xref: /linux-6.15/kernel/reboot.c (revision 9da39ef3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/kernel/reboot.c
4  *
5  *  Copyright (C) 2013  Linus Torvalds
6  */
7 
8 #define pr_fmt(fmt)	"reboot: " fmt
9 
10 #include <linux/atomic.h>
11 #include <linux/ctype.h>
12 #include <linux/export.h>
13 #include <linux/kexec.h>
14 #include <linux/kmod.h>
15 #include <linux/kmsg_dump.h>
16 #include <linux/reboot.h>
17 #include <linux/suspend.h>
18 #include <linux/syscalls.h>
19 #include <linux/syscore_ops.h>
20 #include <linux/uaccess.h>
21 
22 /*
23  * this indicates whether you can reboot with ctrl-alt-del: the default is yes
24  */
25 
26 static int C_A_D = 1;
27 struct pid *cad_pid;
28 EXPORT_SYMBOL(cad_pid);
29 
30 #if defined(CONFIG_ARM)
31 #define DEFAULT_REBOOT_MODE		= REBOOT_HARD
32 #else
33 #define DEFAULT_REBOOT_MODE
34 #endif
35 enum reboot_mode reboot_mode DEFAULT_REBOOT_MODE;
36 EXPORT_SYMBOL_GPL(reboot_mode);
37 enum reboot_mode panic_reboot_mode = REBOOT_UNDEFINED;
38 
39 /*
40  * This variable is used privately to keep track of whether or not
41  * reboot_type is still set to its default value (i.e., reboot= hasn't
42  * been set on the command line).  This is needed so that we can
43  * suppress DMI scanning for reboot quirks.  Without it, it's
44  * impossible to override a faulty reboot quirk without recompiling.
45  */
46 int reboot_default = 1;
47 int reboot_cpu;
48 enum reboot_type reboot_type = BOOT_ACPI;
49 int reboot_force;
50 
51 struct sys_off_handler {
52 	struct notifier_block nb;
53 	int (*sys_off_cb)(struct sys_off_data *data);
54 	void *cb_data;
55 	enum sys_off_mode mode;
56 	bool blocking;
57 	void *list;
58 	struct device *dev;
59 };
60 
61 /*
62  * Temporary stub that prevents linkage failure while we're in process
63  * of removing all uses of legacy pm_power_off() around the kernel.
64  */
65 void __weak (*pm_power_off)(void);
66 
67 /**
68  *	emergency_restart - reboot the system
69  *
70  *	Without shutting down any hardware or taking any locks
71  *	reboot the system.  This is called when we know we are in
72  *	trouble so this is our best effort to reboot.  This is
73  *	safe to call in interrupt context.
74  */
75 void emergency_restart(void)
76 {
77 	kmsg_dump(KMSG_DUMP_EMERG);
78 	system_state = SYSTEM_RESTART;
79 	machine_emergency_restart();
80 }
81 EXPORT_SYMBOL_GPL(emergency_restart);
82 
83 void kernel_restart_prepare(char *cmd)
84 {
85 	blocking_notifier_call_chain(&reboot_notifier_list, SYS_RESTART, cmd);
86 	system_state = SYSTEM_RESTART;
87 	usermodehelper_disable();
88 	device_shutdown();
89 }
90 
91 /**
92  *	register_reboot_notifier - Register function to be called at reboot time
93  *	@nb: Info about notifier function to be called
94  *
95  *	Registers a function with the list of functions
96  *	to be called at reboot time.
97  *
98  *	Currently always returns zero, as blocking_notifier_chain_register()
99  *	always returns zero.
100  */
101 int register_reboot_notifier(struct notifier_block *nb)
102 {
103 	return blocking_notifier_chain_register(&reboot_notifier_list, nb);
104 }
105 EXPORT_SYMBOL(register_reboot_notifier);
106 
107 /**
108  *	unregister_reboot_notifier - Unregister previously registered reboot notifier
109  *	@nb: Hook to be unregistered
110  *
111  *	Unregisters a previously registered reboot
112  *	notifier function.
113  *
114  *	Returns zero on success, or %-ENOENT on failure.
115  */
116 int unregister_reboot_notifier(struct notifier_block *nb)
117 {
118 	return blocking_notifier_chain_unregister(&reboot_notifier_list, nb);
119 }
120 EXPORT_SYMBOL(unregister_reboot_notifier);
121 
122 static void devm_unregister_reboot_notifier(struct device *dev, void *res)
123 {
124 	WARN_ON(unregister_reboot_notifier(*(struct notifier_block **)res));
125 }
126 
127 int devm_register_reboot_notifier(struct device *dev, struct notifier_block *nb)
128 {
129 	struct notifier_block **rcnb;
130 	int ret;
131 
132 	rcnb = devres_alloc(devm_unregister_reboot_notifier,
133 			    sizeof(*rcnb), GFP_KERNEL);
134 	if (!rcnb)
135 		return -ENOMEM;
136 
137 	ret = register_reboot_notifier(nb);
138 	if (!ret) {
139 		*rcnb = nb;
140 		devres_add(dev, rcnb);
141 	} else {
142 		devres_free(rcnb);
143 	}
144 
145 	return ret;
146 }
147 EXPORT_SYMBOL(devm_register_reboot_notifier);
148 
149 /*
150  *	Notifier list for kernel code which wants to be called
151  *	to restart the system.
152  */
153 static ATOMIC_NOTIFIER_HEAD(restart_handler_list);
154 
155 /**
156  *	register_restart_handler - Register function to be called to reset
157  *				   the system
158  *	@nb: Info about handler function to be called
159  *	@nb->priority:	Handler priority. Handlers should follow the
160  *			following guidelines for setting priorities.
161  *			0:	Restart handler of last resort,
162  *				with limited restart capabilities
163  *			128:	Default restart handler; use if no other
164  *				restart handler is expected to be available,
165  *				and/or if restart functionality is
166  *				sufficient to restart the entire system
167  *			255:	Highest priority restart handler, will
168  *				preempt all other restart handlers
169  *
170  *	Registers a function with code to be called to restart the
171  *	system.
172  *
173  *	Registered functions will be called from machine_restart as last
174  *	step of the restart sequence (if the architecture specific
175  *	machine_restart function calls do_kernel_restart - see below
176  *	for details).
177  *	Registered functions are expected to restart the system immediately.
178  *	If more than one function is registered, the restart handler priority
179  *	selects which function will be called first.
180  *
181  *	Restart handlers are expected to be registered from non-architecture
182  *	code, typically from drivers. A typical use case would be a system
183  *	where restart functionality is provided through a watchdog. Multiple
184  *	restart handlers may exist; for example, one restart handler might
185  *	restart the entire system, while another only restarts the CPU.
186  *	In such cases, the restart handler which only restarts part of the
187  *	hardware is expected to register with low priority to ensure that
188  *	it only runs if no other means to restart the system is available.
189  *
190  *	Currently always returns zero, as atomic_notifier_chain_register()
191  *	always returns zero.
192  */
193 int register_restart_handler(struct notifier_block *nb)
194 {
195 	return atomic_notifier_chain_register(&restart_handler_list, nb);
196 }
197 EXPORT_SYMBOL(register_restart_handler);
198 
199 /**
200  *	unregister_restart_handler - Unregister previously registered
201  *				     restart handler
202  *	@nb: Hook to be unregistered
203  *
204  *	Unregisters a previously registered restart handler function.
205  *
206  *	Returns zero on success, or %-ENOENT on failure.
207  */
208 int unregister_restart_handler(struct notifier_block *nb)
209 {
210 	return atomic_notifier_chain_unregister(&restart_handler_list, nb);
211 }
212 EXPORT_SYMBOL(unregister_restart_handler);
213 
214 /**
215  *	do_kernel_restart - Execute kernel restart handler call chain
216  *
217  *	Calls functions registered with register_restart_handler.
218  *
219  *	Expected to be called from machine_restart as last step of the restart
220  *	sequence.
221  *
222  *	Restarts the system immediately if a restart handler function has been
223  *	registered. Otherwise does nothing.
224  */
225 void do_kernel_restart(char *cmd)
226 {
227 	atomic_notifier_call_chain(&restart_handler_list, reboot_mode, cmd);
228 }
229 
230 void migrate_to_reboot_cpu(void)
231 {
232 	/* The boot cpu is always logical cpu 0 */
233 	int cpu = reboot_cpu;
234 
235 	cpu_hotplug_disable();
236 
237 	/* Make certain the cpu I'm about to reboot on is online */
238 	if (!cpu_online(cpu))
239 		cpu = cpumask_first(cpu_online_mask);
240 
241 	/* Prevent races with other tasks migrating this task */
242 	current->flags |= PF_NO_SETAFFINITY;
243 
244 	/* Make certain I only run on the appropriate processor */
245 	set_cpus_allowed_ptr(current, cpumask_of(cpu));
246 }
247 
248 /*
249  *	Notifier list for kernel code which wants to be called
250  *	to prepare system for restart.
251  */
252 static BLOCKING_NOTIFIER_HEAD(restart_prep_handler_list);
253 
254 static void do_kernel_restart_prepare(void)
255 {
256 	blocking_notifier_call_chain(&restart_prep_handler_list, 0, NULL);
257 }
258 
259 /**
260  *	kernel_restart - reboot the system
261  *	@cmd: pointer to buffer containing command to execute for restart
262  *		or %NULL
263  *
264  *	Shutdown everything and perform a clean reboot.
265  *	This is not safe to call in interrupt context.
266  */
267 void kernel_restart(char *cmd)
268 {
269 	kernel_restart_prepare(cmd);
270 	do_kernel_restart_prepare();
271 	migrate_to_reboot_cpu();
272 	syscore_shutdown();
273 	if (!cmd)
274 		pr_emerg("Restarting system\n");
275 	else
276 		pr_emerg("Restarting system with command '%s'\n", cmd);
277 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
278 	machine_restart(cmd);
279 }
280 EXPORT_SYMBOL_GPL(kernel_restart);
281 
282 static void kernel_shutdown_prepare(enum system_states state)
283 {
284 	blocking_notifier_call_chain(&reboot_notifier_list,
285 		(state == SYSTEM_HALT) ? SYS_HALT : SYS_POWER_OFF, NULL);
286 	system_state = state;
287 	usermodehelper_disable();
288 	device_shutdown();
289 }
290 /**
291  *	kernel_halt - halt the system
292  *
293  *	Shutdown everything and perform a clean system halt.
294  */
295 void kernel_halt(void)
296 {
297 	kernel_shutdown_prepare(SYSTEM_HALT);
298 	migrate_to_reboot_cpu();
299 	syscore_shutdown();
300 	pr_emerg("System halted\n");
301 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
302 	machine_halt();
303 }
304 EXPORT_SYMBOL_GPL(kernel_halt);
305 
306 /*
307  *	Notifier list for kernel code which wants to be called
308  *	to prepare system for power off.
309  */
310 static BLOCKING_NOTIFIER_HEAD(power_off_prep_handler_list);
311 
312 /*
313  *	Notifier list for kernel code which wants to be called
314  *	to power off system.
315  */
316 static ATOMIC_NOTIFIER_HEAD(power_off_handler_list);
317 
318 static int sys_off_notify(struct notifier_block *nb,
319 			  unsigned long mode, void *cmd)
320 {
321 	struct sys_off_handler *handler;
322 	struct sys_off_data data = {};
323 
324 	handler = container_of(nb, struct sys_off_handler, nb);
325 	data.cb_data = handler->cb_data;
326 	data.mode = mode;
327 	data.cmd = cmd;
328 	data.dev = handler->dev;
329 
330 	return handler->sys_off_cb(&data);
331 }
332 
333 static struct sys_off_handler platform_sys_off_handler;
334 
335 static struct sys_off_handler *alloc_sys_off_handler(int priority)
336 {
337 	struct sys_off_handler *handler;
338 	gfp_t flags;
339 
340 	/*
341 	 * Platforms like m68k can't allocate sys_off handler dynamically
342 	 * at the early boot time because memory allocator isn't available yet.
343 	 */
344 	if (priority == SYS_OFF_PRIO_PLATFORM) {
345 		handler = &platform_sys_off_handler;
346 		if (handler->cb_data)
347 			return ERR_PTR(-EBUSY);
348 	} else {
349 		if (system_state > SYSTEM_RUNNING)
350 			flags = GFP_ATOMIC;
351 		else
352 			flags = GFP_KERNEL;
353 
354 		handler = kzalloc(sizeof(*handler), flags);
355 		if (!handler)
356 			return ERR_PTR(-ENOMEM);
357 	}
358 
359 	return handler;
360 }
361 
362 static void free_sys_off_handler(struct sys_off_handler *handler)
363 {
364 	if (handler == &platform_sys_off_handler)
365 		memset(handler, 0, sizeof(*handler));
366 	else
367 		kfree(handler);
368 }
369 
370 /**
371  *	register_sys_off_handler - Register sys-off handler
372  *	@mode: Sys-off mode
373  *	@priority: Handler priority
374  *	@callback: Callback function
375  *	@cb_data: Callback argument
376  *
377  *	Registers system power-off or restart handler that will be invoked
378  *	at the step corresponding to the given sys-off mode. Handler's callback
379  *	should return NOTIFY_DONE to permit execution of the next handler in
380  *	the call chain or NOTIFY_STOP to break the chain (in error case for
381  *	example).
382  *
383  *	Multiple handlers can be registered at the default priority level.
384  *
385  *	Only one handler can be registered at the non-default priority level,
386  *	otherwise ERR_PTR(-EBUSY) is returned.
387  *
388  *	Returns a new instance of struct sys_off_handler on success, or
389  *	an ERR_PTR()-encoded error code otherwise.
390  */
391 struct sys_off_handler *
392 register_sys_off_handler(enum sys_off_mode mode,
393 			 int priority,
394 			 int (*callback)(struct sys_off_data *data),
395 			 void *cb_data)
396 {
397 	struct sys_off_handler *handler;
398 	int err;
399 
400 	handler = alloc_sys_off_handler(priority);
401 	if (IS_ERR(handler))
402 		return handler;
403 
404 	switch (mode) {
405 	case SYS_OFF_MODE_POWER_OFF_PREPARE:
406 		handler->list = &power_off_prep_handler_list;
407 		handler->blocking = true;
408 		break;
409 
410 	case SYS_OFF_MODE_POWER_OFF:
411 		handler->list = &power_off_handler_list;
412 		break;
413 
414 	case SYS_OFF_MODE_RESTART_PREPARE:
415 		handler->list = &restart_prep_handler_list;
416 		handler->blocking = true;
417 		break;
418 
419 	case SYS_OFF_MODE_RESTART:
420 		handler->list = &restart_handler_list;
421 		break;
422 
423 	default:
424 		free_sys_off_handler(handler);
425 		return ERR_PTR(-EINVAL);
426 	}
427 
428 	handler->nb.notifier_call = sys_off_notify;
429 	handler->nb.priority = priority;
430 	handler->sys_off_cb = callback;
431 	handler->cb_data = cb_data;
432 	handler->mode = mode;
433 
434 	if (handler->blocking) {
435 		if (priority == SYS_OFF_PRIO_DEFAULT)
436 			err = blocking_notifier_chain_register(handler->list,
437 							       &handler->nb);
438 		else
439 			err = blocking_notifier_chain_register_unique_prio(handler->list,
440 									   &handler->nb);
441 	} else {
442 		if (priority == SYS_OFF_PRIO_DEFAULT)
443 			err = atomic_notifier_chain_register(handler->list,
444 							     &handler->nb);
445 		else
446 			err = atomic_notifier_chain_register_unique_prio(handler->list,
447 									 &handler->nb);
448 	}
449 
450 	if (err) {
451 		free_sys_off_handler(handler);
452 		return ERR_PTR(err);
453 	}
454 
455 	return handler;
456 }
457 EXPORT_SYMBOL_GPL(register_sys_off_handler);
458 
459 /**
460  *	unregister_sys_off_handler - Unregister sys-off handler
461  *	@handler: Sys-off handler
462  *
463  *	Unregisters given sys-off handler.
464  */
465 void unregister_sys_off_handler(struct sys_off_handler *handler)
466 {
467 	int err;
468 
469 	if (IS_ERR_OR_NULL(handler))
470 		return;
471 
472 	if (handler->blocking)
473 		err = blocking_notifier_chain_unregister(handler->list,
474 							 &handler->nb);
475 	else
476 		err = atomic_notifier_chain_unregister(handler->list,
477 						       &handler->nb);
478 
479 	/* sanity check, shall never happen */
480 	WARN_ON(err);
481 
482 	free_sys_off_handler(handler);
483 }
484 EXPORT_SYMBOL_GPL(unregister_sys_off_handler);
485 
486 static void devm_unregister_sys_off_handler(void *data)
487 {
488 	struct sys_off_handler *handler = data;
489 
490 	unregister_sys_off_handler(handler);
491 }
492 
493 /**
494  *	devm_register_sys_off_handler - Register sys-off handler
495  *	@dev: Device that registers handler
496  *	@mode: Sys-off mode
497  *	@priority: Handler priority
498  *	@callback: Callback function
499  *	@cb_data: Callback argument
500  *
501  *	Registers resource-managed sys-off handler.
502  *
503  *	Returns zero on success, or error code on failure.
504  */
505 int devm_register_sys_off_handler(struct device *dev,
506 				  enum sys_off_mode mode,
507 				  int priority,
508 				  int (*callback)(struct sys_off_data *data),
509 				  void *cb_data)
510 {
511 	struct sys_off_handler *handler;
512 
513 	handler = register_sys_off_handler(mode, priority, callback, cb_data);
514 	if (IS_ERR(handler))
515 		return PTR_ERR(handler);
516 	handler->dev = dev;
517 
518 	return devm_add_action_or_reset(dev, devm_unregister_sys_off_handler,
519 					handler);
520 }
521 EXPORT_SYMBOL_GPL(devm_register_sys_off_handler);
522 
523 /**
524  *	devm_register_power_off_handler - Register power-off handler
525  *	@dev: Device that registers callback
526  *	@callback: Callback function
527  *	@cb_data: Callback's argument
528  *
529  *	Registers resource-managed sys-off handler with a default priority
530  *	and using power-off mode.
531  *
532  *	Returns zero on success, or error code on failure.
533  */
534 int devm_register_power_off_handler(struct device *dev,
535 				    int (*callback)(struct sys_off_data *data),
536 				    void *cb_data)
537 {
538 	return devm_register_sys_off_handler(dev,
539 					     SYS_OFF_MODE_POWER_OFF,
540 					     SYS_OFF_PRIO_DEFAULT,
541 					     callback, cb_data);
542 }
543 EXPORT_SYMBOL_GPL(devm_register_power_off_handler);
544 
545 /**
546  *	devm_register_restart_handler - Register restart handler
547  *	@dev: Device that registers callback
548  *	@callback: Callback function
549  *	@cb_data: Callback's argument
550  *
551  *	Registers resource-managed sys-off handler with a default priority
552  *	and using restart mode.
553  *
554  *	Returns zero on success, or error code on failure.
555  */
556 int devm_register_restart_handler(struct device *dev,
557 				  int (*callback)(struct sys_off_data *data),
558 				  void *cb_data)
559 {
560 	return devm_register_sys_off_handler(dev,
561 					     SYS_OFF_MODE_RESTART,
562 					     SYS_OFF_PRIO_DEFAULT,
563 					     callback, cb_data);
564 }
565 EXPORT_SYMBOL_GPL(devm_register_restart_handler);
566 
567 static struct sys_off_handler *platform_power_off_handler;
568 
569 static int platform_power_off_notify(struct sys_off_data *data)
570 {
571 	void (*platform_power_power_off_cb)(void) = data->cb_data;
572 
573 	platform_power_power_off_cb();
574 
575 	return NOTIFY_DONE;
576 }
577 
578 /**
579  *	register_platform_power_off - Register platform-level power-off callback
580  *	@power_off: Power-off callback
581  *
582  *	Registers power-off callback that will be called as last step
583  *	of the power-off sequence. This callback is expected to be invoked
584  *	for the last resort. Only one platform power-off callback is allowed
585  *	to be registered at a time.
586  *
587  *	Returns zero on success, or error code on failure.
588  */
589 int register_platform_power_off(void (*power_off)(void))
590 {
591 	struct sys_off_handler *handler;
592 
593 	handler = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
594 					   SYS_OFF_PRIO_PLATFORM,
595 					   platform_power_off_notify,
596 					   power_off);
597 	if (IS_ERR(handler))
598 		return PTR_ERR(handler);
599 
600 	platform_power_off_handler = handler;
601 
602 	return 0;
603 }
604 EXPORT_SYMBOL_GPL(register_platform_power_off);
605 
606 /**
607  *	unregister_platform_power_off - Unregister platform-level power-off callback
608  *	@power_off: Power-off callback
609  *
610  *	Unregisters previously registered platform power-off callback.
611  */
612 void unregister_platform_power_off(void (*power_off)(void))
613 {
614 	if (platform_power_off_handler &&
615 	    platform_power_off_handler->cb_data == power_off) {
616 		unregister_sys_off_handler(platform_power_off_handler);
617 		platform_power_off_handler = NULL;
618 	}
619 }
620 EXPORT_SYMBOL_GPL(unregister_platform_power_off);
621 
622 static int legacy_pm_power_off(struct sys_off_data *data)
623 {
624 	if (pm_power_off)
625 		pm_power_off();
626 
627 	return NOTIFY_DONE;
628 }
629 
630 static void do_kernel_power_off_prepare(void)
631 {
632 	blocking_notifier_call_chain(&power_off_prep_handler_list, 0, NULL);
633 }
634 
635 /**
636  *	do_kernel_power_off - Execute kernel power-off handler call chain
637  *
638  *	Expected to be called as last step of the power-off sequence.
639  *
640  *	Powers off the system immediately if a power-off handler function has
641  *	been registered. Otherwise does nothing.
642  */
643 void do_kernel_power_off(void)
644 {
645 	struct sys_off_handler *sys_off = NULL;
646 
647 	/*
648 	 * Register sys-off handlers for legacy PM callback. This allows
649 	 * legacy PM callbacks temporary co-exist with the new sys-off API.
650 	 *
651 	 * TODO: Remove legacy handlers once all legacy PM users will be
652 	 *       switched to the sys-off based APIs.
653 	 */
654 	if (pm_power_off)
655 		sys_off = register_sys_off_handler(SYS_OFF_MODE_POWER_OFF,
656 						   SYS_OFF_PRIO_DEFAULT,
657 						   legacy_pm_power_off, NULL);
658 
659 	atomic_notifier_call_chain(&power_off_handler_list, 0, NULL);
660 
661 	unregister_sys_off_handler(sys_off);
662 }
663 
664 /**
665  *	kernel_can_power_off - check whether system can be powered off
666  *
667  *	Returns true if power-off handler is registered and system can be
668  *	powered off, false otherwise.
669  */
670 bool kernel_can_power_off(void)
671 {
672 	return !atomic_notifier_call_chain_is_empty(&power_off_handler_list) ||
673 		pm_power_off;
674 }
675 EXPORT_SYMBOL_GPL(kernel_can_power_off);
676 
677 /**
678  *	kernel_power_off - power_off the system
679  *
680  *	Shutdown everything and perform a clean system power_off.
681  */
682 void kernel_power_off(void)
683 {
684 	kernel_shutdown_prepare(SYSTEM_POWER_OFF);
685 	do_kernel_power_off_prepare();
686 	migrate_to_reboot_cpu();
687 	syscore_shutdown();
688 	pr_emerg("Power down\n");
689 	kmsg_dump(KMSG_DUMP_SHUTDOWN);
690 	machine_power_off();
691 }
692 EXPORT_SYMBOL_GPL(kernel_power_off);
693 
694 DEFINE_MUTEX(system_transition_mutex);
695 
696 /*
697  * Reboot system call: for obvious reasons only root may call it,
698  * and even root needs to set up some magic numbers in the registers
699  * so that some mistake won't make this reboot the whole machine.
700  * You can also set the meaning of the ctrl-alt-del-key here.
701  *
702  * reboot doesn't sync: do that yourself before calling this.
703  */
704 SYSCALL_DEFINE4(reboot, int, magic1, int, magic2, unsigned int, cmd,
705 		void __user *, arg)
706 {
707 	struct pid_namespace *pid_ns = task_active_pid_ns(current);
708 	char buffer[256];
709 	int ret = 0;
710 
711 	/* We only trust the superuser with rebooting the system. */
712 	if (!ns_capable(pid_ns->user_ns, CAP_SYS_BOOT))
713 		return -EPERM;
714 
715 	/* For safety, we require "magic" arguments. */
716 	if (magic1 != LINUX_REBOOT_MAGIC1 ||
717 			(magic2 != LINUX_REBOOT_MAGIC2 &&
718 			magic2 != LINUX_REBOOT_MAGIC2A &&
719 			magic2 != LINUX_REBOOT_MAGIC2B &&
720 			magic2 != LINUX_REBOOT_MAGIC2C))
721 		return -EINVAL;
722 
723 	/*
724 	 * If pid namespaces are enabled and the current task is in a child
725 	 * pid_namespace, the command is handled by reboot_pid_ns() which will
726 	 * call do_exit().
727 	 */
728 	ret = reboot_pid_ns(pid_ns, cmd);
729 	if (ret)
730 		return ret;
731 
732 	/* Instead of trying to make the power_off code look like
733 	 * halt when pm_power_off is not set do it the easy way.
734 	 */
735 	if ((cmd == LINUX_REBOOT_CMD_POWER_OFF) && !kernel_can_power_off())
736 		cmd = LINUX_REBOOT_CMD_HALT;
737 
738 	mutex_lock(&system_transition_mutex);
739 	switch (cmd) {
740 	case LINUX_REBOOT_CMD_RESTART:
741 		kernel_restart(NULL);
742 		break;
743 
744 	case LINUX_REBOOT_CMD_CAD_ON:
745 		C_A_D = 1;
746 		break;
747 
748 	case LINUX_REBOOT_CMD_CAD_OFF:
749 		C_A_D = 0;
750 		break;
751 
752 	case LINUX_REBOOT_CMD_HALT:
753 		kernel_halt();
754 		do_exit(0);
755 
756 	case LINUX_REBOOT_CMD_POWER_OFF:
757 		kernel_power_off();
758 		do_exit(0);
759 		break;
760 
761 	case LINUX_REBOOT_CMD_RESTART2:
762 		ret = strncpy_from_user(&buffer[0], arg, sizeof(buffer) - 1);
763 		if (ret < 0) {
764 			ret = -EFAULT;
765 			break;
766 		}
767 		buffer[sizeof(buffer) - 1] = '\0';
768 
769 		kernel_restart(buffer);
770 		break;
771 
772 #ifdef CONFIG_KEXEC_CORE
773 	case LINUX_REBOOT_CMD_KEXEC:
774 		ret = kernel_kexec();
775 		break;
776 #endif
777 
778 #ifdef CONFIG_HIBERNATION
779 	case LINUX_REBOOT_CMD_SW_SUSPEND:
780 		ret = hibernate();
781 		break;
782 #endif
783 
784 	default:
785 		ret = -EINVAL;
786 		break;
787 	}
788 	mutex_unlock(&system_transition_mutex);
789 	return ret;
790 }
791 
792 static void deferred_cad(struct work_struct *dummy)
793 {
794 	kernel_restart(NULL);
795 }
796 
797 /*
798  * This function gets called by ctrl-alt-del - ie the keyboard interrupt.
799  * As it's called within an interrupt, it may NOT sync: the only choice
800  * is whether to reboot at once, or just ignore the ctrl-alt-del.
801  */
802 void ctrl_alt_del(void)
803 {
804 	static DECLARE_WORK(cad_work, deferred_cad);
805 
806 	if (C_A_D)
807 		schedule_work(&cad_work);
808 	else
809 		kill_cad_pid(SIGINT, 1);
810 }
811 
812 #define POWEROFF_CMD_PATH_LEN  256
813 static char poweroff_cmd[POWEROFF_CMD_PATH_LEN] = "/sbin/poweroff";
814 static const char reboot_cmd[] = "/sbin/reboot";
815 
816 static int run_cmd(const char *cmd)
817 {
818 	char **argv;
819 	static char *envp[] = {
820 		"HOME=/",
821 		"PATH=/sbin:/bin:/usr/sbin:/usr/bin",
822 		NULL
823 	};
824 	int ret;
825 	argv = argv_split(GFP_KERNEL, cmd, NULL);
826 	if (argv) {
827 		ret = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_EXEC);
828 		argv_free(argv);
829 	} else {
830 		ret = -ENOMEM;
831 	}
832 
833 	return ret;
834 }
835 
836 static int __orderly_reboot(void)
837 {
838 	int ret;
839 
840 	ret = run_cmd(reboot_cmd);
841 
842 	if (ret) {
843 		pr_warn("Failed to start orderly reboot: forcing the issue\n");
844 		emergency_sync();
845 		kernel_restart(NULL);
846 	}
847 
848 	return ret;
849 }
850 
851 static int __orderly_poweroff(bool force)
852 {
853 	int ret;
854 
855 	ret = run_cmd(poweroff_cmd);
856 
857 	if (ret && force) {
858 		pr_warn("Failed to start orderly shutdown: forcing the issue\n");
859 
860 		/*
861 		 * I guess this should try to kick off some daemon to sync and
862 		 * poweroff asap.  Or not even bother syncing if we're doing an
863 		 * emergency shutdown?
864 		 */
865 		emergency_sync();
866 		kernel_power_off();
867 	}
868 
869 	return ret;
870 }
871 
872 static bool poweroff_force;
873 
874 static void poweroff_work_func(struct work_struct *work)
875 {
876 	__orderly_poweroff(poweroff_force);
877 }
878 
879 static DECLARE_WORK(poweroff_work, poweroff_work_func);
880 
881 /**
882  * orderly_poweroff - Trigger an orderly system poweroff
883  * @force: force poweroff if command execution fails
884  *
885  * This may be called from any context to trigger a system shutdown.
886  * If the orderly shutdown fails, it will force an immediate shutdown.
887  */
888 void orderly_poweroff(bool force)
889 {
890 	if (force) /* do not override the pending "true" */
891 		poweroff_force = true;
892 	schedule_work(&poweroff_work);
893 }
894 EXPORT_SYMBOL_GPL(orderly_poweroff);
895 
896 static void reboot_work_func(struct work_struct *work)
897 {
898 	__orderly_reboot();
899 }
900 
901 static DECLARE_WORK(reboot_work, reboot_work_func);
902 
903 /**
904  * orderly_reboot - Trigger an orderly system reboot
905  *
906  * This may be called from any context to trigger a system reboot.
907  * If the orderly reboot fails, it will force an immediate reboot.
908  */
909 void orderly_reboot(void)
910 {
911 	schedule_work(&reboot_work);
912 }
913 EXPORT_SYMBOL_GPL(orderly_reboot);
914 
915 /**
916  * hw_failure_emergency_poweroff_func - emergency poweroff work after a known delay
917  * @work: work_struct associated with the emergency poweroff function
918  *
919  * This function is called in very critical situations to force
920  * a kernel poweroff after a configurable timeout value.
921  */
922 static void hw_failure_emergency_poweroff_func(struct work_struct *work)
923 {
924 	/*
925 	 * We have reached here after the emergency shutdown waiting period has
926 	 * expired. This means orderly_poweroff has not been able to shut off
927 	 * the system for some reason.
928 	 *
929 	 * Try to shut down the system immediately using kernel_power_off
930 	 * if populated
931 	 */
932 	pr_emerg("Hardware protection timed-out. Trying forced poweroff\n");
933 	kernel_power_off();
934 
935 	/*
936 	 * Worst of the worst case trigger emergency restart
937 	 */
938 	pr_emerg("Hardware protection shutdown failed. Trying emergency restart\n");
939 	emergency_restart();
940 }
941 
942 static DECLARE_DELAYED_WORK(hw_failure_emergency_poweroff_work,
943 			    hw_failure_emergency_poweroff_func);
944 
945 /**
946  * hw_failure_emergency_poweroff - Trigger an emergency system poweroff
947  *
948  * This may be called from any critical situation to trigger a system shutdown
949  * after a given period of time. If time is negative this is not scheduled.
950  */
951 static void hw_failure_emergency_poweroff(int poweroff_delay_ms)
952 {
953 	if (poweroff_delay_ms <= 0)
954 		return;
955 	schedule_delayed_work(&hw_failure_emergency_poweroff_work,
956 			      msecs_to_jiffies(poweroff_delay_ms));
957 }
958 
959 /**
960  * __hw_protection_shutdown - Trigger an emergency system shutdown or reboot
961  *
962  * @reason:		Reason of emergency shutdown or reboot to be printed.
963  * @ms_until_forced:	Time to wait for orderly shutdown or reboot before
964  *			triggering it. Negative value disables the forced
965  *			shutdown or reboot.
966  * @shutdown:		If true, indicates that a shutdown will happen
967  *			after the critical tempeature is reached.
968  *			If false, indicates that a reboot will happen
969  *			after the critical tempeature is reached.
970  *
971  * Initiate an emergency system shutdown or reboot in order to protect
972  * hardware from further damage. Usage examples include a thermal protection.
973  * NOTE: The request is ignored if protection shutdown or reboot is already
974  * pending even if the previous request has given a large timeout for forced
975  * shutdown/reboot.
976  */
977 void __hw_protection_shutdown(const char *reason, int ms_until_forced, bool shutdown)
978 {
979 	static atomic_t allow_proceed = ATOMIC_INIT(1);
980 
981 	pr_emerg("HARDWARE PROTECTION shutdown (%s)\n", reason);
982 
983 	/* Shutdown should be initiated only once. */
984 	if (!atomic_dec_and_test(&allow_proceed))
985 		return;
986 
987 	/*
988 	 * Queue a backup emergency shutdown in the event of
989 	 * orderly_poweroff failure
990 	 */
991 	hw_failure_emergency_poweroff(ms_until_forced);
992 	if (shutdown)
993 		orderly_poweroff(true);
994 	else
995 		orderly_reboot();
996 }
997 EXPORT_SYMBOL_GPL(__hw_protection_shutdown);
998 
999 static int __init reboot_setup(char *str)
1000 {
1001 	for (;;) {
1002 		enum reboot_mode *mode;
1003 
1004 		/*
1005 		 * Having anything passed on the command line via
1006 		 * reboot= will cause us to disable DMI checking
1007 		 * below.
1008 		 */
1009 		reboot_default = 0;
1010 
1011 		if (!strncmp(str, "panic_", 6)) {
1012 			mode = &panic_reboot_mode;
1013 			str += 6;
1014 		} else {
1015 			mode = &reboot_mode;
1016 		}
1017 
1018 		switch (*str) {
1019 		case 'w':
1020 			*mode = REBOOT_WARM;
1021 			break;
1022 
1023 		case 'c':
1024 			*mode = REBOOT_COLD;
1025 			break;
1026 
1027 		case 'h':
1028 			*mode = REBOOT_HARD;
1029 			break;
1030 
1031 		case 's':
1032 			/*
1033 			 * reboot_cpu is s[mp]#### with #### being the processor
1034 			 * to be used for rebooting. Skip 's' or 'smp' prefix.
1035 			 */
1036 			str += str[1] == 'm' && str[2] == 'p' ? 3 : 1;
1037 
1038 			if (isdigit(str[0])) {
1039 				int cpu = simple_strtoul(str, NULL, 0);
1040 
1041 				if (cpu >= num_possible_cpus()) {
1042 					pr_err("Ignoring the CPU number in reboot= option. "
1043 					"CPU %d exceeds possible cpu number %d\n",
1044 					cpu, num_possible_cpus());
1045 					break;
1046 				}
1047 				reboot_cpu = cpu;
1048 			} else
1049 				*mode = REBOOT_SOFT;
1050 			break;
1051 
1052 		case 'g':
1053 			*mode = REBOOT_GPIO;
1054 			break;
1055 
1056 		case 'b':
1057 		case 'a':
1058 		case 'k':
1059 		case 't':
1060 		case 'e':
1061 		case 'p':
1062 			reboot_type = *str;
1063 			break;
1064 
1065 		case 'f':
1066 			reboot_force = 1;
1067 			break;
1068 		}
1069 
1070 		str = strchr(str, ',');
1071 		if (str)
1072 			str++;
1073 		else
1074 			break;
1075 	}
1076 	return 1;
1077 }
1078 __setup("reboot=", reboot_setup);
1079 
1080 #ifdef CONFIG_SYSFS
1081 
1082 #define REBOOT_COLD_STR		"cold"
1083 #define REBOOT_WARM_STR		"warm"
1084 #define REBOOT_HARD_STR		"hard"
1085 #define REBOOT_SOFT_STR		"soft"
1086 #define REBOOT_GPIO_STR		"gpio"
1087 #define REBOOT_UNDEFINED_STR	"undefined"
1088 
1089 #define BOOT_TRIPLE_STR		"triple"
1090 #define BOOT_KBD_STR		"kbd"
1091 #define BOOT_BIOS_STR		"bios"
1092 #define BOOT_ACPI_STR		"acpi"
1093 #define BOOT_EFI_STR		"efi"
1094 #define BOOT_PCI_STR		"pci"
1095 
1096 static ssize_t mode_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1097 {
1098 	const char *val;
1099 
1100 	switch (reboot_mode) {
1101 	case REBOOT_COLD:
1102 		val = REBOOT_COLD_STR;
1103 		break;
1104 	case REBOOT_WARM:
1105 		val = REBOOT_WARM_STR;
1106 		break;
1107 	case REBOOT_HARD:
1108 		val = REBOOT_HARD_STR;
1109 		break;
1110 	case REBOOT_SOFT:
1111 		val = REBOOT_SOFT_STR;
1112 		break;
1113 	case REBOOT_GPIO:
1114 		val = REBOOT_GPIO_STR;
1115 		break;
1116 	default:
1117 		val = REBOOT_UNDEFINED_STR;
1118 	}
1119 
1120 	return sprintf(buf, "%s\n", val);
1121 }
1122 static ssize_t mode_store(struct kobject *kobj, struct kobj_attribute *attr,
1123 			  const char *buf, size_t count)
1124 {
1125 	if (!capable(CAP_SYS_BOOT))
1126 		return -EPERM;
1127 
1128 	if (!strncmp(buf, REBOOT_COLD_STR, strlen(REBOOT_COLD_STR)))
1129 		reboot_mode = REBOOT_COLD;
1130 	else if (!strncmp(buf, REBOOT_WARM_STR, strlen(REBOOT_WARM_STR)))
1131 		reboot_mode = REBOOT_WARM;
1132 	else if (!strncmp(buf, REBOOT_HARD_STR, strlen(REBOOT_HARD_STR)))
1133 		reboot_mode = REBOOT_HARD;
1134 	else if (!strncmp(buf, REBOOT_SOFT_STR, strlen(REBOOT_SOFT_STR)))
1135 		reboot_mode = REBOOT_SOFT;
1136 	else if (!strncmp(buf, REBOOT_GPIO_STR, strlen(REBOOT_GPIO_STR)))
1137 		reboot_mode = REBOOT_GPIO;
1138 	else
1139 		return -EINVAL;
1140 
1141 	reboot_default = 0;
1142 
1143 	return count;
1144 }
1145 static struct kobj_attribute reboot_mode_attr = __ATTR_RW(mode);
1146 
1147 #ifdef CONFIG_X86
1148 static ssize_t force_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1149 {
1150 	return sprintf(buf, "%d\n", reboot_force);
1151 }
1152 static ssize_t force_store(struct kobject *kobj, struct kobj_attribute *attr,
1153 			  const char *buf, size_t count)
1154 {
1155 	bool res;
1156 
1157 	if (!capable(CAP_SYS_BOOT))
1158 		return -EPERM;
1159 
1160 	if (kstrtobool(buf, &res))
1161 		return -EINVAL;
1162 
1163 	reboot_default = 0;
1164 	reboot_force = res;
1165 
1166 	return count;
1167 }
1168 static struct kobj_attribute reboot_force_attr = __ATTR_RW(force);
1169 
1170 static ssize_t type_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1171 {
1172 	const char *val;
1173 
1174 	switch (reboot_type) {
1175 	case BOOT_TRIPLE:
1176 		val = BOOT_TRIPLE_STR;
1177 		break;
1178 	case BOOT_KBD:
1179 		val = BOOT_KBD_STR;
1180 		break;
1181 	case BOOT_BIOS:
1182 		val = BOOT_BIOS_STR;
1183 		break;
1184 	case BOOT_ACPI:
1185 		val = BOOT_ACPI_STR;
1186 		break;
1187 	case BOOT_EFI:
1188 		val = BOOT_EFI_STR;
1189 		break;
1190 	case BOOT_CF9_FORCE:
1191 		val = BOOT_PCI_STR;
1192 		break;
1193 	default:
1194 		val = REBOOT_UNDEFINED_STR;
1195 	}
1196 
1197 	return sprintf(buf, "%s\n", val);
1198 }
1199 static ssize_t type_store(struct kobject *kobj, struct kobj_attribute *attr,
1200 			  const char *buf, size_t count)
1201 {
1202 	if (!capable(CAP_SYS_BOOT))
1203 		return -EPERM;
1204 
1205 	if (!strncmp(buf, BOOT_TRIPLE_STR, strlen(BOOT_TRIPLE_STR)))
1206 		reboot_type = BOOT_TRIPLE;
1207 	else if (!strncmp(buf, BOOT_KBD_STR, strlen(BOOT_KBD_STR)))
1208 		reboot_type = BOOT_KBD;
1209 	else if (!strncmp(buf, BOOT_BIOS_STR, strlen(BOOT_BIOS_STR)))
1210 		reboot_type = BOOT_BIOS;
1211 	else if (!strncmp(buf, BOOT_ACPI_STR, strlen(BOOT_ACPI_STR)))
1212 		reboot_type = BOOT_ACPI;
1213 	else if (!strncmp(buf, BOOT_EFI_STR, strlen(BOOT_EFI_STR)))
1214 		reboot_type = BOOT_EFI;
1215 	else if (!strncmp(buf, BOOT_PCI_STR, strlen(BOOT_PCI_STR)))
1216 		reboot_type = BOOT_CF9_FORCE;
1217 	else
1218 		return -EINVAL;
1219 
1220 	reboot_default = 0;
1221 
1222 	return count;
1223 }
1224 static struct kobj_attribute reboot_type_attr = __ATTR_RW(type);
1225 #endif
1226 
1227 #ifdef CONFIG_SMP
1228 static ssize_t cpu_show(struct kobject *kobj, struct kobj_attribute *attr, char *buf)
1229 {
1230 	return sprintf(buf, "%d\n", reboot_cpu);
1231 }
1232 static ssize_t cpu_store(struct kobject *kobj, struct kobj_attribute *attr,
1233 			  const char *buf, size_t count)
1234 {
1235 	unsigned int cpunum;
1236 	int rc;
1237 
1238 	if (!capable(CAP_SYS_BOOT))
1239 		return -EPERM;
1240 
1241 	rc = kstrtouint(buf, 0, &cpunum);
1242 
1243 	if (rc)
1244 		return rc;
1245 
1246 	if (cpunum >= num_possible_cpus())
1247 		return -ERANGE;
1248 
1249 	reboot_default = 0;
1250 	reboot_cpu = cpunum;
1251 
1252 	return count;
1253 }
1254 static struct kobj_attribute reboot_cpu_attr = __ATTR_RW(cpu);
1255 #endif
1256 
1257 static struct attribute *reboot_attrs[] = {
1258 	&reboot_mode_attr.attr,
1259 #ifdef CONFIG_X86
1260 	&reboot_force_attr.attr,
1261 	&reboot_type_attr.attr,
1262 #endif
1263 #ifdef CONFIG_SMP
1264 	&reboot_cpu_attr.attr,
1265 #endif
1266 	NULL,
1267 };
1268 
1269 #ifdef CONFIG_SYSCTL
1270 static struct ctl_table kern_reboot_table[] = {
1271 	{
1272 		.procname       = "poweroff_cmd",
1273 		.data           = &poweroff_cmd,
1274 		.maxlen         = POWEROFF_CMD_PATH_LEN,
1275 		.mode           = 0644,
1276 		.proc_handler   = proc_dostring,
1277 	},
1278 	{
1279 		.procname       = "ctrl-alt-del",
1280 		.data           = &C_A_D,
1281 		.maxlen         = sizeof(int),
1282 		.mode           = 0644,
1283 		.proc_handler   = proc_dointvec,
1284 	},
1285 	{ }
1286 };
1287 
1288 static void __init kernel_reboot_sysctls_init(void)
1289 {
1290 	register_sysctl_init("kernel", kern_reboot_table);
1291 }
1292 #else
1293 #define kernel_reboot_sysctls_init() do { } while (0)
1294 #endif /* CONFIG_SYSCTL */
1295 
1296 static const struct attribute_group reboot_attr_group = {
1297 	.attrs = reboot_attrs,
1298 };
1299 
1300 static int __init reboot_ksysfs_init(void)
1301 {
1302 	struct kobject *reboot_kobj;
1303 	int ret;
1304 
1305 	reboot_kobj = kobject_create_and_add("reboot", kernel_kobj);
1306 	if (!reboot_kobj)
1307 		return -ENOMEM;
1308 
1309 	ret = sysfs_create_group(reboot_kobj, &reboot_attr_group);
1310 	if (ret) {
1311 		kobject_put(reboot_kobj);
1312 		return ret;
1313 	}
1314 
1315 	kernel_reboot_sysctls_init();
1316 
1317 	return 0;
1318 }
1319 late_initcall(reboot_ksysfs_init);
1320 
1321 #endif
1322