xref: /linux-6.15/kernel/pid.c (revision 43f0df54)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic pidhash and scalable, time-bounded PID allocator
4  *
5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
6  * (C) 2004 Nadia Yvette Chambers, Oracle
7  * (C) 2002-2004 Ingo Molnar, Red Hat
8  *
9  * pid-structures are backing objects for tasks sharing a given ID to chain
10  * against. There is very little to them aside from hashing them and
11  * parking tasks using given ID's on a list.
12  *
13  * The hash is always changed with the tasklist_lock write-acquired,
14  * and the hash is only accessed with the tasklist_lock at least
15  * read-acquired, so there's no additional SMP locking needed here.
16  *
17  * We have a list of bitmap pages, which bitmaps represent the PID space.
18  * Allocating and freeing PIDs is completely lockless. The worst-case
19  * allocation scenario when all but one out of 1 million PIDs possible are
20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22  *
23  * Pid namespaces:
24  *    (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc.
25  *    (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM
26  *     Many thanks to Oleg Nesterov for comments and help
27  *
28  */
29 
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 #include <net/sock.h>
46 #include <uapi/linux/pidfd.h>
47 
48 struct pid init_struct_pid = {
49 	.count		= REFCOUNT_INIT(1),
50 	.tasks		= {
51 		{ .first = NULL },
52 		{ .first = NULL },
53 		{ .first = NULL },
54 	},
55 	.level		= 0,
56 	.numbers	= { {
57 		.nr		= 0,
58 		.ns		= &init_pid_ns,
59 	}, }
60 };
61 
62 int pid_max = PID_MAX_DEFAULT;
63 
64 #define RESERVED_PIDS		300
65 
66 int pid_max_min = RESERVED_PIDS + 1;
67 int pid_max_max = PID_MAX_LIMIT;
68 
69 /*
70  * PID-map pages start out as NULL, they get allocated upon
71  * first use and are never deallocated. This way a low pid_max
72  * value does not cause lots of bitmaps to be allocated, but
73  * the scheme scales to up to 4 million PIDs, runtime.
74  */
75 struct pid_namespace init_pid_ns = {
76 	.ns.count = REFCOUNT_INIT(2),
77 	.idr = IDR_INIT(init_pid_ns.idr),
78 	.pid_allocated = PIDNS_ADDING,
79 	.level = 0,
80 	.child_reaper = &init_task,
81 	.user_ns = &init_user_ns,
82 	.ns.inum = PROC_PID_INIT_INO,
83 #ifdef CONFIG_PID_NS
84 	.ns.ops = &pidns_operations,
85 #endif
86 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
87 	.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
88 #endif
89 };
90 EXPORT_SYMBOL_GPL(init_pid_ns);
91 
92 /*
93  * Note: disable interrupts while the pidmap_lock is held as an
94  * interrupt might come in and do read_lock(&tasklist_lock).
95  *
96  * If we don't disable interrupts there is a nasty deadlock between
97  * detach_pid()->free_pid() and another cpu that does
98  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
99  * read_lock(&tasklist_lock);
100  *
101  * After we clean up the tasklist_lock and know there are no
102  * irq handlers that take it we can leave the interrupts enabled.
103  * For now it is easier to be safe than to prove it can't happen.
104  */
105 
106 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
107 
108 void put_pid(struct pid *pid)
109 {
110 	struct pid_namespace *ns;
111 
112 	if (!pid)
113 		return;
114 
115 	ns = pid->numbers[pid->level].ns;
116 	if (refcount_dec_and_test(&pid->count)) {
117 		kmem_cache_free(ns->pid_cachep, pid);
118 		put_pid_ns(ns);
119 	}
120 }
121 EXPORT_SYMBOL_GPL(put_pid);
122 
123 static void delayed_put_pid(struct rcu_head *rhp)
124 {
125 	struct pid *pid = container_of(rhp, struct pid, rcu);
126 	put_pid(pid);
127 }
128 
129 void free_pid(struct pid *pid)
130 {
131 	/* We can be called with write_lock_irq(&tasklist_lock) held */
132 	int i;
133 	unsigned long flags;
134 
135 	spin_lock_irqsave(&pidmap_lock, flags);
136 	for (i = 0; i <= pid->level; i++) {
137 		struct upid *upid = pid->numbers + i;
138 		struct pid_namespace *ns = upid->ns;
139 		switch (--ns->pid_allocated) {
140 		case 2:
141 		case 1:
142 			/* When all that is left in the pid namespace
143 			 * is the reaper wake up the reaper.  The reaper
144 			 * may be sleeping in zap_pid_ns_processes().
145 			 */
146 			wake_up_process(ns->child_reaper);
147 			break;
148 		case PIDNS_ADDING:
149 			/* Handle a fork failure of the first process */
150 			WARN_ON(ns->child_reaper);
151 			ns->pid_allocated = 0;
152 			break;
153 		}
154 
155 		idr_remove(&ns->idr, upid->nr);
156 	}
157 	spin_unlock_irqrestore(&pidmap_lock, flags);
158 
159 	call_rcu(&pid->rcu, delayed_put_pid);
160 }
161 
162 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
163 		      size_t set_tid_size)
164 {
165 	struct pid *pid;
166 	enum pid_type type;
167 	int i, nr;
168 	struct pid_namespace *tmp;
169 	struct upid *upid;
170 	int retval = -ENOMEM;
171 
172 	/*
173 	 * set_tid_size contains the size of the set_tid array. Starting at
174 	 * the most nested currently active PID namespace it tells alloc_pid()
175 	 * which PID to set for a process in that most nested PID namespace
176 	 * up to set_tid_size PID namespaces. It does not have to set the PID
177 	 * for a process in all nested PID namespaces but set_tid_size must
178 	 * never be greater than the current ns->level + 1.
179 	 */
180 	if (set_tid_size > ns->level + 1)
181 		return ERR_PTR(-EINVAL);
182 
183 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
184 	if (!pid)
185 		return ERR_PTR(retval);
186 
187 	tmp = ns;
188 	pid->level = ns->level;
189 
190 	for (i = ns->level; i >= 0; i--) {
191 		int tid = 0;
192 
193 		if (set_tid_size) {
194 			tid = set_tid[ns->level - i];
195 
196 			retval = -EINVAL;
197 			if (tid < 1 || tid >= pid_max)
198 				goto out_free;
199 			/*
200 			 * Also fail if a PID != 1 is requested and
201 			 * no PID 1 exists.
202 			 */
203 			if (tid != 1 && !tmp->child_reaper)
204 				goto out_free;
205 			retval = -EPERM;
206 			if (!checkpoint_restore_ns_capable(tmp->user_ns))
207 				goto out_free;
208 			set_tid_size--;
209 		}
210 
211 		idr_preload(GFP_KERNEL);
212 		spin_lock_irq(&pidmap_lock);
213 
214 		if (tid) {
215 			nr = idr_alloc(&tmp->idr, NULL, tid,
216 				       tid + 1, GFP_ATOMIC);
217 			/*
218 			 * If ENOSPC is returned it means that the PID is
219 			 * alreay in use. Return EEXIST in that case.
220 			 */
221 			if (nr == -ENOSPC)
222 				nr = -EEXIST;
223 		} else {
224 			int pid_min = 1;
225 			/*
226 			 * init really needs pid 1, but after reaching the
227 			 * maximum wrap back to RESERVED_PIDS
228 			 */
229 			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
230 				pid_min = RESERVED_PIDS;
231 
232 			/*
233 			 * Store a null pointer so find_pid_ns does not find
234 			 * a partially initialized PID (see below).
235 			 */
236 			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
237 					      pid_max, GFP_ATOMIC);
238 		}
239 		spin_unlock_irq(&pidmap_lock);
240 		idr_preload_end();
241 
242 		if (nr < 0) {
243 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
244 			goto out_free;
245 		}
246 
247 		pid->numbers[i].nr = nr;
248 		pid->numbers[i].ns = tmp;
249 		tmp = tmp->parent;
250 	}
251 
252 	/*
253 	 * ENOMEM is not the most obvious choice especially for the case
254 	 * where the child subreaper has already exited and the pid
255 	 * namespace denies the creation of any new processes. But ENOMEM
256 	 * is what we have exposed to userspace for a long time and it is
257 	 * documented behavior for pid namespaces. So we can't easily
258 	 * change it even if there were an error code better suited.
259 	 */
260 	retval = -ENOMEM;
261 
262 	get_pid_ns(ns);
263 	refcount_set(&pid->count, 1);
264 	spin_lock_init(&pid->lock);
265 	for (type = 0; type < PIDTYPE_MAX; ++type)
266 		INIT_HLIST_HEAD(&pid->tasks[type]);
267 
268 	init_waitqueue_head(&pid->wait_pidfd);
269 	INIT_HLIST_HEAD(&pid->inodes);
270 
271 	upid = pid->numbers + ns->level;
272 	spin_lock_irq(&pidmap_lock);
273 	if (!(ns->pid_allocated & PIDNS_ADDING))
274 		goto out_unlock;
275 	for ( ; upid >= pid->numbers; --upid) {
276 		/* Make the PID visible to find_pid_ns. */
277 		idr_replace(&upid->ns->idr, pid, upid->nr);
278 		upid->ns->pid_allocated++;
279 	}
280 	spin_unlock_irq(&pidmap_lock);
281 
282 	return pid;
283 
284 out_unlock:
285 	spin_unlock_irq(&pidmap_lock);
286 	put_pid_ns(ns);
287 
288 out_free:
289 	spin_lock_irq(&pidmap_lock);
290 	while (++i <= ns->level) {
291 		upid = pid->numbers + i;
292 		idr_remove(&upid->ns->idr, upid->nr);
293 	}
294 
295 	/* On failure to allocate the first pid, reset the state */
296 	if (ns->pid_allocated == PIDNS_ADDING)
297 		idr_set_cursor(&ns->idr, 0);
298 
299 	spin_unlock_irq(&pidmap_lock);
300 
301 	kmem_cache_free(ns->pid_cachep, pid);
302 	return ERR_PTR(retval);
303 }
304 
305 void disable_pid_allocation(struct pid_namespace *ns)
306 {
307 	spin_lock_irq(&pidmap_lock);
308 	ns->pid_allocated &= ~PIDNS_ADDING;
309 	spin_unlock_irq(&pidmap_lock);
310 }
311 
312 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
313 {
314 	return idr_find(&ns->idr, nr);
315 }
316 EXPORT_SYMBOL_GPL(find_pid_ns);
317 
318 struct pid *find_vpid(int nr)
319 {
320 	return find_pid_ns(nr, task_active_pid_ns(current));
321 }
322 EXPORT_SYMBOL_GPL(find_vpid);
323 
324 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
325 {
326 	return (type == PIDTYPE_PID) ?
327 		&task->thread_pid :
328 		&task->signal->pids[type];
329 }
330 
331 /*
332  * attach_pid() must be called with the tasklist_lock write-held.
333  */
334 void attach_pid(struct task_struct *task, enum pid_type type)
335 {
336 	struct pid *pid = *task_pid_ptr(task, type);
337 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
338 }
339 
340 static void __change_pid(struct task_struct *task, enum pid_type type,
341 			struct pid *new)
342 {
343 	struct pid **pid_ptr = task_pid_ptr(task, type);
344 	struct pid *pid;
345 	int tmp;
346 
347 	pid = *pid_ptr;
348 
349 	hlist_del_rcu(&task->pid_links[type]);
350 	*pid_ptr = new;
351 
352 	if (type == PIDTYPE_PID) {
353 		WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID));
354 		wake_up_all(&pid->wait_pidfd);
355 	}
356 
357 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
358 		if (pid_has_task(pid, tmp))
359 			return;
360 
361 	free_pid(pid);
362 }
363 
364 void detach_pid(struct task_struct *task, enum pid_type type)
365 {
366 	__change_pid(task, type, NULL);
367 }
368 
369 void change_pid(struct task_struct *task, enum pid_type type,
370 		struct pid *pid)
371 {
372 	__change_pid(task, type, pid);
373 	attach_pid(task, type);
374 }
375 
376 void exchange_tids(struct task_struct *left, struct task_struct *right)
377 {
378 	struct pid *pid1 = left->thread_pid;
379 	struct pid *pid2 = right->thread_pid;
380 	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
381 	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
382 
383 	/* Swap the single entry tid lists */
384 	hlists_swap_heads_rcu(head1, head2);
385 
386 	/* Swap the per task_struct pid */
387 	rcu_assign_pointer(left->thread_pid, pid2);
388 	rcu_assign_pointer(right->thread_pid, pid1);
389 
390 	/* Swap the cached value */
391 	WRITE_ONCE(left->pid, pid_nr(pid2));
392 	WRITE_ONCE(right->pid, pid_nr(pid1));
393 }
394 
395 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
396 void transfer_pid(struct task_struct *old, struct task_struct *new,
397 			   enum pid_type type)
398 {
399 	if (type == PIDTYPE_PID)
400 		new->thread_pid = old->thread_pid;
401 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
402 }
403 
404 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
405 {
406 	struct task_struct *result = NULL;
407 	if (pid) {
408 		struct hlist_node *first;
409 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
410 					      lockdep_tasklist_lock_is_held());
411 		if (first)
412 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
413 	}
414 	return result;
415 }
416 EXPORT_SYMBOL(pid_task);
417 
418 /*
419  * Must be called under rcu_read_lock().
420  */
421 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
422 {
423 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
424 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
425 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
426 }
427 
428 struct task_struct *find_task_by_vpid(pid_t vnr)
429 {
430 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
431 }
432 
433 struct task_struct *find_get_task_by_vpid(pid_t nr)
434 {
435 	struct task_struct *task;
436 
437 	rcu_read_lock();
438 	task = find_task_by_vpid(nr);
439 	if (task)
440 		get_task_struct(task);
441 	rcu_read_unlock();
442 
443 	return task;
444 }
445 
446 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
447 {
448 	struct pid *pid;
449 	rcu_read_lock();
450 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
451 	rcu_read_unlock();
452 	return pid;
453 }
454 EXPORT_SYMBOL_GPL(get_task_pid);
455 
456 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
457 {
458 	struct task_struct *result;
459 	rcu_read_lock();
460 	result = pid_task(pid, type);
461 	if (result)
462 		get_task_struct(result);
463 	rcu_read_unlock();
464 	return result;
465 }
466 EXPORT_SYMBOL_GPL(get_pid_task);
467 
468 struct pid *find_get_pid(pid_t nr)
469 {
470 	struct pid *pid;
471 
472 	rcu_read_lock();
473 	pid = get_pid(find_vpid(nr));
474 	rcu_read_unlock();
475 
476 	return pid;
477 }
478 EXPORT_SYMBOL_GPL(find_get_pid);
479 
480 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
481 {
482 	struct upid *upid;
483 	pid_t nr = 0;
484 
485 	if (pid && ns->level <= pid->level) {
486 		upid = &pid->numbers[ns->level];
487 		if (upid->ns == ns)
488 			nr = upid->nr;
489 	}
490 	return nr;
491 }
492 EXPORT_SYMBOL_GPL(pid_nr_ns);
493 
494 pid_t pid_vnr(struct pid *pid)
495 {
496 	return pid_nr_ns(pid, task_active_pid_ns(current));
497 }
498 EXPORT_SYMBOL_GPL(pid_vnr);
499 
500 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
501 			struct pid_namespace *ns)
502 {
503 	pid_t nr = 0;
504 
505 	rcu_read_lock();
506 	if (!ns)
507 		ns = task_active_pid_ns(current);
508 	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
509 	rcu_read_unlock();
510 
511 	return nr;
512 }
513 EXPORT_SYMBOL(__task_pid_nr_ns);
514 
515 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
516 {
517 	return ns_of_pid(task_pid(tsk));
518 }
519 EXPORT_SYMBOL_GPL(task_active_pid_ns);
520 
521 /*
522  * Used by proc to find the first pid that is greater than or equal to nr.
523  *
524  * If there is a pid at nr this function is exactly the same as find_pid_ns.
525  */
526 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
527 {
528 	return idr_get_next(&ns->idr, &nr);
529 }
530 EXPORT_SYMBOL_GPL(find_ge_pid);
531 
532 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
533 {
534 	struct fd f;
535 	struct pid *pid;
536 
537 	f = fdget(fd);
538 	if (!f.file)
539 		return ERR_PTR(-EBADF);
540 
541 	pid = pidfd_pid(f.file);
542 	if (!IS_ERR(pid)) {
543 		get_pid(pid);
544 		*flags = f.file->f_flags;
545 	}
546 
547 	fdput(f);
548 	return pid;
549 }
550 
551 /**
552  * pidfd_get_task() - Get the task associated with a pidfd
553  *
554  * @pidfd: pidfd for which to get the task
555  * @flags: flags associated with this pidfd
556  *
557  * Return the task associated with @pidfd. The function takes a reference on
558  * the returned task. The caller is responsible for releasing that reference.
559  *
560  * Return: On success, the task_struct associated with the pidfd.
561  *	   On error, a negative errno number will be returned.
562  */
563 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
564 {
565 	unsigned int f_flags;
566 	struct pid *pid;
567 	struct task_struct *task;
568 
569 	pid = pidfd_get_pid(pidfd, &f_flags);
570 	if (IS_ERR(pid))
571 		return ERR_CAST(pid);
572 
573 	task = get_pid_task(pid, PIDTYPE_TGID);
574 	put_pid(pid);
575 	if (!task)
576 		return ERR_PTR(-ESRCH);
577 
578 	*flags = f_flags;
579 	return task;
580 }
581 
582 /**
583  * pidfd_create() - Create a new pid file descriptor.
584  *
585  * @pid:   struct pid that the pidfd will reference
586  * @flags: flags to pass
587  *
588  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
589  *
590  * Note, that this function can only be called after the fd table has
591  * been unshared to avoid leaking the pidfd to the new process.
592  *
593  * This symbol should not be explicitly exported to loadable modules.
594  *
595  * Return: On success, a cloexec pidfd is returned.
596  *         On error, a negative errno number will be returned.
597  */
598 static int pidfd_create(struct pid *pid, unsigned int flags)
599 {
600 	int pidfd;
601 	struct file *pidfd_file;
602 
603 	pidfd = pidfd_prepare(pid, flags, &pidfd_file);
604 	if (pidfd < 0)
605 		return pidfd;
606 
607 	fd_install(pidfd, pidfd_file);
608 	return pidfd;
609 }
610 
611 /**
612  * sys_pidfd_open() - Open new pid file descriptor.
613  *
614  * @pid:   pid for which to retrieve a pidfd
615  * @flags: flags to pass
616  *
617  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
618  * the task identified by @pid. Without PIDFD_THREAD flag the target task
619  * must be a thread-group leader.
620  *
621  * Return: On success, a cloexec pidfd is returned.
622  *         On error, a negative errno number will be returned.
623  */
624 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
625 {
626 	int fd;
627 	struct pid *p;
628 
629 	if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
630 		return -EINVAL;
631 
632 	if (pid <= 0)
633 		return -EINVAL;
634 
635 	p = find_get_pid(pid);
636 	if (!p)
637 		return -ESRCH;
638 
639 	fd = pidfd_create(p, flags);
640 
641 	put_pid(p);
642 	return fd;
643 }
644 
645 void __init pid_idr_init(void)
646 {
647 	/* Verify no one has done anything silly: */
648 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
649 
650 	/* bump default and minimum pid_max based on number of cpus */
651 	pid_max = min(pid_max_max, max_t(int, pid_max,
652 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
653 	pid_max_min = max_t(int, pid_max_min,
654 				PIDS_PER_CPU_MIN * num_possible_cpus());
655 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
656 
657 	idr_init(&init_pid_ns.idr);
658 
659 	init_pid_ns.pid_cachep = kmem_cache_create("pid",
660 			struct_size_t(struct pid, numbers, 1),
661 			__alignof__(struct pid),
662 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
663 			NULL);
664 }
665 
666 static struct file *__pidfd_fget(struct task_struct *task, int fd)
667 {
668 	struct file *file;
669 	int ret;
670 
671 	ret = down_read_killable(&task->signal->exec_update_lock);
672 	if (ret)
673 		return ERR_PTR(ret);
674 
675 	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
676 		file = fget_task(task, fd);
677 	else
678 		file = ERR_PTR(-EPERM);
679 
680 	up_read(&task->signal->exec_update_lock);
681 
682 	return file ?: ERR_PTR(-EBADF);
683 }
684 
685 static int pidfd_getfd(struct pid *pid, int fd)
686 {
687 	struct task_struct *task;
688 	struct file *file;
689 	int ret;
690 
691 	task = get_pid_task(pid, PIDTYPE_PID);
692 	if (!task)
693 		return -ESRCH;
694 
695 	file = __pidfd_fget(task, fd);
696 	put_task_struct(task);
697 	if (IS_ERR(file))
698 		return PTR_ERR(file);
699 
700 	ret = receive_fd(file, NULL, O_CLOEXEC);
701 	fput(file);
702 
703 	return ret;
704 }
705 
706 /**
707  * sys_pidfd_getfd() - Get a file descriptor from another process
708  *
709  * @pidfd:	the pidfd file descriptor of the process
710  * @fd:		the file descriptor number to get
711  * @flags:	flags on how to get the fd (reserved)
712  *
713  * This syscall gets a copy of a file descriptor from another process
714  * based on the pidfd, and file descriptor number. It requires that
715  * the calling process has the ability to ptrace the process represented
716  * by the pidfd. The process which is having its file descriptor copied
717  * is otherwise unaffected.
718  *
719  * Return: On success, a cloexec file descriptor is returned.
720  *         On error, a negative errno number will be returned.
721  */
722 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
723 		unsigned int, flags)
724 {
725 	struct pid *pid;
726 	struct fd f;
727 	int ret;
728 
729 	/* flags is currently unused - make sure it's unset */
730 	if (flags)
731 		return -EINVAL;
732 
733 	f = fdget(pidfd);
734 	if (!f.file)
735 		return -EBADF;
736 
737 	pid = pidfd_pid(f.file);
738 	if (IS_ERR(pid))
739 		ret = PTR_ERR(pid);
740 	else
741 		ret = pidfd_getfd(pid, fd);
742 
743 	fdput(f);
744 	return ret;
745 }
746