1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 #include <linux/pidfs.h> 46 #include <linux/seqlock.h> 47 #include <net/sock.h> 48 #include <uapi/linux/pidfd.h> 49 50 struct pid init_struct_pid = { 51 .count = REFCOUNT_INIT(1), 52 .tasks = { 53 { .first = NULL }, 54 { .first = NULL }, 55 { .first = NULL }, 56 }, 57 .level = 0, 58 .numbers = { { 59 .nr = 0, 60 .ns = &init_pid_ns, 61 }, } 62 }; 63 64 static int pid_max_min = RESERVED_PIDS + 1; 65 static int pid_max_max = PID_MAX_LIMIT; 66 67 /* 68 * PID-map pages start out as NULL, they get allocated upon 69 * first use and are never deallocated. This way a low pid_max 70 * value does not cause lots of bitmaps to be allocated, but 71 * the scheme scales to up to 4 million PIDs, runtime. 72 */ 73 struct pid_namespace init_pid_ns = { 74 .ns.count = REFCOUNT_INIT(2), 75 .idr = IDR_INIT(init_pid_ns.idr), 76 .pid_allocated = PIDNS_ADDING, 77 .level = 0, 78 .child_reaper = &init_task, 79 .user_ns = &init_user_ns, 80 .ns.inum = PROC_PID_INIT_INO, 81 #ifdef CONFIG_PID_NS 82 .ns.ops = &pidns_operations, 83 #endif 84 .pid_max = PID_MAX_DEFAULT, 85 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 86 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC, 87 #endif 88 }; 89 EXPORT_SYMBOL_GPL(init_pid_ns); 90 91 /* 92 * Note: disable interrupts while the pidmap_lock is held as an 93 * interrupt might come in and do read_lock(&tasklist_lock). 94 * 95 * If we don't disable interrupts there is a nasty deadlock between 96 * detach_pid()->free_pid() and another cpu that does 97 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 98 * read_lock(&tasklist_lock); 99 * 100 * After we clean up the tasklist_lock and know there are no 101 * irq handlers that take it we can leave the interrupts enabled. 102 * For now it is easier to be safe than to prove it can't happen. 103 */ 104 105 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 106 seqcount_spinlock_t pidmap_lock_seq = SEQCNT_SPINLOCK_ZERO(pidmap_lock_seq, &pidmap_lock); 107 108 void put_pid(struct pid *pid) 109 { 110 struct pid_namespace *ns; 111 112 if (!pid) 113 return; 114 115 ns = pid->numbers[pid->level].ns; 116 if (refcount_dec_and_test(&pid->count)) { 117 kmem_cache_free(ns->pid_cachep, pid); 118 put_pid_ns(ns); 119 } 120 } 121 EXPORT_SYMBOL_GPL(put_pid); 122 123 static void delayed_put_pid(struct rcu_head *rhp) 124 { 125 struct pid *pid = container_of(rhp, struct pid, rcu); 126 put_pid(pid); 127 } 128 129 void free_pid(struct pid *pid) 130 { 131 /* We can be called with write_lock_irq(&tasklist_lock) held */ 132 int i; 133 unsigned long flags; 134 135 spin_lock_irqsave(&pidmap_lock, flags); 136 for (i = 0; i <= pid->level; i++) { 137 struct upid *upid = pid->numbers + i; 138 struct pid_namespace *ns = upid->ns; 139 switch (--ns->pid_allocated) { 140 case 2: 141 case 1: 142 /* When all that is left in the pid namespace 143 * is the reaper wake up the reaper. The reaper 144 * may be sleeping in zap_pid_ns_processes(). 145 */ 146 wake_up_process(ns->child_reaper); 147 break; 148 case PIDNS_ADDING: 149 /* Handle a fork failure of the first process */ 150 WARN_ON(ns->child_reaper); 151 ns->pid_allocated = 0; 152 break; 153 } 154 155 idr_remove(&ns->idr, upid->nr); 156 } 157 pidfs_remove_pid(pid); 158 spin_unlock_irqrestore(&pidmap_lock, flags); 159 160 call_rcu(&pid->rcu, delayed_put_pid); 161 } 162 163 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 164 size_t set_tid_size) 165 { 166 struct pid *pid; 167 enum pid_type type; 168 int i, nr; 169 struct pid_namespace *tmp; 170 struct upid *upid; 171 int retval = -ENOMEM; 172 173 /* 174 * set_tid_size contains the size of the set_tid array. Starting at 175 * the most nested currently active PID namespace it tells alloc_pid() 176 * which PID to set for a process in that most nested PID namespace 177 * up to set_tid_size PID namespaces. It does not have to set the PID 178 * for a process in all nested PID namespaces but set_tid_size must 179 * never be greater than the current ns->level + 1. 180 */ 181 if (set_tid_size > ns->level + 1) 182 return ERR_PTR(-EINVAL); 183 184 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 185 if (!pid) 186 return ERR_PTR(retval); 187 188 tmp = ns; 189 pid->level = ns->level; 190 191 for (i = ns->level; i >= 0; i--) { 192 int tid = 0; 193 int pid_max = READ_ONCE(tmp->pid_max); 194 195 if (set_tid_size) { 196 tid = set_tid[ns->level - i]; 197 198 retval = -EINVAL; 199 if (tid < 1 || tid >= pid_max) 200 goto out_free; 201 /* 202 * Also fail if a PID != 1 is requested and 203 * no PID 1 exists. 204 */ 205 if (tid != 1 && !tmp->child_reaper) 206 goto out_free; 207 retval = -EPERM; 208 if (!checkpoint_restore_ns_capable(tmp->user_ns)) 209 goto out_free; 210 set_tid_size--; 211 } 212 213 idr_preload(GFP_KERNEL); 214 spin_lock_irq(&pidmap_lock); 215 216 if (tid) { 217 nr = idr_alloc(&tmp->idr, NULL, tid, 218 tid + 1, GFP_ATOMIC); 219 /* 220 * If ENOSPC is returned it means that the PID is 221 * alreay in use. Return EEXIST in that case. 222 */ 223 if (nr == -ENOSPC) 224 nr = -EEXIST; 225 } else { 226 int pid_min = 1; 227 /* 228 * init really needs pid 1, but after reaching the 229 * maximum wrap back to RESERVED_PIDS 230 */ 231 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 232 pid_min = RESERVED_PIDS; 233 234 /* 235 * Store a null pointer so find_pid_ns does not find 236 * a partially initialized PID (see below). 237 */ 238 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 239 pid_max, GFP_ATOMIC); 240 } 241 spin_unlock_irq(&pidmap_lock); 242 idr_preload_end(); 243 244 if (nr < 0) { 245 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 246 goto out_free; 247 } 248 249 pid->numbers[i].nr = nr; 250 pid->numbers[i].ns = tmp; 251 tmp = tmp->parent; 252 } 253 254 /* 255 * ENOMEM is not the most obvious choice especially for the case 256 * where the child subreaper has already exited and the pid 257 * namespace denies the creation of any new processes. But ENOMEM 258 * is what we have exposed to userspace for a long time and it is 259 * documented behavior for pid namespaces. So we can't easily 260 * change it even if there were an error code better suited. 261 */ 262 retval = -ENOMEM; 263 264 get_pid_ns(ns); 265 refcount_set(&pid->count, 1); 266 spin_lock_init(&pid->lock); 267 for (type = 0; type < PIDTYPE_MAX; ++type) 268 INIT_HLIST_HEAD(&pid->tasks[type]); 269 270 init_waitqueue_head(&pid->wait_pidfd); 271 INIT_HLIST_HEAD(&pid->inodes); 272 273 upid = pid->numbers + ns->level; 274 idr_preload(GFP_KERNEL); 275 spin_lock_irq(&pidmap_lock); 276 if (!(ns->pid_allocated & PIDNS_ADDING)) 277 goto out_unlock; 278 pidfs_add_pid(pid); 279 for ( ; upid >= pid->numbers; --upid) { 280 /* Make the PID visible to find_pid_ns. */ 281 idr_replace(&upid->ns->idr, pid, upid->nr); 282 upid->ns->pid_allocated++; 283 } 284 spin_unlock_irq(&pidmap_lock); 285 idr_preload_end(); 286 287 return pid; 288 289 out_unlock: 290 spin_unlock_irq(&pidmap_lock); 291 idr_preload_end(); 292 put_pid_ns(ns); 293 294 out_free: 295 spin_lock_irq(&pidmap_lock); 296 while (++i <= ns->level) { 297 upid = pid->numbers + i; 298 idr_remove(&upid->ns->idr, upid->nr); 299 } 300 301 /* On failure to allocate the first pid, reset the state */ 302 if (ns->pid_allocated == PIDNS_ADDING) 303 idr_set_cursor(&ns->idr, 0); 304 305 spin_unlock_irq(&pidmap_lock); 306 307 kmem_cache_free(ns->pid_cachep, pid); 308 return ERR_PTR(retval); 309 } 310 311 void disable_pid_allocation(struct pid_namespace *ns) 312 { 313 spin_lock_irq(&pidmap_lock); 314 ns->pid_allocated &= ~PIDNS_ADDING; 315 spin_unlock_irq(&pidmap_lock); 316 } 317 318 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 319 { 320 return idr_find(&ns->idr, nr); 321 } 322 EXPORT_SYMBOL_GPL(find_pid_ns); 323 324 struct pid *find_vpid(int nr) 325 { 326 return find_pid_ns(nr, task_active_pid_ns(current)); 327 } 328 EXPORT_SYMBOL_GPL(find_vpid); 329 330 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 331 { 332 return (type == PIDTYPE_PID) ? 333 &task->thread_pid : 334 &task->signal->pids[type]; 335 } 336 337 /* 338 * attach_pid() must be called with the tasklist_lock write-held. 339 */ 340 void attach_pid(struct task_struct *task, enum pid_type type) 341 { 342 struct pid *pid; 343 344 lockdep_assert_held_write(&tasklist_lock); 345 346 pid = *task_pid_ptr(task, type); 347 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 348 } 349 350 static void __change_pid(struct task_struct *task, enum pid_type type, 351 struct pid *new) 352 { 353 struct pid **pid_ptr, *pid; 354 int tmp; 355 356 lockdep_assert_held_write(&tasklist_lock); 357 358 pid_ptr = task_pid_ptr(task, type); 359 pid = *pid_ptr; 360 361 hlist_del_rcu(&task->pid_links[type]); 362 *pid_ptr = new; 363 364 if (type == PIDTYPE_PID) { 365 WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID)); 366 wake_up_all(&pid->wait_pidfd); 367 } 368 369 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 370 if (pid_has_task(pid, tmp)) 371 return; 372 373 free_pid(pid); 374 } 375 376 void detach_pid(struct task_struct *task, enum pid_type type) 377 { 378 __change_pid(task, type, NULL); 379 } 380 381 void change_pid(struct task_struct *task, enum pid_type type, 382 struct pid *pid) 383 { 384 __change_pid(task, type, pid); 385 attach_pid(task, type); 386 } 387 388 void exchange_tids(struct task_struct *left, struct task_struct *right) 389 { 390 struct pid *pid1 = left->thread_pid; 391 struct pid *pid2 = right->thread_pid; 392 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; 393 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; 394 395 lockdep_assert_held_write(&tasklist_lock); 396 397 /* Swap the single entry tid lists */ 398 hlists_swap_heads_rcu(head1, head2); 399 400 /* Swap the per task_struct pid */ 401 rcu_assign_pointer(left->thread_pid, pid2); 402 rcu_assign_pointer(right->thread_pid, pid1); 403 404 /* Swap the cached value */ 405 WRITE_ONCE(left->pid, pid_nr(pid2)); 406 WRITE_ONCE(right->pid, pid_nr(pid1)); 407 } 408 409 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 410 void transfer_pid(struct task_struct *old, struct task_struct *new, 411 enum pid_type type) 412 { 413 WARN_ON_ONCE(type == PIDTYPE_PID); 414 lockdep_assert_held_write(&tasklist_lock); 415 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 416 } 417 418 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 419 { 420 struct task_struct *result = NULL; 421 if (pid) { 422 struct hlist_node *first; 423 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 424 lockdep_tasklist_lock_is_held()); 425 if (first) 426 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 427 } 428 return result; 429 } 430 EXPORT_SYMBOL(pid_task); 431 432 /* 433 * Must be called under rcu_read_lock(). 434 */ 435 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 436 { 437 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 438 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 439 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 440 } 441 442 struct task_struct *find_task_by_vpid(pid_t vnr) 443 { 444 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 445 } 446 447 struct task_struct *find_get_task_by_vpid(pid_t nr) 448 { 449 struct task_struct *task; 450 451 rcu_read_lock(); 452 task = find_task_by_vpid(nr); 453 if (task) 454 get_task_struct(task); 455 rcu_read_unlock(); 456 457 return task; 458 } 459 460 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 461 { 462 struct pid *pid; 463 rcu_read_lock(); 464 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 465 rcu_read_unlock(); 466 return pid; 467 } 468 EXPORT_SYMBOL_GPL(get_task_pid); 469 470 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 471 { 472 struct task_struct *result; 473 rcu_read_lock(); 474 result = pid_task(pid, type); 475 if (result) 476 get_task_struct(result); 477 rcu_read_unlock(); 478 return result; 479 } 480 EXPORT_SYMBOL_GPL(get_pid_task); 481 482 struct pid *find_get_pid(pid_t nr) 483 { 484 struct pid *pid; 485 486 rcu_read_lock(); 487 pid = get_pid(find_vpid(nr)); 488 rcu_read_unlock(); 489 490 return pid; 491 } 492 EXPORT_SYMBOL_GPL(find_get_pid); 493 494 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 495 { 496 struct upid *upid; 497 pid_t nr = 0; 498 499 if (pid && ns->level <= pid->level) { 500 upid = &pid->numbers[ns->level]; 501 if (upid->ns == ns) 502 nr = upid->nr; 503 } 504 return nr; 505 } 506 EXPORT_SYMBOL_GPL(pid_nr_ns); 507 508 pid_t pid_vnr(struct pid *pid) 509 { 510 return pid_nr_ns(pid, task_active_pid_ns(current)); 511 } 512 EXPORT_SYMBOL_GPL(pid_vnr); 513 514 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 515 struct pid_namespace *ns) 516 { 517 pid_t nr = 0; 518 519 rcu_read_lock(); 520 if (!ns) 521 ns = task_active_pid_ns(current); 522 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 523 rcu_read_unlock(); 524 525 return nr; 526 } 527 EXPORT_SYMBOL(__task_pid_nr_ns); 528 529 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 530 { 531 return ns_of_pid(task_pid(tsk)); 532 } 533 EXPORT_SYMBOL_GPL(task_active_pid_ns); 534 535 /* 536 * Used by proc to find the first pid that is greater than or equal to nr. 537 * 538 * If there is a pid at nr this function is exactly the same as find_pid_ns. 539 */ 540 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 541 { 542 return idr_get_next(&ns->idr, &nr); 543 } 544 EXPORT_SYMBOL_GPL(find_ge_pid); 545 546 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) 547 { 548 CLASS(fd, f)(fd); 549 struct pid *pid; 550 551 if (fd_empty(f)) 552 return ERR_PTR(-EBADF); 553 554 pid = pidfd_pid(fd_file(f)); 555 if (!IS_ERR(pid)) { 556 get_pid(pid); 557 *flags = fd_file(f)->f_flags; 558 } 559 return pid; 560 } 561 562 /** 563 * pidfd_get_task() - Get the task associated with a pidfd 564 * 565 * @pidfd: pidfd for which to get the task 566 * @flags: flags associated with this pidfd 567 * 568 * Return the task associated with @pidfd. The function takes a reference on 569 * the returned task. The caller is responsible for releasing that reference. 570 * 571 * Return: On success, the task_struct associated with the pidfd. 572 * On error, a negative errno number will be returned. 573 */ 574 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) 575 { 576 unsigned int f_flags; 577 struct pid *pid; 578 struct task_struct *task; 579 580 pid = pidfd_get_pid(pidfd, &f_flags); 581 if (IS_ERR(pid)) 582 return ERR_CAST(pid); 583 584 task = get_pid_task(pid, PIDTYPE_TGID); 585 put_pid(pid); 586 if (!task) 587 return ERR_PTR(-ESRCH); 588 589 *flags = f_flags; 590 return task; 591 } 592 593 /** 594 * pidfd_create() - Create a new pid file descriptor. 595 * 596 * @pid: struct pid that the pidfd will reference 597 * @flags: flags to pass 598 * 599 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 600 * 601 * Note, that this function can only be called after the fd table has 602 * been unshared to avoid leaking the pidfd to the new process. 603 * 604 * This symbol should not be explicitly exported to loadable modules. 605 * 606 * Return: On success, a cloexec pidfd is returned. 607 * On error, a negative errno number will be returned. 608 */ 609 static int pidfd_create(struct pid *pid, unsigned int flags) 610 { 611 int pidfd; 612 struct file *pidfd_file; 613 614 pidfd = pidfd_prepare(pid, flags, &pidfd_file); 615 if (pidfd < 0) 616 return pidfd; 617 618 fd_install(pidfd, pidfd_file); 619 return pidfd; 620 } 621 622 /** 623 * sys_pidfd_open() - Open new pid file descriptor. 624 * 625 * @pid: pid for which to retrieve a pidfd 626 * @flags: flags to pass 627 * 628 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 629 * the task identified by @pid. Without PIDFD_THREAD flag the target task 630 * must be a thread-group leader. 631 * 632 * Return: On success, a cloexec pidfd is returned. 633 * On error, a negative errno number will be returned. 634 */ 635 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 636 { 637 int fd; 638 struct pid *p; 639 640 if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD)) 641 return -EINVAL; 642 643 if (pid <= 0) 644 return -EINVAL; 645 646 p = find_get_pid(pid); 647 if (!p) 648 return -ESRCH; 649 650 fd = pidfd_create(p, flags); 651 652 put_pid(p); 653 return fd; 654 } 655 656 #ifdef CONFIG_SYSCTL 657 static struct ctl_table_set *pid_table_root_lookup(struct ctl_table_root *root) 658 { 659 return &task_active_pid_ns(current)->set; 660 } 661 662 static int set_is_seen(struct ctl_table_set *set) 663 { 664 return &task_active_pid_ns(current)->set == set; 665 } 666 667 static int pid_table_root_permissions(struct ctl_table_header *head, 668 const struct ctl_table *table) 669 { 670 struct pid_namespace *pidns = 671 container_of(head->set, struct pid_namespace, set); 672 int mode = table->mode; 673 674 if (ns_capable(pidns->user_ns, CAP_SYS_ADMIN) || 675 uid_eq(current_euid(), make_kuid(pidns->user_ns, 0))) 676 mode = (mode & S_IRWXU) >> 6; 677 else if (in_egroup_p(make_kgid(pidns->user_ns, 0))) 678 mode = (mode & S_IRWXG) >> 3; 679 else 680 mode = mode & S_IROTH; 681 return (mode << 6) | (mode << 3) | mode; 682 } 683 684 static void pid_table_root_set_ownership(struct ctl_table_header *head, 685 kuid_t *uid, kgid_t *gid) 686 { 687 struct pid_namespace *pidns = 688 container_of(head->set, struct pid_namespace, set); 689 kuid_t ns_root_uid; 690 kgid_t ns_root_gid; 691 692 ns_root_uid = make_kuid(pidns->user_ns, 0); 693 if (uid_valid(ns_root_uid)) 694 *uid = ns_root_uid; 695 696 ns_root_gid = make_kgid(pidns->user_ns, 0); 697 if (gid_valid(ns_root_gid)) 698 *gid = ns_root_gid; 699 } 700 701 static struct ctl_table_root pid_table_root = { 702 .lookup = pid_table_root_lookup, 703 .permissions = pid_table_root_permissions, 704 .set_ownership = pid_table_root_set_ownership, 705 }; 706 707 static const struct ctl_table pid_table[] = { 708 { 709 .procname = "pid_max", 710 .data = &init_pid_ns.pid_max, 711 .maxlen = sizeof(int), 712 .mode = 0644, 713 .proc_handler = proc_dointvec_minmax, 714 .extra1 = &pid_max_min, 715 .extra2 = &pid_max_max, 716 }, 717 }; 718 #endif 719 720 int register_pidns_sysctls(struct pid_namespace *pidns) 721 { 722 #ifdef CONFIG_SYSCTL 723 struct ctl_table *tbl; 724 725 setup_sysctl_set(&pidns->set, &pid_table_root, set_is_seen); 726 727 tbl = kmemdup(pid_table, sizeof(pid_table), GFP_KERNEL); 728 if (!tbl) 729 return -ENOMEM; 730 tbl->data = &pidns->pid_max; 731 pidns->pid_max = min(pid_max_max, max_t(int, pidns->pid_max, 732 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 733 734 pidns->sysctls = __register_sysctl_table(&pidns->set, "kernel", tbl, 735 ARRAY_SIZE(pid_table)); 736 if (!pidns->sysctls) { 737 kfree(tbl); 738 retire_sysctl_set(&pidns->set); 739 return -ENOMEM; 740 } 741 #endif 742 return 0; 743 } 744 745 void unregister_pidns_sysctls(struct pid_namespace *pidns) 746 { 747 #ifdef CONFIG_SYSCTL 748 const struct ctl_table *tbl; 749 750 tbl = pidns->sysctls->ctl_table_arg; 751 unregister_sysctl_table(pidns->sysctls); 752 retire_sysctl_set(&pidns->set); 753 kfree(tbl); 754 #endif 755 } 756 757 void __init pid_idr_init(void) 758 { 759 /* Verify no one has done anything silly: */ 760 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 761 762 /* bump default and minimum pid_max based on number of cpus */ 763 init_pid_ns.pid_max = min(pid_max_max, max_t(int, init_pid_ns.pid_max, 764 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 765 pid_max_min = max_t(int, pid_max_min, 766 PIDS_PER_CPU_MIN * num_possible_cpus()); 767 pr_info("pid_max: default: %u minimum: %u\n", init_pid_ns.pid_max, pid_max_min); 768 769 idr_init(&init_pid_ns.idr); 770 771 init_pid_ns.pid_cachep = kmem_cache_create("pid", 772 struct_size_t(struct pid, numbers, 1), 773 __alignof__(struct pid), 774 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 775 NULL); 776 } 777 778 static __init int pid_namespace_sysctl_init(void) 779 { 780 #ifdef CONFIG_SYSCTL 781 /* "kernel" directory will have already been initialized. */ 782 BUG_ON(register_pidns_sysctls(&init_pid_ns)); 783 #endif 784 return 0; 785 } 786 subsys_initcall(pid_namespace_sysctl_init); 787 788 static struct file *__pidfd_fget(struct task_struct *task, int fd) 789 { 790 struct file *file; 791 int ret; 792 793 ret = down_read_killable(&task->signal->exec_update_lock); 794 if (ret) 795 return ERR_PTR(ret); 796 797 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 798 file = fget_task(task, fd); 799 else 800 file = ERR_PTR(-EPERM); 801 802 up_read(&task->signal->exec_update_lock); 803 804 if (!file) { 805 /* 806 * It is possible that the target thread is exiting; it can be 807 * either: 808 * 1. before exit_signals(), which gives a real fd 809 * 2. before exit_files() takes the task_lock() gives a real fd 810 * 3. after exit_files() releases task_lock(), ->files is NULL; 811 * this has PF_EXITING, since it was set in exit_signals(), 812 * __pidfd_fget() returns EBADF. 813 * In case 3 we get EBADF, but that really means ESRCH, since 814 * the task is currently exiting and has freed its files 815 * struct, so we fix it up. 816 */ 817 if (task->flags & PF_EXITING) 818 file = ERR_PTR(-ESRCH); 819 else 820 file = ERR_PTR(-EBADF); 821 } 822 823 return file; 824 } 825 826 static int pidfd_getfd(struct pid *pid, int fd) 827 { 828 struct task_struct *task; 829 struct file *file; 830 int ret; 831 832 task = get_pid_task(pid, PIDTYPE_PID); 833 if (!task) 834 return -ESRCH; 835 836 file = __pidfd_fget(task, fd); 837 put_task_struct(task); 838 if (IS_ERR(file)) 839 return PTR_ERR(file); 840 841 ret = receive_fd(file, NULL, O_CLOEXEC); 842 fput(file); 843 844 return ret; 845 } 846 847 /** 848 * sys_pidfd_getfd() - Get a file descriptor from another process 849 * 850 * @pidfd: the pidfd file descriptor of the process 851 * @fd: the file descriptor number to get 852 * @flags: flags on how to get the fd (reserved) 853 * 854 * This syscall gets a copy of a file descriptor from another process 855 * based on the pidfd, and file descriptor number. It requires that 856 * the calling process has the ability to ptrace the process represented 857 * by the pidfd. The process which is having its file descriptor copied 858 * is otherwise unaffected. 859 * 860 * Return: On success, a cloexec file descriptor is returned. 861 * On error, a negative errno number will be returned. 862 */ 863 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 864 unsigned int, flags) 865 { 866 struct pid *pid; 867 868 /* flags is currently unused - make sure it's unset */ 869 if (flags) 870 return -EINVAL; 871 872 CLASS(fd, f)(pidfd); 873 if (fd_empty(f)) 874 return -EBADF; 875 876 pid = pidfd_pid(fd_file(f)); 877 if (IS_ERR(pid)) 878 return PTR_ERR(pid); 879 880 return pidfd_getfd(pid, fd); 881 } 882