xref: /linux-6.15/kernel/resource.c (revision 4eed3dd7)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *	linux/kernel/resource.c
4  *
5  * Copyright (C) 1999	Linus Torvalds
6  * Copyright (C) 1999	Martin Mares <[email protected]>
7  *
8  * Arbitrary resource management.
9  */
10 
11 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
12 
13 #include <linux/export.h>
14 #include <linux/errno.h>
15 #include <linux/ioport.h>
16 #include <linux/init.h>
17 #include <linux/slab.h>
18 #include <linux/spinlock.h>
19 #include <linux/fs.h>
20 #include <linux/proc_fs.h>
21 #include <linux/pseudo_fs.h>
22 #include <linux/sched.h>
23 #include <linux/seq_file.h>
24 #include <linux/device.h>
25 #include <linux/pfn.h>
26 #include <linux/mm.h>
27 #include <linux/mount.h>
28 #include <linux/resource_ext.h>
29 #include <uapi/linux/magic.h>
30 #include <linux/string.h>
31 #include <linux/vmalloc.h>
32 #include <asm/io.h>
33 
34 
35 struct resource ioport_resource = {
36 	.name	= "PCI IO",
37 	.start	= 0,
38 	.end	= IO_SPACE_LIMIT,
39 	.flags	= IORESOURCE_IO,
40 };
41 EXPORT_SYMBOL(ioport_resource);
42 
43 struct resource iomem_resource = {
44 	.name	= "PCI mem",
45 	.start	= 0,
46 	.end	= -1,
47 	.flags	= IORESOURCE_MEM,
48 };
49 EXPORT_SYMBOL(iomem_resource);
50 
51 /**
52  * struct resource_constraint - constraints to be met while searching empty
53  *				resource space
54  * @min:		The minimum address for the memory range
55  * @max:		The maximum address for the memory range
56  * @align:		Alignment for the start address of the empty space
57  * @alignf:		Additional alignment constraints callback
58  * @alignf_data:	Data provided for @alignf callback
59  *
60  * Contains the range and alignment constraints that have to be met during
61  * find_resource_space(). @alignf can be NULL indicating no alignment beyond
62  * @align is necessary.
63  */
64 struct resource_constraint {
65 	resource_size_t min, max, align;
66 	resource_alignf alignf;
67 	void *alignf_data;
68 };
69 
70 static DEFINE_RWLOCK(resource_lock);
71 
72 static struct resource *next_resource(struct resource *p, bool skip_children)
73 {
74 	if (!skip_children && p->child)
75 		return p->child;
76 	while (!p->sibling && p->parent)
77 		p = p->parent;
78 	return p->sibling;
79 }
80 
81 #define for_each_resource(_root, _p, _skip_children) \
82 	for ((_p) = (_root)->child; (_p); (_p) = next_resource(_p, _skip_children))
83 
84 #ifdef CONFIG_PROC_FS
85 
86 enum { MAX_IORES_LEVEL = 5 };
87 
88 static void *r_start(struct seq_file *m, loff_t *pos)
89 	__acquires(resource_lock)
90 {
91 	struct resource *root = pde_data(file_inode(m->file));
92 	struct resource *p;
93 	loff_t l = *pos;
94 
95 	read_lock(&resource_lock);
96 	for_each_resource(root, p, false) {
97 		if (l-- == 0)
98 			break;
99 	}
100 
101 	return p;
102 }
103 
104 static void *r_next(struct seq_file *m, void *v, loff_t *pos)
105 {
106 	struct resource *p = v;
107 
108 	(*pos)++;
109 
110 	return (void *)next_resource(p, false);
111 }
112 
113 static void r_stop(struct seq_file *m, void *v)
114 	__releases(resource_lock)
115 {
116 	read_unlock(&resource_lock);
117 }
118 
119 static int r_show(struct seq_file *m, void *v)
120 {
121 	struct resource *root = pde_data(file_inode(m->file));
122 	struct resource *r = v, *p;
123 	unsigned long long start, end;
124 	int width = root->end < 0x10000 ? 4 : 8;
125 	int depth;
126 
127 	for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent)
128 		if (p->parent == root)
129 			break;
130 
131 	if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) {
132 		start = r->start;
133 		end = r->end;
134 	} else {
135 		start = end = 0;
136 	}
137 
138 	seq_printf(m, "%*s%0*llx-%0*llx : %s\n",
139 			depth * 2, "",
140 			width, start,
141 			width, end,
142 			r->name ? r->name : "<BAD>");
143 	return 0;
144 }
145 
146 static const struct seq_operations resource_op = {
147 	.start	= r_start,
148 	.next	= r_next,
149 	.stop	= r_stop,
150 	.show	= r_show,
151 };
152 
153 static int __init ioresources_init(void)
154 {
155 	proc_create_seq_data("ioports", 0, NULL, &resource_op,
156 			&ioport_resource);
157 	proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource);
158 	return 0;
159 }
160 __initcall(ioresources_init);
161 
162 #endif /* CONFIG_PROC_FS */
163 
164 static void free_resource(struct resource *res)
165 {
166 	/**
167 	 * If the resource was allocated using memblock early during boot
168 	 * we'll leak it here: we can only return full pages back to the
169 	 * buddy and trying to be smart and reusing them eventually in
170 	 * alloc_resource() overcomplicates resource handling.
171 	 */
172 	if (res && PageSlab(virt_to_head_page(res)))
173 		kfree(res);
174 }
175 
176 static struct resource *alloc_resource(gfp_t flags)
177 {
178 	return kzalloc(sizeof(struct resource), flags);
179 }
180 
181 /* Return the conflict entry if you can't request it */
182 static struct resource * __request_resource(struct resource *root, struct resource *new)
183 {
184 	resource_size_t start = new->start;
185 	resource_size_t end = new->end;
186 	struct resource *tmp, **p;
187 
188 	if (end < start)
189 		return root;
190 	if (start < root->start)
191 		return root;
192 	if (end > root->end)
193 		return root;
194 	p = &root->child;
195 	for (;;) {
196 		tmp = *p;
197 		if (!tmp || tmp->start > end) {
198 			new->sibling = tmp;
199 			*p = new;
200 			new->parent = root;
201 			return NULL;
202 		}
203 		p = &tmp->sibling;
204 		if (tmp->end < start)
205 			continue;
206 		return tmp;
207 	}
208 }
209 
210 static int __release_resource(struct resource *old, bool release_child)
211 {
212 	struct resource *tmp, **p, *chd;
213 
214 	p = &old->parent->child;
215 	for (;;) {
216 		tmp = *p;
217 		if (!tmp)
218 			break;
219 		if (tmp == old) {
220 			if (release_child || !(tmp->child)) {
221 				*p = tmp->sibling;
222 			} else {
223 				for (chd = tmp->child;; chd = chd->sibling) {
224 					chd->parent = tmp->parent;
225 					if (!(chd->sibling))
226 						break;
227 				}
228 				*p = tmp->child;
229 				chd->sibling = tmp->sibling;
230 			}
231 			old->parent = NULL;
232 			return 0;
233 		}
234 		p = &tmp->sibling;
235 	}
236 	return -EINVAL;
237 }
238 
239 static void __release_child_resources(struct resource *r)
240 {
241 	struct resource *tmp, *p;
242 	resource_size_t size;
243 
244 	p = r->child;
245 	r->child = NULL;
246 	while (p) {
247 		tmp = p;
248 		p = p->sibling;
249 
250 		tmp->parent = NULL;
251 		tmp->sibling = NULL;
252 		__release_child_resources(tmp);
253 
254 		printk(KERN_DEBUG "release child resource %pR\n", tmp);
255 		/* need to restore size, and keep flags */
256 		size = resource_size(tmp);
257 		tmp->start = 0;
258 		tmp->end = size - 1;
259 	}
260 }
261 
262 void release_child_resources(struct resource *r)
263 {
264 	write_lock(&resource_lock);
265 	__release_child_resources(r);
266 	write_unlock(&resource_lock);
267 }
268 
269 /**
270  * request_resource_conflict - request and reserve an I/O or memory resource
271  * @root: root resource descriptor
272  * @new: resource descriptor desired by caller
273  *
274  * Returns 0 for success, conflict resource on error.
275  */
276 struct resource *request_resource_conflict(struct resource *root, struct resource *new)
277 {
278 	struct resource *conflict;
279 
280 	write_lock(&resource_lock);
281 	conflict = __request_resource(root, new);
282 	write_unlock(&resource_lock);
283 	return conflict;
284 }
285 
286 /**
287  * request_resource - request and reserve an I/O or memory resource
288  * @root: root resource descriptor
289  * @new: resource descriptor desired by caller
290  *
291  * Returns 0 for success, negative error code on error.
292  */
293 int request_resource(struct resource *root, struct resource *new)
294 {
295 	struct resource *conflict;
296 
297 	conflict = request_resource_conflict(root, new);
298 	return conflict ? -EBUSY : 0;
299 }
300 
301 EXPORT_SYMBOL(request_resource);
302 
303 /**
304  * release_resource - release a previously reserved resource
305  * @old: resource pointer
306  */
307 int release_resource(struct resource *old)
308 {
309 	int retval;
310 
311 	write_lock(&resource_lock);
312 	retval = __release_resource(old, true);
313 	write_unlock(&resource_lock);
314 	return retval;
315 }
316 
317 EXPORT_SYMBOL(release_resource);
318 
319 /**
320  * find_next_iomem_res - Finds the lowest iomem resource that covers part of
321  *			 [@start..@end].
322  *
323  * If a resource is found, returns 0 and @*res is overwritten with the part
324  * of the resource that's within [@start..@end]; if none is found, returns
325  * -ENODEV.  Returns -EINVAL for invalid parameters.
326  *
327  * @start:	start address of the resource searched for
328  * @end:	end address of same resource
329  * @flags:	flags which the resource must have
330  * @desc:	descriptor the resource must have
331  * @res:	return ptr, if resource found
332  *
333  * The caller must specify @start, @end, @flags, and @desc
334  * (which may be IORES_DESC_NONE).
335  */
336 static int find_next_iomem_res(resource_size_t start, resource_size_t end,
337 			       unsigned long flags, unsigned long desc,
338 			       struct resource *res)
339 {
340 	struct resource *p;
341 
342 	if (!res)
343 		return -EINVAL;
344 
345 	if (start >= end)
346 		return -EINVAL;
347 
348 	read_lock(&resource_lock);
349 
350 	for_each_resource(&iomem_resource, p, false) {
351 		/* If we passed the resource we are looking for, stop */
352 		if (p->start > end) {
353 			p = NULL;
354 			break;
355 		}
356 
357 		/* Skip until we find a range that matches what we look for */
358 		if (p->end < start)
359 			continue;
360 
361 		if ((p->flags & flags) != flags)
362 			continue;
363 		if ((desc != IORES_DESC_NONE) && (desc != p->desc))
364 			continue;
365 
366 		/* Found a match, break */
367 		break;
368 	}
369 
370 	if (p) {
371 		/* copy data */
372 		*res = (struct resource) {
373 			.start = max(start, p->start),
374 			.end = min(end, p->end),
375 			.flags = p->flags,
376 			.desc = p->desc,
377 			.parent = p->parent,
378 		};
379 	}
380 
381 	read_unlock(&resource_lock);
382 	return p ? 0 : -ENODEV;
383 }
384 
385 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end,
386 				 unsigned long flags, unsigned long desc,
387 				 void *arg,
388 				 int (*func)(struct resource *, void *))
389 {
390 	struct resource res;
391 	int ret = -EINVAL;
392 
393 	while (start < end &&
394 	       !find_next_iomem_res(start, end, flags, desc, &res)) {
395 		ret = (*func)(&res, arg);
396 		if (ret)
397 			break;
398 
399 		start = res.end + 1;
400 	}
401 
402 	return ret;
403 }
404 
405 /**
406  * walk_iomem_res_desc - Walks through iomem resources and calls func()
407  *			 with matching resource ranges.
408  * *
409  * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check.
410  * @flags: I/O resource flags
411  * @start: start addr
412  * @end: end addr
413  * @arg: function argument for the callback @func
414  * @func: callback function that is called for each qualifying resource area
415  *
416  * All the memory ranges which overlap start,end and also match flags and
417  * desc are valid candidates.
418  *
419  * NOTE: For a new descriptor search, define a new IORES_DESC in
420  * <linux/ioport.h> and set it in 'desc' of a target resource entry.
421  */
422 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start,
423 		u64 end, void *arg, int (*func)(struct resource *, void *))
424 {
425 	return __walk_iomem_res_desc(start, end, flags, desc, arg, func);
426 }
427 EXPORT_SYMBOL_GPL(walk_iomem_res_desc);
428 
429 /*
430  * This function calls the @func callback against all memory ranges of type
431  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
432  * Now, this function is only for System RAM, it deals with full ranges and
433  * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate
434  * ranges.
435  */
436 int walk_system_ram_res(u64 start, u64 end, void *arg,
437 			int (*func)(struct resource *, void *))
438 {
439 	unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
440 
441 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
442 				     func);
443 }
444 
445 /*
446  * This function, being a variant of walk_system_ram_res(), calls the @func
447  * callback against all memory ranges of type System RAM which are marked as
448  * IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY in reversed order, i.e., from
449  * higher to lower.
450  */
451 int walk_system_ram_res_rev(u64 start, u64 end, void *arg,
452 				int (*func)(struct resource *, void *))
453 {
454 	struct resource res, *rams;
455 	int rams_size = 16, i;
456 	unsigned long flags;
457 	int ret = -1;
458 
459 	/* create a list */
460 	rams = kvcalloc(rams_size, sizeof(struct resource), GFP_KERNEL);
461 	if (!rams)
462 		return ret;
463 
464 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
465 	i = 0;
466 	while ((start < end) &&
467 		(!find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res))) {
468 		if (i >= rams_size) {
469 			/* re-alloc */
470 			struct resource *rams_new;
471 
472 			rams_new = kvrealloc(rams, rams_size * sizeof(struct resource),
473 					     (rams_size + 16) * sizeof(struct resource),
474 					     GFP_KERNEL);
475 			if (!rams_new)
476 				goto out;
477 
478 			rams = rams_new;
479 			rams_size += 16;
480 		}
481 
482 		rams[i].start = res.start;
483 		rams[i++].end = res.end;
484 
485 		start = res.end + 1;
486 	}
487 
488 	/* go reverse */
489 	for (i--; i >= 0; i--) {
490 		ret = (*func)(&rams[i], arg);
491 		if (ret)
492 			break;
493 	}
494 
495 out:
496 	kvfree(rams);
497 	return ret;
498 }
499 
500 /*
501  * This function calls the @func callback against all memory ranges, which
502  * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY.
503  */
504 int walk_mem_res(u64 start, u64 end, void *arg,
505 		 int (*func)(struct resource *, void *))
506 {
507 	unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY;
508 
509 	return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, arg,
510 				     func);
511 }
512 
513 /*
514  * This function calls the @func callback against all memory ranges of type
515  * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY.
516  * It is to be used only for System RAM.
517  */
518 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages,
519 			  void *arg, int (*func)(unsigned long, unsigned long, void *))
520 {
521 	resource_size_t start, end;
522 	unsigned long flags;
523 	struct resource res;
524 	unsigned long pfn, end_pfn;
525 	int ret = -EINVAL;
526 
527 	start = (u64) start_pfn << PAGE_SHIFT;
528 	end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1;
529 	flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
530 	while (start < end &&
531 	       !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, &res)) {
532 		pfn = PFN_UP(res.start);
533 		end_pfn = PFN_DOWN(res.end + 1);
534 		if (end_pfn > pfn)
535 			ret = (*func)(pfn, end_pfn - pfn, arg);
536 		if (ret)
537 			break;
538 		start = res.end + 1;
539 	}
540 	return ret;
541 }
542 
543 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg)
544 {
545 	return 1;
546 }
547 
548 /*
549  * This generic page_is_ram() returns true if specified address is
550  * registered as System RAM in iomem_resource list.
551  */
552 int __weak page_is_ram(unsigned long pfn)
553 {
554 	return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1;
555 }
556 EXPORT_SYMBOL_GPL(page_is_ram);
557 
558 static int __region_intersects(struct resource *parent, resource_size_t start,
559 			       size_t size, unsigned long flags,
560 			       unsigned long desc)
561 {
562 	struct resource res;
563 	int type = 0; int other = 0;
564 	struct resource *p;
565 
566 	res.start = start;
567 	res.end = start + size - 1;
568 
569 	for (p = parent->child; p ; p = p->sibling) {
570 		bool is_type = (((p->flags & flags) == flags) &&
571 				((desc == IORES_DESC_NONE) ||
572 				 (desc == p->desc)));
573 
574 		if (resource_overlaps(p, &res))
575 			is_type ? type++ : other++;
576 	}
577 
578 	if (type == 0)
579 		return REGION_DISJOINT;
580 
581 	if (other == 0)
582 		return REGION_INTERSECTS;
583 
584 	return REGION_MIXED;
585 }
586 
587 /**
588  * region_intersects() - determine intersection of region with known resources
589  * @start: region start address
590  * @size: size of region
591  * @flags: flags of resource (in iomem_resource)
592  * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE
593  *
594  * Check if the specified region partially overlaps or fully eclipses a
595  * resource identified by @flags and @desc (optional with IORES_DESC_NONE).
596  * Return REGION_DISJOINT if the region does not overlap @flags/@desc,
597  * return REGION_MIXED if the region overlaps @flags/@desc and another
598  * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc
599  * and no other defined resource. Note that REGION_INTERSECTS is also
600  * returned in the case when the specified region overlaps RAM and undefined
601  * memory holes.
602  *
603  * region_intersect() is used by memory remapping functions to ensure
604  * the user is not remapping RAM and is a vast speed up over walking
605  * through the resource table page by page.
606  */
607 int region_intersects(resource_size_t start, size_t size, unsigned long flags,
608 		      unsigned long desc)
609 {
610 	int ret;
611 
612 	read_lock(&resource_lock);
613 	ret = __region_intersects(&iomem_resource, start, size, flags, desc);
614 	read_unlock(&resource_lock);
615 
616 	return ret;
617 }
618 EXPORT_SYMBOL_GPL(region_intersects);
619 
620 void __weak arch_remove_reservations(struct resource *avail)
621 {
622 }
623 
624 static resource_size_t simple_align_resource(void *data,
625 					     const struct resource *avail,
626 					     resource_size_t size,
627 					     resource_size_t align)
628 {
629 	return avail->start;
630 }
631 
632 static void resource_clip(struct resource *res, resource_size_t min,
633 			  resource_size_t max)
634 {
635 	if (res->start < min)
636 		res->start = min;
637 	if (res->end > max)
638 		res->end = max;
639 }
640 
641 /*
642  * Find empty space in the resource tree with the given range and
643  * alignment constraints
644  */
645 static int __find_resource_space(struct resource *root, struct resource *old,
646 				 struct resource *new, resource_size_t size,
647 				 struct resource_constraint *constraint)
648 {
649 	struct resource *this = root->child;
650 	struct resource tmp = *new, avail, alloc;
651 
652 	tmp.start = root->start;
653 	/*
654 	 * Skip past an allocated resource that starts at 0, since the assignment
655 	 * of this->start - 1 to tmp->end below would cause an underflow.
656 	 */
657 	if (this && this->start == root->start) {
658 		tmp.start = (this == old) ? old->start : this->end + 1;
659 		this = this->sibling;
660 	}
661 	for(;;) {
662 		if (this)
663 			tmp.end = (this == old) ?  this->end : this->start - 1;
664 		else
665 			tmp.end = root->end;
666 
667 		if (tmp.end < tmp.start)
668 			goto next;
669 
670 		resource_clip(&tmp, constraint->min, constraint->max);
671 		arch_remove_reservations(&tmp);
672 
673 		/* Check for overflow after ALIGN() */
674 		avail.start = ALIGN(tmp.start, constraint->align);
675 		avail.end = tmp.end;
676 		avail.flags = new->flags & ~IORESOURCE_UNSET;
677 		if (avail.start >= tmp.start) {
678 			alloc.flags = avail.flags;
679 			alloc.start = constraint->alignf(constraint->alignf_data, &avail,
680 					size, constraint->align);
681 			alloc.end = alloc.start + size - 1;
682 			if (alloc.start <= alloc.end &&
683 			    resource_contains(&avail, &alloc)) {
684 				new->start = alloc.start;
685 				new->end = alloc.end;
686 				return 0;
687 			}
688 		}
689 
690 next:		if (!this || this->end == root->end)
691 			break;
692 
693 		if (this != old)
694 			tmp.start = this->end + 1;
695 		this = this->sibling;
696 	}
697 	return -EBUSY;
698 }
699 
700 /**
701  * find_resource_space - Find empty space in the resource tree
702  * @root:	Root resource descriptor
703  * @new:	Resource descriptor awaiting an empty resource space
704  * @size:	The minimum size of the empty space
705  * @constraint:	The range and alignment constraints to be met
706  *
707  * Finds an empty space under @root in the resource tree satisfying range and
708  * alignment @constraints.
709  *
710  * Return:
711  * * %0		- if successful, @new members start, end, and flags are altered.
712  * * %-EBUSY	- if no empty space was found.
713  */
714 static int find_resource_space(struct resource *root, struct resource *new,
715 			       resource_size_t size,
716 			       struct resource_constraint *constraint)
717 {
718 	return  __find_resource_space(root, NULL, new, size, constraint);
719 }
720 
721 /**
722  * reallocate_resource - allocate a slot in the resource tree given range & alignment.
723  *	The resource will be relocated if the new size cannot be reallocated in the
724  *	current location.
725  *
726  * @root: root resource descriptor
727  * @old:  resource descriptor desired by caller
728  * @newsize: new size of the resource descriptor
729  * @constraint: the size and alignment constraints to be met.
730  */
731 static int reallocate_resource(struct resource *root, struct resource *old,
732 			       resource_size_t newsize,
733 			       struct resource_constraint *constraint)
734 {
735 	int err=0;
736 	struct resource new = *old;
737 	struct resource *conflict;
738 
739 	write_lock(&resource_lock);
740 
741 	if ((err = __find_resource_space(root, old, &new, newsize, constraint)))
742 		goto out;
743 
744 	if (resource_contains(&new, old)) {
745 		old->start = new.start;
746 		old->end = new.end;
747 		goto out;
748 	}
749 
750 	if (old->child) {
751 		err = -EBUSY;
752 		goto out;
753 	}
754 
755 	if (resource_contains(old, &new)) {
756 		old->start = new.start;
757 		old->end = new.end;
758 	} else {
759 		__release_resource(old, true);
760 		*old = new;
761 		conflict = __request_resource(root, old);
762 		BUG_ON(conflict);
763 	}
764 out:
765 	write_unlock(&resource_lock);
766 	return err;
767 }
768 
769 
770 /**
771  * allocate_resource - allocate empty slot in the resource tree given range & alignment.
772  * 	The resource will be reallocated with a new size if it was already allocated
773  * @root: root resource descriptor
774  * @new: resource descriptor desired by caller
775  * @size: requested resource region size
776  * @min: minimum boundary to allocate
777  * @max: maximum boundary to allocate
778  * @align: alignment requested, in bytes
779  * @alignf: alignment function, optional, called if not NULL
780  * @alignf_data: arbitrary data to pass to the @alignf function
781  */
782 int allocate_resource(struct resource *root, struct resource *new,
783 		      resource_size_t size, resource_size_t min,
784 		      resource_size_t max, resource_size_t align,
785 		      resource_alignf alignf,
786 		      void *alignf_data)
787 {
788 	int err;
789 	struct resource_constraint constraint;
790 
791 	if (!alignf)
792 		alignf = simple_align_resource;
793 
794 	constraint.min = min;
795 	constraint.max = max;
796 	constraint.align = align;
797 	constraint.alignf = alignf;
798 	constraint.alignf_data = alignf_data;
799 
800 	if ( new->parent ) {
801 		/* resource is already allocated, try reallocating with
802 		   the new constraints */
803 		return reallocate_resource(root, new, size, &constraint);
804 	}
805 
806 	write_lock(&resource_lock);
807 	err = find_resource_space(root, new, size, &constraint);
808 	if (err >= 0 && __request_resource(root, new))
809 		err = -EBUSY;
810 	write_unlock(&resource_lock);
811 	return err;
812 }
813 
814 EXPORT_SYMBOL(allocate_resource);
815 
816 /**
817  * lookup_resource - find an existing resource by a resource start address
818  * @root: root resource descriptor
819  * @start: resource start address
820  *
821  * Returns a pointer to the resource if found, NULL otherwise
822  */
823 struct resource *lookup_resource(struct resource *root, resource_size_t start)
824 {
825 	struct resource *res;
826 
827 	read_lock(&resource_lock);
828 	for (res = root->child; res; res = res->sibling) {
829 		if (res->start == start)
830 			break;
831 	}
832 	read_unlock(&resource_lock);
833 
834 	return res;
835 }
836 
837 /*
838  * Insert a resource into the resource tree. If successful, return NULL,
839  * otherwise return the conflicting resource (compare to __request_resource())
840  */
841 static struct resource * __insert_resource(struct resource *parent, struct resource *new)
842 {
843 	struct resource *first, *next;
844 
845 	for (;; parent = first) {
846 		first = __request_resource(parent, new);
847 		if (!first)
848 			return first;
849 
850 		if (first == parent)
851 			return first;
852 		if (WARN_ON(first == new))	/* duplicated insertion */
853 			return first;
854 
855 		if ((first->start > new->start) || (first->end < new->end))
856 			break;
857 		if ((first->start == new->start) && (first->end == new->end))
858 			break;
859 	}
860 
861 	for (next = first; ; next = next->sibling) {
862 		/* Partial overlap? Bad, and unfixable */
863 		if (next->start < new->start || next->end > new->end)
864 			return next;
865 		if (!next->sibling)
866 			break;
867 		if (next->sibling->start > new->end)
868 			break;
869 	}
870 
871 	new->parent = parent;
872 	new->sibling = next->sibling;
873 	new->child = first;
874 
875 	next->sibling = NULL;
876 	for (next = first; next; next = next->sibling)
877 		next->parent = new;
878 
879 	if (parent->child == first) {
880 		parent->child = new;
881 	} else {
882 		next = parent->child;
883 		while (next->sibling != first)
884 			next = next->sibling;
885 		next->sibling = new;
886 	}
887 	return NULL;
888 }
889 
890 /**
891  * insert_resource_conflict - Inserts resource in the resource tree
892  * @parent: parent of the new resource
893  * @new: new resource to insert
894  *
895  * Returns 0 on success, conflict resource if the resource can't be inserted.
896  *
897  * This function is equivalent to request_resource_conflict when no conflict
898  * happens. If a conflict happens, and the conflicting resources
899  * entirely fit within the range of the new resource, then the new
900  * resource is inserted and the conflicting resources become children of
901  * the new resource.
902  *
903  * This function is intended for producers of resources, such as FW modules
904  * and bus drivers.
905  */
906 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new)
907 {
908 	struct resource *conflict;
909 
910 	write_lock(&resource_lock);
911 	conflict = __insert_resource(parent, new);
912 	write_unlock(&resource_lock);
913 	return conflict;
914 }
915 
916 /**
917  * insert_resource - Inserts a resource in the resource tree
918  * @parent: parent of the new resource
919  * @new: new resource to insert
920  *
921  * Returns 0 on success, -EBUSY if the resource can't be inserted.
922  *
923  * This function is intended for producers of resources, such as FW modules
924  * and bus drivers.
925  */
926 int insert_resource(struct resource *parent, struct resource *new)
927 {
928 	struct resource *conflict;
929 
930 	conflict = insert_resource_conflict(parent, new);
931 	return conflict ? -EBUSY : 0;
932 }
933 EXPORT_SYMBOL_GPL(insert_resource);
934 
935 /**
936  * insert_resource_expand_to_fit - Insert a resource into the resource tree
937  * @root: root resource descriptor
938  * @new: new resource to insert
939  *
940  * Insert a resource into the resource tree, possibly expanding it in order
941  * to make it encompass any conflicting resources.
942  */
943 void insert_resource_expand_to_fit(struct resource *root, struct resource *new)
944 {
945 	if (new->parent)
946 		return;
947 
948 	write_lock(&resource_lock);
949 	for (;;) {
950 		struct resource *conflict;
951 
952 		conflict = __insert_resource(root, new);
953 		if (!conflict)
954 			break;
955 		if (conflict == root)
956 			break;
957 
958 		/* Ok, expand resource to cover the conflict, then try again .. */
959 		if (conflict->start < new->start)
960 			new->start = conflict->start;
961 		if (conflict->end > new->end)
962 			new->end = conflict->end;
963 
964 		pr_info("Expanded resource %s due to conflict with %s\n", new->name, conflict->name);
965 	}
966 	write_unlock(&resource_lock);
967 }
968 /*
969  * Not for general consumption, only early boot memory map parsing, PCI
970  * resource discovery, and late discovery of CXL resources are expected
971  * to use this interface. The former are built-in and only the latter,
972  * CXL, is a module.
973  */
974 EXPORT_SYMBOL_NS_GPL(insert_resource_expand_to_fit, CXL);
975 
976 /**
977  * remove_resource - Remove a resource in the resource tree
978  * @old: resource to remove
979  *
980  * Returns 0 on success, -EINVAL if the resource is not valid.
981  *
982  * This function removes a resource previously inserted by insert_resource()
983  * or insert_resource_conflict(), and moves the children (if any) up to
984  * where they were before.  insert_resource() and insert_resource_conflict()
985  * insert a new resource, and move any conflicting resources down to the
986  * children of the new resource.
987  *
988  * insert_resource(), insert_resource_conflict() and remove_resource() are
989  * intended for producers of resources, such as FW modules and bus drivers.
990  */
991 int remove_resource(struct resource *old)
992 {
993 	int retval;
994 
995 	write_lock(&resource_lock);
996 	retval = __release_resource(old, false);
997 	write_unlock(&resource_lock);
998 	return retval;
999 }
1000 EXPORT_SYMBOL_GPL(remove_resource);
1001 
1002 static int __adjust_resource(struct resource *res, resource_size_t start,
1003 				resource_size_t size)
1004 {
1005 	struct resource *tmp, *parent = res->parent;
1006 	resource_size_t end = start + size - 1;
1007 	int result = -EBUSY;
1008 
1009 	if (!parent)
1010 		goto skip;
1011 
1012 	if ((start < parent->start) || (end > parent->end))
1013 		goto out;
1014 
1015 	if (res->sibling && (res->sibling->start <= end))
1016 		goto out;
1017 
1018 	tmp = parent->child;
1019 	if (tmp != res) {
1020 		while (tmp->sibling != res)
1021 			tmp = tmp->sibling;
1022 		if (start <= tmp->end)
1023 			goto out;
1024 	}
1025 
1026 skip:
1027 	for (tmp = res->child; tmp; tmp = tmp->sibling)
1028 		if ((tmp->start < start) || (tmp->end > end))
1029 			goto out;
1030 
1031 	res->start = start;
1032 	res->end = end;
1033 	result = 0;
1034 
1035  out:
1036 	return result;
1037 }
1038 
1039 /**
1040  * adjust_resource - modify a resource's start and size
1041  * @res: resource to modify
1042  * @start: new start value
1043  * @size: new size
1044  *
1045  * Given an existing resource, change its start and size to match the
1046  * arguments.  Returns 0 on success, -EBUSY if it can't fit.
1047  * Existing children of the resource are assumed to be immutable.
1048  */
1049 int adjust_resource(struct resource *res, resource_size_t start,
1050 		    resource_size_t size)
1051 {
1052 	int result;
1053 
1054 	write_lock(&resource_lock);
1055 	result = __adjust_resource(res, start, size);
1056 	write_unlock(&resource_lock);
1057 	return result;
1058 }
1059 EXPORT_SYMBOL(adjust_resource);
1060 
1061 static void __init
1062 __reserve_region_with_split(struct resource *root, resource_size_t start,
1063 			    resource_size_t end, const char *name)
1064 {
1065 	struct resource *parent = root;
1066 	struct resource *conflict;
1067 	struct resource *res = alloc_resource(GFP_ATOMIC);
1068 	struct resource *next_res = NULL;
1069 	int type = resource_type(root);
1070 
1071 	if (!res)
1072 		return;
1073 
1074 	res->name = name;
1075 	res->start = start;
1076 	res->end = end;
1077 	res->flags = type | IORESOURCE_BUSY;
1078 	res->desc = IORES_DESC_NONE;
1079 
1080 	while (1) {
1081 
1082 		conflict = __request_resource(parent, res);
1083 		if (!conflict) {
1084 			if (!next_res)
1085 				break;
1086 			res = next_res;
1087 			next_res = NULL;
1088 			continue;
1089 		}
1090 
1091 		/* conflict covered whole area */
1092 		if (conflict->start <= res->start &&
1093 				conflict->end >= res->end) {
1094 			free_resource(res);
1095 			WARN_ON(next_res);
1096 			break;
1097 		}
1098 
1099 		/* failed, split and try again */
1100 		if (conflict->start > res->start) {
1101 			end = res->end;
1102 			res->end = conflict->start - 1;
1103 			if (conflict->end < end) {
1104 				next_res = alloc_resource(GFP_ATOMIC);
1105 				if (!next_res) {
1106 					free_resource(res);
1107 					break;
1108 				}
1109 				next_res->name = name;
1110 				next_res->start = conflict->end + 1;
1111 				next_res->end = end;
1112 				next_res->flags = type | IORESOURCE_BUSY;
1113 				next_res->desc = IORES_DESC_NONE;
1114 			}
1115 		} else {
1116 			res->start = conflict->end + 1;
1117 		}
1118 	}
1119 
1120 }
1121 
1122 void __init
1123 reserve_region_with_split(struct resource *root, resource_size_t start,
1124 			  resource_size_t end, const char *name)
1125 {
1126 	int abort = 0;
1127 
1128 	write_lock(&resource_lock);
1129 	if (root->start > start || root->end < end) {
1130 		pr_err("requested range [0x%llx-0x%llx] not in root %pr\n",
1131 		       (unsigned long long)start, (unsigned long long)end,
1132 		       root);
1133 		if (start > root->end || end < root->start)
1134 			abort = 1;
1135 		else {
1136 			if (end > root->end)
1137 				end = root->end;
1138 			if (start < root->start)
1139 				start = root->start;
1140 			pr_err("fixing request to [0x%llx-0x%llx]\n",
1141 			       (unsigned long long)start,
1142 			       (unsigned long long)end);
1143 		}
1144 		dump_stack();
1145 	}
1146 	if (!abort)
1147 		__reserve_region_with_split(root, start, end, name);
1148 	write_unlock(&resource_lock);
1149 }
1150 
1151 /**
1152  * resource_alignment - calculate resource's alignment
1153  * @res: resource pointer
1154  *
1155  * Returns alignment on success, 0 (invalid alignment) on failure.
1156  */
1157 resource_size_t resource_alignment(struct resource *res)
1158 {
1159 	switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) {
1160 	case IORESOURCE_SIZEALIGN:
1161 		return resource_size(res);
1162 	case IORESOURCE_STARTALIGN:
1163 		return res->start;
1164 	default:
1165 		return 0;
1166 	}
1167 }
1168 
1169 /*
1170  * This is compatibility stuff for IO resources.
1171  *
1172  * Note how this, unlike the above, knows about
1173  * the IO flag meanings (busy etc).
1174  *
1175  * request_region creates a new busy region.
1176  *
1177  * release_region releases a matching busy region.
1178  */
1179 
1180 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait);
1181 
1182 static struct inode *iomem_inode;
1183 
1184 #ifdef CONFIG_IO_STRICT_DEVMEM
1185 static void revoke_iomem(struct resource *res)
1186 {
1187 	/* pairs with smp_store_release() in iomem_init_inode() */
1188 	struct inode *inode = smp_load_acquire(&iomem_inode);
1189 
1190 	/*
1191 	 * Check that the initialization has completed. Losing the race
1192 	 * is ok because it means drivers are claiming resources before
1193 	 * the fs_initcall level of init and prevent iomem_get_mapping users
1194 	 * from establishing mappings.
1195 	 */
1196 	if (!inode)
1197 		return;
1198 
1199 	/*
1200 	 * The expectation is that the driver has successfully marked
1201 	 * the resource busy by this point, so devmem_is_allowed()
1202 	 * should start returning false, however for performance this
1203 	 * does not iterate the entire resource range.
1204 	 */
1205 	if (devmem_is_allowed(PHYS_PFN(res->start)) &&
1206 	    devmem_is_allowed(PHYS_PFN(res->end))) {
1207 		/*
1208 		 * *cringe* iomem=relaxed says "go ahead, what's the
1209 		 * worst that can happen?"
1210 		 */
1211 		return;
1212 	}
1213 
1214 	unmap_mapping_range(inode->i_mapping, res->start, resource_size(res), 1);
1215 }
1216 #else
1217 static void revoke_iomem(struct resource *res) {}
1218 #endif
1219 
1220 struct address_space *iomem_get_mapping(void)
1221 {
1222 	/*
1223 	 * This function is only called from file open paths, hence guaranteed
1224 	 * that fs_initcalls have completed and no need to check for NULL. But
1225 	 * since revoke_iomem can be called before the initcall we still need
1226 	 * the barrier to appease checkers.
1227 	 */
1228 	return smp_load_acquire(&iomem_inode)->i_mapping;
1229 }
1230 
1231 static int __request_region_locked(struct resource *res, struct resource *parent,
1232 				   resource_size_t start, resource_size_t n,
1233 				   const char *name, int flags)
1234 {
1235 	DECLARE_WAITQUEUE(wait, current);
1236 
1237 	res->name = name;
1238 	res->start = start;
1239 	res->end = start + n - 1;
1240 
1241 	for (;;) {
1242 		struct resource *conflict;
1243 
1244 		res->flags = resource_type(parent) | resource_ext_type(parent);
1245 		res->flags |= IORESOURCE_BUSY | flags;
1246 		res->desc = parent->desc;
1247 
1248 		conflict = __request_resource(parent, res);
1249 		if (!conflict)
1250 			break;
1251 		/*
1252 		 * mm/hmm.c reserves physical addresses which then
1253 		 * become unavailable to other users.  Conflicts are
1254 		 * not expected.  Warn to aid debugging if encountered.
1255 		 */
1256 		if (conflict->desc == IORES_DESC_DEVICE_PRIVATE_MEMORY) {
1257 			pr_warn("Unaddressable device %s %pR conflicts with %pR",
1258 				conflict->name, conflict, res);
1259 		}
1260 		if (conflict != parent) {
1261 			if (!(conflict->flags & IORESOURCE_BUSY)) {
1262 				parent = conflict;
1263 				continue;
1264 			}
1265 		}
1266 		if (conflict->flags & flags & IORESOURCE_MUXED) {
1267 			add_wait_queue(&muxed_resource_wait, &wait);
1268 			write_unlock(&resource_lock);
1269 			set_current_state(TASK_UNINTERRUPTIBLE);
1270 			schedule();
1271 			remove_wait_queue(&muxed_resource_wait, &wait);
1272 			write_lock(&resource_lock);
1273 			continue;
1274 		}
1275 		/* Uhhuh, that didn't work out.. */
1276 		return -EBUSY;
1277 	}
1278 
1279 	return 0;
1280 }
1281 
1282 /**
1283  * __request_region - create a new busy resource region
1284  * @parent: parent resource descriptor
1285  * @start: resource start address
1286  * @n: resource region size
1287  * @name: reserving caller's ID string
1288  * @flags: IO resource flags
1289  */
1290 struct resource *__request_region(struct resource *parent,
1291 				  resource_size_t start, resource_size_t n,
1292 				  const char *name, int flags)
1293 {
1294 	struct resource *res = alloc_resource(GFP_KERNEL);
1295 	int ret;
1296 
1297 	if (!res)
1298 		return NULL;
1299 
1300 	write_lock(&resource_lock);
1301 	ret = __request_region_locked(res, parent, start, n, name, flags);
1302 	write_unlock(&resource_lock);
1303 
1304 	if (ret) {
1305 		free_resource(res);
1306 		return NULL;
1307 	}
1308 
1309 	if (parent == &iomem_resource)
1310 		revoke_iomem(res);
1311 
1312 	return res;
1313 }
1314 EXPORT_SYMBOL(__request_region);
1315 
1316 /**
1317  * __release_region - release a previously reserved resource region
1318  * @parent: parent resource descriptor
1319  * @start: resource start address
1320  * @n: resource region size
1321  *
1322  * The described resource region must match a currently busy region.
1323  */
1324 void __release_region(struct resource *parent, resource_size_t start,
1325 		      resource_size_t n)
1326 {
1327 	struct resource **p;
1328 	resource_size_t end;
1329 
1330 	p = &parent->child;
1331 	end = start + n - 1;
1332 
1333 	write_lock(&resource_lock);
1334 
1335 	for (;;) {
1336 		struct resource *res = *p;
1337 
1338 		if (!res)
1339 			break;
1340 		if (res->start <= start && res->end >= end) {
1341 			if (!(res->flags & IORESOURCE_BUSY)) {
1342 				p = &res->child;
1343 				continue;
1344 			}
1345 			if (res->start != start || res->end != end)
1346 				break;
1347 			*p = res->sibling;
1348 			write_unlock(&resource_lock);
1349 			if (res->flags & IORESOURCE_MUXED)
1350 				wake_up(&muxed_resource_wait);
1351 			free_resource(res);
1352 			return;
1353 		}
1354 		p = &res->sibling;
1355 	}
1356 
1357 	write_unlock(&resource_lock);
1358 
1359 	pr_warn("Trying to free nonexistent resource <%pa-%pa>\n", &start, &end);
1360 }
1361 EXPORT_SYMBOL(__release_region);
1362 
1363 #ifdef CONFIG_MEMORY_HOTREMOVE
1364 /**
1365  * release_mem_region_adjustable - release a previously reserved memory region
1366  * @start: resource start address
1367  * @size: resource region size
1368  *
1369  * This interface is intended for memory hot-delete.  The requested region
1370  * is released from a currently busy memory resource.  The requested region
1371  * must either match exactly or fit into a single busy resource entry.  In
1372  * the latter case, the remaining resource is adjusted accordingly.
1373  * Existing children of the busy memory resource must be immutable in the
1374  * request.
1375  *
1376  * Note:
1377  * - Additional release conditions, such as overlapping region, can be
1378  *   supported after they are confirmed as valid cases.
1379  * - When a busy memory resource gets split into two entries, the code
1380  *   assumes that all children remain in the lower address entry for
1381  *   simplicity.  Enhance this logic when necessary.
1382  */
1383 void release_mem_region_adjustable(resource_size_t start, resource_size_t size)
1384 {
1385 	struct resource *parent = &iomem_resource;
1386 	struct resource *new_res = NULL;
1387 	bool alloc_nofail = false;
1388 	struct resource **p;
1389 	struct resource *res;
1390 	resource_size_t end;
1391 
1392 	end = start + size - 1;
1393 	if (WARN_ON_ONCE((start < parent->start) || (end > parent->end)))
1394 		return;
1395 
1396 	/*
1397 	 * We free up quite a lot of memory on memory hotunplug (esp., memap),
1398 	 * just before releasing the region. This is highly unlikely to
1399 	 * fail - let's play save and make it never fail as the caller cannot
1400 	 * perform any error handling (e.g., trying to re-add memory will fail
1401 	 * similarly).
1402 	 */
1403 retry:
1404 	new_res = alloc_resource(GFP_KERNEL | (alloc_nofail ? __GFP_NOFAIL : 0));
1405 
1406 	p = &parent->child;
1407 	write_lock(&resource_lock);
1408 
1409 	while ((res = *p)) {
1410 		if (res->start >= end)
1411 			break;
1412 
1413 		/* look for the next resource if it does not fit into */
1414 		if (res->start > start || res->end < end) {
1415 			p = &res->sibling;
1416 			continue;
1417 		}
1418 
1419 		if (!(res->flags & IORESOURCE_MEM))
1420 			break;
1421 
1422 		if (!(res->flags & IORESOURCE_BUSY)) {
1423 			p = &res->child;
1424 			continue;
1425 		}
1426 
1427 		/* found the target resource; let's adjust accordingly */
1428 		if (res->start == start && res->end == end) {
1429 			/* free the whole entry */
1430 			*p = res->sibling;
1431 			free_resource(res);
1432 		} else if (res->start == start && res->end != end) {
1433 			/* adjust the start */
1434 			WARN_ON_ONCE(__adjust_resource(res, end + 1,
1435 						       res->end - end));
1436 		} else if (res->start != start && res->end == end) {
1437 			/* adjust the end */
1438 			WARN_ON_ONCE(__adjust_resource(res, res->start,
1439 						       start - res->start));
1440 		} else {
1441 			/* split into two entries - we need a new resource */
1442 			if (!new_res) {
1443 				new_res = alloc_resource(GFP_ATOMIC);
1444 				if (!new_res) {
1445 					alloc_nofail = true;
1446 					write_unlock(&resource_lock);
1447 					goto retry;
1448 				}
1449 			}
1450 			new_res->name = res->name;
1451 			new_res->start = end + 1;
1452 			new_res->end = res->end;
1453 			new_res->flags = res->flags;
1454 			new_res->desc = res->desc;
1455 			new_res->parent = res->parent;
1456 			new_res->sibling = res->sibling;
1457 			new_res->child = NULL;
1458 
1459 			if (WARN_ON_ONCE(__adjust_resource(res, res->start,
1460 							   start - res->start)))
1461 				break;
1462 			res->sibling = new_res;
1463 			new_res = NULL;
1464 		}
1465 
1466 		break;
1467 	}
1468 
1469 	write_unlock(&resource_lock);
1470 	free_resource(new_res);
1471 }
1472 #endif	/* CONFIG_MEMORY_HOTREMOVE */
1473 
1474 #ifdef CONFIG_MEMORY_HOTPLUG
1475 static bool system_ram_resources_mergeable(struct resource *r1,
1476 					   struct resource *r2)
1477 {
1478 	/* We assume either r1 or r2 is IORESOURCE_SYSRAM_MERGEABLE. */
1479 	return r1->flags == r2->flags && r1->end + 1 == r2->start &&
1480 	       r1->name == r2->name && r1->desc == r2->desc &&
1481 	       !r1->child && !r2->child;
1482 }
1483 
1484 /**
1485  * merge_system_ram_resource - mark the System RAM resource mergeable and try to
1486  *	merge it with adjacent, mergeable resources
1487  * @res: resource descriptor
1488  *
1489  * This interface is intended for memory hotplug, whereby lots of contiguous
1490  * system ram resources are added (e.g., via add_memory*()) by a driver, and
1491  * the actual resource boundaries are not of interest (e.g., it might be
1492  * relevant for DIMMs). Only resources that are marked mergeable, that have the
1493  * same parent, and that don't have any children are considered. All mergeable
1494  * resources must be immutable during the request.
1495  *
1496  * Note:
1497  * - The caller has to make sure that no pointers to resources that are
1498  *   marked mergeable are used anymore after this call - the resource might
1499  *   be freed and the pointer might be stale!
1500  * - release_mem_region_adjustable() will split on demand on memory hotunplug
1501  */
1502 void merge_system_ram_resource(struct resource *res)
1503 {
1504 	const unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY;
1505 	struct resource *cur;
1506 
1507 	if (WARN_ON_ONCE((res->flags & flags) != flags))
1508 		return;
1509 
1510 	write_lock(&resource_lock);
1511 	res->flags |= IORESOURCE_SYSRAM_MERGEABLE;
1512 
1513 	/* Try to merge with next item in the list. */
1514 	cur = res->sibling;
1515 	if (cur && system_ram_resources_mergeable(res, cur)) {
1516 		res->end = cur->end;
1517 		res->sibling = cur->sibling;
1518 		free_resource(cur);
1519 	}
1520 
1521 	/* Try to merge with previous item in the list. */
1522 	cur = res->parent->child;
1523 	while (cur && cur->sibling != res)
1524 		cur = cur->sibling;
1525 	if (cur && system_ram_resources_mergeable(cur, res)) {
1526 		cur->end = res->end;
1527 		cur->sibling = res->sibling;
1528 		free_resource(res);
1529 	}
1530 	write_unlock(&resource_lock);
1531 }
1532 #endif	/* CONFIG_MEMORY_HOTPLUG */
1533 
1534 /*
1535  * Managed region resource
1536  */
1537 static void devm_resource_release(struct device *dev, void *ptr)
1538 {
1539 	struct resource **r = ptr;
1540 
1541 	release_resource(*r);
1542 }
1543 
1544 /**
1545  * devm_request_resource() - request and reserve an I/O or memory resource
1546  * @dev: device for which to request the resource
1547  * @root: root of the resource tree from which to request the resource
1548  * @new: descriptor of the resource to request
1549  *
1550  * This is a device-managed version of request_resource(). There is usually
1551  * no need to release resources requested by this function explicitly since
1552  * that will be taken care of when the device is unbound from its driver.
1553  * If for some reason the resource needs to be released explicitly, because
1554  * of ordering issues for example, drivers must call devm_release_resource()
1555  * rather than the regular release_resource().
1556  *
1557  * When a conflict is detected between any existing resources and the newly
1558  * requested resource, an error message will be printed.
1559  *
1560  * Returns 0 on success or a negative error code on failure.
1561  */
1562 int devm_request_resource(struct device *dev, struct resource *root,
1563 			  struct resource *new)
1564 {
1565 	struct resource *conflict, **ptr;
1566 
1567 	ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL);
1568 	if (!ptr)
1569 		return -ENOMEM;
1570 
1571 	*ptr = new;
1572 
1573 	conflict = request_resource_conflict(root, new);
1574 	if (conflict) {
1575 		dev_err(dev, "resource collision: %pR conflicts with %s %pR\n",
1576 			new, conflict->name, conflict);
1577 		devres_free(ptr);
1578 		return -EBUSY;
1579 	}
1580 
1581 	devres_add(dev, ptr);
1582 	return 0;
1583 }
1584 EXPORT_SYMBOL(devm_request_resource);
1585 
1586 static int devm_resource_match(struct device *dev, void *res, void *data)
1587 {
1588 	struct resource **ptr = res;
1589 
1590 	return *ptr == data;
1591 }
1592 
1593 /**
1594  * devm_release_resource() - release a previously requested resource
1595  * @dev: device for which to release the resource
1596  * @new: descriptor of the resource to release
1597  *
1598  * Releases a resource previously requested using devm_request_resource().
1599  */
1600 void devm_release_resource(struct device *dev, struct resource *new)
1601 {
1602 	WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match,
1603 			       new));
1604 }
1605 EXPORT_SYMBOL(devm_release_resource);
1606 
1607 struct region_devres {
1608 	struct resource *parent;
1609 	resource_size_t start;
1610 	resource_size_t n;
1611 };
1612 
1613 static void devm_region_release(struct device *dev, void *res)
1614 {
1615 	struct region_devres *this = res;
1616 
1617 	__release_region(this->parent, this->start, this->n);
1618 }
1619 
1620 static int devm_region_match(struct device *dev, void *res, void *match_data)
1621 {
1622 	struct region_devres *this = res, *match = match_data;
1623 
1624 	return this->parent == match->parent &&
1625 		this->start == match->start && this->n == match->n;
1626 }
1627 
1628 struct resource *
1629 __devm_request_region(struct device *dev, struct resource *parent,
1630 		      resource_size_t start, resource_size_t n, const char *name)
1631 {
1632 	struct region_devres *dr = NULL;
1633 	struct resource *res;
1634 
1635 	dr = devres_alloc(devm_region_release, sizeof(struct region_devres),
1636 			  GFP_KERNEL);
1637 	if (!dr)
1638 		return NULL;
1639 
1640 	dr->parent = parent;
1641 	dr->start = start;
1642 	dr->n = n;
1643 
1644 	res = __request_region(parent, start, n, name, 0);
1645 	if (res)
1646 		devres_add(dev, dr);
1647 	else
1648 		devres_free(dr);
1649 
1650 	return res;
1651 }
1652 EXPORT_SYMBOL(__devm_request_region);
1653 
1654 void __devm_release_region(struct device *dev, struct resource *parent,
1655 			   resource_size_t start, resource_size_t n)
1656 {
1657 	struct region_devres match_data = { parent, start, n };
1658 
1659 	__release_region(parent, start, n);
1660 	WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match,
1661 			       &match_data));
1662 }
1663 EXPORT_SYMBOL(__devm_release_region);
1664 
1665 /*
1666  * Reserve I/O ports or memory based on "reserve=" kernel parameter.
1667  */
1668 #define MAXRESERVE 4
1669 static int __init reserve_setup(char *str)
1670 {
1671 	static int reserved;
1672 	static struct resource reserve[MAXRESERVE];
1673 
1674 	for (;;) {
1675 		unsigned int io_start, io_num;
1676 		int x = reserved;
1677 		struct resource *parent;
1678 
1679 		if (get_option(&str, &io_start) != 2)
1680 			break;
1681 		if (get_option(&str, &io_num) == 0)
1682 			break;
1683 		if (x < MAXRESERVE) {
1684 			struct resource *res = reserve + x;
1685 
1686 			/*
1687 			 * If the region starts below 0x10000, we assume it's
1688 			 * I/O port space; otherwise assume it's memory.
1689 			 */
1690 			if (io_start < 0x10000) {
1691 				res->flags = IORESOURCE_IO;
1692 				parent = &ioport_resource;
1693 			} else {
1694 				res->flags = IORESOURCE_MEM;
1695 				parent = &iomem_resource;
1696 			}
1697 			res->name = "reserved";
1698 			res->start = io_start;
1699 			res->end = io_start + io_num - 1;
1700 			res->flags |= IORESOURCE_BUSY;
1701 			res->desc = IORES_DESC_NONE;
1702 			res->child = NULL;
1703 			if (request_resource(parent, res) == 0)
1704 				reserved = x+1;
1705 		}
1706 	}
1707 	return 1;
1708 }
1709 __setup("reserve=", reserve_setup);
1710 
1711 /*
1712  * Check if the requested addr and size spans more than any slot in the
1713  * iomem resource tree.
1714  */
1715 int iomem_map_sanity_check(resource_size_t addr, unsigned long size)
1716 {
1717 	resource_size_t end = addr + size - 1;
1718 	struct resource *p;
1719 	int err = 0;
1720 
1721 	read_lock(&resource_lock);
1722 	for_each_resource(&iomem_resource, p, false) {
1723 		/*
1724 		 * We can probably skip the resources without
1725 		 * IORESOURCE_IO attribute?
1726 		 */
1727 		if (p->start > end)
1728 			continue;
1729 		if (p->end < addr)
1730 			continue;
1731 		if (PFN_DOWN(p->start) <= PFN_DOWN(addr) &&
1732 		    PFN_DOWN(p->end) >= PFN_DOWN(end))
1733 			continue;
1734 		/*
1735 		 * if a resource is "BUSY", it's not a hardware resource
1736 		 * but a driver mapping of such a resource; we don't want
1737 		 * to warn for those; some drivers legitimately map only
1738 		 * partial hardware resources. (example: vesafb)
1739 		 */
1740 		if (p->flags & IORESOURCE_BUSY)
1741 			continue;
1742 
1743 		pr_warn("resource sanity check: requesting [mem %pa-%pa], which spans more than %s %pR\n",
1744 			&addr, &end, p->name, p);
1745 		err = -1;
1746 		break;
1747 	}
1748 	read_unlock(&resource_lock);
1749 
1750 	return err;
1751 }
1752 
1753 #ifdef CONFIG_STRICT_DEVMEM
1754 static int strict_iomem_checks = 1;
1755 #else
1756 static int strict_iomem_checks;
1757 #endif
1758 
1759 /*
1760  * Check if an address is exclusive to the kernel and must not be mapped to
1761  * user space, for example, via /dev/mem.
1762  *
1763  * Returns true if exclusive to the kernel, otherwise returns false.
1764  */
1765 bool resource_is_exclusive(struct resource *root, u64 addr, resource_size_t size)
1766 {
1767 	const unsigned int exclusive_system_ram = IORESOURCE_SYSTEM_RAM |
1768 						  IORESOURCE_EXCLUSIVE;
1769 	bool skip_children = false, err = false;
1770 	struct resource *p;
1771 
1772 	read_lock(&resource_lock);
1773 	for_each_resource(root, p, skip_children) {
1774 		if (p->start >= addr + size)
1775 			break;
1776 		if (p->end < addr) {
1777 			skip_children = true;
1778 			continue;
1779 		}
1780 		skip_children = false;
1781 
1782 		/*
1783 		 * IORESOURCE_SYSTEM_RAM resources are exclusive if
1784 		 * IORESOURCE_EXCLUSIVE is set, even if they
1785 		 * are not busy and even if "iomem=relaxed" is set. The
1786 		 * responsible driver dynamically adds/removes system RAM within
1787 		 * such an area and uncontrolled access is dangerous.
1788 		 */
1789 		if ((p->flags & exclusive_system_ram) == exclusive_system_ram) {
1790 			err = true;
1791 			break;
1792 		}
1793 
1794 		/*
1795 		 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set
1796 		 * or CONFIG_IO_STRICT_DEVMEM is enabled and the
1797 		 * resource is busy.
1798 		 */
1799 		if (!strict_iomem_checks || !(p->flags & IORESOURCE_BUSY))
1800 			continue;
1801 		if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM)
1802 				|| p->flags & IORESOURCE_EXCLUSIVE) {
1803 			err = true;
1804 			break;
1805 		}
1806 	}
1807 	read_unlock(&resource_lock);
1808 
1809 	return err;
1810 }
1811 
1812 bool iomem_is_exclusive(u64 addr)
1813 {
1814 	return resource_is_exclusive(&iomem_resource, addr & PAGE_MASK,
1815 				     PAGE_SIZE);
1816 }
1817 
1818 struct resource_entry *resource_list_create_entry(struct resource *res,
1819 						  size_t extra_size)
1820 {
1821 	struct resource_entry *entry;
1822 
1823 	entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL);
1824 	if (entry) {
1825 		INIT_LIST_HEAD(&entry->node);
1826 		entry->res = res ? res : &entry->__res;
1827 	}
1828 
1829 	return entry;
1830 }
1831 EXPORT_SYMBOL(resource_list_create_entry);
1832 
1833 void resource_list_free(struct list_head *head)
1834 {
1835 	struct resource_entry *entry, *tmp;
1836 
1837 	list_for_each_entry_safe(entry, tmp, head, node)
1838 		resource_list_destroy_entry(entry);
1839 }
1840 EXPORT_SYMBOL(resource_list_free);
1841 
1842 #ifdef CONFIG_GET_FREE_REGION
1843 #define GFR_DESCENDING		(1UL << 0)
1844 #define GFR_REQUEST_REGION	(1UL << 1)
1845 #define GFR_DEFAULT_ALIGN (1UL << PA_SECTION_SHIFT)
1846 
1847 static resource_size_t gfr_start(struct resource *base, resource_size_t size,
1848 				 resource_size_t align, unsigned long flags)
1849 {
1850 	if (flags & GFR_DESCENDING) {
1851 		resource_size_t end;
1852 
1853 		end = min_t(resource_size_t, base->end,
1854 			    (1ULL << MAX_PHYSMEM_BITS) - 1);
1855 		return end - size + 1;
1856 	}
1857 
1858 	return ALIGN(base->start, align);
1859 }
1860 
1861 static bool gfr_continue(struct resource *base, resource_size_t addr,
1862 			 resource_size_t size, unsigned long flags)
1863 {
1864 	if (flags & GFR_DESCENDING)
1865 		return addr > size && addr >= base->start;
1866 	/*
1867 	 * In the ascend case be careful that the last increment by
1868 	 * @size did not wrap 0.
1869 	 */
1870 	return addr > addr - size &&
1871 	       addr <= min_t(resource_size_t, base->end,
1872 			     (1ULL << MAX_PHYSMEM_BITS) - 1);
1873 }
1874 
1875 static resource_size_t gfr_next(resource_size_t addr, resource_size_t size,
1876 				unsigned long flags)
1877 {
1878 	if (flags & GFR_DESCENDING)
1879 		return addr - size;
1880 	return addr + size;
1881 }
1882 
1883 static void remove_free_mem_region(void *_res)
1884 {
1885 	struct resource *res = _res;
1886 
1887 	if (res->parent)
1888 		remove_resource(res);
1889 	free_resource(res);
1890 }
1891 
1892 static struct resource *
1893 get_free_mem_region(struct device *dev, struct resource *base,
1894 		    resource_size_t size, const unsigned long align,
1895 		    const char *name, const unsigned long desc,
1896 		    const unsigned long flags)
1897 {
1898 	resource_size_t addr;
1899 	struct resource *res;
1900 	struct region_devres *dr = NULL;
1901 
1902 	size = ALIGN(size, align);
1903 
1904 	res = alloc_resource(GFP_KERNEL);
1905 	if (!res)
1906 		return ERR_PTR(-ENOMEM);
1907 
1908 	if (dev && (flags & GFR_REQUEST_REGION)) {
1909 		dr = devres_alloc(devm_region_release,
1910 				sizeof(struct region_devres), GFP_KERNEL);
1911 		if (!dr) {
1912 			free_resource(res);
1913 			return ERR_PTR(-ENOMEM);
1914 		}
1915 	} else if (dev) {
1916 		if (devm_add_action_or_reset(dev, remove_free_mem_region, res))
1917 			return ERR_PTR(-ENOMEM);
1918 	}
1919 
1920 	write_lock(&resource_lock);
1921 	for (addr = gfr_start(base, size, align, flags);
1922 	     gfr_continue(base, addr, align, flags);
1923 	     addr = gfr_next(addr, align, flags)) {
1924 		if (__region_intersects(base, addr, size, 0, IORES_DESC_NONE) !=
1925 		    REGION_DISJOINT)
1926 			continue;
1927 
1928 		if (flags & GFR_REQUEST_REGION) {
1929 			if (__request_region_locked(res, &iomem_resource, addr,
1930 						    size, name, 0))
1931 				break;
1932 
1933 			if (dev) {
1934 				dr->parent = &iomem_resource;
1935 				dr->start = addr;
1936 				dr->n = size;
1937 				devres_add(dev, dr);
1938 			}
1939 
1940 			res->desc = desc;
1941 			write_unlock(&resource_lock);
1942 
1943 
1944 			/*
1945 			 * A driver is claiming this region so revoke any
1946 			 * mappings.
1947 			 */
1948 			revoke_iomem(res);
1949 		} else {
1950 			res->start = addr;
1951 			res->end = addr + size - 1;
1952 			res->name = name;
1953 			res->desc = desc;
1954 			res->flags = IORESOURCE_MEM;
1955 
1956 			/*
1957 			 * Only succeed if the resource hosts an exclusive
1958 			 * range after the insert
1959 			 */
1960 			if (__insert_resource(base, res) || res->child)
1961 				break;
1962 
1963 			write_unlock(&resource_lock);
1964 		}
1965 
1966 		return res;
1967 	}
1968 	write_unlock(&resource_lock);
1969 
1970 	if (flags & GFR_REQUEST_REGION) {
1971 		free_resource(res);
1972 		devres_free(dr);
1973 	} else if (dev)
1974 		devm_release_action(dev, remove_free_mem_region, res);
1975 
1976 	return ERR_PTR(-ERANGE);
1977 }
1978 
1979 /**
1980  * devm_request_free_mem_region - find free region for device private memory
1981  *
1982  * @dev: device struct to bind the resource to
1983  * @size: size in bytes of the device memory to add
1984  * @base: resource tree to look in
1985  *
1986  * This function tries to find an empty range of physical address big enough to
1987  * contain the new resource, so that it can later be hotplugged as ZONE_DEVICE
1988  * memory, which in turn allocates struct pages.
1989  */
1990 struct resource *devm_request_free_mem_region(struct device *dev,
1991 		struct resource *base, unsigned long size)
1992 {
1993 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
1994 
1995 	return get_free_mem_region(dev, base, size, GFR_DEFAULT_ALIGN,
1996 				   dev_name(dev),
1997 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
1998 }
1999 EXPORT_SYMBOL_GPL(devm_request_free_mem_region);
2000 
2001 struct resource *request_free_mem_region(struct resource *base,
2002 		unsigned long size, const char *name)
2003 {
2004 	unsigned long flags = GFR_DESCENDING | GFR_REQUEST_REGION;
2005 
2006 	return get_free_mem_region(NULL, base, size, GFR_DEFAULT_ALIGN, name,
2007 				   IORES_DESC_DEVICE_PRIVATE_MEMORY, flags);
2008 }
2009 EXPORT_SYMBOL_GPL(request_free_mem_region);
2010 
2011 /**
2012  * alloc_free_mem_region - find a free region relative to @base
2013  * @base: resource that will parent the new resource
2014  * @size: size in bytes of memory to allocate from @base
2015  * @align: alignment requirements for the allocation
2016  * @name: resource name
2017  *
2018  * Buses like CXL, that can dynamically instantiate new memory regions,
2019  * need a method to allocate physical address space for those regions.
2020  * Allocate and insert a new resource to cover a free, unclaimed by a
2021  * descendant of @base, range in the span of @base.
2022  */
2023 struct resource *alloc_free_mem_region(struct resource *base,
2024 				       unsigned long size, unsigned long align,
2025 				       const char *name)
2026 {
2027 	/* Default of ascending direction and insert resource */
2028 	unsigned long flags = 0;
2029 
2030 	return get_free_mem_region(NULL, base, size, align, name,
2031 				   IORES_DESC_NONE, flags);
2032 }
2033 EXPORT_SYMBOL_NS_GPL(alloc_free_mem_region, CXL);
2034 #endif /* CONFIG_GET_FREE_REGION */
2035 
2036 static int __init strict_iomem(char *str)
2037 {
2038 	if (strstr(str, "relaxed"))
2039 		strict_iomem_checks = 0;
2040 	if (strstr(str, "strict"))
2041 		strict_iomem_checks = 1;
2042 	return 1;
2043 }
2044 
2045 static int iomem_fs_init_fs_context(struct fs_context *fc)
2046 {
2047 	return init_pseudo(fc, DEVMEM_MAGIC) ? 0 : -ENOMEM;
2048 }
2049 
2050 static struct file_system_type iomem_fs_type = {
2051 	.name		= "iomem",
2052 	.owner		= THIS_MODULE,
2053 	.init_fs_context = iomem_fs_init_fs_context,
2054 	.kill_sb	= kill_anon_super,
2055 };
2056 
2057 static int __init iomem_init_inode(void)
2058 {
2059 	static struct vfsmount *iomem_vfs_mount;
2060 	static int iomem_fs_cnt;
2061 	struct inode *inode;
2062 	int rc;
2063 
2064 	rc = simple_pin_fs(&iomem_fs_type, &iomem_vfs_mount, &iomem_fs_cnt);
2065 	if (rc < 0) {
2066 		pr_err("Cannot mount iomem pseudo filesystem: %d\n", rc);
2067 		return rc;
2068 	}
2069 
2070 	inode = alloc_anon_inode(iomem_vfs_mount->mnt_sb);
2071 	if (IS_ERR(inode)) {
2072 		rc = PTR_ERR(inode);
2073 		pr_err("Cannot allocate inode for iomem: %d\n", rc);
2074 		simple_release_fs(&iomem_vfs_mount, &iomem_fs_cnt);
2075 		return rc;
2076 	}
2077 
2078 	/*
2079 	 * Publish iomem revocation inode initialized.
2080 	 * Pairs with smp_load_acquire() in revoke_iomem().
2081 	 */
2082 	smp_store_release(&iomem_inode, inode);
2083 
2084 	return 0;
2085 }
2086 
2087 fs_initcall(iomem_init_inode);
2088 
2089 __setup("iomem=", strict_iomem);
2090