xref: /linux-6.15/kernel/resource.c (revision 750ade7e)
1 /*
2  *	linux/kernel/resource.c
3  *
4  * Copyright (C) 1999	Linus Torvalds
5  * Copyright (C) 1999	Martin Mares <[email protected]>
6  *
7  * Arbitrary resource management.
8  */
9 
10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
11 
12 #include <linux/export.h>
13 #include <linux/errno.h>
14 #include <linux/ioport.h>
15 #include <linux/init.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/fs.h>
19 #include <linux/proc_fs.h>
20 #include <linux/sched.h>
21 #include <linux/seq_file.h>
22 #include <linux/device.h>
23 #include <linux/pfn.h>
24 #include <linux/mm.h>
25 #include <asm/io.h>
26 
27 
28 struct resource ioport_resource = {
29 	.name	= "PCI IO",
30 	.start	= 0,
31 	.end	= IO_SPACE_LIMIT,
32 	.flags	= IORESOURCE_IO,
33 };
34 EXPORT_SYMBOL(ioport_resource);
35 
36 struct resource iomem_resource = {
37 	.name	= "PCI mem",
38 	.start	= 0,
39 	.end	= -1,
40 	.flags	= IORESOURCE_MEM,
41 };
42 EXPORT_SYMBOL(iomem_resource);
43 
44 /* constraints to be met while allocating resources */
45 struct resource_constraint {
46 	resource_size_t min, max, align;
47 	resource_size_t (*alignf)(void *, const struct resource *,
48 			resource_size_t, resource_size_t);
49 	void *alignf_data;
50 };
51 
52 static DEFINE_RWLOCK(resource_lock);
53 
54 /*
55  * For memory hotplug, there is no way to free resource entries allocated
56  * by boot mem after the system is up. So for reusing the resource entry
57  * we need to remember the resource.
58  */
59 static struct resource *bootmem_resource_free;
60 static DEFINE_SPINLOCK(bootmem_resource_lock);
61 
62 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
63 {
64 	struct resource *p = v;
65 	(*pos)++;
66 	if (p->child)
67 		return p->child;
68 	while (!p->sibling && p->parent)
69 		p = p->parent;
70 	return p->sibling;
71 }
72 
73 #ifdef CONFIG_PROC_FS
74 
75 enum { MAX_IORES_LEVEL = 5 };
76 
77 static void *r_start(struct seq_file *m, loff_t *pos)
78 	__acquires(resource_lock)
79 {
80 	struct resource *p = m->private;
81 	loff_t l = 0;
82 	read_lock(&resource_lock);
83 	for (p = p->child; p && l < *pos; p = r_next(m, p, &l))
84 		;
85 	return p;
86 }
87 
88 static void r_stop(struct seq_file *m, void *v)
89 	__releases(resource_lock)
90 {
91 	read_unlock(&resource_lock);
92 }
93 
94 static int r_show(struct seq_file *m, void *v)
95 {
96 	struct resource *root = m->private;
97 	struct resource *r = v, *p;
98 	int width = root->end < 0x10000 ? 4 : 8;
99 	int depth;
100 
101 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
102 		if (p->parent == root)
103 			break;
104 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
105 			depth * 2, "",
106 			width, (unsigned long long) r->start,
107 			width, (unsigned long long) r->end,
108 			r->name ? r->name : "<BAD>");
109 	return 0;
110 }
111 
112 static const struct seq_operations resource_op = {
113 	.start	= r_start,
114 	.next	= r_next,
115 	.stop	= r_stop,
116 	.show	= r_show,
117 };
118 
119 static int ioports_open(struct inode *inode, struct file *file)
120 {
121 	int res = seq_open(file, &resource_op);
122 	if (!res) {
123 		struct seq_file *m = file->private_data;
124 		m->private = &ioport_resource;
125 	}
126 	return res;
127 }
128 
129 static int iomem_open(struct inode *inode, struct file *file)
130 {
131 	int res = seq_open(file, &resource_op);
132 	if (!res) {
133 		struct seq_file *m = file->private_data;
134 		m->private = &iomem_resource;
135 	}
136 	return res;
137 }
138 
139 static const struct file_operations proc_ioports_operations = {
140 	.open		= ioports_open,
141 	.read		= seq_read,
142 	.llseek		= seq_lseek,
143 	.release	= seq_release,
144 };
145 
146 static const struct file_operations proc_iomem_operations = {
147 	.open		= iomem_open,
148 	.read		= seq_read,
149 	.llseek		= seq_lseek,
150 	.release	= seq_release,
151 };
152 
153 static int __init ioresources_init(void)
154 {
155 	proc_create("ioports", 0, NULL, &proc_ioports_operations);
156 	proc_create("iomem", 0, NULL, &proc_iomem_operations);
157 	return 0;
158 }
159 __initcall(ioresources_init);
160 
161 #endif /* CONFIG_PROC_FS */
162 
163 static void free_resource(struct resource *res)
164 {
165 	if (!res)
166 		return;
167 
168 	if (!PageSlab(virt_to_head_page(res))) {
169 		spin_lock(&bootmem_resource_lock);
170 		res->sibling = bootmem_resource_free;
171 		bootmem_resource_free = res;
172 		spin_unlock(&bootmem_resource_lock);
173 	} else {
174 		kfree(res);
175 	}
176 }
177 
178 static struct resource *alloc_resource(gfp_t flags)
179 {
180 	struct resource *res = NULL;
181 
182 	spin_lock(&bootmem_resource_lock);
183 	if (bootmem_resource_free) {
184 		res = bootmem_resource_free;
185 		bootmem_resource_free = res->sibling;
186 	}
187 	spin_unlock(&bootmem_resource_lock);
188 
189 	if (res)
190 		memset(res, 0, sizeof(struct resource));
191 	else
192 		res = kzalloc(sizeof(struct resource), flags);
193 
194 	return res;
195 }
196 
197 /* Return the conflict entry if you can't request it */
198 static struct resource * __request_resource(struct resource *root, struct resource *new)
199 {
200 	resource_size_t start = new->start;
201 	resource_size_t end = new->end;
202 	struct resource *tmp, **p;
203 
204 	if (end < start)
205 		return root;
206 	if (start < root->start)
207 		return root;
208 	if (end > root->end)
209 		return root;
210 	p = &root->child;
211 	for (;;) {
212 		tmp = *p;
213 		if (!tmp || tmp->start > end) {
214 			new->sibling = tmp;
215 			*p = new;
216 			new->parent = root;
217 			return NULL;
218 		}
219 		p = &tmp->sibling;
220 		if (tmp->end < start)
221 			continue;
222 		return tmp;
223 	}
224 }
225 
226 static int __release_resource(struct resource *old)
227 {
228 	struct resource *tmp, **p;
229 
230 	p = &old->parent->child;
231 	for (;;) {
232 		tmp = *p;
233 		if (!tmp)
234 			break;
235 		if (tmp == old) {
236 			*p = tmp->sibling;
237 			old->parent = NULL;
238 			return 0;
239 		}
240 		p = &tmp->sibling;
241 	}
242 	return -EINVAL;
243 }
244 
245 static void __release_child_resources(struct resource *r)
246 {
247 	struct resource *tmp, *p;
248 	resource_size_t size;
249 
250 	p = r->child;
251 	r->child = NULL;
252 	while (p) {
253 		tmp = p;
254 		p = p->sibling;
255 
256 		tmp->parent = NULL;
257 		tmp->sibling = NULL;
258 		__release_child_resources(tmp);
259 
260 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
261 		/* need to restore size, and keep flags */
262 		size = resource_size(tmp);
263 		tmp->start = 0;
264 		tmp->end = size - 1;
265 	}
266 }
267 
268 void release_child_resources(struct resource *r)
269 {
270 	write_lock(&resource_lock);
271 	__release_child_resources(r);
272 	write_unlock(&resource_lock);
273 }
274 
275 /**
276  * request_resource_conflict - request and reserve an I/O or memory resource
277  * @root: root resource descriptor
278  * @new: resource descriptor desired by caller
279  *
280  * Returns 0 for success, conflict resource on error.
281  */
282 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
283 {
284 	struct resource *conflict;
285 
286 	write_lock(&resource_lock);
287 	conflict = __request_resource(root, new);
288 	write_unlock(&resource_lock);
289 	return conflict;
290 }
291 
292 /**
293  * request_resource - request and reserve an I/O or memory resource
294  * @root: root resource descriptor
295  * @new: resource descriptor desired by caller
296  *
297  * Returns 0 for success, negative error code on error.
298  */
299 int request_resource(struct resource *root, struct resource *new)
300 {
301 	struct resource *conflict;
302 
303 	conflict = request_resource_conflict(root, new);
304 	return conflict ? -EBUSY : 0;
305 }
306 
307 EXPORT_SYMBOL(request_resource);
308 
309 /**
310  * release_resource - release a previously reserved resource
311  * @old: resource pointer
312  */
313 int release_resource(struct resource *old)
314 {
315 	int retval;
316 
317 	write_lock(&resource_lock);
318 	retval = __release_resource(old);
319 	write_unlock(&resource_lock);
320 	return retval;
321 }
322 
323 EXPORT_SYMBOL(release_resource);
324 
325 #if !defined(CONFIG_ARCH_HAS_WALK_MEMORY)
326 /*
327  * Finds the lowest memory reosurce exists within [res->start.res->end)
328  * the caller must specify res->start, res->end, res->flags and "name".
329  * If found, returns 0, res is overwritten, if not found, returns -1.
330  */
331 static int find_next_system_ram(struct resource *res, char *name)
332 {
333 	resource_size_t start, end;
334 	struct resource *p;
335 
336 	BUG_ON(!res);
337 
338 	start = res->start;
339 	end = res->end;
340 	BUG_ON(start >= end);
341 
342 	read_lock(&resource_lock);
343 	for (p = iomem_resource.child; p ; p = p->sibling) {
344 		/* system ram is just marked as IORESOURCE_MEM */
345 		if (p->flags != res->flags)
346 			continue;
347 		if (name && strcmp(p->name, name))
348 			continue;
349 		if (p->start > end) {
350 			p = NULL;
351 			break;
352 		}
353 		if ((p->end >= start) && (p->start < end))
354 			break;
355 	}
356 	read_unlock(&resource_lock);
357 	if (!p)
358 		return -1;
359 	/* copy data */
360 	if (res->start < p->start)
361 		res->start = p->start;
362 	if (res->end > p->end)
363 		res->end = p->end;
364 	return 0;
365 }
366 
367 /*
368  * This function calls callback against all memory range of "System RAM"
369  * which are marked as IORESOURCE_MEM and IORESOUCE_BUSY.
370  * Now, this function is only for "System RAM".
371  */
372 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
373 		void *arg, int (*func)(unsigned long, unsigned long, void *))
374 {
375 	struct resource res;
376 	unsigned long pfn, end_pfn;
377 	u64 orig_end;
378 	int ret = -1;
379 
380 	res.start = (u64) start_pfn << PAGE_SHIFT;
381 	res.end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
382 	res.flags = IORESOURCE_MEM | IORESOURCE_BUSY;
383 	orig_end = res.end;
384 	while ((res.start < res.end) &&
385 		(find_next_system_ram(&res, "System RAM") >= 0)) {
386 		pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT;
387 		end_pfn = (res.end + 1) >> PAGE_SHIFT;
388 		if (end_pfn > pfn)
389 			ret = (*func)(pfn, end_pfn - pfn, arg);
390 		if (ret)
391 			break;
392 		res.start = res.end + 1;
393 		res.end = orig_end;
394 	}
395 	return ret;
396 }
397 
398 #endif
399 
400 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
401 {
402 	return 1;
403 }
404 /*
405  * This generic page_is_ram() returns true if specified address is
406  * registered as "System RAM" in iomem_resource list.
407  */
408 int __weak page_is_ram(unsigned long pfn)
409 {
410 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
411 }
412 EXPORT_SYMBOL_GPL(page_is_ram);
413 
414 void __weak arch_remove_reservations(struct resource *avail)
415 {
416 }
417 
418 static resource_size_t simple_align_resource(void *data,
419 					     const struct resource *avail,
420 					     resource_size_t size,
421 					     resource_size_t align)
422 {
423 	return avail->start;
424 }
425 
426 static void resource_clip(struct resource *res, resource_size_t min,
427 			  resource_size_t max)
428 {
429 	if (res->start < min)
430 		res->start = min;
431 	if (res->end > max)
432 		res->end = max;
433 }
434 
435 static bool resource_contains(struct resource *res1, struct resource *res2)
436 {
437 	return res1->start <= res2->start && res1->end >= res2->end;
438 }
439 
440 /*
441  * Find empty slot in the resource tree with the given range and
442  * alignment constraints
443  */
444 static int __find_resource(struct resource *root, struct resource *old,
445 			 struct resource *new,
446 			 resource_size_t  size,
447 			 struct resource_constraint *constraint)
448 {
449 	struct resource *this = root->child;
450 	struct resource tmp = *new, avail, alloc;
451 
452 	tmp.flags = new->flags;
453 	tmp.start = root->start;
454 	/*
455 	 * Skip past an allocated resource that starts at 0, since the assignment
456 	 * of this->start - 1 to tmp->end below would cause an underflow.
457 	 */
458 	if (this && this->start == root->start) {
459 		tmp.start = (this == old) ? old->start : this->end + 1;
460 		this = this->sibling;
461 	}
462 	for(;;) {
463 		if (this)
464 			tmp.end = (this == old) ?  this->end : this->start - 1;
465 		else
466 			tmp.end = root->end;
467 
468 		if (tmp.end < tmp.start)
469 			goto next;
470 
471 		resource_clip(&tmp, constraint->min, constraint->max);
472 		arch_remove_reservations(&tmp);
473 
474 		/* Check for overflow after ALIGN() */
475 		avail = *new;
476 		avail.start = ALIGN(tmp.start, constraint->align);
477 		avail.end = tmp.end;
478 		if (avail.start >= tmp.start) {
479 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
480 					size, constraint->align);
481 			alloc.end = alloc.start + size - 1;
482 			if (resource_contains(&avail, &alloc)) {
483 				new->start = alloc.start;
484 				new->end = alloc.end;
485 				return 0;
486 			}
487 		}
488 
489 next:		if (!this || this->end == root->end)
490 			break;
491 
492 		if (this != old)
493 			tmp.start = this->end + 1;
494 		this = this->sibling;
495 	}
496 	return -EBUSY;
497 }
498 
499 /*
500  * Find empty slot in the resource tree given range and alignment.
501  */
502 static int find_resource(struct resource *root, struct resource *new,
503 			resource_size_t size,
504 			struct resource_constraint  *constraint)
505 {
506 	return  __find_resource(root, NULL, new, size, constraint);
507 }
508 
509 /**
510  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
511  *	The resource will be relocated if the new size cannot be reallocated in the
512  *	current location.
513  *
514  * @root: root resource descriptor
515  * @old:  resource descriptor desired by caller
516  * @newsize: new size of the resource descriptor
517  * @constraint: the size and alignment constraints to be met.
518  */
519 int reallocate_resource(struct resource *root, struct resource *old,
520 			resource_size_t newsize,
521 			struct resource_constraint  *constraint)
522 {
523 	int err=0;
524 	struct resource new = *old;
525 	struct resource *conflict;
526 
527 	write_lock(&resource_lock);
528 
529 	if ((err = __find_resource(root, old, &new, newsize, constraint)))
530 		goto out;
531 
532 	if (resource_contains(&new, old)) {
533 		old->start = new.start;
534 		old->end = new.end;
535 		goto out;
536 	}
537 
538 	if (old->child) {
539 		err = -EBUSY;
540 		goto out;
541 	}
542 
543 	if (resource_contains(old, &new)) {
544 		old->start = new.start;
545 		old->end = new.end;
546 	} else {
547 		__release_resource(old);
548 		*old = new;
549 		conflict = __request_resource(root, old);
550 		BUG_ON(conflict);
551 	}
552 out:
553 	write_unlock(&resource_lock);
554 	return err;
555 }
556 
557 
558 /**
559  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
560  * 	The resource will be reallocated with a new size if it was already allocated
561  * @root: root resource descriptor
562  * @new: resource descriptor desired by caller
563  * @size: requested resource region size
564  * @min: minimum boundary to allocate
565  * @max: maximum boundary to allocate
566  * @align: alignment requested, in bytes
567  * @alignf: alignment function, optional, called if not NULL
568  * @alignf_data: arbitrary data to pass to the @alignf function
569  */
570 int allocate_resource(struct resource *root, struct resource *new,
571 		      resource_size_t size, resource_size_t min,
572 		      resource_size_t max, resource_size_t align,
573 		      resource_size_t (*alignf)(void *,
574 						const struct resource *,
575 						resource_size_t,
576 						resource_size_t),
577 		      void *alignf_data)
578 {
579 	int err;
580 	struct resource_constraint constraint;
581 
582 	if (!alignf)
583 		alignf = simple_align_resource;
584 
585 	constraint.min = min;
586 	constraint.max = max;
587 	constraint.align = align;
588 	constraint.alignf = alignf;
589 	constraint.alignf_data = alignf_data;
590 
591 	if ( new->parent ) {
592 		/* resource is already allocated, try reallocating with
593 		   the new constraints */
594 		return reallocate_resource(root, new, size, &constraint);
595 	}
596 
597 	write_lock(&resource_lock);
598 	err = find_resource(root, new, size, &constraint);
599 	if (err >= 0 && __request_resource(root, new))
600 		err = -EBUSY;
601 	write_unlock(&resource_lock);
602 	return err;
603 }
604 
605 EXPORT_SYMBOL(allocate_resource);
606 
607 /**
608  * lookup_resource - find an existing resource by a resource start address
609  * @root: root resource descriptor
610  * @start: resource start address
611  *
612  * Returns a pointer to the resource if found, NULL otherwise
613  */
614 struct resource *lookup_resource(struct resource *root, resource_size_t start)
615 {
616 	struct resource *res;
617 
618 	read_lock(&resource_lock);
619 	for (res = root->child; res; res = res->sibling) {
620 		if (res->start == start)
621 			break;
622 	}
623 	read_unlock(&resource_lock);
624 
625 	return res;
626 }
627 
628 /*
629  * Insert a resource into the resource tree. If successful, return NULL,
630  * otherwise return the conflicting resource (compare to __request_resource())
631  */
632 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
633 {
634 	struct resource *first, *next;
635 
636 	for (;; parent = first) {
637 		first = __request_resource(parent, new);
638 		if (!first)
639 			return first;
640 
641 		if (first == parent)
642 			return first;
643 		if (WARN_ON(first == new))	/* duplicated insertion */
644 			return first;
645 
646 		if ((first->start > new->start) || (first->end < new->end))
647 			break;
648 		if ((first->start == new->start) && (first->end == new->end))
649 			break;
650 	}
651 
652 	for (next = first; ; next = next->sibling) {
653 		/* Partial overlap? Bad, and unfixable */
654 		if (next->start < new->start || next->end > new->end)
655 			return next;
656 		if (!next->sibling)
657 			break;
658 		if (next->sibling->start > new->end)
659 			break;
660 	}
661 
662 	new->parent = parent;
663 	new->sibling = next->sibling;
664 	new->child = first;
665 
666 	next->sibling = NULL;
667 	for (next = first; next; next = next->sibling)
668 		next->parent = new;
669 
670 	if (parent->child == first) {
671 		parent->child = new;
672 	} else {
673 		next = parent->child;
674 		while (next->sibling != first)
675 			next = next->sibling;
676 		next->sibling = new;
677 	}
678 	return NULL;
679 }
680 
681 /**
682  * insert_resource_conflict - Inserts resource in the resource tree
683  * @parent: parent of the new resource
684  * @new: new resource to insert
685  *
686  * Returns 0 on success, conflict resource if the resource can't be inserted.
687  *
688  * This function is equivalent to request_resource_conflict when no conflict
689  * happens. If a conflict happens, and the conflicting resources
690  * entirely fit within the range of the new resource, then the new
691  * resource is inserted and the conflicting resources become children of
692  * the new resource.
693  */
694 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
695 {
696 	struct resource *conflict;
697 
698 	write_lock(&resource_lock);
699 	conflict = __insert_resource(parent, new);
700 	write_unlock(&resource_lock);
701 	return conflict;
702 }
703 
704 /**
705  * insert_resource - Inserts a resource in the resource tree
706  * @parent: parent of the new resource
707  * @new: new resource to insert
708  *
709  * Returns 0 on success, -EBUSY if the resource can't be inserted.
710  */
711 int insert_resource(struct resource *parent, struct resource *new)
712 {
713 	struct resource *conflict;
714 
715 	conflict = insert_resource_conflict(parent, new);
716 	return conflict ? -EBUSY : 0;
717 }
718 
719 /**
720  * insert_resource_expand_to_fit - Insert a resource into the resource tree
721  * @root: root resource descriptor
722  * @new: new resource to insert
723  *
724  * Insert a resource into the resource tree, possibly expanding it in order
725  * to make it encompass any conflicting resources.
726  */
727 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
728 {
729 	if (new->parent)
730 		return;
731 
732 	write_lock(&resource_lock);
733 	for (;;) {
734 		struct resource *conflict;
735 
736 		conflict = __insert_resource(root, new);
737 		if (!conflict)
738 			break;
739 		if (conflict == root)
740 			break;
741 
742 		/* Ok, expand resource to cover the conflict, then try again .. */
743 		if (conflict->start < new->start)
744 			new->start = conflict->start;
745 		if (conflict->end > new->end)
746 			new->end = conflict->end;
747 
748 		printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
749 	}
750 	write_unlock(&resource_lock);
751 }
752 
753 static int __adjust_resource(struct resource *res, resource_size_t start,
754 				resource_size_t size)
755 {
756 	struct resource *tmp, *parent = res->parent;
757 	resource_size_t end = start + size - 1;
758 	int result = -EBUSY;
759 
760 	if (!parent)
761 		goto skip;
762 
763 	if ((start < parent->start) || (end > parent->end))
764 		goto out;
765 
766 	if (res->sibling && (res->sibling->start <= end))
767 		goto out;
768 
769 	tmp = parent->child;
770 	if (tmp != res) {
771 		while (tmp->sibling != res)
772 			tmp = tmp->sibling;
773 		if (start <= tmp->end)
774 			goto out;
775 	}
776 
777 skip:
778 	for (tmp = res->child; tmp; tmp = tmp->sibling)
779 		if ((tmp->start < start) || (tmp->end > end))
780 			goto out;
781 
782 	res->start = start;
783 	res->end = end;
784 	result = 0;
785 
786  out:
787 	return result;
788 }
789 
790 /**
791  * adjust_resource - modify a resource's start and size
792  * @res: resource to modify
793  * @start: new start value
794  * @size: new size
795  *
796  * Given an existing resource, change its start and size to match the
797  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
798  * Existing children of the resource are assumed to be immutable.
799  */
800 int adjust_resource(struct resource *res, resource_size_t start,
801 			resource_size_t size)
802 {
803 	int result;
804 
805 	write_lock(&resource_lock);
806 	result = __adjust_resource(res, start, size);
807 	write_unlock(&resource_lock);
808 	return result;
809 }
810 EXPORT_SYMBOL(adjust_resource);
811 
812 static void __init __reserve_region_with_split(struct resource *root,
813 		resource_size_t start, resource_size_t end,
814 		const char *name)
815 {
816 	struct resource *parent = root;
817 	struct resource *conflict;
818 	struct resource *res = alloc_resource(GFP_ATOMIC);
819 	struct resource *next_res = NULL;
820 
821 	if (!res)
822 		return;
823 
824 	res->name = name;
825 	res->start = start;
826 	res->end = end;
827 	res->flags = IORESOURCE_BUSY;
828 
829 	while (1) {
830 
831 		conflict = __request_resource(parent, res);
832 		if (!conflict) {
833 			if (!next_res)
834 				break;
835 			res = next_res;
836 			next_res = NULL;
837 			continue;
838 		}
839 
840 		/* conflict covered whole area */
841 		if (conflict->start <= res->start &&
842 				conflict->end >= res->end) {
843 			free_resource(res);
844 			WARN_ON(next_res);
845 			break;
846 		}
847 
848 		/* failed, split and try again */
849 		if (conflict->start > res->start) {
850 			end = res->end;
851 			res->end = conflict->start - 1;
852 			if (conflict->end < end) {
853 				next_res = alloc_resource(GFP_ATOMIC);
854 				if (!next_res) {
855 					free_resource(res);
856 					break;
857 				}
858 				next_res->name = name;
859 				next_res->start = conflict->end + 1;
860 				next_res->end = end;
861 				next_res->flags = IORESOURCE_BUSY;
862 			}
863 		} else {
864 			res->start = conflict->end + 1;
865 		}
866 	}
867 
868 }
869 
870 void __init reserve_region_with_split(struct resource *root,
871 		resource_size_t start, resource_size_t end,
872 		const char *name)
873 {
874 	int abort = 0;
875 
876 	write_lock(&resource_lock);
877 	if (root->start > start || root->end < end) {
878 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
879 		       (unsigned long long)start, (unsigned long long)end,
880 		       root);
881 		if (start > root->end || end < root->start)
882 			abort = 1;
883 		else {
884 			if (end > root->end)
885 				end = root->end;
886 			if (start < root->start)
887 				start = root->start;
888 			pr_err("fixing request to [0x%llx-0x%llx]\n",
889 			       (unsigned long long)start,
890 			       (unsigned long long)end);
891 		}
892 		dump_stack();
893 	}
894 	if (!abort)
895 		__reserve_region_with_split(root, start, end, name);
896 	write_unlock(&resource_lock);
897 }
898 
899 /**
900  * resource_alignment - calculate resource's alignment
901  * @res: resource pointer
902  *
903  * Returns alignment on success, 0 (invalid alignment) on failure.
904  */
905 resource_size_t resource_alignment(struct resource *res)
906 {
907 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
908 	case IORESOURCE_SIZEALIGN:
909 		return resource_size(res);
910 	case IORESOURCE_STARTALIGN:
911 		return res->start;
912 	default:
913 		return 0;
914 	}
915 }
916 
917 /*
918  * This is compatibility stuff for IO resources.
919  *
920  * Note how this, unlike the above, knows about
921  * the IO flag meanings (busy etc).
922  *
923  * request_region creates a new busy region.
924  *
925  * check_region returns non-zero if the area is already busy.
926  *
927  * release_region releases a matching busy region.
928  */
929 
930 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
931 
932 /**
933  * __request_region - create a new busy resource region
934  * @parent: parent resource descriptor
935  * @start: resource start address
936  * @n: resource region size
937  * @name: reserving caller's ID string
938  * @flags: IO resource flags
939  */
940 struct resource * __request_region(struct resource *parent,
941 				   resource_size_t start, resource_size_t n,
942 				   const char *name, int flags)
943 {
944 	DECLARE_WAITQUEUE(wait, current);
945 	struct resource *res = alloc_resource(GFP_KERNEL);
946 
947 	if (!res)
948 		return NULL;
949 
950 	res->name = name;
951 	res->start = start;
952 	res->end = start + n - 1;
953 	res->flags = IORESOURCE_BUSY;
954 	res->flags |= flags;
955 
956 	write_lock(&resource_lock);
957 
958 	for (;;) {
959 		struct resource *conflict;
960 
961 		conflict = __request_resource(parent, res);
962 		if (!conflict)
963 			break;
964 		if (conflict != parent) {
965 			parent = conflict;
966 			if (!(conflict->flags & IORESOURCE_BUSY))
967 				continue;
968 		}
969 		if (conflict->flags & flags & IORESOURCE_MUXED) {
970 			add_wait_queue(&muxed_resource_wait, &wait);
971 			write_unlock(&resource_lock);
972 			set_current_state(TASK_UNINTERRUPTIBLE);
973 			schedule();
974 			remove_wait_queue(&muxed_resource_wait, &wait);
975 			write_lock(&resource_lock);
976 			continue;
977 		}
978 		/* Uhhuh, that didn't work out.. */
979 		free_resource(res);
980 		res = NULL;
981 		break;
982 	}
983 	write_unlock(&resource_lock);
984 	return res;
985 }
986 EXPORT_SYMBOL(__request_region);
987 
988 /**
989  * __check_region - check if a resource region is busy or free
990  * @parent: parent resource descriptor
991  * @start: resource start address
992  * @n: resource region size
993  *
994  * Returns 0 if the region is free at the moment it is checked,
995  * returns %-EBUSY if the region is busy.
996  *
997  * NOTE:
998  * This function is deprecated because its use is racy.
999  * Even if it returns 0, a subsequent call to request_region()
1000  * may fail because another driver etc. just allocated the region.
1001  * Do NOT use it.  It will be removed from the kernel.
1002  */
1003 int __check_region(struct resource *parent, resource_size_t start,
1004 			resource_size_t n)
1005 {
1006 	struct resource * res;
1007 
1008 	res = __request_region(parent, start, n, "check-region", 0);
1009 	if (!res)
1010 		return -EBUSY;
1011 
1012 	release_resource(res);
1013 	free_resource(res);
1014 	return 0;
1015 }
1016 EXPORT_SYMBOL(__check_region);
1017 
1018 /**
1019  * __release_region - release a previously reserved resource region
1020  * @parent: parent resource descriptor
1021  * @start: resource start address
1022  * @n: resource region size
1023  *
1024  * The described resource region must match a currently busy region.
1025  */
1026 void __release_region(struct resource *parent, resource_size_t start,
1027 			resource_size_t n)
1028 {
1029 	struct resource **p;
1030 	resource_size_t end;
1031 
1032 	p = &parent->child;
1033 	end = start + n - 1;
1034 
1035 	write_lock(&resource_lock);
1036 
1037 	for (;;) {
1038 		struct resource *res = *p;
1039 
1040 		if (!res)
1041 			break;
1042 		if (res->start <= start && res->end >= end) {
1043 			if (!(res->flags & IORESOURCE_BUSY)) {
1044 				p = &res->child;
1045 				continue;
1046 			}
1047 			if (res->start != start || res->end != end)
1048 				break;
1049 			*p = res->sibling;
1050 			write_unlock(&resource_lock);
1051 			if (res->flags & IORESOURCE_MUXED)
1052 				wake_up(&muxed_resource_wait);
1053 			free_resource(res);
1054 			return;
1055 		}
1056 		p = &res->sibling;
1057 	}
1058 
1059 	write_unlock(&resource_lock);
1060 
1061 	printk(KERN_WARNING "Trying to free nonexistent resource "
1062 		"<%016llx-%016llx>\n", (unsigned long long)start,
1063 		(unsigned long long)end);
1064 }
1065 EXPORT_SYMBOL(__release_region);
1066 
1067 #ifdef CONFIG_MEMORY_HOTREMOVE
1068 /**
1069  * release_mem_region_adjustable - release a previously reserved memory region
1070  * @parent: parent resource descriptor
1071  * @start: resource start address
1072  * @size: resource region size
1073  *
1074  * This interface is intended for memory hot-delete.  The requested region
1075  * is released from a currently busy memory resource.  The requested region
1076  * must either match exactly or fit into a single busy resource entry.  In
1077  * the latter case, the remaining resource is adjusted accordingly.
1078  * Existing children of the busy memory resource must be immutable in the
1079  * request.
1080  *
1081  * Note:
1082  * - Additional release conditions, such as overlapping region, can be
1083  *   supported after they are confirmed as valid cases.
1084  * - When a busy memory resource gets split into two entries, the code
1085  *   assumes that all children remain in the lower address entry for
1086  *   simplicity.  Enhance this logic when necessary.
1087  */
1088 int release_mem_region_adjustable(struct resource *parent,
1089 			resource_size_t start, resource_size_t size)
1090 {
1091 	struct resource **p;
1092 	struct resource *res;
1093 	struct resource *new_res;
1094 	resource_size_t end;
1095 	int ret = -EINVAL;
1096 
1097 	end = start + size - 1;
1098 	if ((start < parent->start) || (end > parent->end))
1099 		return ret;
1100 
1101 	/* The alloc_resource() result gets checked later */
1102 	new_res = alloc_resource(GFP_KERNEL);
1103 
1104 	p = &parent->child;
1105 	write_lock(&resource_lock);
1106 
1107 	while ((res = *p)) {
1108 		if (res->start >= end)
1109 			break;
1110 
1111 		/* look for the next resource if it does not fit into */
1112 		if (res->start > start || res->end < end) {
1113 			p = &res->sibling;
1114 			continue;
1115 		}
1116 
1117 		if (!(res->flags & IORESOURCE_MEM))
1118 			break;
1119 
1120 		if (!(res->flags & IORESOURCE_BUSY)) {
1121 			p = &res->child;
1122 			continue;
1123 		}
1124 
1125 		/* found the target resource; let's adjust accordingly */
1126 		if (res->start == start && res->end == end) {
1127 			/* free the whole entry */
1128 			*p = res->sibling;
1129 			free_resource(res);
1130 			ret = 0;
1131 		} else if (res->start == start && res->end != end) {
1132 			/* adjust the start */
1133 			ret = __adjust_resource(res, end + 1,
1134 						res->end - end);
1135 		} else if (res->start != start && res->end == end) {
1136 			/* adjust the end */
1137 			ret = __adjust_resource(res, res->start,
1138 						start - res->start);
1139 		} else {
1140 			/* split into two entries */
1141 			if (!new_res) {
1142 				ret = -ENOMEM;
1143 				break;
1144 			}
1145 			new_res->name = res->name;
1146 			new_res->start = end + 1;
1147 			new_res->end = res->end;
1148 			new_res->flags = res->flags;
1149 			new_res->parent = res->parent;
1150 			new_res->sibling = res->sibling;
1151 			new_res->child = NULL;
1152 
1153 			ret = __adjust_resource(res, res->start,
1154 						start - res->start);
1155 			if (ret)
1156 				break;
1157 			res->sibling = new_res;
1158 			new_res = NULL;
1159 		}
1160 
1161 		break;
1162 	}
1163 
1164 	write_unlock(&resource_lock);
1165 	free_resource(new_res);
1166 	return ret;
1167 }
1168 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1169 
1170 /*
1171  * Managed region resource
1172  */
1173 struct region_devres {
1174 	struct resource *parent;
1175 	resource_size_t start;
1176 	resource_size_t n;
1177 };
1178 
1179 static void devm_region_release(struct device *dev, void *res)
1180 {
1181 	struct region_devres *this = res;
1182 
1183 	__release_region(this->parent, this->start, this->n);
1184 }
1185 
1186 static int devm_region_match(struct device *dev, void *res, void *match_data)
1187 {
1188 	struct region_devres *this = res, *match = match_data;
1189 
1190 	return this->parent == match->parent &&
1191 		this->start == match->start && this->n == match->n;
1192 }
1193 
1194 struct resource * __devm_request_region(struct device *dev,
1195 				struct resource *parent, resource_size_t start,
1196 				resource_size_t n, const char *name)
1197 {
1198 	struct region_devres *dr = NULL;
1199 	struct resource *res;
1200 
1201 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1202 			  GFP_KERNEL);
1203 	if (!dr)
1204 		return NULL;
1205 
1206 	dr->parent = parent;
1207 	dr->start = start;
1208 	dr->n = n;
1209 
1210 	res = __request_region(parent, start, n, name, 0);
1211 	if (res)
1212 		devres_add(dev, dr);
1213 	else
1214 		devres_free(dr);
1215 
1216 	return res;
1217 }
1218 EXPORT_SYMBOL(__devm_request_region);
1219 
1220 void __devm_release_region(struct device *dev, struct resource *parent,
1221 			   resource_size_t start, resource_size_t n)
1222 {
1223 	struct region_devres match_data = { parent, start, n };
1224 
1225 	__release_region(parent, start, n);
1226 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1227 			       &match_data));
1228 }
1229 EXPORT_SYMBOL(__devm_release_region);
1230 
1231 /*
1232  * Called from init/main.c to reserve IO ports.
1233  */
1234 #define MAXRESERVE 4
1235 static int __init reserve_setup(char *str)
1236 {
1237 	static int reserved;
1238 	static struct resource reserve[MAXRESERVE];
1239 
1240 	for (;;) {
1241 		unsigned int io_start, io_num;
1242 		int x = reserved;
1243 
1244 		if (get_option (&str, &io_start) != 2)
1245 			break;
1246 		if (get_option (&str, &io_num)   == 0)
1247 			break;
1248 		if (x < MAXRESERVE) {
1249 			struct resource *res = reserve + x;
1250 			res->name = "reserved";
1251 			res->start = io_start;
1252 			res->end = io_start + io_num - 1;
1253 			res->flags = IORESOURCE_BUSY;
1254 			res->child = NULL;
1255 			if (request_resource(res->start >= 0x10000 ? &iomem_resource : &ioport_resource, res) == 0)
1256 				reserved = x+1;
1257 		}
1258 	}
1259 	return 1;
1260 }
1261 
1262 __setup("reserve=", reserve_setup);
1263 
1264 /*
1265  * Check if the requested addr and size spans more than any slot in the
1266  * iomem resource tree.
1267  */
1268 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1269 {
1270 	struct resource *p = &iomem_resource;
1271 	int err = 0;
1272 	loff_t l;
1273 
1274 	read_lock(&resource_lock);
1275 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1276 		/*
1277 		 * We can probably skip the resources without
1278 		 * IORESOURCE_IO attribute?
1279 		 */
1280 		if (p->start >= addr + size)
1281 			continue;
1282 		if (p->end < addr)
1283 			continue;
1284 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1285 		    PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1))
1286 			continue;
1287 		/*
1288 		 * if a resource is "BUSY", it's not a hardware resource
1289 		 * but a driver mapping of such a resource; we don't want
1290 		 * to warn for those; some drivers legitimately map only
1291 		 * partial hardware resources. (example: vesafb)
1292 		 */
1293 		if (p->flags & IORESOURCE_BUSY)
1294 			continue;
1295 
1296 		printk(KERN_WARNING "resource map sanity check conflict: "
1297 		       "0x%llx 0x%llx 0x%llx 0x%llx %s\n",
1298 		       (unsigned long long)addr,
1299 		       (unsigned long long)(addr + size - 1),
1300 		       (unsigned long long)p->start,
1301 		       (unsigned long long)p->end,
1302 		       p->name);
1303 		err = -1;
1304 		break;
1305 	}
1306 	read_unlock(&resource_lock);
1307 
1308 	return err;
1309 }
1310 
1311 #ifdef CONFIG_STRICT_DEVMEM
1312 static int strict_iomem_checks = 1;
1313 #else
1314 static int strict_iomem_checks;
1315 #endif
1316 
1317 /*
1318  * check if an address is reserved in the iomem resource tree
1319  * returns 1 if reserved, 0 if not reserved.
1320  */
1321 int iomem_is_exclusive(u64 addr)
1322 {
1323 	struct resource *p = &iomem_resource;
1324 	int err = 0;
1325 	loff_t l;
1326 	int size = PAGE_SIZE;
1327 
1328 	if (!strict_iomem_checks)
1329 		return 0;
1330 
1331 	addr = addr & PAGE_MASK;
1332 
1333 	read_lock(&resource_lock);
1334 	for (p = p->child; p ; p = r_next(NULL, p, &l)) {
1335 		/*
1336 		 * We can probably skip the resources without
1337 		 * IORESOURCE_IO attribute?
1338 		 */
1339 		if (p->start >= addr + size)
1340 			break;
1341 		if (p->end < addr)
1342 			continue;
1343 		if (p->flags & IORESOURCE_BUSY &&
1344 		     p->flags & IORESOURCE_EXCLUSIVE) {
1345 			err = 1;
1346 			break;
1347 		}
1348 	}
1349 	read_unlock(&resource_lock);
1350 
1351 	return err;
1352 }
1353 
1354 static int __init strict_iomem(char *str)
1355 {
1356 	if (strstr(str, "relaxed"))
1357 		strict_iomem_checks = 0;
1358 	if (strstr(str, "strict"))
1359 		strict_iomem_checks = 1;
1360 	return 1;
1361 }
1362 
1363 __setup("iomem=", strict_iomem);
1364