1 /* 2 * linux/kernel/resource.c 3 * 4 * Copyright (C) 1999 Linus Torvalds 5 * Copyright (C) 1999 Martin Mares <[email protected]> 6 * 7 * Arbitrary resource management. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/export.h> 13 #include <linux/errno.h> 14 #include <linux/ioport.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/device.h> 23 #include <linux/pfn.h> 24 #include <linux/mm.h> 25 #include <asm/io.h> 26 27 28 struct resource ioport_resource = { 29 .name = "PCI IO", 30 .start = 0, 31 .end = IO_SPACE_LIMIT, 32 .flags = IORESOURCE_IO, 33 }; 34 EXPORT_SYMBOL(ioport_resource); 35 36 struct resource iomem_resource = { 37 .name = "PCI mem", 38 .start = 0, 39 .end = -1, 40 .flags = IORESOURCE_MEM, 41 }; 42 EXPORT_SYMBOL(iomem_resource); 43 44 /* constraints to be met while allocating resources */ 45 struct resource_constraint { 46 resource_size_t min, max, align; 47 resource_size_t (*alignf)(void *, const struct resource *, 48 resource_size_t, resource_size_t); 49 void *alignf_data; 50 }; 51 52 static DEFINE_RWLOCK(resource_lock); 53 54 /* 55 * For memory hotplug, there is no way to free resource entries allocated 56 * by boot mem after the system is up. So for reusing the resource entry 57 * we need to remember the resource. 58 */ 59 static struct resource *bootmem_resource_free; 60 static DEFINE_SPINLOCK(bootmem_resource_lock); 61 62 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 63 { 64 struct resource *p = v; 65 (*pos)++; 66 if (p->child) 67 return p->child; 68 while (!p->sibling && p->parent) 69 p = p->parent; 70 return p->sibling; 71 } 72 73 #ifdef CONFIG_PROC_FS 74 75 enum { MAX_IORES_LEVEL = 5 }; 76 77 static void *r_start(struct seq_file *m, loff_t *pos) 78 __acquires(resource_lock) 79 { 80 struct resource *p = m->private; 81 loff_t l = 0; 82 read_lock(&resource_lock); 83 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 84 ; 85 return p; 86 } 87 88 static void r_stop(struct seq_file *m, void *v) 89 __releases(resource_lock) 90 { 91 read_unlock(&resource_lock); 92 } 93 94 static int r_show(struct seq_file *m, void *v) 95 { 96 struct resource *root = m->private; 97 struct resource *r = v, *p; 98 int width = root->end < 0x10000 ? 4 : 8; 99 int depth; 100 101 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 102 if (p->parent == root) 103 break; 104 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 105 depth * 2, "", 106 width, (unsigned long long) r->start, 107 width, (unsigned long long) r->end, 108 r->name ? r->name : "<BAD>"); 109 return 0; 110 } 111 112 static const struct seq_operations resource_op = { 113 .start = r_start, 114 .next = r_next, 115 .stop = r_stop, 116 .show = r_show, 117 }; 118 119 static int ioports_open(struct inode *inode, struct file *file) 120 { 121 int res = seq_open(file, &resource_op); 122 if (!res) { 123 struct seq_file *m = file->private_data; 124 m->private = &ioport_resource; 125 } 126 return res; 127 } 128 129 static int iomem_open(struct inode *inode, struct file *file) 130 { 131 int res = seq_open(file, &resource_op); 132 if (!res) { 133 struct seq_file *m = file->private_data; 134 m->private = &iomem_resource; 135 } 136 return res; 137 } 138 139 static const struct file_operations proc_ioports_operations = { 140 .open = ioports_open, 141 .read = seq_read, 142 .llseek = seq_lseek, 143 .release = seq_release, 144 }; 145 146 static const struct file_operations proc_iomem_operations = { 147 .open = iomem_open, 148 .read = seq_read, 149 .llseek = seq_lseek, 150 .release = seq_release, 151 }; 152 153 static int __init ioresources_init(void) 154 { 155 proc_create("ioports", 0, NULL, &proc_ioports_operations); 156 proc_create("iomem", 0, NULL, &proc_iomem_operations); 157 return 0; 158 } 159 __initcall(ioresources_init); 160 161 #endif /* CONFIG_PROC_FS */ 162 163 static void free_resource(struct resource *res) 164 { 165 if (!res) 166 return; 167 168 if (!PageSlab(virt_to_head_page(res))) { 169 spin_lock(&bootmem_resource_lock); 170 res->sibling = bootmem_resource_free; 171 bootmem_resource_free = res; 172 spin_unlock(&bootmem_resource_lock); 173 } else { 174 kfree(res); 175 } 176 } 177 178 static struct resource *alloc_resource(gfp_t flags) 179 { 180 struct resource *res = NULL; 181 182 spin_lock(&bootmem_resource_lock); 183 if (bootmem_resource_free) { 184 res = bootmem_resource_free; 185 bootmem_resource_free = res->sibling; 186 } 187 spin_unlock(&bootmem_resource_lock); 188 189 if (res) 190 memset(res, 0, sizeof(struct resource)); 191 else 192 res = kzalloc(sizeof(struct resource), flags); 193 194 return res; 195 } 196 197 /* Return the conflict entry if you can't request it */ 198 static struct resource * __request_resource(struct resource *root, struct resource *new) 199 { 200 resource_size_t start = new->start; 201 resource_size_t end = new->end; 202 struct resource *tmp, **p; 203 204 if (end < start) 205 return root; 206 if (start < root->start) 207 return root; 208 if (end > root->end) 209 return root; 210 p = &root->child; 211 for (;;) { 212 tmp = *p; 213 if (!tmp || tmp->start > end) { 214 new->sibling = tmp; 215 *p = new; 216 new->parent = root; 217 return NULL; 218 } 219 p = &tmp->sibling; 220 if (tmp->end < start) 221 continue; 222 return tmp; 223 } 224 } 225 226 static int __release_resource(struct resource *old) 227 { 228 struct resource *tmp, **p; 229 230 p = &old->parent->child; 231 for (;;) { 232 tmp = *p; 233 if (!tmp) 234 break; 235 if (tmp == old) { 236 *p = tmp->sibling; 237 old->parent = NULL; 238 return 0; 239 } 240 p = &tmp->sibling; 241 } 242 return -EINVAL; 243 } 244 245 static void __release_child_resources(struct resource *r) 246 { 247 struct resource *tmp, *p; 248 resource_size_t size; 249 250 p = r->child; 251 r->child = NULL; 252 while (p) { 253 tmp = p; 254 p = p->sibling; 255 256 tmp->parent = NULL; 257 tmp->sibling = NULL; 258 __release_child_resources(tmp); 259 260 printk(KERN_DEBUG "release child resource %pR\n", tmp); 261 /* need to restore size, and keep flags */ 262 size = resource_size(tmp); 263 tmp->start = 0; 264 tmp->end = size - 1; 265 } 266 } 267 268 void release_child_resources(struct resource *r) 269 { 270 write_lock(&resource_lock); 271 __release_child_resources(r); 272 write_unlock(&resource_lock); 273 } 274 275 /** 276 * request_resource_conflict - request and reserve an I/O or memory resource 277 * @root: root resource descriptor 278 * @new: resource descriptor desired by caller 279 * 280 * Returns 0 for success, conflict resource on error. 281 */ 282 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 283 { 284 struct resource *conflict; 285 286 write_lock(&resource_lock); 287 conflict = __request_resource(root, new); 288 write_unlock(&resource_lock); 289 return conflict; 290 } 291 292 /** 293 * request_resource - request and reserve an I/O or memory resource 294 * @root: root resource descriptor 295 * @new: resource descriptor desired by caller 296 * 297 * Returns 0 for success, negative error code on error. 298 */ 299 int request_resource(struct resource *root, struct resource *new) 300 { 301 struct resource *conflict; 302 303 conflict = request_resource_conflict(root, new); 304 return conflict ? -EBUSY : 0; 305 } 306 307 EXPORT_SYMBOL(request_resource); 308 309 /** 310 * release_resource - release a previously reserved resource 311 * @old: resource pointer 312 */ 313 int release_resource(struct resource *old) 314 { 315 int retval; 316 317 write_lock(&resource_lock); 318 retval = __release_resource(old); 319 write_unlock(&resource_lock); 320 return retval; 321 } 322 323 EXPORT_SYMBOL(release_resource); 324 325 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY) 326 /* 327 * Finds the lowest memory reosurce exists within [res->start.res->end) 328 * the caller must specify res->start, res->end, res->flags and "name". 329 * If found, returns 0, res is overwritten, if not found, returns -1. 330 */ 331 static int find_next_system_ram(struct resource *res, char *name) 332 { 333 resource_size_t start, end; 334 struct resource *p; 335 336 BUG_ON(!res); 337 338 start = res->start; 339 end = res->end; 340 BUG_ON(start >= end); 341 342 read_lock(&resource_lock); 343 for (p = iomem_resource.child; p ; p = p->sibling) { 344 /* system ram is just marked as IORESOURCE_MEM */ 345 if (p->flags != res->flags) 346 continue; 347 if (name && strcmp(p->name, name)) 348 continue; 349 if (p->start > end) { 350 p = NULL; 351 break; 352 } 353 if ((p->end >= start) && (p->start < end)) 354 break; 355 } 356 read_unlock(&resource_lock); 357 if (!p) 358 return -1; 359 /* copy data */ 360 if (res->start < p->start) 361 res->start = p->start; 362 if (res->end > p->end) 363 res->end = p->end; 364 return 0; 365 } 366 367 /* 368 * This function calls callback against all memory range of "System RAM" 369 * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY. 370 * Now, this function is only for "System RAM". 371 */ 372 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 373 void *arg, int (*func)(unsigned long, unsigned long, void *)) 374 { 375 struct resource res; 376 unsigned long pfn, end_pfn; 377 u64 orig_end; 378 int ret = -1; 379 380 res.start = (u64) start_pfn << PAGE_SHIFT; 381 res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 382 res.flags = IORESOURCE_MEM | IORESOURCE_BUSY; 383 orig_end = res.end; 384 while ((res.start < res.end) && 385 (find_next_system_ram(&res, "System RAM") >= 0)) { 386 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; 387 end_pfn = (res.end + 1) >> PAGE_SHIFT; 388 if (end_pfn > pfn) 389 ret = (*func)(pfn, end_pfn - pfn, arg); 390 if (ret) 391 break; 392 res.start = res.end + 1; 393 res.end = orig_end; 394 } 395 return ret; 396 } 397 398 #endif 399 400 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 401 { 402 return 1; 403 } 404 /* 405 * This generic page_is_ram() returns true if specified address is 406 * registered as "System RAM" in iomem_resource list. 407 */ 408 int __weak page_is_ram(unsigned long pfn) 409 { 410 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 411 } 412 EXPORT_SYMBOL_GPL(page_is_ram); 413 414 void __weak arch_remove_reservations(struct resource *avail) 415 { 416 } 417 418 static resource_size_t simple_align_resource(void *data, 419 const struct resource *avail, 420 resource_size_t size, 421 resource_size_t align) 422 { 423 return avail->start; 424 } 425 426 static void resource_clip(struct resource *res, resource_size_t min, 427 resource_size_t max) 428 { 429 if (res->start < min) 430 res->start = min; 431 if (res->end > max) 432 res->end = max; 433 } 434 435 static bool resource_contains(struct resource *res1, struct resource *res2) 436 { 437 return res1->start <= res2->start && res1->end >= res2->end; 438 } 439 440 /* 441 * Find empty slot in the resource tree with the given range and 442 * alignment constraints 443 */ 444 static int __find_resource(struct resource *root, struct resource *old, 445 struct resource *new, 446 resource_size_t size, 447 struct resource_constraint *constraint) 448 { 449 struct resource *this = root->child; 450 struct resource tmp = *new, avail, alloc; 451 452 tmp.flags = new->flags; 453 tmp.start = root->start; 454 /* 455 * Skip past an allocated resource that starts at 0, since the assignment 456 * of this->start - 1 to tmp->end below would cause an underflow. 457 */ 458 if (this && this->start == root->start) { 459 tmp.start = (this == old) ? old->start : this->end + 1; 460 this = this->sibling; 461 } 462 for(;;) { 463 if (this) 464 tmp.end = (this == old) ? this->end : this->start - 1; 465 else 466 tmp.end = root->end; 467 468 if (tmp.end < tmp.start) 469 goto next; 470 471 resource_clip(&tmp, constraint->min, constraint->max); 472 arch_remove_reservations(&tmp); 473 474 /* Check for overflow after ALIGN() */ 475 avail = *new; 476 avail.start = ALIGN(tmp.start, constraint->align); 477 avail.end = tmp.end; 478 if (avail.start >= tmp.start) { 479 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 480 size, constraint->align); 481 alloc.end = alloc.start + size - 1; 482 if (resource_contains(&avail, &alloc)) { 483 new->start = alloc.start; 484 new->end = alloc.end; 485 return 0; 486 } 487 } 488 489 next: if (!this || this->end == root->end) 490 break; 491 492 if (this != old) 493 tmp.start = this->end + 1; 494 this = this->sibling; 495 } 496 return -EBUSY; 497 } 498 499 /* 500 * Find empty slot in the resource tree given range and alignment. 501 */ 502 static int find_resource(struct resource *root, struct resource *new, 503 resource_size_t size, 504 struct resource_constraint *constraint) 505 { 506 return __find_resource(root, NULL, new, size, constraint); 507 } 508 509 /** 510 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 511 * The resource will be relocated if the new size cannot be reallocated in the 512 * current location. 513 * 514 * @root: root resource descriptor 515 * @old: resource descriptor desired by caller 516 * @newsize: new size of the resource descriptor 517 * @constraint: the size and alignment constraints to be met. 518 */ 519 int reallocate_resource(struct resource *root, struct resource *old, 520 resource_size_t newsize, 521 struct resource_constraint *constraint) 522 { 523 int err=0; 524 struct resource new = *old; 525 struct resource *conflict; 526 527 write_lock(&resource_lock); 528 529 if ((err = __find_resource(root, old, &new, newsize, constraint))) 530 goto out; 531 532 if (resource_contains(&new, old)) { 533 old->start = new.start; 534 old->end = new.end; 535 goto out; 536 } 537 538 if (old->child) { 539 err = -EBUSY; 540 goto out; 541 } 542 543 if (resource_contains(old, &new)) { 544 old->start = new.start; 545 old->end = new.end; 546 } else { 547 __release_resource(old); 548 *old = new; 549 conflict = __request_resource(root, old); 550 BUG_ON(conflict); 551 } 552 out: 553 write_unlock(&resource_lock); 554 return err; 555 } 556 557 558 /** 559 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 560 * The resource will be reallocated with a new size if it was already allocated 561 * @root: root resource descriptor 562 * @new: resource descriptor desired by caller 563 * @size: requested resource region size 564 * @min: minimum boundary to allocate 565 * @max: maximum boundary to allocate 566 * @align: alignment requested, in bytes 567 * @alignf: alignment function, optional, called if not NULL 568 * @alignf_data: arbitrary data to pass to the @alignf function 569 */ 570 int allocate_resource(struct resource *root, struct resource *new, 571 resource_size_t size, resource_size_t min, 572 resource_size_t max, resource_size_t align, 573 resource_size_t (*alignf)(void *, 574 const struct resource *, 575 resource_size_t, 576 resource_size_t), 577 void *alignf_data) 578 { 579 int err; 580 struct resource_constraint constraint; 581 582 if (!alignf) 583 alignf = simple_align_resource; 584 585 constraint.min = min; 586 constraint.max = max; 587 constraint.align = align; 588 constraint.alignf = alignf; 589 constraint.alignf_data = alignf_data; 590 591 if ( new->parent ) { 592 /* resource is already allocated, try reallocating with 593 the new constraints */ 594 return reallocate_resource(root, new, size, &constraint); 595 } 596 597 write_lock(&resource_lock); 598 err = find_resource(root, new, size, &constraint); 599 if (err >= 0 && __request_resource(root, new)) 600 err = -EBUSY; 601 write_unlock(&resource_lock); 602 return err; 603 } 604 605 EXPORT_SYMBOL(allocate_resource); 606 607 /** 608 * lookup_resource - find an existing resource by a resource start address 609 * @root: root resource descriptor 610 * @start: resource start address 611 * 612 * Returns a pointer to the resource if found, NULL otherwise 613 */ 614 struct resource *lookup_resource(struct resource *root, resource_size_t start) 615 { 616 struct resource *res; 617 618 read_lock(&resource_lock); 619 for (res = root->child; res; res = res->sibling) { 620 if (res->start == start) 621 break; 622 } 623 read_unlock(&resource_lock); 624 625 return res; 626 } 627 628 /* 629 * Insert a resource into the resource tree. If successful, return NULL, 630 * otherwise return the conflicting resource (compare to __request_resource()) 631 */ 632 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 633 { 634 struct resource *first, *next; 635 636 for (;; parent = first) { 637 first = __request_resource(parent, new); 638 if (!first) 639 return first; 640 641 if (first == parent) 642 return first; 643 if (WARN_ON(first == new)) /* duplicated insertion */ 644 return first; 645 646 if ((first->start > new->start) || (first->end < new->end)) 647 break; 648 if ((first->start == new->start) && (first->end == new->end)) 649 break; 650 } 651 652 for (next = first; ; next = next->sibling) { 653 /* Partial overlap? Bad, and unfixable */ 654 if (next->start < new->start || next->end > new->end) 655 return next; 656 if (!next->sibling) 657 break; 658 if (next->sibling->start > new->end) 659 break; 660 } 661 662 new->parent = parent; 663 new->sibling = next->sibling; 664 new->child = first; 665 666 next->sibling = NULL; 667 for (next = first; next; next = next->sibling) 668 next->parent = new; 669 670 if (parent->child == first) { 671 parent->child = new; 672 } else { 673 next = parent->child; 674 while (next->sibling != first) 675 next = next->sibling; 676 next->sibling = new; 677 } 678 return NULL; 679 } 680 681 /** 682 * insert_resource_conflict - Inserts resource in the resource tree 683 * @parent: parent of the new resource 684 * @new: new resource to insert 685 * 686 * Returns 0 on success, conflict resource if the resource can't be inserted. 687 * 688 * This function is equivalent to request_resource_conflict when no conflict 689 * happens. If a conflict happens, and the conflicting resources 690 * entirely fit within the range of the new resource, then the new 691 * resource is inserted and the conflicting resources become children of 692 * the new resource. 693 */ 694 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 695 { 696 struct resource *conflict; 697 698 write_lock(&resource_lock); 699 conflict = __insert_resource(parent, new); 700 write_unlock(&resource_lock); 701 return conflict; 702 } 703 704 /** 705 * insert_resource - Inserts a resource in the resource tree 706 * @parent: parent of the new resource 707 * @new: new resource to insert 708 * 709 * Returns 0 on success, -EBUSY if the resource can't be inserted. 710 */ 711 int insert_resource(struct resource *parent, struct resource *new) 712 { 713 struct resource *conflict; 714 715 conflict = insert_resource_conflict(parent, new); 716 return conflict ? -EBUSY : 0; 717 } 718 719 /** 720 * insert_resource_expand_to_fit - Insert a resource into the resource tree 721 * @root: root resource descriptor 722 * @new: new resource to insert 723 * 724 * Insert a resource into the resource tree, possibly expanding it in order 725 * to make it encompass any conflicting resources. 726 */ 727 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 728 { 729 if (new->parent) 730 return; 731 732 write_lock(&resource_lock); 733 for (;;) { 734 struct resource *conflict; 735 736 conflict = __insert_resource(root, new); 737 if (!conflict) 738 break; 739 if (conflict == root) 740 break; 741 742 /* Ok, expand resource to cover the conflict, then try again .. */ 743 if (conflict->start < new->start) 744 new->start = conflict->start; 745 if (conflict->end > new->end) 746 new->end = conflict->end; 747 748 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 749 } 750 write_unlock(&resource_lock); 751 } 752 753 static int __adjust_resource(struct resource *res, resource_size_t start, 754 resource_size_t size) 755 { 756 struct resource *tmp, *parent = res->parent; 757 resource_size_t end = start + size - 1; 758 int result = -EBUSY; 759 760 if (!parent) 761 goto skip; 762 763 if ((start < parent->start) || (end > parent->end)) 764 goto out; 765 766 if (res->sibling && (res->sibling->start <= end)) 767 goto out; 768 769 tmp = parent->child; 770 if (tmp != res) { 771 while (tmp->sibling != res) 772 tmp = tmp->sibling; 773 if (start <= tmp->end) 774 goto out; 775 } 776 777 skip: 778 for (tmp = res->child; tmp; tmp = tmp->sibling) 779 if ((tmp->start < start) || (tmp->end > end)) 780 goto out; 781 782 res->start = start; 783 res->end = end; 784 result = 0; 785 786 out: 787 return result; 788 } 789 790 /** 791 * adjust_resource - modify a resource's start and size 792 * @res: resource to modify 793 * @start: new start value 794 * @size: new size 795 * 796 * Given an existing resource, change its start and size to match the 797 * arguments. Returns 0 on success, -EBUSY if it can't fit. 798 * Existing children of the resource are assumed to be immutable. 799 */ 800 int adjust_resource(struct resource *res, resource_size_t start, 801 resource_size_t size) 802 { 803 int result; 804 805 write_lock(&resource_lock); 806 result = __adjust_resource(res, start, size); 807 write_unlock(&resource_lock); 808 return result; 809 } 810 EXPORT_SYMBOL(adjust_resource); 811 812 static void __init __reserve_region_with_split(struct resource *root, 813 resource_size_t start, resource_size_t end, 814 const char *name) 815 { 816 struct resource *parent = root; 817 struct resource *conflict; 818 struct resource *res = alloc_resource(GFP_ATOMIC); 819 struct resource *next_res = NULL; 820 821 if (!res) 822 return; 823 824 res->name = name; 825 res->start = start; 826 res->end = end; 827 res->flags = IORESOURCE_BUSY; 828 829 while (1) { 830 831 conflict = __request_resource(parent, res); 832 if (!conflict) { 833 if (!next_res) 834 break; 835 res = next_res; 836 next_res = NULL; 837 continue; 838 } 839 840 /* conflict covered whole area */ 841 if (conflict->start <= res->start && 842 conflict->end >= res->end) { 843 free_resource(res); 844 WARN_ON(next_res); 845 break; 846 } 847 848 /* failed, split and try again */ 849 if (conflict->start > res->start) { 850 end = res->end; 851 res->end = conflict->start - 1; 852 if (conflict->end < end) { 853 next_res = alloc_resource(GFP_ATOMIC); 854 if (!next_res) { 855 free_resource(res); 856 break; 857 } 858 next_res->name = name; 859 next_res->start = conflict->end + 1; 860 next_res->end = end; 861 next_res->flags = IORESOURCE_BUSY; 862 } 863 } else { 864 res->start = conflict->end + 1; 865 } 866 } 867 868 } 869 870 void __init reserve_region_with_split(struct resource *root, 871 resource_size_t start, resource_size_t end, 872 const char *name) 873 { 874 int abort = 0; 875 876 write_lock(&resource_lock); 877 if (root->start > start || root->end < end) { 878 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 879 (unsigned long long)start, (unsigned long long)end, 880 root); 881 if (start > root->end || end < root->start) 882 abort = 1; 883 else { 884 if (end > root->end) 885 end = root->end; 886 if (start < root->start) 887 start = root->start; 888 pr_err("fixing request to [0x%llx-0x%llx]\n", 889 (unsigned long long)start, 890 (unsigned long long)end); 891 } 892 dump_stack(); 893 } 894 if (!abort) 895 __reserve_region_with_split(root, start, end, name); 896 write_unlock(&resource_lock); 897 } 898 899 /** 900 * resource_alignment - calculate resource's alignment 901 * @res: resource pointer 902 * 903 * Returns alignment on success, 0 (invalid alignment) on failure. 904 */ 905 resource_size_t resource_alignment(struct resource *res) 906 { 907 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 908 case IORESOURCE_SIZEALIGN: 909 return resource_size(res); 910 case IORESOURCE_STARTALIGN: 911 return res->start; 912 default: 913 return 0; 914 } 915 } 916 917 /* 918 * This is compatibility stuff for IO resources. 919 * 920 * Note how this, unlike the above, knows about 921 * the IO flag meanings (busy etc). 922 * 923 * request_region creates a new busy region. 924 * 925 * check_region returns non-zero if the area is already busy. 926 * 927 * release_region releases a matching busy region. 928 */ 929 930 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 931 932 /** 933 * __request_region - create a new busy resource region 934 * @parent: parent resource descriptor 935 * @start: resource start address 936 * @n: resource region size 937 * @name: reserving caller's ID string 938 * @flags: IO resource flags 939 */ 940 struct resource * __request_region(struct resource *parent, 941 resource_size_t start, resource_size_t n, 942 const char *name, int flags) 943 { 944 DECLARE_WAITQUEUE(wait, current); 945 struct resource *res = alloc_resource(GFP_KERNEL); 946 947 if (!res) 948 return NULL; 949 950 res->name = name; 951 res->start = start; 952 res->end = start + n - 1; 953 res->flags = IORESOURCE_BUSY; 954 res->flags |= flags; 955 956 write_lock(&resource_lock); 957 958 for (;;) { 959 struct resource *conflict; 960 961 conflict = __request_resource(parent, res); 962 if (!conflict) 963 break; 964 if (conflict != parent) { 965 parent = conflict; 966 if (!(conflict->flags & IORESOURCE_BUSY)) 967 continue; 968 } 969 if (conflict->flags & flags & IORESOURCE_MUXED) { 970 add_wait_queue(&muxed_resource_wait, &wait); 971 write_unlock(&resource_lock); 972 set_current_state(TASK_UNINTERRUPTIBLE); 973 schedule(); 974 remove_wait_queue(&muxed_resource_wait, &wait); 975 write_lock(&resource_lock); 976 continue; 977 } 978 /* Uhhuh, that didn't work out.. */ 979 free_resource(res); 980 res = NULL; 981 break; 982 } 983 write_unlock(&resource_lock); 984 return res; 985 } 986 EXPORT_SYMBOL(__request_region); 987 988 /** 989 * __check_region - check if a resource region is busy or free 990 * @parent: parent resource descriptor 991 * @start: resource start address 992 * @n: resource region size 993 * 994 * Returns 0 if the region is free at the moment it is checked, 995 * returns %-EBUSY if the region is busy. 996 * 997 * NOTE: 998 * This function is deprecated because its use is racy. 999 * Even if it returns 0, a subsequent call to request_region() 1000 * may fail because another driver etc. just allocated the region. 1001 * Do NOT use it. It will be removed from the kernel. 1002 */ 1003 int __check_region(struct resource *parent, resource_size_t start, 1004 resource_size_t n) 1005 { 1006 struct resource * res; 1007 1008 res = __request_region(parent, start, n, "check-region", 0); 1009 if (!res) 1010 return -EBUSY; 1011 1012 release_resource(res); 1013 free_resource(res); 1014 return 0; 1015 } 1016 EXPORT_SYMBOL(__check_region); 1017 1018 /** 1019 * __release_region - release a previously reserved resource region 1020 * @parent: parent resource descriptor 1021 * @start: resource start address 1022 * @n: resource region size 1023 * 1024 * The described resource region must match a currently busy region. 1025 */ 1026 void __release_region(struct resource *parent, resource_size_t start, 1027 resource_size_t n) 1028 { 1029 struct resource **p; 1030 resource_size_t end; 1031 1032 p = &parent->child; 1033 end = start + n - 1; 1034 1035 write_lock(&resource_lock); 1036 1037 for (;;) { 1038 struct resource *res = *p; 1039 1040 if (!res) 1041 break; 1042 if (res->start <= start && res->end >= end) { 1043 if (!(res->flags & IORESOURCE_BUSY)) { 1044 p = &res->child; 1045 continue; 1046 } 1047 if (res->start != start || res->end != end) 1048 break; 1049 *p = res->sibling; 1050 write_unlock(&resource_lock); 1051 if (res->flags & IORESOURCE_MUXED) 1052 wake_up(&muxed_resource_wait); 1053 free_resource(res); 1054 return; 1055 } 1056 p = &res->sibling; 1057 } 1058 1059 write_unlock(&resource_lock); 1060 1061 printk(KERN_WARNING "Trying to free nonexistent resource " 1062 "<%016llx-%016llx>\n", (unsigned long long)start, 1063 (unsigned long long)end); 1064 } 1065 EXPORT_SYMBOL(__release_region); 1066 1067 #ifdef CONFIG_MEMORY_HOTREMOVE 1068 /** 1069 * release_mem_region_adjustable - release a previously reserved memory region 1070 * @parent: parent resource descriptor 1071 * @start: resource start address 1072 * @size: resource region size 1073 * 1074 * This interface is intended for memory hot-delete. The requested region 1075 * is released from a currently busy memory resource. The requested region 1076 * must either match exactly or fit into a single busy resource entry. In 1077 * the latter case, the remaining resource is adjusted accordingly. 1078 * Existing children of the busy memory resource must be immutable in the 1079 * request. 1080 * 1081 * Note: 1082 * - Additional release conditions, such as overlapping region, can be 1083 * supported after they are confirmed as valid cases. 1084 * - When a busy memory resource gets split into two entries, the code 1085 * assumes that all children remain in the lower address entry for 1086 * simplicity. Enhance this logic when necessary. 1087 */ 1088 int release_mem_region_adjustable(struct resource *parent, 1089 resource_size_t start, resource_size_t size) 1090 { 1091 struct resource **p; 1092 struct resource *res; 1093 struct resource *new_res; 1094 resource_size_t end; 1095 int ret = -EINVAL; 1096 1097 end = start + size - 1; 1098 if ((start < parent->start) || (end > parent->end)) 1099 return ret; 1100 1101 /* The alloc_resource() result gets checked later */ 1102 new_res = alloc_resource(GFP_KERNEL); 1103 1104 p = &parent->child; 1105 write_lock(&resource_lock); 1106 1107 while ((res = *p)) { 1108 if (res->start >= end) 1109 break; 1110 1111 /* look for the next resource if it does not fit into */ 1112 if (res->start > start || res->end < end) { 1113 p = &res->sibling; 1114 continue; 1115 } 1116 1117 if (!(res->flags & IORESOURCE_MEM)) 1118 break; 1119 1120 if (!(res->flags & IORESOURCE_BUSY)) { 1121 p = &res->child; 1122 continue; 1123 } 1124 1125 /* found the target resource; let's adjust accordingly */ 1126 if (res->start == start && res->end == end) { 1127 /* free the whole entry */ 1128 *p = res->sibling; 1129 free_resource(res); 1130 ret = 0; 1131 } else if (res->start == start && res->end != end) { 1132 /* adjust the start */ 1133 ret = __adjust_resource(res, end + 1, 1134 res->end - end); 1135 } else if (res->start != start && res->end == end) { 1136 /* adjust the end */ 1137 ret = __adjust_resource(res, res->start, 1138 start - res->start); 1139 } else { 1140 /* split into two entries */ 1141 if (!new_res) { 1142 ret = -ENOMEM; 1143 break; 1144 } 1145 new_res->name = res->name; 1146 new_res->start = end + 1; 1147 new_res->end = res->end; 1148 new_res->flags = res->flags; 1149 new_res->parent = res->parent; 1150 new_res->sibling = res->sibling; 1151 new_res->child = NULL; 1152 1153 ret = __adjust_resource(res, res->start, 1154 start - res->start); 1155 if (ret) 1156 break; 1157 res->sibling = new_res; 1158 new_res = NULL; 1159 } 1160 1161 break; 1162 } 1163 1164 write_unlock(&resource_lock); 1165 free_resource(new_res); 1166 return ret; 1167 } 1168 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1169 1170 /* 1171 * Managed region resource 1172 */ 1173 struct region_devres { 1174 struct resource *parent; 1175 resource_size_t start; 1176 resource_size_t n; 1177 }; 1178 1179 static void devm_region_release(struct device *dev, void *res) 1180 { 1181 struct region_devres *this = res; 1182 1183 __release_region(this->parent, this->start, this->n); 1184 } 1185 1186 static int devm_region_match(struct device *dev, void *res, void *match_data) 1187 { 1188 struct region_devres *this = res, *match = match_data; 1189 1190 return this->parent == match->parent && 1191 this->start == match->start && this->n == match->n; 1192 } 1193 1194 struct resource * __devm_request_region(struct device *dev, 1195 struct resource *parent, resource_size_t start, 1196 resource_size_t n, const char *name) 1197 { 1198 struct region_devres *dr = NULL; 1199 struct resource *res; 1200 1201 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1202 GFP_KERNEL); 1203 if (!dr) 1204 return NULL; 1205 1206 dr->parent = parent; 1207 dr->start = start; 1208 dr->n = n; 1209 1210 res = __request_region(parent, start, n, name, 0); 1211 if (res) 1212 devres_add(dev, dr); 1213 else 1214 devres_free(dr); 1215 1216 return res; 1217 } 1218 EXPORT_SYMBOL(__devm_request_region); 1219 1220 void __devm_release_region(struct device *dev, struct resource *parent, 1221 resource_size_t start, resource_size_t n) 1222 { 1223 struct region_devres match_data = { parent, start, n }; 1224 1225 __release_region(parent, start, n); 1226 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1227 &match_data)); 1228 } 1229 EXPORT_SYMBOL(__devm_release_region); 1230 1231 /* 1232 * Called from init/main.c to reserve IO ports. 1233 */ 1234 #define MAXRESERVE 4 1235 static int __init reserve_setup(char *str) 1236 { 1237 static int reserved; 1238 static struct resource reserve[MAXRESERVE]; 1239 1240 for (;;) { 1241 unsigned int io_start, io_num; 1242 int x = reserved; 1243 1244 if (get_option (&str, &io_start) != 2) 1245 break; 1246 if (get_option (&str, &io_num) == 0) 1247 break; 1248 if (x < MAXRESERVE) { 1249 struct resource *res = reserve + x; 1250 res->name = "reserved"; 1251 res->start = io_start; 1252 res->end = io_start + io_num - 1; 1253 res->flags = IORESOURCE_BUSY; 1254 res->child = NULL; 1255 if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0) 1256 reserved = x+1; 1257 } 1258 } 1259 return 1; 1260 } 1261 1262 __setup("reserve=", reserve_setup); 1263 1264 /* 1265 * Check if the requested addr and size spans more than any slot in the 1266 * iomem resource tree. 1267 */ 1268 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1269 { 1270 struct resource *p = &iomem_resource; 1271 int err = 0; 1272 loff_t l; 1273 1274 read_lock(&resource_lock); 1275 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1276 /* 1277 * We can probably skip the resources without 1278 * IORESOURCE_IO attribute? 1279 */ 1280 if (p->start >= addr + size) 1281 continue; 1282 if (p->end < addr) 1283 continue; 1284 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1285 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1286 continue; 1287 /* 1288 * if a resource is "BUSY", it's not a hardware resource 1289 * but a driver mapping of such a resource; we don't want 1290 * to warn for those; some drivers legitimately map only 1291 * partial hardware resources. (example: vesafb) 1292 */ 1293 if (p->flags & IORESOURCE_BUSY) 1294 continue; 1295 1296 printk(KERN_WARNING "resource map sanity check conflict: " 1297 "0x%llx 0x%llx 0x%llx 0x%llx %s\n", 1298 (unsigned long long)addr, 1299 (unsigned long long)(addr + size - 1), 1300 (unsigned long long)p->start, 1301 (unsigned long long)p->end, 1302 p->name); 1303 err = -1; 1304 break; 1305 } 1306 read_unlock(&resource_lock); 1307 1308 return err; 1309 } 1310 1311 #ifdef CONFIG_STRICT_DEVMEM 1312 static int strict_iomem_checks = 1; 1313 #else 1314 static int strict_iomem_checks; 1315 #endif 1316 1317 /* 1318 * check if an address is reserved in the iomem resource tree 1319 * returns 1 if reserved, 0 if not reserved. 1320 */ 1321 int iomem_is_exclusive(u64 addr) 1322 { 1323 struct resource *p = &iomem_resource; 1324 int err = 0; 1325 loff_t l; 1326 int size = PAGE_SIZE; 1327 1328 if (!strict_iomem_checks) 1329 return 0; 1330 1331 addr = addr & PAGE_MASK; 1332 1333 read_lock(&resource_lock); 1334 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1335 /* 1336 * We can probably skip the resources without 1337 * IORESOURCE_IO attribute? 1338 */ 1339 if (p->start >= addr + size) 1340 break; 1341 if (p->end < addr) 1342 continue; 1343 if (p->flags & IORESOURCE_BUSY && 1344 p->flags & IORESOURCE_EXCLUSIVE) { 1345 err = 1; 1346 break; 1347 } 1348 } 1349 read_unlock(&resource_lock); 1350 1351 return err; 1352 } 1353 1354 static int __init strict_iomem(char *str) 1355 { 1356 if (strstr(str, "relaxed")) 1357 strict_iomem_checks = 0; 1358 if (strstr(str, "strict")) 1359 strict_iomem_checks = 1; 1360 return 1; 1361 } 1362 1363 __setup("iomem=", strict_iomem); 1364