xref: /linux-6.15/kernel/profile.c (revision 2e4c77be)
1 /*
2  *  linux/kernel/profile.c
3  *  Simple profiling. Manages a direct-mapped profile hit count buffer,
4  *  with configurable resolution, support for restricting the cpus on
5  *  which profiling is done, and switching between cpu time and
6  *  schedule() calls via kernel command line parameters passed at boot.
7  *
8  *  Scheduler profiling support, Arjan van de Ven and Ingo Molnar,
9  *	Red Hat, July 2004
10  *  Consolidation of architecture support code for profiling,
11  *	William Irwin, Oracle, July 2004
12  *  Amortized hit count accounting via per-cpu open-addressed hashtables
13  *	to resolve timer interrupt livelocks, William Irwin, Oracle, 2004
14  */
15 
16 #include <linux/module.h>
17 #include <linux/profile.h>
18 #include <linux/bootmem.h>
19 #include <linux/notifier.h>
20 #include <linux/mm.h>
21 #include <linux/cpumask.h>
22 #include <linux/cpu.h>
23 #include <linux/highmem.h>
24 #include <linux/mutex.h>
25 #include <linux/slab.h>
26 #include <linux/vmalloc.h>
27 #include <asm/sections.h>
28 #include <asm/irq_regs.h>
29 #include <asm/ptrace.h>
30 
31 struct profile_hit {
32 	u32 pc, hits;
33 };
34 #define PROFILE_GRPSHIFT	3
35 #define PROFILE_GRPSZ		(1 << PROFILE_GRPSHIFT)
36 #define NR_PROFILE_HIT		(PAGE_SIZE/sizeof(struct profile_hit))
37 #define NR_PROFILE_GRP		(NR_PROFILE_HIT/PROFILE_GRPSZ)
38 
39 /* Oprofile timer tick hook */
40 static int (*timer_hook)(struct pt_regs *) __read_mostly;
41 
42 static atomic_t *prof_buffer;
43 static unsigned long prof_len, prof_shift;
44 
45 int prof_on __read_mostly;
46 EXPORT_SYMBOL_GPL(prof_on);
47 
48 static cpumask_var_t prof_cpu_mask;
49 #ifdef CONFIG_SMP
50 static DEFINE_PER_CPU(struct profile_hit *[2], cpu_profile_hits);
51 static DEFINE_PER_CPU(int, cpu_profile_flip);
52 static DEFINE_MUTEX(profile_flip_mutex);
53 #endif /* CONFIG_SMP */
54 
55 int profile_setup(char *str)
56 {
57 	static char schedstr[] = "schedule";
58 	static char sleepstr[] = "sleep";
59 	static char kvmstr[] = "kvm";
60 	int par;
61 
62 	if (!strncmp(str, sleepstr, strlen(sleepstr))) {
63 #ifdef CONFIG_SCHEDSTATS
64 		prof_on = SLEEP_PROFILING;
65 		if (str[strlen(sleepstr)] == ',')
66 			str += strlen(sleepstr) + 1;
67 		if (get_option(&str, &par))
68 			prof_shift = par;
69 		printk(KERN_INFO
70 			"kernel sleep profiling enabled (shift: %ld)\n",
71 			prof_shift);
72 #else
73 		printk(KERN_WARNING
74 			"kernel sleep profiling requires CONFIG_SCHEDSTATS\n");
75 #endif /* CONFIG_SCHEDSTATS */
76 	} else if (!strncmp(str, schedstr, strlen(schedstr))) {
77 		prof_on = SCHED_PROFILING;
78 		if (str[strlen(schedstr)] == ',')
79 			str += strlen(schedstr) + 1;
80 		if (get_option(&str, &par))
81 			prof_shift = par;
82 		printk(KERN_INFO
83 			"kernel schedule profiling enabled (shift: %ld)\n",
84 			prof_shift);
85 	} else if (!strncmp(str, kvmstr, strlen(kvmstr))) {
86 		prof_on = KVM_PROFILING;
87 		if (str[strlen(kvmstr)] == ',')
88 			str += strlen(kvmstr) + 1;
89 		if (get_option(&str, &par))
90 			prof_shift = par;
91 		printk(KERN_INFO
92 			"kernel KVM profiling enabled (shift: %ld)\n",
93 			prof_shift);
94 	} else if (get_option(&str, &par)) {
95 		prof_shift = par;
96 		prof_on = CPU_PROFILING;
97 		printk(KERN_INFO "kernel profiling enabled (shift: %ld)\n",
98 			prof_shift);
99 	}
100 	return 1;
101 }
102 __setup("profile=", profile_setup);
103 
104 
105 int __ref profile_init(void)
106 {
107 	int buffer_bytes;
108 	if (!prof_on)
109 		return 0;
110 
111 	/* only text is profiled */
112 	prof_len = (_etext - _stext) >> prof_shift;
113 	buffer_bytes = prof_len*sizeof(atomic_t);
114 	if (!slab_is_available()) {
115 		prof_buffer = alloc_bootmem(buffer_bytes);
116 		alloc_bootmem_cpumask_var(&prof_cpu_mask);
117 		return 0;
118 	}
119 
120 	if (!alloc_cpumask_var(&prof_cpu_mask, GFP_KERNEL))
121 		return -ENOMEM;
122 
123 	prof_buffer = kzalloc(buffer_bytes, GFP_KERNEL);
124 	if (prof_buffer)
125 		return 0;
126 
127 	prof_buffer = alloc_pages_exact(buffer_bytes, GFP_KERNEL|__GFP_ZERO);
128 	if (prof_buffer)
129 		return 0;
130 
131 	prof_buffer = vmalloc(buffer_bytes);
132 	if (prof_buffer)
133 		return 0;
134 
135 	free_cpumask_var(prof_cpu_mask);
136 	return -ENOMEM;
137 }
138 
139 /* Profile event notifications */
140 
141 static BLOCKING_NOTIFIER_HEAD(task_exit_notifier);
142 static ATOMIC_NOTIFIER_HEAD(task_free_notifier);
143 static BLOCKING_NOTIFIER_HEAD(munmap_notifier);
144 
145 void profile_task_exit(struct task_struct *task)
146 {
147 	blocking_notifier_call_chain(&task_exit_notifier, 0, task);
148 }
149 
150 int profile_handoff_task(struct task_struct *task)
151 {
152 	int ret;
153 	ret = atomic_notifier_call_chain(&task_free_notifier, 0, task);
154 	return (ret == NOTIFY_OK) ? 1 : 0;
155 }
156 
157 void profile_munmap(unsigned long addr)
158 {
159 	blocking_notifier_call_chain(&munmap_notifier, 0, (void *)addr);
160 }
161 
162 int task_handoff_register(struct notifier_block *n)
163 {
164 	return atomic_notifier_chain_register(&task_free_notifier, n);
165 }
166 EXPORT_SYMBOL_GPL(task_handoff_register);
167 
168 int task_handoff_unregister(struct notifier_block *n)
169 {
170 	return atomic_notifier_chain_unregister(&task_free_notifier, n);
171 }
172 EXPORT_SYMBOL_GPL(task_handoff_unregister);
173 
174 int profile_event_register(enum profile_type type, struct notifier_block *n)
175 {
176 	int err = -EINVAL;
177 
178 	switch (type) {
179 	case PROFILE_TASK_EXIT:
180 		err = blocking_notifier_chain_register(
181 				&task_exit_notifier, n);
182 		break;
183 	case PROFILE_MUNMAP:
184 		err = blocking_notifier_chain_register(
185 				&munmap_notifier, n);
186 		break;
187 	}
188 
189 	return err;
190 }
191 EXPORT_SYMBOL_GPL(profile_event_register);
192 
193 int profile_event_unregister(enum profile_type type, struct notifier_block *n)
194 {
195 	int err = -EINVAL;
196 
197 	switch (type) {
198 	case PROFILE_TASK_EXIT:
199 		err = blocking_notifier_chain_unregister(
200 				&task_exit_notifier, n);
201 		break;
202 	case PROFILE_MUNMAP:
203 		err = blocking_notifier_chain_unregister(
204 				&munmap_notifier, n);
205 		break;
206 	}
207 
208 	return err;
209 }
210 EXPORT_SYMBOL_GPL(profile_event_unregister);
211 
212 int register_timer_hook(int (*hook)(struct pt_regs *))
213 {
214 	if (timer_hook)
215 		return -EBUSY;
216 	timer_hook = hook;
217 	return 0;
218 }
219 EXPORT_SYMBOL_GPL(register_timer_hook);
220 
221 void unregister_timer_hook(int (*hook)(struct pt_regs *))
222 {
223 	WARN_ON(hook != timer_hook);
224 	timer_hook = NULL;
225 	/* make sure all CPUs see the NULL hook */
226 	synchronize_sched();  /* Allow ongoing interrupts to complete. */
227 }
228 EXPORT_SYMBOL_GPL(unregister_timer_hook);
229 
230 
231 #ifdef CONFIG_SMP
232 /*
233  * Each cpu has a pair of open-addressed hashtables for pending
234  * profile hits. read_profile() IPI's all cpus to request them
235  * to flip buffers and flushes their contents to prof_buffer itself.
236  * Flip requests are serialized by the profile_flip_mutex. The sole
237  * use of having a second hashtable is for avoiding cacheline
238  * contention that would otherwise happen during flushes of pending
239  * profile hits required for the accuracy of reported profile hits
240  * and so resurrect the interrupt livelock issue.
241  *
242  * The open-addressed hashtables are indexed by profile buffer slot
243  * and hold the number of pending hits to that profile buffer slot on
244  * a cpu in an entry. When the hashtable overflows, all pending hits
245  * are accounted to their corresponding profile buffer slots with
246  * atomic_add() and the hashtable emptied. As numerous pending hits
247  * may be accounted to a profile buffer slot in a hashtable entry,
248  * this amortizes a number of atomic profile buffer increments likely
249  * to be far larger than the number of entries in the hashtable,
250  * particularly given that the number of distinct profile buffer
251  * positions to which hits are accounted during short intervals (e.g.
252  * several seconds) is usually very small. Exclusion from buffer
253  * flipping is provided by interrupt disablement (note that for
254  * SCHED_PROFILING or SLEEP_PROFILING profile_hit() may be called from
255  * process context).
256  * The hash function is meant to be lightweight as opposed to strong,
257  * and was vaguely inspired by ppc64 firmware-supported inverted
258  * pagetable hash functions, but uses a full hashtable full of finite
259  * collision chains, not just pairs of them.
260  *
261  * -- wli
262  */
263 static void __profile_flip_buffers(void *unused)
264 {
265 	int cpu = smp_processor_id();
266 
267 	per_cpu(cpu_profile_flip, cpu) = !per_cpu(cpu_profile_flip, cpu);
268 }
269 
270 static void profile_flip_buffers(void)
271 {
272 	int i, j, cpu;
273 
274 	mutex_lock(&profile_flip_mutex);
275 	j = per_cpu(cpu_profile_flip, get_cpu());
276 	put_cpu();
277 	on_each_cpu(__profile_flip_buffers, NULL, 1);
278 	for_each_online_cpu(cpu) {
279 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[j];
280 		for (i = 0; i < NR_PROFILE_HIT; ++i) {
281 			if (!hits[i].hits) {
282 				if (hits[i].pc)
283 					hits[i].pc = 0;
284 				continue;
285 			}
286 			atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
287 			hits[i].hits = hits[i].pc = 0;
288 		}
289 	}
290 	mutex_unlock(&profile_flip_mutex);
291 }
292 
293 static void profile_discard_flip_buffers(void)
294 {
295 	int i, cpu;
296 
297 	mutex_lock(&profile_flip_mutex);
298 	i = per_cpu(cpu_profile_flip, get_cpu());
299 	put_cpu();
300 	on_each_cpu(__profile_flip_buffers, NULL, 1);
301 	for_each_online_cpu(cpu) {
302 		struct profile_hit *hits = per_cpu(cpu_profile_hits, cpu)[i];
303 		memset(hits, 0, NR_PROFILE_HIT*sizeof(struct profile_hit));
304 	}
305 	mutex_unlock(&profile_flip_mutex);
306 }
307 
308 void profile_hits(int type, void *__pc, unsigned int nr_hits)
309 {
310 	unsigned long primary, secondary, flags, pc = (unsigned long)__pc;
311 	int i, j, cpu;
312 	struct profile_hit *hits;
313 
314 	if (prof_on != type || !prof_buffer)
315 		return;
316 	pc = min((pc - (unsigned long)_stext) >> prof_shift, prof_len - 1);
317 	i = primary = (pc & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
318 	secondary = (~(pc << 1) & (NR_PROFILE_GRP - 1)) << PROFILE_GRPSHIFT;
319 	cpu = get_cpu();
320 	hits = per_cpu(cpu_profile_hits, cpu)[per_cpu(cpu_profile_flip, cpu)];
321 	if (!hits) {
322 		put_cpu();
323 		return;
324 	}
325 	/*
326 	 * We buffer the global profiler buffer into a per-CPU
327 	 * queue and thus reduce the number of global (and possibly
328 	 * NUMA-alien) accesses. The write-queue is self-coalescing:
329 	 */
330 	local_irq_save(flags);
331 	do {
332 		for (j = 0; j < PROFILE_GRPSZ; ++j) {
333 			if (hits[i + j].pc == pc) {
334 				hits[i + j].hits += nr_hits;
335 				goto out;
336 			} else if (!hits[i + j].hits) {
337 				hits[i + j].pc = pc;
338 				hits[i + j].hits = nr_hits;
339 				goto out;
340 			}
341 		}
342 		i = (i + secondary) & (NR_PROFILE_HIT - 1);
343 	} while (i != primary);
344 
345 	/*
346 	 * Add the current hit(s) and flush the write-queue out
347 	 * to the global buffer:
348 	 */
349 	atomic_add(nr_hits, &prof_buffer[pc]);
350 	for (i = 0; i < NR_PROFILE_HIT; ++i) {
351 		atomic_add(hits[i].hits, &prof_buffer[hits[i].pc]);
352 		hits[i].pc = hits[i].hits = 0;
353 	}
354 out:
355 	local_irq_restore(flags);
356 	put_cpu();
357 }
358 
359 static int __cpuinit profile_cpu_callback(struct notifier_block *info,
360 					unsigned long action, void *__cpu)
361 {
362 	int node, cpu = (unsigned long)__cpu;
363 	struct page *page;
364 
365 	switch (action) {
366 	case CPU_UP_PREPARE:
367 	case CPU_UP_PREPARE_FROZEN:
368 		node = cpu_to_node(cpu);
369 		per_cpu(cpu_profile_flip, cpu) = 0;
370 		if (!per_cpu(cpu_profile_hits, cpu)[1]) {
371 			page = alloc_pages_node(node,
372 					GFP_KERNEL | __GFP_ZERO,
373 					0);
374 			if (!page)
375 				return NOTIFY_BAD;
376 			per_cpu(cpu_profile_hits, cpu)[1] = page_address(page);
377 		}
378 		if (!per_cpu(cpu_profile_hits, cpu)[0]) {
379 			page = alloc_pages_node(node,
380 					GFP_KERNEL | __GFP_ZERO,
381 					0);
382 			if (!page)
383 				goto out_free;
384 			per_cpu(cpu_profile_hits, cpu)[0] = page_address(page);
385 		}
386 		break;
387 out_free:
388 		page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
389 		per_cpu(cpu_profile_hits, cpu)[1] = NULL;
390 		__free_page(page);
391 		return NOTIFY_BAD;
392 	case CPU_ONLINE:
393 	case CPU_ONLINE_FROZEN:
394 		if (prof_cpu_mask != NULL)
395 			cpumask_set_cpu(cpu, prof_cpu_mask);
396 		break;
397 	case CPU_UP_CANCELED:
398 	case CPU_UP_CANCELED_FROZEN:
399 	case CPU_DEAD:
400 	case CPU_DEAD_FROZEN:
401 		if (prof_cpu_mask != NULL)
402 			cpumask_clear_cpu(cpu, prof_cpu_mask);
403 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
404 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
405 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
406 			__free_page(page);
407 		}
408 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
409 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
410 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
411 			__free_page(page);
412 		}
413 		break;
414 	}
415 	return NOTIFY_OK;
416 }
417 #else /* !CONFIG_SMP */
418 #define profile_flip_buffers()		do { } while (0)
419 #define profile_discard_flip_buffers()	do { } while (0)
420 #define profile_cpu_callback		NULL
421 
422 void profile_hits(int type, void *__pc, unsigned int nr_hits)
423 {
424 	unsigned long pc;
425 
426 	if (prof_on != type || !prof_buffer)
427 		return;
428 	pc = ((unsigned long)__pc - (unsigned long)_stext) >> prof_shift;
429 	atomic_add(nr_hits, &prof_buffer[min(pc, prof_len - 1)]);
430 }
431 #endif /* !CONFIG_SMP */
432 EXPORT_SYMBOL_GPL(profile_hits);
433 
434 void profile_tick(int type)
435 {
436 	struct pt_regs *regs = get_irq_regs();
437 
438 	if (type == CPU_PROFILING && timer_hook)
439 		timer_hook(regs);
440 	if (!user_mode(regs) && prof_cpu_mask != NULL &&
441 	    cpumask_test_cpu(smp_processor_id(), prof_cpu_mask))
442 		profile_hit(type, (void *)profile_pc(regs));
443 }
444 
445 #ifdef CONFIG_PROC_FS
446 #include <linux/proc_fs.h>
447 #include <asm/uaccess.h>
448 
449 static int prof_cpu_mask_read_proc(char *page, char **start, off_t off,
450 			int count, int *eof, void *data)
451 {
452 	int len = cpumask_scnprintf(page, count, data);
453 	if (count - len < 2)
454 		return -EINVAL;
455 	len += sprintf(page + len, "\n");
456 	return len;
457 }
458 
459 static int prof_cpu_mask_write_proc(struct file *file,
460 	const char __user *buffer,  unsigned long count, void *data)
461 {
462 	struct cpumask *mask = data;
463 	unsigned long full_count = count, err;
464 	cpumask_var_t new_value;
465 
466 	if (!alloc_cpumask_var(&new_value, GFP_KERNEL))
467 		return -ENOMEM;
468 
469 	err = cpumask_parse_user(buffer, count, new_value);
470 	if (!err) {
471 		cpumask_copy(mask, new_value);
472 		err = full_count;
473 	}
474 	free_cpumask_var(new_value);
475 	return err;
476 }
477 
478 void create_prof_cpu_mask(struct proc_dir_entry *root_irq_dir)
479 {
480 	struct proc_dir_entry *entry;
481 
482 	/* create /proc/irq/prof_cpu_mask */
483 	entry = create_proc_entry("prof_cpu_mask", 0600, root_irq_dir);
484 	if (!entry)
485 		return;
486 	entry->data = prof_cpu_mask;
487 	entry->read_proc = prof_cpu_mask_read_proc;
488 	entry->write_proc = prof_cpu_mask_write_proc;
489 }
490 
491 /*
492  * This function accesses profiling information. The returned data is
493  * binary: the sampling step and the actual contents of the profile
494  * buffer. Use of the program readprofile is recommended in order to
495  * get meaningful info out of these data.
496  */
497 static ssize_t
498 read_profile(struct file *file, char __user *buf, size_t count, loff_t *ppos)
499 {
500 	unsigned long p = *ppos;
501 	ssize_t read;
502 	char *pnt;
503 	unsigned int sample_step = 1 << prof_shift;
504 
505 	profile_flip_buffers();
506 	if (p >= (prof_len+1)*sizeof(unsigned int))
507 		return 0;
508 	if (count > (prof_len+1)*sizeof(unsigned int) - p)
509 		count = (prof_len+1)*sizeof(unsigned int) - p;
510 	read = 0;
511 
512 	while (p < sizeof(unsigned int) && count > 0) {
513 		if (put_user(*((char *)(&sample_step)+p), buf))
514 			return -EFAULT;
515 		buf++; p++; count--; read++;
516 	}
517 	pnt = (char *)prof_buffer + p - sizeof(atomic_t);
518 	if (copy_to_user(buf, (void *)pnt, count))
519 		return -EFAULT;
520 	read += count;
521 	*ppos += read;
522 	return read;
523 }
524 
525 /*
526  * Writing to /proc/profile resets the counters
527  *
528  * Writing a 'profiling multiplier' value into it also re-sets the profiling
529  * interrupt frequency, on architectures that support this.
530  */
531 static ssize_t write_profile(struct file *file, const char __user *buf,
532 			     size_t count, loff_t *ppos)
533 {
534 #ifdef CONFIG_SMP
535 	extern int setup_profiling_timer(unsigned int multiplier);
536 
537 	if (count == sizeof(int)) {
538 		unsigned int multiplier;
539 
540 		if (copy_from_user(&multiplier, buf, sizeof(int)))
541 			return -EFAULT;
542 
543 		if (setup_profiling_timer(multiplier))
544 			return -EINVAL;
545 	}
546 #endif
547 	profile_discard_flip_buffers();
548 	memset(prof_buffer, 0, prof_len * sizeof(atomic_t));
549 	return count;
550 }
551 
552 static const struct file_operations proc_profile_operations = {
553 	.read		= read_profile,
554 	.write		= write_profile,
555 };
556 
557 #ifdef CONFIG_SMP
558 static void profile_nop(void *unused)
559 {
560 }
561 
562 static int create_hash_tables(void)
563 {
564 	int cpu;
565 
566 	for_each_online_cpu(cpu) {
567 		int node = cpu_to_node(cpu);
568 		struct page *page;
569 
570 		page = alloc_pages_node(node,
571 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
572 				0);
573 		if (!page)
574 			goto out_cleanup;
575 		per_cpu(cpu_profile_hits, cpu)[1]
576 				= (struct profile_hit *)page_address(page);
577 		page = alloc_pages_node(node,
578 				GFP_KERNEL | __GFP_ZERO | GFP_THISNODE,
579 				0);
580 		if (!page)
581 			goto out_cleanup;
582 		per_cpu(cpu_profile_hits, cpu)[0]
583 				= (struct profile_hit *)page_address(page);
584 	}
585 	return 0;
586 out_cleanup:
587 	prof_on = 0;
588 	smp_mb();
589 	on_each_cpu(profile_nop, NULL, 1);
590 	for_each_online_cpu(cpu) {
591 		struct page *page;
592 
593 		if (per_cpu(cpu_profile_hits, cpu)[0]) {
594 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[0]);
595 			per_cpu(cpu_profile_hits, cpu)[0] = NULL;
596 			__free_page(page);
597 		}
598 		if (per_cpu(cpu_profile_hits, cpu)[1]) {
599 			page = virt_to_page(per_cpu(cpu_profile_hits, cpu)[1]);
600 			per_cpu(cpu_profile_hits, cpu)[1] = NULL;
601 			__free_page(page);
602 		}
603 	}
604 	return -1;
605 }
606 #else
607 #define create_hash_tables()			({ 0; })
608 #endif
609 
610 int __ref create_proc_profile(void) /* false positive from hotcpu_notifier */
611 {
612 	struct proc_dir_entry *entry;
613 
614 	if (!prof_on)
615 		return 0;
616 	if (create_hash_tables())
617 		return -ENOMEM;
618 	entry = proc_create("profile", S_IWUSR | S_IRUGO,
619 			    NULL, &proc_profile_operations);
620 	if (!entry)
621 		return 0;
622 	entry->size = (1+prof_len) * sizeof(atomic_t);
623 	hotcpu_notifier(profile_cpu_callback, 0);
624 	return 0;
625 }
626 module_init(create_proc_profile);
627 #endif /* CONFIG_PROC_FS */
628