1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 #include <net/sock.h> 46 #include <uapi/linux/pidfd.h> 47 48 struct pid init_struct_pid = { 49 .count = REFCOUNT_INIT(1), 50 .tasks = { 51 { .first = NULL }, 52 { .first = NULL }, 53 { .first = NULL }, 54 }, 55 .level = 0, 56 .numbers = { { 57 .nr = 0, 58 .ns = &init_pid_ns, 59 }, } 60 }; 61 62 int pid_max = PID_MAX_DEFAULT; 63 64 #define RESERVED_PIDS 300 65 66 int pid_max_min = RESERVED_PIDS + 1; 67 int pid_max_max = PID_MAX_LIMIT; 68 69 /* 70 * PID-map pages start out as NULL, they get allocated upon 71 * first use and are never deallocated. This way a low pid_max 72 * value does not cause lots of bitmaps to be allocated, but 73 * the scheme scales to up to 4 million PIDs, runtime. 74 */ 75 struct pid_namespace init_pid_ns = { 76 .ns.count = REFCOUNT_INIT(2), 77 .idr = IDR_INIT(init_pid_ns.idr), 78 .pid_allocated = PIDNS_ADDING, 79 .level = 0, 80 .child_reaper = &init_task, 81 .user_ns = &init_user_ns, 82 .ns.inum = PROC_PID_INIT_INO, 83 #ifdef CONFIG_PID_NS 84 .ns.ops = &pidns_operations, 85 #endif 86 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 87 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC, 88 #endif 89 }; 90 EXPORT_SYMBOL_GPL(init_pid_ns); 91 92 /* 93 * Note: disable interrupts while the pidmap_lock is held as an 94 * interrupt might come in and do read_lock(&tasklist_lock). 95 * 96 * If we don't disable interrupts there is a nasty deadlock between 97 * detach_pid()->free_pid() and another cpu that does 98 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 99 * read_lock(&tasklist_lock); 100 * 101 * After we clean up the tasklist_lock and know there are no 102 * irq handlers that take it we can leave the interrupts enabled. 103 * For now it is easier to be safe than to prove it can't happen. 104 */ 105 106 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 107 108 void put_pid(struct pid *pid) 109 { 110 struct pid_namespace *ns; 111 112 if (!pid) 113 return; 114 115 ns = pid->numbers[pid->level].ns; 116 if (refcount_dec_and_test(&pid->count)) { 117 kmem_cache_free(ns->pid_cachep, pid); 118 put_pid_ns(ns); 119 } 120 } 121 EXPORT_SYMBOL_GPL(put_pid); 122 123 static void delayed_put_pid(struct rcu_head *rhp) 124 { 125 struct pid *pid = container_of(rhp, struct pid, rcu); 126 put_pid(pid); 127 } 128 129 void free_pid(struct pid *pid) 130 { 131 /* We can be called with write_lock_irq(&tasklist_lock) held */ 132 int i; 133 unsigned long flags; 134 135 spin_lock_irqsave(&pidmap_lock, flags); 136 for (i = 0; i <= pid->level; i++) { 137 struct upid *upid = pid->numbers + i; 138 struct pid_namespace *ns = upid->ns; 139 switch (--ns->pid_allocated) { 140 case 2: 141 case 1: 142 /* When all that is left in the pid namespace 143 * is the reaper wake up the reaper. The reaper 144 * may be sleeping in zap_pid_ns_processes(). 145 */ 146 wake_up_process(ns->child_reaper); 147 break; 148 case PIDNS_ADDING: 149 /* Handle a fork failure of the first process */ 150 WARN_ON(ns->child_reaper); 151 ns->pid_allocated = 0; 152 break; 153 } 154 155 idr_remove(&ns->idr, upid->nr); 156 } 157 spin_unlock_irqrestore(&pidmap_lock, flags); 158 159 call_rcu(&pid->rcu, delayed_put_pid); 160 } 161 162 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 163 size_t set_tid_size) 164 { 165 struct pid *pid; 166 enum pid_type type; 167 int i, nr; 168 struct pid_namespace *tmp; 169 struct upid *upid; 170 int retval = -ENOMEM; 171 172 /* 173 * set_tid_size contains the size of the set_tid array. Starting at 174 * the most nested currently active PID namespace it tells alloc_pid() 175 * which PID to set for a process in that most nested PID namespace 176 * up to set_tid_size PID namespaces. It does not have to set the PID 177 * for a process in all nested PID namespaces but set_tid_size must 178 * never be greater than the current ns->level + 1. 179 */ 180 if (set_tid_size > ns->level + 1) 181 return ERR_PTR(-EINVAL); 182 183 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 184 if (!pid) 185 return ERR_PTR(retval); 186 187 tmp = ns; 188 pid->level = ns->level; 189 190 for (i = ns->level; i >= 0; i--) { 191 int tid = 0; 192 193 if (set_tid_size) { 194 tid = set_tid[ns->level - i]; 195 196 retval = -EINVAL; 197 if (tid < 1 || tid >= pid_max) 198 goto out_free; 199 /* 200 * Also fail if a PID != 1 is requested and 201 * no PID 1 exists. 202 */ 203 if (tid != 1 && !tmp->child_reaper) 204 goto out_free; 205 retval = -EPERM; 206 if (!checkpoint_restore_ns_capable(tmp->user_ns)) 207 goto out_free; 208 set_tid_size--; 209 } 210 211 idr_preload(GFP_KERNEL); 212 spin_lock_irq(&pidmap_lock); 213 214 if (tid) { 215 nr = idr_alloc(&tmp->idr, NULL, tid, 216 tid + 1, GFP_ATOMIC); 217 /* 218 * If ENOSPC is returned it means that the PID is 219 * alreay in use. Return EEXIST in that case. 220 */ 221 if (nr == -ENOSPC) 222 nr = -EEXIST; 223 } else { 224 int pid_min = 1; 225 /* 226 * init really needs pid 1, but after reaching the 227 * maximum wrap back to RESERVED_PIDS 228 */ 229 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 230 pid_min = RESERVED_PIDS; 231 232 /* 233 * Store a null pointer so find_pid_ns does not find 234 * a partially initialized PID (see below). 235 */ 236 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 237 pid_max, GFP_ATOMIC); 238 } 239 spin_unlock_irq(&pidmap_lock); 240 idr_preload_end(); 241 242 if (nr < 0) { 243 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 244 goto out_free; 245 } 246 247 pid->numbers[i].nr = nr; 248 pid->numbers[i].ns = tmp; 249 tmp = tmp->parent; 250 } 251 252 /* 253 * ENOMEM is not the most obvious choice especially for the case 254 * where the child subreaper has already exited and the pid 255 * namespace denies the creation of any new processes. But ENOMEM 256 * is what we have exposed to userspace for a long time and it is 257 * documented behavior for pid namespaces. So we can't easily 258 * change it even if there were an error code better suited. 259 */ 260 retval = -ENOMEM; 261 262 get_pid_ns(ns); 263 refcount_set(&pid->count, 1); 264 spin_lock_init(&pid->lock); 265 for (type = 0; type < PIDTYPE_MAX; ++type) 266 INIT_HLIST_HEAD(&pid->tasks[type]); 267 268 init_waitqueue_head(&pid->wait_pidfd); 269 INIT_HLIST_HEAD(&pid->inodes); 270 271 upid = pid->numbers + ns->level; 272 spin_lock_irq(&pidmap_lock); 273 if (!(ns->pid_allocated & PIDNS_ADDING)) 274 goto out_unlock; 275 for ( ; upid >= pid->numbers; --upid) { 276 /* Make the PID visible to find_pid_ns. */ 277 idr_replace(&upid->ns->idr, pid, upid->nr); 278 upid->ns->pid_allocated++; 279 } 280 spin_unlock_irq(&pidmap_lock); 281 282 return pid; 283 284 out_unlock: 285 spin_unlock_irq(&pidmap_lock); 286 put_pid_ns(ns); 287 288 out_free: 289 spin_lock_irq(&pidmap_lock); 290 while (++i <= ns->level) { 291 upid = pid->numbers + i; 292 idr_remove(&upid->ns->idr, upid->nr); 293 } 294 295 /* On failure to allocate the first pid, reset the state */ 296 if (ns->pid_allocated == PIDNS_ADDING) 297 idr_set_cursor(&ns->idr, 0); 298 299 spin_unlock_irq(&pidmap_lock); 300 301 kmem_cache_free(ns->pid_cachep, pid); 302 return ERR_PTR(retval); 303 } 304 305 void disable_pid_allocation(struct pid_namespace *ns) 306 { 307 spin_lock_irq(&pidmap_lock); 308 ns->pid_allocated &= ~PIDNS_ADDING; 309 spin_unlock_irq(&pidmap_lock); 310 } 311 312 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 313 { 314 return idr_find(&ns->idr, nr); 315 } 316 EXPORT_SYMBOL_GPL(find_pid_ns); 317 318 struct pid *find_vpid(int nr) 319 { 320 return find_pid_ns(nr, task_active_pid_ns(current)); 321 } 322 EXPORT_SYMBOL_GPL(find_vpid); 323 324 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 325 { 326 return (type == PIDTYPE_PID) ? 327 &task->thread_pid : 328 &task->signal->pids[type]; 329 } 330 331 /* 332 * attach_pid() must be called with the tasklist_lock write-held. 333 */ 334 void attach_pid(struct task_struct *task, enum pid_type type) 335 { 336 struct pid *pid = *task_pid_ptr(task, type); 337 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 338 } 339 340 static void __change_pid(struct task_struct *task, enum pid_type type, 341 struct pid *new) 342 { 343 struct pid **pid_ptr = task_pid_ptr(task, type); 344 struct pid *pid; 345 int tmp; 346 347 pid = *pid_ptr; 348 349 hlist_del_rcu(&task->pid_links[type]); 350 *pid_ptr = new; 351 352 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 353 if (pid_has_task(pid, tmp)) 354 return; 355 356 free_pid(pid); 357 } 358 359 void detach_pid(struct task_struct *task, enum pid_type type) 360 { 361 __change_pid(task, type, NULL); 362 } 363 364 void change_pid(struct task_struct *task, enum pid_type type, 365 struct pid *pid) 366 { 367 __change_pid(task, type, pid); 368 attach_pid(task, type); 369 } 370 371 void exchange_tids(struct task_struct *left, struct task_struct *right) 372 { 373 struct pid *pid1 = left->thread_pid; 374 struct pid *pid2 = right->thread_pid; 375 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; 376 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; 377 378 /* Swap the single entry tid lists */ 379 hlists_swap_heads_rcu(head1, head2); 380 381 /* Swap the per task_struct pid */ 382 rcu_assign_pointer(left->thread_pid, pid2); 383 rcu_assign_pointer(right->thread_pid, pid1); 384 385 /* Swap the cached value */ 386 WRITE_ONCE(left->pid, pid_nr(pid2)); 387 WRITE_ONCE(right->pid, pid_nr(pid1)); 388 } 389 390 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 391 void transfer_pid(struct task_struct *old, struct task_struct *new, 392 enum pid_type type) 393 { 394 if (type == PIDTYPE_PID) 395 new->thread_pid = old->thread_pid; 396 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 397 } 398 399 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 400 { 401 struct task_struct *result = NULL; 402 if (pid) { 403 struct hlist_node *first; 404 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 405 lockdep_tasklist_lock_is_held()); 406 if (first) 407 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 408 } 409 return result; 410 } 411 EXPORT_SYMBOL(pid_task); 412 413 /* 414 * Must be called under rcu_read_lock(). 415 */ 416 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 417 { 418 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 419 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 420 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 421 } 422 423 struct task_struct *find_task_by_vpid(pid_t vnr) 424 { 425 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 426 } 427 428 struct task_struct *find_get_task_by_vpid(pid_t nr) 429 { 430 struct task_struct *task; 431 432 rcu_read_lock(); 433 task = find_task_by_vpid(nr); 434 if (task) 435 get_task_struct(task); 436 rcu_read_unlock(); 437 438 return task; 439 } 440 441 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 442 { 443 struct pid *pid; 444 rcu_read_lock(); 445 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 446 rcu_read_unlock(); 447 return pid; 448 } 449 EXPORT_SYMBOL_GPL(get_task_pid); 450 451 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 452 { 453 struct task_struct *result; 454 rcu_read_lock(); 455 result = pid_task(pid, type); 456 if (result) 457 get_task_struct(result); 458 rcu_read_unlock(); 459 return result; 460 } 461 EXPORT_SYMBOL_GPL(get_pid_task); 462 463 struct pid *find_get_pid(pid_t nr) 464 { 465 struct pid *pid; 466 467 rcu_read_lock(); 468 pid = get_pid(find_vpid(nr)); 469 rcu_read_unlock(); 470 471 return pid; 472 } 473 EXPORT_SYMBOL_GPL(find_get_pid); 474 475 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 476 { 477 struct upid *upid; 478 pid_t nr = 0; 479 480 if (pid && ns->level <= pid->level) { 481 upid = &pid->numbers[ns->level]; 482 if (upid->ns == ns) 483 nr = upid->nr; 484 } 485 return nr; 486 } 487 EXPORT_SYMBOL_GPL(pid_nr_ns); 488 489 pid_t pid_vnr(struct pid *pid) 490 { 491 return pid_nr_ns(pid, task_active_pid_ns(current)); 492 } 493 EXPORT_SYMBOL_GPL(pid_vnr); 494 495 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 496 struct pid_namespace *ns) 497 { 498 pid_t nr = 0; 499 500 rcu_read_lock(); 501 if (!ns) 502 ns = task_active_pid_ns(current); 503 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 504 rcu_read_unlock(); 505 506 return nr; 507 } 508 EXPORT_SYMBOL(__task_pid_nr_ns); 509 510 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 511 { 512 return ns_of_pid(task_pid(tsk)); 513 } 514 EXPORT_SYMBOL_GPL(task_active_pid_ns); 515 516 /* 517 * Used by proc to find the first pid that is greater than or equal to nr. 518 * 519 * If there is a pid at nr this function is exactly the same as find_pid_ns. 520 */ 521 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 522 { 523 return idr_get_next(&ns->idr, &nr); 524 } 525 EXPORT_SYMBOL_GPL(find_ge_pid); 526 527 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) 528 { 529 struct fd f; 530 struct pid *pid; 531 532 f = fdget(fd); 533 if (!f.file) 534 return ERR_PTR(-EBADF); 535 536 pid = pidfd_pid(f.file); 537 if (!IS_ERR(pid)) { 538 get_pid(pid); 539 *flags = f.file->f_flags; 540 } 541 542 fdput(f); 543 return pid; 544 } 545 546 /** 547 * pidfd_get_task() - Get the task associated with a pidfd 548 * 549 * @pidfd: pidfd for which to get the task 550 * @flags: flags associated with this pidfd 551 * 552 * Return the task associated with @pidfd. The function takes a reference on 553 * the returned task. The caller is responsible for releasing that reference. 554 * 555 * Return: On success, the task_struct associated with the pidfd. 556 * On error, a negative errno number will be returned. 557 */ 558 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) 559 { 560 unsigned int f_flags; 561 struct pid *pid; 562 struct task_struct *task; 563 564 pid = pidfd_get_pid(pidfd, &f_flags); 565 if (IS_ERR(pid)) 566 return ERR_CAST(pid); 567 568 task = get_pid_task(pid, PIDTYPE_TGID); 569 put_pid(pid); 570 if (!task) 571 return ERR_PTR(-ESRCH); 572 573 *flags = f_flags; 574 return task; 575 } 576 577 /** 578 * pidfd_create() - Create a new pid file descriptor. 579 * 580 * @pid: struct pid that the pidfd will reference 581 * @flags: flags to pass 582 * 583 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 584 * 585 * Note, that this function can only be called after the fd table has 586 * been unshared to avoid leaking the pidfd to the new process. 587 * 588 * This symbol should not be explicitly exported to loadable modules. 589 * 590 * Return: On success, a cloexec pidfd is returned. 591 * On error, a negative errno number will be returned. 592 */ 593 static int pidfd_create(struct pid *pid, unsigned int flags) 594 { 595 int pidfd; 596 struct file *pidfd_file; 597 598 pidfd = pidfd_prepare(pid, flags, &pidfd_file); 599 if (pidfd < 0) 600 return pidfd; 601 602 fd_install(pidfd, pidfd_file); 603 return pidfd; 604 } 605 606 /** 607 * sys_pidfd_open() - Open new pid file descriptor. 608 * 609 * @pid: pid for which to retrieve a pidfd 610 * @flags: flags to pass 611 * 612 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 613 * the task identified by @pid. Without PIDFD_THREAD flag the target task 614 * must be a thread-group leader. 615 * 616 * Return: On success, a cloexec pidfd is returned. 617 * On error, a negative errno number will be returned. 618 */ 619 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 620 { 621 int fd; 622 struct pid *p; 623 624 if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD)) 625 return -EINVAL; 626 627 if (pid <= 0) 628 return -EINVAL; 629 630 p = find_get_pid(pid); 631 if (!p) 632 return -ESRCH; 633 634 fd = pidfd_create(p, flags); 635 636 put_pid(p); 637 return fd; 638 } 639 640 void __init pid_idr_init(void) 641 { 642 /* Verify no one has done anything silly: */ 643 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 644 645 /* bump default and minimum pid_max based on number of cpus */ 646 pid_max = min(pid_max_max, max_t(int, pid_max, 647 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 648 pid_max_min = max_t(int, pid_max_min, 649 PIDS_PER_CPU_MIN * num_possible_cpus()); 650 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 651 652 idr_init(&init_pid_ns.idr); 653 654 init_pid_ns.pid_cachep = kmem_cache_create("pid", 655 struct_size_t(struct pid, numbers, 1), 656 __alignof__(struct pid), 657 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 658 NULL); 659 } 660 661 static struct file *__pidfd_fget(struct task_struct *task, int fd) 662 { 663 struct file *file; 664 int ret; 665 666 ret = down_read_killable(&task->signal->exec_update_lock); 667 if (ret) 668 return ERR_PTR(ret); 669 670 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 671 file = fget_task(task, fd); 672 else 673 file = ERR_PTR(-EPERM); 674 675 up_read(&task->signal->exec_update_lock); 676 677 return file ?: ERR_PTR(-EBADF); 678 } 679 680 static int pidfd_getfd(struct pid *pid, int fd) 681 { 682 struct task_struct *task; 683 struct file *file; 684 int ret; 685 686 task = get_pid_task(pid, PIDTYPE_PID); 687 if (!task) 688 return -ESRCH; 689 690 file = __pidfd_fget(task, fd); 691 put_task_struct(task); 692 if (IS_ERR(file)) 693 return PTR_ERR(file); 694 695 ret = receive_fd(file, NULL, O_CLOEXEC); 696 fput(file); 697 698 return ret; 699 } 700 701 /** 702 * sys_pidfd_getfd() - Get a file descriptor from another process 703 * 704 * @pidfd: the pidfd file descriptor of the process 705 * @fd: the file descriptor number to get 706 * @flags: flags on how to get the fd (reserved) 707 * 708 * This syscall gets a copy of a file descriptor from another process 709 * based on the pidfd, and file descriptor number. It requires that 710 * the calling process has the ability to ptrace the process represented 711 * by the pidfd. The process which is having its file descriptor copied 712 * is otherwise unaffected. 713 * 714 * Return: On success, a cloexec file descriptor is returned. 715 * On error, a negative errno number will be returned. 716 */ 717 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 718 unsigned int, flags) 719 { 720 struct pid *pid; 721 struct fd f; 722 int ret; 723 724 /* flags is currently unused - make sure it's unset */ 725 if (flags) 726 return -EINVAL; 727 728 f = fdget(pidfd); 729 if (!f.file) 730 return -EBADF; 731 732 pid = pidfd_pid(f.file); 733 if (IS_ERR(pid)) 734 ret = PTR_ERR(pid); 735 else 736 ret = pidfd_getfd(pid, fd); 737 738 fdput(f); 739 return ret; 740 } 741