1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 #include <linux/pidfs.h> 46 #include <net/sock.h> 47 #include <uapi/linux/pidfd.h> 48 49 struct pid init_struct_pid = { 50 .count = REFCOUNT_INIT(1), 51 .tasks = { 52 { .first = NULL }, 53 { .first = NULL }, 54 { .first = NULL }, 55 }, 56 .level = 0, 57 .numbers = { { 58 .nr = 0, 59 .ns = &init_pid_ns, 60 }, } 61 }; 62 63 static int pid_max_min = RESERVED_PIDS + 1; 64 static int pid_max_max = PID_MAX_LIMIT; 65 /* 66 * Pseudo filesystems start inode numbering after one. We use Reserved 67 * PIDs as a natural offset. 68 */ 69 static u64 pidfs_ino = RESERVED_PIDS; 70 71 /* 72 * PID-map pages start out as NULL, they get allocated upon 73 * first use and are never deallocated. This way a low pid_max 74 * value does not cause lots of bitmaps to be allocated, but 75 * the scheme scales to up to 4 million PIDs, runtime. 76 */ 77 struct pid_namespace init_pid_ns = { 78 .ns.count = REFCOUNT_INIT(2), 79 .idr = IDR_INIT(init_pid_ns.idr), 80 .pid_allocated = PIDNS_ADDING, 81 .level = 0, 82 .child_reaper = &init_task, 83 .user_ns = &init_user_ns, 84 .ns.inum = PROC_PID_INIT_INO, 85 #ifdef CONFIG_PID_NS 86 .ns.ops = &pidns_operations, 87 #endif 88 .pid_max = PID_MAX_DEFAULT, 89 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 90 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC, 91 #endif 92 }; 93 EXPORT_SYMBOL_GPL(init_pid_ns); 94 95 /* 96 * Note: disable interrupts while the pidmap_lock is held as an 97 * interrupt might come in and do read_lock(&tasklist_lock). 98 * 99 * If we don't disable interrupts there is a nasty deadlock between 100 * detach_pid()->free_pid() and another cpu that does 101 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 102 * read_lock(&tasklist_lock); 103 * 104 * After we clean up the tasklist_lock and know there are no 105 * irq handlers that take it we can leave the interrupts enabled. 106 * For now it is easier to be safe than to prove it can't happen. 107 */ 108 109 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 110 111 void put_pid(struct pid *pid) 112 { 113 struct pid_namespace *ns; 114 115 if (!pid) 116 return; 117 118 ns = pid->numbers[pid->level].ns; 119 if (refcount_dec_and_test(&pid->count)) { 120 kmem_cache_free(ns->pid_cachep, pid); 121 put_pid_ns(ns); 122 } 123 } 124 EXPORT_SYMBOL_GPL(put_pid); 125 126 static void delayed_put_pid(struct rcu_head *rhp) 127 { 128 struct pid *pid = container_of(rhp, struct pid, rcu); 129 put_pid(pid); 130 } 131 132 void free_pid(struct pid *pid) 133 { 134 /* We can be called with write_lock_irq(&tasklist_lock) held */ 135 int i; 136 unsigned long flags; 137 138 spin_lock_irqsave(&pidmap_lock, flags); 139 for (i = 0; i <= pid->level; i++) { 140 struct upid *upid = pid->numbers + i; 141 struct pid_namespace *ns = upid->ns; 142 switch (--ns->pid_allocated) { 143 case 2: 144 case 1: 145 /* When all that is left in the pid namespace 146 * is the reaper wake up the reaper. The reaper 147 * may be sleeping in zap_pid_ns_processes(). 148 */ 149 wake_up_process(ns->child_reaper); 150 break; 151 case PIDNS_ADDING: 152 /* Handle a fork failure of the first process */ 153 WARN_ON(ns->child_reaper); 154 ns->pid_allocated = 0; 155 break; 156 } 157 158 idr_remove(&ns->idr, upid->nr); 159 } 160 spin_unlock_irqrestore(&pidmap_lock, flags); 161 162 call_rcu(&pid->rcu, delayed_put_pid); 163 } 164 165 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 166 size_t set_tid_size) 167 { 168 struct pid *pid; 169 enum pid_type type; 170 int i, nr; 171 struct pid_namespace *tmp; 172 struct upid *upid; 173 int retval = -ENOMEM; 174 175 /* 176 * set_tid_size contains the size of the set_tid array. Starting at 177 * the most nested currently active PID namespace it tells alloc_pid() 178 * which PID to set for a process in that most nested PID namespace 179 * up to set_tid_size PID namespaces. It does not have to set the PID 180 * for a process in all nested PID namespaces but set_tid_size must 181 * never be greater than the current ns->level + 1. 182 */ 183 if (set_tid_size > ns->level + 1) 184 return ERR_PTR(-EINVAL); 185 186 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 187 if (!pid) 188 return ERR_PTR(retval); 189 190 tmp = ns; 191 pid->level = ns->level; 192 193 for (i = ns->level; i >= 0; i--) { 194 int tid = 0; 195 int pid_max = READ_ONCE(tmp->pid_max); 196 197 if (set_tid_size) { 198 tid = set_tid[ns->level - i]; 199 200 retval = -EINVAL; 201 if (tid < 1 || tid >= pid_max) 202 goto out_free; 203 /* 204 * Also fail if a PID != 1 is requested and 205 * no PID 1 exists. 206 */ 207 if (tid != 1 && !tmp->child_reaper) 208 goto out_free; 209 retval = -EPERM; 210 if (!checkpoint_restore_ns_capable(tmp->user_ns)) 211 goto out_free; 212 set_tid_size--; 213 } 214 215 idr_preload(GFP_KERNEL); 216 spin_lock_irq(&pidmap_lock); 217 218 if (tid) { 219 nr = idr_alloc(&tmp->idr, NULL, tid, 220 tid + 1, GFP_ATOMIC); 221 /* 222 * If ENOSPC is returned it means that the PID is 223 * alreay in use. Return EEXIST in that case. 224 */ 225 if (nr == -ENOSPC) 226 nr = -EEXIST; 227 } else { 228 int pid_min = 1; 229 /* 230 * init really needs pid 1, but after reaching the 231 * maximum wrap back to RESERVED_PIDS 232 */ 233 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 234 pid_min = RESERVED_PIDS; 235 236 /* 237 * Store a null pointer so find_pid_ns does not find 238 * a partially initialized PID (see below). 239 */ 240 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 241 pid_max, GFP_ATOMIC); 242 } 243 spin_unlock_irq(&pidmap_lock); 244 idr_preload_end(); 245 246 if (nr < 0) { 247 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 248 goto out_free; 249 } 250 251 pid->numbers[i].nr = nr; 252 pid->numbers[i].ns = tmp; 253 tmp = tmp->parent; 254 } 255 256 /* 257 * ENOMEM is not the most obvious choice especially for the case 258 * where the child subreaper has already exited and the pid 259 * namespace denies the creation of any new processes. But ENOMEM 260 * is what we have exposed to userspace for a long time and it is 261 * documented behavior for pid namespaces. So we can't easily 262 * change it even if there were an error code better suited. 263 */ 264 retval = -ENOMEM; 265 266 get_pid_ns(ns); 267 refcount_set(&pid->count, 1); 268 spin_lock_init(&pid->lock); 269 for (type = 0; type < PIDTYPE_MAX; ++type) 270 INIT_HLIST_HEAD(&pid->tasks[type]); 271 272 init_waitqueue_head(&pid->wait_pidfd); 273 INIT_HLIST_HEAD(&pid->inodes); 274 275 upid = pid->numbers + ns->level; 276 spin_lock_irq(&pidmap_lock); 277 if (!(ns->pid_allocated & PIDNS_ADDING)) 278 goto out_unlock; 279 pid->stashed = NULL; 280 pid->ino = ++pidfs_ino; 281 for ( ; upid >= pid->numbers; --upid) { 282 /* Make the PID visible to find_pid_ns. */ 283 idr_replace(&upid->ns->idr, pid, upid->nr); 284 upid->ns->pid_allocated++; 285 } 286 spin_unlock_irq(&pidmap_lock); 287 288 return pid; 289 290 out_unlock: 291 spin_unlock_irq(&pidmap_lock); 292 put_pid_ns(ns); 293 294 out_free: 295 spin_lock_irq(&pidmap_lock); 296 while (++i <= ns->level) { 297 upid = pid->numbers + i; 298 idr_remove(&upid->ns->idr, upid->nr); 299 } 300 301 /* On failure to allocate the first pid, reset the state */ 302 if (ns->pid_allocated == PIDNS_ADDING) 303 idr_set_cursor(&ns->idr, 0); 304 305 spin_unlock_irq(&pidmap_lock); 306 307 kmem_cache_free(ns->pid_cachep, pid); 308 return ERR_PTR(retval); 309 } 310 311 void disable_pid_allocation(struct pid_namespace *ns) 312 { 313 spin_lock_irq(&pidmap_lock); 314 ns->pid_allocated &= ~PIDNS_ADDING; 315 spin_unlock_irq(&pidmap_lock); 316 } 317 318 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 319 { 320 return idr_find(&ns->idr, nr); 321 } 322 EXPORT_SYMBOL_GPL(find_pid_ns); 323 324 struct pid *find_vpid(int nr) 325 { 326 return find_pid_ns(nr, task_active_pid_ns(current)); 327 } 328 EXPORT_SYMBOL_GPL(find_vpid); 329 330 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 331 { 332 return (type == PIDTYPE_PID) ? 333 &task->thread_pid : 334 &task->signal->pids[type]; 335 } 336 337 /* 338 * attach_pid() must be called with the tasklist_lock write-held. 339 */ 340 void attach_pid(struct task_struct *task, enum pid_type type) 341 { 342 struct pid *pid = *task_pid_ptr(task, type); 343 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 344 } 345 346 static void __change_pid(struct task_struct *task, enum pid_type type, 347 struct pid *new) 348 { 349 struct pid **pid_ptr = task_pid_ptr(task, type); 350 struct pid *pid; 351 int tmp; 352 353 pid = *pid_ptr; 354 355 hlist_del_rcu(&task->pid_links[type]); 356 *pid_ptr = new; 357 358 if (type == PIDTYPE_PID) { 359 WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID)); 360 wake_up_all(&pid->wait_pidfd); 361 } 362 363 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 364 if (pid_has_task(pid, tmp)) 365 return; 366 367 free_pid(pid); 368 } 369 370 void detach_pid(struct task_struct *task, enum pid_type type) 371 { 372 __change_pid(task, type, NULL); 373 } 374 375 void change_pid(struct task_struct *task, enum pid_type type, 376 struct pid *pid) 377 { 378 __change_pid(task, type, pid); 379 attach_pid(task, type); 380 } 381 382 void exchange_tids(struct task_struct *left, struct task_struct *right) 383 { 384 struct pid *pid1 = left->thread_pid; 385 struct pid *pid2 = right->thread_pid; 386 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; 387 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; 388 389 /* Swap the single entry tid lists */ 390 hlists_swap_heads_rcu(head1, head2); 391 392 /* Swap the per task_struct pid */ 393 rcu_assign_pointer(left->thread_pid, pid2); 394 rcu_assign_pointer(right->thread_pid, pid1); 395 396 /* Swap the cached value */ 397 WRITE_ONCE(left->pid, pid_nr(pid2)); 398 WRITE_ONCE(right->pid, pid_nr(pid1)); 399 } 400 401 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 402 void transfer_pid(struct task_struct *old, struct task_struct *new, 403 enum pid_type type) 404 { 405 WARN_ON_ONCE(type == PIDTYPE_PID); 406 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 407 } 408 409 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 410 { 411 struct task_struct *result = NULL; 412 if (pid) { 413 struct hlist_node *first; 414 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 415 lockdep_tasklist_lock_is_held()); 416 if (first) 417 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 418 } 419 return result; 420 } 421 EXPORT_SYMBOL(pid_task); 422 423 /* 424 * Must be called under rcu_read_lock(). 425 */ 426 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 427 { 428 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 429 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 430 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 431 } 432 433 struct task_struct *find_task_by_vpid(pid_t vnr) 434 { 435 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 436 } 437 438 struct task_struct *find_get_task_by_vpid(pid_t nr) 439 { 440 struct task_struct *task; 441 442 rcu_read_lock(); 443 task = find_task_by_vpid(nr); 444 if (task) 445 get_task_struct(task); 446 rcu_read_unlock(); 447 448 return task; 449 } 450 451 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 452 { 453 struct pid *pid; 454 rcu_read_lock(); 455 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 456 rcu_read_unlock(); 457 return pid; 458 } 459 EXPORT_SYMBOL_GPL(get_task_pid); 460 461 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 462 { 463 struct task_struct *result; 464 rcu_read_lock(); 465 result = pid_task(pid, type); 466 if (result) 467 get_task_struct(result); 468 rcu_read_unlock(); 469 return result; 470 } 471 EXPORT_SYMBOL_GPL(get_pid_task); 472 473 struct pid *find_get_pid(pid_t nr) 474 { 475 struct pid *pid; 476 477 rcu_read_lock(); 478 pid = get_pid(find_vpid(nr)); 479 rcu_read_unlock(); 480 481 return pid; 482 } 483 EXPORT_SYMBOL_GPL(find_get_pid); 484 485 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 486 { 487 struct upid *upid; 488 pid_t nr = 0; 489 490 if (pid && ns->level <= pid->level) { 491 upid = &pid->numbers[ns->level]; 492 if (upid->ns == ns) 493 nr = upid->nr; 494 } 495 return nr; 496 } 497 EXPORT_SYMBOL_GPL(pid_nr_ns); 498 499 pid_t pid_vnr(struct pid *pid) 500 { 501 return pid_nr_ns(pid, task_active_pid_ns(current)); 502 } 503 EXPORT_SYMBOL_GPL(pid_vnr); 504 505 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 506 struct pid_namespace *ns) 507 { 508 pid_t nr = 0; 509 510 rcu_read_lock(); 511 if (!ns) 512 ns = task_active_pid_ns(current); 513 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 514 rcu_read_unlock(); 515 516 return nr; 517 } 518 EXPORT_SYMBOL(__task_pid_nr_ns); 519 520 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 521 { 522 return ns_of_pid(task_pid(tsk)); 523 } 524 EXPORT_SYMBOL_GPL(task_active_pid_ns); 525 526 /* 527 * Used by proc to find the first pid that is greater than or equal to nr. 528 * 529 * If there is a pid at nr this function is exactly the same as find_pid_ns. 530 */ 531 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 532 { 533 return idr_get_next(&ns->idr, &nr); 534 } 535 EXPORT_SYMBOL_GPL(find_ge_pid); 536 537 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) 538 { 539 CLASS(fd, f)(fd); 540 struct pid *pid; 541 542 if (fd_empty(f)) 543 return ERR_PTR(-EBADF); 544 545 pid = pidfd_pid(fd_file(f)); 546 if (!IS_ERR(pid)) { 547 get_pid(pid); 548 *flags = fd_file(f)->f_flags; 549 } 550 return pid; 551 } 552 553 /** 554 * pidfd_get_task() - Get the task associated with a pidfd 555 * 556 * @pidfd: pidfd for which to get the task 557 * @flags: flags associated with this pidfd 558 * 559 * Return the task associated with @pidfd. The function takes a reference on 560 * the returned task. The caller is responsible for releasing that reference. 561 * 562 * Return: On success, the task_struct associated with the pidfd. 563 * On error, a negative errno number will be returned. 564 */ 565 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) 566 { 567 unsigned int f_flags; 568 struct pid *pid; 569 struct task_struct *task; 570 571 pid = pidfd_get_pid(pidfd, &f_flags); 572 if (IS_ERR(pid)) 573 return ERR_CAST(pid); 574 575 task = get_pid_task(pid, PIDTYPE_TGID); 576 put_pid(pid); 577 if (!task) 578 return ERR_PTR(-ESRCH); 579 580 *flags = f_flags; 581 return task; 582 } 583 584 /** 585 * pidfd_create() - Create a new pid file descriptor. 586 * 587 * @pid: struct pid that the pidfd will reference 588 * @flags: flags to pass 589 * 590 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 591 * 592 * Note, that this function can only be called after the fd table has 593 * been unshared to avoid leaking the pidfd to the new process. 594 * 595 * This symbol should not be explicitly exported to loadable modules. 596 * 597 * Return: On success, a cloexec pidfd is returned. 598 * On error, a negative errno number will be returned. 599 */ 600 static int pidfd_create(struct pid *pid, unsigned int flags) 601 { 602 int pidfd; 603 struct file *pidfd_file; 604 605 pidfd = pidfd_prepare(pid, flags, &pidfd_file); 606 if (pidfd < 0) 607 return pidfd; 608 609 fd_install(pidfd, pidfd_file); 610 return pidfd; 611 } 612 613 /** 614 * sys_pidfd_open() - Open new pid file descriptor. 615 * 616 * @pid: pid for which to retrieve a pidfd 617 * @flags: flags to pass 618 * 619 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 620 * the task identified by @pid. Without PIDFD_THREAD flag the target task 621 * must be a thread-group leader. 622 * 623 * Return: On success, a cloexec pidfd is returned. 624 * On error, a negative errno number will be returned. 625 */ 626 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 627 { 628 int fd; 629 struct pid *p; 630 631 if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD)) 632 return -EINVAL; 633 634 if (pid <= 0) 635 return -EINVAL; 636 637 p = find_get_pid(pid); 638 if (!p) 639 return -ESRCH; 640 641 fd = pidfd_create(p, flags); 642 643 put_pid(p); 644 return fd; 645 } 646 647 #ifdef CONFIG_SYSCTL 648 static struct ctl_table_set *pid_table_root_lookup(struct ctl_table_root *root) 649 { 650 return &task_active_pid_ns(current)->set; 651 } 652 653 static int set_is_seen(struct ctl_table_set *set) 654 { 655 return &task_active_pid_ns(current)->set == set; 656 } 657 658 static int pid_table_root_permissions(struct ctl_table_header *head, 659 const struct ctl_table *table) 660 { 661 struct pid_namespace *pidns = 662 container_of(head->set, struct pid_namespace, set); 663 int mode = table->mode; 664 665 if (ns_capable(pidns->user_ns, CAP_SYS_ADMIN) || 666 uid_eq(current_euid(), make_kuid(pidns->user_ns, 0))) 667 mode = (mode & S_IRWXU) >> 6; 668 else if (in_egroup_p(make_kgid(pidns->user_ns, 0))) 669 mode = (mode & S_IRWXG) >> 3; 670 else 671 mode = mode & S_IROTH; 672 return (mode << 6) | (mode << 3) | mode; 673 } 674 675 static void pid_table_root_set_ownership(struct ctl_table_header *head, 676 kuid_t *uid, kgid_t *gid) 677 { 678 struct pid_namespace *pidns = 679 container_of(head->set, struct pid_namespace, set); 680 kuid_t ns_root_uid; 681 kgid_t ns_root_gid; 682 683 ns_root_uid = make_kuid(pidns->user_ns, 0); 684 if (uid_valid(ns_root_uid)) 685 *uid = ns_root_uid; 686 687 ns_root_gid = make_kgid(pidns->user_ns, 0); 688 if (gid_valid(ns_root_gid)) 689 *gid = ns_root_gid; 690 } 691 692 static struct ctl_table_root pid_table_root = { 693 .lookup = pid_table_root_lookup, 694 .permissions = pid_table_root_permissions, 695 .set_ownership = pid_table_root_set_ownership, 696 }; 697 698 static struct ctl_table pid_table[] = { 699 { 700 .procname = "pid_max", 701 .data = &init_pid_ns.pid_max, 702 .maxlen = sizeof(int), 703 .mode = 0644, 704 .proc_handler = proc_dointvec_minmax, 705 .extra1 = &pid_max_min, 706 .extra2 = &pid_max_max, 707 }, 708 }; 709 #endif 710 711 int register_pidns_sysctls(struct pid_namespace *pidns) 712 { 713 #ifdef CONFIG_SYSCTL 714 struct ctl_table *tbl; 715 716 setup_sysctl_set(&pidns->set, &pid_table_root, set_is_seen); 717 718 tbl = kmemdup(pid_table, sizeof(pid_table), GFP_KERNEL); 719 if (!tbl) 720 return -ENOMEM; 721 tbl->data = &pidns->pid_max; 722 pidns->pid_max = min(pid_max_max, max_t(int, pidns->pid_max, 723 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 724 725 pidns->sysctls = __register_sysctl_table(&pidns->set, "kernel", tbl, 726 ARRAY_SIZE(pid_table)); 727 if (!pidns->sysctls) { 728 kfree(tbl); 729 retire_sysctl_set(&pidns->set); 730 return -ENOMEM; 731 } 732 #endif 733 return 0; 734 } 735 736 void unregister_pidns_sysctls(struct pid_namespace *pidns) 737 { 738 #ifdef CONFIG_SYSCTL 739 const struct ctl_table *tbl; 740 741 tbl = pidns->sysctls->ctl_table_arg; 742 unregister_sysctl_table(pidns->sysctls); 743 retire_sysctl_set(&pidns->set); 744 kfree(tbl); 745 #endif 746 } 747 748 void __init pid_idr_init(void) 749 { 750 /* Verify no one has done anything silly: */ 751 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 752 753 /* bump default and minimum pid_max based on number of cpus */ 754 init_pid_ns.pid_max = min(pid_max_max, max_t(int, init_pid_ns.pid_max, 755 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 756 pid_max_min = max_t(int, pid_max_min, 757 PIDS_PER_CPU_MIN * num_possible_cpus()); 758 pr_info("pid_max: default: %u minimum: %u\n", init_pid_ns.pid_max, pid_max_min); 759 760 idr_init(&init_pid_ns.idr); 761 762 init_pid_ns.pid_cachep = kmem_cache_create("pid", 763 struct_size_t(struct pid, numbers, 1), 764 __alignof__(struct pid), 765 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 766 NULL); 767 } 768 769 static __init int pid_namespace_sysctl_init(void) 770 { 771 #ifdef CONFIG_SYSCTL 772 /* "kernel" directory will have already been initialized. */ 773 BUG_ON(register_pidns_sysctls(&init_pid_ns)); 774 #endif 775 return 0; 776 } 777 subsys_initcall(pid_namespace_sysctl_init); 778 779 static struct file *__pidfd_fget(struct task_struct *task, int fd) 780 { 781 struct file *file; 782 int ret; 783 784 ret = down_read_killable(&task->signal->exec_update_lock); 785 if (ret) 786 return ERR_PTR(ret); 787 788 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 789 file = fget_task(task, fd); 790 else 791 file = ERR_PTR(-EPERM); 792 793 up_read(&task->signal->exec_update_lock); 794 795 if (!file) { 796 /* 797 * It is possible that the target thread is exiting; it can be 798 * either: 799 * 1. before exit_signals(), which gives a real fd 800 * 2. before exit_files() takes the task_lock() gives a real fd 801 * 3. after exit_files() releases task_lock(), ->files is NULL; 802 * this has PF_EXITING, since it was set in exit_signals(), 803 * __pidfd_fget() returns EBADF. 804 * In case 3 we get EBADF, but that really means ESRCH, since 805 * the task is currently exiting and has freed its files 806 * struct, so we fix it up. 807 */ 808 if (task->flags & PF_EXITING) 809 file = ERR_PTR(-ESRCH); 810 else 811 file = ERR_PTR(-EBADF); 812 } 813 814 return file; 815 } 816 817 static int pidfd_getfd(struct pid *pid, int fd) 818 { 819 struct task_struct *task; 820 struct file *file; 821 int ret; 822 823 task = get_pid_task(pid, PIDTYPE_PID); 824 if (!task) 825 return -ESRCH; 826 827 file = __pidfd_fget(task, fd); 828 put_task_struct(task); 829 if (IS_ERR(file)) 830 return PTR_ERR(file); 831 832 ret = receive_fd(file, NULL, O_CLOEXEC); 833 fput(file); 834 835 return ret; 836 } 837 838 /** 839 * sys_pidfd_getfd() - Get a file descriptor from another process 840 * 841 * @pidfd: the pidfd file descriptor of the process 842 * @fd: the file descriptor number to get 843 * @flags: flags on how to get the fd (reserved) 844 * 845 * This syscall gets a copy of a file descriptor from another process 846 * based on the pidfd, and file descriptor number. It requires that 847 * the calling process has the ability to ptrace the process represented 848 * by the pidfd. The process which is having its file descriptor copied 849 * is otherwise unaffected. 850 * 851 * Return: On success, a cloexec file descriptor is returned. 852 * On error, a negative errno number will be returned. 853 */ 854 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 855 unsigned int, flags) 856 { 857 struct pid *pid; 858 859 /* flags is currently unused - make sure it's unset */ 860 if (flags) 861 return -EINVAL; 862 863 CLASS(fd, f)(pidfd); 864 if (fd_empty(f)) 865 return -EBADF; 866 867 pid = pidfd_pid(fd_file(f)); 868 if (IS_ERR(pid)) 869 return PTR_ERR(pid); 870 871 return pidfd_getfd(pid, fd); 872 } 873