xref: /linux-6.15/kernel/resource.c (revision 5c1edea7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <[email protected]>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
33 
34 
35 struct resource ioport_resource = {
36 	.name	= "PCI IO",
37 	.start	= 0,
38 	.end	= IO_SPACE_LIMIT,
39 	.flags	= IORESOURCE_IO,
40 };
41 EXPORT_SYMBOL(ioport_resource);
42 
43 struct resource iomem_resource = {
44 	.name	= "PCI mem",
45 	.start	= 0,
46 	.end	= -1,
47 	.flags	= IORESOURCE_MEM,
48 };
49 EXPORT_SYMBOL(iomem_resource);
50 
51 static DEFINE_RWLOCK(resource_lock);
52 
53 static struct resource *next_resource(struct resource *p, bool skip_children)
54 {
55 	if (!skip_children && p->child)
56 		return p->child;
57 	while (!p->sibling && p->parent)
58 		p = p->parent;
59 	return p->sibling;
60 }
61 
62 #define for_each_resource(_root, _p, _skip_children) \
63 	for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children))
64 
65 #ifdef CONFIG_PROC_FS
66 
67 enum { MAX_IORES_LEVEL = 5 };
68 
69 static void *r_start(struct seq_file *m, loff_t *pos)
70 	__acquires(resource_lock)
71 {
72 	struct resource *root = pde_data(file_inode(m->file));
73 	struct resource *p;
74 	loff_t l = *pos;
75 
76 	read_lock(&resource_lock);
77 	for_each_resource(root, p, false) {
78 		if (l-- == 0)
79 			break;
80 	}
81 
82 	return p;
83 }
84 
85 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
86 {
87 	struct resource *p = v;
88 
89 	(*pos)++;
90 
91 	return (void *)next_resource(p, false);
92 }
93 
94 static void r_stop(struct seq_file *m, void *v)
95 	__releases(resource_lock)
96 {
97 	read_unlock(&resource_lock);
98 }
99 
100 static int r_show(struct seq_file *m, void *v)
101 {
102 	struct resource *root = pde_data(file_inode(m->file));
103 	struct resource *r = v, *p;
104 	unsigned long long start, end;
105 	int width = root->end < 0x10000 ? 4 : 8;
106 	int depth;
107 
108 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
109 		if (p->parent == root)
110 			break;
111 
112 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
113 		start = r->start;
114 		end = r->end;
115 	} else {
116 		start = end = 0;
117 	}
118 
119 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
120 			depth * 2, "",
121 			width, start,
122 			width, end,
123 			r->name ? r->name : "<BAD>");
124 	return 0;
125 }
126 
127 static const struct seq_operations resource_op = {
128 	.start	= r_start,
129 	.next	= r_next,
130 	.stop	= r_stop,
131 	.show	= r_show,
132 };
133 
134 static int __init ioresources_init(void)
135 {
136 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
137 			&ioport_resource);
138 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
139 	return 0;
140 }
141 __initcall(ioresources_init);
142 
143 #endif /* CONFIG_PROC_FS */
144 
145 static void free_resource(struct resource *res)
146 {
147 	/**
148 	 * If the resource was allocated using memblock early during boot
149 	 * we'll leak it here: we can only return full pages back to the
150 	 * buddy and trying to be smart and reusing them eventually in
151 	 * alloc_resource() overcomplicates resource handling.
152 	 */
153 	if (res && PageSlab(virt_to_head_page(res)))
154 		kfree(res);
155 }
156 
157 static struct resource *alloc_resource(gfp_t flags)
158 {
159 	return kzalloc(sizeof(struct resource), flags);
160 }
161 
162 /* Return the conflict entry if you can't request it */
163 static struct resource * __request_resource(struct resource *root, struct resource *new)
164 {
165 	resource_size_t start = new->start;
166 	resource_size_t end = new->end;
167 	struct resource *tmp, **p;
168 
169 	if (end < start)
170 		return root;
171 	if (start < root->start)
172 		return root;
173 	if (end > root->end)
174 		return root;
175 	p = &root->child;
176 	for (;;) {
177 		tmp = *p;
178 		if (!tmp || tmp->start > end) {
179 			new->sibling = tmp;
180 			*p = new;
181 			new->parent = root;
182 			return NULL;
183 		}
184 		p = &tmp->sibling;
185 		if (tmp->end < start)
186 			continue;
187 		return tmp;
188 	}
189 }
190 
191 static int __release_resource(struct resource *old, bool release_child)
192 {
193 	struct resource *tmp, **p, *chd;
194 
195 	p = &old->parent->child;
196 	for (;;) {
197 		tmp = *p;
198 		if (!tmp)
199 			break;
200 		if (tmp == old) {
201 			if (release_child || !(tmp->child)) {
202 				*p = tmp->sibling;
203 			} else {
204 				for (chd = tmp->child;; chd = chd->sibling) {
205 					chd->parent = tmp->parent;
206 					if (!(chd->sibling))
207 						break;
208 				}
209 				*p = tmp->child;
210 				chd->sibling = tmp->sibling;
211 			}
212 			old->parent = NULL;
213 			return 0;
214 		}
215 		p = &tmp->sibling;
216 	}
217 	return -EINVAL;
218 }
219 
220 static void __release_child_resources(struct resource *r)
221 {
222 	struct resource *tmp, *p;
223 	resource_size_t size;
224 
225 	p = r->child;
226 	r->child = NULL;
227 	while (p) {
228 		tmp = p;
229 		p = p->sibling;
230 
231 		tmp->parent = NULL;
232 		tmp->sibling = NULL;
233 		__release_child_resources(tmp);
234 
235 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
236 		/* need to restore size, and keep flags */
237 		size = resource_size(tmp);
238 		tmp->start = 0;
239 		tmp->end = size - 1;
240 	}
241 }
242 
243 void release_child_resources(struct resource *r)
244 {
245 	write_lock(&resource_lock);
246 	__release_child_resources(r);
247 	write_unlock(&resource_lock);
248 }
249 
250 /**
251  * request_resource_conflict - request and reserve an I/O or memory resource
252  * @root: root resource descriptor
253  * @new: resource descriptor desired by caller
254  *
255  * Returns 0 for success, conflict resource on error.
256  */
257 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
258 {
259 	struct resource *conflict;
260 
261 	write_lock(&resource_lock);
262 	conflict = __request_resource(root, new);
263 	write_unlock(&resource_lock);
264 	return conflict;
265 }
266 
267 /**
268  * request_resource - request and reserve an I/O or memory resource
269  * @root: root resource descriptor
270  * @new: resource descriptor desired by caller
271  *
272  * Returns 0 for success, negative error code on error.
273  */
274 int request_resource(struct resource *root, struct resource *new)
275 {
276 	struct resource *conflict;
277 
278 	conflict = request_resource_conflict(root, new);
279 	return conflict ? -EBUSY : 0;
280 }
281 
282 EXPORT_SYMBOL(request_resource);
283 
284 /**
285  * release_resource - release a previously reserved resource
286  * @old: resource pointer
287  */
288 int release_resource(struct resource *old)
289 {
290 	int retval;
291 
292 	write_lock(&resource_lock);
293 	retval = __release_resource(old, true);
294 	write_unlock(&resource_lock);
295 	return retval;
296 }
297 
298 EXPORT_SYMBOL(release_resource);
299 
300 /**
301  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
302  *			 [@start..@end].
303  *
304  * If a resource is found, returns 0 and @*res is overwritten with the part
305  * of the resource that's within [@start..@end]; if none is found, returns
306  * -ENODEV.  Returns -EINVAL for invalid parameters.
307  *
308  * @start:	start address of the resource searched for
309  * @end:	end address of same resource
310  * @flags:	flags which the resource must have
311  * @desc:	descriptor the resource must have
312  * @res:	return ptr, if resource found
313  *
314  * The caller must specify @start, @end, @flags, and @desc
315  * (which may be IORES_DESC_NONE).
316  */
317 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
318 			       unsigned long flags, unsigned long desc,
319 			       struct resource *res)
320 {
321 	struct resource *p;
322 
323 	if (!res)
324 		return -EINVAL;
325 
326 	if (start >= end)
327 		return -EINVAL;
328 
329 	read_lock(&resource_lock);
330 
331 	for_each_resource(&iomem_resource, p, false) {
332 		/* If we passed the resource we are looking for, stop */
333 		if (p->start > end) {
334 			p = NULL;
335 			break;
336 		}
337 
338 		/* Skip until we find a range that matches what we look for */
339 		if (p->end < start)
340 			continue;
341 
342 		if ((p->flags & flags) != flags)
343 			continue;
344 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
345 			continue;
346 
347 		/* Found a match, break */
348 		break;
349 	}
350 
351 	if (p) {
352 		/* copy data */
353 		*res = (struct resource) {
354 			.start = max(start, p->start),
355 			.end = min(end, p->end),
356 			.flags = p->flags,
357 			.desc = p->desc,
358 			.parent = p->parent,
359 		};
360 	}
361 
362 	read_unlock(&resource_lock);
363 	return p ? 0 : -ENODEV;
364 }
365 
366 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
367 				 unsigned long flags, unsigned long desc,
368 				 void *arg,
369 				 int (*func)(struct resource *, void *))
370 {
371 	struct resource res;
372 	int ret = -EINVAL;
373 
374 	while (start < end &&
375 	       !find_next_iomem_res(start, end, flags, desc, &res)) {
376 		ret = (*func)(&res, arg);
377 		if (ret)
378 			break;
379 
380 		start = res.end + 1;
381 	}
382 
383 	return ret;
384 }
385 
386 /**
387  * walk_iomem_res_desc - Walks through iomem resources and calls func()
388  *			 with matching resource ranges.
389  * *
390  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
391  * @flags: I/O resource flags
392  * @start: start addr
393  * @end: end addr
394  * @arg: function argument for the callback @func
395  * @func: callback function that is called for each qualifying resource area
396  *
397  * All the memory ranges which overlap start,end and also match flags and
398  * desc are valid candidates.
399  *
400  * NOTE: For a new descriptor search, define a new IORES_DESC in
401  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
402  */
403 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
404 		u64 end, void *arg, int (*func)(struct resource *, void *))
405 {
406 	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
407 }
408 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
409 
410 /*
411  * This function calls the @func callback against all memory ranges of type
412  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
413  * Now, this function is only for System RAM, it deals with full ranges and
414  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
415  * ranges.
416  */
417 int walk_system_ram_res(u64 start, u64 end, void *arg,
418 			int (*func)(struct resource *, void *))
419 {
420 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
421 
422 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
423 				     func);
424 }
425 
426 /*
427  * This function, being a variant of walk_system_ram_res(), calls the @func
428  * callback against all memory ranges of type System RAM which are marked as
429  * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
430  * higher to lower.
431  */
432 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
433 				int (*func)(struct resource *, void *))
434 {
435 	struct resource res, *rams;
436 	int rams_size = 16, i;
437 	unsigned long flags;
438 	int ret = -1;
439 
440 	/* create a list */
441 	rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
442 	if (!rams)
443 		return ret;
444 
445 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
446 	i = 0;
447 	while ((start < end) &&
448 		(!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
449 		if (i >= rams_size) {
450 			/* re-alloc */
451 			struct resource *rams_new;
452 
453 			rams_new = kvrealloc(rams, (rams_size + 16) * sizeof(struct resource),
454 					     GFP_KERNEL);
455 			if (!rams_new)
456 				goto out;
457 
458 			rams = rams_new;
459 			rams_size += 16;
460 		}
461 
462 		rams[i++] = res;
463 		start = res.end + 1;
464 	}
465 
466 	/* go reverse */
467 	for (i--; i >= 0; i--) {
468 		ret = (*func)(&rams[i], arg);
469 		if (ret)
470 			break;
471 	}
472 
473 out:
474 	kvfree(rams);
475 	return ret;
476 }
477 
478 /*
479  * This function calls the @func callback against all memory ranges, which
480  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
481  */
482 int walk_mem_res(u64 start, u64 end, void *arg,
483 		 int (*func)(struct resource *, void *))
484 {
485 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
486 
487 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
488 				     func);
489 }
490 
491 /*
492  * This function calls the @func callback against all memory ranges of type
493  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
494  * It is to be used only for System RAM.
495  */
496 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
497 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
498 {
499 	resource_size_t start, end;
500 	unsigned long flags;
501 	struct resource res;
502 	unsigned long pfn, end_pfn;
503 	int ret = -EINVAL;
504 
505 	start = (u64) start_pfn << PAGE_SHIFT;
506 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
507 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
508 	while (start < end &&
509 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
510 		pfn = PFN_UP(res.start);
511 		end_pfn = PFN_DOWN(res.end + 1);
512 		if (end_pfn > pfn)
513 			ret = (*func)(pfn, end_pfn - pfn, arg);
514 		if (ret)
515 			break;
516 		start = res.end + 1;
517 	}
518 	return ret;
519 }
520 
521 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
522 {
523 	return 1;
524 }
525 
526 /*
527  * This generic page_is_ram() returns true if specified address is
528  * registered as System RAM in iomem_resource list.
529  */
530 int __weak page_is_ram(unsigned long pfn)
531 {
532 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
533 }
534 EXPORT_SYMBOL_GPL(page_is_ram);
535 
536 static int __region_intersects(struct resource *parent, resource_size_t start,
537 			       size_t size, unsigned long flags,
538 			       unsigned long desc)
539 {
540 	int type = 0; int other = 0;
541 	struct resource *p, *dp;
542 	struct resource res, o;
543 	bool is_type, covered;
544 
545 	res.start = start;
546 	res.end = start + size - 1;
547 
548 	for (p = parent->child; p ; p = p->sibling) {
549 		if (!resource_intersection(p, &res, &o))
550 			continue;
551 		is_type = (p->flags & flags) == flags &&
552 			(desc == IORES_DESC_NONE || desc == p->desc);
553 		if (is_type) {
554 			type++;
555 			continue;
556 		}
557 		/*
558 		 * Continue to search in descendant resources as if the
559 		 * matched descendant resources cover some ranges of 'p'.
560 		 *
561 		 * |------------- "CXL Window 0" ------------|
562 		 * |-- "System RAM" --|
563 		 *
564 		 * will behave similar as the following fake resource
565 		 * tree when searching "System RAM".
566 		 *
567 		 * |-- "System RAM" --||-- "CXL Window 0a" --|
568 		 */
569 		covered = false;
570 		for_each_resource(p, dp, false) {
571 			if (!resource_overlaps(dp, &res))
572 				continue;
573 			is_type = (dp->flags & flags) == flags &&
574 				(desc == IORES_DESC_NONE || desc == dp->desc);
575 			if (is_type) {
576 				type++;
577 				/*
578 				 * Range from 'o.start' to 'dp->start'
579 				 * isn't covered by matched resource.
580 				 */
581 				if (dp->start > o.start)
582 					break;
583 				if (dp->end >= o.end) {
584 					covered = true;
585 					break;
586 				}
587 				/* Remove covered range */
588 				o.start = max(o.start, dp->end + 1);
589 			}
590 		}
591 		if (!covered)
592 			other++;
593 	}
594 
595 	if (type == 0)
596 		return REGION_DISJOINT;
597 
598 	if (other == 0)
599 		return REGION_INTERSECTS;
600 
601 	return REGION_MIXED;
602 }
603 
604 /**
605  * region_intersects() - determine intersection of region with known resources
606  * @start: region start address
607  * @size: size of region
608  * @flags: flags of resource (in iomem_resource)
609  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
610  *
611  * Check if the specified region partially overlaps or fully eclipses a
612  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
613  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
614  * return REGION_MIXED if the region overlaps @flags/@desc and another
615  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
616  * and no other defined resource. Note that REGION_INTERSECTS is also
617  * returned in the case when the specified region overlaps RAM and undefined
618  * memory holes.
619  *
620  * region_intersect() is used by memory remapping functions to ensure
621  * the user is not remapping RAM and is a vast speed up over walking
622  * through the resource table page by page.
623  */
624 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
625 		      unsigned long desc)
626 {
627 	int ret;
628 
629 	read_lock(&resource_lock);
630 	ret = __region_intersects(&iomem_resource, start, size, flags, desc);
631 	read_unlock(&resource_lock);
632 
633 	return ret;
634 }
635 EXPORT_SYMBOL_GPL(region_intersects);
636 
637 void __weak arch_remove_reservations(struct resource *avail)
638 {
639 }
640 
641 static void resource_clip(struct resource *res, resource_size_t min,
642 			  resource_size_t max)
643 {
644 	if (res->start < min)
645 		res->start = min;
646 	if (res->end > max)
647 		res->end = max;
648 }
649 
650 /*
651  * Find empty space in the resource tree with the given range and
652  * alignment constraints
653  */
654 static int __find_resource_space(struct resource *root, struct resource *old,
655 				 struct resource *new, resource_size_t size,
656 				 struct resource_constraint *constraint)
657 {
658 	struct resource *this = root->child;
659 	struct resource tmp = *new, avail, alloc;
660 	resource_alignf alignf = constraint->alignf;
661 
662 	tmp.start = root->start;
663 	/*
664 	 * Skip past an allocated resource that starts at 0, since the assignment
665 	 * of this->start - 1 to tmp->end below would cause an underflow.
666 	 */
667 	if (this && this->start == root->start) {
668 		tmp.start = (this == old) ? old->start : this->end + 1;
669 		this = this->sibling;
670 	}
671 	for(;;) {
672 		if (this)
673 			tmp.end = (this == old) ?  this->end : this->start - 1;
674 		else
675 			tmp.end = root->end;
676 
677 		if (tmp.end < tmp.start)
678 			goto next;
679 
680 		resource_clip(&tmp, constraint->min, constraint->max);
681 		arch_remove_reservations(&tmp);
682 
683 		/* Check for overflow after ALIGN() */
684 		avail.start = ALIGN(tmp.start, constraint->align);
685 		avail.end = tmp.end;
686 		avail.flags = new->flags & ~IORESOURCE_UNSET;
687 		if (avail.start >= tmp.start) {
688 			alloc.flags = avail.flags;
689 			if (alignf) {
690 				alloc.start = alignf(constraint->alignf_data,
691 						     &avail, size, constraint->align);
692 			} else {
693 				alloc.start = avail.start;
694 			}
695 			alloc.end = alloc.start + size - 1;
696 			if (alloc.start <= alloc.end &&
697 			    resource_contains(&avail, &alloc)) {
698 				new->start = alloc.start;
699 				new->end = alloc.end;
700 				return 0;
701 			}
702 		}
703 
704 next:		if (!this || this->end == root->end)
705 			break;
706 
707 		if (this != old)
708 			tmp.start = this->end + 1;
709 		this = this->sibling;
710 	}
711 	return -EBUSY;
712 }
713 
714 /**
715  * find_resource_space - Find empty space in the resource tree
716  * @root:	Root resource descriptor
717  * @new:	Resource descriptor awaiting an empty resource space
718  * @size:	The minimum size of the empty space
719  * @constraint:	The range and alignment constraints to be met
720  *
721  * Finds an empty space under @root in the resource tree satisfying range and
722  * alignment @constraints.
723  *
724  * Return:
725  * * %0		- if successful, @new members start, end, and flags are altered.
726  * * %-EBUSY	- if no empty space was found.
727  */
728 int find_resource_space(struct resource *root, struct resource *new,
729 			resource_size_t size,
730 			struct resource_constraint *constraint)
731 {
732 	return  __find_resource_space(root, NULL, new, size, constraint);
733 }
734 EXPORT_SYMBOL_GPL(find_resource_space);
735 
736 /**
737  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
738  *	The resource will be relocated if the new size cannot be reallocated in the
739  *	current location.
740  *
741  * @root: root resource descriptor
742  * @old:  resource descriptor desired by caller
743  * @newsize: new size of the resource descriptor
744  * @constraint: the size and alignment constraints to be met.
745  */
746 static int reallocate_resource(struct resource *root, struct resource *old,
747 			       resource_size_t newsize,
748 			       struct resource_constraint *constraint)
749 {
750 	int err=0;
751 	struct resource new = *old;
752 	struct resource *conflict;
753 
754 	write_lock(&resource_lock);
755 
756 	if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
757 		goto out;
758 
759 	if (resource_contains(&new, old)) {
760 		old->start = new.start;
761 		old->end = new.end;
762 		goto out;
763 	}
764 
765 	if (old->child) {
766 		err = -EBUSY;
767 		goto out;
768 	}
769 
770 	if (resource_contains(old, &new)) {
771 		old->start = new.start;
772 		old->end = new.end;
773 	} else {
774 		__release_resource(old, true);
775 		*old = new;
776 		conflict = __request_resource(root, old);
777 		BUG_ON(conflict);
778 	}
779 out:
780 	write_unlock(&resource_lock);
781 	return err;
782 }
783 
784 
785 /**
786  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
787  * 	The resource will be reallocated with a new size if it was already allocated
788  * @root: root resource descriptor
789  * @new: resource descriptor desired by caller
790  * @size: requested resource region size
791  * @min: minimum boundary to allocate
792  * @max: maximum boundary to allocate
793  * @align: alignment requested, in bytes
794  * @alignf: alignment function, optional, called if not NULL
795  * @alignf_data: arbitrary data to pass to the @alignf function
796  */
797 int allocate_resource(struct resource *root, struct resource *new,
798 		      resource_size_t size, resource_size_t min,
799 		      resource_size_t max, resource_size_t align,
800 		      resource_alignf alignf,
801 		      void *alignf_data)
802 {
803 	int err;
804 	struct resource_constraint constraint;
805 
806 	constraint.min = min;
807 	constraint.max = max;
808 	constraint.align = align;
809 	constraint.alignf = alignf;
810 	constraint.alignf_data = alignf_data;
811 
812 	if ( new->parent ) {
813 		/* resource is already allocated, try reallocating with
814 		   the new constraints */
815 		return reallocate_resource(root, new, size, &constraint);
816 	}
817 
818 	write_lock(&resource_lock);
819 	err = find_resource_space(root, new, size, &constraint);
820 	if (err >= 0 && __request_resource(root, new))
821 		err = -EBUSY;
822 	write_unlock(&resource_lock);
823 	return err;
824 }
825 
826 EXPORT_SYMBOL(allocate_resource);
827 
828 /**
829  * lookup_resource - find an existing resource by a resource start address
830  * @root: root resource descriptor
831  * @start: resource start address
832  *
833  * Returns a pointer to the resource if found, NULL otherwise
834  */
835 struct resource *lookup_resource(struct resource *root, resource_size_t start)
836 {
837 	struct resource *res;
838 
839 	read_lock(&resource_lock);
840 	for (res = root->child; res; res = res->sibling) {
841 		if (res->start == start)
842 			break;
843 	}
844 	read_unlock(&resource_lock);
845 
846 	return res;
847 }
848 
849 /*
850  * Insert a resource into the resource tree. If successful, return NULL,
851  * otherwise return the conflicting resource (compare to __request_resource())
852  */
853 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
854 {
855 	struct resource *first, *next;
856 
857 	for (;; parent = first) {
858 		first = __request_resource(parent, new);
859 		if (!first)
860 			return first;
861 
862 		if (first == parent)
863 			return first;
864 		if (WARN_ON(first == new))	/* duplicated insertion */
865 			return first;
866 
867 		if ((first->start > new->start) || (first->end < new->end))
868 			break;
869 		if ((first->start == new->start) && (first->end == new->end))
870 			break;
871 	}
872 
873 	for (next = first; ; next = next->sibling) {
874 		/* Partial overlap? Bad, and unfixable */
875 		if (next->start < new->start || next->end > new->end)
876 			return next;
877 		if (!next->sibling)
878 			break;
879 		if (next->sibling->start > new->end)
880 			break;
881 	}
882 
883 	new->parent = parent;
884 	new->sibling = next->sibling;
885 	new->child = first;
886 
887 	next->sibling = NULL;
888 	for (next = first; next; next = next->sibling)
889 		next->parent = new;
890 
891 	if (parent->child == first) {
892 		parent->child = new;
893 	} else {
894 		next = parent->child;
895 		while (next->sibling != first)
896 			next = next->sibling;
897 		next->sibling = new;
898 	}
899 	return NULL;
900 }
901 
902 /**
903  * insert_resource_conflict - Inserts resource in the resource tree
904  * @parent: parent of the new resource
905  * @new: new resource to insert
906  *
907  * Returns 0 on success, conflict resource if the resource can't be inserted.
908  *
909  * This function is equivalent to request_resource_conflict when no conflict
910  * happens. If a conflict happens, and the conflicting resources
911  * entirely fit within the range of the new resource, then the new
912  * resource is inserted and the conflicting resources become children of
913  * the new resource.
914  *
915  * This function is intended for producers of resources, such as FW modules
916  * and bus drivers.
917  */
918 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
919 {
920 	struct resource *conflict;
921 
922 	write_lock(&resource_lock);
923 	conflict = __insert_resource(parent, new);
924 	write_unlock(&resource_lock);
925 	return conflict;
926 }
927 
928 /**
929  * insert_resource - Inserts a resource in the resource tree
930  * @parent: parent of the new resource
931  * @new: new resource to insert
932  *
933  * Returns 0 on success, -EBUSY if the resource can't be inserted.
934  *
935  * This function is intended for producers of resources, such as FW modules
936  * and bus drivers.
937  */
938 int insert_resource(struct resource *parent, struct resource *new)
939 {
940 	struct resource *conflict;
941 
942 	conflict = insert_resource_conflict(parent, new);
943 	return conflict ? -EBUSY : 0;
944 }
945 EXPORT_SYMBOL_GPL(insert_resource);
946 
947 /**
948  * insert_resource_expand_to_fit - Insert a resource into the resource tree
949  * @root: root resource descriptor
950  * @new: new resource to insert
951  *
952  * Insert a resource into the resource tree, possibly expanding it in order
953  * to make it encompass any conflicting resources.
954  */
955 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
956 {
957 	if (new->parent)
958 		return;
959 
960 	write_lock(&resource_lock);
961 	for (;;) {
962 		struct resource *conflict;
963 
964 		conflict = __insert_resource(root, new);
965 		if (!conflict)
966 			break;
967 		if (conflict == root)
968 			break;
969 
970 		/* Ok, expand resource to cover the conflict, then try again .. */
971 		if (conflict->start < new->start)
972 			new->start = conflict->start;
973 		if (conflict->end > new->end)
974 			new->end = conflict->end;
975 
976 		pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
977 	}
978 	write_unlock(&resource_lock);
979 }
980 /*
981  * Not for general consumption, only early boot memory map parsing, PCI
982  * resource discovery, and late discovery of CXL resources are expected
983  * to use this interface. The former are built-in and only the latter,
984  * CXL, is a module.
985  */
986 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
987 
988 /**
989  * remove_resource - Remove a resource in the resource tree
990  * @old: resource to remove
991  *
992  * Returns 0 on success, -EINVAL if the resource is not valid.
993  *
994  * This function removes a resource previously inserted by insert_resource()
995  * or insert_resource_conflict(), and moves the children (if any) up to
996  * where they were before.  insert_resource() and insert_resource_conflict()
997  * insert a new resource, and move any conflicting resources down to the
998  * children of the new resource.
999  *
1000  * insert_resource(), insert_resource_conflict() and remove_resource() are
1001  * intended for producers of resources, such as FW modules and bus drivers.
1002  */
1003 int remove_resource(struct resource *old)
1004 {
1005 	int retval;
1006 
1007 	write_lock(&resource_lock);
1008 	retval = __release_resource(old, false);
1009 	write_unlock(&resource_lock);
1010 	return retval;
1011 }
1012 EXPORT_SYMBOL_GPL(remove_resource);
1013 
1014 static int __adjust_resource(struct resource *res, resource_size_t start,
1015 				resource_size_t size)
1016 {
1017 	struct resource *tmp, *parent = res->parent;
1018 	resource_size_t end = start + size - 1;
1019 	int result = -EBUSY;
1020 
1021 	if (!parent)
1022 		goto skip;
1023 
1024 	if ((start < parent->start) || (end > parent->end))
1025 		goto out;
1026 
1027 	if (res->sibling && (res->sibling->start <= end))
1028 		goto out;
1029 
1030 	tmp = parent->child;
1031 	if (tmp != res) {
1032 		while (tmp->sibling != res)
1033 			tmp = tmp->sibling;
1034 		if (start <= tmp->end)
1035 			goto out;
1036 	}
1037 
1038 skip:
1039 	for (tmp = res->child; tmp; tmp = tmp->sibling)
1040 		if ((tmp->start < start) || (tmp->end > end))
1041 			goto out;
1042 
1043 	res->start = start;
1044 	res->end = end;
1045 	result = 0;
1046 
1047  out:
1048 	return result;
1049 }
1050 
1051 /**
1052  * adjust_resource - modify a resource's start and size
1053  * @res: resource to modify
1054  * @start: new start value
1055  * @size: new size
1056  *
1057  * Given an existing resource, change its start and size to match the
1058  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1059  * Existing children of the resource are assumed to be immutable.
1060  */
1061 int adjust_resource(struct resource *res, resource_size_t start,
1062 		    resource_size_t size)
1063 {
1064 	int result;
1065 
1066 	write_lock(&resource_lock);
1067 	result = __adjust_resource(res, start, size);
1068 	write_unlock(&resource_lock);
1069 	return result;
1070 }
1071 EXPORT_SYMBOL(adjust_resource);
1072 
1073 static void __init
1074 __reserve_region_with_split(struct resource *root, resource_size_t start,
1075 			    resource_size_t end, const char *name)
1076 {
1077 	struct resource *parent = root;
1078 	struct resource *conflict;
1079 	struct resource *res = alloc_resource(GFP_ATOMIC);
1080 	struct resource *next_res = NULL;
1081 	int type = resource_type(root);
1082 
1083 	if (!res)
1084 		return;
1085 
1086 	res->name = name;
1087 	res->start = start;
1088 	res->end = end;
1089 	res->flags = type | IORESOURCE_BUSY;
1090 	res->desc = IORES_DESC_NONE;
1091 
1092 	while (1) {
1093 
1094 		conflict = __request_resource(parent, res);
1095 		if (!conflict) {
1096 			if (!next_res)
1097 				break;
1098 			res = next_res;
1099 			next_res = NULL;
1100 			continue;
1101 		}
1102 
1103 		/* conflict covered whole area */
1104 		if (conflict->start <= res->start &&
1105 				conflict->end >= res->end) {
1106 			free_resource(res);
1107 			WARN_ON(next_res);
1108 			break;
1109 		}
1110 
1111 		/* failed, split and try again */
1112 		if (conflict->start > res->start) {
1113 			end = res->end;
1114 			res->end = conflict->start - 1;
1115 			if (conflict->end < end) {
1116 				next_res = alloc_resource(GFP_ATOMIC);
1117 				if (!next_res) {
1118 					free_resource(res);
1119 					break;
1120 				}
1121 				next_res->name = name;
1122 				next_res->start = conflict->end + 1;
1123 				next_res->end = end;
1124 				next_res->flags = type | IORESOURCE_BUSY;
1125 				next_res->desc = IORES_DESC_NONE;
1126 			}
1127 		} else {
1128 			res->start = conflict->end + 1;
1129 		}
1130 	}
1131 
1132 }
1133 
1134 void __init
1135 reserve_region_with_split(struct resource *root, resource_size_t start,
1136 			  resource_size_t end, const char *name)
1137 {
1138 	int abort = 0;
1139 
1140 	write_lock(&resource_lock);
1141 	if (root->start > start || root->end < end) {
1142 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1143 		       (unsigned long long)start, (unsigned long long)end,
1144 		       root);
1145 		if (start > root->end || end < root->start)
1146 			abort = 1;
1147 		else {
1148 			if (end > root->end)
1149 				end = root->end;
1150 			if (start < root->start)
1151 				start = root->start;
1152 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1153 			       (unsigned long long)start,
1154 			       (unsigned long long)end);
1155 		}
1156 		dump_stack();
1157 	}
1158 	if (!abort)
1159 		__reserve_region_with_split(root, start, end, name);
1160 	write_unlock(&resource_lock);
1161 }
1162 
1163 /**
1164  * resource_alignment - calculate resource's alignment
1165  * @res: resource pointer
1166  *
1167  * Returns alignment on success, 0 (invalid alignment) on failure.
1168  */
1169 resource_size_t resource_alignment(struct resource *res)
1170 {
1171 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1172 	case IORESOURCE_SIZEALIGN:
1173 		return resource_size(res);
1174 	case IORESOURCE_STARTALIGN:
1175 		return res->start;
1176 	default:
1177 		return 0;
1178 	}
1179 }
1180 
1181 /*
1182  * This is compatibility stuff for IO resources.
1183  *
1184  * Note how this, unlike the above, knows about
1185  * the IO flag meanings (busy etc).
1186  *
1187  * request_region creates a new busy region.
1188  *
1189  * release_region releases a matching busy region.
1190  */
1191 
1192 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1193 
1194 static struct inode *iomem_inode;
1195 
1196 #ifdef CONFIG_IO_STRICT_DEVMEM
1197 static void revoke_iomem(struct resource *res)
1198 {
1199 	/* pairs with smp_store_release() in iomem_init_inode() */
1200 	struct inode *inode = smp_load_acquire(&iomem_inode);
1201 
1202 	/*
1203 	 * Check that the initialization has completed. Losing the race
1204 	 * is ok because it means drivers are claiming resources before
1205 	 * the fs_initcall level of init and prevent iomem_get_mapping users
1206 	 * from establishing mappings.
1207 	 */
1208 	if (!inode)
1209 		return;
1210 
1211 	/*
1212 	 * The expectation is that the driver has successfully marked
1213 	 * the resource busy by this point, so devmem_is_allowed()
1214 	 * should start returning false, however for performance this
1215 	 * does not iterate the entire resource range.
1216 	 */
1217 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1218 	    devmem_is_allowed(PHYS_PFN(res->end))) {
1219 		/*
1220 		 * *cringe* iomem=relaxed says "go ahead, what's the
1221 		 * worst that can happen?"
1222 		 */
1223 		return;
1224 	}
1225 
1226 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1227 }
1228 #else
1229 static void revoke_iomem(struct resource *res) {}
1230 #endif
1231 
1232 struct address_space *iomem_get_mapping(void)
1233 {
1234 	/*
1235 	 * This function is only called from file open paths, hence guaranteed
1236 	 * that fs_initcalls have completed and no need to check for NULL. But
1237 	 * since revoke_iomem can be called before the initcall we still need
1238 	 * the barrier to appease checkers.
1239 	 */
1240 	return smp_load_acquire(&iomem_inode)->i_mapping;
1241 }
1242 
1243 static int __request_region_locked(struct resource *res, struct resource *parent,
1244 				   resource_size_t start, resource_size_t n,
1245 				   const char *name, int flags)
1246 {
1247 	DECLARE_WAITQUEUE(wait, current);
1248 
1249 	res->name = name;
1250 	res->start = start;
1251 	res->end = start + n - 1;
1252 
1253 	for (;;) {
1254 		struct resource *conflict;
1255 
1256 		res->flags = resource_type(parent) | resource_ext_type(parent);
1257 		res->flags |= IORESOURCE_BUSY | flags;
1258 		res->desc = parent->desc;
1259 
1260 		conflict = __request_resource(parent, res);
1261 		if (!conflict)
1262 			break;
1263 		/*
1264 		 * mm/hmm.c reserves physical addresses which then
1265 		 * become unavailable to other users.  Conflicts are
1266 		 * not expected.  Warn to aid debugging if encountered.
1267 		 */
1268 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1269 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1270 				conflict->name, conflict, res);
1271 		}
1272 		if (conflict != parent) {
1273 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1274 				parent = conflict;
1275 				continue;
1276 			}
1277 		}
1278 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1279 			add_wait_queue(&muxed_resource_wait, &wait);
1280 			write_unlock(&resource_lock);
1281 			set_current_state(TASK_UNINTERRUPTIBLE);
1282 			schedule();
1283 			remove_wait_queue(&muxed_resource_wait, &wait);
1284 			write_lock(&resource_lock);
1285 			continue;
1286 		}
1287 		/* Uhhuh, that didn't work out.. */
1288 		return -EBUSY;
1289 	}
1290 
1291 	return 0;
1292 }
1293 
1294 /**
1295  * __request_region - create a new busy resource region
1296  * @parent: parent resource descriptor
1297  * @start: resource start address
1298  * @n: resource region size
1299  * @name: reserving caller's ID string
1300  * @flags: IO resource flags
1301  */
1302 struct resource *__request_region(struct resource *parent,
1303 				  resource_size_t start, resource_size_t n,
1304 				  const char *name, int flags)
1305 {
1306 	struct resource *res = alloc_resource(GFP_KERNEL);
1307 	int ret;
1308 
1309 	if (!res)
1310 		return NULL;
1311 
1312 	write_lock(&resource_lock);
1313 	ret = __request_region_locked(res, parent, start, n, name, flags);
1314 	write_unlock(&resource_lock);
1315 
1316 	if (ret) {
1317 		free_resource(res);
1318 		return NULL;
1319 	}
1320 
1321 	if (parent == &iomem_resource)
1322 		revoke_iomem(res);
1323 
1324 	return res;
1325 }
1326 EXPORT_SYMBOL(__request_region);
1327 
1328 /**
1329  * __release_region - release a previously reserved resource region
1330  * @parent: parent resource descriptor
1331  * @start: resource start address
1332  * @n: resource region size
1333  *
1334  * The described resource region must match a currently busy region.
1335  */
1336 void __release_region(struct resource *parent, resource_size_t start,
1337 		      resource_size_t n)
1338 {
1339 	struct resource **p;
1340 	resource_size_t end;
1341 
1342 	p = &parent->child;
1343 	end = start + n - 1;
1344 
1345 	write_lock(&resource_lock);
1346 
1347 	for (;;) {
1348 		struct resource *res = *p;
1349 
1350 		if (!res)
1351 			break;
1352 		if (res->start <= start && res->end >= end) {
1353 			if (!(res->flags & IORESOURCE_BUSY)) {
1354 				p = &res->child;
1355 				continue;
1356 			}
1357 			if (res->start != start || res->end != end)
1358 				break;
1359 			*p = res->sibling;
1360 			write_unlock(&resource_lock);
1361 			if (res->flags & IORESOURCE_MUXED)
1362 				wake_up(&muxed_resource_wait);
1363 			free_resource(res);
1364 			return;
1365 		}
1366 		p = &res->sibling;
1367 	}
1368 
1369 	write_unlock(&resource_lock);
1370 
1371 	pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1372 }
1373 EXPORT_SYMBOL(__release_region);
1374 
1375 #ifdef CONFIG_MEMORY_HOTREMOVE
1376 /**
1377  * release_mem_region_adjustable - release a previously reserved memory region
1378  * @start: resource start address
1379  * @size: resource region size
1380  *
1381  * This interface is intended for memory hot-delete.  The requested region
1382  * is released from a currently busy memory resource.  The requested region
1383  * must either match exactly or fit into a single busy resource entry.  In
1384  * the latter case, the remaining resource is adjusted accordingly.
1385  * Existing children of the busy memory resource must be immutable in the
1386  * request.
1387  *
1388  * Note:
1389  * - Additional release conditions, such as overlapping region, can be
1390  *   supported after they are confirmed as valid cases.
1391  * - When a busy memory resource gets split into two entries, the code
1392  *   assumes that all children remain in the lower address entry for
1393  *   simplicity.  Enhance this logic when necessary.
1394  */
1395 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1396 {
1397 	struct resource *parent = &iomem_resource;
1398 	struct resource *new_res = NULL;
1399 	bool alloc_nofail = false;
1400 	struct resource **p;
1401 	struct resource *res;
1402 	resource_size_t end;
1403 
1404 	end = start + size - 1;
1405 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1406 		return;
1407 
1408 	/*
1409 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1410 	 * just before releasing the region. This is highly unlikely to
1411 	 * fail - let's play save and make it never fail as the caller cannot
1412 	 * perform any error handling (e.g., trying to re-add memory will fail
1413 	 * similarly).
1414 	 */
1415 retry:
1416 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1417 
1418 	p = &parent->child;
1419 	write_lock(&resource_lock);
1420 
1421 	while ((res = *p)) {
1422 		if (res->start >= end)
1423 			break;
1424 
1425 		/* look for the next resource if it does not fit into */
1426 		if (res->start > start || res->end < end) {
1427 			p = &res->sibling;
1428 			continue;
1429 		}
1430 
1431 		if (!(res->flags & IORESOURCE_MEM))
1432 			break;
1433 
1434 		if (!(res->flags & IORESOURCE_BUSY)) {
1435 			p = &res->child;
1436 			continue;
1437 		}
1438 
1439 		/* found the target resource; let's adjust accordingly */
1440 		if (res->start == start && res->end == end) {
1441 			/* free the whole entry */
1442 			*p = res->sibling;
1443 			free_resource(res);
1444 		} else if (res->start == start && res->end != end) {
1445 			/* adjust the start */
1446 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1447 						       res->end - end));
1448 		} else if (res->start != start && res->end == end) {
1449 			/* adjust the end */
1450 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1451 						       start - res->start));
1452 		} else {
1453 			/* split into two entries - we need a new resource */
1454 			if (!new_res) {
1455 				new_res = alloc_resource(GFP_ATOMIC);
1456 				if (!new_res) {
1457 					alloc_nofail = true;
1458 					write_unlock(&resource_lock);
1459 					goto retry;
1460 				}
1461 			}
1462 			new_res->name = res->name;
1463 			new_res->start = end + 1;
1464 			new_res->end = res->end;
1465 			new_res->flags = res->flags;
1466 			new_res->desc = res->desc;
1467 			new_res->parent = res->parent;
1468 			new_res->sibling = res->sibling;
1469 			new_res->child = NULL;
1470 
1471 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1472 							   start - res->start)))
1473 				break;
1474 			res->sibling = new_res;
1475 			new_res = NULL;
1476 		}
1477 
1478 		break;
1479 	}
1480 
1481 	write_unlock(&resource_lock);
1482 	free_resource(new_res);
1483 }
1484 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1485 
1486 #ifdef CONFIG_MEMORY_HOTPLUG
1487 static bool system_ram_resources_mergeable(struct resource *r1,
1488 					   struct resource *r2)
1489 {
1490 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1491 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1492 	       r1->name == r2->name && r1->desc == r2->desc &&
1493 	       !r1->child && !r2->child;
1494 }
1495 
1496 /**
1497  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1498  *	merge it with adjacent, mergeable resources
1499  * @res: resource descriptor
1500  *
1501  * This interface is intended for memory hotplug, whereby lots of contiguous
1502  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1503  * the actual resource boundaries are not of interest (e.g., it might be
1504  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1505  * same parent, and that don't have any children are considered. All mergeable
1506  * resources must be immutable during the request.
1507  *
1508  * Note:
1509  * - The caller has to make sure that no pointers to resources that are
1510  *   marked mergeable are used anymore after this call - the resource might
1511  *   be freed and the pointer might be stale!
1512  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1513  */
1514 void merge_system_ram_resource(struct resource *res)
1515 {
1516 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1517 	struct resource *cur;
1518 
1519 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1520 		return;
1521 
1522 	write_lock(&resource_lock);
1523 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1524 
1525 	/* Try to merge with next item in the list. */
1526 	cur = res->sibling;
1527 	if (cur && system_ram_resources_mergeable(res, cur)) {
1528 		res->end = cur->end;
1529 		res->sibling = cur->sibling;
1530 		free_resource(cur);
1531 	}
1532 
1533 	/* Try to merge with previous item in the list. */
1534 	cur = res->parent->child;
1535 	while (cur && cur->sibling != res)
1536 		cur = cur->sibling;
1537 	if (cur && system_ram_resources_mergeable(cur, res)) {
1538 		cur->end = res->end;
1539 		cur->sibling = res->sibling;
1540 		free_resource(res);
1541 	}
1542 	write_unlock(&resource_lock);
1543 }
1544 #endif	/* CONFIG_MEMORY_HOTPLUG */
1545 
1546 /*
1547  * Managed region resource
1548  */
1549 static void devm_resource_release(struct device *dev, void *ptr)
1550 {
1551 	struct resource **r = ptr;
1552 
1553 	release_resource(*r);
1554 }
1555 
1556 /**
1557  * devm_request_resource() - request and reserve an I/O or memory resource
1558  * @dev: device for which to request the resource
1559  * @root: root of the resource tree from which to request the resource
1560  * @new: descriptor of the resource to request
1561  *
1562  * This is a device-managed version of request_resource(). There is usually
1563  * no need to release resources requested by this function explicitly since
1564  * that will be taken care of when the device is unbound from its driver.
1565  * If for some reason the resource needs to be released explicitly, because
1566  * of ordering issues for example, drivers must call devm_release_resource()
1567  * rather than the regular release_resource().
1568  *
1569  * When a conflict is detected between any existing resources and the newly
1570  * requested resource, an error message will be printed.
1571  *
1572  * Returns 0 on success or a negative error code on failure.
1573  */
1574 int devm_request_resource(struct device *dev, struct resource *root,
1575 			  struct resource *new)
1576 {
1577 	struct resource *conflict, **ptr;
1578 
1579 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1580 	if (!ptr)
1581 		return -ENOMEM;
1582 
1583 	*ptr = new;
1584 
1585 	conflict = request_resource_conflict(root, new);
1586 	if (conflict) {
1587 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1588 			new, conflict->name, conflict);
1589 		devres_free(ptr);
1590 		return -EBUSY;
1591 	}
1592 
1593 	devres_add(dev, ptr);
1594 	return 0;
1595 }
1596 EXPORT_SYMBOL(devm_request_resource);
1597 
1598 static int devm_resource_match(struct device *dev, void *res, void *data)
1599 {
1600 	struct resource **ptr = res;
1601 
1602 	return *ptr == data;
1603 }
1604 
1605 /**
1606  * devm_release_resource() - release a previously requested resource
1607  * @dev: device for which to release the resource
1608  * @new: descriptor of the resource to release
1609  *
1610  * Releases a resource previously requested using devm_request_resource().
1611  */
1612 void devm_release_resource(struct device *dev, struct resource *new)
1613 {
1614 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1615 			       new));
1616 }
1617 EXPORT_SYMBOL(devm_release_resource);
1618 
1619 struct region_devres {
1620 	struct resource *parent;
1621 	resource_size_t start;
1622 	resource_size_t n;
1623 };
1624 
1625 static void devm_region_release(struct device *dev, void *res)
1626 {
1627 	struct region_devres *this = res;
1628 
1629 	__release_region(this->parent, this->start, this->n);
1630 }
1631 
1632 static int devm_region_match(struct device *dev, void *res, void *match_data)
1633 {
1634 	struct region_devres *this = res, *match = match_data;
1635 
1636 	return this->parent == match->parent &&
1637 		this->start == match->start && this->n == match->n;
1638 }
1639 
1640 struct resource *
1641 __devm_request_region(struct device *dev, struct resource *parent,
1642 		      resource_size_t start, resource_size_t n, const char *name)
1643 {
1644 	struct region_devres *dr = NULL;
1645 	struct resource *res;
1646 
1647 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1648 			  GFP_KERNEL);
1649 	if (!dr)
1650 		return NULL;
1651 
1652 	dr->parent = parent;
1653 	dr->start = start;
1654 	dr->n = n;
1655 
1656 	res = __request_region(parent, start, n, name, 0);
1657 	if (res)
1658 		devres_add(dev, dr);
1659 	else
1660 		devres_free(dr);
1661 
1662 	return res;
1663 }
1664 EXPORT_SYMBOL(__devm_request_region);
1665 
1666 void __devm_release_region(struct device *dev, struct resource *parent,
1667 			   resource_size_t start, resource_size_t n)
1668 {
1669 	struct region_devres match_data = { parent, start, n };
1670 
1671 	__release_region(parent, start, n);
1672 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1673 			       &match_data));
1674 }
1675 EXPORT_SYMBOL(__devm_release_region);
1676 
1677 /*
1678  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1679  */
1680 #define MAXRESERVE 4
1681 static int __init reserve_setup(char *str)
1682 {
1683 	static int reserved;
1684 	static struct resource reserve[MAXRESERVE];
1685 
1686 	for (;;) {
1687 		unsigned int io_start, io_num;
1688 		int x = reserved;
1689 		struct resource *parent;
1690 
1691 		if (get_option(&str, &io_start) != 2)
1692 			break;
1693 		if (get_option(&str, &io_num) == 0)
1694 			break;
1695 		if (x < MAXRESERVE) {
1696 			struct resource *res = reserve + x;
1697 
1698 			/*
1699 			 * If the region starts below 0x10000, we assume it's
1700 			 * I/O port space; otherwise assume it's memory.
1701 			 */
1702 			if (io_start < 0x10000) {
1703 				res->flags = IORESOURCE_IO;
1704 				parent = &ioport_resource;
1705 			} else {
1706 				res->flags = IORESOURCE_MEM;
1707 				parent = &iomem_resource;
1708 			}
1709 			res->name = "reserved";
1710 			res->start = io_start;
1711 			res->end = io_start + io_num - 1;
1712 			res->flags |= IORESOURCE_BUSY;
1713 			res->desc = IORES_DESC_NONE;
1714 			res->child = NULL;
1715 			if (request_resource(parent, res) == 0)
1716 				reserved = x+1;
1717 		}
1718 	}
1719 	return 1;
1720 }
1721 __setup("reserve=", reserve_setup);
1722 
1723 /*
1724  * Check if the requested addr and size spans more than any slot in the
1725  * iomem resource tree.
1726  */
1727 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1728 {
1729 	resource_size_t end = addr + size - 1;
1730 	struct resource *p;
1731 	int err = 0;
1732 
1733 	read_lock(&resource_lock);
1734 	for_each_resource(&iomem_resource, p, false) {
1735 		/*
1736 		 * We can probably skip the resources without
1737 		 * IORESOURCE_IO attribute?
1738 		 */
1739 		if (p->start > end)
1740 			continue;
1741 		if (p->end < addr)
1742 			continue;
1743 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1744 		    PFN_DOWN(p->end) >= PFN_DOWN(end))
1745 			continue;
1746 		/*
1747 		 * if a resource is "BUSY", it's not a hardware resource
1748 		 * but a driver mapping of such a resource; we don't want
1749 		 * to warn for those; some drivers legitimately map only
1750 		 * partial hardware resources. (example: vesafb)
1751 		 */
1752 		if (p->flags & IORESOURCE_BUSY)
1753 			continue;
1754 
1755 		pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1756 			&addr, &end, p->name, p);
1757 		err = -1;
1758 		break;
1759 	}
1760 	read_unlock(&resource_lock);
1761 
1762 	return err;
1763 }
1764 
1765 #ifdef CONFIG_STRICT_DEVMEM
1766 static int strict_iomem_checks = 1;
1767 #else
1768 static int strict_iomem_checks;
1769 #endif
1770 
1771 /*
1772  * Check if an address is exclusive to the kernel and must not be mapped to
1773  * user space, for example, via /dev/mem.
1774  *
1775  * Returns true if exclusive to the kernel, otherwise returns false.
1776  */
1777 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1778 {
1779 	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1780 						  IORESOURCE_EXCLUSIVE;
1781 	bool skip_children = false, err = false;
1782 	struct resource *p;
1783 
1784 	read_lock(&resource_lock);
1785 	for_each_resource(root, p, skip_children) {
1786 		if (p->start >= addr + size)
1787 			break;
1788 		if (p->end < addr) {
1789 			skip_children = true;
1790 			continue;
1791 		}
1792 		skip_children = false;
1793 
1794 		/*
1795 		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1796 		 * IORESOURCE_EXCLUSIVE is set, even if they
1797 		 * are not busy and even if "iomem=relaxed" is set. The
1798 		 * responsible driver dynamically adds/removes system RAM within
1799 		 * such an area and uncontrolled access is dangerous.
1800 		 */
1801 		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1802 			err = true;
1803 			break;
1804 		}
1805 
1806 		/*
1807 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1808 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1809 		 * resource is busy.
1810 		 */
1811 		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1812 			continue;
1813 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1814 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1815 			err = true;
1816 			break;
1817 		}
1818 	}
1819 	read_unlock(&resource_lock);
1820 
1821 	return err;
1822 }
1823 
1824 bool iomem_is_exclusive(u64 addr)
1825 {
1826 	return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1827 				     PAGE_SIZE);
1828 }
1829 
1830 struct resource_entry *resource_list_create_entry(struct resource *res,
1831 						  size_t extra_size)
1832 {
1833 	struct resource_entry *entry;
1834 
1835 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1836 	if (entry) {
1837 		INIT_LIST_HEAD(&entry->node);
1838 		entry->res = res ? res : &entry->__res;
1839 	}
1840 
1841 	return entry;
1842 }
1843 EXPORT_SYMBOL(resource_list_create_entry);
1844 
1845 void resource_list_free(struct list_head *head)
1846 {
1847 	struct resource_entry *entry, *tmp;
1848 
1849 	list_for_each_entry_safe(entry, tmp, head, node)
1850 		resource_list_destroy_entry(entry);
1851 }
1852 EXPORT_SYMBOL(resource_list_free);
1853 
1854 #ifdef CONFIG_GET_FREE_REGION
1855 #define GFR_DESCENDING		(1UL << 0)
1856 #define GFR_REQUEST_REGION	(1UL << 1)
1857 #ifdef PA_SECTION_SHIFT
1858 #define GFR_DEFAULT_ALIGN	(1UL << PA_SECTION_SHIFT)
1859 #else
1860 #define GFR_DEFAULT_ALIGN	PAGE_SIZE
1861 #endif
1862 
1863 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1864 				 resource_size_t align, unsigned long flags)
1865 {
1866 	if (flags & GFR_DESCENDING) {
1867 		resource_size_t end;
1868 
1869 		end = min_t(resource_size_t, base->end, PHYSMEM_END);
1870 		return end - size + 1;
1871 	}
1872 
1873 	return ALIGN(max(base->start, align), align);
1874 }
1875 
1876 static bool gfr_continue(struct resource *base, resource_size_t addr,
1877 			 resource_size_t size, unsigned long flags)
1878 {
1879 	if (flags & GFR_DESCENDING)
1880 		return addr > size && addr >= base->start;
1881 	/*
1882 	 * In the ascend case be careful that the last increment by
1883 	 * @size did not wrap 0.
1884 	 */
1885 	return addr > addr - size &&
1886 	       addr <= min_t(resource_size_t, base->end, PHYSMEM_END);
1887 }
1888 
1889 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1890 				unsigned long flags)
1891 {
1892 	if (flags & GFR_DESCENDING)
1893 		return addr - size;
1894 	return addr + size;
1895 }
1896 
1897 static void remove_free_mem_region(void *_res)
1898 {
1899 	struct resource *res = _res;
1900 
1901 	if (res->parent)
1902 		remove_resource(res);
1903 	free_resource(res);
1904 }
1905 
1906 static struct resource *
1907 get_free_mem_region(struct device *dev, struct resource *base,
1908 		    resource_size_t size, const unsigned long align,
1909 		    const char *name, const unsigned long desc,
1910 		    const unsigned long flags)
1911 {
1912 	resource_size_t addr;
1913 	struct resource *res;
1914 	struct region_devres *dr = NULL;
1915 
1916 	size = ALIGN(size, align);
1917 
1918 	res = alloc_resource(GFP_KERNEL);
1919 	if (!res)
1920 		return ERR_PTR(-ENOMEM);
1921 
1922 	if (dev && (flags & GFR_REQUEST_REGION)) {
1923 		dr = devres_alloc(devm_region_release,
1924 				sizeof(struct region_devres), GFP_KERNEL);
1925 		if (!dr) {
1926 			free_resource(res);
1927 			return ERR_PTR(-ENOMEM);
1928 		}
1929 	} else if (dev) {
1930 		if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1931 			return ERR_PTR(-ENOMEM);
1932 	}
1933 
1934 	write_lock(&resource_lock);
1935 	for (addr = gfr_start(base, size, align, flags);
1936 	     gfr_continue(base, addr, align, flags);
1937 	     addr = gfr_next(addr, align, flags)) {
1938 		if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1939 		    REGION_DISJOINT)
1940 			continue;
1941 
1942 		if (flags & GFR_REQUEST_REGION) {
1943 			if (__request_region_locked(res, &iomem_resource, addr,
1944 						    size, name, 0))
1945 				break;
1946 
1947 			if (dev) {
1948 				dr->parent = &iomem_resource;
1949 				dr->start = addr;
1950 				dr->n = size;
1951 				devres_add(dev, dr);
1952 			}
1953 
1954 			res->desc = desc;
1955 			write_unlock(&resource_lock);
1956 
1957 
1958 			/*
1959 			 * A driver is claiming this region so revoke any
1960 			 * mappings.
1961 			 */
1962 			revoke_iomem(res);
1963 		} else {
1964 			res->start = addr;
1965 			res->end = addr + size - 1;
1966 			res->name = name;
1967 			res->desc = desc;
1968 			res->flags = IORESOURCE_MEM;
1969 
1970 			/*
1971 			 * Only succeed if the resource hosts an exclusive
1972 			 * range after the insert
1973 			 */
1974 			if (__insert_resource(base, res) || res->child)
1975 				break;
1976 
1977 			write_unlock(&resource_lock);
1978 		}
1979 
1980 		return res;
1981 	}
1982 	write_unlock(&resource_lock);
1983 
1984 	if (flags & GFR_REQUEST_REGION) {
1985 		free_resource(res);
1986 		devres_free(dr);
1987 	} else if (dev)
1988 		devm_release_action(dev, remove_free_mem_region, res);
1989 
1990 	return ERR_PTR(-ERANGE);
1991 }
1992 
1993 /**
1994  * devm_request_free_mem_region - find free region for device private memory
1995  *
1996  * @dev: device struct to bind the resource to
1997  * @size: size in bytes of the device memory to add
1998  * @base: resource tree to look in
1999  *
2000  * This function tries to find an empty range of physical address big enough to
2001  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
2002  * memory, which in turn allocates struct pages.
2003  */
2004 struct resource *devm_request_free_mem_region(struct device *dev,
2005 		struct resource *base, unsigned long size)
2006 {
2007 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2008 
2009 	return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
2010 				   dev_name(dev),
2011 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2012 }
2013 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
2014 
2015 struct resource *request_free_mem_region(struct resource *base,
2016 		unsigned long size, const char *name)
2017 {
2018 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2019 
2020 	return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
2021 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2022 }
2023 EXPORT_SYMBOL_GPL(request_free_mem_region);
2024 
2025 /**
2026  * alloc_free_mem_region - find a free region relative to @base
2027  * @base: resource that will parent the new resource
2028  * @size: size in bytes of memory to allocate from @base
2029  * @align: alignment requirements for the allocation
2030  * @name: resource name
2031  *
2032  * Buses like CXL, that can dynamically instantiate new memory regions,
2033  * need a method to allocate physical address space for those regions.
2034  * Allocate and insert a new resource to cover a free, unclaimed by a
2035  * descendant of @base, range in the span of @base.
2036  */
2037 struct resource *alloc_free_mem_region(struct resource *base,
2038 				       unsigned long size, unsigned long align,
2039 				       const char *name)
2040 {
2041 	/* Default of ascending direction and insert resource */
2042 	unsigned long flags = 0;
2043 
2044 	return get_free_mem_region(NULL, base, size, align, name,
2045 				   IORES_DESC_NONE, flags);
2046 }
2047 EXPORT_SYMBOL_GPL(alloc_free_mem_region);
2048 #endif /* CONFIG_GET_FREE_REGION */
2049 
2050 static int __init strict_iomem(char *str)
2051 {
2052 	if (strstr(str, "relaxed"))
2053 		strict_iomem_checks = 0;
2054 	if (strstr(str, "strict"))
2055 		strict_iomem_checks = 1;
2056 	return 1;
2057 }
2058 
2059 static int iomem_fs_init_fs_context(struct fs_context *fc)
2060 {
2061 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2062 }
2063 
2064 static struct file_system_type iomem_fs_type = {
2065 	.name		= "iomem",
2066 	.owner		= THIS_MODULE,
2067 	.init_fs_context = iomem_fs_init_fs_context,
2068 	.kill_sb	= kill_anon_super,
2069 };
2070 
2071 static int __init iomem_init_inode(void)
2072 {
2073 	static struct vfsmount *iomem_vfs_mount;
2074 	static int iomem_fs_cnt;
2075 	struct inode *inode;
2076 	int rc;
2077 
2078 	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2079 	if (rc < 0) {
2080 		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2081 		return rc;
2082 	}
2083 
2084 	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2085 	if (IS_ERR(inode)) {
2086 		rc = PTR_ERR(inode);
2087 		pr_err("Cannot allocate inode for iomem: %d\n", rc);
2088 		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2089 		return rc;
2090 	}
2091 
2092 	/*
2093 	 * Publish iomem revocation inode initialized.
2094 	 * Pairs with smp_load_acquire() in revoke_iomem().
2095 	 */
2096 	smp_store_release(&iomem_inode, inode);
2097 
2098 	return 0;
2099 }
2100 
2101 fs_initcall(iomem_init_inode);
2102 
2103 __setup("iomem=", strict_iomem);
2104