1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * kernel/sched/core.c 4 * 5 * Core kernel CPU scheduler code 6 * 7 * Copyright (C) 1991-2002 Linus Torvalds 8 * Copyright (C) 1998-2024 Ingo Molnar, Red Hat 9 */ 10 #include <linux/highmem.h> 11 #include <linux/hrtimer_api.h> 12 #include <linux/ktime_api.h> 13 #include <linux/sched/signal.h> 14 #include <linux/syscalls_api.h> 15 #include <linux/debug_locks.h> 16 #include <linux/prefetch.h> 17 #include <linux/capability.h> 18 #include <linux/pgtable_api.h> 19 #include <linux/wait_bit.h> 20 #include <linux/jiffies.h> 21 #include <linux/spinlock_api.h> 22 #include <linux/cpumask_api.h> 23 #include <linux/lockdep_api.h> 24 #include <linux/hardirq.h> 25 #include <linux/softirq.h> 26 #include <linux/refcount_api.h> 27 #include <linux/topology.h> 28 #include <linux/sched/clock.h> 29 #include <linux/sched/cond_resched.h> 30 #include <linux/sched/cputime.h> 31 #include <linux/sched/debug.h> 32 #include <linux/sched/hotplug.h> 33 #include <linux/sched/init.h> 34 #include <linux/sched/isolation.h> 35 #include <linux/sched/loadavg.h> 36 #include <linux/sched/mm.h> 37 #include <linux/sched/nohz.h> 38 #include <linux/sched/rseq_api.h> 39 #include <linux/sched/rt.h> 40 41 #include <linux/blkdev.h> 42 #include <linux/context_tracking.h> 43 #include <linux/cpuset.h> 44 #include <linux/delayacct.h> 45 #include <linux/init_task.h> 46 #include <linux/interrupt.h> 47 #include <linux/ioprio.h> 48 #include <linux/kallsyms.h> 49 #include <linux/kcov.h> 50 #include <linux/kprobes.h> 51 #include <linux/llist_api.h> 52 #include <linux/mmu_context.h> 53 #include <linux/mmzone.h> 54 #include <linux/mutex_api.h> 55 #include <linux/nmi.h> 56 #include <linux/nospec.h> 57 #include <linux/perf_event_api.h> 58 #include <linux/profile.h> 59 #include <linux/psi.h> 60 #include <linux/rcuwait_api.h> 61 #include <linux/rseq.h> 62 #include <linux/sched/wake_q.h> 63 #include <linux/scs.h> 64 #include <linux/slab.h> 65 #include <linux/syscalls.h> 66 #include <linux/vtime.h> 67 #include <linux/wait_api.h> 68 #include <linux/workqueue_api.h> 69 70 #ifdef CONFIG_PREEMPT_DYNAMIC 71 # ifdef CONFIG_GENERIC_ENTRY 72 # include <linux/entry-common.h> 73 # endif 74 #endif 75 76 #include <uapi/linux/sched/types.h> 77 78 #include <asm/irq_regs.h> 79 #include <asm/switch_to.h> 80 #include <asm/tlb.h> 81 82 #define CREATE_TRACE_POINTS 83 #include <linux/sched/rseq_api.h> 84 #include <trace/events/sched.h> 85 #include <trace/events/ipi.h> 86 #undef CREATE_TRACE_POINTS 87 88 #include "sched.h" 89 #include "stats.h" 90 91 #include "autogroup.h" 92 #include "pelt.h" 93 #include "smp.h" 94 #include "stats.h" 95 96 #include "../workqueue_internal.h" 97 #include "../../io_uring/io-wq.h" 98 #include "../smpboot.h" 99 100 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpu); 101 EXPORT_TRACEPOINT_SYMBOL_GPL(ipi_send_cpumask); 102 103 /* 104 * Export tracepoints that act as a bare tracehook (ie: have no trace event 105 * associated with them) to allow external modules to probe them. 106 */ 107 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_cfs_tp); 108 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_rt_tp); 109 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_dl_tp); 110 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_irq_tp); 111 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_se_tp); 112 EXPORT_TRACEPOINT_SYMBOL_GPL(pelt_hw_tp); 113 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_cpu_capacity_tp); 114 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_overutilized_tp); 115 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_cfs_tp); 116 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_util_est_se_tp); 117 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_update_nr_running_tp); 118 EXPORT_TRACEPOINT_SYMBOL_GPL(sched_compute_energy_tp); 119 120 DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues); 121 122 #ifdef CONFIG_SCHED_DEBUG 123 /* 124 * Debugging: various feature bits 125 * 126 * If SCHED_DEBUG is disabled, each compilation unit has its own copy of 127 * sysctl_sched_features, defined in sched.h, to allow constants propagation 128 * at compile time and compiler optimization based on features default. 129 */ 130 #define SCHED_FEAT(name, enabled) \ 131 (1UL << __SCHED_FEAT_##name) * enabled | 132 const_debug unsigned int sysctl_sched_features = 133 #include "features.h" 134 0; 135 #undef SCHED_FEAT 136 137 /* 138 * Print a warning if need_resched is set for the given duration (if 139 * LATENCY_WARN is enabled). 140 * 141 * If sysctl_resched_latency_warn_once is set, only one warning will be shown 142 * per boot. 143 */ 144 __read_mostly int sysctl_resched_latency_warn_ms = 100; 145 __read_mostly int sysctl_resched_latency_warn_once = 1; 146 #endif /* CONFIG_SCHED_DEBUG */ 147 148 /* 149 * Number of tasks to iterate in a single balance run. 150 * Limited because this is done with IRQs disabled. 151 */ 152 const_debug unsigned int sysctl_sched_nr_migrate = SCHED_NR_MIGRATE_BREAK; 153 154 __read_mostly int scheduler_running; 155 156 #ifdef CONFIG_SCHED_CORE 157 158 DEFINE_STATIC_KEY_FALSE(__sched_core_enabled); 159 160 /* kernel prio, less is more */ 161 static inline int __task_prio(const struct task_struct *p) 162 { 163 if (p->sched_class == &stop_sched_class) /* trumps deadline */ 164 return -2; 165 166 if (p->dl_server) 167 return -1; /* deadline */ 168 169 if (rt_or_dl_prio(p->prio)) 170 return p->prio; /* [-1, 99] */ 171 172 if (p->sched_class == &idle_sched_class) 173 return MAX_RT_PRIO + NICE_WIDTH; /* 140 */ 174 175 if (task_on_scx(p)) 176 return MAX_RT_PRIO + MAX_NICE + 1; /* 120, squash ext */ 177 178 return MAX_RT_PRIO + MAX_NICE; /* 119, squash fair */ 179 } 180 181 /* 182 * l(a,b) 183 * le(a,b) := !l(b,a) 184 * g(a,b) := l(b,a) 185 * ge(a,b) := !l(a,b) 186 */ 187 188 /* real prio, less is less */ 189 static inline bool prio_less(const struct task_struct *a, 190 const struct task_struct *b, bool in_fi) 191 { 192 193 int pa = __task_prio(a), pb = __task_prio(b); 194 195 if (-pa < -pb) 196 return true; 197 198 if (-pb < -pa) 199 return false; 200 201 if (pa == -1) { /* dl_prio() doesn't work because of stop_class above */ 202 const struct sched_dl_entity *a_dl, *b_dl; 203 204 a_dl = &a->dl; 205 /* 206 * Since,'a' and 'b' can be CFS tasks served by DL server, 207 * __task_prio() can return -1 (for DL) even for those. In that 208 * case, get to the dl_server's DL entity. 209 */ 210 if (a->dl_server) 211 a_dl = a->dl_server; 212 213 b_dl = &b->dl; 214 if (b->dl_server) 215 b_dl = b->dl_server; 216 217 return !dl_time_before(a_dl->deadline, b_dl->deadline); 218 } 219 220 if (pa == MAX_RT_PRIO + MAX_NICE) /* fair */ 221 return cfs_prio_less(a, b, in_fi); 222 223 #ifdef CONFIG_SCHED_CLASS_EXT 224 if (pa == MAX_RT_PRIO + MAX_NICE + 1) /* ext */ 225 return scx_prio_less(a, b, in_fi); 226 #endif 227 228 return false; 229 } 230 231 static inline bool __sched_core_less(const struct task_struct *a, 232 const struct task_struct *b) 233 { 234 if (a->core_cookie < b->core_cookie) 235 return true; 236 237 if (a->core_cookie > b->core_cookie) 238 return false; 239 240 /* flip prio, so high prio is leftmost */ 241 if (prio_less(b, a, !!task_rq(a)->core->core_forceidle_count)) 242 return true; 243 244 return false; 245 } 246 247 #define __node_2_sc(node) rb_entry((node), struct task_struct, core_node) 248 249 static inline bool rb_sched_core_less(struct rb_node *a, const struct rb_node *b) 250 { 251 return __sched_core_less(__node_2_sc(a), __node_2_sc(b)); 252 } 253 254 static inline int rb_sched_core_cmp(const void *key, const struct rb_node *node) 255 { 256 const struct task_struct *p = __node_2_sc(node); 257 unsigned long cookie = (unsigned long)key; 258 259 if (cookie < p->core_cookie) 260 return -1; 261 262 if (cookie > p->core_cookie) 263 return 1; 264 265 return 0; 266 } 267 268 void sched_core_enqueue(struct rq *rq, struct task_struct *p) 269 { 270 if (p->se.sched_delayed) 271 return; 272 273 rq->core->core_task_seq++; 274 275 if (!p->core_cookie) 276 return; 277 278 rb_add(&p->core_node, &rq->core_tree, rb_sched_core_less); 279 } 280 281 void sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) 282 { 283 if (p->se.sched_delayed) 284 return; 285 286 rq->core->core_task_seq++; 287 288 if (sched_core_enqueued(p)) { 289 rb_erase(&p->core_node, &rq->core_tree); 290 RB_CLEAR_NODE(&p->core_node); 291 } 292 293 /* 294 * Migrating the last task off the cpu, with the cpu in forced idle 295 * state. Reschedule to create an accounting edge for forced idle, 296 * and re-examine whether the core is still in forced idle state. 297 */ 298 if (!(flags & DEQUEUE_SAVE) && rq->nr_running == 1 && 299 rq->core->core_forceidle_count && rq->curr == rq->idle) 300 resched_curr(rq); 301 } 302 303 static int sched_task_is_throttled(struct task_struct *p, int cpu) 304 { 305 if (p->sched_class->task_is_throttled) 306 return p->sched_class->task_is_throttled(p, cpu); 307 308 return 0; 309 } 310 311 static struct task_struct *sched_core_next(struct task_struct *p, unsigned long cookie) 312 { 313 struct rb_node *node = &p->core_node; 314 int cpu = task_cpu(p); 315 316 do { 317 node = rb_next(node); 318 if (!node) 319 return NULL; 320 321 p = __node_2_sc(node); 322 if (p->core_cookie != cookie) 323 return NULL; 324 325 } while (sched_task_is_throttled(p, cpu)); 326 327 return p; 328 } 329 330 /* 331 * Find left-most (aka, highest priority) and unthrottled task matching @cookie. 332 * If no suitable task is found, NULL will be returned. 333 */ 334 static struct task_struct *sched_core_find(struct rq *rq, unsigned long cookie) 335 { 336 struct task_struct *p; 337 struct rb_node *node; 338 339 node = rb_find_first((void *)cookie, &rq->core_tree, rb_sched_core_cmp); 340 if (!node) 341 return NULL; 342 343 p = __node_2_sc(node); 344 if (!sched_task_is_throttled(p, rq->cpu)) 345 return p; 346 347 return sched_core_next(p, cookie); 348 } 349 350 /* 351 * Magic required such that: 352 * 353 * raw_spin_rq_lock(rq); 354 * ... 355 * raw_spin_rq_unlock(rq); 356 * 357 * ends up locking and unlocking the _same_ lock, and all CPUs 358 * always agree on what rq has what lock. 359 * 360 * XXX entirely possible to selectively enable cores, don't bother for now. 361 */ 362 363 static DEFINE_MUTEX(sched_core_mutex); 364 static atomic_t sched_core_count; 365 static struct cpumask sched_core_mask; 366 367 static void sched_core_lock(int cpu, unsigned long *flags) 368 { 369 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 370 int t, i = 0; 371 372 local_irq_save(*flags); 373 for_each_cpu(t, smt_mask) 374 raw_spin_lock_nested(&cpu_rq(t)->__lock, i++); 375 } 376 377 static void sched_core_unlock(int cpu, unsigned long *flags) 378 { 379 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 380 int t; 381 382 for_each_cpu(t, smt_mask) 383 raw_spin_unlock(&cpu_rq(t)->__lock); 384 local_irq_restore(*flags); 385 } 386 387 static void __sched_core_flip(bool enabled) 388 { 389 unsigned long flags; 390 int cpu, t; 391 392 cpus_read_lock(); 393 394 /* 395 * Toggle the online cores, one by one. 396 */ 397 cpumask_copy(&sched_core_mask, cpu_online_mask); 398 for_each_cpu(cpu, &sched_core_mask) { 399 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 400 401 sched_core_lock(cpu, &flags); 402 403 for_each_cpu(t, smt_mask) 404 cpu_rq(t)->core_enabled = enabled; 405 406 cpu_rq(cpu)->core->core_forceidle_start = 0; 407 408 sched_core_unlock(cpu, &flags); 409 410 cpumask_andnot(&sched_core_mask, &sched_core_mask, smt_mask); 411 } 412 413 /* 414 * Toggle the offline CPUs. 415 */ 416 for_each_cpu_andnot(cpu, cpu_possible_mask, cpu_online_mask) 417 cpu_rq(cpu)->core_enabled = enabled; 418 419 cpus_read_unlock(); 420 } 421 422 static void sched_core_assert_empty(void) 423 { 424 int cpu; 425 426 for_each_possible_cpu(cpu) 427 WARN_ON_ONCE(!RB_EMPTY_ROOT(&cpu_rq(cpu)->core_tree)); 428 } 429 430 static void __sched_core_enable(void) 431 { 432 static_branch_enable(&__sched_core_enabled); 433 /* 434 * Ensure all previous instances of raw_spin_rq_*lock() have finished 435 * and future ones will observe !sched_core_disabled(). 436 */ 437 synchronize_rcu(); 438 __sched_core_flip(true); 439 sched_core_assert_empty(); 440 } 441 442 static void __sched_core_disable(void) 443 { 444 sched_core_assert_empty(); 445 __sched_core_flip(false); 446 static_branch_disable(&__sched_core_enabled); 447 } 448 449 void sched_core_get(void) 450 { 451 if (atomic_inc_not_zero(&sched_core_count)) 452 return; 453 454 mutex_lock(&sched_core_mutex); 455 if (!atomic_read(&sched_core_count)) 456 __sched_core_enable(); 457 458 smp_mb__before_atomic(); 459 atomic_inc(&sched_core_count); 460 mutex_unlock(&sched_core_mutex); 461 } 462 463 static void __sched_core_put(struct work_struct *work) 464 { 465 if (atomic_dec_and_mutex_lock(&sched_core_count, &sched_core_mutex)) { 466 __sched_core_disable(); 467 mutex_unlock(&sched_core_mutex); 468 } 469 } 470 471 void sched_core_put(void) 472 { 473 static DECLARE_WORK(_work, __sched_core_put); 474 475 /* 476 * "There can be only one" 477 * 478 * Either this is the last one, or we don't actually need to do any 479 * 'work'. If it is the last *again*, we rely on 480 * WORK_STRUCT_PENDING_BIT. 481 */ 482 if (!atomic_add_unless(&sched_core_count, -1, 1)) 483 schedule_work(&_work); 484 } 485 486 #else /* !CONFIG_SCHED_CORE */ 487 488 static inline void sched_core_enqueue(struct rq *rq, struct task_struct *p) { } 489 static inline void 490 sched_core_dequeue(struct rq *rq, struct task_struct *p, int flags) { } 491 492 #endif /* CONFIG_SCHED_CORE */ 493 494 /* 495 * Serialization rules: 496 * 497 * Lock order: 498 * 499 * p->pi_lock 500 * rq->lock 501 * hrtimer_cpu_base->lock (hrtimer_start() for bandwidth controls) 502 * 503 * rq1->lock 504 * rq2->lock where: rq1 < rq2 505 * 506 * Regular state: 507 * 508 * Normal scheduling state is serialized by rq->lock. __schedule() takes the 509 * local CPU's rq->lock, it optionally removes the task from the runqueue and 510 * always looks at the local rq data structures to find the most eligible task 511 * to run next. 512 * 513 * Task enqueue is also under rq->lock, possibly taken from another CPU. 514 * Wakeups from another LLC domain might use an IPI to transfer the enqueue to 515 * the local CPU to avoid bouncing the runqueue state around [ see 516 * ttwu_queue_wakelist() ] 517 * 518 * Task wakeup, specifically wakeups that involve migration, are horribly 519 * complicated to avoid having to take two rq->locks. 520 * 521 * Special state: 522 * 523 * System-calls and anything external will use task_rq_lock() which acquires 524 * both p->pi_lock and rq->lock. As a consequence the state they change is 525 * stable while holding either lock: 526 * 527 * - sched_setaffinity()/ 528 * set_cpus_allowed_ptr(): p->cpus_ptr, p->nr_cpus_allowed 529 * - set_user_nice(): p->se.load, p->*prio 530 * - __sched_setscheduler(): p->sched_class, p->policy, p->*prio, 531 * p->se.load, p->rt_priority, 532 * p->dl.dl_{runtime, deadline, period, flags, bw, density} 533 * - sched_setnuma(): p->numa_preferred_nid 534 * - sched_move_task(): p->sched_task_group 535 * - uclamp_update_active() p->uclamp* 536 * 537 * p->state <- TASK_*: 538 * 539 * is changed locklessly using set_current_state(), __set_current_state() or 540 * set_special_state(), see their respective comments, or by 541 * try_to_wake_up(). This latter uses p->pi_lock to serialize against 542 * concurrent self. 543 * 544 * p->on_rq <- { 0, 1 = TASK_ON_RQ_QUEUED, 2 = TASK_ON_RQ_MIGRATING }: 545 * 546 * is set by activate_task() and cleared by deactivate_task(), under 547 * rq->lock. Non-zero indicates the task is runnable, the special 548 * ON_RQ_MIGRATING state is used for migration without holding both 549 * rq->locks. It indicates task_cpu() is not stable, see task_rq_lock(). 550 * 551 * Additionally it is possible to be ->on_rq but still be considered not 552 * runnable when p->se.sched_delayed is true. These tasks are on the runqueue 553 * but will be dequeued as soon as they get picked again. See the 554 * task_is_runnable() helper. 555 * 556 * p->on_cpu <- { 0, 1 }: 557 * 558 * is set by prepare_task() and cleared by finish_task() such that it will be 559 * set before p is scheduled-in and cleared after p is scheduled-out, both 560 * under rq->lock. Non-zero indicates the task is running on its CPU. 561 * 562 * [ The astute reader will observe that it is possible for two tasks on one 563 * CPU to have ->on_cpu = 1 at the same time. ] 564 * 565 * task_cpu(p): is changed by set_task_cpu(), the rules are: 566 * 567 * - Don't call set_task_cpu() on a blocked task: 568 * 569 * We don't care what CPU we're not running on, this simplifies hotplug, 570 * the CPU assignment of blocked tasks isn't required to be valid. 571 * 572 * - for try_to_wake_up(), called under p->pi_lock: 573 * 574 * This allows try_to_wake_up() to only take one rq->lock, see its comment. 575 * 576 * - for migration called under rq->lock: 577 * [ see task_on_rq_migrating() in task_rq_lock() ] 578 * 579 * o move_queued_task() 580 * o detach_task() 581 * 582 * - for migration called under double_rq_lock(): 583 * 584 * o __migrate_swap_task() 585 * o push_rt_task() / pull_rt_task() 586 * o push_dl_task() / pull_dl_task() 587 * o dl_task_offline_migration() 588 * 589 */ 590 591 void raw_spin_rq_lock_nested(struct rq *rq, int subclass) 592 { 593 raw_spinlock_t *lock; 594 595 /* Matches synchronize_rcu() in __sched_core_enable() */ 596 preempt_disable(); 597 if (sched_core_disabled()) { 598 raw_spin_lock_nested(&rq->__lock, subclass); 599 /* preempt_count *MUST* be > 1 */ 600 preempt_enable_no_resched(); 601 return; 602 } 603 604 for (;;) { 605 lock = __rq_lockp(rq); 606 raw_spin_lock_nested(lock, subclass); 607 if (likely(lock == __rq_lockp(rq))) { 608 /* preempt_count *MUST* be > 1 */ 609 preempt_enable_no_resched(); 610 return; 611 } 612 raw_spin_unlock(lock); 613 } 614 } 615 616 bool raw_spin_rq_trylock(struct rq *rq) 617 { 618 raw_spinlock_t *lock; 619 bool ret; 620 621 /* Matches synchronize_rcu() in __sched_core_enable() */ 622 preempt_disable(); 623 if (sched_core_disabled()) { 624 ret = raw_spin_trylock(&rq->__lock); 625 preempt_enable(); 626 return ret; 627 } 628 629 for (;;) { 630 lock = __rq_lockp(rq); 631 ret = raw_spin_trylock(lock); 632 if (!ret || (likely(lock == __rq_lockp(rq)))) { 633 preempt_enable(); 634 return ret; 635 } 636 raw_spin_unlock(lock); 637 } 638 } 639 640 void raw_spin_rq_unlock(struct rq *rq) 641 { 642 raw_spin_unlock(rq_lockp(rq)); 643 } 644 645 #ifdef CONFIG_SMP 646 /* 647 * double_rq_lock - safely lock two runqueues 648 */ 649 void double_rq_lock(struct rq *rq1, struct rq *rq2) 650 { 651 lockdep_assert_irqs_disabled(); 652 653 if (rq_order_less(rq2, rq1)) 654 swap(rq1, rq2); 655 656 raw_spin_rq_lock(rq1); 657 if (__rq_lockp(rq1) != __rq_lockp(rq2)) 658 raw_spin_rq_lock_nested(rq2, SINGLE_DEPTH_NESTING); 659 660 double_rq_clock_clear_update(rq1, rq2); 661 } 662 #endif 663 664 /* 665 * __task_rq_lock - lock the rq @p resides on. 666 */ 667 struct rq *__task_rq_lock(struct task_struct *p, struct rq_flags *rf) 668 __acquires(rq->lock) 669 { 670 struct rq *rq; 671 672 lockdep_assert_held(&p->pi_lock); 673 674 for (;;) { 675 rq = task_rq(p); 676 raw_spin_rq_lock(rq); 677 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 678 rq_pin_lock(rq, rf); 679 return rq; 680 } 681 raw_spin_rq_unlock(rq); 682 683 while (unlikely(task_on_rq_migrating(p))) 684 cpu_relax(); 685 } 686 } 687 688 /* 689 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on. 690 */ 691 struct rq *task_rq_lock(struct task_struct *p, struct rq_flags *rf) 692 __acquires(p->pi_lock) 693 __acquires(rq->lock) 694 { 695 struct rq *rq; 696 697 for (;;) { 698 raw_spin_lock_irqsave(&p->pi_lock, rf->flags); 699 rq = task_rq(p); 700 raw_spin_rq_lock(rq); 701 /* 702 * move_queued_task() task_rq_lock() 703 * 704 * ACQUIRE (rq->lock) 705 * [S] ->on_rq = MIGRATING [L] rq = task_rq() 706 * WMB (__set_task_cpu()) ACQUIRE (rq->lock); 707 * [S] ->cpu = new_cpu [L] task_rq() 708 * [L] ->on_rq 709 * RELEASE (rq->lock) 710 * 711 * If we observe the old CPU in task_rq_lock(), the acquire of 712 * the old rq->lock will fully serialize against the stores. 713 * 714 * If we observe the new CPU in task_rq_lock(), the address 715 * dependency headed by '[L] rq = task_rq()' and the acquire 716 * will pair with the WMB to ensure we then also see migrating. 717 */ 718 if (likely(rq == task_rq(p) && !task_on_rq_migrating(p))) { 719 rq_pin_lock(rq, rf); 720 return rq; 721 } 722 raw_spin_rq_unlock(rq); 723 raw_spin_unlock_irqrestore(&p->pi_lock, rf->flags); 724 725 while (unlikely(task_on_rq_migrating(p))) 726 cpu_relax(); 727 } 728 } 729 730 /* 731 * RQ-clock updating methods: 732 */ 733 734 static void update_rq_clock_task(struct rq *rq, s64 delta) 735 { 736 /* 737 * In theory, the compile should just see 0 here, and optimize out the call 738 * to sched_rt_avg_update. But I don't trust it... 739 */ 740 s64 __maybe_unused steal = 0, irq_delta = 0; 741 742 #ifdef CONFIG_IRQ_TIME_ACCOUNTING 743 if (irqtime_enabled()) { 744 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time; 745 746 /* 747 * Since irq_time is only updated on {soft,}irq_exit, we might run into 748 * this case when a previous update_rq_clock() happened inside a 749 * {soft,}IRQ region. 750 * 751 * When this happens, we stop ->clock_task and only update the 752 * prev_irq_time stamp to account for the part that fit, so that a next 753 * update will consume the rest. This ensures ->clock_task is 754 * monotonic. 755 * 756 * It does however cause some slight miss-attribution of {soft,}IRQ 757 * time, a more accurate solution would be to update the irq_time using 758 * the current rq->clock timestamp, except that would require using 759 * atomic ops. 760 */ 761 if (irq_delta > delta) 762 irq_delta = delta; 763 764 rq->prev_irq_time += irq_delta; 765 delta -= irq_delta; 766 delayacct_irq(rq->curr, irq_delta); 767 } 768 #endif 769 #ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING 770 if (static_key_false((¶virt_steal_rq_enabled))) { 771 u64 prev_steal; 772 773 steal = prev_steal = paravirt_steal_clock(cpu_of(rq)); 774 steal -= rq->prev_steal_time_rq; 775 776 if (unlikely(steal > delta)) 777 steal = delta; 778 779 rq->prev_steal_time_rq = prev_steal; 780 delta -= steal; 781 } 782 #endif 783 784 rq->clock_task += delta; 785 786 #ifdef CONFIG_HAVE_SCHED_AVG_IRQ 787 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY)) 788 update_irq_load_avg(rq, irq_delta + steal); 789 #endif 790 update_rq_clock_pelt(rq, delta); 791 } 792 793 void update_rq_clock(struct rq *rq) 794 { 795 s64 delta; 796 u64 clock; 797 798 lockdep_assert_rq_held(rq); 799 800 if (rq->clock_update_flags & RQCF_ACT_SKIP) 801 return; 802 803 #ifdef CONFIG_SCHED_DEBUG 804 if (sched_feat(WARN_DOUBLE_CLOCK)) 805 SCHED_WARN_ON(rq->clock_update_flags & RQCF_UPDATED); 806 rq->clock_update_flags |= RQCF_UPDATED; 807 #endif 808 clock = sched_clock_cpu(cpu_of(rq)); 809 scx_rq_clock_update(rq, clock); 810 811 delta = clock - rq->clock; 812 if (delta < 0) 813 return; 814 rq->clock += delta; 815 816 update_rq_clock_task(rq, delta); 817 } 818 819 #ifdef CONFIG_SCHED_HRTICK 820 /* 821 * Use HR-timers to deliver accurate preemption points. 822 */ 823 824 static void hrtick_clear(struct rq *rq) 825 { 826 if (hrtimer_active(&rq->hrtick_timer)) 827 hrtimer_cancel(&rq->hrtick_timer); 828 } 829 830 /* 831 * High-resolution timer tick. 832 * Runs from hardirq context with interrupts disabled. 833 */ 834 static enum hrtimer_restart hrtick(struct hrtimer *timer) 835 { 836 struct rq *rq = container_of(timer, struct rq, hrtick_timer); 837 struct rq_flags rf; 838 839 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id()); 840 841 rq_lock(rq, &rf); 842 update_rq_clock(rq); 843 rq->donor->sched_class->task_tick(rq, rq->curr, 1); 844 rq_unlock(rq, &rf); 845 846 return HRTIMER_NORESTART; 847 } 848 849 #ifdef CONFIG_SMP 850 851 static void __hrtick_restart(struct rq *rq) 852 { 853 struct hrtimer *timer = &rq->hrtick_timer; 854 ktime_t time = rq->hrtick_time; 855 856 hrtimer_start(timer, time, HRTIMER_MODE_ABS_PINNED_HARD); 857 } 858 859 /* 860 * called from hardirq (IPI) context 861 */ 862 static void __hrtick_start(void *arg) 863 { 864 struct rq *rq = arg; 865 struct rq_flags rf; 866 867 rq_lock(rq, &rf); 868 __hrtick_restart(rq); 869 rq_unlock(rq, &rf); 870 } 871 872 /* 873 * Called to set the hrtick timer state. 874 * 875 * called with rq->lock held and IRQs disabled 876 */ 877 void hrtick_start(struct rq *rq, u64 delay) 878 { 879 struct hrtimer *timer = &rq->hrtick_timer; 880 s64 delta; 881 882 /* 883 * Don't schedule slices shorter than 10000ns, that just 884 * doesn't make sense and can cause timer DoS. 885 */ 886 delta = max_t(s64, delay, 10000LL); 887 rq->hrtick_time = ktime_add_ns(timer->base->get_time(), delta); 888 889 if (rq == this_rq()) 890 __hrtick_restart(rq); 891 else 892 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd); 893 } 894 895 #else 896 /* 897 * Called to set the hrtick timer state. 898 * 899 * called with rq->lock held and IRQs disabled 900 */ 901 void hrtick_start(struct rq *rq, u64 delay) 902 { 903 /* 904 * Don't schedule slices shorter than 10000ns, that just 905 * doesn't make sense. Rely on vruntime for fairness. 906 */ 907 delay = max_t(u64, delay, 10000LL); 908 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay), 909 HRTIMER_MODE_REL_PINNED_HARD); 910 } 911 912 #endif /* CONFIG_SMP */ 913 914 static void hrtick_rq_init(struct rq *rq) 915 { 916 #ifdef CONFIG_SMP 917 INIT_CSD(&rq->hrtick_csd, __hrtick_start, rq); 918 #endif 919 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL_HARD); 920 rq->hrtick_timer.function = hrtick; 921 } 922 #else /* CONFIG_SCHED_HRTICK */ 923 static inline void hrtick_clear(struct rq *rq) 924 { 925 } 926 927 static inline void hrtick_rq_init(struct rq *rq) 928 { 929 } 930 #endif /* CONFIG_SCHED_HRTICK */ 931 932 /* 933 * try_cmpxchg based fetch_or() macro so it works for different integer types: 934 */ 935 #define fetch_or(ptr, mask) \ 936 ({ \ 937 typeof(ptr) _ptr = (ptr); \ 938 typeof(mask) _mask = (mask); \ 939 typeof(*_ptr) _val = *_ptr; \ 940 \ 941 do { \ 942 } while (!try_cmpxchg(_ptr, &_val, _val | _mask)); \ 943 _val; \ 944 }) 945 946 #if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG) 947 /* 948 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG, 949 * this avoids any races wrt polling state changes and thereby avoids 950 * spurious IPIs. 951 */ 952 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 953 { 954 return !(fetch_or(&ti->flags, 1 << tif) & _TIF_POLLING_NRFLAG); 955 } 956 957 /* 958 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set. 959 * 960 * If this returns true, then the idle task promises to call 961 * sched_ttwu_pending() and reschedule soon. 962 */ 963 static bool set_nr_if_polling(struct task_struct *p) 964 { 965 struct thread_info *ti = task_thread_info(p); 966 typeof(ti->flags) val = READ_ONCE(ti->flags); 967 968 do { 969 if (!(val & _TIF_POLLING_NRFLAG)) 970 return false; 971 if (val & _TIF_NEED_RESCHED) 972 return true; 973 } while (!try_cmpxchg(&ti->flags, &val, val | _TIF_NEED_RESCHED)); 974 975 return true; 976 } 977 978 #else 979 static inline bool set_nr_and_not_polling(struct thread_info *ti, int tif) 980 { 981 set_ti_thread_flag(ti, tif); 982 return true; 983 } 984 985 #ifdef CONFIG_SMP 986 static inline bool set_nr_if_polling(struct task_struct *p) 987 { 988 return false; 989 } 990 #endif 991 #endif 992 993 static bool __wake_q_add(struct wake_q_head *head, struct task_struct *task) 994 { 995 struct wake_q_node *node = &task->wake_q; 996 997 /* 998 * Atomically grab the task, if ->wake_q is !nil already it means 999 * it's already queued (either by us or someone else) and will get the 1000 * wakeup due to that. 1001 * 1002 * In order to ensure that a pending wakeup will observe our pending 1003 * state, even in the failed case, an explicit smp_mb() must be used. 1004 */ 1005 smp_mb__before_atomic(); 1006 if (unlikely(cmpxchg_relaxed(&node->next, NULL, WAKE_Q_TAIL))) 1007 return false; 1008 1009 /* 1010 * The head is context local, there can be no concurrency. 1011 */ 1012 *head->lastp = node; 1013 head->lastp = &node->next; 1014 return true; 1015 } 1016 1017 /** 1018 * wake_q_add() - queue a wakeup for 'later' waking. 1019 * @head: the wake_q_head to add @task to 1020 * @task: the task to queue for 'later' wakeup 1021 * 1022 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1023 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1024 * instantly. 1025 * 1026 * This function must be used as-if it were wake_up_process(); IOW the task 1027 * must be ready to be woken at this location. 1028 */ 1029 void wake_q_add(struct wake_q_head *head, struct task_struct *task) 1030 { 1031 if (__wake_q_add(head, task)) 1032 get_task_struct(task); 1033 } 1034 1035 /** 1036 * wake_q_add_safe() - safely queue a wakeup for 'later' waking. 1037 * @head: the wake_q_head to add @task to 1038 * @task: the task to queue for 'later' wakeup 1039 * 1040 * Queue a task for later wakeup, most likely by the wake_up_q() call in the 1041 * same context, _HOWEVER_ this is not guaranteed, the wakeup can come 1042 * instantly. 1043 * 1044 * This function must be used as-if it were wake_up_process(); IOW the task 1045 * must be ready to be woken at this location. 1046 * 1047 * This function is essentially a task-safe equivalent to wake_q_add(). Callers 1048 * that already hold reference to @task can call the 'safe' version and trust 1049 * wake_q to do the right thing depending whether or not the @task is already 1050 * queued for wakeup. 1051 */ 1052 void wake_q_add_safe(struct wake_q_head *head, struct task_struct *task) 1053 { 1054 if (!__wake_q_add(head, task)) 1055 put_task_struct(task); 1056 } 1057 1058 void wake_up_q(struct wake_q_head *head) 1059 { 1060 struct wake_q_node *node = head->first; 1061 1062 while (node != WAKE_Q_TAIL) { 1063 struct task_struct *task; 1064 1065 task = container_of(node, struct task_struct, wake_q); 1066 /* Task can safely be re-inserted now: */ 1067 node = node->next; 1068 task->wake_q.next = NULL; 1069 1070 /* 1071 * wake_up_process() executes a full barrier, which pairs with 1072 * the queueing in wake_q_add() so as not to miss wakeups. 1073 */ 1074 wake_up_process(task); 1075 put_task_struct(task); 1076 } 1077 } 1078 1079 /* 1080 * resched_curr - mark rq's current task 'to be rescheduled now'. 1081 * 1082 * On UP this means the setting of the need_resched flag, on SMP it 1083 * might also involve a cross-CPU call to trigger the scheduler on 1084 * the target CPU. 1085 */ 1086 static void __resched_curr(struct rq *rq, int tif) 1087 { 1088 struct task_struct *curr = rq->curr; 1089 struct thread_info *cti = task_thread_info(curr); 1090 int cpu; 1091 1092 lockdep_assert_rq_held(rq); 1093 1094 /* 1095 * Always immediately preempt the idle task; no point in delaying doing 1096 * actual work. 1097 */ 1098 if (is_idle_task(curr) && tif == TIF_NEED_RESCHED_LAZY) 1099 tif = TIF_NEED_RESCHED; 1100 1101 if (cti->flags & ((1 << tif) | _TIF_NEED_RESCHED)) 1102 return; 1103 1104 cpu = cpu_of(rq); 1105 1106 if (cpu == smp_processor_id()) { 1107 set_ti_thread_flag(cti, tif); 1108 if (tif == TIF_NEED_RESCHED) 1109 set_preempt_need_resched(); 1110 return; 1111 } 1112 1113 if (set_nr_and_not_polling(cti, tif)) { 1114 if (tif == TIF_NEED_RESCHED) 1115 smp_send_reschedule(cpu); 1116 } else { 1117 trace_sched_wake_idle_without_ipi(cpu); 1118 } 1119 } 1120 1121 void resched_curr(struct rq *rq) 1122 { 1123 __resched_curr(rq, TIF_NEED_RESCHED); 1124 } 1125 1126 #ifdef CONFIG_PREEMPT_DYNAMIC 1127 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_preempt_lazy); 1128 static __always_inline bool dynamic_preempt_lazy(void) 1129 { 1130 return static_branch_unlikely(&sk_dynamic_preempt_lazy); 1131 } 1132 #else 1133 static __always_inline bool dynamic_preempt_lazy(void) 1134 { 1135 return IS_ENABLED(CONFIG_PREEMPT_LAZY); 1136 } 1137 #endif 1138 1139 static __always_inline int get_lazy_tif_bit(void) 1140 { 1141 if (dynamic_preempt_lazy()) 1142 return TIF_NEED_RESCHED_LAZY; 1143 1144 return TIF_NEED_RESCHED; 1145 } 1146 1147 void resched_curr_lazy(struct rq *rq) 1148 { 1149 __resched_curr(rq, get_lazy_tif_bit()); 1150 } 1151 1152 void resched_cpu(int cpu) 1153 { 1154 struct rq *rq = cpu_rq(cpu); 1155 unsigned long flags; 1156 1157 raw_spin_rq_lock_irqsave(rq, flags); 1158 if (cpu_online(cpu) || cpu == smp_processor_id()) 1159 resched_curr(rq); 1160 raw_spin_rq_unlock_irqrestore(rq, flags); 1161 } 1162 1163 #ifdef CONFIG_SMP 1164 #ifdef CONFIG_NO_HZ_COMMON 1165 /* 1166 * In the semi idle case, use the nearest busy CPU for migrating timers 1167 * from an idle CPU. This is good for power-savings. 1168 * 1169 * We don't do similar optimization for completely idle system, as 1170 * selecting an idle CPU will add more delays to the timers than intended 1171 * (as that CPU's timer base may not be up to date wrt jiffies etc). 1172 */ 1173 int get_nohz_timer_target(void) 1174 { 1175 int i, cpu = smp_processor_id(), default_cpu = -1; 1176 struct sched_domain *sd; 1177 const struct cpumask *hk_mask; 1178 1179 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) { 1180 if (!idle_cpu(cpu)) 1181 return cpu; 1182 default_cpu = cpu; 1183 } 1184 1185 hk_mask = housekeeping_cpumask(HK_TYPE_KERNEL_NOISE); 1186 1187 guard(rcu)(); 1188 1189 for_each_domain(cpu, sd) { 1190 for_each_cpu_and(i, sched_domain_span(sd), hk_mask) { 1191 if (cpu == i) 1192 continue; 1193 1194 if (!idle_cpu(i)) 1195 return i; 1196 } 1197 } 1198 1199 if (default_cpu == -1) 1200 default_cpu = housekeeping_any_cpu(HK_TYPE_KERNEL_NOISE); 1201 1202 return default_cpu; 1203 } 1204 1205 /* 1206 * When add_timer_on() enqueues a timer into the timer wheel of an 1207 * idle CPU then this timer might expire before the next timer event 1208 * which is scheduled to wake up that CPU. In case of a completely 1209 * idle system the next event might even be infinite time into the 1210 * future. wake_up_idle_cpu() ensures that the CPU is woken up and 1211 * leaves the inner idle loop so the newly added timer is taken into 1212 * account when the CPU goes back to idle and evaluates the timer 1213 * wheel for the next timer event. 1214 */ 1215 static void wake_up_idle_cpu(int cpu) 1216 { 1217 struct rq *rq = cpu_rq(cpu); 1218 1219 if (cpu == smp_processor_id()) 1220 return; 1221 1222 /* 1223 * Set TIF_NEED_RESCHED and send an IPI if in the non-polling 1224 * part of the idle loop. This forces an exit from the idle loop 1225 * and a round trip to schedule(). Now this could be optimized 1226 * because a simple new idle loop iteration is enough to 1227 * re-evaluate the next tick. Provided some re-ordering of tick 1228 * nohz functions that would need to follow TIF_NR_POLLING 1229 * clearing: 1230 * 1231 * - On most architectures, a simple fetch_or on ti::flags with a 1232 * "0" value would be enough to know if an IPI needs to be sent. 1233 * 1234 * - x86 needs to perform a last need_resched() check between 1235 * monitor and mwait which doesn't take timers into account. 1236 * There a dedicated TIF_TIMER flag would be required to 1237 * fetch_or here and be checked along with TIF_NEED_RESCHED 1238 * before mwait(). 1239 * 1240 * However, remote timer enqueue is not such a frequent event 1241 * and testing of the above solutions didn't appear to report 1242 * much benefits. 1243 */ 1244 if (set_nr_and_not_polling(task_thread_info(rq->idle), TIF_NEED_RESCHED)) 1245 smp_send_reschedule(cpu); 1246 else 1247 trace_sched_wake_idle_without_ipi(cpu); 1248 } 1249 1250 static bool wake_up_full_nohz_cpu(int cpu) 1251 { 1252 /* 1253 * We just need the target to call irq_exit() and re-evaluate 1254 * the next tick. The nohz full kick at least implies that. 1255 * If needed we can still optimize that later with an 1256 * empty IRQ. 1257 */ 1258 if (cpu_is_offline(cpu)) 1259 return true; /* Don't try to wake offline CPUs. */ 1260 if (tick_nohz_full_cpu(cpu)) { 1261 if (cpu != smp_processor_id() || 1262 tick_nohz_tick_stopped()) 1263 tick_nohz_full_kick_cpu(cpu); 1264 return true; 1265 } 1266 1267 return false; 1268 } 1269 1270 /* 1271 * Wake up the specified CPU. If the CPU is going offline, it is the 1272 * caller's responsibility to deal with the lost wakeup, for example, 1273 * by hooking into the CPU_DEAD notifier like timers and hrtimers do. 1274 */ 1275 void wake_up_nohz_cpu(int cpu) 1276 { 1277 if (!wake_up_full_nohz_cpu(cpu)) 1278 wake_up_idle_cpu(cpu); 1279 } 1280 1281 static void nohz_csd_func(void *info) 1282 { 1283 struct rq *rq = info; 1284 int cpu = cpu_of(rq); 1285 unsigned int flags; 1286 1287 /* 1288 * Release the rq::nohz_csd. 1289 */ 1290 flags = atomic_fetch_andnot(NOHZ_KICK_MASK | NOHZ_NEWILB_KICK, nohz_flags(cpu)); 1291 WARN_ON(!(flags & NOHZ_KICK_MASK)); 1292 1293 rq->idle_balance = idle_cpu(cpu); 1294 if (rq->idle_balance) { 1295 rq->nohz_idle_balance = flags; 1296 __raise_softirq_irqoff(SCHED_SOFTIRQ); 1297 } 1298 } 1299 1300 #endif /* CONFIG_NO_HZ_COMMON */ 1301 1302 #ifdef CONFIG_NO_HZ_FULL 1303 static inline bool __need_bw_check(struct rq *rq, struct task_struct *p) 1304 { 1305 if (rq->nr_running != 1) 1306 return false; 1307 1308 if (p->sched_class != &fair_sched_class) 1309 return false; 1310 1311 if (!task_on_rq_queued(p)) 1312 return false; 1313 1314 return true; 1315 } 1316 1317 bool sched_can_stop_tick(struct rq *rq) 1318 { 1319 int fifo_nr_running; 1320 1321 /* Deadline tasks, even if single, need the tick */ 1322 if (rq->dl.dl_nr_running) 1323 return false; 1324 1325 /* 1326 * If there are more than one RR tasks, we need the tick to affect the 1327 * actual RR behaviour. 1328 */ 1329 if (rq->rt.rr_nr_running) { 1330 if (rq->rt.rr_nr_running == 1) 1331 return true; 1332 else 1333 return false; 1334 } 1335 1336 /* 1337 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no 1338 * forced preemption between FIFO tasks. 1339 */ 1340 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running; 1341 if (fifo_nr_running) 1342 return true; 1343 1344 /* 1345 * If there are no DL,RR/FIFO tasks, there must only be CFS or SCX tasks 1346 * left. For CFS, if there's more than one we need the tick for 1347 * involuntary preemption. For SCX, ask. 1348 */ 1349 if (scx_enabled() && !scx_can_stop_tick(rq)) 1350 return false; 1351 1352 if (rq->cfs.h_nr_queued > 1) 1353 return false; 1354 1355 /* 1356 * If there is one task and it has CFS runtime bandwidth constraints 1357 * and it's on the cpu now we don't want to stop the tick. 1358 * This check prevents clearing the bit if a newly enqueued task here is 1359 * dequeued by migrating while the constrained task continues to run. 1360 * E.g. going from 2->1 without going through pick_next_task(). 1361 */ 1362 if (__need_bw_check(rq, rq->curr)) { 1363 if (cfs_task_bw_constrained(rq->curr)) 1364 return false; 1365 } 1366 1367 return true; 1368 } 1369 #endif /* CONFIG_NO_HZ_FULL */ 1370 #endif /* CONFIG_SMP */ 1371 1372 #if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \ 1373 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH))) 1374 /* 1375 * Iterate task_group tree rooted at *from, calling @down when first entering a 1376 * node and @up when leaving it for the final time. 1377 * 1378 * Caller must hold rcu_lock or sufficient equivalent. 1379 */ 1380 int walk_tg_tree_from(struct task_group *from, 1381 tg_visitor down, tg_visitor up, void *data) 1382 { 1383 struct task_group *parent, *child; 1384 int ret; 1385 1386 parent = from; 1387 1388 down: 1389 ret = (*down)(parent, data); 1390 if (ret) 1391 goto out; 1392 list_for_each_entry_rcu(child, &parent->children, siblings) { 1393 parent = child; 1394 goto down; 1395 1396 up: 1397 continue; 1398 } 1399 ret = (*up)(parent, data); 1400 if (ret || parent == from) 1401 goto out; 1402 1403 child = parent; 1404 parent = parent->parent; 1405 if (parent) 1406 goto up; 1407 out: 1408 return ret; 1409 } 1410 1411 int tg_nop(struct task_group *tg, void *data) 1412 { 1413 return 0; 1414 } 1415 #endif 1416 1417 void set_load_weight(struct task_struct *p, bool update_load) 1418 { 1419 int prio = p->static_prio - MAX_RT_PRIO; 1420 struct load_weight lw; 1421 1422 if (task_has_idle_policy(p)) { 1423 lw.weight = scale_load(WEIGHT_IDLEPRIO); 1424 lw.inv_weight = WMULT_IDLEPRIO; 1425 } else { 1426 lw.weight = scale_load(sched_prio_to_weight[prio]); 1427 lw.inv_weight = sched_prio_to_wmult[prio]; 1428 } 1429 1430 /* 1431 * SCHED_OTHER tasks have to update their load when changing their 1432 * weight 1433 */ 1434 if (update_load && p->sched_class->reweight_task) 1435 p->sched_class->reweight_task(task_rq(p), p, &lw); 1436 else 1437 p->se.load = lw; 1438 } 1439 1440 #ifdef CONFIG_UCLAMP_TASK 1441 /* 1442 * Serializes updates of utilization clamp values 1443 * 1444 * The (slow-path) user-space triggers utilization clamp value updates which 1445 * can require updates on (fast-path) scheduler's data structures used to 1446 * support enqueue/dequeue operations. 1447 * While the per-CPU rq lock protects fast-path update operations, user-space 1448 * requests are serialized using a mutex to reduce the risk of conflicting 1449 * updates or API abuses. 1450 */ 1451 static __maybe_unused DEFINE_MUTEX(uclamp_mutex); 1452 1453 /* Max allowed minimum utilization */ 1454 static unsigned int __maybe_unused sysctl_sched_uclamp_util_min = SCHED_CAPACITY_SCALE; 1455 1456 /* Max allowed maximum utilization */ 1457 static unsigned int __maybe_unused sysctl_sched_uclamp_util_max = SCHED_CAPACITY_SCALE; 1458 1459 /* 1460 * By default RT tasks run at the maximum performance point/capacity of the 1461 * system. Uclamp enforces this by always setting UCLAMP_MIN of RT tasks to 1462 * SCHED_CAPACITY_SCALE. 1463 * 1464 * This knob allows admins to change the default behavior when uclamp is being 1465 * used. In battery powered devices, particularly, running at the maximum 1466 * capacity and frequency will increase energy consumption and shorten the 1467 * battery life. 1468 * 1469 * This knob only affects RT tasks that their uclamp_se->user_defined == false. 1470 * 1471 * This knob will not override the system default sched_util_clamp_min defined 1472 * above. 1473 */ 1474 unsigned int sysctl_sched_uclamp_util_min_rt_default = SCHED_CAPACITY_SCALE; 1475 1476 /* All clamps are required to be less or equal than these values */ 1477 static struct uclamp_se uclamp_default[UCLAMP_CNT]; 1478 1479 /* 1480 * This static key is used to reduce the uclamp overhead in the fast path. It 1481 * primarily disables the call to uclamp_rq_{inc, dec}() in 1482 * enqueue/dequeue_task(). 1483 * 1484 * This allows users to continue to enable uclamp in their kernel config with 1485 * minimum uclamp overhead in the fast path. 1486 * 1487 * As soon as userspace modifies any of the uclamp knobs, the static key is 1488 * enabled, since we have an actual users that make use of uclamp 1489 * functionality. 1490 * 1491 * The knobs that would enable this static key are: 1492 * 1493 * * A task modifying its uclamp value with sched_setattr(). 1494 * * An admin modifying the sysctl_sched_uclamp_{min, max} via procfs. 1495 * * An admin modifying the cgroup cpu.uclamp.{min, max} 1496 */ 1497 DEFINE_STATIC_KEY_FALSE(sched_uclamp_used); 1498 1499 static inline unsigned int 1500 uclamp_idle_value(struct rq *rq, enum uclamp_id clamp_id, 1501 unsigned int clamp_value) 1502 { 1503 /* 1504 * Avoid blocked utilization pushing up the frequency when we go 1505 * idle (which drops the max-clamp) by retaining the last known 1506 * max-clamp. 1507 */ 1508 if (clamp_id == UCLAMP_MAX) { 1509 rq->uclamp_flags |= UCLAMP_FLAG_IDLE; 1510 return clamp_value; 1511 } 1512 1513 return uclamp_none(UCLAMP_MIN); 1514 } 1515 1516 static inline void uclamp_idle_reset(struct rq *rq, enum uclamp_id clamp_id, 1517 unsigned int clamp_value) 1518 { 1519 /* Reset max-clamp retention only on idle exit */ 1520 if (!(rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1521 return; 1522 1523 uclamp_rq_set(rq, clamp_id, clamp_value); 1524 } 1525 1526 static inline 1527 unsigned int uclamp_rq_max_value(struct rq *rq, enum uclamp_id clamp_id, 1528 unsigned int clamp_value) 1529 { 1530 struct uclamp_bucket *bucket = rq->uclamp[clamp_id].bucket; 1531 int bucket_id = UCLAMP_BUCKETS - 1; 1532 1533 /* 1534 * Since both min and max clamps are max aggregated, find the 1535 * top most bucket with tasks in. 1536 */ 1537 for ( ; bucket_id >= 0; bucket_id--) { 1538 if (!bucket[bucket_id].tasks) 1539 continue; 1540 return bucket[bucket_id].value; 1541 } 1542 1543 /* No tasks -- default clamp values */ 1544 return uclamp_idle_value(rq, clamp_id, clamp_value); 1545 } 1546 1547 static void __uclamp_update_util_min_rt_default(struct task_struct *p) 1548 { 1549 unsigned int default_util_min; 1550 struct uclamp_se *uc_se; 1551 1552 lockdep_assert_held(&p->pi_lock); 1553 1554 uc_se = &p->uclamp_req[UCLAMP_MIN]; 1555 1556 /* Only sync if user didn't override the default */ 1557 if (uc_se->user_defined) 1558 return; 1559 1560 default_util_min = sysctl_sched_uclamp_util_min_rt_default; 1561 uclamp_se_set(uc_se, default_util_min, false); 1562 } 1563 1564 static void uclamp_update_util_min_rt_default(struct task_struct *p) 1565 { 1566 if (!rt_task(p)) 1567 return; 1568 1569 /* Protect updates to p->uclamp_* */ 1570 guard(task_rq_lock)(p); 1571 __uclamp_update_util_min_rt_default(p); 1572 } 1573 1574 static inline struct uclamp_se 1575 uclamp_tg_restrict(struct task_struct *p, enum uclamp_id clamp_id) 1576 { 1577 /* Copy by value as we could modify it */ 1578 struct uclamp_se uc_req = p->uclamp_req[clamp_id]; 1579 #ifdef CONFIG_UCLAMP_TASK_GROUP 1580 unsigned int tg_min, tg_max, value; 1581 1582 /* 1583 * Tasks in autogroups or root task group will be 1584 * restricted by system defaults. 1585 */ 1586 if (task_group_is_autogroup(task_group(p))) 1587 return uc_req; 1588 if (task_group(p) == &root_task_group) 1589 return uc_req; 1590 1591 tg_min = task_group(p)->uclamp[UCLAMP_MIN].value; 1592 tg_max = task_group(p)->uclamp[UCLAMP_MAX].value; 1593 value = uc_req.value; 1594 value = clamp(value, tg_min, tg_max); 1595 uclamp_se_set(&uc_req, value, false); 1596 #endif 1597 1598 return uc_req; 1599 } 1600 1601 /* 1602 * The effective clamp bucket index of a task depends on, by increasing 1603 * priority: 1604 * - the task specific clamp value, when explicitly requested from userspace 1605 * - the task group effective clamp value, for tasks not either in the root 1606 * group or in an autogroup 1607 * - the system default clamp value, defined by the sysadmin 1608 */ 1609 static inline struct uclamp_se 1610 uclamp_eff_get(struct task_struct *p, enum uclamp_id clamp_id) 1611 { 1612 struct uclamp_se uc_req = uclamp_tg_restrict(p, clamp_id); 1613 struct uclamp_se uc_max = uclamp_default[clamp_id]; 1614 1615 /* System default restrictions always apply */ 1616 if (unlikely(uc_req.value > uc_max.value)) 1617 return uc_max; 1618 1619 return uc_req; 1620 } 1621 1622 unsigned long uclamp_eff_value(struct task_struct *p, enum uclamp_id clamp_id) 1623 { 1624 struct uclamp_se uc_eff; 1625 1626 /* Task currently refcounted: use back-annotated (effective) value */ 1627 if (p->uclamp[clamp_id].active) 1628 return (unsigned long)p->uclamp[clamp_id].value; 1629 1630 uc_eff = uclamp_eff_get(p, clamp_id); 1631 1632 return (unsigned long)uc_eff.value; 1633 } 1634 1635 /* 1636 * When a task is enqueued on a rq, the clamp bucket currently defined by the 1637 * task's uclamp::bucket_id is refcounted on that rq. This also immediately 1638 * updates the rq's clamp value if required. 1639 * 1640 * Tasks can have a task-specific value requested from user-space, track 1641 * within each bucket the maximum value for tasks refcounted in it. 1642 * This "local max aggregation" allows to track the exact "requested" value 1643 * for each bucket when all its RUNNABLE tasks require the same clamp. 1644 */ 1645 static inline void uclamp_rq_inc_id(struct rq *rq, struct task_struct *p, 1646 enum uclamp_id clamp_id) 1647 { 1648 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1649 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1650 struct uclamp_bucket *bucket; 1651 1652 lockdep_assert_rq_held(rq); 1653 1654 /* Update task effective clamp */ 1655 p->uclamp[clamp_id] = uclamp_eff_get(p, clamp_id); 1656 1657 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1658 bucket->tasks++; 1659 uc_se->active = true; 1660 1661 uclamp_idle_reset(rq, clamp_id, uc_se->value); 1662 1663 /* 1664 * Local max aggregation: rq buckets always track the max 1665 * "requested" clamp value of its RUNNABLE tasks. 1666 */ 1667 if (bucket->tasks == 1 || uc_se->value > bucket->value) 1668 bucket->value = uc_se->value; 1669 1670 if (uc_se->value > uclamp_rq_get(rq, clamp_id)) 1671 uclamp_rq_set(rq, clamp_id, uc_se->value); 1672 } 1673 1674 /* 1675 * When a task is dequeued from a rq, the clamp bucket refcounted by the task 1676 * is released. If this is the last task reference counting the rq's max 1677 * active clamp value, then the rq's clamp value is updated. 1678 * 1679 * Both refcounted tasks and rq's cached clamp values are expected to be 1680 * always valid. If it's detected they are not, as defensive programming, 1681 * enforce the expected state and warn. 1682 */ 1683 static inline void uclamp_rq_dec_id(struct rq *rq, struct task_struct *p, 1684 enum uclamp_id clamp_id) 1685 { 1686 struct uclamp_rq *uc_rq = &rq->uclamp[clamp_id]; 1687 struct uclamp_se *uc_se = &p->uclamp[clamp_id]; 1688 struct uclamp_bucket *bucket; 1689 unsigned int bkt_clamp; 1690 unsigned int rq_clamp; 1691 1692 lockdep_assert_rq_held(rq); 1693 1694 /* 1695 * If sched_uclamp_used was enabled after task @p was enqueued, 1696 * we could end up with unbalanced call to uclamp_rq_dec_id(). 1697 * 1698 * In this case the uc_se->active flag should be false since no uclamp 1699 * accounting was performed at enqueue time and we can just return 1700 * here. 1701 * 1702 * Need to be careful of the following enqueue/dequeue ordering 1703 * problem too 1704 * 1705 * enqueue(taskA) 1706 * // sched_uclamp_used gets enabled 1707 * enqueue(taskB) 1708 * dequeue(taskA) 1709 * // Must not decrement bucket->tasks here 1710 * dequeue(taskB) 1711 * 1712 * where we could end up with stale data in uc_se and 1713 * bucket[uc_se->bucket_id]. 1714 * 1715 * The following check here eliminates the possibility of such race. 1716 */ 1717 if (unlikely(!uc_se->active)) 1718 return; 1719 1720 bucket = &uc_rq->bucket[uc_se->bucket_id]; 1721 1722 SCHED_WARN_ON(!bucket->tasks); 1723 if (likely(bucket->tasks)) 1724 bucket->tasks--; 1725 1726 uc_se->active = false; 1727 1728 /* 1729 * Keep "local max aggregation" simple and accept to (possibly) 1730 * overboost some RUNNABLE tasks in the same bucket. 1731 * The rq clamp bucket value is reset to its base value whenever 1732 * there are no more RUNNABLE tasks refcounting it. 1733 */ 1734 if (likely(bucket->tasks)) 1735 return; 1736 1737 rq_clamp = uclamp_rq_get(rq, clamp_id); 1738 /* 1739 * Defensive programming: this should never happen. If it happens, 1740 * e.g. due to future modification, warn and fix up the expected value. 1741 */ 1742 SCHED_WARN_ON(bucket->value > rq_clamp); 1743 if (bucket->value >= rq_clamp) { 1744 bkt_clamp = uclamp_rq_max_value(rq, clamp_id, uc_se->value); 1745 uclamp_rq_set(rq, clamp_id, bkt_clamp); 1746 } 1747 } 1748 1749 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) 1750 { 1751 enum uclamp_id clamp_id; 1752 1753 /* 1754 * Avoid any overhead until uclamp is actually used by the userspace. 1755 * 1756 * The condition is constructed such that a NOP is generated when 1757 * sched_uclamp_used is disabled. 1758 */ 1759 if (!static_branch_unlikely(&sched_uclamp_used)) 1760 return; 1761 1762 if (unlikely(!p->sched_class->uclamp_enabled)) 1763 return; 1764 1765 if (p->se.sched_delayed) 1766 return; 1767 1768 for_each_clamp_id(clamp_id) 1769 uclamp_rq_inc_id(rq, p, clamp_id); 1770 1771 /* Reset clamp idle holding when there is one RUNNABLE task */ 1772 if (rq->uclamp_flags & UCLAMP_FLAG_IDLE) 1773 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1774 } 1775 1776 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) 1777 { 1778 enum uclamp_id clamp_id; 1779 1780 /* 1781 * Avoid any overhead until uclamp is actually used by the userspace. 1782 * 1783 * The condition is constructed such that a NOP is generated when 1784 * sched_uclamp_used is disabled. 1785 */ 1786 if (!static_branch_unlikely(&sched_uclamp_used)) 1787 return; 1788 1789 if (unlikely(!p->sched_class->uclamp_enabled)) 1790 return; 1791 1792 if (p->se.sched_delayed) 1793 return; 1794 1795 for_each_clamp_id(clamp_id) 1796 uclamp_rq_dec_id(rq, p, clamp_id); 1797 } 1798 1799 static inline void uclamp_rq_reinc_id(struct rq *rq, struct task_struct *p, 1800 enum uclamp_id clamp_id) 1801 { 1802 if (!p->uclamp[clamp_id].active) 1803 return; 1804 1805 uclamp_rq_dec_id(rq, p, clamp_id); 1806 uclamp_rq_inc_id(rq, p, clamp_id); 1807 1808 /* 1809 * Make sure to clear the idle flag if we've transiently reached 0 1810 * active tasks on rq. 1811 */ 1812 if (clamp_id == UCLAMP_MAX && (rq->uclamp_flags & UCLAMP_FLAG_IDLE)) 1813 rq->uclamp_flags &= ~UCLAMP_FLAG_IDLE; 1814 } 1815 1816 static inline void 1817 uclamp_update_active(struct task_struct *p) 1818 { 1819 enum uclamp_id clamp_id; 1820 struct rq_flags rf; 1821 struct rq *rq; 1822 1823 /* 1824 * Lock the task and the rq where the task is (or was) queued. 1825 * 1826 * We might lock the (previous) rq of a !RUNNABLE task, but that's the 1827 * price to pay to safely serialize util_{min,max} updates with 1828 * enqueues, dequeues and migration operations. 1829 * This is the same locking schema used by __set_cpus_allowed_ptr(). 1830 */ 1831 rq = task_rq_lock(p, &rf); 1832 1833 /* 1834 * Setting the clamp bucket is serialized by task_rq_lock(). 1835 * If the task is not yet RUNNABLE and its task_struct is not 1836 * affecting a valid clamp bucket, the next time it's enqueued, 1837 * it will already see the updated clamp bucket value. 1838 */ 1839 for_each_clamp_id(clamp_id) 1840 uclamp_rq_reinc_id(rq, p, clamp_id); 1841 1842 task_rq_unlock(rq, p, &rf); 1843 } 1844 1845 #ifdef CONFIG_UCLAMP_TASK_GROUP 1846 static inline void 1847 uclamp_update_active_tasks(struct cgroup_subsys_state *css) 1848 { 1849 struct css_task_iter it; 1850 struct task_struct *p; 1851 1852 css_task_iter_start(css, 0, &it); 1853 while ((p = css_task_iter_next(&it))) 1854 uclamp_update_active(p); 1855 css_task_iter_end(&it); 1856 } 1857 1858 static void cpu_util_update_eff(struct cgroup_subsys_state *css); 1859 #endif 1860 1861 #ifdef CONFIG_SYSCTL 1862 #ifdef CONFIG_UCLAMP_TASK_GROUP 1863 static void uclamp_update_root_tg(void) 1864 { 1865 struct task_group *tg = &root_task_group; 1866 1867 uclamp_se_set(&tg->uclamp_req[UCLAMP_MIN], 1868 sysctl_sched_uclamp_util_min, false); 1869 uclamp_se_set(&tg->uclamp_req[UCLAMP_MAX], 1870 sysctl_sched_uclamp_util_max, false); 1871 1872 guard(rcu)(); 1873 cpu_util_update_eff(&root_task_group.css); 1874 } 1875 #else 1876 static void uclamp_update_root_tg(void) { } 1877 #endif 1878 1879 static void uclamp_sync_util_min_rt_default(void) 1880 { 1881 struct task_struct *g, *p; 1882 1883 /* 1884 * copy_process() sysctl_uclamp 1885 * uclamp_min_rt = X; 1886 * write_lock(&tasklist_lock) read_lock(&tasklist_lock) 1887 * // link thread smp_mb__after_spinlock() 1888 * write_unlock(&tasklist_lock) read_unlock(&tasklist_lock); 1889 * sched_post_fork() for_each_process_thread() 1890 * __uclamp_sync_rt() __uclamp_sync_rt() 1891 * 1892 * Ensures that either sched_post_fork() will observe the new 1893 * uclamp_min_rt or for_each_process_thread() will observe the new 1894 * task. 1895 */ 1896 read_lock(&tasklist_lock); 1897 smp_mb__after_spinlock(); 1898 read_unlock(&tasklist_lock); 1899 1900 guard(rcu)(); 1901 for_each_process_thread(g, p) 1902 uclamp_update_util_min_rt_default(p); 1903 } 1904 1905 static int sysctl_sched_uclamp_handler(const struct ctl_table *table, int write, 1906 void *buffer, size_t *lenp, loff_t *ppos) 1907 { 1908 bool update_root_tg = false; 1909 int old_min, old_max, old_min_rt; 1910 int result; 1911 1912 guard(mutex)(&uclamp_mutex); 1913 1914 old_min = sysctl_sched_uclamp_util_min; 1915 old_max = sysctl_sched_uclamp_util_max; 1916 old_min_rt = sysctl_sched_uclamp_util_min_rt_default; 1917 1918 result = proc_dointvec(table, write, buffer, lenp, ppos); 1919 if (result) 1920 goto undo; 1921 if (!write) 1922 return 0; 1923 1924 if (sysctl_sched_uclamp_util_min > sysctl_sched_uclamp_util_max || 1925 sysctl_sched_uclamp_util_max > SCHED_CAPACITY_SCALE || 1926 sysctl_sched_uclamp_util_min_rt_default > SCHED_CAPACITY_SCALE) { 1927 1928 result = -EINVAL; 1929 goto undo; 1930 } 1931 1932 if (old_min != sysctl_sched_uclamp_util_min) { 1933 uclamp_se_set(&uclamp_default[UCLAMP_MIN], 1934 sysctl_sched_uclamp_util_min, false); 1935 update_root_tg = true; 1936 } 1937 if (old_max != sysctl_sched_uclamp_util_max) { 1938 uclamp_se_set(&uclamp_default[UCLAMP_MAX], 1939 sysctl_sched_uclamp_util_max, false); 1940 update_root_tg = true; 1941 } 1942 1943 if (update_root_tg) { 1944 static_branch_enable(&sched_uclamp_used); 1945 uclamp_update_root_tg(); 1946 } 1947 1948 if (old_min_rt != sysctl_sched_uclamp_util_min_rt_default) { 1949 static_branch_enable(&sched_uclamp_used); 1950 uclamp_sync_util_min_rt_default(); 1951 } 1952 1953 /* 1954 * We update all RUNNABLE tasks only when task groups are in use. 1955 * Otherwise, keep it simple and do just a lazy update at each next 1956 * task enqueue time. 1957 */ 1958 return 0; 1959 1960 undo: 1961 sysctl_sched_uclamp_util_min = old_min; 1962 sysctl_sched_uclamp_util_max = old_max; 1963 sysctl_sched_uclamp_util_min_rt_default = old_min_rt; 1964 return result; 1965 } 1966 #endif 1967 1968 static void uclamp_fork(struct task_struct *p) 1969 { 1970 enum uclamp_id clamp_id; 1971 1972 /* 1973 * We don't need to hold task_rq_lock() when updating p->uclamp_* here 1974 * as the task is still at its early fork stages. 1975 */ 1976 for_each_clamp_id(clamp_id) 1977 p->uclamp[clamp_id].active = false; 1978 1979 if (likely(!p->sched_reset_on_fork)) 1980 return; 1981 1982 for_each_clamp_id(clamp_id) { 1983 uclamp_se_set(&p->uclamp_req[clamp_id], 1984 uclamp_none(clamp_id), false); 1985 } 1986 } 1987 1988 static void uclamp_post_fork(struct task_struct *p) 1989 { 1990 uclamp_update_util_min_rt_default(p); 1991 } 1992 1993 static void __init init_uclamp_rq(struct rq *rq) 1994 { 1995 enum uclamp_id clamp_id; 1996 struct uclamp_rq *uc_rq = rq->uclamp; 1997 1998 for_each_clamp_id(clamp_id) { 1999 uc_rq[clamp_id] = (struct uclamp_rq) { 2000 .value = uclamp_none(clamp_id) 2001 }; 2002 } 2003 2004 rq->uclamp_flags = UCLAMP_FLAG_IDLE; 2005 } 2006 2007 static void __init init_uclamp(void) 2008 { 2009 struct uclamp_se uc_max = {}; 2010 enum uclamp_id clamp_id; 2011 int cpu; 2012 2013 for_each_possible_cpu(cpu) 2014 init_uclamp_rq(cpu_rq(cpu)); 2015 2016 for_each_clamp_id(clamp_id) { 2017 uclamp_se_set(&init_task.uclamp_req[clamp_id], 2018 uclamp_none(clamp_id), false); 2019 } 2020 2021 /* System defaults allow max clamp values for both indexes */ 2022 uclamp_se_set(&uc_max, uclamp_none(UCLAMP_MAX), false); 2023 for_each_clamp_id(clamp_id) { 2024 uclamp_default[clamp_id] = uc_max; 2025 #ifdef CONFIG_UCLAMP_TASK_GROUP 2026 root_task_group.uclamp_req[clamp_id] = uc_max; 2027 root_task_group.uclamp[clamp_id] = uc_max; 2028 #endif 2029 } 2030 } 2031 2032 #else /* !CONFIG_UCLAMP_TASK */ 2033 static inline void uclamp_rq_inc(struct rq *rq, struct task_struct *p) { } 2034 static inline void uclamp_rq_dec(struct rq *rq, struct task_struct *p) { } 2035 static inline void uclamp_fork(struct task_struct *p) { } 2036 static inline void uclamp_post_fork(struct task_struct *p) { } 2037 static inline void init_uclamp(void) { } 2038 #endif /* CONFIG_UCLAMP_TASK */ 2039 2040 bool sched_task_on_rq(struct task_struct *p) 2041 { 2042 return task_on_rq_queued(p); 2043 } 2044 2045 unsigned long get_wchan(struct task_struct *p) 2046 { 2047 unsigned long ip = 0; 2048 unsigned int state; 2049 2050 if (!p || p == current) 2051 return 0; 2052 2053 /* Only get wchan if task is blocked and we can keep it that way. */ 2054 raw_spin_lock_irq(&p->pi_lock); 2055 state = READ_ONCE(p->__state); 2056 smp_rmb(); /* see try_to_wake_up() */ 2057 if (state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq) 2058 ip = __get_wchan(p); 2059 raw_spin_unlock_irq(&p->pi_lock); 2060 2061 return ip; 2062 } 2063 2064 void enqueue_task(struct rq *rq, struct task_struct *p, int flags) 2065 { 2066 if (!(flags & ENQUEUE_NOCLOCK)) 2067 update_rq_clock(rq); 2068 2069 p->sched_class->enqueue_task(rq, p, flags); 2070 /* 2071 * Must be after ->enqueue_task() because ENQUEUE_DELAYED can clear 2072 * ->sched_delayed. 2073 */ 2074 uclamp_rq_inc(rq, p); 2075 2076 psi_enqueue(p, flags); 2077 2078 if (!(flags & ENQUEUE_RESTORE)) 2079 sched_info_enqueue(rq, p); 2080 2081 if (sched_core_enabled(rq)) 2082 sched_core_enqueue(rq, p); 2083 } 2084 2085 /* 2086 * Must only return false when DEQUEUE_SLEEP. 2087 */ 2088 inline bool dequeue_task(struct rq *rq, struct task_struct *p, int flags) 2089 { 2090 if (sched_core_enabled(rq)) 2091 sched_core_dequeue(rq, p, flags); 2092 2093 if (!(flags & DEQUEUE_NOCLOCK)) 2094 update_rq_clock(rq); 2095 2096 if (!(flags & DEQUEUE_SAVE)) 2097 sched_info_dequeue(rq, p); 2098 2099 psi_dequeue(p, flags); 2100 2101 /* 2102 * Must be before ->dequeue_task() because ->dequeue_task() can 'fail' 2103 * and mark the task ->sched_delayed. 2104 */ 2105 uclamp_rq_dec(rq, p); 2106 return p->sched_class->dequeue_task(rq, p, flags); 2107 } 2108 2109 void activate_task(struct rq *rq, struct task_struct *p, int flags) 2110 { 2111 if (task_on_rq_migrating(p)) 2112 flags |= ENQUEUE_MIGRATED; 2113 if (flags & ENQUEUE_MIGRATED) 2114 sched_mm_cid_migrate_to(rq, p); 2115 2116 enqueue_task(rq, p, flags); 2117 2118 WRITE_ONCE(p->on_rq, TASK_ON_RQ_QUEUED); 2119 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2120 } 2121 2122 void deactivate_task(struct rq *rq, struct task_struct *p, int flags) 2123 { 2124 SCHED_WARN_ON(flags & DEQUEUE_SLEEP); 2125 2126 WRITE_ONCE(p->on_rq, TASK_ON_RQ_MIGRATING); 2127 ASSERT_EXCLUSIVE_WRITER(p->on_rq); 2128 2129 /* 2130 * Code explicitly relies on TASK_ON_RQ_MIGRATING begin set *before* 2131 * dequeue_task() and cleared *after* enqueue_task(). 2132 */ 2133 2134 dequeue_task(rq, p, flags); 2135 } 2136 2137 static void block_task(struct rq *rq, struct task_struct *p, int flags) 2138 { 2139 if (dequeue_task(rq, p, DEQUEUE_SLEEP | flags)) 2140 __block_task(rq, p); 2141 } 2142 2143 /** 2144 * task_curr - is this task currently executing on a CPU? 2145 * @p: the task in question. 2146 * 2147 * Return: 1 if the task is currently executing. 0 otherwise. 2148 */ 2149 inline int task_curr(const struct task_struct *p) 2150 { 2151 return cpu_curr(task_cpu(p)) == p; 2152 } 2153 2154 /* 2155 * ->switching_to() is called with the pi_lock and rq_lock held and must not 2156 * mess with locking. 2157 */ 2158 void check_class_changing(struct rq *rq, struct task_struct *p, 2159 const struct sched_class *prev_class) 2160 { 2161 if (prev_class != p->sched_class && p->sched_class->switching_to) 2162 p->sched_class->switching_to(rq, p); 2163 } 2164 2165 /* 2166 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock, 2167 * use the balance_callback list if you want balancing. 2168 * 2169 * this means any call to check_class_changed() must be followed by a call to 2170 * balance_callback(). 2171 */ 2172 void check_class_changed(struct rq *rq, struct task_struct *p, 2173 const struct sched_class *prev_class, 2174 int oldprio) 2175 { 2176 if (prev_class != p->sched_class) { 2177 if (prev_class->switched_from) 2178 prev_class->switched_from(rq, p); 2179 2180 p->sched_class->switched_to(rq, p); 2181 } else if (oldprio != p->prio || dl_task(p)) 2182 p->sched_class->prio_changed(rq, p, oldprio); 2183 } 2184 2185 void wakeup_preempt(struct rq *rq, struct task_struct *p, int flags) 2186 { 2187 struct task_struct *donor = rq->donor; 2188 2189 if (p->sched_class == donor->sched_class) 2190 donor->sched_class->wakeup_preempt(rq, p, flags); 2191 else if (sched_class_above(p->sched_class, donor->sched_class)) 2192 resched_curr(rq); 2193 2194 /* 2195 * A queue event has occurred, and we're going to schedule. In 2196 * this case, we can save a useless back to back clock update. 2197 */ 2198 if (task_on_rq_queued(donor) && test_tsk_need_resched(rq->curr)) 2199 rq_clock_skip_update(rq); 2200 } 2201 2202 static __always_inline 2203 int __task_state_match(struct task_struct *p, unsigned int state) 2204 { 2205 if (READ_ONCE(p->__state) & state) 2206 return 1; 2207 2208 if (READ_ONCE(p->saved_state) & state) 2209 return -1; 2210 2211 return 0; 2212 } 2213 2214 static __always_inline 2215 int task_state_match(struct task_struct *p, unsigned int state) 2216 { 2217 /* 2218 * Serialize against current_save_and_set_rtlock_wait_state(), 2219 * current_restore_rtlock_saved_state(), and __refrigerator(). 2220 */ 2221 guard(raw_spinlock_irq)(&p->pi_lock); 2222 return __task_state_match(p, state); 2223 } 2224 2225 /* 2226 * wait_task_inactive - wait for a thread to unschedule. 2227 * 2228 * Wait for the thread to block in any of the states set in @match_state. 2229 * If it changes, i.e. @p might have woken up, then return zero. When we 2230 * succeed in waiting for @p to be off its CPU, we return a positive number 2231 * (its total switch count). If a second call a short while later returns the 2232 * same number, the caller can be sure that @p has remained unscheduled the 2233 * whole time. 2234 * 2235 * The caller must ensure that the task *will* unschedule sometime soon, 2236 * else this function might spin for a *long* time. This function can't 2237 * be called with interrupts off, or it may introduce deadlock with 2238 * smp_call_function() if an IPI is sent by the same process we are 2239 * waiting to become inactive. 2240 */ 2241 unsigned long wait_task_inactive(struct task_struct *p, unsigned int match_state) 2242 { 2243 int running, queued, match; 2244 struct rq_flags rf; 2245 unsigned long ncsw; 2246 struct rq *rq; 2247 2248 for (;;) { 2249 /* 2250 * We do the initial early heuristics without holding 2251 * any task-queue locks at all. We'll only try to get 2252 * the runqueue lock when things look like they will 2253 * work out! 2254 */ 2255 rq = task_rq(p); 2256 2257 /* 2258 * If the task is actively running on another CPU 2259 * still, just relax and busy-wait without holding 2260 * any locks. 2261 * 2262 * NOTE! Since we don't hold any locks, it's not 2263 * even sure that "rq" stays as the right runqueue! 2264 * But we don't care, since "task_on_cpu()" will 2265 * return false if the runqueue has changed and p 2266 * is actually now running somewhere else! 2267 */ 2268 while (task_on_cpu(rq, p)) { 2269 if (!task_state_match(p, match_state)) 2270 return 0; 2271 cpu_relax(); 2272 } 2273 2274 /* 2275 * Ok, time to look more closely! We need the rq 2276 * lock now, to be *sure*. If we're wrong, we'll 2277 * just go back and repeat. 2278 */ 2279 rq = task_rq_lock(p, &rf); 2280 trace_sched_wait_task(p); 2281 running = task_on_cpu(rq, p); 2282 queued = task_on_rq_queued(p); 2283 ncsw = 0; 2284 if ((match = __task_state_match(p, match_state))) { 2285 /* 2286 * When matching on p->saved_state, consider this task 2287 * still queued so it will wait. 2288 */ 2289 if (match < 0) 2290 queued = 1; 2291 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */ 2292 } 2293 task_rq_unlock(rq, p, &rf); 2294 2295 /* 2296 * If it changed from the expected state, bail out now. 2297 */ 2298 if (unlikely(!ncsw)) 2299 break; 2300 2301 /* 2302 * Was it really running after all now that we 2303 * checked with the proper locks actually held? 2304 * 2305 * Oops. Go back and try again.. 2306 */ 2307 if (unlikely(running)) { 2308 cpu_relax(); 2309 continue; 2310 } 2311 2312 /* 2313 * It's not enough that it's not actively running, 2314 * it must be off the runqueue _entirely_, and not 2315 * preempted! 2316 * 2317 * So if it was still runnable (but just not actively 2318 * running right now), it's preempted, and we should 2319 * yield - it could be a while. 2320 */ 2321 if (unlikely(queued)) { 2322 ktime_t to = NSEC_PER_SEC / HZ; 2323 2324 set_current_state(TASK_UNINTERRUPTIBLE); 2325 schedule_hrtimeout(&to, HRTIMER_MODE_REL_HARD); 2326 continue; 2327 } 2328 2329 /* 2330 * Ahh, all good. It wasn't running, and it wasn't 2331 * runnable, which means that it will never become 2332 * running in the future either. We're all done! 2333 */ 2334 break; 2335 } 2336 2337 return ncsw; 2338 } 2339 2340 #ifdef CONFIG_SMP 2341 2342 static void 2343 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx); 2344 2345 static void migrate_disable_switch(struct rq *rq, struct task_struct *p) 2346 { 2347 struct affinity_context ac = { 2348 .new_mask = cpumask_of(rq->cpu), 2349 .flags = SCA_MIGRATE_DISABLE, 2350 }; 2351 2352 if (likely(!p->migration_disabled)) 2353 return; 2354 2355 if (p->cpus_ptr != &p->cpus_mask) 2356 return; 2357 2358 /* 2359 * Violates locking rules! See comment in __do_set_cpus_allowed(). 2360 */ 2361 __do_set_cpus_allowed(p, &ac); 2362 } 2363 2364 void migrate_disable(void) 2365 { 2366 struct task_struct *p = current; 2367 2368 if (p->migration_disabled) { 2369 #ifdef CONFIG_DEBUG_PREEMPT 2370 /* 2371 *Warn about overflow half-way through the range. 2372 */ 2373 WARN_ON_ONCE((s16)p->migration_disabled < 0); 2374 #endif 2375 p->migration_disabled++; 2376 return; 2377 } 2378 2379 guard(preempt)(); 2380 this_rq()->nr_pinned++; 2381 p->migration_disabled = 1; 2382 } 2383 EXPORT_SYMBOL_GPL(migrate_disable); 2384 2385 void migrate_enable(void) 2386 { 2387 struct task_struct *p = current; 2388 struct affinity_context ac = { 2389 .new_mask = &p->cpus_mask, 2390 .flags = SCA_MIGRATE_ENABLE, 2391 }; 2392 2393 #ifdef CONFIG_DEBUG_PREEMPT 2394 /* 2395 * Check both overflow from migrate_disable() and superfluous 2396 * migrate_enable(). 2397 */ 2398 if (WARN_ON_ONCE((s16)p->migration_disabled <= 0)) 2399 return; 2400 #endif 2401 2402 if (p->migration_disabled > 1) { 2403 p->migration_disabled--; 2404 return; 2405 } 2406 2407 /* 2408 * Ensure stop_task runs either before or after this, and that 2409 * __set_cpus_allowed_ptr(SCA_MIGRATE_ENABLE) doesn't schedule(). 2410 */ 2411 guard(preempt)(); 2412 if (p->cpus_ptr != &p->cpus_mask) 2413 __set_cpus_allowed_ptr(p, &ac); 2414 /* 2415 * Mustn't clear migration_disabled() until cpus_ptr points back at the 2416 * regular cpus_mask, otherwise things that race (eg. 2417 * select_fallback_rq) get confused. 2418 */ 2419 barrier(); 2420 p->migration_disabled = 0; 2421 this_rq()->nr_pinned--; 2422 } 2423 EXPORT_SYMBOL_GPL(migrate_enable); 2424 2425 static inline bool rq_has_pinned_tasks(struct rq *rq) 2426 { 2427 return rq->nr_pinned; 2428 } 2429 2430 /* 2431 * Per-CPU kthreads are allowed to run on !active && online CPUs, see 2432 * __set_cpus_allowed_ptr() and select_fallback_rq(). 2433 */ 2434 static inline bool is_cpu_allowed(struct task_struct *p, int cpu) 2435 { 2436 /* When not in the task's cpumask, no point in looking further. */ 2437 if (!task_allowed_on_cpu(p, cpu)) 2438 return false; 2439 2440 /* migrate_disabled() must be allowed to finish. */ 2441 if (is_migration_disabled(p)) 2442 return cpu_online(cpu); 2443 2444 /* Non kernel threads are not allowed during either online or offline. */ 2445 if (!(p->flags & PF_KTHREAD)) 2446 return cpu_active(cpu); 2447 2448 /* KTHREAD_IS_PER_CPU is always allowed. */ 2449 if (kthread_is_per_cpu(p)) 2450 return cpu_online(cpu); 2451 2452 /* Regular kernel threads don't get to stay during offline. */ 2453 if (cpu_dying(cpu)) 2454 return false; 2455 2456 /* But are allowed during online. */ 2457 return cpu_online(cpu); 2458 } 2459 2460 /* 2461 * This is how migration works: 2462 * 2463 * 1) we invoke migration_cpu_stop() on the target CPU using 2464 * stop_one_cpu(). 2465 * 2) stopper starts to run (implicitly forcing the migrated thread 2466 * off the CPU) 2467 * 3) it checks whether the migrated task is still in the wrong runqueue. 2468 * 4) if it's in the wrong runqueue then the migration thread removes 2469 * it and puts it into the right queue. 2470 * 5) stopper completes and stop_one_cpu() returns and the migration 2471 * is done. 2472 */ 2473 2474 /* 2475 * move_queued_task - move a queued task to new rq. 2476 * 2477 * Returns (locked) new rq. Old rq's lock is released. 2478 */ 2479 static struct rq *move_queued_task(struct rq *rq, struct rq_flags *rf, 2480 struct task_struct *p, int new_cpu) 2481 { 2482 lockdep_assert_rq_held(rq); 2483 2484 deactivate_task(rq, p, DEQUEUE_NOCLOCK); 2485 set_task_cpu(p, new_cpu); 2486 rq_unlock(rq, rf); 2487 2488 rq = cpu_rq(new_cpu); 2489 2490 rq_lock(rq, rf); 2491 WARN_ON_ONCE(task_cpu(p) != new_cpu); 2492 activate_task(rq, p, 0); 2493 wakeup_preempt(rq, p, 0); 2494 2495 return rq; 2496 } 2497 2498 struct migration_arg { 2499 struct task_struct *task; 2500 int dest_cpu; 2501 struct set_affinity_pending *pending; 2502 }; 2503 2504 /* 2505 * @refs: number of wait_for_completion() 2506 * @stop_pending: is @stop_work in use 2507 */ 2508 struct set_affinity_pending { 2509 refcount_t refs; 2510 unsigned int stop_pending; 2511 struct completion done; 2512 struct cpu_stop_work stop_work; 2513 struct migration_arg arg; 2514 }; 2515 2516 /* 2517 * Move (not current) task off this CPU, onto the destination CPU. We're doing 2518 * this because either it can't run here any more (set_cpus_allowed() 2519 * away from this CPU, or CPU going down), or because we're 2520 * attempting to rebalance this task on exec (sched_exec). 2521 * 2522 * So we race with normal scheduler movements, but that's OK, as long 2523 * as the task is no longer on this CPU. 2524 */ 2525 static struct rq *__migrate_task(struct rq *rq, struct rq_flags *rf, 2526 struct task_struct *p, int dest_cpu) 2527 { 2528 /* Affinity changed (again). */ 2529 if (!is_cpu_allowed(p, dest_cpu)) 2530 return rq; 2531 2532 rq = move_queued_task(rq, rf, p, dest_cpu); 2533 2534 return rq; 2535 } 2536 2537 /* 2538 * migration_cpu_stop - this will be executed by a high-prio stopper thread 2539 * and performs thread migration by bumping thread off CPU then 2540 * 'pushing' onto another runqueue. 2541 */ 2542 static int migration_cpu_stop(void *data) 2543 { 2544 struct migration_arg *arg = data; 2545 struct set_affinity_pending *pending = arg->pending; 2546 struct task_struct *p = arg->task; 2547 struct rq *rq = this_rq(); 2548 bool complete = false; 2549 struct rq_flags rf; 2550 2551 /* 2552 * The original target CPU might have gone down and we might 2553 * be on another CPU but it doesn't matter. 2554 */ 2555 local_irq_save(rf.flags); 2556 /* 2557 * We need to explicitly wake pending tasks before running 2558 * __migrate_task() such that we will not miss enforcing cpus_ptr 2559 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test. 2560 */ 2561 flush_smp_call_function_queue(); 2562 2563 raw_spin_lock(&p->pi_lock); 2564 rq_lock(rq, &rf); 2565 2566 /* 2567 * If we were passed a pending, then ->stop_pending was set, thus 2568 * p->migration_pending must have remained stable. 2569 */ 2570 WARN_ON_ONCE(pending && pending != p->migration_pending); 2571 2572 /* 2573 * If task_rq(p) != rq, it cannot be migrated here, because we're 2574 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because 2575 * we're holding p->pi_lock. 2576 */ 2577 if (task_rq(p) == rq) { 2578 if (is_migration_disabled(p)) 2579 goto out; 2580 2581 if (pending) { 2582 p->migration_pending = NULL; 2583 complete = true; 2584 2585 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) 2586 goto out; 2587 } 2588 2589 if (task_on_rq_queued(p)) { 2590 update_rq_clock(rq); 2591 rq = __migrate_task(rq, &rf, p, arg->dest_cpu); 2592 } else { 2593 p->wake_cpu = arg->dest_cpu; 2594 } 2595 2596 /* 2597 * XXX __migrate_task() can fail, at which point we might end 2598 * up running on a dodgy CPU, AFAICT this can only happen 2599 * during CPU hotplug, at which point we'll get pushed out 2600 * anyway, so it's probably not a big deal. 2601 */ 2602 2603 } else if (pending) { 2604 /* 2605 * This happens when we get migrated between migrate_enable()'s 2606 * preempt_enable() and scheduling the stopper task. At that 2607 * point we're a regular task again and not current anymore. 2608 * 2609 * A !PREEMPT kernel has a giant hole here, which makes it far 2610 * more likely. 2611 */ 2612 2613 /* 2614 * The task moved before the stopper got to run. We're holding 2615 * ->pi_lock, so the allowed mask is stable - if it got 2616 * somewhere allowed, we're done. 2617 */ 2618 if (cpumask_test_cpu(task_cpu(p), p->cpus_ptr)) { 2619 p->migration_pending = NULL; 2620 complete = true; 2621 goto out; 2622 } 2623 2624 /* 2625 * When migrate_enable() hits a rq mis-match we can't reliably 2626 * determine is_migration_disabled() and so have to chase after 2627 * it. 2628 */ 2629 WARN_ON_ONCE(!pending->stop_pending); 2630 preempt_disable(); 2631 task_rq_unlock(rq, p, &rf); 2632 stop_one_cpu_nowait(task_cpu(p), migration_cpu_stop, 2633 &pending->arg, &pending->stop_work); 2634 preempt_enable(); 2635 return 0; 2636 } 2637 out: 2638 if (pending) 2639 pending->stop_pending = false; 2640 task_rq_unlock(rq, p, &rf); 2641 2642 if (complete) 2643 complete_all(&pending->done); 2644 2645 return 0; 2646 } 2647 2648 int push_cpu_stop(void *arg) 2649 { 2650 struct rq *lowest_rq = NULL, *rq = this_rq(); 2651 struct task_struct *p = arg; 2652 2653 raw_spin_lock_irq(&p->pi_lock); 2654 raw_spin_rq_lock(rq); 2655 2656 if (task_rq(p) != rq) 2657 goto out_unlock; 2658 2659 if (is_migration_disabled(p)) { 2660 p->migration_flags |= MDF_PUSH; 2661 goto out_unlock; 2662 } 2663 2664 p->migration_flags &= ~MDF_PUSH; 2665 2666 if (p->sched_class->find_lock_rq) 2667 lowest_rq = p->sched_class->find_lock_rq(p, rq); 2668 2669 if (!lowest_rq) 2670 goto out_unlock; 2671 2672 // XXX validate p is still the highest prio task 2673 if (task_rq(p) == rq) { 2674 move_queued_task_locked(rq, lowest_rq, p); 2675 resched_curr(lowest_rq); 2676 } 2677 2678 double_unlock_balance(rq, lowest_rq); 2679 2680 out_unlock: 2681 rq->push_busy = false; 2682 raw_spin_rq_unlock(rq); 2683 raw_spin_unlock_irq(&p->pi_lock); 2684 2685 put_task_struct(p); 2686 return 0; 2687 } 2688 2689 /* 2690 * sched_class::set_cpus_allowed must do the below, but is not required to 2691 * actually call this function. 2692 */ 2693 void set_cpus_allowed_common(struct task_struct *p, struct affinity_context *ctx) 2694 { 2695 if (ctx->flags & (SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) { 2696 p->cpus_ptr = ctx->new_mask; 2697 return; 2698 } 2699 2700 cpumask_copy(&p->cpus_mask, ctx->new_mask); 2701 p->nr_cpus_allowed = cpumask_weight(ctx->new_mask); 2702 2703 /* 2704 * Swap in a new user_cpus_ptr if SCA_USER flag set 2705 */ 2706 if (ctx->flags & SCA_USER) 2707 swap(p->user_cpus_ptr, ctx->user_mask); 2708 } 2709 2710 static void 2711 __do_set_cpus_allowed(struct task_struct *p, struct affinity_context *ctx) 2712 { 2713 struct rq *rq = task_rq(p); 2714 bool queued, running; 2715 2716 /* 2717 * This here violates the locking rules for affinity, since we're only 2718 * supposed to change these variables while holding both rq->lock and 2719 * p->pi_lock. 2720 * 2721 * HOWEVER, it magically works, because ttwu() is the only code that 2722 * accesses these variables under p->pi_lock and only does so after 2723 * smp_cond_load_acquire(&p->on_cpu, !VAL), and we're in __schedule() 2724 * before finish_task(). 2725 * 2726 * XXX do further audits, this smells like something putrid. 2727 */ 2728 if (ctx->flags & SCA_MIGRATE_DISABLE) 2729 SCHED_WARN_ON(!p->on_cpu); 2730 else 2731 lockdep_assert_held(&p->pi_lock); 2732 2733 queued = task_on_rq_queued(p); 2734 running = task_current_donor(rq, p); 2735 2736 if (queued) { 2737 /* 2738 * Because __kthread_bind() calls this on blocked tasks without 2739 * holding rq->lock. 2740 */ 2741 lockdep_assert_rq_held(rq); 2742 dequeue_task(rq, p, DEQUEUE_SAVE | DEQUEUE_NOCLOCK); 2743 } 2744 if (running) 2745 put_prev_task(rq, p); 2746 2747 p->sched_class->set_cpus_allowed(p, ctx); 2748 mm_set_cpus_allowed(p->mm, ctx->new_mask); 2749 2750 if (queued) 2751 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 2752 if (running) 2753 set_next_task(rq, p); 2754 } 2755 2756 /* 2757 * Used for kthread_bind() and select_fallback_rq(), in both cases the user 2758 * affinity (if any) should be destroyed too. 2759 */ 2760 void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask) 2761 { 2762 struct affinity_context ac = { 2763 .new_mask = new_mask, 2764 .user_mask = NULL, 2765 .flags = SCA_USER, /* clear the user requested mask */ 2766 }; 2767 union cpumask_rcuhead { 2768 cpumask_t cpumask; 2769 struct rcu_head rcu; 2770 }; 2771 2772 __do_set_cpus_allowed(p, &ac); 2773 2774 /* 2775 * Because this is called with p->pi_lock held, it is not possible 2776 * to use kfree() here (when PREEMPT_RT=y), therefore punt to using 2777 * kfree_rcu(). 2778 */ 2779 kfree_rcu((union cpumask_rcuhead *)ac.user_mask, rcu); 2780 } 2781 2782 int dup_user_cpus_ptr(struct task_struct *dst, struct task_struct *src, 2783 int node) 2784 { 2785 cpumask_t *user_mask; 2786 unsigned long flags; 2787 2788 /* 2789 * Always clear dst->user_cpus_ptr first as their user_cpus_ptr's 2790 * may differ by now due to racing. 2791 */ 2792 dst->user_cpus_ptr = NULL; 2793 2794 /* 2795 * This check is racy and losing the race is a valid situation. 2796 * It is not worth the extra overhead of taking the pi_lock on 2797 * every fork/clone. 2798 */ 2799 if (data_race(!src->user_cpus_ptr)) 2800 return 0; 2801 2802 user_mask = alloc_user_cpus_ptr(node); 2803 if (!user_mask) 2804 return -ENOMEM; 2805 2806 /* 2807 * Use pi_lock to protect content of user_cpus_ptr 2808 * 2809 * Though unlikely, user_cpus_ptr can be reset to NULL by a concurrent 2810 * do_set_cpus_allowed(). 2811 */ 2812 raw_spin_lock_irqsave(&src->pi_lock, flags); 2813 if (src->user_cpus_ptr) { 2814 swap(dst->user_cpus_ptr, user_mask); 2815 cpumask_copy(dst->user_cpus_ptr, src->user_cpus_ptr); 2816 } 2817 raw_spin_unlock_irqrestore(&src->pi_lock, flags); 2818 2819 if (unlikely(user_mask)) 2820 kfree(user_mask); 2821 2822 return 0; 2823 } 2824 2825 static inline struct cpumask *clear_user_cpus_ptr(struct task_struct *p) 2826 { 2827 struct cpumask *user_mask = NULL; 2828 2829 swap(p->user_cpus_ptr, user_mask); 2830 2831 return user_mask; 2832 } 2833 2834 void release_user_cpus_ptr(struct task_struct *p) 2835 { 2836 kfree(clear_user_cpus_ptr(p)); 2837 } 2838 2839 /* 2840 * This function is wildly self concurrent; here be dragons. 2841 * 2842 * 2843 * When given a valid mask, __set_cpus_allowed_ptr() must block until the 2844 * designated task is enqueued on an allowed CPU. If that task is currently 2845 * running, we have to kick it out using the CPU stopper. 2846 * 2847 * Migrate-Disable comes along and tramples all over our nice sandcastle. 2848 * Consider: 2849 * 2850 * Initial conditions: P0->cpus_mask = [0, 1] 2851 * 2852 * P0@CPU0 P1 2853 * 2854 * migrate_disable(); 2855 * <preempted> 2856 * set_cpus_allowed_ptr(P0, [1]); 2857 * 2858 * P1 *cannot* return from this set_cpus_allowed_ptr() call until P0 executes 2859 * its outermost migrate_enable() (i.e. it exits its Migrate-Disable region). 2860 * This means we need the following scheme: 2861 * 2862 * P0@CPU0 P1 2863 * 2864 * migrate_disable(); 2865 * <preempted> 2866 * set_cpus_allowed_ptr(P0, [1]); 2867 * <blocks> 2868 * <resumes> 2869 * migrate_enable(); 2870 * __set_cpus_allowed_ptr(); 2871 * <wakes local stopper> 2872 * `--> <woken on migration completion> 2873 * 2874 * Now the fun stuff: there may be several P1-like tasks, i.e. multiple 2875 * concurrent set_cpus_allowed_ptr(P0, [*]) calls. CPU affinity changes of any 2876 * task p are serialized by p->pi_lock, which we can leverage: the one that 2877 * should come into effect at the end of the Migrate-Disable region is the last 2878 * one. This means we only need to track a single cpumask (i.e. p->cpus_mask), 2879 * but we still need to properly signal those waiting tasks at the appropriate 2880 * moment. 2881 * 2882 * This is implemented using struct set_affinity_pending. The first 2883 * __set_cpus_allowed_ptr() caller within a given Migrate-Disable region will 2884 * setup an instance of that struct and install it on the targeted task_struct. 2885 * Any and all further callers will reuse that instance. Those then wait for 2886 * a completion signaled at the tail of the CPU stopper callback (1), triggered 2887 * on the end of the Migrate-Disable region (i.e. outermost migrate_enable()). 2888 * 2889 * 2890 * (1) In the cases covered above. There is one more where the completion is 2891 * signaled within affine_move_task() itself: when a subsequent affinity request 2892 * occurs after the stopper bailed out due to the targeted task still being 2893 * Migrate-Disable. Consider: 2894 * 2895 * Initial conditions: P0->cpus_mask = [0, 1] 2896 * 2897 * CPU0 P1 P2 2898 * <P0> 2899 * migrate_disable(); 2900 * <preempted> 2901 * set_cpus_allowed_ptr(P0, [1]); 2902 * <blocks> 2903 * <migration/0> 2904 * migration_cpu_stop() 2905 * is_migration_disabled() 2906 * <bails> 2907 * set_cpus_allowed_ptr(P0, [0, 1]); 2908 * <signal completion> 2909 * <awakes> 2910 * 2911 * Note that the above is safe vs a concurrent migrate_enable(), as any 2912 * pending affinity completion is preceded by an uninstallation of 2913 * p->migration_pending done with p->pi_lock held. 2914 */ 2915 static int affine_move_task(struct rq *rq, struct task_struct *p, struct rq_flags *rf, 2916 int dest_cpu, unsigned int flags) 2917 __releases(rq->lock) 2918 __releases(p->pi_lock) 2919 { 2920 struct set_affinity_pending my_pending = { }, *pending = NULL; 2921 bool stop_pending, complete = false; 2922 2923 /* Can the task run on the task's current CPU? If so, we're done */ 2924 if (cpumask_test_cpu(task_cpu(p), &p->cpus_mask)) { 2925 struct task_struct *push_task = NULL; 2926 2927 if ((flags & SCA_MIGRATE_ENABLE) && 2928 (p->migration_flags & MDF_PUSH) && !rq->push_busy) { 2929 rq->push_busy = true; 2930 push_task = get_task_struct(p); 2931 } 2932 2933 /* 2934 * If there are pending waiters, but no pending stop_work, 2935 * then complete now. 2936 */ 2937 pending = p->migration_pending; 2938 if (pending && !pending->stop_pending) { 2939 p->migration_pending = NULL; 2940 complete = true; 2941 } 2942 2943 preempt_disable(); 2944 task_rq_unlock(rq, p, rf); 2945 if (push_task) { 2946 stop_one_cpu_nowait(rq->cpu, push_cpu_stop, 2947 p, &rq->push_work); 2948 } 2949 preempt_enable(); 2950 2951 if (complete) 2952 complete_all(&pending->done); 2953 2954 return 0; 2955 } 2956 2957 if (!(flags & SCA_MIGRATE_ENABLE)) { 2958 /* serialized by p->pi_lock */ 2959 if (!p->migration_pending) { 2960 /* Install the request */ 2961 refcount_set(&my_pending.refs, 1); 2962 init_completion(&my_pending.done); 2963 my_pending.arg = (struct migration_arg) { 2964 .task = p, 2965 .dest_cpu = dest_cpu, 2966 .pending = &my_pending, 2967 }; 2968 2969 p->migration_pending = &my_pending; 2970 } else { 2971 pending = p->migration_pending; 2972 refcount_inc(&pending->refs); 2973 /* 2974 * Affinity has changed, but we've already installed a 2975 * pending. migration_cpu_stop() *must* see this, else 2976 * we risk a completion of the pending despite having a 2977 * task on a disallowed CPU. 2978 * 2979 * Serialized by p->pi_lock, so this is safe. 2980 */ 2981 pending->arg.dest_cpu = dest_cpu; 2982 } 2983 } 2984 pending = p->migration_pending; 2985 /* 2986 * - !MIGRATE_ENABLE: 2987 * we'll have installed a pending if there wasn't one already. 2988 * 2989 * - MIGRATE_ENABLE: 2990 * we're here because the current CPU isn't matching anymore, 2991 * the only way that can happen is because of a concurrent 2992 * set_cpus_allowed_ptr() call, which should then still be 2993 * pending completion. 2994 * 2995 * Either way, we really should have a @pending here. 2996 */ 2997 if (WARN_ON_ONCE(!pending)) { 2998 task_rq_unlock(rq, p, rf); 2999 return -EINVAL; 3000 } 3001 3002 if (task_on_cpu(rq, p) || READ_ONCE(p->__state) == TASK_WAKING) { 3003 /* 3004 * MIGRATE_ENABLE gets here because 'p == current', but for 3005 * anything else we cannot do is_migration_disabled(), punt 3006 * and have the stopper function handle it all race-free. 3007 */ 3008 stop_pending = pending->stop_pending; 3009 if (!stop_pending) 3010 pending->stop_pending = true; 3011 3012 if (flags & SCA_MIGRATE_ENABLE) 3013 p->migration_flags &= ~MDF_PUSH; 3014 3015 preempt_disable(); 3016 task_rq_unlock(rq, p, rf); 3017 if (!stop_pending) { 3018 stop_one_cpu_nowait(cpu_of(rq), migration_cpu_stop, 3019 &pending->arg, &pending->stop_work); 3020 } 3021 preempt_enable(); 3022 3023 if (flags & SCA_MIGRATE_ENABLE) 3024 return 0; 3025 } else { 3026 3027 if (!is_migration_disabled(p)) { 3028 if (task_on_rq_queued(p)) 3029 rq = move_queued_task(rq, rf, p, dest_cpu); 3030 3031 if (!pending->stop_pending) { 3032 p->migration_pending = NULL; 3033 complete = true; 3034 } 3035 } 3036 task_rq_unlock(rq, p, rf); 3037 3038 if (complete) 3039 complete_all(&pending->done); 3040 } 3041 3042 wait_for_completion(&pending->done); 3043 3044 if (refcount_dec_and_test(&pending->refs)) 3045 wake_up_var(&pending->refs); /* No UaF, just an address */ 3046 3047 /* 3048 * Block the original owner of &pending until all subsequent callers 3049 * have seen the completion and decremented the refcount 3050 */ 3051 wait_var_event(&my_pending.refs, !refcount_read(&my_pending.refs)); 3052 3053 /* ARGH */ 3054 WARN_ON_ONCE(my_pending.stop_pending); 3055 3056 return 0; 3057 } 3058 3059 /* 3060 * Called with both p->pi_lock and rq->lock held; drops both before returning. 3061 */ 3062 static int __set_cpus_allowed_ptr_locked(struct task_struct *p, 3063 struct affinity_context *ctx, 3064 struct rq *rq, 3065 struct rq_flags *rf) 3066 __releases(rq->lock) 3067 __releases(p->pi_lock) 3068 { 3069 const struct cpumask *cpu_allowed_mask = task_cpu_possible_mask(p); 3070 const struct cpumask *cpu_valid_mask = cpu_active_mask; 3071 bool kthread = p->flags & PF_KTHREAD; 3072 unsigned int dest_cpu; 3073 int ret = 0; 3074 3075 update_rq_clock(rq); 3076 3077 if (kthread || is_migration_disabled(p)) { 3078 /* 3079 * Kernel threads are allowed on online && !active CPUs, 3080 * however, during cpu-hot-unplug, even these might get pushed 3081 * away if not KTHREAD_IS_PER_CPU. 3082 * 3083 * Specifically, migration_disabled() tasks must not fail the 3084 * cpumask_any_and_distribute() pick below, esp. so on 3085 * SCA_MIGRATE_ENABLE, otherwise we'll not call 3086 * set_cpus_allowed_common() and actually reset p->cpus_ptr. 3087 */ 3088 cpu_valid_mask = cpu_online_mask; 3089 } 3090 3091 if (!kthread && !cpumask_subset(ctx->new_mask, cpu_allowed_mask)) { 3092 ret = -EINVAL; 3093 goto out; 3094 } 3095 3096 /* 3097 * Must re-check here, to close a race against __kthread_bind(), 3098 * sched_setaffinity() is not guaranteed to observe the flag. 3099 */ 3100 if ((ctx->flags & SCA_CHECK) && (p->flags & PF_NO_SETAFFINITY)) { 3101 ret = -EINVAL; 3102 goto out; 3103 } 3104 3105 if (!(ctx->flags & SCA_MIGRATE_ENABLE)) { 3106 if (cpumask_equal(&p->cpus_mask, ctx->new_mask)) { 3107 if (ctx->flags & SCA_USER) 3108 swap(p->user_cpus_ptr, ctx->user_mask); 3109 goto out; 3110 } 3111 3112 if (WARN_ON_ONCE(p == current && 3113 is_migration_disabled(p) && 3114 !cpumask_test_cpu(task_cpu(p), ctx->new_mask))) { 3115 ret = -EBUSY; 3116 goto out; 3117 } 3118 } 3119 3120 /* 3121 * Picking a ~random cpu helps in cases where we are changing affinity 3122 * for groups of tasks (ie. cpuset), so that load balancing is not 3123 * immediately required to distribute the tasks within their new mask. 3124 */ 3125 dest_cpu = cpumask_any_and_distribute(cpu_valid_mask, ctx->new_mask); 3126 if (dest_cpu >= nr_cpu_ids) { 3127 ret = -EINVAL; 3128 goto out; 3129 } 3130 3131 __do_set_cpus_allowed(p, ctx); 3132 3133 return affine_move_task(rq, p, rf, dest_cpu, ctx->flags); 3134 3135 out: 3136 task_rq_unlock(rq, p, rf); 3137 3138 return ret; 3139 } 3140 3141 /* 3142 * Change a given task's CPU affinity. Migrate the thread to a 3143 * proper CPU and schedule it away if the CPU it's executing on 3144 * is removed from the allowed bitmask. 3145 * 3146 * NOTE: the caller must have a valid reference to the task, the 3147 * task must not exit() & deallocate itself prematurely. The 3148 * call is not atomic; no spinlocks may be held. 3149 */ 3150 int __set_cpus_allowed_ptr(struct task_struct *p, struct affinity_context *ctx) 3151 { 3152 struct rq_flags rf; 3153 struct rq *rq; 3154 3155 rq = task_rq_lock(p, &rf); 3156 /* 3157 * Masking should be skipped if SCA_USER or any of the SCA_MIGRATE_* 3158 * flags are set. 3159 */ 3160 if (p->user_cpus_ptr && 3161 !(ctx->flags & (SCA_USER | SCA_MIGRATE_ENABLE | SCA_MIGRATE_DISABLE)) && 3162 cpumask_and(rq->scratch_mask, ctx->new_mask, p->user_cpus_ptr)) 3163 ctx->new_mask = rq->scratch_mask; 3164 3165 return __set_cpus_allowed_ptr_locked(p, ctx, rq, &rf); 3166 } 3167 3168 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask) 3169 { 3170 struct affinity_context ac = { 3171 .new_mask = new_mask, 3172 .flags = 0, 3173 }; 3174 3175 return __set_cpus_allowed_ptr(p, &ac); 3176 } 3177 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr); 3178 3179 /* 3180 * Change a given task's CPU affinity to the intersection of its current 3181 * affinity mask and @subset_mask, writing the resulting mask to @new_mask. 3182 * If user_cpus_ptr is defined, use it as the basis for restricting CPU 3183 * affinity or use cpu_online_mask instead. 3184 * 3185 * If the resulting mask is empty, leave the affinity unchanged and return 3186 * -EINVAL. 3187 */ 3188 static int restrict_cpus_allowed_ptr(struct task_struct *p, 3189 struct cpumask *new_mask, 3190 const struct cpumask *subset_mask) 3191 { 3192 struct affinity_context ac = { 3193 .new_mask = new_mask, 3194 .flags = 0, 3195 }; 3196 struct rq_flags rf; 3197 struct rq *rq; 3198 int err; 3199 3200 rq = task_rq_lock(p, &rf); 3201 3202 /* 3203 * Forcefully restricting the affinity of a deadline task is 3204 * likely to cause problems, so fail and noisily override the 3205 * mask entirely. 3206 */ 3207 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) { 3208 err = -EPERM; 3209 goto err_unlock; 3210 } 3211 3212 if (!cpumask_and(new_mask, task_user_cpus(p), subset_mask)) { 3213 err = -EINVAL; 3214 goto err_unlock; 3215 } 3216 3217 return __set_cpus_allowed_ptr_locked(p, &ac, rq, &rf); 3218 3219 err_unlock: 3220 task_rq_unlock(rq, p, &rf); 3221 return err; 3222 } 3223 3224 /* 3225 * Restrict the CPU affinity of task @p so that it is a subset of 3226 * task_cpu_possible_mask() and point @p->user_cpus_ptr to a copy of the 3227 * old affinity mask. If the resulting mask is empty, we warn and walk 3228 * up the cpuset hierarchy until we find a suitable mask. 3229 */ 3230 void force_compatible_cpus_allowed_ptr(struct task_struct *p) 3231 { 3232 cpumask_var_t new_mask; 3233 const struct cpumask *override_mask = task_cpu_possible_mask(p); 3234 3235 alloc_cpumask_var(&new_mask, GFP_KERNEL); 3236 3237 /* 3238 * __migrate_task() can fail silently in the face of concurrent 3239 * offlining of the chosen destination CPU, so take the hotplug 3240 * lock to ensure that the migration succeeds. 3241 */ 3242 cpus_read_lock(); 3243 if (!cpumask_available(new_mask)) 3244 goto out_set_mask; 3245 3246 if (!restrict_cpus_allowed_ptr(p, new_mask, override_mask)) 3247 goto out_free_mask; 3248 3249 /* 3250 * We failed to find a valid subset of the affinity mask for the 3251 * task, so override it based on its cpuset hierarchy. 3252 */ 3253 cpuset_cpus_allowed(p, new_mask); 3254 override_mask = new_mask; 3255 3256 out_set_mask: 3257 if (printk_ratelimit()) { 3258 printk_deferred("Overriding affinity for process %d (%s) to CPUs %*pbl\n", 3259 task_pid_nr(p), p->comm, 3260 cpumask_pr_args(override_mask)); 3261 } 3262 3263 WARN_ON(set_cpus_allowed_ptr(p, override_mask)); 3264 out_free_mask: 3265 cpus_read_unlock(); 3266 free_cpumask_var(new_mask); 3267 } 3268 3269 /* 3270 * Restore the affinity of a task @p which was previously restricted by a 3271 * call to force_compatible_cpus_allowed_ptr(). 3272 * 3273 * It is the caller's responsibility to serialise this with any calls to 3274 * force_compatible_cpus_allowed_ptr(@p). 3275 */ 3276 void relax_compatible_cpus_allowed_ptr(struct task_struct *p) 3277 { 3278 struct affinity_context ac = { 3279 .new_mask = task_user_cpus(p), 3280 .flags = 0, 3281 }; 3282 int ret; 3283 3284 /* 3285 * Try to restore the old affinity mask with __sched_setaffinity(). 3286 * Cpuset masking will be done there too. 3287 */ 3288 ret = __sched_setaffinity(p, &ac); 3289 WARN_ON_ONCE(ret); 3290 } 3291 3292 void set_task_cpu(struct task_struct *p, unsigned int new_cpu) 3293 { 3294 #ifdef CONFIG_SCHED_DEBUG 3295 unsigned int state = READ_ONCE(p->__state); 3296 3297 /* 3298 * We should never call set_task_cpu() on a blocked task, 3299 * ttwu() will sort out the placement. 3300 */ 3301 WARN_ON_ONCE(state != TASK_RUNNING && state != TASK_WAKING && !p->on_rq); 3302 3303 /* 3304 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING, 3305 * because schedstat_wait_{start,end} rebase migrating task's wait_start 3306 * time relying on p->on_rq. 3307 */ 3308 WARN_ON_ONCE(state == TASK_RUNNING && 3309 p->sched_class == &fair_sched_class && 3310 (p->on_rq && !task_on_rq_migrating(p))); 3311 3312 #ifdef CONFIG_LOCKDEP 3313 /* 3314 * The caller should hold either p->pi_lock or rq->lock, when changing 3315 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks. 3316 * 3317 * sched_move_task() holds both and thus holding either pins the cgroup, 3318 * see task_group(). 3319 * 3320 * Furthermore, all task_rq users should acquire both locks, see 3321 * task_rq_lock(). 3322 */ 3323 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) || 3324 lockdep_is_held(__rq_lockp(task_rq(p))))); 3325 #endif 3326 /* 3327 * Clearly, migrating tasks to offline CPUs is a fairly daft thing. 3328 */ 3329 WARN_ON_ONCE(!cpu_online(new_cpu)); 3330 3331 WARN_ON_ONCE(is_migration_disabled(p)); 3332 #endif 3333 3334 trace_sched_migrate_task(p, new_cpu); 3335 3336 if (task_cpu(p) != new_cpu) { 3337 if (p->sched_class->migrate_task_rq) 3338 p->sched_class->migrate_task_rq(p, new_cpu); 3339 p->se.nr_migrations++; 3340 rseq_migrate(p); 3341 sched_mm_cid_migrate_from(p); 3342 perf_event_task_migrate(p); 3343 } 3344 3345 __set_task_cpu(p, new_cpu); 3346 } 3347 3348 #ifdef CONFIG_NUMA_BALANCING 3349 static void __migrate_swap_task(struct task_struct *p, int cpu) 3350 { 3351 if (task_on_rq_queued(p)) { 3352 struct rq *src_rq, *dst_rq; 3353 struct rq_flags srf, drf; 3354 3355 src_rq = task_rq(p); 3356 dst_rq = cpu_rq(cpu); 3357 3358 rq_pin_lock(src_rq, &srf); 3359 rq_pin_lock(dst_rq, &drf); 3360 3361 move_queued_task_locked(src_rq, dst_rq, p); 3362 wakeup_preempt(dst_rq, p, 0); 3363 3364 rq_unpin_lock(dst_rq, &drf); 3365 rq_unpin_lock(src_rq, &srf); 3366 3367 } else { 3368 /* 3369 * Task isn't running anymore; make it appear like we migrated 3370 * it before it went to sleep. This means on wakeup we make the 3371 * previous CPU our target instead of where it really is. 3372 */ 3373 p->wake_cpu = cpu; 3374 } 3375 } 3376 3377 struct migration_swap_arg { 3378 struct task_struct *src_task, *dst_task; 3379 int src_cpu, dst_cpu; 3380 }; 3381 3382 static int migrate_swap_stop(void *data) 3383 { 3384 struct migration_swap_arg *arg = data; 3385 struct rq *src_rq, *dst_rq; 3386 3387 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu)) 3388 return -EAGAIN; 3389 3390 src_rq = cpu_rq(arg->src_cpu); 3391 dst_rq = cpu_rq(arg->dst_cpu); 3392 3393 guard(double_raw_spinlock)(&arg->src_task->pi_lock, &arg->dst_task->pi_lock); 3394 guard(double_rq_lock)(src_rq, dst_rq); 3395 3396 if (task_cpu(arg->dst_task) != arg->dst_cpu) 3397 return -EAGAIN; 3398 3399 if (task_cpu(arg->src_task) != arg->src_cpu) 3400 return -EAGAIN; 3401 3402 if (!cpumask_test_cpu(arg->dst_cpu, arg->src_task->cpus_ptr)) 3403 return -EAGAIN; 3404 3405 if (!cpumask_test_cpu(arg->src_cpu, arg->dst_task->cpus_ptr)) 3406 return -EAGAIN; 3407 3408 __migrate_swap_task(arg->src_task, arg->dst_cpu); 3409 __migrate_swap_task(arg->dst_task, arg->src_cpu); 3410 3411 return 0; 3412 } 3413 3414 /* 3415 * Cross migrate two tasks 3416 */ 3417 int migrate_swap(struct task_struct *cur, struct task_struct *p, 3418 int target_cpu, int curr_cpu) 3419 { 3420 struct migration_swap_arg arg; 3421 int ret = -EINVAL; 3422 3423 arg = (struct migration_swap_arg){ 3424 .src_task = cur, 3425 .src_cpu = curr_cpu, 3426 .dst_task = p, 3427 .dst_cpu = target_cpu, 3428 }; 3429 3430 if (arg.src_cpu == arg.dst_cpu) 3431 goto out; 3432 3433 /* 3434 * These three tests are all lockless; this is OK since all of them 3435 * will be re-checked with proper locks held further down the line. 3436 */ 3437 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu)) 3438 goto out; 3439 3440 if (!cpumask_test_cpu(arg.dst_cpu, arg.src_task->cpus_ptr)) 3441 goto out; 3442 3443 if (!cpumask_test_cpu(arg.src_cpu, arg.dst_task->cpus_ptr)) 3444 goto out; 3445 3446 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu); 3447 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg); 3448 3449 out: 3450 return ret; 3451 } 3452 #endif /* CONFIG_NUMA_BALANCING */ 3453 3454 /*** 3455 * kick_process - kick a running thread to enter/exit the kernel 3456 * @p: the to-be-kicked thread 3457 * 3458 * Cause a process which is running on another CPU to enter 3459 * kernel-mode, without any delay. (to get signals handled.) 3460 * 3461 * NOTE: this function doesn't have to take the runqueue lock, 3462 * because all it wants to ensure is that the remote task enters 3463 * the kernel. If the IPI races and the task has been migrated 3464 * to another CPU then no harm is done and the purpose has been 3465 * achieved as well. 3466 */ 3467 void kick_process(struct task_struct *p) 3468 { 3469 guard(preempt)(); 3470 int cpu = task_cpu(p); 3471 3472 if ((cpu != smp_processor_id()) && task_curr(p)) 3473 smp_send_reschedule(cpu); 3474 } 3475 EXPORT_SYMBOL_GPL(kick_process); 3476 3477 /* 3478 * ->cpus_ptr is protected by both rq->lock and p->pi_lock 3479 * 3480 * A few notes on cpu_active vs cpu_online: 3481 * 3482 * - cpu_active must be a subset of cpu_online 3483 * 3484 * - on CPU-up we allow per-CPU kthreads on the online && !active CPU, 3485 * see __set_cpus_allowed_ptr(). At this point the newly online 3486 * CPU isn't yet part of the sched domains, and balancing will not 3487 * see it. 3488 * 3489 * - on CPU-down we clear cpu_active() to mask the sched domains and 3490 * avoid the load balancer to place new tasks on the to be removed 3491 * CPU. Existing tasks will remain running there and will be taken 3492 * off. 3493 * 3494 * This means that fallback selection must not select !active CPUs. 3495 * And can assume that any active CPU must be online. Conversely 3496 * select_task_rq() below may allow selection of !active CPUs in order 3497 * to satisfy the above rules. 3498 */ 3499 static int select_fallback_rq(int cpu, struct task_struct *p) 3500 { 3501 int nid = cpu_to_node(cpu); 3502 const struct cpumask *nodemask = NULL; 3503 enum { cpuset, possible, fail } state = cpuset; 3504 int dest_cpu; 3505 3506 /* 3507 * If the node that the CPU is on has been offlined, cpu_to_node() 3508 * will return -1. There is no CPU on the node, and we should 3509 * select the CPU on the other node. 3510 */ 3511 if (nid != -1) { 3512 nodemask = cpumask_of_node(nid); 3513 3514 /* Look for allowed, online CPU in same node. */ 3515 for_each_cpu(dest_cpu, nodemask) { 3516 if (is_cpu_allowed(p, dest_cpu)) 3517 return dest_cpu; 3518 } 3519 } 3520 3521 for (;;) { 3522 /* Any allowed, online CPU? */ 3523 for_each_cpu(dest_cpu, p->cpus_ptr) { 3524 if (!is_cpu_allowed(p, dest_cpu)) 3525 continue; 3526 3527 goto out; 3528 } 3529 3530 /* No more Mr. Nice Guy. */ 3531 switch (state) { 3532 case cpuset: 3533 if (cpuset_cpus_allowed_fallback(p)) { 3534 state = possible; 3535 break; 3536 } 3537 fallthrough; 3538 case possible: 3539 /* 3540 * XXX When called from select_task_rq() we only 3541 * hold p->pi_lock and again violate locking order. 3542 * 3543 * More yuck to audit. 3544 */ 3545 do_set_cpus_allowed(p, task_cpu_fallback_mask(p)); 3546 state = fail; 3547 break; 3548 case fail: 3549 BUG(); 3550 break; 3551 } 3552 } 3553 3554 out: 3555 if (state != cpuset) { 3556 /* 3557 * Don't tell them about moving exiting tasks or 3558 * kernel threads (both mm NULL), since they never 3559 * leave kernel. 3560 */ 3561 if (p->mm && printk_ratelimit()) { 3562 printk_deferred("process %d (%s) no longer affine to cpu%d\n", 3563 task_pid_nr(p), p->comm, cpu); 3564 } 3565 } 3566 3567 return dest_cpu; 3568 } 3569 3570 /* 3571 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_ptr is stable. 3572 */ 3573 static inline 3574 int select_task_rq(struct task_struct *p, int cpu, int *wake_flags) 3575 { 3576 lockdep_assert_held(&p->pi_lock); 3577 3578 if (p->nr_cpus_allowed > 1 && !is_migration_disabled(p)) { 3579 cpu = p->sched_class->select_task_rq(p, cpu, *wake_flags); 3580 *wake_flags |= WF_RQ_SELECTED; 3581 } else { 3582 cpu = cpumask_any(p->cpus_ptr); 3583 } 3584 3585 /* 3586 * In order not to call set_task_cpu() on a blocking task we need 3587 * to rely on ttwu() to place the task on a valid ->cpus_ptr 3588 * CPU. 3589 * 3590 * Since this is common to all placement strategies, this lives here. 3591 * 3592 * [ this allows ->select_task() to simply return task_cpu(p) and 3593 * not worry about this generic constraint ] 3594 */ 3595 if (unlikely(!is_cpu_allowed(p, cpu))) 3596 cpu = select_fallback_rq(task_cpu(p), p); 3597 3598 return cpu; 3599 } 3600 3601 void sched_set_stop_task(int cpu, struct task_struct *stop) 3602 { 3603 static struct lock_class_key stop_pi_lock; 3604 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 }; 3605 struct task_struct *old_stop = cpu_rq(cpu)->stop; 3606 3607 if (stop) { 3608 /* 3609 * Make it appear like a SCHED_FIFO task, its something 3610 * userspace knows about and won't get confused about. 3611 * 3612 * Also, it will make PI more or less work without too 3613 * much confusion -- but then, stop work should not 3614 * rely on PI working anyway. 3615 */ 3616 sched_setscheduler_nocheck(stop, SCHED_FIFO, ¶m); 3617 3618 stop->sched_class = &stop_sched_class; 3619 3620 /* 3621 * The PI code calls rt_mutex_setprio() with ->pi_lock held to 3622 * adjust the effective priority of a task. As a result, 3623 * rt_mutex_setprio() can trigger (RT) balancing operations, 3624 * which can then trigger wakeups of the stop thread to push 3625 * around the current task. 3626 * 3627 * The stop task itself will never be part of the PI-chain, it 3628 * never blocks, therefore that ->pi_lock recursion is safe. 3629 * Tell lockdep about this by placing the stop->pi_lock in its 3630 * own class. 3631 */ 3632 lockdep_set_class(&stop->pi_lock, &stop_pi_lock); 3633 } 3634 3635 cpu_rq(cpu)->stop = stop; 3636 3637 if (old_stop) { 3638 /* 3639 * Reset it back to a normal scheduling class so that 3640 * it can die in pieces. 3641 */ 3642 old_stop->sched_class = &rt_sched_class; 3643 } 3644 } 3645 3646 #else /* CONFIG_SMP */ 3647 3648 static inline void migrate_disable_switch(struct rq *rq, struct task_struct *p) { } 3649 3650 static inline bool rq_has_pinned_tasks(struct rq *rq) 3651 { 3652 return false; 3653 } 3654 3655 #endif /* !CONFIG_SMP */ 3656 3657 static void 3658 ttwu_stat(struct task_struct *p, int cpu, int wake_flags) 3659 { 3660 struct rq *rq; 3661 3662 if (!schedstat_enabled()) 3663 return; 3664 3665 rq = this_rq(); 3666 3667 #ifdef CONFIG_SMP 3668 if (cpu == rq->cpu) { 3669 __schedstat_inc(rq->ttwu_local); 3670 __schedstat_inc(p->stats.nr_wakeups_local); 3671 } else { 3672 struct sched_domain *sd; 3673 3674 __schedstat_inc(p->stats.nr_wakeups_remote); 3675 3676 guard(rcu)(); 3677 for_each_domain(rq->cpu, sd) { 3678 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) { 3679 __schedstat_inc(sd->ttwu_wake_remote); 3680 break; 3681 } 3682 } 3683 } 3684 3685 if (wake_flags & WF_MIGRATED) 3686 __schedstat_inc(p->stats.nr_wakeups_migrate); 3687 #endif /* CONFIG_SMP */ 3688 3689 __schedstat_inc(rq->ttwu_count); 3690 __schedstat_inc(p->stats.nr_wakeups); 3691 3692 if (wake_flags & WF_SYNC) 3693 __schedstat_inc(p->stats.nr_wakeups_sync); 3694 } 3695 3696 /* 3697 * Mark the task runnable. 3698 */ 3699 static inline void ttwu_do_wakeup(struct task_struct *p) 3700 { 3701 WRITE_ONCE(p->__state, TASK_RUNNING); 3702 trace_sched_wakeup(p); 3703 } 3704 3705 static void 3706 ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags, 3707 struct rq_flags *rf) 3708 { 3709 int en_flags = ENQUEUE_WAKEUP | ENQUEUE_NOCLOCK; 3710 3711 lockdep_assert_rq_held(rq); 3712 3713 if (p->sched_contributes_to_load) 3714 rq->nr_uninterruptible--; 3715 3716 #ifdef CONFIG_SMP 3717 if (wake_flags & WF_RQ_SELECTED) 3718 en_flags |= ENQUEUE_RQ_SELECTED; 3719 if (wake_flags & WF_MIGRATED) 3720 en_flags |= ENQUEUE_MIGRATED; 3721 else 3722 #endif 3723 if (p->in_iowait) { 3724 delayacct_blkio_end(p); 3725 atomic_dec(&task_rq(p)->nr_iowait); 3726 } 3727 3728 activate_task(rq, p, en_flags); 3729 wakeup_preempt(rq, p, wake_flags); 3730 3731 ttwu_do_wakeup(p); 3732 3733 #ifdef CONFIG_SMP 3734 if (p->sched_class->task_woken) { 3735 /* 3736 * Our task @p is fully woken up and running; so it's safe to 3737 * drop the rq->lock, hereafter rq is only used for statistics. 3738 */ 3739 rq_unpin_lock(rq, rf); 3740 p->sched_class->task_woken(rq, p); 3741 rq_repin_lock(rq, rf); 3742 } 3743 3744 if (rq->idle_stamp) { 3745 u64 delta = rq_clock(rq) - rq->idle_stamp; 3746 u64 max = 2*rq->max_idle_balance_cost; 3747 3748 update_avg(&rq->avg_idle, delta); 3749 3750 if (rq->avg_idle > max) 3751 rq->avg_idle = max; 3752 3753 rq->idle_stamp = 0; 3754 } 3755 #endif 3756 } 3757 3758 /* 3759 * Consider @p being inside a wait loop: 3760 * 3761 * for (;;) { 3762 * set_current_state(TASK_UNINTERRUPTIBLE); 3763 * 3764 * if (CONDITION) 3765 * break; 3766 * 3767 * schedule(); 3768 * } 3769 * __set_current_state(TASK_RUNNING); 3770 * 3771 * between set_current_state() and schedule(). In this case @p is still 3772 * runnable, so all that needs doing is change p->state back to TASK_RUNNING in 3773 * an atomic manner. 3774 * 3775 * By taking task_rq(p)->lock we serialize against schedule(), if @p->on_rq 3776 * then schedule() must still happen and p->state can be changed to 3777 * TASK_RUNNING. Otherwise we lost the race, schedule() has happened, and we 3778 * need to do a full wakeup with enqueue. 3779 * 3780 * Returns: %true when the wakeup is done, 3781 * %false otherwise. 3782 */ 3783 static int ttwu_runnable(struct task_struct *p, int wake_flags) 3784 { 3785 struct rq_flags rf; 3786 struct rq *rq; 3787 int ret = 0; 3788 3789 rq = __task_rq_lock(p, &rf); 3790 if (task_on_rq_queued(p)) { 3791 update_rq_clock(rq); 3792 if (p->se.sched_delayed) 3793 enqueue_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_DELAYED); 3794 if (!task_on_cpu(rq, p)) { 3795 /* 3796 * When on_rq && !on_cpu the task is preempted, see if 3797 * it should preempt the task that is current now. 3798 */ 3799 wakeup_preempt(rq, p, wake_flags); 3800 } 3801 ttwu_do_wakeup(p); 3802 ret = 1; 3803 } 3804 __task_rq_unlock(rq, &rf); 3805 3806 return ret; 3807 } 3808 3809 #ifdef CONFIG_SMP 3810 void sched_ttwu_pending(void *arg) 3811 { 3812 struct llist_node *llist = arg; 3813 struct rq *rq = this_rq(); 3814 struct task_struct *p, *t; 3815 struct rq_flags rf; 3816 3817 if (!llist) 3818 return; 3819 3820 rq_lock_irqsave(rq, &rf); 3821 update_rq_clock(rq); 3822 3823 llist_for_each_entry_safe(p, t, llist, wake_entry.llist) { 3824 if (WARN_ON_ONCE(p->on_cpu)) 3825 smp_cond_load_acquire(&p->on_cpu, !VAL); 3826 3827 if (WARN_ON_ONCE(task_cpu(p) != cpu_of(rq))) 3828 set_task_cpu(p, cpu_of(rq)); 3829 3830 ttwu_do_activate(rq, p, p->sched_remote_wakeup ? WF_MIGRATED : 0, &rf); 3831 } 3832 3833 /* 3834 * Must be after enqueueing at least once task such that 3835 * idle_cpu() does not observe a false-negative -- if it does, 3836 * it is possible for select_idle_siblings() to stack a number 3837 * of tasks on this CPU during that window. 3838 * 3839 * It is OK to clear ttwu_pending when another task pending. 3840 * We will receive IPI after local IRQ enabled and then enqueue it. 3841 * Since now nr_running > 0, idle_cpu() will always get correct result. 3842 */ 3843 WRITE_ONCE(rq->ttwu_pending, 0); 3844 rq_unlock_irqrestore(rq, &rf); 3845 } 3846 3847 /* 3848 * Prepare the scene for sending an IPI for a remote smp_call 3849 * 3850 * Returns true if the caller can proceed with sending the IPI. 3851 * Returns false otherwise. 3852 */ 3853 bool call_function_single_prep_ipi(int cpu) 3854 { 3855 if (set_nr_if_polling(cpu_rq(cpu)->idle)) { 3856 trace_sched_wake_idle_without_ipi(cpu); 3857 return false; 3858 } 3859 3860 return true; 3861 } 3862 3863 /* 3864 * Queue a task on the target CPUs wake_list and wake the CPU via IPI if 3865 * necessary. The wakee CPU on receipt of the IPI will queue the task 3866 * via sched_ttwu_wakeup() for activation so the wakee incurs the cost 3867 * of the wakeup instead of the waker. 3868 */ 3869 static void __ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3870 { 3871 struct rq *rq = cpu_rq(cpu); 3872 3873 p->sched_remote_wakeup = !!(wake_flags & WF_MIGRATED); 3874 3875 WRITE_ONCE(rq->ttwu_pending, 1); 3876 __smp_call_single_queue(cpu, &p->wake_entry.llist); 3877 } 3878 3879 void wake_up_if_idle(int cpu) 3880 { 3881 struct rq *rq = cpu_rq(cpu); 3882 3883 guard(rcu)(); 3884 if (is_idle_task(rcu_dereference(rq->curr))) { 3885 guard(rq_lock_irqsave)(rq); 3886 if (is_idle_task(rq->curr)) 3887 resched_curr(rq); 3888 } 3889 } 3890 3891 bool cpus_equal_capacity(int this_cpu, int that_cpu) 3892 { 3893 if (!sched_asym_cpucap_active()) 3894 return true; 3895 3896 if (this_cpu == that_cpu) 3897 return true; 3898 3899 return arch_scale_cpu_capacity(this_cpu) == arch_scale_cpu_capacity(that_cpu); 3900 } 3901 3902 bool cpus_share_cache(int this_cpu, int that_cpu) 3903 { 3904 if (this_cpu == that_cpu) 3905 return true; 3906 3907 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu); 3908 } 3909 3910 /* 3911 * Whether CPUs are share cache resources, which means LLC on non-cluster 3912 * machines and LLC tag or L2 on machines with clusters. 3913 */ 3914 bool cpus_share_resources(int this_cpu, int that_cpu) 3915 { 3916 if (this_cpu == that_cpu) 3917 return true; 3918 3919 return per_cpu(sd_share_id, this_cpu) == per_cpu(sd_share_id, that_cpu); 3920 } 3921 3922 static inline bool ttwu_queue_cond(struct task_struct *p, int cpu) 3923 { 3924 /* See SCX_OPS_ALLOW_QUEUED_WAKEUP. */ 3925 if (!scx_allow_ttwu_queue(p)) 3926 return false; 3927 3928 /* 3929 * Do not complicate things with the async wake_list while the CPU is 3930 * in hotplug state. 3931 */ 3932 if (!cpu_active(cpu)) 3933 return false; 3934 3935 /* Ensure the task will still be allowed to run on the CPU. */ 3936 if (!cpumask_test_cpu(cpu, p->cpus_ptr)) 3937 return false; 3938 3939 /* 3940 * If the CPU does not share cache, then queue the task on the 3941 * remote rqs wakelist to avoid accessing remote data. 3942 */ 3943 if (!cpus_share_cache(smp_processor_id(), cpu)) 3944 return true; 3945 3946 if (cpu == smp_processor_id()) 3947 return false; 3948 3949 /* 3950 * If the wakee cpu is idle, or the task is descheduling and the 3951 * only running task on the CPU, then use the wakelist to offload 3952 * the task activation to the idle (or soon-to-be-idle) CPU as 3953 * the current CPU is likely busy. nr_running is checked to 3954 * avoid unnecessary task stacking. 3955 * 3956 * Note that we can only get here with (wakee) p->on_rq=0, 3957 * p->on_cpu can be whatever, we've done the dequeue, so 3958 * the wakee has been accounted out of ->nr_running. 3959 */ 3960 if (!cpu_rq(cpu)->nr_running) 3961 return true; 3962 3963 return false; 3964 } 3965 3966 static bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3967 { 3968 if (sched_feat(TTWU_QUEUE) && ttwu_queue_cond(p, cpu)) { 3969 sched_clock_cpu(cpu); /* Sync clocks across CPUs */ 3970 __ttwu_queue_wakelist(p, cpu, wake_flags); 3971 return true; 3972 } 3973 3974 return false; 3975 } 3976 3977 #else /* !CONFIG_SMP */ 3978 3979 static inline bool ttwu_queue_wakelist(struct task_struct *p, int cpu, int wake_flags) 3980 { 3981 return false; 3982 } 3983 3984 #endif /* CONFIG_SMP */ 3985 3986 static void ttwu_queue(struct task_struct *p, int cpu, int wake_flags) 3987 { 3988 struct rq *rq = cpu_rq(cpu); 3989 struct rq_flags rf; 3990 3991 if (ttwu_queue_wakelist(p, cpu, wake_flags)) 3992 return; 3993 3994 rq_lock(rq, &rf); 3995 update_rq_clock(rq); 3996 ttwu_do_activate(rq, p, wake_flags, &rf); 3997 rq_unlock(rq, &rf); 3998 } 3999 4000 /* 4001 * Invoked from try_to_wake_up() to check whether the task can be woken up. 4002 * 4003 * The caller holds p::pi_lock if p != current or has preemption 4004 * disabled when p == current. 4005 * 4006 * The rules of saved_state: 4007 * 4008 * The related locking code always holds p::pi_lock when updating 4009 * p::saved_state, which means the code is fully serialized in both cases. 4010 * 4011 * For PREEMPT_RT, the lock wait and lock wakeups happen via TASK_RTLOCK_WAIT. 4012 * No other bits set. This allows to distinguish all wakeup scenarios. 4013 * 4014 * For FREEZER, the wakeup happens via TASK_FROZEN. No other bits set. This 4015 * allows us to prevent early wakeup of tasks before they can be run on 4016 * asymmetric ISA architectures (eg ARMv9). 4017 */ 4018 static __always_inline 4019 bool ttwu_state_match(struct task_struct *p, unsigned int state, int *success) 4020 { 4021 int match; 4022 4023 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 4024 WARN_ON_ONCE((state & TASK_RTLOCK_WAIT) && 4025 state != TASK_RTLOCK_WAIT); 4026 } 4027 4028 *success = !!(match = __task_state_match(p, state)); 4029 4030 /* 4031 * Saved state preserves the task state across blocking on 4032 * an RT lock or TASK_FREEZABLE tasks. If the state matches, 4033 * set p::saved_state to TASK_RUNNING, but do not wake the task 4034 * because it waits for a lock wakeup or __thaw_task(). Also 4035 * indicate success because from the regular waker's point of 4036 * view this has succeeded. 4037 * 4038 * After acquiring the lock the task will restore p::__state 4039 * from p::saved_state which ensures that the regular 4040 * wakeup is not lost. The restore will also set 4041 * p::saved_state to TASK_RUNNING so any further tests will 4042 * not result in false positives vs. @success 4043 */ 4044 if (match < 0) 4045 p->saved_state = TASK_RUNNING; 4046 4047 return match > 0; 4048 } 4049 4050 /* 4051 * Notes on Program-Order guarantees on SMP systems. 4052 * 4053 * MIGRATION 4054 * 4055 * The basic program-order guarantee on SMP systems is that when a task [t] 4056 * migrates, all its activity on its old CPU [c0] happens-before any subsequent 4057 * execution on its new CPU [c1]. 4058 * 4059 * For migration (of runnable tasks) this is provided by the following means: 4060 * 4061 * A) UNLOCK of the rq(c0)->lock scheduling out task t 4062 * B) migration for t is required to synchronize *both* rq(c0)->lock and 4063 * rq(c1)->lock (if not at the same time, then in that order). 4064 * C) LOCK of the rq(c1)->lock scheduling in task 4065 * 4066 * Release/acquire chaining guarantees that B happens after A and C after B. 4067 * Note: the CPU doing B need not be c0 or c1 4068 * 4069 * Example: 4070 * 4071 * CPU0 CPU1 CPU2 4072 * 4073 * LOCK rq(0)->lock 4074 * sched-out X 4075 * sched-in Y 4076 * UNLOCK rq(0)->lock 4077 * 4078 * LOCK rq(0)->lock // orders against CPU0 4079 * dequeue X 4080 * UNLOCK rq(0)->lock 4081 * 4082 * LOCK rq(1)->lock 4083 * enqueue X 4084 * UNLOCK rq(1)->lock 4085 * 4086 * LOCK rq(1)->lock // orders against CPU2 4087 * sched-out Z 4088 * sched-in X 4089 * UNLOCK rq(1)->lock 4090 * 4091 * 4092 * BLOCKING -- aka. SLEEP + WAKEUP 4093 * 4094 * For blocking we (obviously) need to provide the same guarantee as for 4095 * migration. However the means are completely different as there is no lock 4096 * chain to provide order. Instead we do: 4097 * 4098 * 1) smp_store_release(X->on_cpu, 0) -- finish_task() 4099 * 2) smp_cond_load_acquire(!X->on_cpu) -- try_to_wake_up() 4100 * 4101 * Example: 4102 * 4103 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule) 4104 * 4105 * LOCK rq(0)->lock LOCK X->pi_lock 4106 * dequeue X 4107 * sched-out X 4108 * smp_store_release(X->on_cpu, 0); 4109 * 4110 * smp_cond_load_acquire(&X->on_cpu, !VAL); 4111 * X->state = WAKING 4112 * set_task_cpu(X,2) 4113 * 4114 * LOCK rq(2)->lock 4115 * enqueue X 4116 * X->state = RUNNING 4117 * UNLOCK rq(2)->lock 4118 * 4119 * LOCK rq(2)->lock // orders against CPU1 4120 * sched-out Z 4121 * sched-in X 4122 * UNLOCK rq(2)->lock 4123 * 4124 * UNLOCK X->pi_lock 4125 * UNLOCK rq(0)->lock 4126 * 4127 * 4128 * However, for wakeups there is a second guarantee we must provide, namely we 4129 * must ensure that CONDITION=1 done by the caller can not be reordered with 4130 * accesses to the task state; see try_to_wake_up() and set_current_state(). 4131 */ 4132 4133 /** 4134 * try_to_wake_up - wake up a thread 4135 * @p: the thread to be awakened 4136 * @state: the mask of task states that can be woken 4137 * @wake_flags: wake modifier flags (WF_*) 4138 * 4139 * Conceptually does: 4140 * 4141 * If (@state & @p->state) @p->state = TASK_RUNNING. 4142 * 4143 * If the task was not queued/runnable, also place it back on a runqueue. 4144 * 4145 * This function is atomic against schedule() which would dequeue the task. 4146 * 4147 * It issues a full memory barrier before accessing @p->state, see the comment 4148 * with set_current_state(). 4149 * 4150 * Uses p->pi_lock to serialize against concurrent wake-ups. 4151 * 4152 * Relies on p->pi_lock stabilizing: 4153 * - p->sched_class 4154 * - p->cpus_ptr 4155 * - p->sched_task_group 4156 * in order to do migration, see its use of select_task_rq()/set_task_cpu(). 4157 * 4158 * Tries really hard to only take one task_rq(p)->lock for performance. 4159 * Takes rq->lock in: 4160 * - ttwu_runnable() -- old rq, unavoidable, see comment there; 4161 * - ttwu_queue() -- new rq, for enqueue of the task; 4162 * - psi_ttwu_dequeue() -- much sadness :-( accounting will kill us. 4163 * 4164 * As a consequence we race really badly with just about everything. See the 4165 * many memory barriers and their comments for details. 4166 * 4167 * Return: %true if @p->state changes (an actual wakeup was done), 4168 * %false otherwise. 4169 */ 4170 int try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags) 4171 { 4172 guard(preempt)(); 4173 int cpu, success = 0; 4174 4175 wake_flags |= WF_TTWU; 4176 4177 if (p == current) { 4178 /* 4179 * We're waking current, this means 'p->on_rq' and 'task_cpu(p) 4180 * == smp_processor_id()'. Together this means we can special 4181 * case the whole 'p->on_rq && ttwu_runnable()' case below 4182 * without taking any locks. 4183 * 4184 * Specifically, given current runs ttwu() we must be before 4185 * schedule()'s block_task(), as such this must not observe 4186 * sched_delayed. 4187 * 4188 * In particular: 4189 * - we rely on Program-Order guarantees for all the ordering, 4190 * - we're serialized against set_special_state() by virtue of 4191 * it disabling IRQs (this allows not taking ->pi_lock). 4192 */ 4193 SCHED_WARN_ON(p->se.sched_delayed); 4194 if (!ttwu_state_match(p, state, &success)) 4195 goto out; 4196 4197 trace_sched_waking(p); 4198 ttwu_do_wakeup(p); 4199 goto out; 4200 } 4201 4202 /* 4203 * If we are going to wake up a thread waiting for CONDITION we 4204 * need to ensure that CONDITION=1 done by the caller can not be 4205 * reordered with p->state check below. This pairs with smp_store_mb() 4206 * in set_current_state() that the waiting thread does. 4207 */ 4208 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 4209 smp_mb__after_spinlock(); 4210 if (!ttwu_state_match(p, state, &success)) 4211 break; 4212 4213 trace_sched_waking(p); 4214 4215 /* 4216 * Ensure we load p->on_rq _after_ p->state, otherwise it would 4217 * be possible to, falsely, observe p->on_rq == 0 and get stuck 4218 * in smp_cond_load_acquire() below. 4219 * 4220 * sched_ttwu_pending() try_to_wake_up() 4221 * STORE p->on_rq = 1 LOAD p->state 4222 * UNLOCK rq->lock 4223 * 4224 * __schedule() (switch to task 'p') 4225 * LOCK rq->lock smp_rmb(); 4226 * smp_mb__after_spinlock(); 4227 * UNLOCK rq->lock 4228 * 4229 * [task p] 4230 * STORE p->state = UNINTERRUPTIBLE LOAD p->on_rq 4231 * 4232 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4233 * __schedule(). See the comment for smp_mb__after_spinlock(). 4234 * 4235 * A similar smp_rmb() lives in __task_needs_rq_lock(). 4236 */ 4237 smp_rmb(); 4238 if (READ_ONCE(p->on_rq) && ttwu_runnable(p, wake_flags)) 4239 break; 4240 4241 #ifdef CONFIG_SMP 4242 /* 4243 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be 4244 * possible to, falsely, observe p->on_cpu == 0. 4245 * 4246 * One must be running (->on_cpu == 1) in order to remove oneself 4247 * from the runqueue. 4248 * 4249 * __schedule() (switch to task 'p') try_to_wake_up() 4250 * STORE p->on_cpu = 1 LOAD p->on_rq 4251 * UNLOCK rq->lock 4252 * 4253 * __schedule() (put 'p' to sleep) 4254 * LOCK rq->lock smp_rmb(); 4255 * smp_mb__after_spinlock(); 4256 * STORE p->on_rq = 0 LOAD p->on_cpu 4257 * 4258 * Pairs with the LOCK+smp_mb__after_spinlock() on rq->lock in 4259 * __schedule(). See the comment for smp_mb__after_spinlock(). 4260 * 4261 * Form a control-dep-acquire with p->on_rq == 0 above, to ensure 4262 * schedule()'s deactivate_task() has 'happened' and p will no longer 4263 * care about it's own p->state. See the comment in __schedule(). 4264 */ 4265 smp_acquire__after_ctrl_dep(); 4266 4267 /* 4268 * We're doing the wakeup (@success == 1), they did a dequeue (p->on_rq 4269 * == 0), which means we need to do an enqueue, change p->state to 4270 * TASK_WAKING such that we can unlock p->pi_lock before doing the 4271 * enqueue, such as ttwu_queue_wakelist(). 4272 */ 4273 WRITE_ONCE(p->__state, TASK_WAKING); 4274 4275 /* 4276 * If the owning (remote) CPU is still in the middle of schedule() with 4277 * this task as prev, considering queueing p on the remote CPUs wake_list 4278 * which potentially sends an IPI instead of spinning on p->on_cpu to 4279 * let the waker make forward progress. This is safe because IRQs are 4280 * disabled and the IPI will deliver after on_cpu is cleared. 4281 * 4282 * Ensure we load task_cpu(p) after p->on_cpu: 4283 * 4284 * set_task_cpu(p, cpu); 4285 * STORE p->cpu = @cpu 4286 * __schedule() (switch to task 'p') 4287 * LOCK rq->lock 4288 * smp_mb__after_spin_lock() smp_cond_load_acquire(&p->on_cpu) 4289 * STORE p->on_cpu = 1 LOAD p->cpu 4290 * 4291 * to ensure we observe the correct CPU on which the task is currently 4292 * scheduling. 4293 */ 4294 if (smp_load_acquire(&p->on_cpu) && 4295 ttwu_queue_wakelist(p, task_cpu(p), wake_flags)) 4296 break; 4297 4298 /* 4299 * If the owning (remote) CPU is still in the middle of schedule() with 4300 * this task as prev, wait until it's done referencing the task. 4301 * 4302 * Pairs with the smp_store_release() in finish_task(). 4303 * 4304 * This ensures that tasks getting woken will be fully ordered against 4305 * their previous state and preserve Program Order. 4306 */ 4307 smp_cond_load_acquire(&p->on_cpu, !VAL); 4308 4309 cpu = select_task_rq(p, p->wake_cpu, &wake_flags); 4310 if (task_cpu(p) != cpu) { 4311 if (p->in_iowait) { 4312 delayacct_blkio_end(p); 4313 atomic_dec(&task_rq(p)->nr_iowait); 4314 } 4315 4316 wake_flags |= WF_MIGRATED; 4317 psi_ttwu_dequeue(p); 4318 set_task_cpu(p, cpu); 4319 } 4320 #else 4321 cpu = task_cpu(p); 4322 #endif /* CONFIG_SMP */ 4323 4324 ttwu_queue(p, cpu, wake_flags); 4325 } 4326 out: 4327 if (success) 4328 ttwu_stat(p, task_cpu(p), wake_flags); 4329 4330 return success; 4331 } 4332 4333 static bool __task_needs_rq_lock(struct task_struct *p) 4334 { 4335 unsigned int state = READ_ONCE(p->__state); 4336 4337 /* 4338 * Since pi->lock blocks try_to_wake_up(), we don't need rq->lock when 4339 * the task is blocked. Make sure to check @state since ttwu() can drop 4340 * locks at the end, see ttwu_queue_wakelist(). 4341 */ 4342 if (state == TASK_RUNNING || state == TASK_WAKING) 4343 return true; 4344 4345 /* 4346 * Ensure we load p->on_rq after p->__state, otherwise it would be 4347 * possible to, falsely, observe p->on_rq == 0. 4348 * 4349 * See try_to_wake_up() for a longer comment. 4350 */ 4351 smp_rmb(); 4352 if (p->on_rq) 4353 return true; 4354 4355 #ifdef CONFIG_SMP 4356 /* 4357 * Ensure the task has finished __schedule() and will not be referenced 4358 * anymore. Again, see try_to_wake_up() for a longer comment. 4359 */ 4360 smp_rmb(); 4361 smp_cond_load_acquire(&p->on_cpu, !VAL); 4362 #endif 4363 4364 return false; 4365 } 4366 4367 /** 4368 * task_call_func - Invoke a function on task in fixed state 4369 * @p: Process for which the function is to be invoked, can be @current. 4370 * @func: Function to invoke. 4371 * @arg: Argument to function. 4372 * 4373 * Fix the task in it's current state by avoiding wakeups and or rq operations 4374 * and call @func(@arg) on it. This function can use task_is_runnable() and 4375 * task_curr() to work out what the state is, if required. Given that @func 4376 * can be invoked with a runqueue lock held, it had better be quite 4377 * lightweight. 4378 * 4379 * Returns: 4380 * Whatever @func returns 4381 */ 4382 int task_call_func(struct task_struct *p, task_call_f func, void *arg) 4383 { 4384 struct rq *rq = NULL; 4385 struct rq_flags rf; 4386 int ret; 4387 4388 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4389 4390 if (__task_needs_rq_lock(p)) 4391 rq = __task_rq_lock(p, &rf); 4392 4393 /* 4394 * At this point the task is pinned; either: 4395 * - blocked and we're holding off wakeups (pi->lock) 4396 * - woken, and we're holding off enqueue (rq->lock) 4397 * - queued, and we're holding off schedule (rq->lock) 4398 * - running, and we're holding off de-schedule (rq->lock) 4399 * 4400 * The called function (@func) can use: task_curr(), p->on_rq and 4401 * p->__state to differentiate between these states. 4402 */ 4403 ret = func(p, arg); 4404 4405 if (rq) 4406 rq_unlock(rq, &rf); 4407 4408 raw_spin_unlock_irqrestore(&p->pi_lock, rf.flags); 4409 return ret; 4410 } 4411 4412 /** 4413 * cpu_curr_snapshot - Return a snapshot of the currently running task 4414 * @cpu: The CPU on which to snapshot the task. 4415 * 4416 * Returns the task_struct pointer of the task "currently" running on 4417 * the specified CPU. 4418 * 4419 * If the specified CPU was offline, the return value is whatever it 4420 * is, perhaps a pointer to the task_struct structure of that CPU's idle 4421 * task, but there is no guarantee. Callers wishing a useful return 4422 * value must take some action to ensure that the specified CPU remains 4423 * online throughout. 4424 * 4425 * This function executes full memory barriers before and after fetching 4426 * the pointer, which permits the caller to confine this function's fetch 4427 * with respect to the caller's accesses to other shared variables. 4428 */ 4429 struct task_struct *cpu_curr_snapshot(int cpu) 4430 { 4431 struct rq *rq = cpu_rq(cpu); 4432 struct task_struct *t; 4433 struct rq_flags rf; 4434 4435 rq_lock_irqsave(rq, &rf); 4436 smp_mb__after_spinlock(); /* Pairing determined by caller's synchronization design. */ 4437 t = rcu_dereference(cpu_curr(cpu)); 4438 rq_unlock_irqrestore(rq, &rf); 4439 smp_mb(); /* Pairing determined by caller's synchronization design. */ 4440 4441 return t; 4442 } 4443 4444 /** 4445 * wake_up_process - Wake up a specific process 4446 * @p: The process to be woken up. 4447 * 4448 * Attempt to wake up the nominated process and move it to the set of runnable 4449 * processes. 4450 * 4451 * Return: 1 if the process was woken up, 0 if it was already running. 4452 * 4453 * This function executes a full memory barrier before accessing the task state. 4454 */ 4455 int wake_up_process(struct task_struct *p) 4456 { 4457 return try_to_wake_up(p, TASK_NORMAL, 0); 4458 } 4459 EXPORT_SYMBOL(wake_up_process); 4460 4461 int wake_up_state(struct task_struct *p, unsigned int state) 4462 { 4463 return try_to_wake_up(p, state, 0); 4464 } 4465 4466 /* 4467 * Perform scheduler related setup for a newly forked process p. 4468 * p is forked by current. 4469 * 4470 * __sched_fork() is basic setup which is also used by sched_init() to 4471 * initialize the boot CPU's idle task. 4472 */ 4473 static void __sched_fork(unsigned long clone_flags, struct task_struct *p) 4474 { 4475 p->on_rq = 0; 4476 4477 p->se.on_rq = 0; 4478 p->se.exec_start = 0; 4479 p->se.sum_exec_runtime = 0; 4480 p->se.prev_sum_exec_runtime = 0; 4481 p->se.nr_migrations = 0; 4482 p->se.vruntime = 0; 4483 p->se.vlag = 0; 4484 INIT_LIST_HEAD(&p->se.group_node); 4485 4486 /* A delayed task cannot be in clone(). */ 4487 SCHED_WARN_ON(p->se.sched_delayed); 4488 4489 #ifdef CONFIG_FAIR_GROUP_SCHED 4490 p->se.cfs_rq = NULL; 4491 #endif 4492 4493 #ifdef CONFIG_SCHEDSTATS 4494 /* Even if schedstat is disabled, there should not be garbage */ 4495 memset(&p->stats, 0, sizeof(p->stats)); 4496 #endif 4497 4498 init_dl_entity(&p->dl); 4499 4500 INIT_LIST_HEAD(&p->rt.run_list); 4501 p->rt.timeout = 0; 4502 p->rt.time_slice = sched_rr_timeslice; 4503 p->rt.on_rq = 0; 4504 p->rt.on_list = 0; 4505 4506 #ifdef CONFIG_SCHED_CLASS_EXT 4507 init_scx_entity(&p->scx); 4508 #endif 4509 4510 #ifdef CONFIG_PREEMPT_NOTIFIERS 4511 INIT_HLIST_HEAD(&p->preempt_notifiers); 4512 #endif 4513 4514 #ifdef CONFIG_COMPACTION 4515 p->capture_control = NULL; 4516 #endif 4517 init_numa_balancing(clone_flags, p); 4518 #ifdef CONFIG_SMP 4519 p->wake_entry.u_flags = CSD_TYPE_TTWU; 4520 p->migration_pending = NULL; 4521 #endif 4522 init_sched_mm_cid(p); 4523 } 4524 4525 DEFINE_STATIC_KEY_FALSE(sched_numa_balancing); 4526 4527 #ifdef CONFIG_NUMA_BALANCING 4528 4529 int sysctl_numa_balancing_mode; 4530 4531 static void __set_numabalancing_state(bool enabled) 4532 { 4533 if (enabled) 4534 static_branch_enable(&sched_numa_balancing); 4535 else 4536 static_branch_disable(&sched_numa_balancing); 4537 } 4538 4539 void set_numabalancing_state(bool enabled) 4540 { 4541 if (enabled) 4542 sysctl_numa_balancing_mode = NUMA_BALANCING_NORMAL; 4543 else 4544 sysctl_numa_balancing_mode = NUMA_BALANCING_DISABLED; 4545 __set_numabalancing_state(enabled); 4546 } 4547 4548 #ifdef CONFIG_PROC_SYSCTL 4549 static void reset_memory_tiering(void) 4550 { 4551 struct pglist_data *pgdat; 4552 4553 for_each_online_pgdat(pgdat) { 4554 pgdat->nbp_threshold = 0; 4555 pgdat->nbp_th_nr_cand = node_page_state(pgdat, PGPROMOTE_CANDIDATE); 4556 pgdat->nbp_th_start = jiffies_to_msecs(jiffies); 4557 } 4558 } 4559 4560 static int sysctl_numa_balancing(const struct ctl_table *table, int write, 4561 void *buffer, size_t *lenp, loff_t *ppos) 4562 { 4563 struct ctl_table t; 4564 int err; 4565 int state = sysctl_numa_balancing_mode; 4566 4567 if (write && !capable(CAP_SYS_ADMIN)) 4568 return -EPERM; 4569 4570 t = *table; 4571 t.data = &state; 4572 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4573 if (err < 0) 4574 return err; 4575 if (write) { 4576 if (!(sysctl_numa_balancing_mode & NUMA_BALANCING_MEMORY_TIERING) && 4577 (state & NUMA_BALANCING_MEMORY_TIERING)) 4578 reset_memory_tiering(); 4579 sysctl_numa_balancing_mode = state; 4580 __set_numabalancing_state(state); 4581 } 4582 return err; 4583 } 4584 #endif 4585 #endif 4586 4587 #ifdef CONFIG_SCHEDSTATS 4588 4589 DEFINE_STATIC_KEY_FALSE(sched_schedstats); 4590 4591 static void set_schedstats(bool enabled) 4592 { 4593 if (enabled) 4594 static_branch_enable(&sched_schedstats); 4595 else 4596 static_branch_disable(&sched_schedstats); 4597 } 4598 4599 void force_schedstat_enabled(void) 4600 { 4601 if (!schedstat_enabled()) { 4602 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n"); 4603 static_branch_enable(&sched_schedstats); 4604 } 4605 } 4606 4607 static int __init setup_schedstats(char *str) 4608 { 4609 int ret = 0; 4610 if (!str) 4611 goto out; 4612 4613 if (!strcmp(str, "enable")) { 4614 set_schedstats(true); 4615 ret = 1; 4616 } else if (!strcmp(str, "disable")) { 4617 set_schedstats(false); 4618 ret = 1; 4619 } 4620 out: 4621 if (!ret) 4622 pr_warn("Unable to parse schedstats=\n"); 4623 4624 return ret; 4625 } 4626 __setup("schedstats=", setup_schedstats); 4627 4628 #ifdef CONFIG_PROC_SYSCTL 4629 static int sysctl_schedstats(const struct ctl_table *table, int write, void *buffer, 4630 size_t *lenp, loff_t *ppos) 4631 { 4632 struct ctl_table t; 4633 int err; 4634 int state = static_branch_likely(&sched_schedstats); 4635 4636 if (write && !capable(CAP_SYS_ADMIN)) 4637 return -EPERM; 4638 4639 t = *table; 4640 t.data = &state; 4641 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos); 4642 if (err < 0) 4643 return err; 4644 if (write) 4645 set_schedstats(state); 4646 return err; 4647 } 4648 #endif /* CONFIG_PROC_SYSCTL */ 4649 #endif /* CONFIG_SCHEDSTATS */ 4650 4651 #ifdef CONFIG_SYSCTL 4652 static struct ctl_table sched_core_sysctls[] = { 4653 #ifdef CONFIG_SCHEDSTATS 4654 { 4655 .procname = "sched_schedstats", 4656 .data = NULL, 4657 .maxlen = sizeof(unsigned int), 4658 .mode = 0644, 4659 .proc_handler = sysctl_schedstats, 4660 .extra1 = SYSCTL_ZERO, 4661 .extra2 = SYSCTL_ONE, 4662 }, 4663 #endif /* CONFIG_SCHEDSTATS */ 4664 #ifdef CONFIG_UCLAMP_TASK 4665 { 4666 .procname = "sched_util_clamp_min", 4667 .data = &sysctl_sched_uclamp_util_min, 4668 .maxlen = sizeof(unsigned int), 4669 .mode = 0644, 4670 .proc_handler = sysctl_sched_uclamp_handler, 4671 }, 4672 { 4673 .procname = "sched_util_clamp_max", 4674 .data = &sysctl_sched_uclamp_util_max, 4675 .maxlen = sizeof(unsigned int), 4676 .mode = 0644, 4677 .proc_handler = sysctl_sched_uclamp_handler, 4678 }, 4679 { 4680 .procname = "sched_util_clamp_min_rt_default", 4681 .data = &sysctl_sched_uclamp_util_min_rt_default, 4682 .maxlen = sizeof(unsigned int), 4683 .mode = 0644, 4684 .proc_handler = sysctl_sched_uclamp_handler, 4685 }, 4686 #endif /* CONFIG_UCLAMP_TASK */ 4687 #ifdef CONFIG_NUMA_BALANCING 4688 { 4689 .procname = "numa_balancing", 4690 .data = NULL, /* filled in by handler */ 4691 .maxlen = sizeof(unsigned int), 4692 .mode = 0644, 4693 .proc_handler = sysctl_numa_balancing, 4694 .extra1 = SYSCTL_ZERO, 4695 .extra2 = SYSCTL_FOUR, 4696 }, 4697 #endif /* CONFIG_NUMA_BALANCING */ 4698 }; 4699 static int __init sched_core_sysctl_init(void) 4700 { 4701 register_sysctl_init("kernel", sched_core_sysctls); 4702 return 0; 4703 } 4704 late_initcall(sched_core_sysctl_init); 4705 #endif /* CONFIG_SYSCTL */ 4706 4707 /* 4708 * fork()/clone()-time setup: 4709 */ 4710 int sched_fork(unsigned long clone_flags, struct task_struct *p) 4711 { 4712 __sched_fork(clone_flags, p); 4713 /* 4714 * We mark the process as NEW here. This guarantees that 4715 * nobody will actually run it, and a signal or other external 4716 * event cannot wake it up and insert it on the runqueue either. 4717 */ 4718 p->__state = TASK_NEW; 4719 4720 /* 4721 * Make sure we do not leak PI boosting priority to the child. 4722 */ 4723 p->prio = current->normal_prio; 4724 4725 uclamp_fork(p); 4726 4727 /* 4728 * Revert to default priority/policy on fork if requested. 4729 */ 4730 if (unlikely(p->sched_reset_on_fork)) { 4731 if (task_has_dl_policy(p) || task_has_rt_policy(p)) { 4732 p->policy = SCHED_NORMAL; 4733 p->static_prio = NICE_TO_PRIO(0); 4734 p->rt_priority = 0; 4735 } else if (PRIO_TO_NICE(p->static_prio) < 0) 4736 p->static_prio = NICE_TO_PRIO(0); 4737 4738 p->prio = p->normal_prio = p->static_prio; 4739 set_load_weight(p, false); 4740 p->se.custom_slice = 0; 4741 p->se.slice = sysctl_sched_base_slice; 4742 4743 /* 4744 * We don't need the reset flag anymore after the fork. It has 4745 * fulfilled its duty: 4746 */ 4747 p->sched_reset_on_fork = 0; 4748 } 4749 4750 if (dl_prio(p->prio)) 4751 return -EAGAIN; 4752 4753 scx_pre_fork(p); 4754 4755 if (rt_prio(p->prio)) { 4756 p->sched_class = &rt_sched_class; 4757 #ifdef CONFIG_SCHED_CLASS_EXT 4758 } else if (task_should_scx(p->policy)) { 4759 p->sched_class = &ext_sched_class; 4760 #endif 4761 } else { 4762 p->sched_class = &fair_sched_class; 4763 } 4764 4765 init_entity_runnable_average(&p->se); 4766 4767 4768 #ifdef CONFIG_SCHED_INFO 4769 if (likely(sched_info_on())) 4770 memset(&p->sched_info, 0, sizeof(p->sched_info)); 4771 #endif 4772 #if defined(CONFIG_SMP) 4773 p->on_cpu = 0; 4774 #endif 4775 init_task_preempt_count(p); 4776 #ifdef CONFIG_SMP 4777 plist_node_init(&p->pushable_tasks, MAX_PRIO); 4778 RB_CLEAR_NODE(&p->pushable_dl_tasks); 4779 #endif 4780 return 0; 4781 } 4782 4783 int sched_cgroup_fork(struct task_struct *p, struct kernel_clone_args *kargs) 4784 { 4785 unsigned long flags; 4786 4787 /* 4788 * Because we're not yet on the pid-hash, p->pi_lock isn't strictly 4789 * required yet, but lockdep gets upset if rules are violated. 4790 */ 4791 raw_spin_lock_irqsave(&p->pi_lock, flags); 4792 #ifdef CONFIG_CGROUP_SCHED 4793 if (1) { 4794 struct task_group *tg; 4795 tg = container_of(kargs->cset->subsys[cpu_cgrp_id], 4796 struct task_group, css); 4797 tg = autogroup_task_group(p, tg); 4798 p->sched_task_group = tg; 4799 } 4800 #endif 4801 rseq_migrate(p); 4802 /* 4803 * We're setting the CPU for the first time, we don't migrate, 4804 * so use __set_task_cpu(). 4805 */ 4806 __set_task_cpu(p, smp_processor_id()); 4807 if (p->sched_class->task_fork) 4808 p->sched_class->task_fork(p); 4809 raw_spin_unlock_irqrestore(&p->pi_lock, flags); 4810 4811 return scx_fork(p); 4812 } 4813 4814 void sched_cancel_fork(struct task_struct *p) 4815 { 4816 scx_cancel_fork(p); 4817 } 4818 4819 void sched_post_fork(struct task_struct *p) 4820 { 4821 uclamp_post_fork(p); 4822 scx_post_fork(p); 4823 } 4824 4825 unsigned long to_ratio(u64 period, u64 runtime) 4826 { 4827 if (runtime == RUNTIME_INF) 4828 return BW_UNIT; 4829 4830 /* 4831 * Doing this here saves a lot of checks in all 4832 * the calling paths, and returning zero seems 4833 * safe for them anyway. 4834 */ 4835 if (period == 0) 4836 return 0; 4837 4838 return div64_u64(runtime << BW_SHIFT, period); 4839 } 4840 4841 /* 4842 * wake_up_new_task - wake up a newly created task for the first time. 4843 * 4844 * This function will do some initial scheduler statistics housekeeping 4845 * that must be done for every newly created context, then puts the task 4846 * on the runqueue and wakes it. 4847 */ 4848 void wake_up_new_task(struct task_struct *p) 4849 { 4850 struct rq_flags rf; 4851 struct rq *rq; 4852 int wake_flags = WF_FORK; 4853 4854 raw_spin_lock_irqsave(&p->pi_lock, rf.flags); 4855 WRITE_ONCE(p->__state, TASK_RUNNING); 4856 #ifdef CONFIG_SMP 4857 /* 4858 * Fork balancing, do it here and not earlier because: 4859 * - cpus_ptr can change in the fork path 4860 * - any previously selected CPU might disappear through hotplug 4861 * 4862 * Use __set_task_cpu() to avoid calling sched_class::migrate_task_rq, 4863 * as we're not fully set-up yet. 4864 */ 4865 p->recent_used_cpu = task_cpu(p); 4866 rseq_migrate(p); 4867 __set_task_cpu(p, select_task_rq(p, task_cpu(p), &wake_flags)); 4868 #endif 4869 rq = __task_rq_lock(p, &rf); 4870 update_rq_clock(rq); 4871 post_init_entity_util_avg(p); 4872 4873 activate_task(rq, p, ENQUEUE_NOCLOCK | ENQUEUE_INITIAL); 4874 trace_sched_wakeup_new(p); 4875 wakeup_preempt(rq, p, wake_flags); 4876 #ifdef CONFIG_SMP 4877 if (p->sched_class->task_woken) { 4878 /* 4879 * Nothing relies on rq->lock after this, so it's fine to 4880 * drop it. 4881 */ 4882 rq_unpin_lock(rq, &rf); 4883 p->sched_class->task_woken(rq, p); 4884 rq_repin_lock(rq, &rf); 4885 } 4886 #endif 4887 task_rq_unlock(rq, p, &rf); 4888 } 4889 4890 #ifdef CONFIG_PREEMPT_NOTIFIERS 4891 4892 static DEFINE_STATIC_KEY_FALSE(preempt_notifier_key); 4893 4894 void preempt_notifier_inc(void) 4895 { 4896 static_branch_inc(&preempt_notifier_key); 4897 } 4898 EXPORT_SYMBOL_GPL(preempt_notifier_inc); 4899 4900 void preempt_notifier_dec(void) 4901 { 4902 static_branch_dec(&preempt_notifier_key); 4903 } 4904 EXPORT_SYMBOL_GPL(preempt_notifier_dec); 4905 4906 /** 4907 * preempt_notifier_register - tell me when current is being preempted & rescheduled 4908 * @notifier: notifier struct to register 4909 */ 4910 void preempt_notifier_register(struct preempt_notifier *notifier) 4911 { 4912 if (!static_branch_unlikely(&preempt_notifier_key)) 4913 WARN(1, "registering preempt_notifier while notifiers disabled\n"); 4914 4915 hlist_add_head(¬ifier->link, ¤t->preempt_notifiers); 4916 } 4917 EXPORT_SYMBOL_GPL(preempt_notifier_register); 4918 4919 /** 4920 * preempt_notifier_unregister - no longer interested in preemption notifications 4921 * @notifier: notifier struct to unregister 4922 * 4923 * This is *not* safe to call from within a preemption notifier. 4924 */ 4925 void preempt_notifier_unregister(struct preempt_notifier *notifier) 4926 { 4927 hlist_del(¬ifier->link); 4928 } 4929 EXPORT_SYMBOL_GPL(preempt_notifier_unregister); 4930 4931 static void __fire_sched_in_preempt_notifiers(struct task_struct *curr) 4932 { 4933 struct preempt_notifier *notifier; 4934 4935 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4936 notifier->ops->sched_in(notifier, raw_smp_processor_id()); 4937 } 4938 4939 static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4940 { 4941 if (static_branch_unlikely(&preempt_notifier_key)) 4942 __fire_sched_in_preempt_notifiers(curr); 4943 } 4944 4945 static void 4946 __fire_sched_out_preempt_notifiers(struct task_struct *curr, 4947 struct task_struct *next) 4948 { 4949 struct preempt_notifier *notifier; 4950 4951 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link) 4952 notifier->ops->sched_out(notifier, next); 4953 } 4954 4955 static __always_inline void 4956 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4957 struct task_struct *next) 4958 { 4959 if (static_branch_unlikely(&preempt_notifier_key)) 4960 __fire_sched_out_preempt_notifiers(curr, next); 4961 } 4962 4963 #else /* !CONFIG_PREEMPT_NOTIFIERS */ 4964 4965 static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr) 4966 { 4967 } 4968 4969 static inline void 4970 fire_sched_out_preempt_notifiers(struct task_struct *curr, 4971 struct task_struct *next) 4972 { 4973 } 4974 4975 #endif /* CONFIG_PREEMPT_NOTIFIERS */ 4976 4977 static inline void prepare_task(struct task_struct *next) 4978 { 4979 #ifdef CONFIG_SMP 4980 /* 4981 * Claim the task as running, we do this before switching to it 4982 * such that any running task will have this set. 4983 * 4984 * See the smp_load_acquire(&p->on_cpu) case in ttwu() and 4985 * its ordering comment. 4986 */ 4987 WRITE_ONCE(next->on_cpu, 1); 4988 #endif 4989 } 4990 4991 static inline void finish_task(struct task_struct *prev) 4992 { 4993 #ifdef CONFIG_SMP 4994 /* 4995 * This must be the very last reference to @prev from this CPU. After 4996 * p->on_cpu is cleared, the task can be moved to a different CPU. We 4997 * must ensure this doesn't happen until the switch is completely 4998 * finished. 4999 * 5000 * In particular, the load of prev->state in finish_task_switch() must 5001 * happen before this. 5002 * 5003 * Pairs with the smp_cond_load_acquire() in try_to_wake_up(). 5004 */ 5005 smp_store_release(&prev->on_cpu, 0); 5006 #endif 5007 } 5008 5009 #ifdef CONFIG_SMP 5010 5011 static void do_balance_callbacks(struct rq *rq, struct balance_callback *head) 5012 { 5013 void (*func)(struct rq *rq); 5014 struct balance_callback *next; 5015 5016 lockdep_assert_rq_held(rq); 5017 5018 while (head) { 5019 func = (void (*)(struct rq *))head->func; 5020 next = head->next; 5021 head->next = NULL; 5022 head = next; 5023 5024 func(rq); 5025 } 5026 } 5027 5028 static void balance_push(struct rq *rq); 5029 5030 /* 5031 * balance_push_callback is a right abuse of the callback interface and plays 5032 * by significantly different rules. 5033 * 5034 * Where the normal balance_callback's purpose is to be ran in the same context 5035 * that queued it (only later, when it's safe to drop rq->lock again), 5036 * balance_push_callback is specifically targeted at __schedule(). 5037 * 5038 * This abuse is tolerated because it places all the unlikely/odd cases behind 5039 * a single test, namely: rq->balance_callback == NULL. 5040 */ 5041 struct balance_callback balance_push_callback = { 5042 .next = NULL, 5043 .func = balance_push, 5044 }; 5045 5046 static inline struct balance_callback * 5047 __splice_balance_callbacks(struct rq *rq, bool split) 5048 { 5049 struct balance_callback *head = rq->balance_callback; 5050 5051 if (likely(!head)) 5052 return NULL; 5053 5054 lockdep_assert_rq_held(rq); 5055 /* 5056 * Must not take balance_push_callback off the list when 5057 * splice_balance_callbacks() and balance_callbacks() are not 5058 * in the same rq->lock section. 5059 * 5060 * In that case it would be possible for __schedule() to interleave 5061 * and observe the list empty. 5062 */ 5063 if (split && head == &balance_push_callback) 5064 head = NULL; 5065 else 5066 rq->balance_callback = NULL; 5067 5068 return head; 5069 } 5070 5071 struct balance_callback *splice_balance_callbacks(struct rq *rq) 5072 { 5073 return __splice_balance_callbacks(rq, true); 5074 } 5075 5076 static void __balance_callbacks(struct rq *rq) 5077 { 5078 do_balance_callbacks(rq, __splice_balance_callbacks(rq, false)); 5079 } 5080 5081 void balance_callbacks(struct rq *rq, struct balance_callback *head) 5082 { 5083 unsigned long flags; 5084 5085 if (unlikely(head)) { 5086 raw_spin_rq_lock_irqsave(rq, flags); 5087 do_balance_callbacks(rq, head); 5088 raw_spin_rq_unlock_irqrestore(rq, flags); 5089 } 5090 } 5091 5092 #else 5093 5094 static inline void __balance_callbacks(struct rq *rq) 5095 { 5096 } 5097 5098 #endif 5099 5100 static inline void 5101 prepare_lock_switch(struct rq *rq, struct task_struct *next, struct rq_flags *rf) 5102 { 5103 /* 5104 * Since the runqueue lock will be released by the next 5105 * task (which is an invalid locking op but in the case 5106 * of the scheduler it's an obvious special-case), so we 5107 * do an early lockdep release here: 5108 */ 5109 rq_unpin_lock(rq, rf); 5110 spin_release(&__rq_lockp(rq)->dep_map, _THIS_IP_); 5111 #ifdef CONFIG_DEBUG_SPINLOCK 5112 /* this is a valid case when another task releases the spinlock */ 5113 rq_lockp(rq)->owner = next; 5114 #endif 5115 } 5116 5117 static inline void finish_lock_switch(struct rq *rq) 5118 { 5119 /* 5120 * If we are tracking spinlock dependencies then we have to 5121 * fix up the runqueue lock - which gets 'carried over' from 5122 * prev into current: 5123 */ 5124 spin_acquire(&__rq_lockp(rq)->dep_map, 0, 0, _THIS_IP_); 5125 __balance_callbacks(rq); 5126 raw_spin_rq_unlock_irq(rq); 5127 } 5128 5129 /* 5130 * NOP if the arch has not defined these: 5131 */ 5132 5133 #ifndef prepare_arch_switch 5134 # define prepare_arch_switch(next) do { } while (0) 5135 #endif 5136 5137 #ifndef finish_arch_post_lock_switch 5138 # define finish_arch_post_lock_switch() do { } while (0) 5139 #endif 5140 5141 static inline void kmap_local_sched_out(void) 5142 { 5143 #ifdef CONFIG_KMAP_LOCAL 5144 if (unlikely(current->kmap_ctrl.idx)) 5145 __kmap_local_sched_out(); 5146 #endif 5147 } 5148 5149 static inline void kmap_local_sched_in(void) 5150 { 5151 #ifdef CONFIG_KMAP_LOCAL 5152 if (unlikely(current->kmap_ctrl.idx)) 5153 __kmap_local_sched_in(); 5154 #endif 5155 } 5156 5157 /** 5158 * prepare_task_switch - prepare to switch tasks 5159 * @rq: the runqueue preparing to switch 5160 * @prev: the current task that is being switched out 5161 * @next: the task we are going to switch to. 5162 * 5163 * This is called with the rq lock held and interrupts off. It must 5164 * be paired with a subsequent finish_task_switch after the context 5165 * switch. 5166 * 5167 * prepare_task_switch sets up locking and calls architecture specific 5168 * hooks. 5169 */ 5170 static inline void 5171 prepare_task_switch(struct rq *rq, struct task_struct *prev, 5172 struct task_struct *next) 5173 { 5174 kcov_prepare_switch(prev); 5175 sched_info_switch(rq, prev, next); 5176 perf_event_task_sched_out(prev, next); 5177 rseq_preempt(prev); 5178 fire_sched_out_preempt_notifiers(prev, next); 5179 kmap_local_sched_out(); 5180 prepare_task(next); 5181 prepare_arch_switch(next); 5182 } 5183 5184 /** 5185 * finish_task_switch - clean up after a task-switch 5186 * @prev: the thread we just switched away from. 5187 * 5188 * finish_task_switch must be called after the context switch, paired 5189 * with a prepare_task_switch call before the context switch. 5190 * finish_task_switch will reconcile locking set up by prepare_task_switch, 5191 * and do any other architecture-specific cleanup actions. 5192 * 5193 * Note that we may have delayed dropping an mm in context_switch(). If 5194 * so, we finish that here outside of the runqueue lock. (Doing it 5195 * with the lock held can cause deadlocks; see schedule() for 5196 * details.) 5197 * 5198 * The context switch have flipped the stack from under us and restored the 5199 * local variables which were saved when this task called schedule() in the 5200 * past. 'prev == current' is still correct but we need to recalculate this_rq 5201 * because prev may have moved to another CPU. 5202 */ 5203 static struct rq *finish_task_switch(struct task_struct *prev) 5204 __releases(rq->lock) 5205 { 5206 struct rq *rq = this_rq(); 5207 struct mm_struct *mm = rq->prev_mm; 5208 unsigned int prev_state; 5209 5210 /* 5211 * The previous task will have left us with a preempt_count of 2 5212 * because it left us after: 5213 * 5214 * schedule() 5215 * preempt_disable(); // 1 5216 * __schedule() 5217 * raw_spin_lock_irq(&rq->lock) // 2 5218 * 5219 * Also, see FORK_PREEMPT_COUNT. 5220 */ 5221 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET, 5222 "corrupted preempt_count: %s/%d/0x%x\n", 5223 current->comm, current->pid, preempt_count())) 5224 preempt_count_set(FORK_PREEMPT_COUNT); 5225 5226 rq->prev_mm = NULL; 5227 5228 /* 5229 * A task struct has one reference for the use as "current". 5230 * If a task dies, then it sets TASK_DEAD in tsk->state and calls 5231 * schedule one last time. The schedule call will never return, and 5232 * the scheduled task must drop that reference. 5233 * 5234 * We must observe prev->state before clearing prev->on_cpu (in 5235 * finish_task), otherwise a concurrent wakeup can get prev 5236 * running on another CPU and we could rave with its RUNNING -> DEAD 5237 * transition, resulting in a double drop. 5238 */ 5239 prev_state = READ_ONCE(prev->__state); 5240 vtime_task_switch(prev); 5241 perf_event_task_sched_in(prev, current); 5242 finish_task(prev); 5243 tick_nohz_task_switch(); 5244 finish_lock_switch(rq); 5245 finish_arch_post_lock_switch(); 5246 kcov_finish_switch(current); 5247 /* 5248 * kmap_local_sched_out() is invoked with rq::lock held and 5249 * interrupts disabled. There is no requirement for that, but the 5250 * sched out code does not have an interrupt enabled section. 5251 * Restoring the maps on sched in does not require interrupts being 5252 * disabled either. 5253 */ 5254 kmap_local_sched_in(); 5255 5256 fire_sched_in_preempt_notifiers(current); 5257 /* 5258 * When switching through a kernel thread, the loop in 5259 * membarrier_{private,global}_expedited() may have observed that 5260 * kernel thread and not issued an IPI. It is therefore possible to 5261 * schedule between user->kernel->user threads without passing though 5262 * switch_mm(). Membarrier requires a barrier after storing to 5263 * rq->curr, before returning to userspace, so provide them here: 5264 * 5265 * - a full memory barrier for {PRIVATE,GLOBAL}_EXPEDITED, implicitly 5266 * provided by mmdrop_lazy_tlb(), 5267 * - a sync_core for SYNC_CORE. 5268 */ 5269 if (mm) { 5270 membarrier_mm_sync_core_before_usermode(mm); 5271 mmdrop_lazy_tlb_sched(mm); 5272 } 5273 5274 if (unlikely(prev_state == TASK_DEAD)) { 5275 if (prev->sched_class->task_dead) 5276 prev->sched_class->task_dead(prev); 5277 5278 /* Task is done with its stack. */ 5279 put_task_stack(prev); 5280 5281 put_task_struct_rcu_user(prev); 5282 } 5283 5284 return rq; 5285 } 5286 5287 /** 5288 * schedule_tail - first thing a freshly forked thread must call. 5289 * @prev: the thread we just switched away from. 5290 */ 5291 asmlinkage __visible void schedule_tail(struct task_struct *prev) 5292 __releases(rq->lock) 5293 { 5294 /* 5295 * New tasks start with FORK_PREEMPT_COUNT, see there and 5296 * finish_task_switch() for details. 5297 * 5298 * finish_task_switch() will drop rq->lock() and lower preempt_count 5299 * and the preempt_enable() will end up enabling preemption (on 5300 * PREEMPT_COUNT kernels). 5301 */ 5302 5303 finish_task_switch(prev); 5304 preempt_enable(); 5305 5306 if (current->set_child_tid) 5307 put_user(task_pid_vnr(current), current->set_child_tid); 5308 5309 calculate_sigpending(); 5310 } 5311 5312 /* 5313 * context_switch - switch to the new MM and the new thread's register state. 5314 */ 5315 static __always_inline struct rq * 5316 context_switch(struct rq *rq, struct task_struct *prev, 5317 struct task_struct *next, struct rq_flags *rf) 5318 { 5319 prepare_task_switch(rq, prev, next); 5320 5321 /* 5322 * For paravirt, this is coupled with an exit in switch_to to 5323 * combine the page table reload and the switch backend into 5324 * one hypercall. 5325 */ 5326 arch_start_context_switch(prev); 5327 5328 /* 5329 * kernel -> kernel lazy + transfer active 5330 * user -> kernel lazy + mmgrab_lazy_tlb() active 5331 * 5332 * kernel -> user switch + mmdrop_lazy_tlb() active 5333 * user -> user switch 5334 * 5335 * switch_mm_cid() needs to be updated if the barriers provided 5336 * by context_switch() are modified. 5337 */ 5338 if (!next->mm) { // to kernel 5339 enter_lazy_tlb(prev->active_mm, next); 5340 5341 next->active_mm = prev->active_mm; 5342 if (prev->mm) // from user 5343 mmgrab_lazy_tlb(prev->active_mm); 5344 else 5345 prev->active_mm = NULL; 5346 } else { // to user 5347 membarrier_switch_mm(rq, prev->active_mm, next->mm); 5348 /* 5349 * sys_membarrier() requires an smp_mb() between setting 5350 * rq->curr / membarrier_switch_mm() and returning to userspace. 5351 * 5352 * The below provides this either through switch_mm(), or in 5353 * case 'prev->active_mm == next->mm' through 5354 * finish_task_switch()'s mmdrop(). 5355 */ 5356 switch_mm_irqs_off(prev->active_mm, next->mm, next); 5357 lru_gen_use_mm(next->mm); 5358 5359 if (!prev->mm) { // from kernel 5360 /* will mmdrop_lazy_tlb() in finish_task_switch(). */ 5361 rq->prev_mm = prev->active_mm; 5362 prev->active_mm = NULL; 5363 } 5364 } 5365 5366 /* switch_mm_cid() requires the memory barriers above. */ 5367 switch_mm_cid(rq, prev, next); 5368 5369 prepare_lock_switch(rq, next, rf); 5370 5371 /* Here we just switch the register state and the stack. */ 5372 switch_to(prev, next, prev); 5373 barrier(); 5374 5375 return finish_task_switch(prev); 5376 } 5377 5378 /* 5379 * nr_running and nr_context_switches: 5380 * 5381 * externally visible scheduler statistics: current number of runnable 5382 * threads, total number of context switches performed since bootup. 5383 */ 5384 unsigned int nr_running(void) 5385 { 5386 unsigned int i, sum = 0; 5387 5388 for_each_online_cpu(i) 5389 sum += cpu_rq(i)->nr_running; 5390 5391 return sum; 5392 } 5393 5394 /* 5395 * Check if only the current task is running on the CPU. 5396 * 5397 * Caution: this function does not check that the caller has disabled 5398 * preemption, thus the result might have a time-of-check-to-time-of-use 5399 * race. The caller is responsible to use it correctly, for example: 5400 * 5401 * - from a non-preemptible section (of course) 5402 * 5403 * - from a thread that is bound to a single CPU 5404 * 5405 * - in a loop with very short iterations (e.g. a polling loop) 5406 */ 5407 bool single_task_running(void) 5408 { 5409 return raw_rq()->nr_running == 1; 5410 } 5411 EXPORT_SYMBOL(single_task_running); 5412 5413 unsigned long long nr_context_switches_cpu(int cpu) 5414 { 5415 return cpu_rq(cpu)->nr_switches; 5416 } 5417 5418 unsigned long long nr_context_switches(void) 5419 { 5420 int i; 5421 unsigned long long sum = 0; 5422 5423 for_each_possible_cpu(i) 5424 sum += cpu_rq(i)->nr_switches; 5425 5426 return sum; 5427 } 5428 5429 /* 5430 * Consumers of these two interfaces, like for example the cpuidle menu 5431 * governor, are using nonsensical data. Preferring shallow idle state selection 5432 * for a CPU that has IO-wait which might not even end up running the task when 5433 * it does become runnable. 5434 */ 5435 5436 unsigned int nr_iowait_cpu(int cpu) 5437 { 5438 return atomic_read(&cpu_rq(cpu)->nr_iowait); 5439 } 5440 5441 /* 5442 * IO-wait accounting, and how it's mostly bollocks (on SMP). 5443 * 5444 * The idea behind IO-wait account is to account the idle time that we could 5445 * have spend running if it were not for IO. That is, if we were to improve the 5446 * storage performance, we'd have a proportional reduction in IO-wait time. 5447 * 5448 * This all works nicely on UP, where, when a task blocks on IO, we account 5449 * idle time as IO-wait, because if the storage were faster, it could've been 5450 * running and we'd not be idle. 5451 * 5452 * This has been extended to SMP, by doing the same for each CPU. This however 5453 * is broken. 5454 * 5455 * Imagine for instance the case where two tasks block on one CPU, only the one 5456 * CPU will have IO-wait accounted, while the other has regular idle. Even 5457 * though, if the storage were faster, both could've ran at the same time, 5458 * utilising both CPUs. 5459 * 5460 * This means, that when looking globally, the current IO-wait accounting on 5461 * SMP is a lower bound, by reason of under accounting. 5462 * 5463 * Worse, since the numbers are provided per CPU, they are sometimes 5464 * interpreted per CPU, and that is nonsensical. A blocked task isn't strictly 5465 * associated with any one particular CPU, it can wake to another CPU than it 5466 * blocked on. This means the per CPU IO-wait number is meaningless. 5467 * 5468 * Task CPU affinities can make all that even more 'interesting'. 5469 */ 5470 5471 unsigned int nr_iowait(void) 5472 { 5473 unsigned int i, sum = 0; 5474 5475 for_each_possible_cpu(i) 5476 sum += nr_iowait_cpu(i); 5477 5478 return sum; 5479 } 5480 5481 #ifdef CONFIG_SMP 5482 5483 /* 5484 * sched_exec - execve() is a valuable balancing opportunity, because at 5485 * this point the task has the smallest effective memory and cache footprint. 5486 */ 5487 void sched_exec(void) 5488 { 5489 struct task_struct *p = current; 5490 struct migration_arg arg; 5491 int dest_cpu; 5492 5493 scoped_guard (raw_spinlock_irqsave, &p->pi_lock) { 5494 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), WF_EXEC); 5495 if (dest_cpu == smp_processor_id()) 5496 return; 5497 5498 if (unlikely(!cpu_active(dest_cpu))) 5499 return; 5500 5501 arg = (struct migration_arg){ p, dest_cpu }; 5502 } 5503 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg); 5504 } 5505 5506 #endif 5507 5508 DEFINE_PER_CPU(struct kernel_stat, kstat); 5509 DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat); 5510 5511 EXPORT_PER_CPU_SYMBOL(kstat); 5512 EXPORT_PER_CPU_SYMBOL(kernel_cpustat); 5513 5514 /* 5515 * The function fair_sched_class.update_curr accesses the struct curr 5516 * and its field curr->exec_start; when called from task_sched_runtime(), 5517 * we observe a high rate of cache misses in practice. 5518 * Prefetching this data results in improved performance. 5519 */ 5520 static inline void prefetch_curr_exec_start(struct task_struct *p) 5521 { 5522 #ifdef CONFIG_FAIR_GROUP_SCHED 5523 struct sched_entity *curr = p->se.cfs_rq->curr; 5524 #else 5525 struct sched_entity *curr = task_rq(p)->cfs.curr; 5526 #endif 5527 prefetch(curr); 5528 prefetch(&curr->exec_start); 5529 } 5530 5531 /* 5532 * Return accounted runtime for the task. 5533 * In case the task is currently running, return the runtime plus current's 5534 * pending runtime that have not been accounted yet. 5535 */ 5536 unsigned long long task_sched_runtime(struct task_struct *p) 5537 { 5538 struct rq_flags rf; 5539 struct rq *rq; 5540 u64 ns; 5541 5542 #if defined(CONFIG_64BIT) && defined(CONFIG_SMP) 5543 /* 5544 * 64-bit doesn't need locks to atomically read a 64-bit value. 5545 * So we have a optimization chance when the task's delta_exec is 0. 5546 * Reading ->on_cpu is racy, but this is OK. 5547 * 5548 * If we race with it leaving CPU, we'll take a lock. So we're correct. 5549 * If we race with it entering CPU, unaccounted time is 0. This is 5550 * indistinguishable from the read occurring a few cycles earlier. 5551 * If we see ->on_cpu without ->on_rq, the task is leaving, and has 5552 * been accounted, so we're correct here as well. 5553 */ 5554 if (!p->on_cpu || !task_on_rq_queued(p)) 5555 return p->se.sum_exec_runtime; 5556 #endif 5557 5558 rq = task_rq_lock(p, &rf); 5559 /* 5560 * Must be ->curr _and_ ->on_rq. If dequeued, we would 5561 * project cycles that may never be accounted to this 5562 * thread, breaking clock_gettime(). 5563 */ 5564 if (task_current_donor(rq, p) && task_on_rq_queued(p)) { 5565 prefetch_curr_exec_start(p); 5566 update_rq_clock(rq); 5567 p->sched_class->update_curr(rq); 5568 } 5569 ns = p->se.sum_exec_runtime; 5570 task_rq_unlock(rq, p, &rf); 5571 5572 return ns; 5573 } 5574 5575 #ifdef CONFIG_SCHED_DEBUG 5576 static u64 cpu_resched_latency(struct rq *rq) 5577 { 5578 int latency_warn_ms = READ_ONCE(sysctl_resched_latency_warn_ms); 5579 u64 resched_latency, now = rq_clock(rq); 5580 static bool warned_once; 5581 5582 if (sysctl_resched_latency_warn_once && warned_once) 5583 return 0; 5584 5585 if (!need_resched() || !latency_warn_ms) 5586 return 0; 5587 5588 if (system_state == SYSTEM_BOOTING) 5589 return 0; 5590 5591 if (!rq->last_seen_need_resched_ns) { 5592 rq->last_seen_need_resched_ns = now; 5593 rq->ticks_without_resched = 0; 5594 return 0; 5595 } 5596 5597 rq->ticks_without_resched++; 5598 resched_latency = now - rq->last_seen_need_resched_ns; 5599 if (resched_latency <= latency_warn_ms * NSEC_PER_MSEC) 5600 return 0; 5601 5602 warned_once = true; 5603 5604 return resched_latency; 5605 } 5606 5607 static int __init setup_resched_latency_warn_ms(char *str) 5608 { 5609 long val; 5610 5611 if ((kstrtol(str, 0, &val))) { 5612 pr_warn("Unable to set resched_latency_warn_ms\n"); 5613 return 1; 5614 } 5615 5616 sysctl_resched_latency_warn_ms = val; 5617 return 1; 5618 } 5619 __setup("resched_latency_warn_ms=", setup_resched_latency_warn_ms); 5620 #else 5621 static inline u64 cpu_resched_latency(struct rq *rq) { return 0; } 5622 #endif /* CONFIG_SCHED_DEBUG */ 5623 5624 /* 5625 * This function gets called by the timer code, with HZ frequency. 5626 * We call it with interrupts disabled. 5627 */ 5628 void sched_tick(void) 5629 { 5630 int cpu = smp_processor_id(); 5631 struct rq *rq = cpu_rq(cpu); 5632 /* accounting goes to the donor task */ 5633 struct task_struct *donor; 5634 struct rq_flags rf; 5635 unsigned long hw_pressure; 5636 u64 resched_latency; 5637 5638 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5639 arch_scale_freq_tick(); 5640 5641 sched_clock_tick(); 5642 5643 rq_lock(rq, &rf); 5644 donor = rq->donor; 5645 5646 psi_account_irqtime(rq, donor, NULL); 5647 5648 update_rq_clock(rq); 5649 hw_pressure = arch_scale_hw_pressure(cpu_of(rq)); 5650 update_hw_load_avg(rq_clock_task(rq), rq, hw_pressure); 5651 5652 if (dynamic_preempt_lazy() && tif_test_bit(TIF_NEED_RESCHED_LAZY)) 5653 resched_curr(rq); 5654 5655 donor->sched_class->task_tick(rq, donor, 0); 5656 if (sched_feat(LATENCY_WARN)) 5657 resched_latency = cpu_resched_latency(rq); 5658 calc_global_load_tick(rq); 5659 sched_core_tick(rq); 5660 task_tick_mm_cid(rq, donor); 5661 scx_tick(rq); 5662 5663 rq_unlock(rq, &rf); 5664 5665 if (sched_feat(LATENCY_WARN) && resched_latency) 5666 resched_latency_warn(cpu, resched_latency); 5667 5668 perf_event_task_tick(); 5669 5670 if (donor->flags & PF_WQ_WORKER) 5671 wq_worker_tick(donor); 5672 5673 #ifdef CONFIG_SMP 5674 if (!scx_switched_all()) { 5675 rq->idle_balance = idle_cpu(cpu); 5676 sched_balance_trigger(rq); 5677 } 5678 #endif 5679 } 5680 5681 #ifdef CONFIG_NO_HZ_FULL 5682 5683 struct tick_work { 5684 int cpu; 5685 atomic_t state; 5686 struct delayed_work work; 5687 }; 5688 /* Values for ->state, see diagram below. */ 5689 #define TICK_SCHED_REMOTE_OFFLINE 0 5690 #define TICK_SCHED_REMOTE_OFFLINING 1 5691 #define TICK_SCHED_REMOTE_RUNNING 2 5692 5693 /* 5694 * State diagram for ->state: 5695 * 5696 * 5697 * TICK_SCHED_REMOTE_OFFLINE 5698 * | ^ 5699 * | | 5700 * | | sched_tick_remote() 5701 * | | 5702 * | | 5703 * +--TICK_SCHED_REMOTE_OFFLINING 5704 * | ^ 5705 * | | 5706 * sched_tick_start() | | sched_tick_stop() 5707 * | | 5708 * V | 5709 * TICK_SCHED_REMOTE_RUNNING 5710 * 5711 * 5712 * Other transitions get WARN_ON_ONCE(), except that sched_tick_remote() 5713 * and sched_tick_start() are happy to leave the state in RUNNING. 5714 */ 5715 5716 static struct tick_work __percpu *tick_work_cpu; 5717 5718 static void sched_tick_remote(struct work_struct *work) 5719 { 5720 struct delayed_work *dwork = to_delayed_work(work); 5721 struct tick_work *twork = container_of(dwork, struct tick_work, work); 5722 int cpu = twork->cpu; 5723 struct rq *rq = cpu_rq(cpu); 5724 int os; 5725 5726 /* 5727 * Handle the tick only if it appears the remote CPU is running in full 5728 * dynticks mode. The check is racy by nature, but missing a tick or 5729 * having one too much is no big deal because the scheduler tick updates 5730 * statistics and checks timeslices in a time-independent way, regardless 5731 * of when exactly it is running. 5732 */ 5733 if (tick_nohz_tick_stopped_cpu(cpu)) { 5734 guard(rq_lock_irq)(rq); 5735 struct task_struct *curr = rq->curr; 5736 5737 if (cpu_online(cpu)) { 5738 /* 5739 * Since this is a remote tick for full dynticks mode, 5740 * we are always sure that there is no proxy (only a 5741 * single task is running). 5742 */ 5743 SCHED_WARN_ON(rq->curr != rq->donor); 5744 update_rq_clock(rq); 5745 5746 if (!is_idle_task(curr)) { 5747 /* 5748 * Make sure the next tick runs within a 5749 * reasonable amount of time. 5750 */ 5751 u64 delta = rq_clock_task(rq) - curr->se.exec_start; 5752 WARN_ON_ONCE(delta > (u64)NSEC_PER_SEC * 3); 5753 } 5754 curr->sched_class->task_tick(rq, curr, 0); 5755 5756 calc_load_nohz_remote(rq); 5757 } 5758 } 5759 5760 /* 5761 * Run the remote tick once per second (1Hz). This arbitrary 5762 * frequency is large enough to avoid overload but short enough 5763 * to keep scheduler internal stats reasonably up to date. But 5764 * first update state to reflect hotplug activity if required. 5765 */ 5766 os = atomic_fetch_add_unless(&twork->state, -1, TICK_SCHED_REMOTE_RUNNING); 5767 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_OFFLINE); 5768 if (os == TICK_SCHED_REMOTE_RUNNING) 5769 queue_delayed_work(system_unbound_wq, dwork, HZ); 5770 } 5771 5772 static void sched_tick_start(int cpu) 5773 { 5774 int os; 5775 struct tick_work *twork; 5776 5777 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5778 return; 5779 5780 WARN_ON_ONCE(!tick_work_cpu); 5781 5782 twork = per_cpu_ptr(tick_work_cpu, cpu); 5783 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_RUNNING); 5784 WARN_ON_ONCE(os == TICK_SCHED_REMOTE_RUNNING); 5785 if (os == TICK_SCHED_REMOTE_OFFLINE) { 5786 twork->cpu = cpu; 5787 INIT_DELAYED_WORK(&twork->work, sched_tick_remote); 5788 queue_delayed_work(system_unbound_wq, &twork->work, HZ); 5789 } 5790 } 5791 5792 #ifdef CONFIG_HOTPLUG_CPU 5793 static void sched_tick_stop(int cpu) 5794 { 5795 struct tick_work *twork; 5796 int os; 5797 5798 if (housekeeping_cpu(cpu, HK_TYPE_KERNEL_NOISE)) 5799 return; 5800 5801 WARN_ON_ONCE(!tick_work_cpu); 5802 5803 twork = per_cpu_ptr(tick_work_cpu, cpu); 5804 /* There cannot be competing actions, but don't rely on stop-machine. */ 5805 os = atomic_xchg(&twork->state, TICK_SCHED_REMOTE_OFFLINING); 5806 WARN_ON_ONCE(os != TICK_SCHED_REMOTE_RUNNING); 5807 /* Don't cancel, as this would mess up the state machine. */ 5808 } 5809 #endif /* CONFIG_HOTPLUG_CPU */ 5810 5811 int __init sched_tick_offload_init(void) 5812 { 5813 tick_work_cpu = alloc_percpu(struct tick_work); 5814 BUG_ON(!tick_work_cpu); 5815 return 0; 5816 } 5817 5818 #else /* !CONFIG_NO_HZ_FULL */ 5819 static inline void sched_tick_start(int cpu) { } 5820 static inline void sched_tick_stop(int cpu) { } 5821 #endif 5822 5823 #if defined(CONFIG_PREEMPTION) && (defined(CONFIG_DEBUG_PREEMPT) || \ 5824 defined(CONFIG_TRACE_PREEMPT_TOGGLE)) 5825 /* 5826 * If the value passed in is equal to the current preempt count 5827 * then we just disabled preemption. Start timing the latency. 5828 */ 5829 static inline void preempt_latency_start(int val) 5830 { 5831 if (preempt_count() == val) { 5832 unsigned long ip = get_lock_parent_ip(); 5833 #ifdef CONFIG_DEBUG_PREEMPT 5834 current->preempt_disable_ip = ip; 5835 #endif 5836 trace_preempt_off(CALLER_ADDR0, ip); 5837 } 5838 } 5839 5840 void preempt_count_add(int val) 5841 { 5842 #ifdef CONFIG_DEBUG_PREEMPT 5843 /* 5844 * Underflow? 5845 */ 5846 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0))) 5847 return; 5848 #endif 5849 __preempt_count_add(val); 5850 #ifdef CONFIG_DEBUG_PREEMPT 5851 /* 5852 * Spinlock count overflowing soon? 5853 */ 5854 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >= 5855 PREEMPT_MASK - 10); 5856 #endif 5857 preempt_latency_start(val); 5858 } 5859 EXPORT_SYMBOL(preempt_count_add); 5860 NOKPROBE_SYMBOL(preempt_count_add); 5861 5862 /* 5863 * If the value passed in equals to the current preempt count 5864 * then we just enabled preemption. Stop timing the latency. 5865 */ 5866 static inline void preempt_latency_stop(int val) 5867 { 5868 if (preempt_count() == val) 5869 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip()); 5870 } 5871 5872 void preempt_count_sub(int val) 5873 { 5874 #ifdef CONFIG_DEBUG_PREEMPT 5875 /* 5876 * Underflow? 5877 */ 5878 if (DEBUG_LOCKS_WARN_ON(val > preempt_count())) 5879 return; 5880 /* 5881 * Is the spinlock portion underflowing? 5882 */ 5883 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) && 5884 !(preempt_count() & PREEMPT_MASK))) 5885 return; 5886 #endif 5887 5888 preempt_latency_stop(val); 5889 __preempt_count_sub(val); 5890 } 5891 EXPORT_SYMBOL(preempt_count_sub); 5892 NOKPROBE_SYMBOL(preempt_count_sub); 5893 5894 #else 5895 static inline void preempt_latency_start(int val) { } 5896 static inline void preempt_latency_stop(int val) { } 5897 #endif 5898 5899 static inline unsigned long get_preempt_disable_ip(struct task_struct *p) 5900 { 5901 #ifdef CONFIG_DEBUG_PREEMPT 5902 return p->preempt_disable_ip; 5903 #else 5904 return 0; 5905 #endif 5906 } 5907 5908 /* 5909 * Print scheduling while atomic bug: 5910 */ 5911 static noinline void __schedule_bug(struct task_struct *prev) 5912 { 5913 /* Save this before calling printk(), since that will clobber it */ 5914 unsigned long preempt_disable_ip = get_preempt_disable_ip(current); 5915 5916 if (oops_in_progress) 5917 return; 5918 5919 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n", 5920 prev->comm, prev->pid, preempt_count()); 5921 5922 debug_show_held_locks(prev); 5923 print_modules(); 5924 if (irqs_disabled()) 5925 print_irqtrace_events(prev); 5926 if (IS_ENABLED(CONFIG_DEBUG_PREEMPT)) { 5927 pr_err("Preemption disabled at:"); 5928 print_ip_sym(KERN_ERR, preempt_disable_ip); 5929 } 5930 check_panic_on_warn("scheduling while atomic"); 5931 5932 dump_stack(); 5933 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5934 } 5935 5936 /* 5937 * Various schedule()-time debugging checks and statistics: 5938 */ 5939 static inline void schedule_debug(struct task_struct *prev, bool preempt) 5940 { 5941 #ifdef CONFIG_SCHED_STACK_END_CHECK 5942 if (task_stack_end_corrupted(prev)) 5943 panic("corrupted stack end detected inside scheduler\n"); 5944 5945 if (task_scs_end_corrupted(prev)) 5946 panic("corrupted shadow stack detected inside scheduler\n"); 5947 #endif 5948 5949 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 5950 if (!preempt && READ_ONCE(prev->__state) && prev->non_block_count) { 5951 printk(KERN_ERR "BUG: scheduling in a non-blocking section: %s/%d/%i\n", 5952 prev->comm, prev->pid, prev->non_block_count); 5953 dump_stack(); 5954 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 5955 } 5956 #endif 5957 5958 if (unlikely(in_atomic_preempt_off())) { 5959 __schedule_bug(prev); 5960 preempt_count_set(PREEMPT_DISABLED); 5961 } 5962 rcu_sleep_check(); 5963 SCHED_WARN_ON(ct_state() == CT_STATE_USER); 5964 5965 profile_hit(SCHED_PROFILING, __builtin_return_address(0)); 5966 5967 schedstat_inc(this_rq()->sched_count); 5968 } 5969 5970 static void prev_balance(struct rq *rq, struct task_struct *prev, 5971 struct rq_flags *rf) 5972 { 5973 const struct sched_class *start_class = prev->sched_class; 5974 const struct sched_class *class; 5975 5976 #ifdef CONFIG_SCHED_CLASS_EXT 5977 /* 5978 * SCX requires a balance() call before every pick_task() including when 5979 * waking up from SCHED_IDLE. If @start_class is below SCX, start from 5980 * SCX instead. Also, set a flag to detect missing balance() call. 5981 */ 5982 if (scx_enabled()) { 5983 rq->scx.flags |= SCX_RQ_BAL_PENDING; 5984 if (sched_class_above(&ext_sched_class, start_class)) 5985 start_class = &ext_sched_class; 5986 } 5987 #endif 5988 5989 /* 5990 * We must do the balancing pass before put_prev_task(), such 5991 * that when we release the rq->lock the task is in the same 5992 * state as before we took rq->lock. 5993 * 5994 * We can terminate the balance pass as soon as we know there is 5995 * a runnable task of @class priority or higher. 5996 */ 5997 for_active_class_range(class, start_class, &idle_sched_class) { 5998 if (class->balance && class->balance(rq, prev, rf)) 5999 break; 6000 } 6001 } 6002 6003 /* 6004 * Pick up the highest-prio task: 6005 */ 6006 static inline struct task_struct * 6007 __pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6008 { 6009 const struct sched_class *class; 6010 struct task_struct *p; 6011 6012 rq->dl_server = NULL; 6013 6014 if (scx_enabled()) 6015 goto restart; 6016 6017 /* 6018 * Optimization: we know that if all tasks are in the fair class we can 6019 * call that function directly, but only if the @prev task wasn't of a 6020 * higher scheduling class, because otherwise those lose the 6021 * opportunity to pull in more work from other CPUs. 6022 */ 6023 if (likely(!sched_class_above(prev->sched_class, &fair_sched_class) && 6024 rq->nr_running == rq->cfs.h_nr_queued)) { 6025 6026 p = pick_next_task_fair(rq, prev, rf); 6027 if (unlikely(p == RETRY_TASK)) 6028 goto restart; 6029 6030 /* Assume the next prioritized class is idle_sched_class */ 6031 if (!p) { 6032 p = pick_task_idle(rq); 6033 put_prev_set_next_task(rq, prev, p); 6034 } 6035 6036 return p; 6037 } 6038 6039 restart: 6040 prev_balance(rq, prev, rf); 6041 6042 for_each_active_class(class) { 6043 if (class->pick_next_task) { 6044 p = class->pick_next_task(rq, prev); 6045 if (p) 6046 return p; 6047 } else { 6048 p = class->pick_task(rq); 6049 if (p) { 6050 put_prev_set_next_task(rq, prev, p); 6051 return p; 6052 } 6053 } 6054 } 6055 6056 BUG(); /* The idle class should always have a runnable task. */ 6057 } 6058 6059 #ifdef CONFIG_SCHED_CORE 6060 static inline bool is_task_rq_idle(struct task_struct *t) 6061 { 6062 return (task_rq(t)->idle == t); 6063 } 6064 6065 static inline bool cookie_equals(struct task_struct *a, unsigned long cookie) 6066 { 6067 return is_task_rq_idle(a) || (a->core_cookie == cookie); 6068 } 6069 6070 static inline bool cookie_match(struct task_struct *a, struct task_struct *b) 6071 { 6072 if (is_task_rq_idle(a) || is_task_rq_idle(b)) 6073 return true; 6074 6075 return a->core_cookie == b->core_cookie; 6076 } 6077 6078 static inline struct task_struct *pick_task(struct rq *rq) 6079 { 6080 const struct sched_class *class; 6081 struct task_struct *p; 6082 6083 rq->dl_server = NULL; 6084 6085 for_each_active_class(class) { 6086 p = class->pick_task(rq); 6087 if (p) 6088 return p; 6089 } 6090 6091 BUG(); /* The idle class should always have a runnable task. */ 6092 } 6093 6094 extern void task_vruntime_update(struct rq *rq, struct task_struct *p, bool in_fi); 6095 6096 static void queue_core_balance(struct rq *rq); 6097 6098 static struct task_struct * 6099 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6100 { 6101 struct task_struct *next, *p, *max = NULL; 6102 const struct cpumask *smt_mask; 6103 bool fi_before = false; 6104 bool core_clock_updated = (rq == rq->core); 6105 unsigned long cookie; 6106 int i, cpu, occ = 0; 6107 struct rq *rq_i; 6108 bool need_sync; 6109 6110 if (!sched_core_enabled(rq)) 6111 return __pick_next_task(rq, prev, rf); 6112 6113 cpu = cpu_of(rq); 6114 6115 /* Stopper task is switching into idle, no need core-wide selection. */ 6116 if (cpu_is_offline(cpu)) { 6117 /* 6118 * Reset core_pick so that we don't enter the fastpath when 6119 * coming online. core_pick would already be migrated to 6120 * another cpu during offline. 6121 */ 6122 rq->core_pick = NULL; 6123 rq->core_dl_server = NULL; 6124 return __pick_next_task(rq, prev, rf); 6125 } 6126 6127 /* 6128 * If there were no {en,de}queues since we picked (IOW, the task 6129 * pointers are all still valid), and we haven't scheduled the last 6130 * pick yet, do so now. 6131 * 6132 * rq->core_pick can be NULL if no selection was made for a CPU because 6133 * it was either offline or went offline during a sibling's core-wide 6134 * selection. In this case, do a core-wide selection. 6135 */ 6136 if (rq->core->core_pick_seq == rq->core->core_task_seq && 6137 rq->core->core_pick_seq != rq->core_sched_seq && 6138 rq->core_pick) { 6139 WRITE_ONCE(rq->core_sched_seq, rq->core->core_pick_seq); 6140 6141 next = rq->core_pick; 6142 rq->dl_server = rq->core_dl_server; 6143 rq->core_pick = NULL; 6144 rq->core_dl_server = NULL; 6145 goto out_set_next; 6146 } 6147 6148 prev_balance(rq, prev, rf); 6149 6150 smt_mask = cpu_smt_mask(cpu); 6151 need_sync = !!rq->core->core_cookie; 6152 6153 /* reset state */ 6154 rq->core->core_cookie = 0UL; 6155 if (rq->core->core_forceidle_count) { 6156 if (!core_clock_updated) { 6157 update_rq_clock(rq->core); 6158 core_clock_updated = true; 6159 } 6160 sched_core_account_forceidle(rq); 6161 /* reset after accounting force idle */ 6162 rq->core->core_forceidle_start = 0; 6163 rq->core->core_forceidle_count = 0; 6164 rq->core->core_forceidle_occupation = 0; 6165 need_sync = true; 6166 fi_before = true; 6167 } 6168 6169 /* 6170 * core->core_task_seq, core->core_pick_seq, rq->core_sched_seq 6171 * 6172 * @task_seq guards the task state ({en,de}queues) 6173 * @pick_seq is the @task_seq we did a selection on 6174 * @sched_seq is the @pick_seq we scheduled 6175 * 6176 * However, preemptions can cause multiple picks on the same task set. 6177 * 'Fix' this by also increasing @task_seq for every pick. 6178 */ 6179 rq->core->core_task_seq++; 6180 6181 /* 6182 * Optimize for common case where this CPU has no cookies 6183 * and there are no cookied tasks running on siblings. 6184 */ 6185 if (!need_sync) { 6186 next = pick_task(rq); 6187 if (!next->core_cookie) { 6188 rq->core_pick = NULL; 6189 rq->core_dl_server = NULL; 6190 /* 6191 * For robustness, update the min_vruntime_fi for 6192 * unconstrained picks as well. 6193 */ 6194 WARN_ON_ONCE(fi_before); 6195 task_vruntime_update(rq, next, false); 6196 goto out_set_next; 6197 } 6198 } 6199 6200 /* 6201 * For each thread: do the regular task pick and find the max prio task 6202 * amongst them. 6203 * 6204 * Tie-break prio towards the current CPU 6205 */ 6206 for_each_cpu_wrap(i, smt_mask, cpu) { 6207 rq_i = cpu_rq(i); 6208 6209 /* 6210 * Current cpu always has its clock updated on entrance to 6211 * pick_next_task(). If the current cpu is not the core, 6212 * the core may also have been updated above. 6213 */ 6214 if (i != cpu && (rq_i != rq->core || !core_clock_updated)) 6215 update_rq_clock(rq_i); 6216 6217 rq_i->core_pick = p = pick_task(rq_i); 6218 rq_i->core_dl_server = rq_i->dl_server; 6219 6220 if (!max || prio_less(max, p, fi_before)) 6221 max = p; 6222 } 6223 6224 cookie = rq->core->core_cookie = max->core_cookie; 6225 6226 /* 6227 * For each thread: try and find a runnable task that matches @max or 6228 * force idle. 6229 */ 6230 for_each_cpu(i, smt_mask) { 6231 rq_i = cpu_rq(i); 6232 p = rq_i->core_pick; 6233 6234 if (!cookie_equals(p, cookie)) { 6235 p = NULL; 6236 if (cookie) 6237 p = sched_core_find(rq_i, cookie); 6238 if (!p) 6239 p = idle_sched_class.pick_task(rq_i); 6240 } 6241 6242 rq_i->core_pick = p; 6243 rq_i->core_dl_server = NULL; 6244 6245 if (p == rq_i->idle) { 6246 if (rq_i->nr_running) { 6247 rq->core->core_forceidle_count++; 6248 if (!fi_before) 6249 rq->core->core_forceidle_seq++; 6250 } 6251 } else { 6252 occ++; 6253 } 6254 } 6255 6256 if (schedstat_enabled() && rq->core->core_forceidle_count) { 6257 rq->core->core_forceidle_start = rq_clock(rq->core); 6258 rq->core->core_forceidle_occupation = occ; 6259 } 6260 6261 rq->core->core_pick_seq = rq->core->core_task_seq; 6262 next = rq->core_pick; 6263 rq->core_sched_seq = rq->core->core_pick_seq; 6264 6265 /* Something should have been selected for current CPU */ 6266 WARN_ON_ONCE(!next); 6267 6268 /* 6269 * Reschedule siblings 6270 * 6271 * NOTE: L1TF -- at this point we're no longer running the old task and 6272 * sending an IPI (below) ensures the sibling will no longer be running 6273 * their task. This ensures there is no inter-sibling overlap between 6274 * non-matching user state. 6275 */ 6276 for_each_cpu(i, smt_mask) { 6277 rq_i = cpu_rq(i); 6278 6279 /* 6280 * An online sibling might have gone offline before a task 6281 * could be picked for it, or it might be offline but later 6282 * happen to come online, but its too late and nothing was 6283 * picked for it. That's Ok - it will pick tasks for itself, 6284 * so ignore it. 6285 */ 6286 if (!rq_i->core_pick) 6287 continue; 6288 6289 /* 6290 * Update for new !FI->FI transitions, or if continuing to be in !FI: 6291 * fi_before fi update? 6292 * 0 0 1 6293 * 0 1 1 6294 * 1 0 1 6295 * 1 1 0 6296 */ 6297 if (!(fi_before && rq->core->core_forceidle_count)) 6298 task_vruntime_update(rq_i, rq_i->core_pick, !!rq->core->core_forceidle_count); 6299 6300 rq_i->core_pick->core_occupation = occ; 6301 6302 if (i == cpu) { 6303 rq_i->core_pick = NULL; 6304 rq_i->core_dl_server = NULL; 6305 continue; 6306 } 6307 6308 /* Did we break L1TF mitigation requirements? */ 6309 WARN_ON_ONCE(!cookie_match(next, rq_i->core_pick)); 6310 6311 if (rq_i->curr == rq_i->core_pick) { 6312 rq_i->core_pick = NULL; 6313 rq_i->core_dl_server = NULL; 6314 continue; 6315 } 6316 6317 resched_curr(rq_i); 6318 } 6319 6320 out_set_next: 6321 put_prev_set_next_task(rq, prev, next); 6322 if (rq->core->core_forceidle_count && next == rq->idle) 6323 queue_core_balance(rq); 6324 6325 return next; 6326 } 6327 6328 static bool try_steal_cookie(int this, int that) 6329 { 6330 struct rq *dst = cpu_rq(this), *src = cpu_rq(that); 6331 struct task_struct *p; 6332 unsigned long cookie; 6333 bool success = false; 6334 6335 guard(irq)(); 6336 guard(double_rq_lock)(dst, src); 6337 6338 cookie = dst->core->core_cookie; 6339 if (!cookie) 6340 return false; 6341 6342 if (dst->curr != dst->idle) 6343 return false; 6344 6345 p = sched_core_find(src, cookie); 6346 if (!p) 6347 return false; 6348 6349 do { 6350 if (p == src->core_pick || p == src->curr) 6351 goto next; 6352 6353 if (!is_cpu_allowed(p, this)) 6354 goto next; 6355 6356 if (p->core_occupation > dst->idle->core_occupation) 6357 goto next; 6358 /* 6359 * sched_core_find() and sched_core_next() will ensure 6360 * that task @p is not throttled now, we also need to 6361 * check whether the runqueue of the destination CPU is 6362 * being throttled. 6363 */ 6364 if (sched_task_is_throttled(p, this)) 6365 goto next; 6366 6367 move_queued_task_locked(src, dst, p); 6368 resched_curr(dst); 6369 6370 success = true; 6371 break; 6372 6373 next: 6374 p = sched_core_next(p, cookie); 6375 } while (p); 6376 6377 return success; 6378 } 6379 6380 static bool steal_cookie_task(int cpu, struct sched_domain *sd) 6381 { 6382 int i; 6383 6384 for_each_cpu_wrap(i, sched_domain_span(sd), cpu + 1) { 6385 if (i == cpu) 6386 continue; 6387 6388 if (need_resched()) 6389 break; 6390 6391 if (try_steal_cookie(cpu, i)) 6392 return true; 6393 } 6394 6395 return false; 6396 } 6397 6398 static void sched_core_balance(struct rq *rq) 6399 { 6400 struct sched_domain *sd; 6401 int cpu = cpu_of(rq); 6402 6403 guard(preempt)(); 6404 guard(rcu)(); 6405 6406 raw_spin_rq_unlock_irq(rq); 6407 for_each_domain(cpu, sd) { 6408 if (need_resched()) 6409 break; 6410 6411 if (steal_cookie_task(cpu, sd)) 6412 break; 6413 } 6414 raw_spin_rq_lock_irq(rq); 6415 } 6416 6417 static DEFINE_PER_CPU(struct balance_callback, core_balance_head); 6418 6419 static void queue_core_balance(struct rq *rq) 6420 { 6421 if (!sched_core_enabled(rq)) 6422 return; 6423 6424 if (!rq->core->core_cookie) 6425 return; 6426 6427 if (!rq->nr_running) /* not forced idle */ 6428 return; 6429 6430 queue_balance_callback(rq, &per_cpu(core_balance_head, rq->cpu), sched_core_balance); 6431 } 6432 6433 DEFINE_LOCK_GUARD_1(core_lock, int, 6434 sched_core_lock(*_T->lock, &_T->flags), 6435 sched_core_unlock(*_T->lock, &_T->flags), 6436 unsigned long flags) 6437 6438 static void sched_core_cpu_starting(unsigned int cpu) 6439 { 6440 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6441 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6442 int t; 6443 6444 guard(core_lock)(&cpu); 6445 6446 WARN_ON_ONCE(rq->core != rq); 6447 6448 /* if we're the first, we'll be our own leader */ 6449 if (cpumask_weight(smt_mask) == 1) 6450 return; 6451 6452 /* find the leader */ 6453 for_each_cpu(t, smt_mask) { 6454 if (t == cpu) 6455 continue; 6456 rq = cpu_rq(t); 6457 if (rq->core == rq) { 6458 core_rq = rq; 6459 break; 6460 } 6461 } 6462 6463 if (WARN_ON_ONCE(!core_rq)) /* whoopsie */ 6464 return; 6465 6466 /* install and validate core_rq */ 6467 for_each_cpu(t, smt_mask) { 6468 rq = cpu_rq(t); 6469 6470 if (t == cpu) 6471 rq->core = core_rq; 6472 6473 WARN_ON_ONCE(rq->core != core_rq); 6474 } 6475 } 6476 6477 static void sched_core_cpu_deactivate(unsigned int cpu) 6478 { 6479 const struct cpumask *smt_mask = cpu_smt_mask(cpu); 6480 struct rq *rq = cpu_rq(cpu), *core_rq = NULL; 6481 int t; 6482 6483 guard(core_lock)(&cpu); 6484 6485 /* if we're the last man standing, nothing to do */ 6486 if (cpumask_weight(smt_mask) == 1) { 6487 WARN_ON_ONCE(rq->core != rq); 6488 return; 6489 } 6490 6491 /* if we're not the leader, nothing to do */ 6492 if (rq->core != rq) 6493 return; 6494 6495 /* find a new leader */ 6496 for_each_cpu(t, smt_mask) { 6497 if (t == cpu) 6498 continue; 6499 core_rq = cpu_rq(t); 6500 break; 6501 } 6502 6503 if (WARN_ON_ONCE(!core_rq)) /* impossible */ 6504 return; 6505 6506 /* copy the shared state to the new leader */ 6507 core_rq->core_task_seq = rq->core_task_seq; 6508 core_rq->core_pick_seq = rq->core_pick_seq; 6509 core_rq->core_cookie = rq->core_cookie; 6510 core_rq->core_forceidle_count = rq->core_forceidle_count; 6511 core_rq->core_forceidle_seq = rq->core_forceidle_seq; 6512 core_rq->core_forceidle_occupation = rq->core_forceidle_occupation; 6513 6514 /* 6515 * Accounting edge for forced idle is handled in pick_next_task(). 6516 * Don't need another one here, since the hotplug thread shouldn't 6517 * have a cookie. 6518 */ 6519 core_rq->core_forceidle_start = 0; 6520 6521 /* install new leader */ 6522 for_each_cpu(t, smt_mask) { 6523 rq = cpu_rq(t); 6524 rq->core = core_rq; 6525 } 6526 } 6527 6528 static inline void sched_core_cpu_dying(unsigned int cpu) 6529 { 6530 struct rq *rq = cpu_rq(cpu); 6531 6532 if (rq->core != rq) 6533 rq->core = rq; 6534 } 6535 6536 #else /* !CONFIG_SCHED_CORE */ 6537 6538 static inline void sched_core_cpu_starting(unsigned int cpu) {} 6539 static inline void sched_core_cpu_deactivate(unsigned int cpu) {} 6540 static inline void sched_core_cpu_dying(unsigned int cpu) {} 6541 6542 static struct task_struct * 6543 pick_next_task(struct rq *rq, struct task_struct *prev, struct rq_flags *rf) 6544 { 6545 return __pick_next_task(rq, prev, rf); 6546 } 6547 6548 #endif /* CONFIG_SCHED_CORE */ 6549 6550 /* 6551 * Constants for the sched_mode argument of __schedule(). 6552 * 6553 * The mode argument allows RT enabled kernels to differentiate a 6554 * preemption from blocking on an 'sleeping' spin/rwlock. 6555 */ 6556 #define SM_IDLE (-1) 6557 #define SM_NONE 0 6558 #define SM_PREEMPT 1 6559 #define SM_RTLOCK_WAIT 2 6560 6561 /* 6562 * Helper function for __schedule() 6563 * 6564 * If a task does not have signals pending, deactivate it 6565 * Otherwise marks the task's __state as RUNNING 6566 */ 6567 static bool try_to_block_task(struct rq *rq, struct task_struct *p, 6568 unsigned long task_state) 6569 { 6570 int flags = DEQUEUE_NOCLOCK; 6571 6572 if (signal_pending_state(task_state, p)) { 6573 WRITE_ONCE(p->__state, TASK_RUNNING); 6574 return false; 6575 } 6576 6577 p->sched_contributes_to_load = 6578 (task_state & TASK_UNINTERRUPTIBLE) && 6579 !(task_state & TASK_NOLOAD) && 6580 !(task_state & TASK_FROZEN); 6581 6582 if (unlikely(is_special_task_state(task_state))) 6583 flags |= DEQUEUE_SPECIAL; 6584 6585 /* 6586 * __schedule() ttwu() 6587 * prev_state = prev->state; if (p->on_rq && ...) 6588 * if (prev_state) goto out; 6589 * p->on_rq = 0; smp_acquire__after_ctrl_dep(); 6590 * p->state = TASK_WAKING 6591 * 6592 * Where __schedule() and ttwu() have matching control dependencies. 6593 * 6594 * After this, schedule() must not care about p->state any more. 6595 */ 6596 block_task(rq, p, flags); 6597 return true; 6598 } 6599 6600 /* 6601 * __schedule() is the main scheduler function. 6602 * 6603 * The main means of driving the scheduler and thus entering this function are: 6604 * 6605 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc. 6606 * 6607 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return 6608 * paths. For example, see arch/x86/entry_64.S. 6609 * 6610 * To drive preemption between tasks, the scheduler sets the flag in timer 6611 * interrupt handler sched_tick(). 6612 * 6613 * 3. Wakeups don't really cause entry into schedule(). They add a 6614 * task to the run-queue and that's it. 6615 * 6616 * Now, if the new task added to the run-queue preempts the current 6617 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets 6618 * called on the nearest possible occasion: 6619 * 6620 * - If the kernel is preemptible (CONFIG_PREEMPTION=y): 6621 * 6622 * - in syscall or exception context, at the next outmost 6623 * preempt_enable(). (this might be as soon as the wake_up()'s 6624 * spin_unlock()!) 6625 * 6626 * - in IRQ context, return from interrupt-handler to 6627 * preemptible context 6628 * 6629 * - If the kernel is not preemptible (CONFIG_PREEMPTION is not set) 6630 * then at the next: 6631 * 6632 * - cond_resched() call 6633 * - explicit schedule() call 6634 * - return from syscall or exception to user-space 6635 * - return from interrupt-handler to user-space 6636 * 6637 * WARNING: must be called with preemption disabled! 6638 */ 6639 static void __sched notrace __schedule(int sched_mode) 6640 { 6641 struct task_struct *prev, *next; 6642 /* 6643 * On PREEMPT_RT kernel, SM_RTLOCK_WAIT is noted 6644 * as a preemption by schedule_debug() and RCU. 6645 */ 6646 bool preempt = sched_mode > SM_NONE; 6647 unsigned long *switch_count; 6648 unsigned long prev_state; 6649 struct rq_flags rf; 6650 struct rq *rq; 6651 int cpu; 6652 6653 cpu = smp_processor_id(); 6654 rq = cpu_rq(cpu); 6655 prev = rq->curr; 6656 6657 schedule_debug(prev, preempt); 6658 6659 if (sched_feat(HRTICK) || sched_feat(HRTICK_DL)) 6660 hrtick_clear(rq); 6661 6662 local_irq_disable(); 6663 rcu_note_context_switch(preempt); 6664 6665 /* 6666 * Make sure that signal_pending_state()->signal_pending() below 6667 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE) 6668 * done by the caller to avoid the race with signal_wake_up(): 6669 * 6670 * __set_current_state(@state) signal_wake_up() 6671 * schedule() set_tsk_thread_flag(p, TIF_SIGPENDING) 6672 * wake_up_state(p, state) 6673 * LOCK rq->lock LOCK p->pi_state 6674 * smp_mb__after_spinlock() smp_mb__after_spinlock() 6675 * if (signal_pending_state()) if (p->state & @state) 6676 * 6677 * Also, the membarrier system call requires a full memory barrier 6678 * after coming from user-space, before storing to rq->curr; this 6679 * barrier matches a full barrier in the proximity of the membarrier 6680 * system call exit. 6681 */ 6682 rq_lock(rq, &rf); 6683 smp_mb__after_spinlock(); 6684 6685 /* Promote REQ to ACT */ 6686 rq->clock_update_flags <<= 1; 6687 update_rq_clock(rq); 6688 rq->clock_update_flags = RQCF_UPDATED; 6689 6690 switch_count = &prev->nivcsw; 6691 6692 /* Task state changes only considers SM_PREEMPT as preemption */ 6693 preempt = sched_mode == SM_PREEMPT; 6694 6695 /* 6696 * We must load prev->state once (task_struct::state is volatile), such 6697 * that we form a control dependency vs deactivate_task() below. 6698 */ 6699 prev_state = READ_ONCE(prev->__state); 6700 if (sched_mode == SM_IDLE) { 6701 /* SCX must consult the BPF scheduler to tell if rq is empty */ 6702 if (!rq->nr_running && !scx_enabled()) { 6703 next = prev; 6704 goto picked; 6705 } 6706 } else if (!preempt && prev_state) { 6707 try_to_block_task(rq, prev, prev_state); 6708 switch_count = &prev->nvcsw; 6709 } 6710 6711 next = pick_next_task(rq, prev, &rf); 6712 rq_set_donor(rq, next); 6713 picked: 6714 clear_tsk_need_resched(prev); 6715 clear_preempt_need_resched(); 6716 #ifdef CONFIG_SCHED_DEBUG 6717 rq->last_seen_need_resched_ns = 0; 6718 #endif 6719 6720 if (likely(prev != next)) { 6721 rq->nr_switches++; 6722 /* 6723 * RCU users of rcu_dereference(rq->curr) may not see 6724 * changes to task_struct made by pick_next_task(). 6725 */ 6726 RCU_INIT_POINTER(rq->curr, next); 6727 /* 6728 * The membarrier system call requires each architecture 6729 * to have a full memory barrier after updating 6730 * rq->curr, before returning to user-space. 6731 * 6732 * Here are the schemes providing that barrier on the 6733 * various architectures: 6734 * - mm ? switch_mm() : mmdrop() for x86, s390, sparc, PowerPC, 6735 * RISC-V. switch_mm() relies on membarrier_arch_switch_mm() 6736 * on PowerPC and on RISC-V. 6737 * - finish_lock_switch() for weakly-ordered 6738 * architectures where spin_unlock is a full barrier, 6739 * - switch_to() for arm64 (weakly-ordered, spin_unlock 6740 * is a RELEASE barrier), 6741 * 6742 * The barrier matches a full barrier in the proximity of 6743 * the membarrier system call entry. 6744 * 6745 * On RISC-V, this barrier pairing is also needed for the 6746 * SYNC_CORE command when switching between processes, cf. 6747 * the inline comments in membarrier_arch_switch_mm(). 6748 */ 6749 ++*switch_count; 6750 6751 migrate_disable_switch(rq, prev); 6752 psi_account_irqtime(rq, prev, next); 6753 psi_sched_switch(prev, next, !task_on_rq_queued(prev) || 6754 prev->se.sched_delayed); 6755 6756 trace_sched_switch(preempt, prev, next, prev_state); 6757 6758 /* Also unlocks the rq: */ 6759 rq = context_switch(rq, prev, next, &rf); 6760 } else { 6761 rq_unpin_lock(rq, &rf); 6762 __balance_callbacks(rq); 6763 raw_spin_rq_unlock_irq(rq); 6764 } 6765 } 6766 6767 void __noreturn do_task_dead(void) 6768 { 6769 /* Causes final put_task_struct in finish_task_switch(): */ 6770 set_special_state(TASK_DEAD); 6771 6772 /* Tell freezer to ignore us: */ 6773 current->flags |= PF_NOFREEZE; 6774 6775 __schedule(SM_NONE); 6776 BUG(); 6777 6778 /* Avoid "noreturn function does return" - but don't continue if BUG() is a NOP: */ 6779 for (;;) 6780 cpu_relax(); 6781 } 6782 6783 static inline void sched_submit_work(struct task_struct *tsk) 6784 { 6785 static DEFINE_WAIT_OVERRIDE_MAP(sched_map, LD_WAIT_CONFIG); 6786 unsigned int task_flags; 6787 6788 /* 6789 * Establish LD_WAIT_CONFIG context to ensure none of the code called 6790 * will use a blocking primitive -- which would lead to recursion. 6791 */ 6792 lock_map_acquire_try(&sched_map); 6793 6794 task_flags = tsk->flags; 6795 /* 6796 * If a worker goes to sleep, notify and ask workqueue whether it 6797 * wants to wake up a task to maintain concurrency. 6798 */ 6799 if (task_flags & PF_WQ_WORKER) 6800 wq_worker_sleeping(tsk); 6801 else if (task_flags & PF_IO_WORKER) 6802 io_wq_worker_sleeping(tsk); 6803 6804 /* 6805 * spinlock and rwlock must not flush block requests. This will 6806 * deadlock if the callback attempts to acquire a lock which is 6807 * already acquired. 6808 */ 6809 SCHED_WARN_ON(current->__state & TASK_RTLOCK_WAIT); 6810 6811 /* 6812 * If we are going to sleep and we have plugged IO queued, 6813 * make sure to submit it to avoid deadlocks. 6814 */ 6815 blk_flush_plug(tsk->plug, true); 6816 6817 lock_map_release(&sched_map); 6818 } 6819 6820 static void sched_update_worker(struct task_struct *tsk) 6821 { 6822 if (tsk->flags & (PF_WQ_WORKER | PF_IO_WORKER | PF_BLOCK_TS)) { 6823 if (tsk->flags & PF_BLOCK_TS) 6824 blk_plug_invalidate_ts(tsk); 6825 if (tsk->flags & PF_WQ_WORKER) 6826 wq_worker_running(tsk); 6827 else if (tsk->flags & PF_IO_WORKER) 6828 io_wq_worker_running(tsk); 6829 } 6830 } 6831 6832 static __always_inline void __schedule_loop(int sched_mode) 6833 { 6834 do { 6835 preempt_disable(); 6836 __schedule(sched_mode); 6837 sched_preempt_enable_no_resched(); 6838 } while (need_resched()); 6839 } 6840 6841 asmlinkage __visible void __sched schedule(void) 6842 { 6843 struct task_struct *tsk = current; 6844 6845 #ifdef CONFIG_RT_MUTEXES 6846 lockdep_assert(!tsk->sched_rt_mutex); 6847 #endif 6848 6849 if (!task_is_running(tsk)) 6850 sched_submit_work(tsk); 6851 __schedule_loop(SM_NONE); 6852 sched_update_worker(tsk); 6853 } 6854 EXPORT_SYMBOL(schedule); 6855 6856 /* 6857 * synchronize_rcu_tasks() makes sure that no task is stuck in preempted 6858 * state (have scheduled out non-voluntarily) by making sure that all 6859 * tasks have either left the run queue or have gone into user space. 6860 * As idle tasks do not do either, they must not ever be preempted 6861 * (schedule out non-voluntarily). 6862 * 6863 * schedule_idle() is similar to schedule_preempt_disable() except that it 6864 * never enables preemption because it does not call sched_submit_work(). 6865 */ 6866 void __sched schedule_idle(void) 6867 { 6868 /* 6869 * As this skips calling sched_submit_work(), which the idle task does 6870 * regardless because that function is a NOP when the task is in a 6871 * TASK_RUNNING state, make sure this isn't used someplace that the 6872 * current task can be in any other state. Note, idle is always in the 6873 * TASK_RUNNING state. 6874 */ 6875 WARN_ON_ONCE(current->__state); 6876 do { 6877 __schedule(SM_IDLE); 6878 } while (need_resched()); 6879 } 6880 6881 #if defined(CONFIG_CONTEXT_TRACKING_USER) && !defined(CONFIG_HAVE_CONTEXT_TRACKING_USER_OFFSTACK) 6882 asmlinkage __visible void __sched schedule_user(void) 6883 { 6884 /* 6885 * If we come here after a random call to set_need_resched(), 6886 * or we have been woken up remotely but the IPI has not yet arrived, 6887 * we haven't yet exited the RCU idle mode. Do it here manually until 6888 * we find a better solution. 6889 * 6890 * NB: There are buggy callers of this function. Ideally we 6891 * should warn if prev_state != CT_STATE_USER, but that will trigger 6892 * too frequently to make sense yet. 6893 */ 6894 enum ctx_state prev_state = exception_enter(); 6895 schedule(); 6896 exception_exit(prev_state); 6897 } 6898 #endif 6899 6900 /** 6901 * schedule_preempt_disabled - called with preemption disabled 6902 * 6903 * Returns with preemption disabled. Note: preempt_count must be 1 6904 */ 6905 void __sched schedule_preempt_disabled(void) 6906 { 6907 sched_preempt_enable_no_resched(); 6908 schedule(); 6909 preempt_disable(); 6910 } 6911 6912 #ifdef CONFIG_PREEMPT_RT 6913 void __sched notrace schedule_rtlock(void) 6914 { 6915 __schedule_loop(SM_RTLOCK_WAIT); 6916 } 6917 NOKPROBE_SYMBOL(schedule_rtlock); 6918 #endif 6919 6920 static void __sched notrace preempt_schedule_common(void) 6921 { 6922 do { 6923 /* 6924 * Because the function tracer can trace preempt_count_sub() 6925 * and it also uses preempt_enable/disable_notrace(), if 6926 * NEED_RESCHED is set, the preempt_enable_notrace() called 6927 * by the function tracer will call this function again and 6928 * cause infinite recursion. 6929 * 6930 * Preemption must be disabled here before the function 6931 * tracer can trace. Break up preempt_disable() into two 6932 * calls. One to disable preemption without fear of being 6933 * traced. The other to still record the preemption latency, 6934 * which can also be traced by the function tracer. 6935 */ 6936 preempt_disable_notrace(); 6937 preempt_latency_start(1); 6938 __schedule(SM_PREEMPT); 6939 preempt_latency_stop(1); 6940 preempt_enable_no_resched_notrace(); 6941 6942 /* 6943 * Check again in case we missed a preemption opportunity 6944 * between schedule and now. 6945 */ 6946 } while (need_resched()); 6947 } 6948 6949 #ifdef CONFIG_PREEMPTION 6950 /* 6951 * This is the entry point to schedule() from in-kernel preemption 6952 * off of preempt_enable. 6953 */ 6954 asmlinkage __visible void __sched notrace preempt_schedule(void) 6955 { 6956 /* 6957 * If there is a non-zero preempt_count or interrupts are disabled, 6958 * we do not want to preempt the current task. Just return.. 6959 */ 6960 if (likely(!preemptible())) 6961 return; 6962 preempt_schedule_common(); 6963 } 6964 NOKPROBE_SYMBOL(preempt_schedule); 6965 EXPORT_SYMBOL(preempt_schedule); 6966 6967 #ifdef CONFIG_PREEMPT_DYNAMIC 6968 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 6969 #ifndef preempt_schedule_dynamic_enabled 6970 #define preempt_schedule_dynamic_enabled preempt_schedule 6971 #define preempt_schedule_dynamic_disabled NULL 6972 #endif 6973 DEFINE_STATIC_CALL(preempt_schedule, preempt_schedule_dynamic_enabled); 6974 EXPORT_STATIC_CALL_TRAMP(preempt_schedule); 6975 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 6976 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule); 6977 void __sched notrace dynamic_preempt_schedule(void) 6978 { 6979 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule)) 6980 return; 6981 preempt_schedule(); 6982 } 6983 NOKPROBE_SYMBOL(dynamic_preempt_schedule); 6984 EXPORT_SYMBOL(dynamic_preempt_schedule); 6985 #endif 6986 #endif 6987 6988 /** 6989 * preempt_schedule_notrace - preempt_schedule called by tracing 6990 * 6991 * The tracing infrastructure uses preempt_enable_notrace to prevent 6992 * recursion and tracing preempt enabling caused by the tracing 6993 * infrastructure itself. But as tracing can happen in areas coming 6994 * from userspace or just about to enter userspace, a preempt enable 6995 * can occur before user_exit() is called. This will cause the scheduler 6996 * to be called when the system is still in usermode. 6997 * 6998 * To prevent this, the preempt_enable_notrace will use this function 6999 * instead of preempt_schedule() to exit user context if needed before 7000 * calling the scheduler. 7001 */ 7002 asmlinkage __visible void __sched notrace preempt_schedule_notrace(void) 7003 { 7004 enum ctx_state prev_ctx; 7005 7006 if (likely(!preemptible())) 7007 return; 7008 7009 do { 7010 /* 7011 * Because the function tracer can trace preempt_count_sub() 7012 * and it also uses preempt_enable/disable_notrace(), if 7013 * NEED_RESCHED is set, the preempt_enable_notrace() called 7014 * by the function tracer will call this function again and 7015 * cause infinite recursion. 7016 * 7017 * Preemption must be disabled here before the function 7018 * tracer can trace. Break up preempt_disable() into two 7019 * calls. One to disable preemption without fear of being 7020 * traced. The other to still record the preemption latency, 7021 * which can also be traced by the function tracer. 7022 */ 7023 preempt_disable_notrace(); 7024 preempt_latency_start(1); 7025 /* 7026 * Needs preempt disabled in case user_exit() is traced 7027 * and the tracer calls preempt_enable_notrace() causing 7028 * an infinite recursion. 7029 */ 7030 prev_ctx = exception_enter(); 7031 __schedule(SM_PREEMPT); 7032 exception_exit(prev_ctx); 7033 7034 preempt_latency_stop(1); 7035 preempt_enable_no_resched_notrace(); 7036 } while (need_resched()); 7037 } 7038 EXPORT_SYMBOL_GPL(preempt_schedule_notrace); 7039 7040 #ifdef CONFIG_PREEMPT_DYNAMIC 7041 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7042 #ifndef preempt_schedule_notrace_dynamic_enabled 7043 #define preempt_schedule_notrace_dynamic_enabled preempt_schedule_notrace 7044 #define preempt_schedule_notrace_dynamic_disabled NULL 7045 #endif 7046 DEFINE_STATIC_CALL(preempt_schedule_notrace, preempt_schedule_notrace_dynamic_enabled); 7047 EXPORT_STATIC_CALL_TRAMP(preempt_schedule_notrace); 7048 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7049 static DEFINE_STATIC_KEY_TRUE(sk_dynamic_preempt_schedule_notrace); 7050 void __sched notrace dynamic_preempt_schedule_notrace(void) 7051 { 7052 if (!static_branch_unlikely(&sk_dynamic_preempt_schedule_notrace)) 7053 return; 7054 preempt_schedule_notrace(); 7055 } 7056 NOKPROBE_SYMBOL(dynamic_preempt_schedule_notrace); 7057 EXPORT_SYMBOL(dynamic_preempt_schedule_notrace); 7058 #endif 7059 #endif 7060 7061 #endif /* CONFIG_PREEMPTION */ 7062 7063 /* 7064 * This is the entry point to schedule() from kernel preemption 7065 * off of IRQ context. 7066 * Note, that this is called and return with IRQs disabled. This will 7067 * protect us against recursive calling from IRQ contexts. 7068 */ 7069 asmlinkage __visible void __sched preempt_schedule_irq(void) 7070 { 7071 enum ctx_state prev_state; 7072 7073 /* Catch callers which need to be fixed */ 7074 BUG_ON(preempt_count() || !irqs_disabled()); 7075 7076 prev_state = exception_enter(); 7077 7078 do { 7079 preempt_disable(); 7080 local_irq_enable(); 7081 __schedule(SM_PREEMPT); 7082 local_irq_disable(); 7083 sched_preempt_enable_no_resched(); 7084 } while (need_resched()); 7085 7086 exception_exit(prev_state); 7087 } 7088 7089 int default_wake_function(wait_queue_entry_t *curr, unsigned mode, int wake_flags, 7090 void *key) 7091 { 7092 WARN_ON_ONCE(IS_ENABLED(CONFIG_SCHED_DEBUG) && wake_flags & ~(WF_SYNC|WF_CURRENT_CPU)); 7093 return try_to_wake_up(curr->private, mode, wake_flags); 7094 } 7095 EXPORT_SYMBOL(default_wake_function); 7096 7097 const struct sched_class *__setscheduler_class(int policy, int prio) 7098 { 7099 if (dl_prio(prio)) 7100 return &dl_sched_class; 7101 7102 if (rt_prio(prio)) 7103 return &rt_sched_class; 7104 7105 #ifdef CONFIG_SCHED_CLASS_EXT 7106 if (task_should_scx(policy)) 7107 return &ext_sched_class; 7108 #endif 7109 7110 return &fair_sched_class; 7111 } 7112 7113 #ifdef CONFIG_RT_MUTEXES 7114 7115 /* 7116 * Would be more useful with typeof()/auto_type but they don't mix with 7117 * bit-fields. Since it's a local thing, use int. Keep the generic sounding 7118 * name such that if someone were to implement this function we get to compare 7119 * notes. 7120 */ 7121 #define fetch_and_set(x, v) ({ int _x = (x); (x) = (v); _x; }) 7122 7123 void rt_mutex_pre_schedule(void) 7124 { 7125 lockdep_assert(!fetch_and_set(current->sched_rt_mutex, 1)); 7126 sched_submit_work(current); 7127 } 7128 7129 void rt_mutex_schedule(void) 7130 { 7131 lockdep_assert(current->sched_rt_mutex); 7132 __schedule_loop(SM_NONE); 7133 } 7134 7135 void rt_mutex_post_schedule(void) 7136 { 7137 sched_update_worker(current); 7138 lockdep_assert(fetch_and_set(current->sched_rt_mutex, 0)); 7139 } 7140 7141 /* 7142 * rt_mutex_setprio - set the current priority of a task 7143 * @p: task to boost 7144 * @pi_task: donor task 7145 * 7146 * This function changes the 'effective' priority of a task. It does 7147 * not touch ->normal_prio like __setscheduler(). 7148 * 7149 * Used by the rt_mutex code to implement priority inheritance 7150 * logic. Call site only calls if the priority of the task changed. 7151 */ 7152 void rt_mutex_setprio(struct task_struct *p, struct task_struct *pi_task) 7153 { 7154 int prio, oldprio, queued, running, queue_flag = 7155 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 7156 const struct sched_class *prev_class, *next_class; 7157 struct rq_flags rf; 7158 struct rq *rq; 7159 7160 /* XXX used to be waiter->prio, not waiter->task->prio */ 7161 prio = __rt_effective_prio(pi_task, p->normal_prio); 7162 7163 /* 7164 * If nothing changed; bail early. 7165 */ 7166 if (p->pi_top_task == pi_task && prio == p->prio && !dl_prio(prio)) 7167 return; 7168 7169 rq = __task_rq_lock(p, &rf); 7170 update_rq_clock(rq); 7171 /* 7172 * Set under pi_lock && rq->lock, such that the value can be used under 7173 * either lock. 7174 * 7175 * Note that there is loads of tricky to make this pointer cache work 7176 * right. rt_mutex_slowunlock()+rt_mutex_postunlock() work together to 7177 * ensure a task is de-boosted (pi_task is set to NULL) before the 7178 * task is allowed to run again (and can exit). This ensures the pointer 7179 * points to a blocked task -- which guarantees the task is present. 7180 */ 7181 p->pi_top_task = pi_task; 7182 7183 /* 7184 * For FIFO/RR we only need to set prio, if that matches we're done. 7185 */ 7186 if (prio == p->prio && !dl_prio(prio)) 7187 goto out_unlock; 7188 7189 /* 7190 * Idle task boosting is a no-no in general. There is one 7191 * exception, when PREEMPT_RT and NOHZ is active: 7192 * 7193 * The idle task calls get_next_timer_interrupt() and holds 7194 * the timer wheel base->lock on the CPU and another CPU wants 7195 * to access the timer (probably to cancel it). We can safely 7196 * ignore the boosting request, as the idle CPU runs this code 7197 * with interrupts disabled and will complete the lock 7198 * protected section without being interrupted. So there is no 7199 * real need to boost. 7200 */ 7201 if (unlikely(p == rq->idle)) { 7202 WARN_ON(p != rq->curr); 7203 WARN_ON(p->pi_blocked_on); 7204 goto out_unlock; 7205 } 7206 7207 trace_sched_pi_setprio(p, pi_task); 7208 oldprio = p->prio; 7209 7210 if (oldprio == prio) 7211 queue_flag &= ~DEQUEUE_MOVE; 7212 7213 prev_class = p->sched_class; 7214 next_class = __setscheduler_class(p->policy, prio); 7215 7216 if (prev_class != next_class && p->se.sched_delayed) 7217 dequeue_task(rq, p, DEQUEUE_SLEEP | DEQUEUE_DELAYED | DEQUEUE_NOCLOCK); 7218 7219 queued = task_on_rq_queued(p); 7220 running = task_current_donor(rq, p); 7221 if (queued) 7222 dequeue_task(rq, p, queue_flag); 7223 if (running) 7224 put_prev_task(rq, p); 7225 7226 /* 7227 * Boosting condition are: 7228 * 1. -rt task is running and holds mutex A 7229 * --> -dl task blocks on mutex A 7230 * 7231 * 2. -dl task is running and holds mutex A 7232 * --> -dl task blocks on mutex A and could preempt the 7233 * running task 7234 */ 7235 if (dl_prio(prio)) { 7236 if (!dl_prio(p->normal_prio) || 7237 (pi_task && dl_prio(pi_task->prio) && 7238 dl_entity_preempt(&pi_task->dl, &p->dl))) { 7239 p->dl.pi_se = pi_task->dl.pi_se; 7240 queue_flag |= ENQUEUE_REPLENISH; 7241 } else { 7242 p->dl.pi_se = &p->dl; 7243 } 7244 } else if (rt_prio(prio)) { 7245 if (dl_prio(oldprio)) 7246 p->dl.pi_se = &p->dl; 7247 if (oldprio < prio) 7248 queue_flag |= ENQUEUE_HEAD; 7249 } else { 7250 if (dl_prio(oldprio)) 7251 p->dl.pi_se = &p->dl; 7252 if (rt_prio(oldprio)) 7253 p->rt.timeout = 0; 7254 } 7255 7256 p->sched_class = next_class; 7257 p->prio = prio; 7258 7259 check_class_changing(rq, p, prev_class); 7260 7261 if (queued) 7262 enqueue_task(rq, p, queue_flag); 7263 if (running) 7264 set_next_task(rq, p); 7265 7266 check_class_changed(rq, p, prev_class, oldprio); 7267 out_unlock: 7268 /* Avoid rq from going away on us: */ 7269 preempt_disable(); 7270 7271 rq_unpin_lock(rq, &rf); 7272 __balance_callbacks(rq); 7273 raw_spin_rq_unlock(rq); 7274 7275 preempt_enable(); 7276 } 7277 #endif 7278 7279 #if !defined(CONFIG_PREEMPTION) || defined(CONFIG_PREEMPT_DYNAMIC) 7280 int __sched __cond_resched(void) 7281 { 7282 if (should_resched(0)) { 7283 preempt_schedule_common(); 7284 return 1; 7285 } 7286 /* 7287 * In preemptible kernels, ->rcu_read_lock_nesting tells the tick 7288 * whether the current CPU is in an RCU read-side critical section, 7289 * so the tick can report quiescent states even for CPUs looping 7290 * in kernel context. In contrast, in non-preemptible kernels, 7291 * RCU readers leave no in-memory hints, which means that CPU-bound 7292 * processes executing in kernel context might never report an 7293 * RCU quiescent state. Therefore, the following code causes 7294 * cond_resched() to report a quiescent state, but only when RCU 7295 * is in urgent need of one. 7296 */ 7297 #ifndef CONFIG_PREEMPT_RCU 7298 rcu_all_qs(); 7299 #endif 7300 return 0; 7301 } 7302 EXPORT_SYMBOL(__cond_resched); 7303 #endif 7304 7305 #ifdef CONFIG_PREEMPT_DYNAMIC 7306 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7307 #define cond_resched_dynamic_enabled __cond_resched 7308 #define cond_resched_dynamic_disabled ((void *)&__static_call_return0) 7309 DEFINE_STATIC_CALL_RET0(cond_resched, __cond_resched); 7310 EXPORT_STATIC_CALL_TRAMP(cond_resched); 7311 7312 #define might_resched_dynamic_enabled __cond_resched 7313 #define might_resched_dynamic_disabled ((void *)&__static_call_return0) 7314 DEFINE_STATIC_CALL_RET0(might_resched, __cond_resched); 7315 EXPORT_STATIC_CALL_TRAMP(might_resched); 7316 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7317 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_cond_resched); 7318 int __sched dynamic_cond_resched(void) 7319 { 7320 klp_sched_try_switch(); 7321 if (!static_branch_unlikely(&sk_dynamic_cond_resched)) 7322 return 0; 7323 return __cond_resched(); 7324 } 7325 EXPORT_SYMBOL(dynamic_cond_resched); 7326 7327 static DEFINE_STATIC_KEY_FALSE(sk_dynamic_might_resched); 7328 int __sched dynamic_might_resched(void) 7329 { 7330 if (!static_branch_unlikely(&sk_dynamic_might_resched)) 7331 return 0; 7332 return __cond_resched(); 7333 } 7334 EXPORT_SYMBOL(dynamic_might_resched); 7335 #endif 7336 #endif 7337 7338 /* 7339 * __cond_resched_lock() - if a reschedule is pending, drop the given lock, 7340 * call schedule, and on return reacquire the lock. 7341 * 7342 * This works OK both with and without CONFIG_PREEMPTION. We do strange low-level 7343 * operations here to prevent schedule() from being called twice (once via 7344 * spin_unlock(), once by hand). 7345 */ 7346 int __cond_resched_lock(spinlock_t *lock) 7347 { 7348 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7349 int ret = 0; 7350 7351 lockdep_assert_held(lock); 7352 7353 if (spin_needbreak(lock) || resched) { 7354 spin_unlock(lock); 7355 if (!_cond_resched()) 7356 cpu_relax(); 7357 ret = 1; 7358 spin_lock(lock); 7359 } 7360 return ret; 7361 } 7362 EXPORT_SYMBOL(__cond_resched_lock); 7363 7364 int __cond_resched_rwlock_read(rwlock_t *lock) 7365 { 7366 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7367 int ret = 0; 7368 7369 lockdep_assert_held_read(lock); 7370 7371 if (rwlock_needbreak(lock) || resched) { 7372 read_unlock(lock); 7373 if (!_cond_resched()) 7374 cpu_relax(); 7375 ret = 1; 7376 read_lock(lock); 7377 } 7378 return ret; 7379 } 7380 EXPORT_SYMBOL(__cond_resched_rwlock_read); 7381 7382 int __cond_resched_rwlock_write(rwlock_t *lock) 7383 { 7384 int resched = should_resched(PREEMPT_LOCK_OFFSET); 7385 int ret = 0; 7386 7387 lockdep_assert_held_write(lock); 7388 7389 if (rwlock_needbreak(lock) || resched) { 7390 write_unlock(lock); 7391 if (!_cond_resched()) 7392 cpu_relax(); 7393 ret = 1; 7394 write_lock(lock); 7395 } 7396 return ret; 7397 } 7398 EXPORT_SYMBOL(__cond_resched_rwlock_write); 7399 7400 #ifdef CONFIG_PREEMPT_DYNAMIC 7401 7402 #ifdef CONFIG_GENERIC_ENTRY 7403 #include <linux/entry-common.h> 7404 #endif 7405 7406 /* 7407 * SC:cond_resched 7408 * SC:might_resched 7409 * SC:preempt_schedule 7410 * SC:preempt_schedule_notrace 7411 * SC:irqentry_exit_cond_resched 7412 * 7413 * 7414 * NONE: 7415 * cond_resched <- __cond_resched 7416 * might_resched <- RET0 7417 * preempt_schedule <- NOP 7418 * preempt_schedule_notrace <- NOP 7419 * irqentry_exit_cond_resched <- NOP 7420 * dynamic_preempt_lazy <- false 7421 * 7422 * VOLUNTARY: 7423 * cond_resched <- __cond_resched 7424 * might_resched <- __cond_resched 7425 * preempt_schedule <- NOP 7426 * preempt_schedule_notrace <- NOP 7427 * irqentry_exit_cond_resched <- NOP 7428 * dynamic_preempt_lazy <- false 7429 * 7430 * FULL: 7431 * cond_resched <- RET0 7432 * might_resched <- RET0 7433 * preempt_schedule <- preempt_schedule 7434 * preempt_schedule_notrace <- preempt_schedule_notrace 7435 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7436 * dynamic_preempt_lazy <- false 7437 * 7438 * LAZY: 7439 * cond_resched <- RET0 7440 * might_resched <- RET0 7441 * preempt_schedule <- preempt_schedule 7442 * preempt_schedule_notrace <- preempt_schedule_notrace 7443 * irqentry_exit_cond_resched <- irqentry_exit_cond_resched 7444 * dynamic_preempt_lazy <- true 7445 */ 7446 7447 enum { 7448 preempt_dynamic_undefined = -1, 7449 preempt_dynamic_none, 7450 preempt_dynamic_voluntary, 7451 preempt_dynamic_full, 7452 preempt_dynamic_lazy, 7453 }; 7454 7455 int preempt_dynamic_mode = preempt_dynamic_undefined; 7456 7457 int sched_dynamic_mode(const char *str) 7458 { 7459 #ifndef CONFIG_PREEMPT_RT 7460 if (!strcmp(str, "none")) 7461 return preempt_dynamic_none; 7462 7463 if (!strcmp(str, "voluntary")) 7464 return preempt_dynamic_voluntary; 7465 #endif 7466 7467 if (!strcmp(str, "full")) 7468 return preempt_dynamic_full; 7469 7470 #ifdef CONFIG_ARCH_HAS_PREEMPT_LAZY 7471 if (!strcmp(str, "lazy")) 7472 return preempt_dynamic_lazy; 7473 #endif 7474 7475 return -EINVAL; 7476 } 7477 7478 #define preempt_dynamic_key_enable(f) static_key_enable(&sk_dynamic_##f.key) 7479 #define preempt_dynamic_key_disable(f) static_key_disable(&sk_dynamic_##f.key) 7480 7481 #if defined(CONFIG_HAVE_PREEMPT_DYNAMIC_CALL) 7482 #define preempt_dynamic_enable(f) static_call_update(f, f##_dynamic_enabled) 7483 #define preempt_dynamic_disable(f) static_call_update(f, f##_dynamic_disabled) 7484 #elif defined(CONFIG_HAVE_PREEMPT_DYNAMIC_KEY) 7485 #define preempt_dynamic_enable(f) preempt_dynamic_key_enable(f) 7486 #define preempt_dynamic_disable(f) preempt_dynamic_key_disable(f) 7487 #else 7488 #error "Unsupported PREEMPT_DYNAMIC mechanism" 7489 #endif 7490 7491 static DEFINE_MUTEX(sched_dynamic_mutex); 7492 static bool klp_override; 7493 7494 static void __sched_dynamic_update(int mode) 7495 { 7496 /* 7497 * Avoid {NONE,VOLUNTARY} -> FULL transitions from ever ending up in 7498 * the ZERO state, which is invalid. 7499 */ 7500 if (!klp_override) 7501 preempt_dynamic_enable(cond_resched); 7502 preempt_dynamic_enable(might_resched); 7503 preempt_dynamic_enable(preempt_schedule); 7504 preempt_dynamic_enable(preempt_schedule_notrace); 7505 preempt_dynamic_enable(irqentry_exit_cond_resched); 7506 preempt_dynamic_key_disable(preempt_lazy); 7507 7508 switch (mode) { 7509 case preempt_dynamic_none: 7510 if (!klp_override) 7511 preempt_dynamic_enable(cond_resched); 7512 preempt_dynamic_disable(might_resched); 7513 preempt_dynamic_disable(preempt_schedule); 7514 preempt_dynamic_disable(preempt_schedule_notrace); 7515 preempt_dynamic_disable(irqentry_exit_cond_resched); 7516 preempt_dynamic_key_disable(preempt_lazy); 7517 if (mode != preempt_dynamic_mode) 7518 pr_info("Dynamic Preempt: none\n"); 7519 break; 7520 7521 case preempt_dynamic_voluntary: 7522 if (!klp_override) 7523 preempt_dynamic_enable(cond_resched); 7524 preempt_dynamic_enable(might_resched); 7525 preempt_dynamic_disable(preempt_schedule); 7526 preempt_dynamic_disable(preempt_schedule_notrace); 7527 preempt_dynamic_disable(irqentry_exit_cond_resched); 7528 preempt_dynamic_key_disable(preempt_lazy); 7529 if (mode != preempt_dynamic_mode) 7530 pr_info("Dynamic Preempt: voluntary\n"); 7531 break; 7532 7533 case preempt_dynamic_full: 7534 if (!klp_override) 7535 preempt_dynamic_disable(cond_resched); 7536 preempt_dynamic_disable(might_resched); 7537 preempt_dynamic_enable(preempt_schedule); 7538 preempt_dynamic_enable(preempt_schedule_notrace); 7539 preempt_dynamic_enable(irqentry_exit_cond_resched); 7540 preempt_dynamic_key_disable(preempt_lazy); 7541 if (mode != preempt_dynamic_mode) 7542 pr_info("Dynamic Preempt: full\n"); 7543 break; 7544 7545 case preempt_dynamic_lazy: 7546 if (!klp_override) 7547 preempt_dynamic_disable(cond_resched); 7548 preempt_dynamic_disable(might_resched); 7549 preempt_dynamic_enable(preempt_schedule); 7550 preempt_dynamic_enable(preempt_schedule_notrace); 7551 preempt_dynamic_enable(irqentry_exit_cond_resched); 7552 preempt_dynamic_key_enable(preempt_lazy); 7553 if (mode != preempt_dynamic_mode) 7554 pr_info("Dynamic Preempt: lazy\n"); 7555 break; 7556 } 7557 7558 preempt_dynamic_mode = mode; 7559 } 7560 7561 void sched_dynamic_update(int mode) 7562 { 7563 mutex_lock(&sched_dynamic_mutex); 7564 __sched_dynamic_update(mode); 7565 mutex_unlock(&sched_dynamic_mutex); 7566 } 7567 7568 #ifdef CONFIG_HAVE_PREEMPT_DYNAMIC_CALL 7569 7570 static int klp_cond_resched(void) 7571 { 7572 __klp_sched_try_switch(); 7573 return __cond_resched(); 7574 } 7575 7576 void sched_dynamic_klp_enable(void) 7577 { 7578 mutex_lock(&sched_dynamic_mutex); 7579 7580 klp_override = true; 7581 static_call_update(cond_resched, klp_cond_resched); 7582 7583 mutex_unlock(&sched_dynamic_mutex); 7584 } 7585 7586 void sched_dynamic_klp_disable(void) 7587 { 7588 mutex_lock(&sched_dynamic_mutex); 7589 7590 klp_override = false; 7591 __sched_dynamic_update(preempt_dynamic_mode); 7592 7593 mutex_unlock(&sched_dynamic_mutex); 7594 } 7595 7596 #endif /* CONFIG_HAVE_PREEMPT_DYNAMIC_CALL */ 7597 7598 static int __init setup_preempt_mode(char *str) 7599 { 7600 int mode = sched_dynamic_mode(str); 7601 if (mode < 0) { 7602 pr_warn("Dynamic Preempt: unsupported mode: %s\n", str); 7603 return 0; 7604 } 7605 7606 sched_dynamic_update(mode); 7607 return 1; 7608 } 7609 __setup("preempt=", setup_preempt_mode); 7610 7611 static void __init preempt_dynamic_init(void) 7612 { 7613 if (preempt_dynamic_mode == preempt_dynamic_undefined) { 7614 if (IS_ENABLED(CONFIG_PREEMPT_NONE)) { 7615 sched_dynamic_update(preempt_dynamic_none); 7616 } else if (IS_ENABLED(CONFIG_PREEMPT_VOLUNTARY)) { 7617 sched_dynamic_update(preempt_dynamic_voluntary); 7618 } else if (IS_ENABLED(CONFIG_PREEMPT_LAZY)) { 7619 sched_dynamic_update(preempt_dynamic_lazy); 7620 } else { 7621 /* Default static call setting, nothing to do */ 7622 WARN_ON_ONCE(!IS_ENABLED(CONFIG_PREEMPT)); 7623 preempt_dynamic_mode = preempt_dynamic_full; 7624 pr_info("Dynamic Preempt: full\n"); 7625 } 7626 } 7627 } 7628 7629 #define PREEMPT_MODEL_ACCESSOR(mode) \ 7630 bool preempt_model_##mode(void) \ 7631 { \ 7632 WARN_ON_ONCE(preempt_dynamic_mode == preempt_dynamic_undefined); \ 7633 return preempt_dynamic_mode == preempt_dynamic_##mode; \ 7634 } \ 7635 EXPORT_SYMBOL_GPL(preempt_model_##mode) 7636 7637 PREEMPT_MODEL_ACCESSOR(none); 7638 PREEMPT_MODEL_ACCESSOR(voluntary); 7639 PREEMPT_MODEL_ACCESSOR(full); 7640 PREEMPT_MODEL_ACCESSOR(lazy); 7641 7642 #else /* !CONFIG_PREEMPT_DYNAMIC: */ 7643 7644 static inline void preempt_dynamic_init(void) { } 7645 7646 #endif /* CONFIG_PREEMPT_DYNAMIC */ 7647 7648 int io_schedule_prepare(void) 7649 { 7650 int old_iowait = current->in_iowait; 7651 7652 current->in_iowait = 1; 7653 blk_flush_plug(current->plug, true); 7654 return old_iowait; 7655 } 7656 7657 void io_schedule_finish(int token) 7658 { 7659 current->in_iowait = token; 7660 } 7661 7662 /* 7663 * This task is about to go to sleep on IO. Increment rq->nr_iowait so 7664 * that process accounting knows that this is a task in IO wait state. 7665 */ 7666 long __sched io_schedule_timeout(long timeout) 7667 { 7668 int token; 7669 long ret; 7670 7671 token = io_schedule_prepare(); 7672 ret = schedule_timeout(timeout); 7673 io_schedule_finish(token); 7674 7675 return ret; 7676 } 7677 EXPORT_SYMBOL(io_schedule_timeout); 7678 7679 void __sched io_schedule(void) 7680 { 7681 int token; 7682 7683 token = io_schedule_prepare(); 7684 schedule(); 7685 io_schedule_finish(token); 7686 } 7687 EXPORT_SYMBOL(io_schedule); 7688 7689 void sched_show_task(struct task_struct *p) 7690 { 7691 unsigned long free; 7692 int ppid; 7693 7694 if (!try_get_task_stack(p)) 7695 return; 7696 7697 pr_info("task:%-15.15s state:%c", p->comm, task_state_to_char(p)); 7698 7699 if (task_is_running(p)) 7700 pr_cont(" running task "); 7701 free = stack_not_used(p); 7702 ppid = 0; 7703 rcu_read_lock(); 7704 if (pid_alive(p)) 7705 ppid = task_pid_nr(rcu_dereference(p->real_parent)); 7706 rcu_read_unlock(); 7707 pr_cont(" stack:%-5lu pid:%-5d tgid:%-5d ppid:%-6d flags:0x%08lx\n", 7708 free, task_pid_nr(p), task_tgid_nr(p), 7709 ppid, read_task_thread_flags(p)); 7710 7711 print_worker_info(KERN_INFO, p); 7712 print_stop_info(KERN_INFO, p); 7713 print_scx_info(KERN_INFO, p); 7714 show_stack(p, NULL, KERN_INFO); 7715 put_task_stack(p); 7716 } 7717 EXPORT_SYMBOL_GPL(sched_show_task); 7718 7719 static inline bool 7720 state_filter_match(unsigned long state_filter, struct task_struct *p) 7721 { 7722 unsigned int state = READ_ONCE(p->__state); 7723 7724 /* no filter, everything matches */ 7725 if (!state_filter) 7726 return true; 7727 7728 /* filter, but doesn't match */ 7729 if (!(state & state_filter)) 7730 return false; 7731 7732 /* 7733 * When looking for TASK_UNINTERRUPTIBLE skip TASK_IDLE (allows 7734 * TASK_KILLABLE). 7735 */ 7736 if (state_filter == TASK_UNINTERRUPTIBLE && (state & TASK_NOLOAD)) 7737 return false; 7738 7739 return true; 7740 } 7741 7742 7743 void show_state_filter(unsigned int state_filter) 7744 { 7745 struct task_struct *g, *p; 7746 7747 rcu_read_lock(); 7748 for_each_process_thread(g, p) { 7749 /* 7750 * reset the NMI-timeout, listing all files on a slow 7751 * console might take a lot of time: 7752 * Also, reset softlockup watchdogs on all CPUs, because 7753 * another CPU might be blocked waiting for us to process 7754 * an IPI. 7755 */ 7756 touch_nmi_watchdog(); 7757 touch_all_softlockup_watchdogs(); 7758 if (state_filter_match(state_filter, p)) 7759 sched_show_task(p); 7760 } 7761 7762 #ifdef CONFIG_SCHED_DEBUG 7763 if (!state_filter) 7764 sysrq_sched_debug_show(); 7765 #endif 7766 rcu_read_unlock(); 7767 /* 7768 * Only show locks if all tasks are dumped: 7769 */ 7770 if (!state_filter) 7771 debug_show_all_locks(); 7772 } 7773 7774 /** 7775 * init_idle - set up an idle thread for a given CPU 7776 * @idle: task in question 7777 * @cpu: CPU the idle task belongs to 7778 * 7779 * NOTE: this function does not set the idle thread's NEED_RESCHED 7780 * flag, to make booting more robust. 7781 */ 7782 void __init init_idle(struct task_struct *idle, int cpu) 7783 { 7784 #ifdef CONFIG_SMP 7785 struct affinity_context ac = (struct affinity_context) { 7786 .new_mask = cpumask_of(cpu), 7787 .flags = 0, 7788 }; 7789 #endif 7790 struct rq *rq = cpu_rq(cpu); 7791 unsigned long flags; 7792 7793 raw_spin_lock_irqsave(&idle->pi_lock, flags); 7794 raw_spin_rq_lock(rq); 7795 7796 idle->__state = TASK_RUNNING; 7797 idle->se.exec_start = sched_clock(); 7798 /* 7799 * PF_KTHREAD should already be set at this point; regardless, make it 7800 * look like a proper per-CPU kthread. 7801 */ 7802 idle->flags |= PF_KTHREAD | PF_NO_SETAFFINITY; 7803 kthread_set_per_cpu(idle, cpu); 7804 7805 #ifdef CONFIG_SMP 7806 /* 7807 * No validation and serialization required at boot time and for 7808 * setting up the idle tasks of not yet online CPUs. 7809 */ 7810 set_cpus_allowed_common(idle, &ac); 7811 #endif 7812 /* 7813 * We're having a chicken and egg problem, even though we are 7814 * holding rq->lock, the CPU isn't yet set to this CPU so the 7815 * lockdep check in task_group() will fail. 7816 * 7817 * Similar case to sched_fork(). / Alternatively we could 7818 * use task_rq_lock() here and obtain the other rq->lock. 7819 * 7820 * Silence PROVE_RCU 7821 */ 7822 rcu_read_lock(); 7823 __set_task_cpu(idle, cpu); 7824 rcu_read_unlock(); 7825 7826 rq->idle = idle; 7827 rq_set_donor(rq, idle); 7828 rcu_assign_pointer(rq->curr, idle); 7829 idle->on_rq = TASK_ON_RQ_QUEUED; 7830 #ifdef CONFIG_SMP 7831 idle->on_cpu = 1; 7832 #endif 7833 raw_spin_rq_unlock(rq); 7834 raw_spin_unlock_irqrestore(&idle->pi_lock, flags); 7835 7836 /* Set the preempt count _outside_ the spinlocks! */ 7837 init_idle_preempt_count(idle, cpu); 7838 7839 /* 7840 * The idle tasks have their own, simple scheduling class: 7841 */ 7842 idle->sched_class = &idle_sched_class; 7843 ftrace_graph_init_idle_task(idle, cpu); 7844 vtime_init_idle(idle, cpu); 7845 #ifdef CONFIG_SMP 7846 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu); 7847 #endif 7848 } 7849 7850 #ifdef CONFIG_SMP 7851 7852 int cpuset_cpumask_can_shrink(const struct cpumask *cur, 7853 const struct cpumask *trial) 7854 { 7855 int ret = 1; 7856 7857 if (cpumask_empty(cur)) 7858 return ret; 7859 7860 ret = dl_cpuset_cpumask_can_shrink(cur, trial); 7861 7862 return ret; 7863 } 7864 7865 int task_can_attach(struct task_struct *p) 7866 { 7867 int ret = 0; 7868 7869 /* 7870 * Kthreads which disallow setaffinity shouldn't be moved 7871 * to a new cpuset; we don't want to change their CPU 7872 * affinity and isolating such threads by their set of 7873 * allowed nodes is unnecessary. Thus, cpusets are not 7874 * applicable for such threads. This prevents checking for 7875 * success of set_cpus_allowed_ptr() on all attached tasks 7876 * before cpus_mask may be changed. 7877 */ 7878 if (p->flags & PF_NO_SETAFFINITY) 7879 ret = -EINVAL; 7880 7881 return ret; 7882 } 7883 7884 bool sched_smp_initialized __read_mostly; 7885 7886 #ifdef CONFIG_NUMA_BALANCING 7887 /* Migrate current task p to target_cpu */ 7888 int migrate_task_to(struct task_struct *p, int target_cpu) 7889 { 7890 struct migration_arg arg = { p, target_cpu }; 7891 int curr_cpu = task_cpu(p); 7892 7893 if (curr_cpu == target_cpu) 7894 return 0; 7895 7896 if (!cpumask_test_cpu(target_cpu, p->cpus_ptr)) 7897 return -EINVAL; 7898 7899 /* TODO: This is not properly updating schedstats */ 7900 7901 trace_sched_move_numa(p, curr_cpu, target_cpu); 7902 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg); 7903 } 7904 7905 /* 7906 * Requeue a task on a given node and accurately track the number of NUMA 7907 * tasks on the runqueues 7908 */ 7909 void sched_setnuma(struct task_struct *p, int nid) 7910 { 7911 bool queued, running; 7912 struct rq_flags rf; 7913 struct rq *rq; 7914 7915 rq = task_rq_lock(p, &rf); 7916 queued = task_on_rq_queued(p); 7917 running = task_current_donor(rq, p); 7918 7919 if (queued) 7920 dequeue_task(rq, p, DEQUEUE_SAVE); 7921 if (running) 7922 put_prev_task(rq, p); 7923 7924 p->numa_preferred_nid = nid; 7925 7926 if (queued) 7927 enqueue_task(rq, p, ENQUEUE_RESTORE | ENQUEUE_NOCLOCK); 7928 if (running) 7929 set_next_task(rq, p); 7930 task_rq_unlock(rq, p, &rf); 7931 } 7932 #endif /* CONFIG_NUMA_BALANCING */ 7933 7934 #ifdef CONFIG_HOTPLUG_CPU 7935 /* 7936 * Ensure that the idle task is using init_mm right before its CPU goes 7937 * offline. 7938 */ 7939 void idle_task_exit(void) 7940 { 7941 struct mm_struct *mm = current->active_mm; 7942 7943 BUG_ON(cpu_online(smp_processor_id())); 7944 BUG_ON(current != this_rq()->idle); 7945 7946 if (mm != &init_mm) { 7947 switch_mm(mm, &init_mm, current); 7948 finish_arch_post_lock_switch(); 7949 } 7950 7951 /* finish_cpu(), as ran on the BP, will clean up the active_mm state */ 7952 } 7953 7954 static int __balance_push_cpu_stop(void *arg) 7955 { 7956 struct task_struct *p = arg; 7957 struct rq *rq = this_rq(); 7958 struct rq_flags rf; 7959 int cpu; 7960 7961 raw_spin_lock_irq(&p->pi_lock); 7962 rq_lock(rq, &rf); 7963 7964 update_rq_clock(rq); 7965 7966 if (task_rq(p) == rq && task_on_rq_queued(p)) { 7967 cpu = select_fallback_rq(rq->cpu, p); 7968 rq = __migrate_task(rq, &rf, p, cpu); 7969 } 7970 7971 rq_unlock(rq, &rf); 7972 raw_spin_unlock_irq(&p->pi_lock); 7973 7974 put_task_struct(p); 7975 7976 return 0; 7977 } 7978 7979 static DEFINE_PER_CPU(struct cpu_stop_work, push_work); 7980 7981 /* 7982 * Ensure we only run per-cpu kthreads once the CPU goes !active. 7983 * 7984 * This is enabled below SCHED_AP_ACTIVE; when !cpu_active(), but only 7985 * effective when the hotplug motion is down. 7986 */ 7987 static void balance_push(struct rq *rq) 7988 { 7989 struct task_struct *push_task = rq->curr; 7990 7991 lockdep_assert_rq_held(rq); 7992 7993 /* 7994 * Ensure the thing is persistent until balance_push_set(.on = false); 7995 */ 7996 rq->balance_callback = &balance_push_callback; 7997 7998 /* 7999 * Only active while going offline and when invoked on the outgoing 8000 * CPU. 8001 */ 8002 if (!cpu_dying(rq->cpu) || rq != this_rq()) 8003 return; 8004 8005 /* 8006 * Both the cpu-hotplug and stop task are in this case and are 8007 * required to complete the hotplug process. 8008 */ 8009 if (kthread_is_per_cpu(push_task) || 8010 is_migration_disabled(push_task)) { 8011 8012 /* 8013 * If this is the idle task on the outgoing CPU try to wake 8014 * up the hotplug control thread which might wait for the 8015 * last task to vanish. The rcuwait_active() check is 8016 * accurate here because the waiter is pinned on this CPU 8017 * and can't obviously be running in parallel. 8018 * 8019 * On RT kernels this also has to check whether there are 8020 * pinned and scheduled out tasks on the runqueue. They 8021 * need to leave the migrate disabled section first. 8022 */ 8023 if (!rq->nr_running && !rq_has_pinned_tasks(rq) && 8024 rcuwait_active(&rq->hotplug_wait)) { 8025 raw_spin_rq_unlock(rq); 8026 rcuwait_wake_up(&rq->hotplug_wait); 8027 raw_spin_rq_lock(rq); 8028 } 8029 return; 8030 } 8031 8032 get_task_struct(push_task); 8033 /* 8034 * Temporarily drop rq->lock such that we can wake-up the stop task. 8035 * Both preemption and IRQs are still disabled. 8036 */ 8037 preempt_disable(); 8038 raw_spin_rq_unlock(rq); 8039 stop_one_cpu_nowait(rq->cpu, __balance_push_cpu_stop, push_task, 8040 this_cpu_ptr(&push_work)); 8041 preempt_enable(); 8042 /* 8043 * At this point need_resched() is true and we'll take the loop in 8044 * schedule(). The next pick is obviously going to be the stop task 8045 * which kthread_is_per_cpu() and will push this task away. 8046 */ 8047 raw_spin_rq_lock(rq); 8048 } 8049 8050 static void balance_push_set(int cpu, bool on) 8051 { 8052 struct rq *rq = cpu_rq(cpu); 8053 struct rq_flags rf; 8054 8055 rq_lock_irqsave(rq, &rf); 8056 if (on) { 8057 WARN_ON_ONCE(rq->balance_callback); 8058 rq->balance_callback = &balance_push_callback; 8059 } else if (rq->balance_callback == &balance_push_callback) { 8060 rq->balance_callback = NULL; 8061 } 8062 rq_unlock_irqrestore(rq, &rf); 8063 } 8064 8065 /* 8066 * Invoked from a CPUs hotplug control thread after the CPU has been marked 8067 * inactive. All tasks which are not per CPU kernel threads are either 8068 * pushed off this CPU now via balance_push() or placed on a different CPU 8069 * during wakeup. Wait until the CPU is quiescent. 8070 */ 8071 static void balance_hotplug_wait(void) 8072 { 8073 struct rq *rq = this_rq(); 8074 8075 rcuwait_wait_event(&rq->hotplug_wait, 8076 rq->nr_running == 1 && !rq_has_pinned_tasks(rq), 8077 TASK_UNINTERRUPTIBLE); 8078 } 8079 8080 #else 8081 8082 static inline void balance_push(struct rq *rq) 8083 { 8084 } 8085 8086 static inline void balance_push_set(int cpu, bool on) 8087 { 8088 } 8089 8090 static inline void balance_hotplug_wait(void) 8091 { 8092 } 8093 8094 #endif /* CONFIG_HOTPLUG_CPU */ 8095 8096 void set_rq_online(struct rq *rq) 8097 { 8098 if (!rq->online) { 8099 const struct sched_class *class; 8100 8101 cpumask_set_cpu(rq->cpu, rq->rd->online); 8102 rq->online = 1; 8103 8104 for_each_class(class) { 8105 if (class->rq_online) 8106 class->rq_online(rq); 8107 } 8108 } 8109 } 8110 8111 void set_rq_offline(struct rq *rq) 8112 { 8113 if (rq->online) { 8114 const struct sched_class *class; 8115 8116 update_rq_clock(rq); 8117 for_each_class(class) { 8118 if (class->rq_offline) 8119 class->rq_offline(rq); 8120 } 8121 8122 cpumask_clear_cpu(rq->cpu, rq->rd->online); 8123 rq->online = 0; 8124 } 8125 } 8126 8127 static inline void sched_set_rq_online(struct rq *rq, int cpu) 8128 { 8129 struct rq_flags rf; 8130 8131 rq_lock_irqsave(rq, &rf); 8132 if (rq->rd) { 8133 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8134 set_rq_online(rq); 8135 } 8136 rq_unlock_irqrestore(rq, &rf); 8137 } 8138 8139 static inline void sched_set_rq_offline(struct rq *rq, int cpu) 8140 { 8141 struct rq_flags rf; 8142 8143 rq_lock_irqsave(rq, &rf); 8144 if (rq->rd) { 8145 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span)); 8146 set_rq_offline(rq); 8147 } 8148 rq_unlock_irqrestore(rq, &rf); 8149 } 8150 8151 /* 8152 * used to mark begin/end of suspend/resume: 8153 */ 8154 static int num_cpus_frozen; 8155 8156 /* 8157 * Update cpusets according to cpu_active mask. If cpusets are 8158 * disabled, cpuset_update_active_cpus() becomes a simple wrapper 8159 * around partition_sched_domains(). 8160 * 8161 * If we come here as part of a suspend/resume, don't touch cpusets because we 8162 * want to restore it back to its original state upon resume anyway. 8163 */ 8164 static void cpuset_cpu_active(void) 8165 { 8166 if (cpuhp_tasks_frozen) { 8167 /* 8168 * num_cpus_frozen tracks how many CPUs are involved in suspend 8169 * resume sequence. As long as this is not the last online 8170 * operation in the resume sequence, just build a single sched 8171 * domain, ignoring cpusets. 8172 */ 8173 partition_sched_domains(1, NULL, NULL); 8174 if (--num_cpus_frozen) 8175 return; 8176 /* 8177 * This is the last CPU online operation. So fall through and 8178 * restore the original sched domains by considering the 8179 * cpuset configurations. 8180 */ 8181 cpuset_force_rebuild(); 8182 } 8183 cpuset_update_active_cpus(); 8184 } 8185 8186 static void cpuset_cpu_inactive(unsigned int cpu) 8187 { 8188 if (!cpuhp_tasks_frozen) { 8189 cpuset_update_active_cpus(); 8190 } else { 8191 num_cpus_frozen++; 8192 partition_sched_domains(1, NULL, NULL); 8193 } 8194 } 8195 8196 static inline void sched_smt_present_inc(int cpu) 8197 { 8198 #ifdef CONFIG_SCHED_SMT 8199 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8200 static_branch_inc_cpuslocked(&sched_smt_present); 8201 #endif 8202 } 8203 8204 static inline void sched_smt_present_dec(int cpu) 8205 { 8206 #ifdef CONFIG_SCHED_SMT 8207 if (cpumask_weight(cpu_smt_mask(cpu)) == 2) 8208 static_branch_dec_cpuslocked(&sched_smt_present); 8209 #endif 8210 } 8211 8212 int sched_cpu_activate(unsigned int cpu) 8213 { 8214 struct rq *rq = cpu_rq(cpu); 8215 8216 /* 8217 * Clear the balance_push callback and prepare to schedule 8218 * regular tasks. 8219 */ 8220 balance_push_set(cpu, false); 8221 8222 /* 8223 * When going up, increment the number of cores with SMT present. 8224 */ 8225 sched_smt_present_inc(cpu); 8226 set_cpu_active(cpu, true); 8227 8228 if (sched_smp_initialized) { 8229 sched_update_numa(cpu, true); 8230 sched_domains_numa_masks_set(cpu); 8231 cpuset_cpu_active(); 8232 } 8233 8234 scx_rq_activate(rq); 8235 8236 /* 8237 * Put the rq online, if not already. This happens: 8238 * 8239 * 1) In the early boot process, because we build the real domains 8240 * after all CPUs have been brought up. 8241 * 8242 * 2) At runtime, if cpuset_cpu_active() fails to rebuild the 8243 * domains. 8244 */ 8245 sched_set_rq_online(rq, cpu); 8246 8247 return 0; 8248 } 8249 8250 int sched_cpu_deactivate(unsigned int cpu) 8251 { 8252 struct rq *rq = cpu_rq(cpu); 8253 int ret; 8254 8255 ret = dl_bw_deactivate(cpu); 8256 8257 if (ret) 8258 return ret; 8259 8260 /* 8261 * Remove CPU from nohz.idle_cpus_mask to prevent participating in 8262 * load balancing when not active 8263 */ 8264 nohz_balance_exit_idle(rq); 8265 8266 set_cpu_active(cpu, false); 8267 8268 /* 8269 * From this point forward, this CPU will refuse to run any task that 8270 * is not: migrate_disable() or KTHREAD_IS_PER_CPU, and will actively 8271 * push those tasks away until this gets cleared, see 8272 * sched_cpu_dying(). 8273 */ 8274 balance_push_set(cpu, true); 8275 8276 /* 8277 * We've cleared cpu_active_mask / set balance_push, wait for all 8278 * preempt-disabled and RCU users of this state to go away such that 8279 * all new such users will observe it. 8280 * 8281 * Specifically, we rely on ttwu to no longer target this CPU, see 8282 * ttwu_queue_cond() and is_cpu_allowed(). 8283 * 8284 * Do sync before park smpboot threads to take care the RCU boost case. 8285 */ 8286 synchronize_rcu(); 8287 8288 sched_set_rq_offline(rq, cpu); 8289 8290 scx_rq_deactivate(rq); 8291 8292 /* 8293 * When going down, decrement the number of cores with SMT present. 8294 */ 8295 sched_smt_present_dec(cpu); 8296 8297 #ifdef CONFIG_SCHED_SMT 8298 sched_core_cpu_deactivate(cpu); 8299 #endif 8300 8301 if (!sched_smp_initialized) 8302 return 0; 8303 8304 sched_update_numa(cpu, false); 8305 cpuset_cpu_inactive(cpu); 8306 sched_domains_numa_masks_clear(cpu); 8307 return 0; 8308 } 8309 8310 static void sched_rq_cpu_starting(unsigned int cpu) 8311 { 8312 struct rq *rq = cpu_rq(cpu); 8313 8314 rq->calc_load_update = calc_load_update; 8315 update_max_interval(); 8316 } 8317 8318 int sched_cpu_starting(unsigned int cpu) 8319 { 8320 sched_core_cpu_starting(cpu); 8321 sched_rq_cpu_starting(cpu); 8322 sched_tick_start(cpu); 8323 return 0; 8324 } 8325 8326 #ifdef CONFIG_HOTPLUG_CPU 8327 8328 /* 8329 * Invoked immediately before the stopper thread is invoked to bring the 8330 * CPU down completely. At this point all per CPU kthreads except the 8331 * hotplug thread (current) and the stopper thread (inactive) have been 8332 * either parked or have been unbound from the outgoing CPU. Ensure that 8333 * any of those which might be on the way out are gone. 8334 * 8335 * If after this point a bound task is being woken on this CPU then the 8336 * responsible hotplug callback has failed to do it's job. 8337 * sched_cpu_dying() will catch it with the appropriate fireworks. 8338 */ 8339 int sched_cpu_wait_empty(unsigned int cpu) 8340 { 8341 balance_hotplug_wait(); 8342 return 0; 8343 } 8344 8345 /* 8346 * Since this CPU is going 'away' for a while, fold any nr_active delta we 8347 * might have. Called from the CPU stopper task after ensuring that the 8348 * stopper is the last running task on the CPU, so nr_active count is 8349 * stable. We need to take the tear-down thread which is calling this into 8350 * account, so we hand in adjust = 1 to the load calculation. 8351 * 8352 * Also see the comment "Global load-average calculations". 8353 */ 8354 static void calc_load_migrate(struct rq *rq) 8355 { 8356 long delta = calc_load_fold_active(rq, 1); 8357 8358 if (delta) 8359 atomic_long_add(delta, &calc_load_tasks); 8360 } 8361 8362 static void dump_rq_tasks(struct rq *rq, const char *loglvl) 8363 { 8364 struct task_struct *g, *p; 8365 int cpu = cpu_of(rq); 8366 8367 lockdep_assert_rq_held(rq); 8368 8369 printk("%sCPU%d enqueued tasks (%u total):\n", loglvl, cpu, rq->nr_running); 8370 for_each_process_thread(g, p) { 8371 if (task_cpu(p) != cpu) 8372 continue; 8373 8374 if (!task_on_rq_queued(p)) 8375 continue; 8376 8377 printk("%s\tpid: %d, name: %s\n", loglvl, p->pid, p->comm); 8378 } 8379 } 8380 8381 int sched_cpu_dying(unsigned int cpu) 8382 { 8383 struct rq *rq = cpu_rq(cpu); 8384 struct rq_flags rf; 8385 8386 /* Handle pending wakeups and then migrate everything off */ 8387 sched_tick_stop(cpu); 8388 8389 rq_lock_irqsave(rq, &rf); 8390 if (rq->nr_running != 1 || rq_has_pinned_tasks(rq)) { 8391 WARN(true, "Dying CPU not properly vacated!"); 8392 dump_rq_tasks(rq, KERN_WARNING); 8393 } 8394 rq_unlock_irqrestore(rq, &rf); 8395 8396 calc_load_migrate(rq); 8397 update_max_interval(); 8398 hrtick_clear(rq); 8399 sched_core_cpu_dying(cpu); 8400 return 0; 8401 } 8402 #endif 8403 8404 void __init sched_init_smp(void) 8405 { 8406 sched_init_numa(NUMA_NO_NODE); 8407 8408 /* 8409 * There's no userspace yet to cause hotplug operations; hence all the 8410 * CPU masks are stable and all blatant races in the below code cannot 8411 * happen. 8412 */ 8413 mutex_lock(&sched_domains_mutex); 8414 sched_init_domains(cpu_active_mask); 8415 mutex_unlock(&sched_domains_mutex); 8416 8417 /* Move init over to a non-isolated CPU */ 8418 if (set_cpus_allowed_ptr(current, housekeeping_cpumask(HK_TYPE_DOMAIN)) < 0) 8419 BUG(); 8420 current->flags &= ~PF_NO_SETAFFINITY; 8421 sched_init_granularity(); 8422 8423 init_sched_rt_class(); 8424 init_sched_dl_class(); 8425 8426 sched_smp_initialized = true; 8427 } 8428 8429 static int __init migration_init(void) 8430 { 8431 sched_cpu_starting(smp_processor_id()); 8432 return 0; 8433 } 8434 early_initcall(migration_init); 8435 8436 #else 8437 void __init sched_init_smp(void) 8438 { 8439 sched_init_granularity(); 8440 } 8441 #endif /* CONFIG_SMP */ 8442 8443 int in_sched_functions(unsigned long addr) 8444 { 8445 return in_lock_functions(addr) || 8446 (addr >= (unsigned long)__sched_text_start 8447 && addr < (unsigned long)__sched_text_end); 8448 } 8449 8450 #ifdef CONFIG_CGROUP_SCHED 8451 /* 8452 * Default task group. 8453 * Every task in system belongs to this group at bootup. 8454 */ 8455 struct task_group root_task_group; 8456 LIST_HEAD(task_groups); 8457 8458 /* Cacheline aligned slab cache for task_group */ 8459 static struct kmem_cache *task_group_cache __ro_after_init; 8460 #endif 8461 8462 void __init sched_init(void) 8463 { 8464 unsigned long ptr = 0; 8465 int i; 8466 8467 /* Make sure the linker didn't screw up */ 8468 #ifdef CONFIG_SMP 8469 BUG_ON(!sched_class_above(&stop_sched_class, &dl_sched_class)); 8470 #endif 8471 BUG_ON(!sched_class_above(&dl_sched_class, &rt_sched_class)); 8472 BUG_ON(!sched_class_above(&rt_sched_class, &fair_sched_class)); 8473 BUG_ON(!sched_class_above(&fair_sched_class, &idle_sched_class)); 8474 #ifdef CONFIG_SCHED_CLASS_EXT 8475 BUG_ON(!sched_class_above(&fair_sched_class, &ext_sched_class)); 8476 BUG_ON(!sched_class_above(&ext_sched_class, &idle_sched_class)); 8477 #endif 8478 8479 wait_bit_init(); 8480 8481 #ifdef CONFIG_FAIR_GROUP_SCHED 8482 ptr += 2 * nr_cpu_ids * sizeof(void **); 8483 #endif 8484 #ifdef CONFIG_RT_GROUP_SCHED 8485 ptr += 2 * nr_cpu_ids * sizeof(void **); 8486 #endif 8487 if (ptr) { 8488 ptr = (unsigned long)kzalloc(ptr, GFP_NOWAIT); 8489 8490 #ifdef CONFIG_FAIR_GROUP_SCHED 8491 root_task_group.se = (struct sched_entity **)ptr; 8492 ptr += nr_cpu_ids * sizeof(void **); 8493 8494 root_task_group.cfs_rq = (struct cfs_rq **)ptr; 8495 ptr += nr_cpu_ids * sizeof(void **); 8496 8497 root_task_group.shares = ROOT_TASK_GROUP_LOAD; 8498 init_cfs_bandwidth(&root_task_group.cfs_bandwidth, NULL); 8499 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8500 #ifdef CONFIG_EXT_GROUP_SCHED 8501 root_task_group.scx_weight = CGROUP_WEIGHT_DFL; 8502 #endif /* CONFIG_EXT_GROUP_SCHED */ 8503 #ifdef CONFIG_RT_GROUP_SCHED 8504 root_task_group.rt_se = (struct sched_rt_entity **)ptr; 8505 ptr += nr_cpu_ids * sizeof(void **); 8506 8507 root_task_group.rt_rq = (struct rt_rq **)ptr; 8508 ptr += nr_cpu_ids * sizeof(void **); 8509 8510 #endif /* CONFIG_RT_GROUP_SCHED */ 8511 } 8512 8513 #ifdef CONFIG_SMP 8514 init_defrootdomain(); 8515 #endif 8516 8517 #ifdef CONFIG_RT_GROUP_SCHED 8518 init_rt_bandwidth(&root_task_group.rt_bandwidth, 8519 global_rt_period(), global_rt_runtime()); 8520 #endif /* CONFIG_RT_GROUP_SCHED */ 8521 8522 #ifdef CONFIG_CGROUP_SCHED 8523 task_group_cache = KMEM_CACHE(task_group, 0); 8524 8525 list_add(&root_task_group.list, &task_groups); 8526 INIT_LIST_HEAD(&root_task_group.children); 8527 INIT_LIST_HEAD(&root_task_group.siblings); 8528 autogroup_init(&init_task); 8529 #endif /* CONFIG_CGROUP_SCHED */ 8530 8531 for_each_possible_cpu(i) { 8532 struct rq *rq; 8533 8534 rq = cpu_rq(i); 8535 raw_spin_lock_init(&rq->__lock); 8536 rq->nr_running = 0; 8537 rq->calc_load_active = 0; 8538 rq->calc_load_update = jiffies + LOAD_FREQ; 8539 init_cfs_rq(&rq->cfs); 8540 init_rt_rq(&rq->rt); 8541 init_dl_rq(&rq->dl); 8542 #ifdef CONFIG_FAIR_GROUP_SCHED 8543 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list); 8544 rq->tmp_alone_branch = &rq->leaf_cfs_rq_list; 8545 /* 8546 * How much CPU bandwidth does root_task_group get? 8547 * 8548 * In case of task-groups formed through the cgroup filesystem, it 8549 * gets 100% of the CPU resources in the system. This overall 8550 * system CPU resource is divided among the tasks of 8551 * root_task_group and its child task-groups in a fair manner, 8552 * based on each entity's (task or task-group's) weight 8553 * (se->load.weight). 8554 * 8555 * In other words, if root_task_group has 10 tasks of weight 8556 * 1024) and two child groups A0 and A1 (of weight 1024 each), 8557 * then A0's share of the CPU resource is: 8558 * 8559 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33% 8560 * 8561 * We achieve this by letting root_task_group's tasks sit 8562 * directly in rq->cfs (i.e root_task_group->se[] = NULL). 8563 */ 8564 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL); 8565 #endif /* CONFIG_FAIR_GROUP_SCHED */ 8566 8567 #ifdef CONFIG_RT_GROUP_SCHED 8568 /* 8569 * This is required for init cpu because rt.c:__enable_runtime() 8570 * starts working after scheduler_running, which is not the case 8571 * yet. 8572 */ 8573 rq->rt.rt_runtime = global_rt_runtime(); 8574 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL); 8575 #endif 8576 #ifdef CONFIG_SMP 8577 rq->sd = NULL; 8578 rq->rd = NULL; 8579 rq->cpu_capacity = SCHED_CAPACITY_SCALE; 8580 rq->balance_callback = &balance_push_callback; 8581 rq->active_balance = 0; 8582 rq->next_balance = jiffies; 8583 rq->push_cpu = 0; 8584 rq->cpu = i; 8585 rq->online = 0; 8586 rq->idle_stamp = 0; 8587 rq->avg_idle = 2*sysctl_sched_migration_cost; 8588 rq->max_idle_balance_cost = sysctl_sched_migration_cost; 8589 8590 INIT_LIST_HEAD(&rq->cfs_tasks); 8591 8592 rq_attach_root(rq, &def_root_domain); 8593 #ifdef CONFIG_NO_HZ_COMMON 8594 rq->last_blocked_load_update_tick = jiffies; 8595 atomic_set(&rq->nohz_flags, 0); 8596 8597 INIT_CSD(&rq->nohz_csd, nohz_csd_func, rq); 8598 #endif 8599 #ifdef CONFIG_HOTPLUG_CPU 8600 rcuwait_init(&rq->hotplug_wait); 8601 #endif 8602 #endif /* CONFIG_SMP */ 8603 hrtick_rq_init(rq); 8604 atomic_set(&rq->nr_iowait, 0); 8605 fair_server_init(rq); 8606 8607 #ifdef CONFIG_SCHED_CORE 8608 rq->core = rq; 8609 rq->core_pick = NULL; 8610 rq->core_dl_server = NULL; 8611 rq->core_enabled = 0; 8612 rq->core_tree = RB_ROOT; 8613 rq->core_forceidle_count = 0; 8614 rq->core_forceidle_occupation = 0; 8615 rq->core_forceidle_start = 0; 8616 8617 rq->core_cookie = 0UL; 8618 #endif 8619 zalloc_cpumask_var_node(&rq->scratch_mask, GFP_KERNEL, cpu_to_node(i)); 8620 } 8621 8622 set_load_weight(&init_task, false); 8623 init_task.se.slice = sysctl_sched_base_slice, 8624 8625 /* 8626 * The boot idle thread does lazy MMU switching as well: 8627 */ 8628 mmgrab_lazy_tlb(&init_mm); 8629 enter_lazy_tlb(&init_mm, current); 8630 8631 /* 8632 * The idle task doesn't need the kthread struct to function, but it 8633 * is dressed up as a per-CPU kthread and thus needs to play the part 8634 * if we want to avoid special-casing it in code that deals with per-CPU 8635 * kthreads. 8636 */ 8637 WARN_ON(!set_kthread_struct(current)); 8638 8639 /* 8640 * Make us the idle thread. Technically, schedule() should not be 8641 * called from this thread, however somewhere below it might be, 8642 * but because we are the idle thread, we just pick up running again 8643 * when this runqueue becomes "idle". 8644 */ 8645 __sched_fork(0, current); 8646 init_idle(current, smp_processor_id()); 8647 8648 calc_load_update = jiffies + LOAD_FREQ; 8649 8650 #ifdef CONFIG_SMP 8651 idle_thread_set_boot_cpu(); 8652 balance_push_set(smp_processor_id(), false); 8653 #endif 8654 init_sched_fair_class(); 8655 init_sched_ext_class(); 8656 8657 psi_init(); 8658 8659 init_uclamp(); 8660 8661 preempt_dynamic_init(); 8662 8663 scheduler_running = 1; 8664 } 8665 8666 #ifdef CONFIG_DEBUG_ATOMIC_SLEEP 8667 8668 void __might_sleep(const char *file, int line) 8669 { 8670 unsigned int state = get_current_state(); 8671 /* 8672 * Blocking primitives will set (and therefore destroy) current->state, 8673 * since we will exit with TASK_RUNNING make sure we enter with it, 8674 * otherwise we will destroy state. 8675 */ 8676 WARN_ONCE(state != TASK_RUNNING && current->task_state_change, 8677 "do not call blocking ops when !TASK_RUNNING; " 8678 "state=%x set at [<%p>] %pS\n", state, 8679 (void *)current->task_state_change, 8680 (void *)current->task_state_change); 8681 8682 __might_resched(file, line, 0); 8683 } 8684 EXPORT_SYMBOL(__might_sleep); 8685 8686 static void print_preempt_disable_ip(int preempt_offset, unsigned long ip) 8687 { 8688 if (!IS_ENABLED(CONFIG_DEBUG_PREEMPT)) 8689 return; 8690 8691 if (preempt_count() == preempt_offset) 8692 return; 8693 8694 pr_err("Preemption disabled at:"); 8695 print_ip_sym(KERN_ERR, ip); 8696 } 8697 8698 static inline bool resched_offsets_ok(unsigned int offsets) 8699 { 8700 unsigned int nested = preempt_count(); 8701 8702 nested += rcu_preempt_depth() << MIGHT_RESCHED_RCU_SHIFT; 8703 8704 return nested == offsets; 8705 } 8706 8707 void __might_resched(const char *file, int line, unsigned int offsets) 8708 { 8709 /* Ratelimiting timestamp: */ 8710 static unsigned long prev_jiffy; 8711 8712 unsigned long preempt_disable_ip; 8713 8714 /* WARN_ON_ONCE() by default, no rate limit required: */ 8715 rcu_sleep_check(); 8716 8717 if ((resched_offsets_ok(offsets) && !irqs_disabled() && 8718 !is_idle_task(current) && !current->non_block_count) || 8719 system_state == SYSTEM_BOOTING || system_state > SYSTEM_RUNNING || 8720 oops_in_progress) 8721 return; 8722 8723 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8724 return; 8725 prev_jiffy = jiffies; 8726 8727 /* Save this before calling printk(), since that will clobber it: */ 8728 preempt_disable_ip = get_preempt_disable_ip(current); 8729 8730 pr_err("BUG: sleeping function called from invalid context at %s:%d\n", 8731 file, line); 8732 pr_err("in_atomic(): %d, irqs_disabled(): %d, non_block: %d, pid: %d, name: %s\n", 8733 in_atomic(), irqs_disabled(), current->non_block_count, 8734 current->pid, current->comm); 8735 pr_err("preempt_count: %x, expected: %x\n", preempt_count(), 8736 offsets & MIGHT_RESCHED_PREEMPT_MASK); 8737 8738 if (IS_ENABLED(CONFIG_PREEMPT_RCU)) { 8739 pr_err("RCU nest depth: %d, expected: %u\n", 8740 rcu_preempt_depth(), offsets >> MIGHT_RESCHED_RCU_SHIFT); 8741 } 8742 8743 if (task_stack_end_corrupted(current)) 8744 pr_emerg("Thread overran stack, or stack corrupted\n"); 8745 8746 debug_show_held_locks(current); 8747 if (irqs_disabled()) 8748 print_irqtrace_events(current); 8749 8750 print_preempt_disable_ip(offsets & MIGHT_RESCHED_PREEMPT_MASK, 8751 preempt_disable_ip); 8752 8753 dump_stack(); 8754 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8755 } 8756 EXPORT_SYMBOL(__might_resched); 8757 8758 void __cant_sleep(const char *file, int line, int preempt_offset) 8759 { 8760 static unsigned long prev_jiffy; 8761 8762 if (irqs_disabled()) 8763 return; 8764 8765 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8766 return; 8767 8768 if (preempt_count() > preempt_offset) 8769 return; 8770 8771 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8772 return; 8773 prev_jiffy = jiffies; 8774 8775 printk(KERN_ERR "BUG: assuming atomic context at %s:%d\n", file, line); 8776 printk(KERN_ERR "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n", 8777 in_atomic(), irqs_disabled(), 8778 current->pid, current->comm); 8779 8780 debug_show_held_locks(current); 8781 dump_stack(); 8782 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8783 } 8784 EXPORT_SYMBOL_GPL(__cant_sleep); 8785 8786 #ifdef CONFIG_SMP 8787 void __cant_migrate(const char *file, int line) 8788 { 8789 static unsigned long prev_jiffy; 8790 8791 if (irqs_disabled()) 8792 return; 8793 8794 if (is_migration_disabled(current)) 8795 return; 8796 8797 if (!IS_ENABLED(CONFIG_PREEMPT_COUNT)) 8798 return; 8799 8800 if (preempt_count() > 0) 8801 return; 8802 8803 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy) 8804 return; 8805 prev_jiffy = jiffies; 8806 8807 pr_err("BUG: assuming non migratable context at %s:%d\n", file, line); 8808 pr_err("in_atomic(): %d, irqs_disabled(): %d, migration_disabled() %u pid: %d, name: %s\n", 8809 in_atomic(), irqs_disabled(), is_migration_disabled(current), 8810 current->pid, current->comm); 8811 8812 debug_show_held_locks(current); 8813 dump_stack(); 8814 add_taint(TAINT_WARN, LOCKDEP_STILL_OK); 8815 } 8816 EXPORT_SYMBOL_GPL(__cant_migrate); 8817 #endif 8818 #endif 8819 8820 #ifdef CONFIG_MAGIC_SYSRQ 8821 void normalize_rt_tasks(void) 8822 { 8823 struct task_struct *g, *p; 8824 struct sched_attr attr = { 8825 .sched_policy = SCHED_NORMAL, 8826 }; 8827 8828 read_lock(&tasklist_lock); 8829 for_each_process_thread(g, p) { 8830 /* 8831 * Only normalize user tasks: 8832 */ 8833 if (p->flags & PF_KTHREAD) 8834 continue; 8835 8836 p->se.exec_start = 0; 8837 schedstat_set(p->stats.wait_start, 0); 8838 schedstat_set(p->stats.sleep_start, 0); 8839 schedstat_set(p->stats.block_start, 0); 8840 8841 if (!rt_or_dl_task(p)) { 8842 /* 8843 * Renice negative nice level userspace 8844 * tasks back to 0: 8845 */ 8846 if (task_nice(p) < 0) 8847 set_user_nice(p, 0); 8848 continue; 8849 } 8850 8851 __sched_setscheduler(p, &attr, false, false); 8852 } 8853 read_unlock(&tasklist_lock); 8854 } 8855 8856 #endif /* CONFIG_MAGIC_SYSRQ */ 8857 8858 #if defined(CONFIG_KGDB_KDB) 8859 /* 8860 * These functions are only useful for KDB. 8861 * 8862 * They can only be called when the whole system has been 8863 * stopped - every CPU needs to be quiescent, and no scheduling 8864 * activity can take place. Using them for anything else would 8865 * be a serious bug, and as a result, they aren't even visible 8866 * under any other configuration. 8867 */ 8868 8869 /** 8870 * curr_task - return the current task for a given CPU. 8871 * @cpu: the processor in question. 8872 * 8873 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED! 8874 * 8875 * Return: The current task for @cpu. 8876 */ 8877 struct task_struct *curr_task(int cpu) 8878 { 8879 return cpu_curr(cpu); 8880 } 8881 8882 #endif /* defined(CONFIG_KGDB_KDB) */ 8883 8884 #ifdef CONFIG_CGROUP_SCHED 8885 /* task_group_lock serializes the addition/removal of task groups */ 8886 static DEFINE_SPINLOCK(task_group_lock); 8887 8888 static inline void alloc_uclamp_sched_group(struct task_group *tg, 8889 struct task_group *parent) 8890 { 8891 #ifdef CONFIG_UCLAMP_TASK_GROUP 8892 enum uclamp_id clamp_id; 8893 8894 for_each_clamp_id(clamp_id) { 8895 uclamp_se_set(&tg->uclamp_req[clamp_id], 8896 uclamp_none(clamp_id), false); 8897 tg->uclamp[clamp_id] = parent->uclamp[clamp_id]; 8898 } 8899 #endif 8900 } 8901 8902 static void sched_free_group(struct task_group *tg) 8903 { 8904 free_fair_sched_group(tg); 8905 free_rt_sched_group(tg); 8906 autogroup_free(tg); 8907 kmem_cache_free(task_group_cache, tg); 8908 } 8909 8910 static void sched_free_group_rcu(struct rcu_head *rcu) 8911 { 8912 sched_free_group(container_of(rcu, struct task_group, rcu)); 8913 } 8914 8915 static void sched_unregister_group(struct task_group *tg) 8916 { 8917 unregister_fair_sched_group(tg); 8918 unregister_rt_sched_group(tg); 8919 /* 8920 * We have to wait for yet another RCU grace period to expire, as 8921 * print_cfs_stats() might run concurrently. 8922 */ 8923 call_rcu(&tg->rcu, sched_free_group_rcu); 8924 } 8925 8926 /* allocate runqueue etc for a new task group */ 8927 struct task_group *sched_create_group(struct task_group *parent) 8928 { 8929 struct task_group *tg; 8930 8931 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO); 8932 if (!tg) 8933 return ERR_PTR(-ENOMEM); 8934 8935 if (!alloc_fair_sched_group(tg, parent)) 8936 goto err; 8937 8938 if (!alloc_rt_sched_group(tg, parent)) 8939 goto err; 8940 8941 scx_group_set_weight(tg, CGROUP_WEIGHT_DFL); 8942 alloc_uclamp_sched_group(tg, parent); 8943 8944 return tg; 8945 8946 err: 8947 sched_free_group(tg); 8948 return ERR_PTR(-ENOMEM); 8949 } 8950 8951 void sched_online_group(struct task_group *tg, struct task_group *parent) 8952 { 8953 unsigned long flags; 8954 8955 spin_lock_irqsave(&task_group_lock, flags); 8956 list_add_rcu(&tg->list, &task_groups); 8957 8958 /* Root should already exist: */ 8959 WARN_ON(!parent); 8960 8961 tg->parent = parent; 8962 INIT_LIST_HEAD(&tg->children); 8963 list_add_rcu(&tg->siblings, &parent->children); 8964 spin_unlock_irqrestore(&task_group_lock, flags); 8965 8966 online_fair_sched_group(tg); 8967 } 8968 8969 /* RCU callback to free various structures associated with a task group */ 8970 static void sched_unregister_group_rcu(struct rcu_head *rhp) 8971 { 8972 /* Now it should be safe to free those cfs_rqs: */ 8973 sched_unregister_group(container_of(rhp, struct task_group, rcu)); 8974 } 8975 8976 void sched_destroy_group(struct task_group *tg) 8977 { 8978 /* Wait for possible concurrent references to cfs_rqs complete: */ 8979 call_rcu(&tg->rcu, sched_unregister_group_rcu); 8980 } 8981 8982 void sched_release_group(struct task_group *tg) 8983 { 8984 unsigned long flags; 8985 8986 /* 8987 * Unlink first, to avoid walk_tg_tree_from() from finding us (via 8988 * sched_cfs_period_timer()). 8989 * 8990 * For this to be effective, we have to wait for all pending users of 8991 * this task group to leave their RCU critical section to ensure no new 8992 * user will see our dying task group any more. Specifically ensure 8993 * that tg_unthrottle_up() won't add decayed cfs_rq's to it. 8994 * 8995 * We therefore defer calling unregister_fair_sched_group() to 8996 * sched_unregister_group() which is guarantied to get called only after the 8997 * current RCU grace period has expired. 8998 */ 8999 spin_lock_irqsave(&task_group_lock, flags); 9000 list_del_rcu(&tg->list); 9001 list_del_rcu(&tg->siblings); 9002 spin_unlock_irqrestore(&task_group_lock, flags); 9003 } 9004 9005 static struct task_group *sched_get_task_group(struct task_struct *tsk) 9006 { 9007 struct task_group *tg; 9008 9009 /* 9010 * All callers are synchronized by task_rq_lock(); we do not use RCU 9011 * which is pointless here. Thus, we pass "true" to task_css_check() 9012 * to prevent lockdep warnings. 9013 */ 9014 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true), 9015 struct task_group, css); 9016 tg = autogroup_task_group(tsk, tg); 9017 9018 return tg; 9019 } 9020 9021 static void sched_change_group(struct task_struct *tsk, struct task_group *group) 9022 { 9023 tsk->sched_task_group = group; 9024 9025 #ifdef CONFIG_FAIR_GROUP_SCHED 9026 if (tsk->sched_class->task_change_group) 9027 tsk->sched_class->task_change_group(tsk); 9028 else 9029 #endif 9030 set_task_rq(tsk, task_cpu(tsk)); 9031 } 9032 9033 /* 9034 * Change task's runqueue when it moves between groups. 9035 * 9036 * The caller of this function should have put the task in its new group by 9037 * now. This function just updates tsk->se.cfs_rq and tsk->se.parent to reflect 9038 * its new group. 9039 */ 9040 void sched_move_task(struct task_struct *tsk, bool for_autogroup) 9041 { 9042 int queued, running, queue_flags = 9043 DEQUEUE_SAVE | DEQUEUE_MOVE | DEQUEUE_NOCLOCK; 9044 struct task_group *group; 9045 struct rq *rq; 9046 9047 CLASS(task_rq_lock, rq_guard)(tsk); 9048 rq = rq_guard.rq; 9049 9050 /* 9051 * Esp. with SCHED_AUTOGROUP enabled it is possible to get superfluous 9052 * group changes. 9053 */ 9054 group = sched_get_task_group(tsk); 9055 if (group == tsk->sched_task_group) 9056 return; 9057 9058 update_rq_clock(rq); 9059 9060 running = task_current_donor(rq, tsk); 9061 queued = task_on_rq_queued(tsk); 9062 9063 if (queued) 9064 dequeue_task(rq, tsk, queue_flags); 9065 if (running) 9066 put_prev_task(rq, tsk); 9067 9068 sched_change_group(tsk, group); 9069 if (!for_autogroup) 9070 scx_cgroup_move_task(tsk); 9071 9072 if (queued) 9073 enqueue_task(rq, tsk, queue_flags); 9074 if (running) { 9075 set_next_task(rq, tsk); 9076 /* 9077 * After changing group, the running task may have joined a 9078 * throttled one but it's still the running task. Trigger a 9079 * resched to make sure that task can still run. 9080 */ 9081 resched_curr(rq); 9082 } 9083 } 9084 9085 static struct cgroup_subsys_state * 9086 cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css) 9087 { 9088 struct task_group *parent = css_tg(parent_css); 9089 struct task_group *tg; 9090 9091 if (!parent) { 9092 /* This is early initialization for the top cgroup */ 9093 return &root_task_group.css; 9094 } 9095 9096 tg = sched_create_group(parent); 9097 if (IS_ERR(tg)) 9098 return ERR_PTR(-ENOMEM); 9099 9100 return &tg->css; 9101 } 9102 9103 /* Expose task group only after completing cgroup initialization */ 9104 static int cpu_cgroup_css_online(struct cgroup_subsys_state *css) 9105 { 9106 struct task_group *tg = css_tg(css); 9107 struct task_group *parent = css_tg(css->parent); 9108 int ret; 9109 9110 ret = scx_tg_online(tg); 9111 if (ret) 9112 return ret; 9113 9114 if (parent) 9115 sched_online_group(tg, parent); 9116 9117 #ifdef CONFIG_UCLAMP_TASK_GROUP 9118 /* Propagate the effective uclamp value for the new group */ 9119 guard(mutex)(&uclamp_mutex); 9120 guard(rcu)(); 9121 cpu_util_update_eff(css); 9122 #endif 9123 9124 return 0; 9125 } 9126 9127 static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css) 9128 { 9129 struct task_group *tg = css_tg(css); 9130 9131 scx_tg_offline(tg); 9132 } 9133 9134 static void cpu_cgroup_css_released(struct cgroup_subsys_state *css) 9135 { 9136 struct task_group *tg = css_tg(css); 9137 9138 sched_release_group(tg); 9139 } 9140 9141 static void cpu_cgroup_css_free(struct cgroup_subsys_state *css) 9142 { 9143 struct task_group *tg = css_tg(css); 9144 9145 /* 9146 * Relies on the RCU grace period between css_released() and this. 9147 */ 9148 sched_unregister_group(tg); 9149 } 9150 9151 static int cpu_cgroup_can_attach(struct cgroup_taskset *tset) 9152 { 9153 #ifdef CONFIG_RT_GROUP_SCHED 9154 struct task_struct *task; 9155 struct cgroup_subsys_state *css; 9156 9157 cgroup_taskset_for_each(task, css, tset) { 9158 if (!sched_rt_can_attach(css_tg(css), task)) 9159 return -EINVAL; 9160 } 9161 #endif 9162 return scx_cgroup_can_attach(tset); 9163 } 9164 9165 static void cpu_cgroup_attach(struct cgroup_taskset *tset) 9166 { 9167 struct task_struct *task; 9168 struct cgroup_subsys_state *css; 9169 9170 cgroup_taskset_for_each(task, css, tset) 9171 sched_move_task(task, false); 9172 9173 scx_cgroup_finish_attach(); 9174 } 9175 9176 static void cpu_cgroup_cancel_attach(struct cgroup_taskset *tset) 9177 { 9178 scx_cgroup_cancel_attach(tset); 9179 } 9180 9181 #ifdef CONFIG_UCLAMP_TASK_GROUP 9182 static void cpu_util_update_eff(struct cgroup_subsys_state *css) 9183 { 9184 struct cgroup_subsys_state *top_css = css; 9185 struct uclamp_se *uc_parent = NULL; 9186 struct uclamp_se *uc_se = NULL; 9187 unsigned int eff[UCLAMP_CNT]; 9188 enum uclamp_id clamp_id; 9189 unsigned int clamps; 9190 9191 lockdep_assert_held(&uclamp_mutex); 9192 SCHED_WARN_ON(!rcu_read_lock_held()); 9193 9194 css_for_each_descendant_pre(css, top_css) { 9195 uc_parent = css_tg(css)->parent 9196 ? css_tg(css)->parent->uclamp : NULL; 9197 9198 for_each_clamp_id(clamp_id) { 9199 /* Assume effective clamps matches requested clamps */ 9200 eff[clamp_id] = css_tg(css)->uclamp_req[clamp_id].value; 9201 /* Cap effective clamps with parent's effective clamps */ 9202 if (uc_parent && 9203 eff[clamp_id] > uc_parent[clamp_id].value) { 9204 eff[clamp_id] = uc_parent[clamp_id].value; 9205 } 9206 } 9207 /* Ensure protection is always capped by limit */ 9208 eff[UCLAMP_MIN] = min(eff[UCLAMP_MIN], eff[UCLAMP_MAX]); 9209 9210 /* Propagate most restrictive effective clamps */ 9211 clamps = 0x0; 9212 uc_se = css_tg(css)->uclamp; 9213 for_each_clamp_id(clamp_id) { 9214 if (eff[clamp_id] == uc_se[clamp_id].value) 9215 continue; 9216 uc_se[clamp_id].value = eff[clamp_id]; 9217 uc_se[clamp_id].bucket_id = uclamp_bucket_id(eff[clamp_id]); 9218 clamps |= (0x1 << clamp_id); 9219 } 9220 if (!clamps) { 9221 css = css_rightmost_descendant(css); 9222 continue; 9223 } 9224 9225 /* Immediately update descendants RUNNABLE tasks */ 9226 uclamp_update_active_tasks(css); 9227 } 9228 } 9229 9230 /* 9231 * Integer 10^N with a given N exponent by casting to integer the literal "1eN" 9232 * C expression. Since there is no way to convert a macro argument (N) into a 9233 * character constant, use two levels of macros. 9234 */ 9235 #define _POW10(exp) ((unsigned int)1e##exp) 9236 #define POW10(exp) _POW10(exp) 9237 9238 struct uclamp_request { 9239 #define UCLAMP_PERCENT_SHIFT 2 9240 #define UCLAMP_PERCENT_SCALE (100 * POW10(UCLAMP_PERCENT_SHIFT)) 9241 s64 percent; 9242 u64 util; 9243 int ret; 9244 }; 9245 9246 static inline struct uclamp_request 9247 capacity_from_percent(char *buf) 9248 { 9249 struct uclamp_request req = { 9250 .percent = UCLAMP_PERCENT_SCALE, 9251 .util = SCHED_CAPACITY_SCALE, 9252 .ret = 0, 9253 }; 9254 9255 buf = strim(buf); 9256 if (strcmp(buf, "max")) { 9257 req.ret = cgroup_parse_float(buf, UCLAMP_PERCENT_SHIFT, 9258 &req.percent); 9259 if (req.ret) 9260 return req; 9261 if ((u64)req.percent > UCLAMP_PERCENT_SCALE) { 9262 req.ret = -ERANGE; 9263 return req; 9264 } 9265 9266 req.util = req.percent << SCHED_CAPACITY_SHIFT; 9267 req.util = DIV_ROUND_CLOSEST_ULL(req.util, UCLAMP_PERCENT_SCALE); 9268 } 9269 9270 return req; 9271 } 9272 9273 static ssize_t cpu_uclamp_write(struct kernfs_open_file *of, char *buf, 9274 size_t nbytes, loff_t off, 9275 enum uclamp_id clamp_id) 9276 { 9277 struct uclamp_request req; 9278 struct task_group *tg; 9279 9280 req = capacity_from_percent(buf); 9281 if (req.ret) 9282 return req.ret; 9283 9284 static_branch_enable(&sched_uclamp_used); 9285 9286 guard(mutex)(&uclamp_mutex); 9287 guard(rcu)(); 9288 9289 tg = css_tg(of_css(of)); 9290 if (tg->uclamp_req[clamp_id].value != req.util) 9291 uclamp_se_set(&tg->uclamp_req[clamp_id], req.util, false); 9292 9293 /* 9294 * Because of not recoverable conversion rounding we keep track of the 9295 * exact requested value 9296 */ 9297 tg->uclamp_pct[clamp_id] = req.percent; 9298 9299 /* Update effective clamps to track the most restrictive value */ 9300 cpu_util_update_eff(of_css(of)); 9301 9302 return nbytes; 9303 } 9304 9305 static ssize_t cpu_uclamp_min_write(struct kernfs_open_file *of, 9306 char *buf, size_t nbytes, 9307 loff_t off) 9308 { 9309 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MIN); 9310 } 9311 9312 static ssize_t cpu_uclamp_max_write(struct kernfs_open_file *of, 9313 char *buf, size_t nbytes, 9314 loff_t off) 9315 { 9316 return cpu_uclamp_write(of, buf, nbytes, off, UCLAMP_MAX); 9317 } 9318 9319 static inline void cpu_uclamp_print(struct seq_file *sf, 9320 enum uclamp_id clamp_id) 9321 { 9322 struct task_group *tg; 9323 u64 util_clamp; 9324 u64 percent; 9325 u32 rem; 9326 9327 scoped_guard (rcu) { 9328 tg = css_tg(seq_css(sf)); 9329 util_clamp = tg->uclamp_req[clamp_id].value; 9330 } 9331 9332 if (util_clamp == SCHED_CAPACITY_SCALE) { 9333 seq_puts(sf, "max\n"); 9334 return; 9335 } 9336 9337 percent = tg->uclamp_pct[clamp_id]; 9338 percent = div_u64_rem(percent, POW10(UCLAMP_PERCENT_SHIFT), &rem); 9339 seq_printf(sf, "%llu.%0*u\n", percent, UCLAMP_PERCENT_SHIFT, rem); 9340 } 9341 9342 static int cpu_uclamp_min_show(struct seq_file *sf, void *v) 9343 { 9344 cpu_uclamp_print(sf, UCLAMP_MIN); 9345 return 0; 9346 } 9347 9348 static int cpu_uclamp_max_show(struct seq_file *sf, void *v) 9349 { 9350 cpu_uclamp_print(sf, UCLAMP_MAX); 9351 return 0; 9352 } 9353 #endif /* CONFIG_UCLAMP_TASK_GROUP */ 9354 9355 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9356 static unsigned long tg_weight(struct task_group *tg) 9357 { 9358 #ifdef CONFIG_FAIR_GROUP_SCHED 9359 return scale_load_down(tg->shares); 9360 #else 9361 return sched_weight_from_cgroup(tg->scx_weight); 9362 #endif 9363 } 9364 9365 static int cpu_shares_write_u64(struct cgroup_subsys_state *css, 9366 struct cftype *cftype, u64 shareval) 9367 { 9368 int ret; 9369 9370 if (shareval > scale_load_down(ULONG_MAX)) 9371 shareval = MAX_SHARES; 9372 ret = sched_group_set_shares(css_tg(css), scale_load(shareval)); 9373 if (!ret) 9374 scx_group_set_weight(css_tg(css), 9375 sched_weight_to_cgroup(shareval)); 9376 return ret; 9377 } 9378 9379 static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css, 9380 struct cftype *cft) 9381 { 9382 return tg_weight(css_tg(css)); 9383 } 9384 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9385 9386 #ifdef CONFIG_CFS_BANDWIDTH 9387 static DEFINE_MUTEX(cfs_constraints_mutex); 9388 9389 const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */ 9390 static const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */ 9391 /* More than 203 days if BW_SHIFT equals 20. */ 9392 static const u64 max_cfs_runtime = MAX_BW * NSEC_PER_USEC; 9393 9394 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime); 9395 9396 static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota, 9397 u64 burst) 9398 { 9399 int i, ret = 0, runtime_enabled, runtime_was_enabled; 9400 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9401 9402 if (tg == &root_task_group) 9403 return -EINVAL; 9404 9405 /* 9406 * Ensure we have at some amount of bandwidth every period. This is 9407 * to prevent reaching a state of large arrears when throttled via 9408 * entity_tick() resulting in prolonged exit starvation. 9409 */ 9410 if (quota < min_cfs_quota_period || period < min_cfs_quota_period) 9411 return -EINVAL; 9412 9413 /* 9414 * Likewise, bound things on the other side by preventing insane quota 9415 * periods. This also allows us to normalize in computing quota 9416 * feasibility. 9417 */ 9418 if (period > max_cfs_quota_period) 9419 return -EINVAL; 9420 9421 /* 9422 * Bound quota to defend quota against overflow during bandwidth shift. 9423 */ 9424 if (quota != RUNTIME_INF && quota > max_cfs_runtime) 9425 return -EINVAL; 9426 9427 if (quota != RUNTIME_INF && (burst > quota || 9428 burst + quota > max_cfs_runtime)) 9429 return -EINVAL; 9430 9431 /* 9432 * Prevent race between setting of cfs_rq->runtime_enabled and 9433 * unthrottle_offline_cfs_rqs(). 9434 */ 9435 guard(cpus_read_lock)(); 9436 guard(mutex)(&cfs_constraints_mutex); 9437 9438 ret = __cfs_schedulable(tg, period, quota); 9439 if (ret) 9440 return ret; 9441 9442 runtime_enabled = quota != RUNTIME_INF; 9443 runtime_was_enabled = cfs_b->quota != RUNTIME_INF; 9444 /* 9445 * If we need to toggle cfs_bandwidth_used, off->on must occur 9446 * before making related changes, and on->off must occur afterwards 9447 */ 9448 if (runtime_enabled && !runtime_was_enabled) 9449 cfs_bandwidth_usage_inc(); 9450 9451 scoped_guard (raw_spinlock_irq, &cfs_b->lock) { 9452 cfs_b->period = ns_to_ktime(period); 9453 cfs_b->quota = quota; 9454 cfs_b->burst = burst; 9455 9456 __refill_cfs_bandwidth_runtime(cfs_b); 9457 9458 /* 9459 * Restart the period timer (if active) to handle new 9460 * period expiry: 9461 */ 9462 if (runtime_enabled) 9463 start_cfs_bandwidth(cfs_b); 9464 } 9465 9466 for_each_online_cpu(i) { 9467 struct cfs_rq *cfs_rq = tg->cfs_rq[i]; 9468 struct rq *rq = cfs_rq->rq; 9469 9470 guard(rq_lock_irq)(rq); 9471 cfs_rq->runtime_enabled = runtime_enabled; 9472 cfs_rq->runtime_remaining = 0; 9473 9474 if (cfs_rq->throttled) 9475 unthrottle_cfs_rq(cfs_rq); 9476 } 9477 9478 if (runtime_was_enabled && !runtime_enabled) 9479 cfs_bandwidth_usage_dec(); 9480 9481 return 0; 9482 } 9483 9484 static int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us) 9485 { 9486 u64 quota, period, burst; 9487 9488 period = ktime_to_ns(tg->cfs_bandwidth.period); 9489 burst = tg->cfs_bandwidth.burst; 9490 if (cfs_quota_us < 0) 9491 quota = RUNTIME_INF; 9492 else if ((u64)cfs_quota_us <= U64_MAX / NSEC_PER_USEC) 9493 quota = (u64)cfs_quota_us * NSEC_PER_USEC; 9494 else 9495 return -EINVAL; 9496 9497 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9498 } 9499 9500 static long tg_get_cfs_quota(struct task_group *tg) 9501 { 9502 u64 quota_us; 9503 9504 if (tg->cfs_bandwidth.quota == RUNTIME_INF) 9505 return -1; 9506 9507 quota_us = tg->cfs_bandwidth.quota; 9508 do_div(quota_us, NSEC_PER_USEC); 9509 9510 return quota_us; 9511 } 9512 9513 static int tg_set_cfs_period(struct task_group *tg, long cfs_period_us) 9514 { 9515 u64 quota, period, burst; 9516 9517 if ((u64)cfs_period_us > U64_MAX / NSEC_PER_USEC) 9518 return -EINVAL; 9519 9520 period = (u64)cfs_period_us * NSEC_PER_USEC; 9521 quota = tg->cfs_bandwidth.quota; 9522 burst = tg->cfs_bandwidth.burst; 9523 9524 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9525 } 9526 9527 static long tg_get_cfs_period(struct task_group *tg) 9528 { 9529 u64 cfs_period_us; 9530 9531 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period); 9532 do_div(cfs_period_us, NSEC_PER_USEC); 9533 9534 return cfs_period_us; 9535 } 9536 9537 static int tg_set_cfs_burst(struct task_group *tg, long cfs_burst_us) 9538 { 9539 u64 quota, period, burst; 9540 9541 if ((u64)cfs_burst_us > U64_MAX / NSEC_PER_USEC) 9542 return -EINVAL; 9543 9544 burst = (u64)cfs_burst_us * NSEC_PER_USEC; 9545 period = ktime_to_ns(tg->cfs_bandwidth.period); 9546 quota = tg->cfs_bandwidth.quota; 9547 9548 return tg_set_cfs_bandwidth(tg, period, quota, burst); 9549 } 9550 9551 static long tg_get_cfs_burst(struct task_group *tg) 9552 { 9553 u64 burst_us; 9554 9555 burst_us = tg->cfs_bandwidth.burst; 9556 do_div(burst_us, NSEC_PER_USEC); 9557 9558 return burst_us; 9559 } 9560 9561 static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css, 9562 struct cftype *cft) 9563 { 9564 return tg_get_cfs_quota(css_tg(css)); 9565 } 9566 9567 static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css, 9568 struct cftype *cftype, s64 cfs_quota_us) 9569 { 9570 return tg_set_cfs_quota(css_tg(css), cfs_quota_us); 9571 } 9572 9573 static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css, 9574 struct cftype *cft) 9575 { 9576 return tg_get_cfs_period(css_tg(css)); 9577 } 9578 9579 static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css, 9580 struct cftype *cftype, u64 cfs_period_us) 9581 { 9582 return tg_set_cfs_period(css_tg(css), cfs_period_us); 9583 } 9584 9585 static u64 cpu_cfs_burst_read_u64(struct cgroup_subsys_state *css, 9586 struct cftype *cft) 9587 { 9588 return tg_get_cfs_burst(css_tg(css)); 9589 } 9590 9591 static int cpu_cfs_burst_write_u64(struct cgroup_subsys_state *css, 9592 struct cftype *cftype, u64 cfs_burst_us) 9593 { 9594 return tg_set_cfs_burst(css_tg(css), cfs_burst_us); 9595 } 9596 9597 struct cfs_schedulable_data { 9598 struct task_group *tg; 9599 u64 period, quota; 9600 }; 9601 9602 /* 9603 * normalize group quota/period to be quota/max_period 9604 * note: units are usecs 9605 */ 9606 static u64 normalize_cfs_quota(struct task_group *tg, 9607 struct cfs_schedulable_data *d) 9608 { 9609 u64 quota, period; 9610 9611 if (tg == d->tg) { 9612 period = d->period; 9613 quota = d->quota; 9614 } else { 9615 period = tg_get_cfs_period(tg); 9616 quota = tg_get_cfs_quota(tg); 9617 } 9618 9619 /* note: these should typically be equivalent */ 9620 if (quota == RUNTIME_INF || quota == -1) 9621 return RUNTIME_INF; 9622 9623 return to_ratio(period, quota); 9624 } 9625 9626 static int tg_cfs_schedulable_down(struct task_group *tg, void *data) 9627 { 9628 struct cfs_schedulable_data *d = data; 9629 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9630 s64 quota = 0, parent_quota = -1; 9631 9632 if (!tg->parent) { 9633 quota = RUNTIME_INF; 9634 } else { 9635 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth; 9636 9637 quota = normalize_cfs_quota(tg, d); 9638 parent_quota = parent_b->hierarchical_quota; 9639 9640 /* 9641 * Ensure max(child_quota) <= parent_quota. On cgroup2, 9642 * always take the non-RUNTIME_INF min. On cgroup1, only 9643 * inherit when no limit is set. In both cases this is used 9644 * by the scheduler to determine if a given CFS task has a 9645 * bandwidth constraint at some higher level. 9646 */ 9647 if (cgroup_subsys_on_dfl(cpu_cgrp_subsys)) { 9648 if (quota == RUNTIME_INF) 9649 quota = parent_quota; 9650 else if (parent_quota != RUNTIME_INF) 9651 quota = min(quota, parent_quota); 9652 } else { 9653 if (quota == RUNTIME_INF) 9654 quota = parent_quota; 9655 else if (parent_quota != RUNTIME_INF && quota > parent_quota) 9656 return -EINVAL; 9657 } 9658 } 9659 cfs_b->hierarchical_quota = quota; 9660 9661 return 0; 9662 } 9663 9664 static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota) 9665 { 9666 struct cfs_schedulable_data data = { 9667 .tg = tg, 9668 .period = period, 9669 .quota = quota, 9670 }; 9671 9672 if (quota != RUNTIME_INF) { 9673 do_div(data.period, NSEC_PER_USEC); 9674 do_div(data.quota, NSEC_PER_USEC); 9675 } 9676 9677 guard(rcu)(); 9678 return walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data); 9679 } 9680 9681 static int cpu_cfs_stat_show(struct seq_file *sf, void *v) 9682 { 9683 struct task_group *tg = css_tg(seq_css(sf)); 9684 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9685 9686 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods); 9687 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled); 9688 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time); 9689 9690 if (schedstat_enabled() && tg != &root_task_group) { 9691 struct sched_statistics *stats; 9692 u64 ws = 0; 9693 int i; 9694 9695 for_each_possible_cpu(i) { 9696 stats = __schedstats_from_se(tg->se[i]); 9697 ws += schedstat_val(stats->wait_sum); 9698 } 9699 9700 seq_printf(sf, "wait_sum %llu\n", ws); 9701 } 9702 9703 seq_printf(sf, "nr_bursts %d\n", cfs_b->nr_burst); 9704 seq_printf(sf, "burst_time %llu\n", cfs_b->burst_time); 9705 9706 return 0; 9707 } 9708 9709 static u64 throttled_time_self(struct task_group *tg) 9710 { 9711 int i; 9712 u64 total = 0; 9713 9714 for_each_possible_cpu(i) { 9715 total += READ_ONCE(tg->cfs_rq[i]->throttled_clock_self_time); 9716 } 9717 9718 return total; 9719 } 9720 9721 static int cpu_cfs_local_stat_show(struct seq_file *sf, void *v) 9722 { 9723 struct task_group *tg = css_tg(seq_css(sf)); 9724 9725 seq_printf(sf, "throttled_time %llu\n", throttled_time_self(tg)); 9726 9727 return 0; 9728 } 9729 #endif /* CONFIG_CFS_BANDWIDTH */ 9730 9731 #ifdef CONFIG_RT_GROUP_SCHED 9732 static int cpu_rt_runtime_write(struct cgroup_subsys_state *css, 9733 struct cftype *cft, s64 val) 9734 { 9735 return sched_group_set_rt_runtime(css_tg(css), val); 9736 } 9737 9738 static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css, 9739 struct cftype *cft) 9740 { 9741 return sched_group_rt_runtime(css_tg(css)); 9742 } 9743 9744 static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css, 9745 struct cftype *cftype, u64 rt_period_us) 9746 { 9747 return sched_group_set_rt_period(css_tg(css), rt_period_us); 9748 } 9749 9750 static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css, 9751 struct cftype *cft) 9752 { 9753 return sched_group_rt_period(css_tg(css)); 9754 } 9755 #endif /* CONFIG_RT_GROUP_SCHED */ 9756 9757 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9758 static s64 cpu_idle_read_s64(struct cgroup_subsys_state *css, 9759 struct cftype *cft) 9760 { 9761 return css_tg(css)->idle; 9762 } 9763 9764 static int cpu_idle_write_s64(struct cgroup_subsys_state *css, 9765 struct cftype *cft, s64 idle) 9766 { 9767 int ret; 9768 9769 ret = sched_group_set_idle(css_tg(css), idle); 9770 if (!ret) 9771 scx_group_set_idle(css_tg(css), idle); 9772 return ret; 9773 } 9774 #endif 9775 9776 static struct cftype cpu_legacy_files[] = { 9777 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9778 { 9779 .name = "shares", 9780 .read_u64 = cpu_shares_read_u64, 9781 .write_u64 = cpu_shares_write_u64, 9782 }, 9783 { 9784 .name = "idle", 9785 .read_s64 = cpu_idle_read_s64, 9786 .write_s64 = cpu_idle_write_s64, 9787 }, 9788 #endif 9789 #ifdef CONFIG_CFS_BANDWIDTH 9790 { 9791 .name = "cfs_quota_us", 9792 .read_s64 = cpu_cfs_quota_read_s64, 9793 .write_s64 = cpu_cfs_quota_write_s64, 9794 }, 9795 { 9796 .name = "cfs_period_us", 9797 .read_u64 = cpu_cfs_period_read_u64, 9798 .write_u64 = cpu_cfs_period_write_u64, 9799 }, 9800 { 9801 .name = "cfs_burst_us", 9802 .read_u64 = cpu_cfs_burst_read_u64, 9803 .write_u64 = cpu_cfs_burst_write_u64, 9804 }, 9805 { 9806 .name = "stat", 9807 .seq_show = cpu_cfs_stat_show, 9808 }, 9809 { 9810 .name = "stat.local", 9811 .seq_show = cpu_cfs_local_stat_show, 9812 }, 9813 #endif 9814 #ifdef CONFIG_RT_GROUP_SCHED 9815 { 9816 .name = "rt_runtime_us", 9817 .read_s64 = cpu_rt_runtime_read, 9818 .write_s64 = cpu_rt_runtime_write, 9819 }, 9820 { 9821 .name = "rt_period_us", 9822 .read_u64 = cpu_rt_period_read_uint, 9823 .write_u64 = cpu_rt_period_write_uint, 9824 }, 9825 #endif 9826 #ifdef CONFIG_UCLAMP_TASK_GROUP 9827 { 9828 .name = "uclamp.min", 9829 .flags = CFTYPE_NOT_ON_ROOT, 9830 .seq_show = cpu_uclamp_min_show, 9831 .write = cpu_uclamp_min_write, 9832 }, 9833 { 9834 .name = "uclamp.max", 9835 .flags = CFTYPE_NOT_ON_ROOT, 9836 .seq_show = cpu_uclamp_max_show, 9837 .write = cpu_uclamp_max_write, 9838 }, 9839 #endif 9840 { } /* Terminate */ 9841 }; 9842 9843 static int cpu_extra_stat_show(struct seq_file *sf, 9844 struct cgroup_subsys_state *css) 9845 { 9846 #ifdef CONFIG_CFS_BANDWIDTH 9847 { 9848 struct task_group *tg = css_tg(css); 9849 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth; 9850 u64 throttled_usec, burst_usec; 9851 9852 throttled_usec = cfs_b->throttled_time; 9853 do_div(throttled_usec, NSEC_PER_USEC); 9854 burst_usec = cfs_b->burst_time; 9855 do_div(burst_usec, NSEC_PER_USEC); 9856 9857 seq_printf(sf, "nr_periods %d\n" 9858 "nr_throttled %d\n" 9859 "throttled_usec %llu\n" 9860 "nr_bursts %d\n" 9861 "burst_usec %llu\n", 9862 cfs_b->nr_periods, cfs_b->nr_throttled, 9863 throttled_usec, cfs_b->nr_burst, burst_usec); 9864 } 9865 #endif 9866 return 0; 9867 } 9868 9869 static int cpu_local_stat_show(struct seq_file *sf, 9870 struct cgroup_subsys_state *css) 9871 { 9872 #ifdef CONFIG_CFS_BANDWIDTH 9873 { 9874 struct task_group *tg = css_tg(css); 9875 u64 throttled_self_usec; 9876 9877 throttled_self_usec = throttled_time_self(tg); 9878 do_div(throttled_self_usec, NSEC_PER_USEC); 9879 9880 seq_printf(sf, "throttled_usec %llu\n", 9881 throttled_self_usec); 9882 } 9883 #endif 9884 return 0; 9885 } 9886 9887 #ifdef CONFIG_GROUP_SCHED_WEIGHT 9888 9889 static u64 cpu_weight_read_u64(struct cgroup_subsys_state *css, 9890 struct cftype *cft) 9891 { 9892 return sched_weight_to_cgroup(tg_weight(css_tg(css))); 9893 } 9894 9895 static int cpu_weight_write_u64(struct cgroup_subsys_state *css, 9896 struct cftype *cft, u64 cgrp_weight) 9897 { 9898 unsigned long weight; 9899 int ret; 9900 9901 if (cgrp_weight < CGROUP_WEIGHT_MIN || cgrp_weight > CGROUP_WEIGHT_MAX) 9902 return -ERANGE; 9903 9904 weight = sched_weight_from_cgroup(cgrp_weight); 9905 9906 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9907 if (!ret) 9908 scx_group_set_weight(css_tg(css), cgrp_weight); 9909 return ret; 9910 } 9911 9912 static s64 cpu_weight_nice_read_s64(struct cgroup_subsys_state *css, 9913 struct cftype *cft) 9914 { 9915 unsigned long weight = tg_weight(css_tg(css)); 9916 int last_delta = INT_MAX; 9917 int prio, delta; 9918 9919 /* find the closest nice value to the current weight */ 9920 for (prio = 0; prio < ARRAY_SIZE(sched_prio_to_weight); prio++) { 9921 delta = abs(sched_prio_to_weight[prio] - weight); 9922 if (delta >= last_delta) 9923 break; 9924 last_delta = delta; 9925 } 9926 9927 return PRIO_TO_NICE(prio - 1 + MAX_RT_PRIO); 9928 } 9929 9930 static int cpu_weight_nice_write_s64(struct cgroup_subsys_state *css, 9931 struct cftype *cft, s64 nice) 9932 { 9933 unsigned long weight; 9934 int idx, ret; 9935 9936 if (nice < MIN_NICE || nice > MAX_NICE) 9937 return -ERANGE; 9938 9939 idx = NICE_TO_PRIO(nice) - MAX_RT_PRIO; 9940 idx = array_index_nospec(idx, 40); 9941 weight = sched_prio_to_weight[idx]; 9942 9943 ret = sched_group_set_shares(css_tg(css), scale_load(weight)); 9944 if (!ret) 9945 scx_group_set_weight(css_tg(css), 9946 sched_weight_to_cgroup(weight)); 9947 return ret; 9948 } 9949 #endif /* CONFIG_GROUP_SCHED_WEIGHT */ 9950 9951 static void __maybe_unused cpu_period_quota_print(struct seq_file *sf, 9952 long period, long quota) 9953 { 9954 if (quota < 0) 9955 seq_puts(sf, "max"); 9956 else 9957 seq_printf(sf, "%ld", quota); 9958 9959 seq_printf(sf, " %ld\n", period); 9960 } 9961 9962 /* caller should put the current value in *@periodp before calling */ 9963 static int __maybe_unused cpu_period_quota_parse(char *buf, 9964 u64 *periodp, u64 *quotap) 9965 { 9966 char tok[21]; /* U64_MAX */ 9967 9968 if (sscanf(buf, "%20s %llu", tok, periodp) < 1) 9969 return -EINVAL; 9970 9971 *periodp *= NSEC_PER_USEC; 9972 9973 if (sscanf(tok, "%llu", quotap)) 9974 *quotap *= NSEC_PER_USEC; 9975 else if (!strcmp(tok, "max")) 9976 *quotap = RUNTIME_INF; 9977 else 9978 return -EINVAL; 9979 9980 return 0; 9981 } 9982 9983 #ifdef CONFIG_CFS_BANDWIDTH 9984 static int cpu_max_show(struct seq_file *sf, void *v) 9985 { 9986 struct task_group *tg = css_tg(seq_css(sf)); 9987 9988 cpu_period_quota_print(sf, tg_get_cfs_period(tg), tg_get_cfs_quota(tg)); 9989 return 0; 9990 } 9991 9992 static ssize_t cpu_max_write(struct kernfs_open_file *of, 9993 char *buf, size_t nbytes, loff_t off) 9994 { 9995 struct task_group *tg = css_tg(of_css(of)); 9996 u64 period = tg_get_cfs_period(tg); 9997 u64 burst = tg->cfs_bandwidth.burst; 9998 u64 quota; 9999 int ret; 10000 10001 ret = cpu_period_quota_parse(buf, &period, "a); 10002 if (!ret) 10003 ret = tg_set_cfs_bandwidth(tg, period, quota, burst); 10004 return ret ?: nbytes; 10005 } 10006 #endif 10007 10008 static struct cftype cpu_files[] = { 10009 #ifdef CONFIG_GROUP_SCHED_WEIGHT 10010 { 10011 .name = "weight", 10012 .flags = CFTYPE_NOT_ON_ROOT, 10013 .read_u64 = cpu_weight_read_u64, 10014 .write_u64 = cpu_weight_write_u64, 10015 }, 10016 { 10017 .name = "weight.nice", 10018 .flags = CFTYPE_NOT_ON_ROOT, 10019 .read_s64 = cpu_weight_nice_read_s64, 10020 .write_s64 = cpu_weight_nice_write_s64, 10021 }, 10022 { 10023 .name = "idle", 10024 .flags = CFTYPE_NOT_ON_ROOT, 10025 .read_s64 = cpu_idle_read_s64, 10026 .write_s64 = cpu_idle_write_s64, 10027 }, 10028 #endif 10029 #ifdef CONFIG_CFS_BANDWIDTH 10030 { 10031 .name = "max", 10032 .flags = CFTYPE_NOT_ON_ROOT, 10033 .seq_show = cpu_max_show, 10034 .write = cpu_max_write, 10035 }, 10036 { 10037 .name = "max.burst", 10038 .flags = CFTYPE_NOT_ON_ROOT, 10039 .read_u64 = cpu_cfs_burst_read_u64, 10040 .write_u64 = cpu_cfs_burst_write_u64, 10041 }, 10042 #endif 10043 #ifdef CONFIG_UCLAMP_TASK_GROUP 10044 { 10045 .name = "uclamp.min", 10046 .flags = CFTYPE_NOT_ON_ROOT, 10047 .seq_show = cpu_uclamp_min_show, 10048 .write = cpu_uclamp_min_write, 10049 }, 10050 { 10051 .name = "uclamp.max", 10052 .flags = CFTYPE_NOT_ON_ROOT, 10053 .seq_show = cpu_uclamp_max_show, 10054 .write = cpu_uclamp_max_write, 10055 }, 10056 #endif 10057 { } /* terminate */ 10058 }; 10059 10060 struct cgroup_subsys cpu_cgrp_subsys = { 10061 .css_alloc = cpu_cgroup_css_alloc, 10062 .css_online = cpu_cgroup_css_online, 10063 .css_offline = cpu_cgroup_css_offline, 10064 .css_released = cpu_cgroup_css_released, 10065 .css_free = cpu_cgroup_css_free, 10066 .css_extra_stat_show = cpu_extra_stat_show, 10067 .css_local_stat_show = cpu_local_stat_show, 10068 .can_attach = cpu_cgroup_can_attach, 10069 .attach = cpu_cgroup_attach, 10070 .cancel_attach = cpu_cgroup_cancel_attach, 10071 .legacy_cftypes = cpu_legacy_files, 10072 .dfl_cftypes = cpu_files, 10073 .early_init = true, 10074 .threaded = true, 10075 }; 10076 10077 #endif /* CONFIG_CGROUP_SCHED */ 10078 10079 void dump_cpu_task(int cpu) 10080 { 10081 if (in_hardirq() && cpu == smp_processor_id()) { 10082 struct pt_regs *regs; 10083 10084 regs = get_irq_regs(); 10085 if (regs) { 10086 show_regs(regs); 10087 return; 10088 } 10089 } 10090 10091 if (trigger_single_cpu_backtrace(cpu)) 10092 return; 10093 10094 pr_info("Task dump for CPU %d:\n", cpu); 10095 sched_show_task(cpu_curr(cpu)); 10096 } 10097 10098 /* 10099 * Nice levels are multiplicative, with a gentle 10% change for every 10100 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to 10101 * nice 1, it will get ~10% less CPU time than another CPU-bound task 10102 * that remained on nice 0. 10103 * 10104 * The "10% effect" is relative and cumulative: from _any_ nice level, 10105 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level 10106 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25. 10107 * If a task goes up by ~10% and another task goes down by ~10% then 10108 * the relative distance between them is ~25%.) 10109 */ 10110 const int sched_prio_to_weight[40] = { 10111 /* -20 */ 88761, 71755, 56483, 46273, 36291, 10112 /* -15 */ 29154, 23254, 18705, 14949, 11916, 10113 /* -10 */ 9548, 7620, 6100, 4904, 3906, 10114 /* -5 */ 3121, 2501, 1991, 1586, 1277, 10115 /* 0 */ 1024, 820, 655, 526, 423, 10116 /* 5 */ 335, 272, 215, 172, 137, 10117 /* 10 */ 110, 87, 70, 56, 45, 10118 /* 15 */ 36, 29, 23, 18, 15, 10119 }; 10120 10121 /* 10122 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, pre-calculated. 10123 * 10124 * In cases where the weight does not change often, we can use the 10125 * pre-calculated inverse to speed up arithmetics by turning divisions 10126 * into multiplications: 10127 */ 10128 const u32 sched_prio_to_wmult[40] = { 10129 /* -20 */ 48388, 59856, 76040, 92818, 118348, 10130 /* -15 */ 147320, 184698, 229616, 287308, 360437, 10131 /* -10 */ 449829, 563644, 704093, 875809, 1099582, 10132 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326, 10133 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587, 10134 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126, 10135 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717, 10136 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153, 10137 }; 10138 10139 void call_trace_sched_update_nr_running(struct rq *rq, int count) 10140 { 10141 trace_sched_update_nr_running_tp(rq, count); 10142 } 10143 10144 #ifdef CONFIG_SCHED_MM_CID 10145 10146 /* 10147 * @cid_lock: Guarantee forward-progress of cid allocation. 10148 * 10149 * Concurrency ID allocation within a bitmap is mostly lock-free. The cid_lock 10150 * is only used when contention is detected by the lock-free allocation so 10151 * forward progress can be guaranteed. 10152 */ 10153 DEFINE_RAW_SPINLOCK(cid_lock); 10154 10155 /* 10156 * @use_cid_lock: Select cid allocation behavior: lock-free vs spinlock. 10157 * 10158 * When @use_cid_lock is 0, the cid allocation is lock-free. When contention is 10159 * detected, it is set to 1 to ensure that all newly coming allocations are 10160 * serialized by @cid_lock until the allocation which detected contention 10161 * completes and sets @use_cid_lock back to 0. This guarantees forward progress 10162 * of a cid allocation. 10163 */ 10164 int use_cid_lock; 10165 10166 /* 10167 * mm_cid remote-clear implements a lock-free algorithm to clear per-mm/cpu cid 10168 * concurrently with respect to the execution of the source runqueue context 10169 * switch. 10170 * 10171 * There is one basic properties we want to guarantee here: 10172 * 10173 * (1) Remote-clear should _never_ mark a per-cpu cid UNSET when it is actively 10174 * used by a task. That would lead to concurrent allocation of the cid and 10175 * userspace corruption. 10176 * 10177 * Provide this guarantee by introducing a Dekker memory ordering to guarantee 10178 * that a pair of loads observe at least one of a pair of stores, which can be 10179 * shown as: 10180 * 10181 * X = Y = 0 10182 * 10183 * w[X]=1 w[Y]=1 10184 * MB MB 10185 * r[Y]=y r[X]=x 10186 * 10187 * Which guarantees that x==0 && y==0 is impossible. But rather than using 10188 * values 0 and 1, this algorithm cares about specific state transitions of the 10189 * runqueue current task (as updated by the scheduler context switch), and the 10190 * per-mm/cpu cid value. 10191 * 10192 * Let's introduce task (Y) which has task->mm == mm and task (N) which has 10193 * task->mm != mm for the rest of the discussion. There are two scheduler state 10194 * transitions on context switch we care about: 10195 * 10196 * (TSA) Store to rq->curr with transition from (N) to (Y) 10197 * 10198 * (TSB) Store to rq->curr with transition from (Y) to (N) 10199 * 10200 * On the remote-clear side, there is one transition we care about: 10201 * 10202 * (TMA) cmpxchg to *pcpu_cid to set the LAZY flag 10203 * 10204 * There is also a transition to UNSET state which can be performed from all 10205 * sides (scheduler, remote-clear). It is always performed with a cmpxchg which 10206 * guarantees that only a single thread will succeed: 10207 * 10208 * (TMB) cmpxchg to *pcpu_cid to mark UNSET 10209 * 10210 * Just to be clear, what we do _not_ want to happen is a transition to UNSET 10211 * when a thread is actively using the cid (property (1)). 10212 * 10213 * Let's looks at the relevant combinations of TSA/TSB, and TMA transitions. 10214 * 10215 * Scenario A) (TSA)+(TMA) (from next task perspective) 10216 * 10217 * CPU0 CPU1 10218 * 10219 * Context switch CS-1 Remote-clear 10220 * - store to rq->curr: (N)->(Y) (TSA) - cmpxchg to *pcpu_id to LAZY (TMA) 10221 * (implied barrier after cmpxchg) 10222 * - switch_mm_cid() 10223 * - memory barrier (see switch_mm_cid() 10224 * comment explaining how this barrier 10225 * is combined with other scheduler 10226 * barriers) 10227 * - mm_cid_get (next) 10228 * - READ_ONCE(*pcpu_cid) - rcu_dereference(src_rq->curr) 10229 * 10230 * This Dekker ensures that either task (Y) is observed by the 10231 * rcu_dereference() or the LAZY flag is observed by READ_ONCE(), or both are 10232 * observed. 10233 * 10234 * If task (Y) store is observed by rcu_dereference(), it means that there is 10235 * still an active task on the cpu. Remote-clear will therefore not transition 10236 * to UNSET, which fulfills property (1). 10237 * 10238 * If task (Y) is not observed, but the lazy flag is observed by READ_ONCE(), 10239 * it will move its state to UNSET, which clears the percpu cid perhaps 10240 * uselessly (which is not an issue for correctness). Because task (Y) is not 10241 * observed, CPU1 can move ahead to set the state to UNSET. Because moving 10242 * state to UNSET is done with a cmpxchg expecting that the old state has the 10243 * LAZY flag set, only one thread will successfully UNSET. 10244 * 10245 * If both states (LAZY flag and task (Y)) are observed, the thread on CPU0 10246 * will observe the LAZY flag and transition to UNSET (perhaps uselessly), and 10247 * CPU1 will observe task (Y) and do nothing more, which is fine. 10248 * 10249 * What we are effectively preventing with this Dekker is a scenario where 10250 * neither LAZY flag nor store (Y) are observed, which would fail property (1) 10251 * because this would UNSET a cid which is actively used. 10252 */ 10253 10254 void sched_mm_cid_migrate_from(struct task_struct *t) 10255 { 10256 t->migrate_from_cpu = task_cpu(t); 10257 } 10258 10259 static 10260 int __sched_mm_cid_migrate_from_fetch_cid(struct rq *src_rq, 10261 struct task_struct *t, 10262 struct mm_cid *src_pcpu_cid) 10263 { 10264 struct mm_struct *mm = t->mm; 10265 struct task_struct *src_task; 10266 int src_cid, last_mm_cid; 10267 10268 if (!mm) 10269 return -1; 10270 10271 last_mm_cid = t->last_mm_cid; 10272 /* 10273 * If the migrated task has no last cid, or if the current 10274 * task on src rq uses the cid, it means the source cid does not need 10275 * to be moved to the destination cpu. 10276 */ 10277 if (last_mm_cid == -1) 10278 return -1; 10279 src_cid = READ_ONCE(src_pcpu_cid->cid); 10280 if (!mm_cid_is_valid(src_cid) || last_mm_cid != src_cid) 10281 return -1; 10282 10283 /* 10284 * If we observe an active task using the mm on this rq, it means we 10285 * are not the last task to be migrated from this cpu for this mm, so 10286 * there is no need to move src_cid to the destination cpu. 10287 */ 10288 guard(rcu)(); 10289 src_task = rcu_dereference(src_rq->curr); 10290 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10291 t->last_mm_cid = -1; 10292 return -1; 10293 } 10294 10295 return src_cid; 10296 } 10297 10298 static 10299 int __sched_mm_cid_migrate_from_try_steal_cid(struct rq *src_rq, 10300 struct task_struct *t, 10301 struct mm_cid *src_pcpu_cid, 10302 int src_cid) 10303 { 10304 struct task_struct *src_task; 10305 struct mm_struct *mm = t->mm; 10306 int lazy_cid; 10307 10308 if (src_cid == -1) 10309 return -1; 10310 10311 /* 10312 * Attempt to clear the source cpu cid to move it to the destination 10313 * cpu. 10314 */ 10315 lazy_cid = mm_cid_set_lazy_put(src_cid); 10316 if (!try_cmpxchg(&src_pcpu_cid->cid, &src_cid, lazy_cid)) 10317 return -1; 10318 10319 /* 10320 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10321 * rq->curr->mm matches the scheduler barrier in context_switch() 10322 * between store to rq->curr and load of prev and next task's 10323 * per-mm/cpu cid. 10324 * 10325 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10326 * rq->curr->mm_cid_active matches the barrier in 10327 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10328 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10329 * load of per-mm/cpu cid. 10330 */ 10331 10332 /* 10333 * If we observe an active task using the mm on this rq after setting 10334 * the lazy-put flag, this task will be responsible for transitioning 10335 * from lazy-put flag set to MM_CID_UNSET. 10336 */ 10337 scoped_guard (rcu) { 10338 src_task = rcu_dereference(src_rq->curr); 10339 if (READ_ONCE(src_task->mm_cid_active) && src_task->mm == mm) { 10340 /* 10341 * We observed an active task for this mm, there is therefore 10342 * no point in moving this cid to the destination cpu. 10343 */ 10344 t->last_mm_cid = -1; 10345 return -1; 10346 } 10347 } 10348 10349 /* 10350 * The src_cid is unused, so it can be unset. 10351 */ 10352 if (!try_cmpxchg(&src_pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10353 return -1; 10354 WRITE_ONCE(src_pcpu_cid->recent_cid, MM_CID_UNSET); 10355 return src_cid; 10356 } 10357 10358 /* 10359 * Migration to dst cpu. Called with dst_rq lock held. 10360 * Interrupts are disabled, which keeps the window of cid ownership without the 10361 * source rq lock held small. 10362 */ 10363 void sched_mm_cid_migrate_to(struct rq *dst_rq, struct task_struct *t) 10364 { 10365 struct mm_cid *src_pcpu_cid, *dst_pcpu_cid; 10366 struct mm_struct *mm = t->mm; 10367 int src_cid, src_cpu; 10368 bool dst_cid_is_set; 10369 struct rq *src_rq; 10370 10371 lockdep_assert_rq_held(dst_rq); 10372 10373 if (!mm) 10374 return; 10375 src_cpu = t->migrate_from_cpu; 10376 if (src_cpu == -1) { 10377 t->last_mm_cid = -1; 10378 return; 10379 } 10380 /* 10381 * Move the src cid if the dst cid is unset. This keeps id 10382 * allocation closest to 0 in cases where few threads migrate around 10383 * many CPUs. 10384 * 10385 * If destination cid or recent cid is already set, we may have 10386 * to just clear the src cid to ensure compactness in frequent 10387 * migrations scenarios. 10388 * 10389 * It is not useful to clear the src cid when the number of threads is 10390 * greater or equal to the number of allowed CPUs, because user-space 10391 * can expect that the number of allowed cids can reach the number of 10392 * allowed CPUs. 10393 */ 10394 dst_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu_of(dst_rq)); 10395 dst_cid_is_set = !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->cid)) || 10396 !mm_cid_is_unset(READ_ONCE(dst_pcpu_cid->recent_cid)); 10397 if (dst_cid_is_set && atomic_read(&mm->mm_users) >= READ_ONCE(mm->nr_cpus_allowed)) 10398 return; 10399 src_pcpu_cid = per_cpu_ptr(mm->pcpu_cid, src_cpu); 10400 src_rq = cpu_rq(src_cpu); 10401 src_cid = __sched_mm_cid_migrate_from_fetch_cid(src_rq, t, src_pcpu_cid); 10402 if (src_cid == -1) 10403 return; 10404 src_cid = __sched_mm_cid_migrate_from_try_steal_cid(src_rq, t, src_pcpu_cid, 10405 src_cid); 10406 if (src_cid == -1) 10407 return; 10408 if (dst_cid_is_set) { 10409 __mm_cid_put(mm, src_cid); 10410 return; 10411 } 10412 /* Move src_cid to dst cpu. */ 10413 mm_cid_snapshot_time(dst_rq, mm); 10414 WRITE_ONCE(dst_pcpu_cid->cid, src_cid); 10415 WRITE_ONCE(dst_pcpu_cid->recent_cid, src_cid); 10416 } 10417 10418 static void sched_mm_cid_remote_clear(struct mm_struct *mm, struct mm_cid *pcpu_cid, 10419 int cpu) 10420 { 10421 struct rq *rq = cpu_rq(cpu); 10422 struct task_struct *t; 10423 int cid, lazy_cid; 10424 10425 cid = READ_ONCE(pcpu_cid->cid); 10426 if (!mm_cid_is_valid(cid)) 10427 return; 10428 10429 /* 10430 * Clear the cpu cid if it is set to keep cid allocation compact. If 10431 * there happens to be other tasks left on the source cpu using this 10432 * mm, the next task using this mm will reallocate its cid on context 10433 * switch. 10434 */ 10435 lazy_cid = mm_cid_set_lazy_put(cid); 10436 if (!try_cmpxchg(&pcpu_cid->cid, &cid, lazy_cid)) 10437 return; 10438 10439 /* 10440 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10441 * rq->curr->mm matches the scheduler barrier in context_switch() 10442 * between store to rq->curr and load of prev and next task's 10443 * per-mm/cpu cid. 10444 * 10445 * The implicit barrier after cmpxchg per-mm/cpu cid before loading 10446 * rq->curr->mm_cid_active matches the barrier in 10447 * sched_mm_cid_exit_signals(), sched_mm_cid_before_execve(), and 10448 * sched_mm_cid_after_execve() between store to t->mm_cid_active and 10449 * load of per-mm/cpu cid. 10450 */ 10451 10452 /* 10453 * If we observe an active task using the mm on this rq after setting 10454 * the lazy-put flag, that task will be responsible for transitioning 10455 * from lazy-put flag set to MM_CID_UNSET. 10456 */ 10457 scoped_guard (rcu) { 10458 t = rcu_dereference(rq->curr); 10459 if (READ_ONCE(t->mm_cid_active) && t->mm == mm) 10460 return; 10461 } 10462 10463 /* 10464 * The cid is unused, so it can be unset. 10465 * Disable interrupts to keep the window of cid ownership without rq 10466 * lock small. 10467 */ 10468 scoped_guard (irqsave) { 10469 if (try_cmpxchg(&pcpu_cid->cid, &lazy_cid, MM_CID_UNSET)) 10470 __mm_cid_put(mm, cid); 10471 } 10472 } 10473 10474 static void sched_mm_cid_remote_clear_old(struct mm_struct *mm, int cpu) 10475 { 10476 struct rq *rq = cpu_rq(cpu); 10477 struct mm_cid *pcpu_cid; 10478 struct task_struct *curr; 10479 u64 rq_clock; 10480 10481 /* 10482 * rq->clock load is racy on 32-bit but one spurious clear once in a 10483 * while is irrelevant. 10484 */ 10485 rq_clock = READ_ONCE(rq->clock); 10486 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10487 10488 /* 10489 * In order to take care of infrequently scheduled tasks, bump the time 10490 * snapshot associated with this cid if an active task using the mm is 10491 * observed on this rq. 10492 */ 10493 scoped_guard (rcu) { 10494 curr = rcu_dereference(rq->curr); 10495 if (READ_ONCE(curr->mm_cid_active) && curr->mm == mm) { 10496 WRITE_ONCE(pcpu_cid->time, rq_clock); 10497 return; 10498 } 10499 } 10500 10501 if (rq_clock < pcpu_cid->time + SCHED_MM_CID_PERIOD_NS) 10502 return; 10503 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10504 } 10505 10506 static void sched_mm_cid_remote_clear_weight(struct mm_struct *mm, int cpu, 10507 int weight) 10508 { 10509 struct mm_cid *pcpu_cid; 10510 int cid; 10511 10512 pcpu_cid = per_cpu_ptr(mm->pcpu_cid, cpu); 10513 cid = READ_ONCE(pcpu_cid->cid); 10514 if (!mm_cid_is_valid(cid) || cid < weight) 10515 return; 10516 sched_mm_cid_remote_clear(mm, pcpu_cid, cpu); 10517 } 10518 10519 static void task_mm_cid_work(struct callback_head *work) 10520 { 10521 unsigned long now = jiffies, old_scan, next_scan; 10522 struct task_struct *t = current; 10523 struct cpumask *cidmask; 10524 struct mm_struct *mm; 10525 int weight, cpu; 10526 10527 SCHED_WARN_ON(t != container_of(work, struct task_struct, cid_work)); 10528 10529 work->next = work; /* Prevent double-add */ 10530 if (t->flags & PF_EXITING) 10531 return; 10532 mm = t->mm; 10533 if (!mm) 10534 return; 10535 old_scan = READ_ONCE(mm->mm_cid_next_scan); 10536 next_scan = now + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10537 if (!old_scan) { 10538 unsigned long res; 10539 10540 res = cmpxchg(&mm->mm_cid_next_scan, old_scan, next_scan); 10541 if (res != old_scan) 10542 old_scan = res; 10543 else 10544 old_scan = next_scan; 10545 } 10546 if (time_before(now, old_scan)) 10547 return; 10548 if (!try_cmpxchg(&mm->mm_cid_next_scan, &old_scan, next_scan)) 10549 return; 10550 cidmask = mm_cidmask(mm); 10551 /* Clear cids that were not recently used. */ 10552 for_each_possible_cpu(cpu) 10553 sched_mm_cid_remote_clear_old(mm, cpu); 10554 weight = cpumask_weight(cidmask); 10555 /* 10556 * Clear cids that are greater or equal to the cidmask weight to 10557 * recompact it. 10558 */ 10559 for_each_possible_cpu(cpu) 10560 sched_mm_cid_remote_clear_weight(mm, cpu, weight); 10561 } 10562 10563 void init_sched_mm_cid(struct task_struct *t) 10564 { 10565 struct mm_struct *mm = t->mm; 10566 int mm_users = 0; 10567 10568 if (mm) { 10569 mm_users = atomic_read(&mm->mm_users); 10570 if (mm_users == 1) 10571 mm->mm_cid_next_scan = jiffies + msecs_to_jiffies(MM_CID_SCAN_DELAY); 10572 } 10573 t->cid_work.next = &t->cid_work; /* Protect against double add */ 10574 init_task_work(&t->cid_work, task_mm_cid_work); 10575 } 10576 10577 void task_tick_mm_cid(struct rq *rq, struct task_struct *curr) 10578 { 10579 struct callback_head *work = &curr->cid_work; 10580 unsigned long now = jiffies; 10581 10582 if (!curr->mm || (curr->flags & (PF_EXITING | PF_KTHREAD)) || 10583 work->next != work) 10584 return; 10585 if (time_before(now, READ_ONCE(curr->mm->mm_cid_next_scan))) 10586 return; 10587 10588 /* No page allocation under rq lock */ 10589 task_work_add(curr, work, TWA_RESUME | TWAF_NO_ALLOC); 10590 } 10591 10592 void sched_mm_cid_exit_signals(struct task_struct *t) 10593 { 10594 struct mm_struct *mm = t->mm; 10595 struct rq *rq; 10596 10597 if (!mm) 10598 return; 10599 10600 preempt_disable(); 10601 rq = this_rq(); 10602 guard(rq_lock_irqsave)(rq); 10603 preempt_enable_no_resched(); /* holding spinlock */ 10604 WRITE_ONCE(t->mm_cid_active, 0); 10605 /* 10606 * Store t->mm_cid_active before loading per-mm/cpu cid. 10607 * Matches barrier in sched_mm_cid_remote_clear_old(). 10608 */ 10609 smp_mb(); 10610 mm_cid_put(mm); 10611 t->last_mm_cid = t->mm_cid = -1; 10612 } 10613 10614 void sched_mm_cid_before_execve(struct task_struct *t) 10615 { 10616 struct mm_struct *mm = t->mm; 10617 struct rq *rq; 10618 10619 if (!mm) 10620 return; 10621 10622 preempt_disable(); 10623 rq = this_rq(); 10624 guard(rq_lock_irqsave)(rq); 10625 preempt_enable_no_resched(); /* holding spinlock */ 10626 WRITE_ONCE(t->mm_cid_active, 0); 10627 /* 10628 * Store t->mm_cid_active before loading per-mm/cpu cid. 10629 * Matches barrier in sched_mm_cid_remote_clear_old(). 10630 */ 10631 smp_mb(); 10632 mm_cid_put(mm); 10633 t->last_mm_cid = t->mm_cid = -1; 10634 } 10635 10636 void sched_mm_cid_after_execve(struct task_struct *t) 10637 { 10638 struct mm_struct *mm = t->mm; 10639 struct rq *rq; 10640 10641 if (!mm) 10642 return; 10643 10644 preempt_disable(); 10645 rq = this_rq(); 10646 scoped_guard (rq_lock_irqsave, rq) { 10647 preempt_enable_no_resched(); /* holding spinlock */ 10648 WRITE_ONCE(t->mm_cid_active, 1); 10649 /* 10650 * Store t->mm_cid_active before loading per-mm/cpu cid. 10651 * Matches barrier in sched_mm_cid_remote_clear_old(). 10652 */ 10653 smp_mb(); 10654 t->last_mm_cid = t->mm_cid = mm_cid_get(rq, t, mm); 10655 } 10656 rseq_set_notify_resume(t); 10657 } 10658 10659 void sched_mm_cid_fork(struct task_struct *t) 10660 { 10661 WARN_ON_ONCE(!t->mm || t->mm_cid != -1); 10662 t->mm_cid_active = 1; 10663 } 10664 #endif 10665 10666 #ifdef CONFIG_SCHED_CLASS_EXT 10667 void sched_deq_and_put_task(struct task_struct *p, int queue_flags, 10668 struct sched_enq_and_set_ctx *ctx) 10669 { 10670 struct rq *rq = task_rq(p); 10671 10672 lockdep_assert_rq_held(rq); 10673 10674 *ctx = (struct sched_enq_and_set_ctx){ 10675 .p = p, 10676 .queue_flags = queue_flags, 10677 .queued = task_on_rq_queued(p), 10678 .running = task_current(rq, p), 10679 }; 10680 10681 update_rq_clock(rq); 10682 if (ctx->queued) 10683 dequeue_task(rq, p, queue_flags | DEQUEUE_NOCLOCK); 10684 if (ctx->running) 10685 put_prev_task(rq, p); 10686 } 10687 10688 void sched_enq_and_set_task(struct sched_enq_and_set_ctx *ctx) 10689 { 10690 struct rq *rq = task_rq(ctx->p); 10691 10692 lockdep_assert_rq_held(rq); 10693 10694 if (ctx->queued) 10695 enqueue_task(rq, ctx->p, ctx->queue_flags | ENQUEUE_NOCLOCK); 10696 if (ctx->running) 10697 set_next_task(rq, ctx->p); 10698 } 10699 #endif /* CONFIG_SCHED_CLASS_EXT */ 10700