1 /* 2 * linux/kernel/resource.c 3 * 4 * Copyright (C) 1999 Linus Torvalds 5 * Copyright (C) 1999 Martin Mares <[email protected]> 6 * 7 * Arbitrary resource management. 8 */ 9 10 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 11 12 #include <linux/export.h> 13 #include <linux/errno.h> 14 #include <linux/ioport.h> 15 #include <linux/init.h> 16 #include <linux/slab.h> 17 #include <linux/spinlock.h> 18 #include <linux/fs.h> 19 #include <linux/proc_fs.h> 20 #include <linux/sched.h> 21 #include <linux/seq_file.h> 22 #include <linux/device.h> 23 #include <linux/pfn.h> 24 #include <linux/mm.h> 25 #include <linux/resource_ext.h> 26 #include <asm/io.h> 27 28 29 struct resource ioport_resource = { 30 .name = "PCI IO", 31 .start = 0, 32 .end = IO_SPACE_LIMIT, 33 .flags = IORESOURCE_IO, 34 }; 35 EXPORT_SYMBOL(ioport_resource); 36 37 struct resource iomem_resource = { 38 .name = "PCI mem", 39 .start = 0, 40 .end = -1, 41 .flags = IORESOURCE_MEM, 42 }; 43 EXPORT_SYMBOL(iomem_resource); 44 45 /* constraints to be met while allocating resources */ 46 struct resource_constraint { 47 resource_size_t min, max, align; 48 resource_size_t (*alignf)(void *, const struct resource *, 49 resource_size_t, resource_size_t); 50 void *alignf_data; 51 }; 52 53 static DEFINE_RWLOCK(resource_lock); 54 55 /* 56 * For memory hotplug, there is no way to free resource entries allocated 57 * by boot mem after the system is up. So for reusing the resource entry 58 * we need to remember the resource. 59 */ 60 static struct resource *bootmem_resource_free; 61 static DEFINE_SPINLOCK(bootmem_resource_lock); 62 63 static struct resource *next_resource(struct resource *p, bool sibling_only) 64 { 65 /* Caller wants to traverse through siblings only */ 66 if (sibling_only) 67 return p->sibling; 68 69 if (p->child) 70 return p->child; 71 while (!p->sibling && p->parent) 72 p = p->parent; 73 return p->sibling; 74 } 75 76 static void *r_next(struct seq_file *m, void *v, loff_t *pos) 77 { 78 struct resource *p = v; 79 (*pos)++; 80 return (void *)next_resource(p, false); 81 } 82 83 #ifdef CONFIG_PROC_FS 84 85 enum { MAX_IORES_LEVEL = 5 }; 86 87 static void *r_start(struct seq_file *m, loff_t *pos) 88 __acquires(resource_lock) 89 { 90 struct resource *p = PDE_DATA(file_inode(m->file)); 91 loff_t l = 0; 92 read_lock(&resource_lock); 93 for (p = p->child; p && l < *pos; p = r_next(m, p, &l)) 94 ; 95 return p; 96 } 97 98 static void r_stop(struct seq_file *m, void *v) 99 __releases(resource_lock) 100 { 101 read_unlock(&resource_lock); 102 } 103 104 static int r_show(struct seq_file *m, void *v) 105 { 106 struct resource *root = PDE_DATA(file_inode(m->file)); 107 struct resource *r = v, *p; 108 unsigned long long start, end; 109 int width = root->end < 0x10000 ? 4 : 8; 110 int depth; 111 112 for (depth = 0, p = r; depth < MAX_IORES_LEVEL; depth++, p = p->parent) 113 if (p->parent == root) 114 break; 115 116 if (file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) { 117 start = r->start; 118 end = r->end; 119 } else { 120 start = end = 0; 121 } 122 123 seq_printf(m, "%*s%0*llx-%0*llx : %s\n", 124 depth * 2, "", 125 width, start, 126 width, end, 127 r->name ? r->name : "<BAD>"); 128 return 0; 129 } 130 131 static const struct seq_operations resource_op = { 132 .start = r_start, 133 .next = r_next, 134 .stop = r_stop, 135 .show = r_show, 136 }; 137 138 static int __init ioresources_init(void) 139 { 140 proc_create_seq_data("ioports", 0, NULL, &resource_op, 141 &ioport_resource); 142 proc_create_seq_data("iomem", 0, NULL, &resource_op, &iomem_resource); 143 return 0; 144 } 145 __initcall(ioresources_init); 146 147 #endif /* CONFIG_PROC_FS */ 148 149 static void free_resource(struct resource *res) 150 { 151 if (!res) 152 return; 153 154 if (!PageSlab(virt_to_head_page(res))) { 155 spin_lock(&bootmem_resource_lock); 156 res->sibling = bootmem_resource_free; 157 bootmem_resource_free = res; 158 spin_unlock(&bootmem_resource_lock); 159 } else { 160 kfree(res); 161 } 162 } 163 164 static struct resource *alloc_resource(gfp_t flags) 165 { 166 struct resource *res = NULL; 167 168 spin_lock(&bootmem_resource_lock); 169 if (bootmem_resource_free) { 170 res = bootmem_resource_free; 171 bootmem_resource_free = res->sibling; 172 } 173 spin_unlock(&bootmem_resource_lock); 174 175 if (res) 176 memset(res, 0, sizeof(struct resource)); 177 else 178 res = kzalloc(sizeof(struct resource), flags); 179 180 return res; 181 } 182 183 /* Return the conflict entry if you can't request it */ 184 static struct resource * __request_resource(struct resource *root, struct resource *new) 185 { 186 resource_size_t start = new->start; 187 resource_size_t end = new->end; 188 struct resource *tmp, **p; 189 190 if (end < start) 191 return root; 192 if (start < root->start) 193 return root; 194 if (end > root->end) 195 return root; 196 p = &root->child; 197 for (;;) { 198 tmp = *p; 199 if (!tmp || tmp->start > end) { 200 new->sibling = tmp; 201 *p = new; 202 new->parent = root; 203 return NULL; 204 } 205 p = &tmp->sibling; 206 if (tmp->end < start) 207 continue; 208 return tmp; 209 } 210 } 211 212 static int __release_resource(struct resource *old, bool release_child) 213 { 214 struct resource *tmp, **p, *chd; 215 216 p = &old->parent->child; 217 for (;;) { 218 tmp = *p; 219 if (!tmp) 220 break; 221 if (tmp == old) { 222 if (release_child || !(tmp->child)) { 223 *p = tmp->sibling; 224 } else { 225 for (chd = tmp->child;; chd = chd->sibling) { 226 chd->parent = tmp->parent; 227 if (!(chd->sibling)) 228 break; 229 } 230 *p = tmp->child; 231 chd->sibling = tmp->sibling; 232 } 233 old->parent = NULL; 234 return 0; 235 } 236 p = &tmp->sibling; 237 } 238 return -EINVAL; 239 } 240 241 static void __release_child_resources(struct resource *r) 242 { 243 struct resource *tmp, *p; 244 resource_size_t size; 245 246 p = r->child; 247 r->child = NULL; 248 while (p) { 249 tmp = p; 250 p = p->sibling; 251 252 tmp->parent = NULL; 253 tmp->sibling = NULL; 254 __release_child_resources(tmp); 255 256 printk(KERN_DEBUG "release child resource %pR\n", tmp); 257 /* need to restore size, and keep flags */ 258 size = resource_size(tmp); 259 tmp->start = 0; 260 tmp->end = size - 1; 261 } 262 } 263 264 void release_child_resources(struct resource *r) 265 { 266 write_lock(&resource_lock); 267 __release_child_resources(r); 268 write_unlock(&resource_lock); 269 } 270 271 /** 272 * request_resource_conflict - request and reserve an I/O or memory resource 273 * @root: root resource descriptor 274 * @new: resource descriptor desired by caller 275 * 276 * Returns 0 for success, conflict resource on error. 277 */ 278 struct resource *request_resource_conflict(struct resource *root, struct resource *new) 279 { 280 struct resource *conflict; 281 282 write_lock(&resource_lock); 283 conflict = __request_resource(root, new); 284 write_unlock(&resource_lock); 285 return conflict; 286 } 287 288 /** 289 * request_resource - request and reserve an I/O or memory resource 290 * @root: root resource descriptor 291 * @new: resource descriptor desired by caller 292 * 293 * Returns 0 for success, negative error code on error. 294 */ 295 int request_resource(struct resource *root, struct resource *new) 296 { 297 struct resource *conflict; 298 299 conflict = request_resource_conflict(root, new); 300 return conflict ? -EBUSY : 0; 301 } 302 303 EXPORT_SYMBOL(request_resource); 304 305 /** 306 * release_resource - release a previously reserved resource 307 * @old: resource pointer 308 */ 309 int release_resource(struct resource *old) 310 { 311 int retval; 312 313 write_lock(&resource_lock); 314 retval = __release_resource(old, true); 315 write_unlock(&resource_lock); 316 return retval; 317 } 318 319 EXPORT_SYMBOL(release_resource); 320 321 /** 322 * Finds the lowest iomem resource that covers part of [@start..@end]. The 323 * caller must specify @start, @end, @flags, and @desc (which may be 324 * IORES_DESC_NONE). 325 * 326 * If a resource is found, returns 0 and @*res is overwritten with the part 327 * of the resource that's within [@start..@end]; if none is found, returns 328 * -1 or -EINVAL for other invalid parameters. 329 * 330 * This function walks the whole tree and not just first level children 331 * unless @first_lvl is true. 332 * 333 * @start: start address of the resource searched for 334 * @end: end address of same resource 335 * @flags: flags which the resource must have 336 * @desc: descriptor the resource must have 337 * @first_lvl: walk only the first level children, if set 338 * @res: return ptr, if resource found 339 */ 340 static int find_next_iomem_res(resource_size_t start, resource_size_t end, 341 unsigned long flags, unsigned long desc, 342 bool first_lvl, struct resource *res) 343 { 344 struct resource *p; 345 346 if (!res) 347 return -EINVAL; 348 349 if (start >= end) 350 return -EINVAL; 351 352 read_lock(&resource_lock); 353 354 for (p = iomem_resource.child; p; p = next_resource(p, first_lvl)) { 355 if ((p->flags & flags) != flags) 356 continue; 357 if ((desc != IORES_DESC_NONE) && (desc != p->desc)) 358 continue; 359 if (p->start > end) { 360 p = NULL; 361 break; 362 } 363 if ((p->end >= start) && (p->start <= end)) 364 break; 365 } 366 367 read_unlock(&resource_lock); 368 if (!p) 369 return -1; 370 371 /* copy data */ 372 res->start = max(start, p->start); 373 res->end = min(end, p->end); 374 res->flags = p->flags; 375 res->desc = p->desc; 376 return 0; 377 } 378 379 static int __walk_iomem_res_desc(resource_size_t start, resource_size_t end, 380 unsigned long flags, unsigned long desc, 381 bool first_lvl, void *arg, 382 int (*func)(struct resource *, void *)) 383 { 384 struct resource res; 385 int ret = -1; 386 387 while (start < end && 388 !find_next_iomem_res(start, end, flags, desc, first_lvl, &res)) { 389 ret = (*func)(&res, arg); 390 if (ret) 391 break; 392 393 start = res.end + 1; 394 } 395 396 return ret; 397 } 398 399 /** 400 * Walks through iomem resources and calls func() with matching resource 401 * ranges. This walks through whole tree and not just first level children. 402 * All the memory ranges which overlap start,end and also match flags and 403 * desc are valid candidates. 404 * 405 * @desc: I/O resource descriptor. Use IORES_DESC_NONE to skip @desc check. 406 * @flags: I/O resource flags 407 * @start: start addr 408 * @end: end addr 409 * @arg: function argument for the callback @func 410 * @func: callback function that is called for each qualifying resource area 411 * 412 * NOTE: For a new descriptor search, define a new IORES_DESC in 413 * <linux/ioport.h> and set it in 'desc' of a target resource entry. 414 */ 415 int walk_iomem_res_desc(unsigned long desc, unsigned long flags, u64 start, 416 u64 end, void *arg, int (*func)(struct resource *, void *)) 417 { 418 return __walk_iomem_res_desc(start, end, flags, desc, false, arg, func); 419 } 420 EXPORT_SYMBOL_GPL(walk_iomem_res_desc); 421 422 /* 423 * This function calls the @func callback against all memory ranges of type 424 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 425 * Now, this function is only for System RAM, it deals with full ranges and 426 * not PFNs. If resources are not PFN-aligned, dealing with PFNs can truncate 427 * ranges. 428 */ 429 int walk_system_ram_res(u64 start, u64 end, void *arg, 430 int (*func)(struct resource *, void *)) 431 { 432 unsigned long flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 433 434 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 435 arg, func); 436 } 437 438 /* 439 * This function calls the @func callback against all memory ranges, which 440 * are ranges marked as IORESOURCE_MEM and IORESOUCE_BUSY. 441 */ 442 int walk_mem_res(u64 start, u64 end, void *arg, 443 int (*func)(struct resource *, void *)) 444 { 445 unsigned long flags = IORESOURCE_MEM | IORESOURCE_BUSY; 446 447 return __walk_iomem_res_desc(start, end, flags, IORES_DESC_NONE, true, 448 arg, func); 449 } 450 451 /* 452 * This function calls the @func callback against all memory ranges of type 453 * System RAM which are marked as IORESOURCE_SYSTEM_RAM and IORESOUCE_BUSY. 454 * It is to be used only for System RAM. 455 */ 456 int walk_system_ram_range(unsigned long start_pfn, unsigned long nr_pages, 457 void *arg, int (*func)(unsigned long, unsigned long, void *)) 458 { 459 resource_size_t start, end; 460 unsigned long flags; 461 struct resource res; 462 unsigned long pfn, end_pfn; 463 int ret = -1; 464 465 start = (u64) start_pfn << PAGE_SHIFT; 466 end = ((u64)(start_pfn + nr_pages) << PAGE_SHIFT) - 1; 467 flags = IORESOURCE_SYSTEM_RAM | IORESOURCE_BUSY; 468 while (start < end && 469 !find_next_iomem_res(start, end, flags, IORES_DESC_NONE, 470 true, &res)) { 471 pfn = (res.start + PAGE_SIZE - 1) >> PAGE_SHIFT; 472 end_pfn = (res.end + 1) >> PAGE_SHIFT; 473 if (end_pfn > pfn) 474 ret = (*func)(pfn, end_pfn - pfn, arg); 475 if (ret) 476 break; 477 start = res.end + 1; 478 } 479 return ret; 480 } 481 482 static int __is_ram(unsigned long pfn, unsigned long nr_pages, void *arg) 483 { 484 return 1; 485 } 486 487 /* 488 * This generic page_is_ram() returns true if specified address is 489 * registered as System RAM in iomem_resource list. 490 */ 491 int __weak page_is_ram(unsigned long pfn) 492 { 493 return walk_system_ram_range(pfn, 1, NULL, __is_ram) == 1; 494 } 495 EXPORT_SYMBOL_GPL(page_is_ram); 496 497 /** 498 * region_intersects() - determine intersection of region with known resources 499 * @start: region start address 500 * @size: size of region 501 * @flags: flags of resource (in iomem_resource) 502 * @desc: descriptor of resource (in iomem_resource) or IORES_DESC_NONE 503 * 504 * Check if the specified region partially overlaps or fully eclipses a 505 * resource identified by @flags and @desc (optional with IORES_DESC_NONE). 506 * Return REGION_DISJOINT if the region does not overlap @flags/@desc, 507 * return REGION_MIXED if the region overlaps @flags/@desc and another 508 * resource, and return REGION_INTERSECTS if the region overlaps @flags/@desc 509 * and no other defined resource. Note that REGION_INTERSECTS is also 510 * returned in the case when the specified region overlaps RAM and undefined 511 * memory holes. 512 * 513 * region_intersect() is used by memory remapping functions to ensure 514 * the user is not remapping RAM and is a vast speed up over walking 515 * through the resource table page by page. 516 */ 517 int region_intersects(resource_size_t start, size_t size, unsigned long flags, 518 unsigned long desc) 519 { 520 resource_size_t end = start + size - 1; 521 int type = 0; int other = 0; 522 struct resource *p; 523 524 read_lock(&resource_lock); 525 for (p = iomem_resource.child; p ; p = p->sibling) { 526 bool is_type = (((p->flags & flags) == flags) && 527 ((desc == IORES_DESC_NONE) || 528 (desc == p->desc))); 529 530 if (start >= p->start && start <= p->end) 531 is_type ? type++ : other++; 532 if (end >= p->start && end <= p->end) 533 is_type ? type++ : other++; 534 if (p->start >= start && p->end <= end) 535 is_type ? type++ : other++; 536 } 537 read_unlock(&resource_lock); 538 539 if (other == 0) 540 return type ? REGION_INTERSECTS : REGION_DISJOINT; 541 542 if (type) 543 return REGION_MIXED; 544 545 return REGION_DISJOINT; 546 } 547 EXPORT_SYMBOL_GPL(region_intersects); 548 549 void __weak arch_remove_reservations(struct resource *avail) 550 { 551 } 552 553 static resource_size_t simple_align_resource(void *data, 554 const struct resource *avail, 555 resource_size_t size, 556 resource_size_t align) 557 { 558 return avail->start; 559 } 560 561 static void resource_clip(struct resource *res, resource_size_t min, 562 resource_size_t max) 563 { 564 if (res->start < min) 565 res->start = min; 566 if (res->end > max) 567 res->end = max; 568 } 569 570 /* 571 * Find empty slot in the resource tree with the given range and 572 * alignment constraints 573 */ 574 static int __find_resource(struct resource *root, struct resource *old, 575 struct resource *new, 576 resource_size_t size, 577 struct resource_constraint *constraint) 578 { 579 struct resource *this = root->child; 580 struct resource tmp = *new, avail, alloc; 581 582 tmp.start = root->start; 583 /* 584 * Skip past an allocated resource that starts at 0, since the assignment 585 * of this->start - 1 to tmp->end below would cause an underflow. 586 */ 587 if (this && this->start == root->start) { 588 tmp.start = (this == old) ? old->start : this->end + 1; 589 this = this->sibling; 590 } 591 for(;;) { 592 if (this) 593 tmp.end = (this == old) ? this->end : this->start - 1; 594 else 595 tmp.end = root->end; 596 597 if (tmp.end < tmp.start) 598 goto next; 599 600 resource_clip(&tmp, constraint->min, constraint->max); 601 arch_remove_reservations(&tmp); 602 603 /* Check for overflow after ALIGN() */ 604 avail.start = ALIGN(tmp.start, constraint->align); 605 avail.end = tmp.end; 606 avail.flags = new->flags & ~IORESOURCE_UNSET; 607 if (avail.start >= tmp.start) { 608 alloc.flags = avail.flags; 609 alloc.start = constraint->alignf(constraint->alignf_data, &avail, 610 size, constraint->align); 611 alloc.end = alloc.start + size - 1; 612 if (alloc.start <= alloc.end && 613 resource_contains(&avail, &alloc)) { 614 new->start = alloc.start; 615 new->end = alloc.end; 616 return 0; 617 } 618 } 619 620 next: if (!this || this->end == root->end) 621 break; 622 623 if (this != old) 624 tmp.start = this->end + 1; 625 this = this->sibling; 626 } 627 return -EBUSY; 628 } 629 630 /* 631 * Find empty slot in the resource tree given range and alignment. 632 */ 633 static int find_resource(struct resource *root, struct resource *new, 634 resource_size_t size, 635 struct resource_constraint *constraint) 636 { 637 return __find_resource(root, NULL, new, size, constraint); 638 } 639 640 /** 641 * reallocate_resource - allocate a slot in the resource tree given range & alignment. 642 * The resource will be relocated if the new size cannot be reallocated in the 643 * current location. 644 * 645 * @root: root resource descriptor 646 * @old: resource descriptor desired by caller 647 * @newsize: new size of the resource descriptor 648 * @constraint: the size and alignment constraints to be met. 649 */ 650 static int reallocate_resource(struct resource *root, struct resource *old, 651 resource_size_t newsize, 652 struct resource_constraint *constraint) 653 { 654 int err=0; 655 struct resource new = *old; 656 struct resource *conflict; 657 658 write_lock(&resource_lock); 659 660 if ((err = __find_resource(root, old, &new, newsize, constraint))) 661 goto out; 662 663 if (resource_contains(&new, old)) { 664 old->start = new.start; 665 old->end = new.end; 666 goto out; 667 } 668 669 if (old->child) { 670 err = -EBUSY; 671 goto out; 672 } 673 674 if (resource_contains(old, &new)) { 675 old->start = new.start; 676 old->end = new.end; 677 } else { 678 __release_resource(old, true); 679 *old = new; 680 conflict = __request_resource(root, old); 681 BUG_ON(conflict); 682 } 683 out: 684 write_unlock(&resource_lock); 685 return err; 686 } 687 688 689 /** 690 * allocate_resource - allocate empty slot in the resource tree given range & alignment. 691 * The resource will be reallocated with a new size if it was already allocated 692 * @root: root resource descriptor 693 * @new: resource descriptor desired by caller 694 * @size: requested resource region size 695 * @min: minimum boundary to allocate 696 * @max: maximum boundary to allocate 697 * @align: alignment requested, in bytes 698 * @alignf: alignment function, optional, called if not NULL 699 * @alignf_data: arbitrary data to pass to the @alignf function 700 */ 701 int allocate_resource(struct resource *root, struct resource *new, 702 resource_size_t size, resource_size_t min, 703 resource_size_t max, resource_size_t align, 704 resource_size_t (*alignf)(void *, 705 const struct resource *, 706 resource_size_t, 707 resource_size_t), 708 void *alignf_data) 709 { 710 int err; 711 struct resource_constraint constraint; 712 713 if (!alignf) 714 alignf = simple_align_resource; 715 716 constraint.min = min; 717 constraint.max = max; 718 constraint.align = align; 719 constraint.alignf = alignf; 720 constraint.alignf_data = alignf_data; 721 722 if ( new->parent ) { 723 /* resource is already allocated, try reallocating with 724 the new constraints */ 725 return reallocate_resource(root, new, size, &constraint); 726 } 727 728 write_lock(&resource_lock); 729 err = find_resource(root, new, size, &constraint); 730 if (err >= 0 && __request_resource(root, new)) 731 err = -EBUSY; 732 write_unlock(&resource_lock); 733 return err; 734 } 735 736 EXPORT_SYMBOL(allocate_resource); 737 738 /** 739 * lookup_resource - find an existing resource by a resource start address 740 * @root: root resource descriptor 741 * @start: resource start address 742 * 743 * Returns a pointer to the resource if found, NULL otherwise 744 */ 745 struct resource *lookup_resource(struct resource *root, resource_size_t start) 746 { 747 struct resource *res; 748 749 read_lock(&resource_lock); 750 for (res = root->child; res; res = res->sibling) { 751 if (res->start == start) 752 break; 753 } 754 read_unlock(&resource_lock); 755 756 return res; 757 } 758 759 /* 760 * Insert a resource into the resource tree. If successful, return NULL, 761 * otherwise return the conflicting resource (compare to __request_resource()) 762 */ 763 static struct resource * __insert_resource(struct resource *parent, struct resource *new) 764 { 765 struct resource *first, *next; 766 767 for (;; parent = first) { 768 first = __request_resource(parent, new); 769 if (!first) 770 return first; 771 772 if (first == parent) 773 return first; 774 if (WARN_ON(first == new)) /* duplicated insertion */ 775 return first; 776 777 if ((first->start > new->start) || (first->end < new->end)) 778 break; 779 if ((first->start == new->start) && (first->end == new->end)) 780 break; 781 } 782 783 for (next = first; ; next = next->sibling) { 784 /* Partial overlap? Bad, and unfixable */ 785 if (next->start < new->start || next->end > new->end) 786 return next; 787 if (!next->sibling) 788 break; 789 if (next->sibling->start > new->end) 790 break; 791 } 792 793 new->parent = parent; 794 new->sibling = next->sibling; 795 new->child = first; 796 797 next->sibling = NULL; 798 for (next = first; next; next = next->sibling) 799 next->parent = new; 800 801 if (parent->child == first) { 802 parent->child = new; 803 } else { 804 next = parent->child; 805 while (next->sibling != first) 806 next = next->sibling; 807 next->sibling = new; 808 } 809 return NULL; 810 } 811 812 /** 813 * insert_resource_conflict - Inserts resource in the resource tree 814 * @parent: parent of the new resource 815 * @new: new resource to insert 816 * 817 * Returns 0 on success, conflict resource if the resource can't be inserted. 818 * 819 * This function is equivalent to request_resource_conflict when no conflict 820 * happens. If a conflict happens, and the conflicting resources 821 * entirely fit within the range of the new resource, then the new 822 * resource is inserted and the conflicting resources become children of 823 * the new resource. 824 * 825 * This function is intended for producers of resources, such as FW modules 826 * and bus drivers. 827 */ 828 struct resource *insert_resource_conflict(struct resource *parent, struct resource *new) 829 { 830 struct resource *conflict; 831 832 write_lock(&resource_lock); 833 conflict = __insert_resource(parent, new); 834 write_unlock(&resource_lock); 835 return conflict; 836 } 837 838 /** 839 * insert_resource - Inserts a resource in the resource tree 840 * @parent: parent of the new resource 841 * @new: new resource to insert 842 * 843 * Returns 0 on success, -EBUSY if the resource can't be inserted. 844 * 845 * This function is intended for producers of resources, such as FW modules 846 * and bus drivers. 847 */ 848 int insert_resource(struct resource *parent, struct resource *new) 849 { 850 struct resource *conflict; 851 852 conflict = insert_resource_conflict(parent, new); 853 return conflict ? -EBUSY : 0; 854 } 855 EXPORT_SYMBOL_GPL(insert_resource); 856 857 /** 858 * insert_resource_expand_to_fit - Insert a resource into the resource tree 859 * @root: root resource descriptor 860 * @new: new resource to insert 861 * 862 * Insert a resource into the resource tree, possibly expanding it in order 863 * to make it encompass any conflicting resources. 864 */ 865 void insert_resource_expand_to_fit(struct resource *root, struct resource *new) 866 { 867 if (new->parent) 868 return; 869 870 write_lock(&resource_lock); 871 for (;;) { 872 struct resource *conflict; 873 874 conflict = __insert_resource(root, new); 875 if (!conflict) 876 break; 877 if (conflict == root) 878 break; 879 880 /* Ok, expand resource to cover the conflict, then try again .. */ 881 if (conflict->start < new->start) 882 new->start = conflict->start; 883 if (conflict->end > new->end) 884 new->end = conflict->end; 885 886 printk("Expanded resource %s due to conflict with %s\n", new->name, conflict->name); 887 } 888 write_unlock(&resource_lock); 889 } 890 891 /** 892 * remove_resource - Remove a resource in the resource tree 893 * @old: resource to remove 894 * 895 * Returns 0 on success, -EINVAL if the resource is not valid. 896 * 897 * This function removes a resource previously inserted by insert_resource() 898 * or insert_resource_conflict(), and moves the children (if any) up to 899 * where they were before. insert_resource() and insert_resource_conflict() 900 * insert a new resource, and move any conflicting resources down to the 901 * children of the new resource. 902 * 903 * insert_resource(), insert_resource_conflict() and remove_resource() are 904 * intended for producers of resources, such as FW modules and bus drivers. 905 */ 906 int remove_resource(struct resource *old) 907 { 908 int retval; 909 910 write_lock(&resource_lock); 911 retval = __release_resource(old, false); 912 write_unlock(&resource_lock); 913 return retval; 914 } 915 EXPORT_SYMBOL_GPL(remove_resource); 916 917 static int __adjust_resource(struct resource *res, resource_size_t start, 918 resource_size_t size) 919 { 920 struct resource *tmp, *parent = res->parent; 921 resource_size_t end = start + size - 1; 922 int result = -EBUSY; 923 924 if (!parent) 925 goto skip; 926 927 if ((start < parent->start) || (end > parent->end)) 928 goto out; 929 930 if (res->sibling && (res->sibling->start <= end)) 931 goto out; 932 933 tmp = parent->child; 934 if (tmp != res) { 935 while (tmp->sibling != res) 936 tmp = tmp->sibling; 937 if (start <= tmp->end) 938 goto out; 939 } 940 941 skip: 942 for (tmp = res->child; tmp; tmp = tmp->sibling) 943 if ((tmp->start < start) || (tmp->end > end)) 944 goto out; 945 946 res->start = start; 947 res->end = end; 948 result = 0; 949 950 out: 951 return result; 952 } 953 954 /** 955 * adjust_resource - modify a resource's start and size 956 * @res: resource to modify 957 * @start: new start value 958 * @size: new size 959 * 960 * Given an existing resource, change its start and size to match the 961 * arguments. Returns 0 on success, -EBUSY if it can't fit. 962 * Existing children of the resource are assumed to be immutable. 963 */ 964 int adjust_resource(struct resource *res, resource_size_t start, 965 resource_size_t size) 966 { 967 int result; 968 969 write_lock(&resource_lock); 970 result = __adjust_resource(res, start, size); 971 write_unlock(&resource_lock); 972 return result; 973 } 974 EXPORT_SYMBOL(adjust_resource); 975 976 static void __init 977 __reserve_region_with_split(struct resource *root, resource_size_t start, 978 resource_size_t end, const char *name) 979 { 980 struct resource *parent = root; 981 struct resource *conflict; 982 struct resource *res = alloc_resource(GFP_ATOMIC); 983 struct resource *next_res = NULL; 984 int type = resource_type(root); 985 986 if (!res) 987 return; 988 989 res->name = name; 990 res->start = start; 991 res->end = end; 992 res->flags = type | IORESOURCE_BUSY; 993 res->desc = IORES_DESC_NONE; 994 995 while (1) { 996 997 conflict = __request_resource(parent, res); 998 if (!conflict) { 999 if (!next_res) 1000 break; 1001 res = next_res; 1002 next_res = NULL; 1003 continue; 1004 } 1005 1006 /* conflict covered whole area */ 1007 if (conflict->start <= res->start && 1008 conflict->end >= res->end) { 1009 free_resource(res); 1010 WARN_ON(next_res); 1011 break; 1012 } 1013 1014 /* failed, split and try again */ 1015 if (conflict->start > res->start) { 1016 end = res->end; 1017 res->end = conflict->start - 1; 1018 if (conflict->end < end) { 1019 next_res = alloc_resource(GFP_ATOMIC); 1020 if (!next_res) { 1021 free_resource(res); 1022 break; 1023 } 1024 next_res->name = name; 1025 next_res->start = conflict->end + 1; 1026 next_res->end = end; 1027 next_res->flags = type | IORESOURCE_BUSY; 1028 next_res->desc = IORES_DESC_NONE; 1029 } 1030 } else { 1031 res->start = conflict->end + 1; 1032 } 1033 } 1034 1035 } 1036 1037 void __init 1038 reserve_region_with_split(struct resource *root, resource_size_t start, 1039 resource_size_t end, const char *name) 1040 { 1041 int abort = 0; 1042 1043 write_lock(&resource_lock); 1044 if (root->start > start || root->end < end) { 1045 pr_err("requested range [0x%llx-0x%llx] not in root %pr\n", 1046 (unsigned long long)start, (unsigned long long)end, 1047 root); 1048 if (start > root->end || end < root->start) 1049 abort = 1; 1050 else { 1051 if (end > root->end) 1052 end = root->end; 1053 if (start < root->start) 1054 start = root->start; 1055 pr_err("fixing request to [0x%llx-0x%llx]\n", 1056 (unsigned long long)start, 1057 (unsigned long long)end); 1058 } 1059 dump_stack(); 1060 } 1061 if (!abort) 1062 __reserve_region_with_split(root, start, end, name); 1063 write_unlock(&resource_lock); 1064 } 1065 1066 /** 1067 * resource_alignment - calculate resource's alignment 1068 * @res: resource pointer 1069 * 1070 * Returns alignment on success, 0 (invalid alignment) on failure. 1071 */ 1072 resource_size_t resource_alignment(struct resource *res) 1073 { 1074 switch (res->flags & (IORESOURCE_SIZEALIGN | IORESOURCE_STARTALIGN)) { 1075 case IORESOURCE_SIZEALIGN: 1076 return resource_size(res); 1077 case IORESOURCE_STARTALIGN: 1078 return res->start; 1079 default: 1080 return 0; 1081 } 1082 } 1083 1084 /* 1085 * This is compatibility stuff for IO resources. 1086 * 1087 * Note how this, unlike the above, knows about 1088 * the IO flag meanings (busy etc). 1089 * 1090 * request_region creates a new busy region. 1091 * 1092 * release_region releases a matching busy region. 1093 */ 1094 1095 static DECLARE_WAIT_QUEUE_HEAD(muxed_resource_wait); 1096 1097 /** 1098 * __request_region - create a new busy resource region 1099 * @parent: parent resource descriptor 1100 * @start: resource start address 1101 * @n: resource region size 1102 * @name: reserving caller's ID string 1103 * @flags: IO resource flags 1104 */ 1105 struct resource * __request_region(struct resource *parent, 1106 resource_size_t start, resource_size_t n, 1107 const char *name, int flags) 1108 { 1109 DECLARE_WAITQUEUE(wait, current); 1110 struct resource *res = alloc_resource(GFP_KERNEL); 1111 1112 if (!res) 1113 return NULL; 1114 1115 res->name = name; 1116 res->start = start; 1117 res->end = start + n - 1; 1118 1119 write_lock(&resource_lock); 1120 1121 for (;;) { 1122 struct resource *conflict; 1123 1124 res->flags = resource_type(parent) | resource_ext_type(parent); 1125 res->flags |= IORESOURCE_BUSY | flags; 1126 res->desc = parent->desc; 1127 1128 conflict = __request_resource(parent, res); 1129 if (!conflict) 1130 break; 1131 if (conflict != parent) { 1132 if (!(conflict->flags & IORESOURCE_BUSY)) { 1133 parent = conflict; 1134 continue; 1135 } 1136 } 1137 if (conflict->flags & flags & IORESOURCE_MUXED) { 1138 add_wait_queue(&muxed_resource_wait, &wait); 1139 write_unlock(&resource_lock); 1140 set_current_state(TASK_UNINTERRUPTIBLE); 1141 schedule(); 1142 remove_wait_queue(&muxed_resource_wait, &wait); 1143 write_lock(&resource_lock); 1144 continue; 1145 } 1146 /* Uhhuh, that didn't work out.. */ 1147 free_resource(res); 1148 res = NULL; 1149 break; 1150 } 1151 write_unlock(&resource_lock); 1152 return res; 1153 } 1154 EXPORT_SYMBOL(__request_region); 1155 1156 /** 1157 * __release_region - release a previously reserved resource region 1158 * @parent: parent resource descriptor 1159 * @start: resource start address 1160 * @n: resource region size 1161 * 1162 * The described resource region must match a currently busy region. 1163 */ 1164 void __release_region(struct resource *parent, resource_size_t start, 1165 resource_size_t n) 1166 { 1167 struct resource **p; 1168 resource_size_t end; 1169 1170 p = &parent->child; 1171 end = start + n - 1; 1172 1173 write_lock(&resource_lock); 1174 1175 for (;;) { 1176 struct resource *res = *p; 1177 1178 if (!res) 1179 break; 1180 if (res->start <= start && res->end >= end) { 1181 if (!(res->flags & IORESOURCE_BUSY)) { 1182 p = &res->child; 1183 continue; 1184 } 1185 if (res->start != start || res->end != end) 1186 break; 1187 *p = res->sibling; 1188 write_unlock(&resource_lock); 1189 if (res->flags & IORESOURCE_MUXED) 1190 wake_up(&muxed_resource_wait); 1191 free_resource(res); 1192 return; 1193 } 1194 p = &res->sibling; 1195 } 1196 1197 write_unlock(&resource_lock); 1198 1199 printk(KERN_WARNING "Trying to free nonexistent resource " 1200 "<%016llx-%016llx>\n", (unsigned long long)start, 1201 (unsigned long long)end); 1202 } 1203 EXPORT_SYMBOL(__release_region); 1204 1205 #ifdef CONFIG_MEMORY_HOTREMOVE 1206 /** 1207 * release_mem_region_adjustable - release a previously reserved memory region 1208 * @parent: parent resource descriptor 1209 * @start: resource start address 1210 * @size: resource region size 1211 * 1212 * This interface is intended for memory hot-delete. The requested region 1213 * is released from a currently busy memory resource. The requested region 1214 * must either match exactly or fit into a single busy resource entry. In 1215 * the latter case, the remaining resource is adjusted accordingly. 1216 * Existing children of the busy memory resource must be immutable in the 1217 * request. 1218 * 1219 * Note: 1220 * - Additional release conditions, such as overlapping region, can be 1221 * supported after they are confirmed as valid cases. 1222 * - When a busy memory resource gets split into two entries, the code 1223 * assumes that all children remain in the lower address entry for 1224 * simplicity. Enhance this logic when necessary. 1225 */ 1226 int release_mem_region_adjustable(struct resource *parent, 1227 resource_size_t start, resource_size_t size) 1228 { 1229 struct resource **p; 1230 struct resource *res; 1231 struct resource *new_res; 1232 resource_size_t end; 1233 int ret = -EINVAL; 1234 1235 end = start + size - 1; 1236 if ((start < parent->start) || (end > parent->end)) 1237 return ret; 1238 1239 /* The alloc_resource() result gets checked later */ 1240 new_res = alloc_resource(GFP_KERNEL); 1241 1242 p = &parent->child; 1243 write_lock(&resource_lock); 1244 1245 while ((res = *p)) { 1246 if (res->start >= end) 1247 break; 1248 1249 /* look for the next resource if it does not fit into */ 1250 if (res->start > start || res->end < end) { 1251 p = &res->sibling; 1252 continue; 1253 } 1254 1255 /* 1256 * All memory regions added from memory-hotplug path have the 1257 * flag IORESOURCE_SYSTEM_RAM. If the resource does not have 1258 * this flag, we know that we are dealing with a resource coming 1259 * from HMM/devm. HMM/devm use another mechanism to add/release 1260 * a resource. This goes via devm_request_mem_region and 1261 * devm_release_mem_region. 1262 * HMM/devm take care to release their resources when they want, 1263 * so if we are dealing with them, let us just back off here. 1264 */ 1265 if (!(res->flags & IORESOURCE_SYSRAM)) { 1266 ret = 0; 1267 break; 1268 } 1269 1270 if (!(res->flags & IORESOURCE_MEM)) 1271 break; 1272 1273 if (!(res->flags & IORESOURCE_BUSY)) { 1274 p = &res->child; 1275 continue; 1276 } 1277 1278 /* found the target resource; let's adjust accordingly */ 1279 if (res->start == start && res->end == end) { 1280 /* free the whole entry */ 1281 *p = res->sibling; 1282 free_resource(res); 1283 ret = 0; 1284 } else if (res->start == start && res->end != end) { 1285 /* adjust the start */ 1286 ret = __adjust_resource(res, end + 1, 1287 res->end - end); 1288 } else if (res->start != start && res->end == end) { 1289 /* adjust the end */ 1290 ret = __adjust_resource(res, res->start, 1291 start - res->start); 1292 } else { 1293 /* split into two entries */ 1294 if (!new_res) { 1295 ret = -ENOMEM; 1296 break; 1297 } 1298 new_res->name = res->name; 1299 new_res->start = end + 1; 1300 new_res->end = res->end; 1301 new_res->flags = res->flags; 1302 new_res->desc = res->desc; 1303 new_res->parent = res->parent; 1304 new_res->sibling = res->sibling; 1305 new_res->child = NULL; 1306 1307 ret = __adjust_resource(res, res->start, 1308 start - res->start); 1309 if (ret) 1310 break; 1311 res->sibling = new_res; 1312 new_res = NULL; 1313 } 1314 1315 break; 1316 } 1317 1318 write_unlock(&resource_lock); 1319 free_resource(new_res); 1320 return ret; 1321 } 1322 #endif /* CONFIG_MEMORY_HOTREMOVE */ 1323 1324 /* 1325 * Managed region resource 1326 */ 1327 static void devm_resource_release(struct device *dev, void *ptr) 1328 { 1329 struct resource **r = ptr; 1330 1331 release_resource(*r); 1332 } 1333 1334 /** 1335 * devm_request_resource() - request and reserve an I/O or memory resource 1336 * @dev: device for which to request the resource 1337 * @root: root of the resource tree from which to request the resource 1338 * @new: descriptor of the resource to request 1339 * 1340 * This is a device-managed version of request_resource(). There is usually 1341 * no need to release resources requested by this function explicitly since 1342 * that will be taken care of when the device is unbound from its driver. 1343 * If for some reason the resource needs to be released explicitly, because 1344 * of ordering issues for example, drivers must call devm_release_resource() 1345 * rather than the regular release_resource(). 1346 * 1347 * When a conflict is detected between any existing resources and the newly 1348 * requested resource, an error message will be printed. 1349 * 1350 * Returns 0 on success or a negative error code on failure. 1351 */ 1352 int devm_request_resource(struct device *dev, struct resource *root, 1353 struct resource *new) 1354 { 1355 struct resource *conflict, **ptr; 1356 1357 ptr = devres_alloc(devm_resource_release, sizeof(*ptr), GFP_KERNEL); 1358 if (!ptr) 1359 return -ENOMEM; 1360 1361 *ptr = new; 1362 1363 conflict = request_resource_conflict(root, new); 1364 if (conflict) { 1365 dev_err(dev, "resource collision: %pR conflicts with %s %pR\n", 1366 new, conflict->name, conflict); 1367 devres_free(ptr); 1368 return -EBUSY; 1369 } 1370 1371 devres_add(dev, ptr); 1372 return 0; 1373 } 1374 EXPORT_SYMBOL(devm_request_resource); 1375 1376 static int devm_resource_match(struct device *dev, void *res, void *data) 1377 { 1378 struct resource **ptr = res; 1379 1380 return *ptr == data; 1381 } 1382 1383 /** 1384 * devm_release_resource() - release a previously requested resource 1385 * @dev: device for which to release the resource 1386 * @new: descriptor of the resource to release 1387 * 1388 * Releases a resource previously requested using devm_request_resource(). 1389 */ 1390 void devm_release_resource(struct device *dev, struct resource *new) 1391 { 1392 WARN_ON(devres_release(dev, devm_resource_release, devm_resource_match, 1393 new)); 1394 } 1395 EXPORT_SYMBOL(devm_release_resource); 1396 1397 struct region_devres { 1398 struct resource *parent; 1399 resource_size_t start; 1400 resource_size_t n; 1401 }; 1402 1403 static void devm_region_release(struct device *dev, void *res) 1404 { 1405 struct region_devres *this = res; 1406 1407 __release_region(this->parent, this->start, this->n); 1408 } 1409 1410 static int devm_region_match(struct device *dev, void *res, void *match_data) 1411 { 1412 struct region_devres *this = res, *match = match_data; 1413 1414 return this->parent == match->parent && 1415 this->start == match->start && this->n == match->n; 1416 } 1417 1418 struct resource * 1419 __devm_request_region(struct device *dev, struct resource *parent, 1420 resource_size_t start, resource_size_t n, const char *name) 1421 { 1422 struct region_devres *dr = NULL; 1423 struct resource *res; 1424 1425 dr = devres_alloc(devm_region_release, sizeof(struct region_devres), 1426 GFP_KERNEL); 1427 if (!dr) 1428 return NULL; 1429 1430 dr->parent = parent; 1431 dr->start = start; 1432 dr->n = n; 1433 1434 res = __request_region(parent, start, n, name, 0); 1435 if (res) 1436 devres_add(dev, dr); 1437 else 1438 devres_free(dr); 1439 1440 return res; 1441 } 1442 EXPORT_SYMBOL(__devm_request_region); 1443 1444 void __devm_release_region(struct device *dev, struct resource *parent, 1445 resource_size_t start, resource_size_t n) 1446 { 1447 struct region_devres match_data = { parent, start, n }; 1448 1449 __release_region(parent, start, n); 1450 WARN_ON(devres_destroy(dev, devm_region_release, devm_region_match, 1451 &match_data)); 1452 } 1453 EXPORT_SYMBOL(__devm_release_region); 1454 1455 /* 1456 * Reserve I/O ports or memory based on "reserve=" kernel parameter. 1457 */ 1458 #define MAXRESERVE 4 1459 static int __init reserve_setup(char *str) 1460 { 1461 static int reserved; 1462 static struct resource reserve[MAXRESERVE]; 1463 1464 for (;;) { 1465 unsigned int io_start, io_num; 1466 int x = reserved; 1467 struct resource *parent; 1468 1469 if (get_option(&str, &io_start) != 2) 1470 break; 1471 if (get_option(&str, &io_num) == 0) 1472 break; 1473 if (x < MAXRESERVE) { 1474 struct resource *res = reserve + x; 1475 1476 /* 1477 * If the region starts below 0x10000, we assume it's 1478 * I/O port space; otherwise assume it's memory. 1479 */ 1480 if (io_start < 0x10000) { 1481 res->flags = IORESOURCE_IO; 1482 parent = &ioport_resource; 1483 } else { 1484 res->flags = IORESOURCE_MEM; 1485 parent = &iomem_resource; 1486 } 1487 res->name = "reserved"; 1488 res->start = io_start; 1489 res->end = io_start + io_num - 1; 1490 res->flags |= IORESOURCE_BUSY; 1491 res->desc = IORES_DESC_NONE; 1492 res->child = NULL; 1493 if (request_resource(parent, res) == 0) 1494 reserved = x+1; 1495 } 1496 } 1497 return 1; 1498 } 1499 __setup("reserve=", reserve_setup); 1500 1501 /* 1502 * Check if the requested addr and size spans more than any slot in the 1503 * iomem resource tree. 1504 */ 1505 int iomem_map_sanity_check(resource_size_t addr, unsigned long size) 1506 { 1507 struct resource *p = &iomem_resource; 1508 int err = 0; 1509 loff_t l; 1510 1511 read_lock(&resource_lock); 1512 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1513 /* 1514 * We can probably skip the resources without 1515 * IORESOURCE_IO attribute? 1516 */ 1517 if (p->start >= addr + size) 1518 continue; 1519 if (p->end < addr) 1520 continue; 1521 if (PFN_DOWN(p->start) <= PFN_DOWN(addr) && 1522 PFN_DOWN(p->end) >= PFN_DOWN(addr + size - 1)) 1523 continue; 1524 /* 1525 * if a resource is "BUSY", it's not a hardware resource 1526 * but a driver mapping of such a resource; we don't want 1527 * to warn for those; some drivers legitimately map only 1528 * partial hardware resources. (example: vesafb) 1529 */ 1530 if (p->flags & IORESOURCE_BUSY) 1531 continue; 1532 1533 printk(KERN_WARNING "resource sanity check: requesting [mem %#010llx-%#010llx], which spans more than %s %pR\n", 1534 (unsigned long long)addr, 1535 (unsigned long long)(addr + size - 1), 1536 p->name, p); 1537 err = -1; 1538 break; 1539 } 1540 read_unlock(&resource_lock); 1541 1542 return err; 1543 } 1544 1545 #ifdef CONFIG_STRICT_DEVMEM 1546 static int strict_iomem_checks = 1; 1547 #else 1548 static int strict_iomem_checks; 1549 #endif 1550 1551 /* 1552 * check if an address is reserved in the iomem resource tree 1553 * returns true if reserved, false if not reserved. 1554 */ 1555 bool iomem_is_exclusive(u64 addr) 1556 { 1557 struct resource *p = &iomem_resource; 1558 bool err = false; 1559 loff_t l; 1560 int size = PAGE_SIZE; 1561 1562 if (!strict_iomem_checks) 1563 return false; 1564 1565 addr = addr & PAGE_MASK; 1566 1567 read_lock(&resource_lock); 1568 for (p = p->child; p ; p = r_next(NULL, p, &l)) { 1569 /* 1570 * We can probably skip the resources without 1571 * IORESOURCE_IO attribute? 1572 */ 1573 if (p->start >= addr + size) 1574 break; 1575 if (p->end < addr) 1576 continue; 1577 /* 1578 * A resource is exclusive if IORESOURCE_EXCLUSIVE is set 1579 * or CONFIG_IO_STRICT_DEVMEM is enabled and the 1580 * resource is busy. 1581 */ 1582 if ((p->flags & IORESOURCE_BUSY) == 0) 1583 continue; 1584 if (IS_ENABLED(CONFIG_IO_STRICT_DEVMEM) 1585 || p->flags & IORESOURCE_EXCLUSIVE) { 1586 err = true; 1587 break; 1588 } 1589 } 1590 read_unlock(&resource_lock); 1591 1592 return err; 1593 } 1594 1595 struct resource_entry *resource_list_create_entry(struct resource *res, 1596 size_t extra_size) 1597 { 1598 struct resource_entry *entry; 1599 1600 entry = kzalloc(sizeof(*entry) + extra_size, GFP_KERNEL); 1601 if (entry) { 1602 INIT_LIST_HEAD(&entry->node); 1603 entry->res = res ? res : &entry->__res; 1604 } 1605 1606 return entry; 1607 } 1608 EXPORT_SYMBOL(resource_list_create_entry); 1609 1610 void resource_list_free(struct list_head *head) 1611 { 1612 struct resource_entry *entry, *tmp; 1613 1614 list_for_each_entry_safe(entry, tmp, head, node) 1615 resource_list_destroy_entry(entry); 1616 } 1617 EXPORT_SYMBOL(resource_list_free); 1618 1619 static int __init strict_iomem(char *str) 1620 { 1621 if (strstr(str, "relaxed")) 1622 strict_iomem_checks = 0; 1623 if (strstr(str, "strict")) 1624 strict_iomem_checks = 1; 1625 return 1; 1626 } 1627 1628 __setup("iomem=", strict_iomem); 1629