1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 #include <linux/pidfs.h> 46 #include <net/sock.h> 47 #include <uapi/linux/pidfd.h> 48 49 struct pid init_struct_pid = { 50 .count = REFCOUNT_INIT(1), 51 .tasks = { 52 { .first = NULL }, 53 { .first = NULL }, 54 { .first = NULL }, 55 }, 56 .level = 0, 57 .numbers = { { 58 .nr = 0, 59 .ns = &init_pid_ns, 60 }, } 61 }; 62 63 int pid_max = PID_MAX_DEFAULT; 64 65 #define RESERVED_PIDS 300 66 67 int pid_max_min = RESERVED_PIDS + 1; 68 int pid_max_max = PID_MAX_LIMIT; 69 #ifdef CONFIG_FS_PID 70 /* 71 * Pseudo filesystems start inode numbering after one. We use Reserved 72 * PIDs as a natural offset. 73 */ 74 static u64 pidfs_ino = RESERVED_PIDS; 75 #endif 76 77 /* 78 * PID-map pages start out as NULL, they get allocated upon 79 * first use and are never deallocated. This way a low pid_max 80 * value does not cause lots of bitmaps to be allocated, but 81 * the scheme scales to up to 4 million PIDs, runtime. 82 */ 83 struct pid_namespace init_pid_ns = { 84 .ns.count = REFCOUNT_INIT(2), 85 .idr = IDR_INIT(init_pid_ns.idr), 86 .pid_allocated = PIDNS_ADDING, 87 .level = 0, 88 .child_reaper = &init_task, 89 .user_ns = &init_user_ns, 90 .ns.inum = PROC_PID_INIT_INO, 91 #ifdef CONFIG_PID_NS 92 .ns.ops = &pidns_operations, 93 #endif 94 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 95 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC, 96 #endif 97 }; 98 EXPORT_SYMBOL_GPL(init_pid_ns); 99 100 /* 101 * Note: disable interrupts while the pidmap_lock is held as an 102 * interrupt might come in and do read_lock(&tasklist_lock). 103 * 104 * If we don't disable interrupts there is a nasty deadlock between 105 * detach_pid()->free_pid() and another cpu that does 106 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 107 * read_lock(&tasklist_lock); 108 * 109 * After we clean up the tasklist_lock and know there are no 110 * irq handlers that take it we can leave the interrupts enabled. 111 * For now it is easier to be safe than to prove it can't happen. 112 */ 113 114 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 115 116 void put_pid(struct pid *pid) 117 { 118 struct pid_namespace *ns; 119 120 if (!pid) 121 return; 122 123 ns = pid->numbers[pid->level].ns; 124 if (refcount_dec_and_test(&pid->count)) { 125 kmem_cache_free(ns->pid_cachep, pid); 126 put_pid_ns(ns); 127 } 128 } 129 EXPORT_SYMBOL_GPL(put_pid); 130 131 static void delayed_put_pid(struct rcu_head *rhp) 132 { 133 struct pid *pid = container_of(rhp, struct pid, rcu); 134 put_pid(pid); 135 } 136 137 void free_pid(struct pid *pid) 138 { 139 /* We can be called with write_lock_irq(&tasklist_lock) held */ 140 int i; 141 unsigned long flags; 142 143 spin_lock_irqsave(&pidmap_lock, flags); 144 for (i = 0; i <= pid->level; i++) { 145 struct upid *upid = pid->numbers + i; 146 struct pid_namespace *ns = upid->ns; 147 switch (--ns->pid_allocated) { 148 case 2: 149 case 1: 150 /* When all that is left in the pid namespace 151 * is the reaper wake up the reaper. The reaper 152 * may be sleeping in zap_pid_ns_processes(). 153 */ 154 wake_up_process(ns->child_reaper); 155 break; 156 case PIDNS_ADDING: 157 /* Handle a fork failure of the first process */ 158 WARN_ON(ns->child_reaper); 159 ns->pid_allocated = 0; 160 break; 161 } 162 163 idr_remove(&ns->idr, upid->nr); 164 } 165 spin_unlock_irqrestore(&pidmap_lock, flags); 166 167 call_rcu(&pid->rcu, delayed_put_pid); 168 } 169 170 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 171 size_t set_tid_size) 172 { 173 struct pid *pid; 174 enum pid_type type; 175 int i, nr; 176 struct pid_namespace *tmp; 177 struct upid *upid; 178 int retval = -ENOMEM; 179 180 /* 181 * set_tid_size contains the size of the set_tid array. Starting at 182 * the most nested currently active PID namespace it tells alloc_pid() 183 * which PID to set for a process in that most nested PID namespace 184 * up to set_tid_size PID namespaces. It does not have to set the PID 185 * for a process in all nested PID namespaces but set_tid_size must 186 * never be greater than the current ns->level + 1. 187 */ 188 if (set_tid_size > ns->level + 1) 189 return ERR_PTR(-EINVAL); 190 191 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 192 if (!pid) 193 return ERR_PTR(retval); 194 195 tmp = ns; 196 pid->level = ns->level; 197 198 for (i = ns->level; i >= 0; i--) { 199 int tid = 0; 200 201 if (set_tid_size) { 202 tid = set_tid[ns->level - i]; 203 204 retval = -EINVAL; 205 if (tid < 1 || tid >= pid_max) 206 goto out_free; 207 /* 208 * Also fail if a PID != 1 is requested and 209 * no PID 1 exists. 210 */ 211 if (tid != 1 && !tmp->child_reaper) 212 goto out_free; 213 retval = -EPERM; 214 if (!checkpoint_restore_ns_capable(tmp->user_ns)) 215 goto out_free; 216 set_tid_size--; 217 } 218 219 idr_preload(GFP_KERNEL); 220 spin_lock_irq(&pidmap_lock); 221 222 if (tid) { 223 nr = idr_alloc(&tmp->idr, NULL, tid, 224 tid + 1, GFP_ATOMIC); 225 /* 226 * If ENOSPC is returned it means that the PID is 227 * alreay in use. Return EEXIST in that case. 228 */ 229 if (nr == -ENOSPC) 230 nr = -EEXIST; 231 } else { 232 int pid_min = 1; 233 /* 234 * init really needs pid 1, but after reaching the 235 * maximum wrap back to RESERVED_PIDS 236 */ 237 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 238 pid_min = RESERVED_PIDS; 239 240 /* 241 * Store a null pointer so find_pid_ns does not find 242 * a partially initialized PID (see below). 243 */ 244 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 245 pid_max, GFP_ATOMIC); 246 } 247 spin_unlock_irq(&pidmap_lock); 248 idr_preload_end(); 249 250 if (nr < 0) { 251 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 252 goto out_free; 253 } 254 255 pid->numbers[i].nr = nr; 256 pid->numbers[i].ns = tmp; 257 tmp = tmp->parent; 258 } 259 260 /* 261 * ENOMEM is not the most obvious choice especially for the case 262 * where the child subreaper has already exited and the pid 263 * namespace denies the creation of any new processes. But ENOMEM 264 * is what we have exposed to userspace for a long time and it is 265 * documented behavior for pid namespaces. So we can't easily 266 * change it even if there were an error code better suited. 267 */ 268 retval = -ENOMEM; 269 270 get_pid_ns(ns); 271 refcount_set(&pid->count, 1); 272 spin_lock_init(&pid->lock); 273 for (type = 0; type < PIDTYPE_MAX; ++type) 274 INIT_HLIST_HEAD(&pid->tasks[type]); 275 276 init_waitqueue_head(&pid->wait_pidfd); 277 INIT_HLIST_HEAD(&pid->inodes); 278 279 upid = pid->numbers + ns->level; 280 spin_lock_irq(&pidmap_lock); 281 if (!(ns->pid_allocated & PIDNS_ADDING)) 282 goto out_unlock; 283 #ifdef CONFIG_FS_PID 284 pid->ino = ++pidfs_ino; 285 #endif 286 for ( ; upid >= pid->numbers; --upid) { 287 /* Make the PID visible to find_pid_ns. */ 288 idr_replace(&upid->ns->idr, pid, upid->nr); 289 upid->ns->pid_allocated++; 290 } 291 spin_unlock_irq(&pidmap_lock); 292 293 return pid; 294 295 out_unlock: 296 spin_unlock_irq(&pidmap_lock); 297 put_pid_ns(ns); 298 299 out_free: 300 spin_lock_irq(&pidmap_lock); 301 while (++i <= ns->level) { 302 upid = pid->numbers + i; 303 idr_remove(&upid->ns->idr, upid->nr); 304 } 305 306 /* On failure to allocate the first pid, reset the state */ 307 if (ns->pid_allocated == PIDNS_ADDING) 308 idr_set_cursor(&ns->idr, 0); 309 310 spin_unlock_irq(&pidmap_lock); 311 312 kmem_cache_free(ns->pid_cachep, pid); 313 return ERR_PTR(retval); 314 } 315 316 void disable_pid_allocation(struct pid_namespace *ns) 317 { 318 spin_lock_irq(&pidmap_lock); 319 ns->pid_allocated &= ~PIDNS_ADDING; 320 spin_unlock_irq(&pidmap_lock); 321 } 322 323 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 324 { 325 return idr_find(&ns->idr, nr); 326 } 327 EXPORT_SYMBOL_GPL(find_pid_ns); 328 329 struct pid *find_vpid(int nr) 330 { 331 return find_pid_ns(nr, task_active_pid_ns(current)); 332 } 333 EXPORT_SYMBOL_GPL(find_vpid); 334 335 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 336 { 337 return (type == PIDTYPE_PID) ? 338 &task->thread_pid : 339 &task->signal->pids[type]; 340 } 341 342 /* 343 * attach_pid() must be called with the tasklist_lock write-held. 344 */ 345 void attach_pid(struct task_struct *task, enum pid_type type) 346 { 347 struct pid *pid = *task_pid_ptr(task, type); 348 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 349 } 350 351 static void __change_pid(struct task_struct *task, enum pid_type type, 352 struct pid *new) 353 { 354 struct pid **pid_ptr = task_pid_ptr(task, type); 355 struct pid *pid; 356 int tmp; 357 358 pid = *pid_ptr; 359 360 hlist_del_rcu(&task->pid_links[type]); 361 *pid_ptr = new; 362 363 if (type == PIDTYPE_PID) { 364 WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID)); 365 wake_up_all(&pid->wait_pidfd); 366 } 367 368 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 369 if (pid_has_task(pid, tmp)) 370 return; 371 372 free_pid(pid); 373 } 374 375 void detach_pid(struct task_struct *task, enum pid_type type) 376 { 377 __change_pid(task, type, NULL); 378 } 379 380 void change_pid(struct task_struct *task, enum pid_type type, 381 struct pid *pid) 382 { 383 __change_pid(task, type, pid); 384 attach_pid(task, type); 385 } 386 387 void exchange_tids(struct task_struct *left, struct task_struct *right) 388 { 389 struct pid *pid1 = left->thread_pid; 390 struct pid *pid2 = right->thread_pid; 391 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; 392 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; 393 394 /* Swap the single entry tid lists */ 395 hlists_swap_heads_rcu(head1, head2); 396 397 /* Swap the per task_struct pid */ 398 rcu_assign_pointer(left->thread_pid, pid2); 399 rcu_assign_pointer(right->thread_pid, pid1); 400 401 /* Swap the cached value */ 402 WRITE_ONCE(left->pid, pid_nr(pid2)); 403 WRITE_ONCE(right->pid, pid_nr(pid1)); 404 } 405 406 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 407 void transfer_pid(struct task_struct *old, struct task_struct *new, 408 enum pid_type type) 409 { 410 WARN_ON_ONCE(type == PIDTYPE_PID); 411 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 412 } 413 414 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 415 { 416 struct task_struct *result = NULL; 417 if (pid) { 418 struct hlist_node *first; 419 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 420 lockdep_tasklist_lock_is_held()); 421 if (first) 422 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 423 } 424 return result; 425 } 426 EXPORT_SYMBOL(pid_task); 427 428 /* 429 * Must be called under rcu_read_lock(). 430 */ 431 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 432 { 433 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 434 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 435 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 436 } 437 438 struct task_struct *find_task_by_vpid(pid_t vnr) 439 { 440 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 441 } 442 443 struct task_struct *find_get_task_by_vpid(pid_t nr) 444 { 445 struct task_struct *task; 446 447 rcu_read_lock(); 448 task = find_task_by_vpid(nr); 449 if (task) 450 get_task_struct(task); 451 rcu_read_unlock(); 452 453 return task; 454 } 455 456 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 457 { 458 struct pid *pid; 459 rcu_read_lock(); 460 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 461 rcu_read_unlock(); 462 return pid; 463 } 464 EXPORT_SYMBOL_GPL(get_task_pid); 465 466 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 467 { 468 struct task_struct *result; 469 rcu_read_lock(); 470 result = pid_task(pid, type); 471 if (result) 472 get_task_struct(result); 473 rcu_read_unlock(); 474 return result; 475 } 476 EXPORT_SYMBOL_GPL(get_pid_task); 477 478 struct pid *find_get_pid(pid_t nr) 479 { 480 struct pid *pid; 481 482 rcu_read_lock(); 483 pid = get_pid(find_vpid(nr)); 484 rcu_read_unlock(); 485 486 return pid; 487 } 488 EXPORT_SYMBOL_GPL(find_get_pid); 489 490 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 491 { 492 struct upid *upid; 493 pid_t nr = 0; 494 495 if (pid && ns->level <= pid->level) { 496 upid = &pid->numbers[ns->level]; 497 if (upid->ns == ns) 498 nr = upid->nr; 499 } 500 return nr; 501 } 502 EXPORT_SYMBOL_GPL(pid_nr_ns); 503 504 pid_t pid_vnr(struct pid *pid) 505 { 506 return pid_nr_ns(pid, task_active_pid_ns(current)); 507 } 508 EXPORT_SYMBOL_GPL(pid_vnr); 509 510 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 511 struct pid_namespace *ns) 512 { 513 pid_t nr = 0; 514 515 rcu_read_lock(); 516 if (!ns) 517 ns = task_active_pid_ns(current); 518 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 519 rcu_read_unlock(); 520 521 return nr; 522 } 523 EXPORT_SYMBOL(__task_pid_nr_ns); 524 525 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 526 { 527 return ns_of_pid(task_pid(tsk)); 528 } 529 EXPORT_SYMBOL_GPL(task_active_pid_ns); 530 531 /* 532 * Used by proc to find the first pid that is greater than or equal to nr. 533 * 534 * If there is a pid at nr this function is exactly the same as find_pid_ns. 535 */ 536 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 537 { 538 return idr_get_next(&ns->idr, &nr); 539 } 540 EXPORT_SYMBOL_GPL(find_ge_pid); 541 542 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) 543 { 544 struct fd f; 545 struct pid *pid; 546 547 f = fdget(fd); 548 if (!f.file) 549 return ERR_PTR(-EBADF); 550 551 pid = pidfd_pid(f.file); 552 if (!IS_ERR(pid)) { 553 get_pid(pid); 554 *flags = f.file->f_flags; 555 } 556 557 fdput(f); 558 return pid; 559 } 560 561 /** 562 * pidfd_get_task() - Get the task associated with a pidfd 563 * 564 * @pidfd: pidfd for which to get the task 565 * @flags: flags associated with this pidfd 566 * 567 * Return the task associated with @pidfd. The function takes a reference on 568 * the returned task. The caller is responsible for releasing that reference. 569 * 570 * Return: On success, the task_struct associated with the pidfd. 571 * On error, a negative errno number will be returned. 572 */ 573 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) 574 { 575 unsigned int f_flags; 576 struct pid *pid; 577 struct task_struct *task; 578 579 pid = pidfd_get_pid(pidfd, &f_flags); 580 if (IS_ERR(pid)) 581 return ERR_CAST(pid); 582 583 task = get_pid_task(pid, PIDTYPE_TGID); 584 put_pid(pid); 585 if (!task) 586 return ERR_PTR(-ESRCH); 587 588 *flags = f_flags; 589 return task; 590 } 591 592 /** 593 * pidfd_create() - Create a new pid file descriptor. 594 * 595 * @pid: struct pid that the pidfd will reference 596 * @flags: flags to pass 597 * 598 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 599 * 600 * Note, that this function can only be called after the fd table has 601 * been unshared to avoid leaking the pidfd to the new process. 602 * 603 * This symbol should not be explicitly exported to loadable modules. 604 * 605 * Return: On success, a cloexec pidfd is returned. 606 * On error, a negative errno number will be returned. 607 */ 608 static int pidfd_create(struct pid *pid, unsigned int flags) 609 { 610 int pidfd; 611 struct file *pidfd_file; 612 613 pidfd = pidfd_prepare(pid, flags, &pidfd_file); 614 if (pidfd < 0) 615 return pidfd; 616 617 fd_install(pidfd, pidfd_file); 618 return pidfd; 619 } 620 621 /** 622 * sys_pidfd_open() - Open new pid file descriptor. 623 * 624 * @pid: pid for which to retrieve a pidfd 625 * @flags: flags to pass 626 * 627 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 628 * the task identified by @pid. Without PIDFD_THREAD flag the target task 629 * must be a thread-group leader. 630 * 631 * Return: On success, a cloexec pidfd is returned. 632 * On error, a negative errno number will be returned. 633 */ 634 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 635 { 636 int fd; 637 struct pid *p; 638 639 if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD)) 640 return -EINVAL; 641 642 if (pid <= 0) 643 return -EINVAL; 644 645 p = find_get_pid(pid); 646 if (!p) 647 return -ESRCH; 648 649 fd = pidfd_create(p, flags); 650 651 put_pid(p); 652 return fd; 653 } 654 655 void __init pid_idr_init(void) 656 { 657 /* Verify no one has done anything silly: */ 658 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 659 660 /* bump default and minimum pid_max based on number of cpus */ 661 pid_max = min(pid_max_max, max_t(int, pid_max, 662 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 663 pid_max_min = max_t(int, pid_max_min, 664 PIDS_PER_CPU_MIN * num_possible_cpus()); 665 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 666 667 idr_init(&init_pid_ns.idr); 668 669 init_pid_ns.pid_cachep = kmem_cache_create("pid", 670 struct_size_t(struct pid, numbers, 1), 671 __alignof__(struct pid), 672 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 673 NULL); 674 } 675 676 static struct file *__pidfd_fget(struct task_struct *task, int fd) 677 { 678 struct file *file; 679 int ret; 680 681 ret = down_read_killable(&task->signal->exec_update_lock); 682 if (ret) 683 return ERR_PTR(ret); 684 685 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 686 file = fget_task(task, fd); 687 else 688 file = ERR_PTR(-EPERM); 689 690 up_read(&task->signal->exec_update_lock); 691 692 if (!file) { 693 /* 694 * It is possible that the target thread is exiting; it can be 695 * either: 696 * 1. before exit_signals(), which gives a real fd 697 * 2. before exit_files() takes the task_lock() gives a real fd 698 * 3. after exit_files() releases task_lock(), ->files is NULL; 699 * this has PF_EXITING, since it was set in exit_signals(), 700 * __pidfd_fget() returns EBADF. 701 * In case 3 we get EBADF, but that really means ESRCH, since 702 * the task is currently exiting and has freed its files 703 * struct, so we fix it up. 704 */ 705 if (task->flags & PF_EXITING) 706 file = ERR_PTR(-ESRCH); 707 else 708 file = ERR_PTR(-EBADF); 709 } 710 711 return file; 712 } 713 714 static int pidfd_getfd(struct pid *pid, int fd) 715 { 716 struct task_struct *task; 717 struct file *file; 718 int ret; 719 720 task = get_pid_task(pid, PIDTYPE_PID); 721 if (!task) 722 return -ESRCH; 723 724 file = __pidfd_fget(task, fd); 725 put_task_struct(task); 726 if (IS_ERR(file)) 727 return PTR_ERR(file); 728 729 ret = receive_fd(file, NULL, O_CLOEXEC); 730 fput(file); 731 732 return ret; 733 } 734 735 /** 736 * sys_pidfd_getfd() - Get a file descriptor from another process 737 * 738 * @pidfd: the pidfd file descriptor of the process 739 * @fd: the file descriptor number to get 740 * @flags: flags on how to get the fd (reserved) 741 * 742 * This syscall gets a copy of a file descriptor from another process 743 * based on the pidfd, and file descriptor number. It requires that 744 * the calling process has the ability to ptrace the process represented 745 * by the pidfd. The process which is having its file descriptor copied 746 * is otherwise unaffected. 747 * 748 * Return: On success, a cloexec file descriptor is returned. 749 * On error, a negative errno number will be returned. 750 */ 751 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 752 unsigned int, flags) 753 { 754 struct pid *pid; 755 struct fd f; 756 int ret; 757 758 /* flags is currently unused - make sure it's unset */ 759 if (flags) 760 return -EINVAL; 761 762 f = fdget(pidfd); 763 if (!f.file) 764 return -EBADF; 765 766 pid = pidfd_pid(f.file); 767 if (IS_ERR(pid)) 768 ret = PTR_ERR(pid); 769 else 770 ret = pidfd_getfd(pid, fd); 771 772 fdput(f); 773 return ret; 774 } 775