316 317 debugfs_create_u32("latency_warn_ms", 0644, debugfs_sched, &sysctl_resched_latency_warn_ms); 318 debugfs_create_u32("latency_warn_once", 0644, debugfs_sched, &sysctl_resched_latency_warn_once); 319 320 #ifdef CONFIG_SMP 321 debugfs_create_file("tunable_scaling", 0644, debugfs_sched, NULL, &sched_scaling_fops); 322 debugfs_create_u32("migration_cost_ns", 0644, debugfs_sched, &sysctl_sched_migration_cost); 323 debugfs_create_u32("nr_migrate", 0644, debugfs_sched, &sysctl_sched_nr_migrate); 324 325 mutex_lock(&sched_domains_mutex); 326 update_sched_domain_debugfs(); 327 mutex_unlock(&sched_domains_mutex); 328 #endif 329 330 #ifdef CONFIG_NUMA_BALANCING 331 numa = debugfs_create_dir("numa_balancing", debugfs_sched); 332 333 debugfs_create_u32("scan_delay_ms", 0644, numa, &sysctl_numa_balancing_scan_delay); 334 debugfs_create_u32("scan_period_min_ms", 0644, numa, &sysctl_numa_balancing_scan_period_min); 335 debugfs_create_u32("scan_period_max_ms", 0644, numa, &sysctl_numa_balancing_scan_period_max); 336 debugfs_create_u32("scan_size_mb", 0644, numa, &sysctl_numa_balancing_scan_size); 337 #endif 338 339 debugfs_create_file("debug", 0444, debugfs_sched, NULL, &sched_debug_fops); 340 341 return 0; 342 } 343 late_initcall(sched_init_debug); 344 345 #ifdef CONFIG_SMP 346 347 static cpumask_var_t sd_sysctl_cpus; 348 static struct dentry *sd_dentry; 349 350 static int sd_flags_show(struct seq_file *m, void *v) 351 { 352 unsigned long flags = *(unsigned int *)m->private; 353 int idx; 354 355 for_each_set_bit(idx, &flags, __SD_FLAG_CNT) { 356 seq_puts(m, sd_flag_debug[idx].name); 357 seq_puts(m, " "); 358 } 359 seq_puts(m, "\n"); 360 361 return 0; 362 } 363 364 static int sd_flags_open(struct inode *inode, struct file *file) 365 { 366 return single_open(file, sd_flags_show, inode->i_private); 367 } 368 369 static const struct file_operations sd_flags_fops = { 370 .open = sd_flags_open, 371 .read = seq_read, 372 .llseek = seq_lseek, 373 .release = single_release, 374 }; 375 376 static void register_sd(struct sched_domain *sd, struct dentry *parent) 377 { 378 #define SDM(type, mode, member) \ 379 debugfs_create_##type(#member, mode, parent, &sd->member) 380 381 SDM(ulong, 0644, min_interval); 382 SDM(ulong, 0644, max_interval); 383 SDM(u64, 0644, max_newidle_lb_cost); 384 SDM(u32, 0644, busy_factor); 385 SDM(u32, 0644, imbalance_pct); 386 SDM(u32, 0644, cache_nice_tries); 387 SDM(str, 0444, name); 388 389 #undef SDM 390 391 debugfs_create_file("flags", 0444, parent, &sd->flags, &sd_flags_fops); 392 } 393 394 void update_sched_domain_debugfs(void) 395 { 396 int cpu, i; 397 398 /* 399 * This can unfortunately be invoked before sched_debug_init() creates 400 * the debug directory. Don't touch sd_sysctl_cpus until then. 401 */ 402 if (!debugfs_sched) 403 return; 404 405 if (!cpumask_available(sd_sysctl_cpus)) { 406 if (!alloc_cpumask_var(&sd_sysctl_cpus, GFP_KERNEL)) 407 return; 408 cpumask_copy(sd_sysctl_cpus, cpu_possible_mask); 409 } 410 411 if (!sd_dentry) 412 sd_dentry = debugfs_create_dir("domains", debugfs_sched); 413 414 for_each_cpu(cpu, sd_sysctl_cpus) { 415 struct sched_domain *sd; 416 struct dentry *d_cpu; 417 char buf[32]; 418 419 snprintf(buf, sizeof(buf), "cpu%d", cpu); 420 debugfs_remove(debugfs_lookup(buf, sd_dentry)); 421 d_cpu = debugfs_create_dir(buf, sd_dentry); 422 423 i = 0; 424 for_each_domain(cpu, sd) { 425 struct dentry *d_sd; 426 427 snprintf(buf, sizeof(buf), "domain%d", i); 428 d_sd = debugfs_create_dir(buf, d_cpu); 429 430 register_sd(sd, d_sd); 431 i++; 432 } 433 434 __cpumask_clear_cpu(cpu, sd_sysctl_cpus); 435 } 436 } 437 438 void dirty_sched_domain_sysctl(int cpu) 439 { 440 if (cpumask_available(sd_sysctl_cpus)) 441 __cpumask_set_cpu(cpu, sd_sysctl_cpus); 442 } 443 444 #endif /* CONFIG_SMP */ 445 446 #ifdef CONFIG_FAIR_GROUP_SCHED 447 static void print_cfs_group_stats(struct seq_file *m, int cpu, struct task_group *tg) 448 { 449 struct sched_entity *se = tg->se[cpu]; 450 451 #define P(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)F) 452 #define P_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld\n", #F, (long long)schedstat_val(F)) 453 #define PN(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)F)) 454 #define PN_SCHEDSTAT(F) SEQ_printf(m, " .%-30s: %lld.%06ld\n", #F, SPLIT_NS((long long)schedstat_val(F))) 455 456 if (!se) 457 return; 458 459 PN(se->exec_start); 460 PN(se->vruntime); 461 PN(se->sum_exec_runtime); 462 463 if (schedstat_enabled()) { 464 PN_SCHEDSTAT(se->statistics.wait_start); 465 PN_SCHEDSTAT(se->statistics.sleep_start); 466 PN_SCHEDSTAT(se->statistics.block_start); 467 PN_SCHEDSTAT(se->statistics.sleep_max); 468 PN_SCHEDSTAT(se->statistics.block_max); 469 PN_SCHEDSTAT(se->statistics.exec_max); 470 PN_SCHEDSTAT(se->statistics.slice_max); 471 PN_SCHEDSTAT(se->statistics.wait_max); 472 PN_SCHEDSTAT(se->statistics.wait_sum); 473 P_SCHEDSTAT(se->statistics.wait_count); 474 } 475 476 P(se->load.weight); 477 #ifdef CONFIG_SMP 478 P(se->avg.load_avg); 479 P(se->avg.util_avg); 480 P(se->avg.runnable_avg); 481 #endif 482 483 #undef PN_SCHEDSTAT 484 #undef PN 485 #undef P_SCHEDSTAT 486 #undef P 487 } 488 #endif 489 490 #ifdef CONFIG_CGROUP_SCHED 491 static DEFINE_SPINLOCK(sched_debug_lock); 492 static char group_path[PATH_MAX]; 493 494 static void task_group_path(struct task_group *tg, char *path, int plen) 495 { 496 if (autogroup_path(tg, path, plen)) 497 return; 498 499 cgroup_path(tg->css.cgroup, path, plen); 500 } 501 502 /* 503 * Only 1 SEQ_printf_task_group_path() caller can use the full length 504 * group_path[] for cgroup path. Other simultaneous callers will have 505 * to use a shorter stack buffer. A "..." suffix is appended at the end 506 * of the stack buffer so that it will show up in case the output length 507 * matches the given buffer size to indicate possible path name truncation. 508 */ 509 #define SEQ_printf_task_group_path(m, tg, fmt...) \ 510 { \ 511 if (spin_trylock(&sched_debug_lock)) { \ 512 task_group_path(tg, group_path, sizeof(group_path)); \ 513 SEQ_printf(m, fmt, group_path); \ 514 spin_unlock(&sched_debug_lock); \ 515 } else { \ 516 char buf[128]; \ 517 char *bufend = buf + sizeof(buf) - 3; \ 518 task_group_path(tg, buf, bufend - buf); \ 519 strcpy(bufend - 1, "..."); \ 520 SEQ_printf(m, fmt, buf); \ 521 } \ 522 } 523 #endif 524 525 static void 526 print_task(struct seq_file *m, struct rq *rq, struct task_struct *p) 527 { 528 if (task_current(rq, p)) 529 SEQ_printf(m, ">R"); 530 else 531 SEQ_printf(m, " %c", task_state_to_char(p)); 532 533 SEQ_printf(m, " %15s %5d %9Ld.%06ld %9Ld %5d ", 534 p->comm, task_pid_nr(p), 535 SPLIT_NS(p->se.vruntime), 536 (long long)(p->nvcsw + p->nivcsw), 537 p->prio); 538 539 SEQ_printf(m, "%9Ld.%06ld %9Ld.%06ld %9Ld.%06ld", 540 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.wait_sum)), 541 SPLIT_NS(p->se.sum_exec_runtime), 542 SPLIT_NS(schedstat_val_or_zero(p->se.statistics.sum_sleep_runtime))); 543 544 #ifdef CONFIG_NUMA_BALANCING 545 SEQ_printf(m, " %d %d", task_node(p), task_numa_group_id(p)); 546 #endif 547 #ifdef CONFIG_CGROUP_SCHED 548 SEQ_printf_task_group_path(m, task_group(p), " %s") 549 #endif 550 551 SEQ_printf(m, "\n"); 552 } 553 554 static void print_rq(struct seq_file *m, struct rq *rq, int rq_cpu) 555 { 556 struct task_struct *g, *p; 557 558 SEQ_printf(m, "\n"); 559 SEQ_printf(m, "runnable tasks:\n"); 560 SEQ_printf(m, " S task PID tree-key switches prio" 561 " wait-time sum-exec sum-sleep\n"); 562 SEQ_printf(m, "-------------------------------------------------------" 563 "------------------------------------------------------\n"); 564 565 rcu_read_lock(); 566 for_each_process_thread(g, p) { 567 if (task_cpu(p) != rq_cpu) 568 continue; 569 570 print_task(m, rq, p); 571 } 572 rcu_read_unlock(); 573 } 574 575 void print_cfs_rq(struct seq_file *m, int cpu, struct cfs_rq *cfs_rq) 576 { 577 s64 MIN_vruntime = -1, min_vruntime, max_vruntime = -1, 578 spread, rq0_min_vruntime, spread0; 579 struct rq *rq = cpu_rq(cpu); 580 struct sched_entity *last; 581 unsigned long flags; 582 583 #ifdef CONFIG_FAIR_GROUP_SCHED 584 SEQ_printf(m, "\n"); 585 SEQ_printf_task_group_path(m, cfs_rq->tg, "cfs_rq[%d]:%s\n", cpu); 586 #else 587 SEQ_printf(m, "\n"); 588 SEQ_printf(m, "cfs_rq[%d]:\n", cpu); 589 #endif 590 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "exec_clock", 591 SPLIT_NS(cfs_rq->exec_clock)); 592 593 raw_spin_rq_lock_irqsave(rq, flags); 594 if (rb_first_cached(&cfs_rq->tasks_timeline)) 595 MIN_vruntime = (__pick_first_entity(cfs_rq))->vruntime; 596 last = __pick_last_entity(cfs_rq); 597 if (last) 598 max_vruntime = last->vruntime; 599 min_vruntime = cfs_rq->min_vruntime; 600 rq0_min_vruntime = cpu_rq(0)->cfs.min_vruntime; 601 raw_spin_rq_unlock_irqrestore(rq, flags); 602 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "MIN_vruntime", 603 SPLIT_NS(MIN_vruntime)); 604 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "min_vruntime", 605 SPLIT_NS(min_vruntime)); 606 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "max_vruntime", 607 SPLIT_NS(max_vruntime)); 608 spread = max_vruntime - MIN_vruntime; 609 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread", 610 SPLIT_NS(spread)); 611 spread0 = min_vruntime - rq0_min_vruntime; 612 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", "spread0", 613 SPLIT_NS(spread0)); 614 SEQ_printf(m, " .%-30s: %d\n", "nr_spread_over", 615 cfs_rq->nr_spread_over); 616 SEQ_printf(m, " .%-30s: %d\n", "nr_running", cfs_rq->nr_running); 617 SEQ_printf(m, " .%-30s: %d\n", "h_nr_running", cfs_rq->h_nr_running); 618 SEQ_printf(m, " .%-30s: %d\n", "idle_nr_running", 619 cfs_rq->idle_nr_running); 620 SEQ_printf(m, " .%-30s: %d\n", "idle_h_nr_running", 621 cfs_rq->idle_h_nr_running); 622 SEQ_printf(m, " .%-30s: %ld\n", "load", cfs_rq->load.weight); 623 #ifdef CONFIG_SMP 624 SEQ_printf(m, " .%-30s: %lu\n", "load_avg", 625 cfs_rq->avg.load_avg); 626 SEQ_printf(m, " .%-30s: %lu\n", "runnable_avg", 627 cfs_rq->avg.runnable_avg); 628 SEQ_printf(m, " .%-30s: %lu\n", "util_avg", 629 cfs_rq->avg.util_avg); 630 SEQ_printf(m, " .%-30s: %u\n", "util_est_enqueued", 631 cfs_rq->avg.util_est.enqueued); 632 SEQ_printf(m, " .%-30s: %ld\n", "removed.load_avg", 633 cfs_rq->removed.load_avg); 634 SEQ_printf(m, " .%-30s: %ld\n", "removed.util_avg", 635 cfs_rq->removed.util_avg); 636 SEQ_printf(m, " .%-30s: %ld\n", "removed.runnable_avg", 637 cfs_rq->removed.runnable_avg); 638 #ifdef CONFIG_FAIR_GROUP_SCHED 639 SEQ_printf(m, " .%-30s: %lu\n", "tg_load_avg_contrib", 640 cfs_rq->tg_load_avg_contrib); 641 SEQ_printf(m, " .%-30s: %ld\n", "tg_load_avg", 642 atomic_long_read(&cfs_rq->tg->load_avg)); 643 #endif 644 #endif 645 #ifdef CONFIG_CFS_BANDWIDTH 646 SEQ_printf(m, " .%-30s: %d\n", "throttled", 647 cfs_rq->throttled); 648 SEQ_printf(m, " .%-30s: %d\n", "throttle_count", 649 cfs_rq->throttle_count); 650 #endif 651 652 #ifdef CONFIG_FAIR_GROUP_SCHED 653 print_cfs_group_stats(m, cpu, cfs_rq->tg); 654 #endif 655 } 656 657 void print_rt_rq(struct seq_file *m, int cpu, struct rt_rq *rt_rq) 658 { 659 #ifdef CONFIG_RT_GROUP_SCHED 660 SEQ_printf(m, "\n"); 661 SEQ_printf_task_group_path(m, rt_rq->tg, "rt_rq[%d]:%s\n", cpu); 662 #else 663 SEQ_printf(m, "\n"); 664 SEQ_printf(m, "rt_rq[%d]:\n", cpu); 665 #endif 666 667 #define P(x) \ 668 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rt_rq->x)) 669 #define PU(x) \ 670 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(rt_rq->x)) 671 #define PN(x) \ 672 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rt_rq->x)) 673 674 PU(rt_nr_running); 675 #ifdef CONFIG_SMP 676 PU(rt_nr_migratory); 677 #endif 678 P(rt_throttled); 679 PN(rt_time); 680 PN(rt_runtime); 681 682 #undef PN 683 #undef PU 684 #undef P 685 } 686 687 void print_dl_rq(struct seq_file *m, int cpu, struct dl_rq *dl_rq) 688 { 689 struct dl_bw *dl_bw; 690 691 SEQ_printf(m, "\n"); 692 SEQ_printf(m, "dl_rq[%d]:\n", cpu); 693 694 #define PU(x) \ 695 SEQ_printf(m, " .%-30s: %lu\n", #x, (unsigned long)(dl_rq->x)) 696 697 PU(dl_nr_running); 698 #ifdef CONFIG_SMP 699 PU(dl_nr_migratory); 700 dl_bw = &cpu_rq(cpu)->rd->dl_bw; 701 #else 702 dl_bw = &dl_rq->dl_bw; 703 #endif 704 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->bw", dl_bw->bw); 705 SEQ_printf(m, " .%-30s: %lld\n", "dl_bw->total_bw", dl_bw->total_bw); 706 707 #undef PU 708 } 709 710 static void print_cpu(struct seq_file *m, int cpu) 711 { 712 struct rq *rq = cpu_rq(cpu); 713 714 #ifdef CONFIG_X86 715 { 716 unsigned int freq = cpu_khz ? : 1; 717 718 SEQ_printf(m, "cpu#%d, %u.%03u MHz\n", 719 cpu, freq / 1000, (freq % 1000)); 720 } 721 #else 722 SEQ_printf(m, "cpu#%d\n", cpu); 723 #endif 724 725 #define P(x) \ 726 do { \ 727 if (sizeof(rq->x) == 4) \ 728 SEQ_printf(m, " .%-30s: %ld\n", #x, (long)(rq->x)); \ 729 else \ 730 SEQ_printf(m, " .%-30s: %Ld\n", #x, (long long)(rq->x));\ 731 } while (0) 732 733 #define PN(x) \ 734 SEQ_printf(m, " .%-30s: %Ld.%06ld\n", #x, SPLIT_NS(rq->x)) 735 736 P(nr_running); 737 P(nr_switches); 738 P(nr_uninterruptible); 739 PN(next_balance); 740 SEQ_printf(m, " .%-30s: %ld\n", "curr->pid", (long)(task_pid_nr(rq->curr))); 741 PN(clock); 742 PN(clock_task); 743 #undef P 744 #undef PN 745 746 #ifdef CONFIG_SMP 747 #define P64(n) SEQ_printf(m, " .%-30s: %Ld\n", #n, rq->n); 748 P64(avg_idle); 749 P64(max_idle_balance_cost); 750 #undef P64 751 #endif 752 753 #define P(n) SEQ_printf(m, " .%-30s: %d\n", #n, schedstat_val(rq->n)); 754 if (schedstat_enabled()) { 755 P(yld_count); 756 P(sched_count); 757 P(sched_goidle); 758 P(ttwu_count); 759 P(ttwu_local); 760 } 761 #undef P 762 763 print_cfs_stats(m, cpu); 764 print_rt_stats(m, cpu); 765 print_dl_stats(m, cpu); 766 767 print_rq(m, rq, cpu); 768 SEQ_printf(m, "\n"); 769 } 770 771 static const char *sched_tunable_scaling_names[] = { 772 "none", 773 "logarithmic", 774 "linear" 775 }; 776 777 static void sched_debug_header(struct seq_file *m) 778 { 779 u64 ktime, sched_clk, cpu_clk; 780 unsigned long flags; 781 782 local_irq_save(flags); 783 ktime = ktime_to_ns(ktime_get()); 784 sched_clk = sched_clock(); 785 cpu_clk = local_clock(); 786 local_irq_restore(flags); 787 788 SEQ_printf(m, "Sched Debug Version: v0.11, %s %.*s\n", 789 init_utsname()->release, 790 (int)strcspn(init_utsname()->version, " "), 791 init_utsname()->version); 792 793 #define P(x) \ 794 SEQ_printf(m, "%-40s: %Ld\n", #x, (long long)(x)) 795 #define PN(x) \ 796 SEQ_printf(m, "%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 797 PN(ktime); 798 PN(sched_clk); 799 PN(cpu_clk); 800 P(jiffies); 801 #ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK 802 P(sched_clock_stable()); 803 #endif 804 #undef PN 805 #undef P 806 807 SEQ_printf(m, "\n"); 808 SEQ_printf(m, "sysctl_sched\n"); 809 810 #define P(x) \ 811 SEQ_printf(m, " .%-40s: %Ld\n", #x, (long long)(x)) 812 #define PN(x) \ 813 SEQ_printf(m, " .%-40s: %Ld.%06ld\n", #x, SPLIT_NS(x)) 814 PN(sysctl_sched_latency); 815 PN(sysctl_sched_min_granularity); 816 PN(sysctl_sched_idle_min_granularity); 817 PN(sysctl_sched_wakeup_granularity); 818 P(sysctl_sched_child_runs_first); 819 P(sysctl_sched_features); 820 #undef PN 821 #undef P 822 823 SEQ_printf(m, " .%-40s: %d (%s)\n", 824 "sysctl_sched_tunable_scaling", 825 sysctl_sched_tunable_scaling, 826 sched_tunable_scaling_names[sysctl_sched_tunable_scaling]); 827 SEQ_printf(m, "\n"); 828 } 829 830 static int sched_debug_show(struct seq_file *m, void *v) 831 { 832 int cpu = (unsigned long)(v - 2); 833 834 if (cpu != -1) 835 print_cpu(m, cpu); 836 else 837 sched_debug_header(m); 838 839 return 0; 840 } 841 842 void sysrq_sched_debug_show(void) 843 { 844 int cpu; 845 846 sched_debug_header(NULL); 847 for_each_online_cpu(cpu) { 848 /* 849 * Need to reset softlockup watchdogs on all CPUs, because 850 * another CPU might be blocked waiting for us to process 851 * an IPI or stop_machine. 852 */ 853 touch_nmi_watchdog(); 854 touch_all_softlockup_watchdogs(); 855 print_cpu(NULL, cpu); 856 } 857 } 858 859 /* 860 * This iterator needs some explanation. 861 * It returns 1 for the header position. 862 * This means 2 is CPU 0. 863 * In a hotplugged system some CPUs, including CPU 0, may be missing so we have 864 * to use cpumask_* to iterate over the CPUs. 865 */ 866 static void *sched_debug_start(struct seq_file *file, loff_t *offset) 867 { 868 unsigned long n = *offset; 869 870 if (n == 0) 871 return (void *) 1; 872 873 n--; 874 875 if (n > 0) 876 n = cpumask_next(n - 1, cpu_online_mask); 877 else 878 n = cpumask_first(cpu_online_mask); 879 880 *offset = n + 1; 881 882 if (n < nr_cpu_ids) 883 return (void *)(unsigned long)(n + 2); 884 885 return NULL; 886 } 887 888 static void *sched_debug_next(struct seq_file *file, void *data, loff_t *offset) 889 { 890 (*offset)++; 891 return sched_debug_start(file, offset); 892 } 893 894 static void sched_debug_stop(struct seq_file *file, void *data) 895 { 896 } 897 898 static const struct seq_operations sched_debug_sops = { 899 .start = sched_debug_start, 900 .next = sched_debug_next, 901 .stop = sched_debug_stop, 902 .show = sched_debug_show, 903 }; 904 905 #define __PS(S, F) SEQ_printf(m, "%-45s:%21Ld\n", S, (long long)(F)) 906 #define __P(F) __PS(#F, F) 907 #define P(F) __PS(#F, p->F) 908 #define PM(F, M) __PS(#F, p->F & (M)) 909 #define __PSN(S, F) SEQ_printf(m, "%-45s:%14Ld.%06ld\n", S, SPLIT_NS((long long)(F))) 910 #define __PN(F) __PSN(#F, F) 911 #define PN(F) __PSN(#F, p->F) 912 913 914 #ifdef CONFIG_NUMA_BALANCING 915 void print_numa_stats(struct seq_file *m, int node, unsigned long tsf, 916 unsigned long tpf, unsigned long gsf, unsigned long gpf) 917 { 918 SEQ_printf(m, "numa_faults node=%d ", node); 919 SEQ_printf(m, "task_private=%lu task_shared=%lu ", tpf, tsf); 920 SEQ_printf(m, "group_private=%lu group_shared=%lu\n", gpf, gsf); 921 } 922 #endif 923 924 925 static void sched_show_numa(struct task_struct *p, struct seq_file *m) 926 { 927 #ifdef CONFIG_NUMA_BALANCING 928 struct mempolicy *pol; 929 930 if (p->mm) 931 P(mm->numa_scan_seq); 932 933 task_lock(p); 934 pol = p->mempolicy; 935 if (pol && !(pol->flags & MPOL_F_MORON)) 936 pol = NULL; 937 mpol_get(pol); 938 task_unlock(p); 939 940 P(numa_pages_migrated); 941 P(numa_preferred_nid); 942 P(total_numa_faults); 943 SEQ_printf(m, "current_node=%d, numa_group_id=%d\n", 944 task_node(p), task_numa_group_id(p)); 945 show_numa_stats(p, m); 946 mpol_put(pol); 947 #endif 948 } 949 950 void proc_sched_show_task(struct task_struct *p, struct pid_namespace *ns, 951 struct seq_file *m) 952 { 953 unsigned long nr_switches; 954 955 SEQ_printf(m, "%s (%d, #threads: %d)\n", p->comm, task_pid_nr_ns(p, ns), 956 get_nr_threads(p)); 957 SEQ_printf(m, 958 "---------------------------------------------------------" 959 "----------\n"); 960 961 #define P_SCHEDSTAT(F) __PS(#F, schedstat_val(p->F)) 962 #define PN_SCHEDSTAT(F) __PSN(#F, schedstat_val(p->F)) 963 964 PN(se.exec_start); 965 PN(se.vruntime); 966 PN(se.sum_exec_runtime); 967 968 nr_switches = p->nvcsw + p->nivcsw; 969 970 P(se.nr_migrations); 971 972 if (schedstat_enabled()) { 973 u64 avg_atom, avg_per_cpu; 974 975 PN_SCHEDSTAT(se.statistics.sum_sleep_runtime); 976 PN_SCHEDSTAT(se.statistics.wait_start); 977 PN_SCHEDSTAT(se.statistics.sleep_start); 978 PN_SCHEDSTAT(se.statistics.block_start); 979 PN_SCHEDSTAT(se.statistics.sleep_max); 980 PN_SCHEDSTAT(se.statistics.block_max); 981 PN_SCHEDSTAT(se.statistics.exec_max); 982 PN_SCHEDSTAT(se.statistics.slice_max); 983 PN_SCHEDSTAT(se.statistics.wait_max); 984 PN_SCHEDSTAT(se.statistics.wait_sum); 985 P_SCHEDSTAT(se.statistics.wait_count); 986 PN_SCHEDSTAT(se.statistics.iowait_sum); 987 P_SCHEDSTAT(se.statistics.iowait_count); 988 P_SCHEDSTAT(se.statistics.nr_migrations_cold); 989 P_SCHEDSTAT(se.statistics.nr_failed_migrations_affine); 990 P_SCHEDSTAT(se.statistics.nr_failed_migrations_running); 991 P_SCHEDSTAT(se.statistics.nr_failed_migrations_hot); 992 P_SCHEDSTAT(se.statistics.nr_forced_migrations); 993 P_SCHEDSTAT(se.statistics.nr_wakeups); 994 P_SCHEDSTAT(se.statistics.nr_wakeups_sync); 995 P_SCHEDSTAT(se.statistics.nr_wakeups_migrate); 996 P_SCHEDSTAT(se.statistics.nr_wakeups_local); 997 P_SCHEDSTAT(se.statistics.nr_wakeups_remote); 998 P_SCHEDSTAT(se.statistics.nr_wakeups_affine); 999 P_SCHEDSTAT(se.statistics.nr_wakeups_affine_attempts); 1000 P_SCHEDSTAT(se.statistics.nr_wakeups_passive); 1001 P_SCHEDSTAT(se.statistics.nr_wakeups_idle); 1002 1003 avg_atom = p->se.sum_exec_runtime; 1004 if (nr_switches) 1005 avg_atom = div64_ul(avg_atom, nr_switches); 1006 else 1007 avg_atom = -1LL; 1008 1009 avg_per_cpu = p->se.sum_exec_runtime; 1010 if (p->se.nr_migrations) { 1011 avg_per_cpu = div64_u64(avg_per_cpu, 1012 p->se.nr_migrations); 1013 } else { 1014 avg_per_cpu = -1LL; 1015 } 1016 1017 __PN(avg_atom); 1018 __PN(avg_per_cpu); 1019 } 1020 1021 __P(nr_switches); 1022 __PS("nr_voluntary_switches", p->nvcsw); 1023 __PS("nr_involuntary_switches", p->nivcsw); 1024 1025 P(se.load.weight); 1026 #ifdef CONFIG_SMP 1027 P(se.avg.load_sum); 1028 P(se.avg.runnable_sum); 1029 P(se.avg.util_sum); 1030 P(se.avg.load_avg); 1031 P(se.avg.runnable_avg); 1032 P(se.avg.util_avg); 1033 P(se.avg.last_update_time); 1034 P(se.avg.util_est.ewma); 1035 PM(se.avg.util_est.enqueued, ~UTIL_AVG_UNCHANGED); 1036 #endif 1037 #ifdef CONFIG_UCLAMP_TASK 1038 __PS("uclamp.min", p->uclamp_req[UCLAMP_MIN].value); 1039 __PS("uclamp.max", p->uclamp_req[UCLAMP_MAX].value); 1040 __PS("effective uclamp.min", uclamp_eff_value(p, UCLAMP_MIN)); 1041 __PS("effective uclamp.max", uclamp_eff_value(p, UCLAMP_MAX)); 1042 #endif 1043 P(policy); 1044 P(prio); 1045 if (task_has_dl_policy(p)) { 1046 P(dl.runtime); 1047 P(dl.deadline); 1048 } 1049 #undef PN_SCHEDSTAT 1050 #undef P_SCHEDSTAT 1051 1052 { 1053 unsigned int this_cpu = raw_smp_processor_id(); 1054 u64 t0, t1; 1055 1056 t0 = cpu_clock(this_cpu); 1057 t1 = cpu_clock(this_cpu); 1058 __PS("clock-delta", t1-t0); 1059 } 1060 1061 sched_show_numa(p, m); 1062 } 1063 1064 void proc_sched_set_task(struct task_struct *p) 1065 { 1066 #ifdef CONFIG_SCHEDSTATS 1067 memset(&p->se.statistics, 0, sizeof(p->se.statistics)); 1068 #endif 1069 } 1070 1071 void resched_latency_warn(int cpu, u64 latency) 1072 { 1073 static DEFINE_RATELIMIT_STATE(latency_check_ratelimit, 60 * 60 * HZ, 1); 1074 1075 WARN(__ratelimit(&latency_check_ratelimit), 1076 "sched: CPU %d need_resched set for > %llu ns (%d ticks) " 1077 "without schedule\n", 1078 cpu, latency, cpu_rq(cpu)->ticks_without_resched); 1079 } 1080