1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Generic pidhash and scalable, time-bounded PID allocator 4 * 5 * (C) 2002-2003 Nadia Yvette Chambers, IBM 6 * (C) 2004 Nadia Yvette Chambers, Oracle 7 * (C) 2002-2004 Ingo Molnar, Red Hat 8 * 9 * pid-structures are backing objects for tasks sharing a given ID to chain 10 * against. There is very little to them aside from hashing them and 11 * parking tasks using given ID's on a list. 12 * 13 * The hash is always changed with the tasklist_lock write-acquired, 14 * and the hash is only accessed with the tasklist_lock at least 15 * read-acquired, so there's no additional SMP locking needed here. 16 * 17 * We have a list of bitmap pages, which bitmaps represent the PID space. 18 * Allocating and freeing PIDs is completely lockless. The worst-case 19 * allocation scenario when all but one out of 1 million PIDs possible are 20 * allocated already: the scanning of 32 list entries and at most PAGE_SIZE 21 * bytes. The typical fastpath is a single successful setbit. Freeing is O(1). 22 * 23 * Pid namespaces: 24 * (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc. 25 * (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM 26 * Many thanks to Oleg Nesterov for comments and help 27 * 28 */ 29 30 #include <linux/mm.h> 31 #include <linux/export.h> 32 #include <linux/slab.h> 33 #include <linux/init.h> 34 #include <linux/rculist.h> 35 #include <linux/memblock.h> 36 #include <linux/pid_namespace.h> 37 #include <linux/init_task.h> 38 #include <linux/syscalls.h> 39 #include <linux/proc_ns.h> 40 #include <linux/refcount.h> 41 #include <linux/anon_inodes.h> 42 #include <linux/sched/signal.h> 43 #include <linux/sched/task.h> 44 #include <linux/idr.h> 45 #include <net/sock.h> 46 #include <uapi/linux/pidfd.h> 47 48 struct pid init_struct_pid = { 49 .count = REFCOUNT_INIT(1), 50 .tasks = { 51 { .first = NULL }, 52 { .first = NULL }, 53 { .first = NULL }, 54 }, 55 .level = 0, 56 .numbers = { { 57 .nr = 0, 58 .ns = &init_pid_ns, 59 }, } 60 }; 61 62 int pid_max = PID_MAX_DEFAULT; 63 64 #define RESERVED_PIDS 300 65 66 int pid_max_min = RESERVED_PIDS + 1; 67 int pid_max_max = PID_MAX_LIMIT; 68 69 /* 70 * PID-map pages start out as NULL, they get allocated upon 71 * first use and are never deallocated. This way a low pid_max 72 * value does not cause lots of bitmaps to be allocated, but 73 * the scheme scales to up to 4 million PIDs, runtime. 74 */ 75 struct pid_namespace init_pid_ns = { 76 .ns.count = REFCOUNT_INIT(2), 77 .idr = IDR_INIT(init_pid_ns.idr), 78 .pid_allocated = PIDNS_ADDING, 79 .level = 0, 80 .child_reaper = &init_task, 81 .user_ns = &init_user_ns, 82 .ns.inum = PROC_PID_INIT_INO, 83 #ifdef CONFIG_PID_NS 84 .ns.ops = &pidns_operations, 85 #endif 86 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE) 87 .memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC, 88 #endif 89 }; 90 EXPORT_SYMBOL_GPL(init_pid_ns); 91 92 /* 93 * Note: disable interrupts while the pidmap_lock is held as an 94 * interrupt might come in and do read_lock(&tasklist_lock). 95 * 96 * If we don't disable interrupts there is a nasty deadlock between 97 * detach_pid()->free_pid() and another cpu that does 98 * spin_lock(&pidmap_lock) followed by an interrupt routine that does 99 * read_lock(&tasklist_lock); 100 * 101 * After we clean up the tasklist_lock and know there are no 102 * irq handlers that take it we can leave the interrupts enabled. 103 * For now it is easier to be safe than to prove it can't happen. 104 */ 105 106 static __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock); 107 108 void put_pid(struct pid *pid) 109 { 110 struct pid_namespace *ns; 111 112 if (!pid) 113 return; 114 115 ns = pid->numbers[pid->level].ns; 116 if (refcount_dec_and_test(&pid->count)) { 117 kmem_cache_free(ns->pid_cachep, pid); 118 put_pid_ns(ns); 119 } 120 } 121 EXPORT_SYMBOL_GPL(put_pid); 122 123 static void delayed_put_pid(struct rcu_head *rhp) 124 { 125 struct pid *pid = container_of(rhp, struct pid, rcu); 126 put_pid(pid); 127 } 128 129 void free_pid(struct pid *pid) 130 { 131 /* We can be called with write_lock_irq(&tasklist_lock) held */ 132 int i; 133 unsigned long flags; 134 135 spin_lock_irqsave(&pidmap_lock, flags); 136 for (i = 0; i <= pid->level; i++) { 137 struct upid *upid = pid->numbers + i; 138 struct pid_namespace *ns = upid->ns; 139 switch (--ns->pid_allocated) { 140 case 2: 141 case 1: 142 /* When all that is left in the pid namespace 143 * is the reaper wake up the reaper. The reaper 144 * may be sleeping in zap_pid_ns_processes(). 145 */ 146 wake_up_process(ns->child_reaper); 147 break; 148 case PIDNS_ADDING: 149 /* Handle a fork failure of the first process */ 150 WARN_ON(ns->child_reaper); 151 ns->pid_allocated = 0; 152 break; 153 } 154 155 idr_remove(&ns->idr, upid->nr); 156 } 157 spin_unlock_irqrestore(&pidmap_lock, flags); 158 159 call_rcu(&pid->rcu, delayed_put_pid); 160 } 161 162 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid, 163 size_t set_tid_size) 164 { 165 struct pid *pid; 166 enum pid_type type; 167 int i, nr; 168 struct pid_namespace *tmp; 169 struct upid *upid; 170 int retval = -ENOMEM; 171 172 /* 173 * set_tid_size contains the size of the set_tid array. Starting at 174 * the most nested currently active PID namespace it tells alloc_pid() 175 * which PID to set for a process in that most nested PID namespace 176 * up to set_tid_size PID namespaces. It does not have to set the PID 177 * for a process in all nested PID namespaces but set_tid_size must 178 * never be greater than the current ns->level + 1. 179 */ 180 if (set_tid_size > ns->level + 1) 181 return ERR_PTR(-EINVAL); 182 183 pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL); 184 if (!pid) 185 return ERR_PTR(retval); 186 187 tmp = ns; 188 pid->level = ns->level; 189 190 for (i = ns->level; i >= 0; i--) { 191 int tid = 0; 192 193 if (set_tid_size) { 194 tid = set_tid[ns->level - i]; 195 196 retval = -EINVAL; 197 if (tid < 1 || tid >= pid_max) 198 goto out_free; 199 /* 200 * Also fail if a PID != 1 is requested and 201 * no PID 1 exists. 202 */ 203 if (tid != 1 && !tmp->child_reaper) 204 goto out_free; 205 retval = -EPERM; 206 if (!checkpoint_restore_ns_capable(tmp->user_ns)) 207 goto out_free; 208 set_tid_size--; 209 } 210 211 idr_preload(GFP_KERNEL); 212 spin_lock_irq(&pidmap_lock); 213 214 if (tid) { 215 nr = idr_alloc(&tmp->idr, NULL, tid, 216 tid + 1, GFP_ATOMIC); 217 /* 218 * If ENOSPC is returned it means that the PID is 219 * alreay in use. Return EEXIST in that case. 220 */ 221 if (nr == -ENOSPC) 222 nr = -EEXIST; 223 } else { 224 int pid_min = 1; 225 /* 226 * init really needs pid 1, but after reaching the 227 * maximum wrap back to RESERVED_PIDS 228 */ 229 if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS) 230 pid_min = RESERVED_PIDS; 231 232 /* 233 * Store a null pointer so find_pid_ns does not find 234 * a partially initialized PID (see below). 235 */ 236 nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min, 237 pid_max, GFP_ATOMIC); 238 } 239 spin_unlock_irq(&pidmap_lock); 240 idr_preload_end(); 241 242 if (nr < 0) { 243 retval = (nr == -ENOSPC) ? -EAGAIN : nr; 244 goto out_free; 245 } 246 247 pid->numbers[i].nr = nr; 248 pid->numbers[i].ns = tmp; 249 tmp = tmp->parent; 250 } 251 252 /* 253 * ENOMEM is not the most obvious choice especially for the case 254 * where the child subreaper has already exited and the pid 255 * namespace denies the creation of any new processes. But ENOMEM 256 * is what we have exposed to userspace for a long time and it is 257 * documented behavior for pid namespaces. So we can't easily 258 * change it even if there were an error code better suited. 259 */ 260 retval = -ENOMEM; 261 262 get_pid_ns(ns); 263 refcount_set(&pid->count, 1); 264 spin_lock_init(&pid->lock); 265 for (type = 0; type < PIDTYPE_MAX; ++type) 266 INIT_HLIST_HEAD(&pid->tasks[type]); 267 268 init_waitqueue_head(&pid->wait_pidfd); 269 INIT_HLIST_HEAD(&pid->inodes); 270 271 upid = pid->numbers + ns->level; 272 spin_lock_irq(&pidmap_lock); 273 if (!(ns->pid_allocated & PIDNS_ADDING)) 274 goto out_unlock; 275 for ( ; upid >= pid->numbers; --upid) { 276 /* Make the PID visible to find_pid_ns. */ 277 idr_replace(&upid->ns->idr, pid, upid->nr); 278 upid->ns->pid_allocated++; 279 } 280 spin_unlock_irq(&pidmap_lock); 281 282 return pid; 283 284 out_unlock: 285 spin_unlock_irq(&pidmap_lock); 286 put_pid_ns(ns); 287 288 out_free: 289 spin_lock_irq(&pidmap_lock); 290 while (++i <= ns->level) { 291 upid = pid->numbers + i; 292 idr_remove(&upid->ns->idr, upid->nr); 293 } 294 295 /* On failure to allocate the first pid, reset the state */ 296 if (ns->pid_allocated == PIDNS_ADDING) 297 idr_set_cursor(&ns->idr, 0); 298 299 spin_unlock_irq(&pidmap_lock); 300 301 kmem_cache_free(ns->pid_cachep, pid); 302 return ERR_PTR(retval); 303 } 304 305 void disable_pid_allocation(struct pid_namespace *ns) 306 { 307 spin_lock_irq(&pidmap_lock); 308 ns->pid_allocated &= ~PIDNS_ADDING; 309 spin_unlock_irq(&pidmap_lock); 310 } 311 312 struct pid *find_pid_ns(int nr, struct pid_namespace *ns) 313 { 314 return idr_find(&ns->idr, nr); 315 } 316 EXPORT_SYMBOL_GPL(find_pid_ns); 317 318 struct pid *find_vpid(int nr) 319 { 320 return find_pid_ns(nr, task_active_pid_ns(current)); 321 } 322 EXPORT_SYMBOL_GPL(find_vpid); 323 324 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type) 325 { 326 return (type == PIDTYPE_PID) ? 327 &task->thread_pid : 328 &task->signal->pids[type]; 329 } 330 331 /* 332 * attach_pid() must be called with the tasklist_lock write-held. 333 */ 334 void attach_pid(struct task_struct *task, enum pid_type type) 335 { 336 struct pid *pid = *task_pid_ptr(task, type); 337 hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]); 338 } 339 340 static void __change_pid(struct task_struct *task, enum pid_type type, 341 struct pid *new) 342 { 343 struct pid **pid_ptr = task_pid_ptr(task, type); 344 struct pid *pid; 345 int tmp; 346 347 pid = *pid_ptr; 348 349 hlist_del_rcu(&task->pid_links[type]); 350 *pid_ptr = new; 351 352 if (type == PIDTYPE_PID) { 353 WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID)); 354 wake_up_all(&pid->wait_pidfd); 355 } 356 357 for (tmp = PIDTYPE_MAX; --tmp >= 0; ) 358 if (pid_has_task(pid, tmp)) 359 return; 360 361 free_pid(pid); 362 } 363 364 void detach_pid(struct task_struct *task, enum pid_type type) 365 { 366 __change_pid(task, type, NULL); 367 } 368 369 void change_pid(struct task_struct *task, enum pid_type type, 370 struct pid *pid) 371 { 372 __change_pid(task, type, pid); 373 attach_pid(task, type); 374 } 375 376 void exchange_tids(struct task_struct *left, struct task_struct *right) 377 { 378 struct pid *pid1 = left->thread_pid; 379 struct pid *pid2 = right->thread_pid; 380 struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID]; 381 struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID]; 382 383 /* Swap the single entry tid lists */ 384 hlists_swap_heads_rcu(head1, head2); 385 386 /* Swap the per task_struct pid */ 387 rcu_assign_pointer(left->thread_pid, pid2); 388 rcu_assign_pointer(right->thread_pid, pid1); 389 390 /* Swap the cached value */ 391 WRITE_ONCE(left->pid, pid_nr(pid2)); 392 WRITE_ONCE(right->pid, pid_nr(pid1)); 393 } 394 395 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */ 396 void transfer_pid(struct task_struct *old, struct task_struct *new, 397 enum pid_type type) 398 { 399 if (type == PIDTYPE_PID) 400 new->thread_pid = old->thread_pid; 401 hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]); 402 } 403 404 struct task_struct *pid_task(struct pid *pid, enum pid_type type) 405 { 406 struct task_struct *result = NULL; 407 if (pid) { 408 struct hlist_node *first; 409 first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]), 410 lockdep_tasklist_lock_is_held()); 411 if (first) 412 result = hlist_entry(first, struct task_struct, pid_links[(type)]); 413 } 414 return result; 415 } 416 EXPORT_SYMBOL(pid_task); 417 418 /* 419 * Must be called under rcu_read_lock(). 420 */ 421 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns) 422 { 423 RCU_LOCKDEP_WARN(!rcu_read_lock_held(), 424 "find_task_by_pid_ns() needs rcu_read_lock() protection"); 425 return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID); 426 } 427 428 struct task_struct *find_task_by_vpid(pid_t vnr) 429 { 430 return find_task_by_pid_ns(vnr, task_active_pid_ns(current)); 431 } 432 433 struct task_struct *find_get_task_by_vpid(pid_t nr) 434 { 435 struct task_struct *task; 436 437 rcu_read_lock(); 438 task = find_task_by_vpid(nr); 439 if (task) 440 get_task_struct(task); 441 rcu_read_unlock(); 442 443 return task; 444 } 445 446 struct pid *get_task_pid(struct task_struct *task, enum pid_type type) 447 { 448 struct pid *pid; 449 rcu_read_lock(); 450 pid = get_pid(rcu_dereference(*task_pid_ptr(task, type))); 451 rcu_read_unlock(); 452 return pid; 453 } 454 EXPORT_SYMBOL_GPL(get_task_pid); 455 456 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type) 457 { 458 struct task_struct *result; 459 rcu_read_lock(); 460 result = pid_task(pid, type); 461 if (result) 462 get_task_struct(result); 463 rcu_read_unlock(); 464 return result; 465 } 466 EXPORT_SYMBOL_GPL(get_pid_task); 467 468 struct pid *find_get_pid(pid_t nr) 469 { 470 struct pid *pid; 471 472 rcu_read_lock(); 473 pid = get_pid(find_vpid(nr)); 474 rcu_read_unlock(); 475 476 return pid; 477 } 478 EXPORT_SYMBOL_GPL(find_get_pid); 479 480 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns) 481 { 482 struct upid *upid; 483 pid_t nr = 0; 484 485 if (pid && ns->level <= pid->level) { 486 upid = &pid->numbers[ns->level]; 487 if (upid->ns == ns) 488 nr = upid->nr; 489 } 490 return nr; 491 } 492 EXPORT_SYMBOL_GPL(pid_nr_ns); 493 494 pid_t pid_vnr(struct pid *pid) 495 { 496 return pid_nr_ns(pid, task_active_pid_ns(current)); 497 } 498 EXPORT_SYMBOL_GPL(pid_vnr); 499 500 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type, 501 struct pid_namespace *ns) 502 { 503 pid_t nr = 0; 504 505 rcu_read_lock(); 506 if (!ns) 507 ns = task_active_pid_ns(current); 508 nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns); 509 rcu_read_unlock(); 510 511 return nr; 512 } 513 EXPORT_SYMBOL(__task_pid_nr_ns); 514 515 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk) 516 { 517 return ns_of_pid(task_pid(tsk)); 518 } 519 EXPORT_SYMBOL_GPL(task_active_pid_ns); 520 521 /* 522 * Used by proc to find the first pid that is greater than or equal to nr. 523 * 524 * If there is a pid at nr this function is exactly the same as find_pid_ns. 525 */ 526 struct pid *find_ge_pid(int nr, struct pid_namespace *ns) 527 { 528 return idr_get_next(&ns->idr, &nr); 529 } 530 EXPORT_SYMBOL_GPL(find_ge_pid); 531 532 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags) 533 { 534 struct fd f; 535 struct pid *pid; 536 537 f = fdget(fd); 538 if (!f.file) 539 return ERR_PTR(-EBADF); 540 541 pid = pidfd_pid(f.file); 542 if (!IS_ERR(pid)) { 543 get_pid(pid); 544 *flags = f.file->f_flags; 545 } 546 547 fdput(f); 548 return pid; 549 } 550 551 /** 552 * pidfd_get_task() - Get the task associated with a pidfd 553 * 554 * @pidfd: pidfd for which to get the task 555 * @flags: flags associated with this pidfd 556 * 557 * Return the task associated with @pidfd. The function takes a reference on 558 * the returned task. The caller is responsible for releasing that reference. 559 * 560 * Return: On success, the task_struct associated with the pidfd. 561 * On error, a negative errno number will be returned. 562 */ 563 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags) 564 { 565 unsigned int f_flags; 566 struct pid *pid; 567 struct task_struct *task; 568 569 pid = pidfd_get_pid(pidfd, &f_flags); 570 if (IS_ERR(pid)) 571 return ERR_CAST(pid); 572 573 task = get_pid_task(pid, PIDTYPE_TGID); 574 put_pid(pid); 575 if (!task) 576 return ERR_PTR(-ESRCH); 577 578 *flags = f_flags; 579 return task; 580 } 581 582 /** 583 * pidfd_create() - Create a new pid file descriptor. 584 * 585 * @pid: struct pid that the pidfd will reference 586 * @flags: flags to pass 587 * 588 * This creates a new pid file descriptor with the O_CLOEXEC flag set. 589 * 590 * Note, that this function can only be called after the fd table has 591 * been unshared to avoid leaking the pidfd to the new process. 592 * 593 * This symbol should not be explicitly exported to loadable modules. 594 * 595 * Return: On success, a cloexec pidfd is returned. 596 * On error, a negative errno number will be returned. 597 */ 598 static int pidfd_create(struct pid *pid, unsigned int flags) 599 { 600 int pidfd; 601 struct file *pidfd_file; 602 603 pidfd = pidfd_prepare(pid, flags, &pidfd_file); 604 if (pidfd < 0) 605 return pidfd; 606 607 fd_install(pidfd, pidfd_file); 608 return pidfd; 609 } 610 611 /** 612 * sys_pidfd_open() - Open new pid file descriptor. 613 * 614 * @pid: pid for which to retrieve a pidfd 615 * @flags: flags to pass 616 * 617 * This creates a new pid file descriptor with the O_CLOEXEC flag set for 618 * the task identified by @pid. Without PIDFD_THREAD flag the target task 619 * must be a thread-group leader. 620 * 621 * Return: On success, a cloexec pidfd is returned. 622 * On error, a negative errno number will be returned. 623 */ 624 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags) 625 { 626 int fd; 627 struct pid *p; 628 629 if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD)) 630 return -EINVAL; 631 632 if (pid <= 0) 633 return -EINVAL; 634 635 p = find_get_pid(pid); 636 if (!p) 637 return -ESRCH; 638 639 fd = pidfd_create(p, flags); 640 641 put_pid(p); 642 return fd; 643 } 644 645 void __init pid_idr_init(void) 646 { 647 /* Verify no one has done anything silly: */ 648 BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING); 649 650 /* bump default and minimum pid_max based on number of cpus */ 651 pid_max = min(pid_max_max, max_t(int, pid_max, 652 PIDS_PER_CPU_DEFAULT * num_possible_cpus())); 653 pid_max_min = max_t(int, pid_max_min, 654 PIDS_PER_CPU_MIN * num_possible_cpus()); 655 pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min); 656 657 idr_init(&init_pid_ns.idr); 658 659 init_pid_ns.pid_cachep = kmem_cache_create("pid", 660 struct_size_t(struct pid, numbers, 1), 661 __alignof__(struct pid), 662 SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT, 663 NULL); 664 } 665 666 static struct file *__pidfd_fget(struct task_struct *task, int fd) 667 { 668 struct file *file; 669 int ret; 670 671 ret = down_read_killable(&task->signal->exec_update_lock); 672 if (ret) 673 return ERR_PTR(ret); 674 675 if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS)) 676 file = fget_task(task, fd); 677 else 678 file = ERR_PTR(-EPERM); 679 680 up_read(&task->signal->exec_update_lock); 681 682 return file ?: ERR_PTR(-EBADF); 683 } 684 685 static int pidfd_getfd(struct pid *pid, int fd) 686 { 687 struct task_struct *task; 688 struct file *file; 689 int ret; 690 691 task = get_pid_task(pid, PIDTYPE_PID); 692 if (!task) 693 return -ESRCH; 694 695 file = __pidfd_fget(task, fd); 696 put_task_struct(task); 697 if (IS_ERR(file)) 698 return PTR_ERR(file); 699 700 ret = receive_fd(file, NULL, O_CLOEXEC); 701 fput(file); 702 703 return ret; 704 } 705 706 /** 707 * sys_pidfd_getfd() - Get a file descriptor from another process 708 * 709 * @pidfd: the pidfd file descriptor of the process 710 * @fd: the file descriptor number to get 711 * @flags: flags on how to get the fd (reserved) 712 * 713 * This syscall gets a copy of a file descriptor from another process 714 * based on the pidfd, and file descriptor number. It requires that 715 * the calling process has the ability to ptrace the process represented 716 * by the pidfd. The process which is having its file descriptor copied 717 * is otherwise unaffected. 718 * 719 * Return: On success, a cloexec file descriptor is returned. 720 * On error, a negative errno number will be returned. 721 */ 722 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd, 723 unsigned int, flags) 724 { 725 struct pid *pid; 726 struct fd f; 727 int ret; 728 729 /* flags is currently unused - make sure it's unset */ 730 if (flags) 731 return -EINVAL; 732 733 f = fdget(pidfd); 734 if (!f.file) 735 return -EBADF; 736 737 pid = pidfd_pid(f.file); 738 if (IS_ERR(pid)) 739 ret = PTR_ERR(pid); 740 else 741 ret = pidfd_getfd(pid, fd); 742 743 fdput(f); 744 return ret; 745 } 746