xref: /linux-6.15/kernel/pid.c (revision 16ecd47c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic pidhash and scalable, time-bounded PID allocator
4  *
5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
6  * (C) 2004 Nadia Yvette Chambers, Oracle
7  * (C) 2002-2004 Ingo Molnar, Red Hat
8  *
9  * pid-structures are backing objects for tasks sharing a given ID to chain
10  * against. There is very little to them aside from hashing them and
11  * parking tasks using given ID's on a list.
12  *
13  * The hash is always changed with the tasklist_lock write-acquired,
14  * and the hash is only accessed with the tasklist_lock at least
15  * read-acquired, so there's no additional SMP locking needed here.
16  *
17  * We have a list of bitmap pages, which bitmaps represent the PID space.
18  * Allocating and freeing PIDs is completely lockless. The worst-case
19  * allocation scenario when all but one out of 1 million PIDs possible are
20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22  *
23  * Pid namespaces:
24  *    (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc.
25  *    (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM
26  *     Many thanks to Oleg Nesterov for comments and help
27  *
28  */
29 
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 #include <linux/pidfs.h>
46 #include <linux/seqlock.h>
47 #include <net/sock.h>
48 #include <uapi/linux/pidfd.h>
49 
50 struct pid init_struct_pid = {
51 	.count		= REFCOUNT_INIT(1),
52 	.tasks		= {
53 		{ .first = NULL },
54 		{ .first = NULL },
55 		{ .first = NULL },
56 	},
57 	.level		= 0,
58 	.numbers	= { {
59 		.nr		= 0,
60 		.ns		= &init_pid_ns,
61 	}, }
62 };
63 
64 int pid_max = PID_MAX_DEFAULT;
65 
66 int pid_max_min = RESERVED_PIDS + 1;
67 int pid_max_max = PID_MAX_LIMIT;
68 
69 /*
70  * PID-map pages start out as NULL, they get allocated upon
71  * first use and are never deallocated. This way a low pid_max
72  * value does not cause lots of bitmaps to be allocated, but
73  * the scheme scales to up to 4 million PIDs, runtime.
74  */
75 struct pid_namespace init_pid_ns = {
76 	.ns.count = REFCOUNT_INIT(2),
77 	.idr = IDR_INIT(init_pid_ns.idr),
78 	.pid_allocated = PIDNS_ADDING,
79 	.level = 0,
80 	.child_reaper = &init_task,
81 	.user_ns = &init_user_ns,
82 	.ns.inum = PROC_PID_INIT_INO,
83 #ifdef CONFIG_PID_NS
84 	.ns.ops = &pidns_operations,
85 #endif
86 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
87 	.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
88 #endif
89 };
90 EXPORT_SYMBOL_GPL(init_pid_ns);
91 
92 /*
93  * Note: disable interrupts while the pidmap_lock is held as an
94  * interrupt might come in and do read_lock(&tasklist_lock).
95  *
96  * If we don't disable interrupts there is a nasty deadlock between
97  * detach_pid()->free_pid() and another cpu that does
98  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
99  * read_lock(&tasklist_lock);
100  *
101  * After we clean up the tasklist_lock and know there are no
102  * irq handlers that take it we can leave the interrupts enabled.
103  * For now it is easier to be safe than to prove it can't happen.
104  */
105 
106 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
107 seqcount_spinlock_t pidmap_lock_seq = SEQCNT_SPINLOCK_ZERO(pidmap_lock_seq, &pidmap_lock);
108 
109 void put_pid(struct pid *pid)
110 {
111 	struct pid_namespace *ns;
112 
113 	if (!pid)
114 		return;
115 
116 	ns = pid->numbers[pid->level].ns;
117 	if (refcount_dec_and_test(&pid->count)) {
118 		kmem_cache_free(ns->pid_cachep, pid);
119 		put_pid_ns(ns);
120 	}
121 }
122 EXPORT_SYMBOL_GPL(put_pid);
123 
124 static void delayed_put_pid(struct rcu_head *rhp)
125 {
126 	struct pid *pid = container_of(rhp, struct pid, rcu);
127 	put_pid(pid);
128 }
129 
130 void free_pid(struct pid *pid)
131 {
132 	/* We can be called with write_lock_irq(&tasklist_lock) held */
133 	int i;
134 	unsigned long flags;
135 
136 	spin_lock_irqsave(&pidmap_lock, flags);
137 	for (i = 0; i <= pid->level; i++) {
138 		struct upid *upid = pid->numbers + i;
139 		struct pid_namespace *ns = upid->ns;
140 		switch (--ns->pid_allocated) {
141 		case 2:
142 		case 1:
143 			/* When all that is left in the pid namespace
144 			 * is the reaper wake up the reaper.  The reaper
145 			 * may be sleeping in zap_pid_ns_processes().
146 			 */
147 			wake_up_process(ns->child_reaper);
148 			break;
149 		case PIDNS_ADDING:
150 			/* Handle a fork failure of the first process */
151 			WARN_ON(ns->child_reaper);
152 			ns->pid_allocated = 0;
153 			break;
154 		}
155 
156 		idr_remove(&ns->idr, upid->nr);
157 	}
158 	pidfs_remove_pid(pid);
159 	spin_unlock_irqrestore(&pidmap_lock, flags);
160 
161 	call_rcu(&pid->rcu, delayed_put_pid);
162 }
163 
164 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
165 		      size_t set_tid_size)
166 {
167 	struct pid *pid;
168 	enum pid_type type;
169 	int i, nr;
170 	struct pid_namespace *tmp;
171 	struct upid *upid;
172 	int retval = -ENOMEM;
173 
174 	/*
175 	 * set_tid_size contains the size of the set_tid array. Starting at
176 	 * the most nested currently active PID namespace it tells alloc_pid()
177 	 * which PID to set for a process in that most nested PID namespace
178 	 * up to set_tid_size PID namespaces. It does not have to set the PID
179 	 * for a process in all nested PID namespaces but set_tid_size must
180 	 * never be greater than the current ns->level + 1.
181 	 */
182 	if (set_tid_size > ns->level + 1)
183 		return ERR_PTR(-EINVAL);
184 
185 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
186 	if (!pid)
187 		return ERR_PTR(retval);
188 
189 	tmp = ns;
190 	pid->level = ns->level;
191 
192 	for (i = ns->level; i >= 0; i--) {
193 		int tid = 0;
194 
195 		if (set_tid_size) {
196 			tid = set_tid[ns->level - i];
197 
198 			retval = -EINVAL;
199 			if (tid < 1 || tid >= pid_max)
200 				goto out_free;
201 			/*
202 			 * Also fail if a PID != 1 is requested and
203 			 * no PID 1 exists.
204 			 */
205 			if (tid != 1 && !tmp->child_reaper)
206 				goto out_free;
207 			retval = -EPERM;
208 			if (!checkpoint_restore_ns_capable(tmp->user_ns))
209 				goto out_free;
210 			set_tid_size--;
211 		}
212 
213 		idr_preload(GFP_KERNEL);
214 		spin_lock_irq(&pidmap_lock);
215 
216 		if (tid) {
217 			nr = idr_alloc(&tmp->idr, NULL, tid,
218 				       tid + 1, GFP_ATOMIC);
219 			/*
220 			 * If ENOSPC is returned it means that the PID is
221 			 * alreay in use. Return EEXIST in that case.
222 			 */
223 			if (nr == -ENOSPC)
224 				nr = -EEXIST;
225 		} else {
226 			int pid_min = 1;
227 			/*
228 			 * init really needs pid 1, but after reaching the
229 			 * maximum wrap back to RESERVED_PIDS
230 			 */
231 			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
232 				pid_min = RESERVED_PIDS;
233 
234 			/*
235 			 * Store a null pointer so find_pid_ns does not find
236 			 * a partially initialized PID (see below).
237 			 */
238 			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
239 					      pid_max, GFP_ATOMIC);
240 		}
241 		spin_unlock_irq(&pidmap_lock);
242 		idr_preload_end();
243 
244 		if (nr < 0) {
245 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
246 			goto out_free;
247 		}
248 
249 		pid->numbers[i].nr = nr;
250 		pid->numbers[i].ns = tmp;
251 		tmp = tmp->parent;
252 	}
253 
254 	/*
255 	 * ENOMEM is not the most obvious choice especially for the case
256 	 * where the child subreaper has already exited and the pid
257 	 * namespace denies the creation of any new processes. But ENOMEM
258 	 * is what we have exposed to userspace for a long time and it is
259 	 * documented behavior for pid namespaces. So we can't easily
260 	 * change it even if there were an error code better suited.
261 	 */
262 	retval = -ENOMEM;
263 
264 	get_pid_ns(ns);
265 	refcount_set(&pid->count, 1);
266 	spin_lock_init(&pid->lock);
267 	for (type = 0; type < PIDTYPE_MAX; ++type)
268 		INIT_HLIST_HEAD(&pid->tasks[type]);
269 
270 	init_waitqueue_head(&pid->wait_pidfd);
271 	INIT_HLIST_HEAD(&pid->inodes);
272 
273 	upid = pid->numbers + ns->level;
274 	idr_preload(GFP_KERNEL);
275 	spin_lock_irq(&pidmap_lock);
276 	if (!(ns->pid_allocated & PIDNS_ADDING))
277 		goto out_unlock;
278 	pidfs_add_pid(pid);
279 	for ( ; upid >= pid->numbers; --upid) {
280 		/* Make the PID visible to find_pid_ns. */
281 		idr_replace(&upid->ns->idr, pid, upid->nr);
282 		upid->ns->pid_allocated++;
283 	}
284 	spin_unlock_irq(&pidmap_lock);
285 	idr_preload_end();
286 
287 	return pid;
288 
289 out_unlock:
290 	spin_unlock_irq(&pidmap_lock);
291 	idr_preload_end();
292 	put_pid_ns(ns);
293 
294 out_free:
295 	spin_lock_irq(&pidmap_lock);
296 	while (++i <= ns->level) {
297 		upid = pid->numbers + i;
298 		idr_remove(&upid->ns->idr, upid->nr);
299 	}
300 
301 	/* On failure to allocate the first pid, reset the state */
302 	if (ns->pid_allocated == PIDNS_ADDING)
303 		idr_set_cursor(&ns->idr, 0);
304 
305 	spin_unlock_irq(&pidmap_lock);
306 
307 	kmem_cache_free(ns->pid_cachep, pid);
308 	return ERR_PTR(retval);
309 }
310 
311 void disable_pid_allocation(struct pid_namespace *ns)
312 {
313 	spin_lock_irq(&pidmap_lock);
314 	ns->pid_allocated &= ~PIDNS_ADDING;
315 	spin_unlock_irq(&pidmap_lock);
316 }
317 
318 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
319 {
320 	return idr_find(&ns->idr, nr);
321 }
322 EXPORT_SYMBOL_GPL(find_pid_ns);
323 
324 struct pid *find_vpid(int nr)
325 {
326 	return find_pid_ns(nr, task_active_pid_ns(current));
327 }
328 EXPORT_SYMBOL_GPL(find_vpid);
329 
330 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
331 {
332 	return (type == PIDTYPE_PID) ?
333 		&task->thread_pid :
334 		&task->signal->pids[type];
335 }
336 
337 /*
338  * attach_pid() must be called with the tasklist_lock write-held.
339  */
340 void attach_pid(struct task_struct *task, enum pid_type type)
341 {
342 	struct pid *pid = *task_pid_ptr(task, type);
343 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
344 }
345 
346 static void __change_pid(struct task_struct *task, enum pid_type type,
347 			struct pid *new)
348 {
349 	struct pid **pid_ptr = task_pid_ptr(task, type);
350 	struct pid *pid;
351 	int tmp;
352 
353 	pid = *pid_ptr;
354 
355 	hlist_del_rcu(&task->pid_links[type]);
356 	*pid_ptr = new;
357 
358 	if (type == PIDTYPE_PID) {
359 		WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID));
360 		wake_up_all(&pid->wait_pidfd);
361 	}
362 
363 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
364 		if (pid_has_task(pid, tmp))
365 			return;
366 
367 	free_pid(pid);
368 }
369 
370 void detach_pid(struct task_struct *task, enum pid_type type)
371 {
372 	__change_pid(task, type, NULL);
373 }
374 
375 void change_pid(struct task_struct *task, enum pid_type type,
376 		struct pid *pid)
377 {
378 	__change_pid(task, type, pid);
379 	attach_pid(task, type);
380 }
381 
382 void exchange_tids(struct task_struct *left, struct task_struct *right)
383 {
384 	struct pid *pid1 = left->thread_pid;
385 	struct pid *pid2 = right->thread_pid;
386 	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
387 	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
388 
389 	/* Swap the single entry tid lists */
390 	hlists_swap_heads_rcu(head1, head2);
391 
392 	/* Swap the per task_struct pid */
393 	rcu_assign_pointer(left->thread_pid, pid2);
394 	rcu_assign_pointer(right->thread_pid, pid1);
395 
396 	/* Swap the cached value */
397 	WRITE_ONCE(left->pid, pid_nr(pid2));
398 	WRITE_ONCE(right->pid, pid_nr(pid1));
399 }
400 
401 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
402 void transfer_pid(struct task_struct *old, struct task_struct *new,
403 			   enum pid_type type)
404 {
405 	WARN_ON_ONCE(type == PIDTYPE_PID);
406 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
407 }
408 
409 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
410 {
411 	struct task_struct *result = NULL;
412 	if (pid) {
413 		struct hlist_node *first;
414 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
415 					      lockdep_tasklist_lock_is_held());
416 		if (first)
417 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
418 	}
419 	return result;
420 }
421 EXPORT_SYMBOL(pid_task);
422 
423 /*
424  * Must be called under rcu_read_lock().
425  */
426 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
427 {
428 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
429 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
430 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
431 }
432 
433 struct task_struct *find_task_by_vpid(pid_t vnr)
434 {
435 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
436 }
437 
438 struct task_struct *find_get_task_by_vpid(pid_t nr)
439 {
440 	struct task_struct *task;
441 
442 	rcu_read_lock();
443 	task = find_task_by_vpid(nr);
444 	if (task)
445 		get_task_struct(task);
446 	rcu_read_unlock();
447 
448 	return task;
449 }
450 
451 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
452 {
453 	struct pid *pid;
454 	rcu_read_lock();
455 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
456 	rcu_read_unlock();
457 	return pid;
458 }
459 EXPORT_SYMBOL_GPL(get_task_pid);
460 
461 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
462 {
463 	struct task_struct *result;
464 	rcu_read_lock();
465 	result = pid_task(pid, type);
466 	if (result)
467 		get_task_struct(result);
468 	rcu_read_unlock();
469 	return result;
470 }
471 EXPORT_SYMBOL_GPL(get_pid_task);
472 
473 struct pid *find_get_pid(pid_t nr)
474 {
475 	struct pid *pid;
476 
477 	rcu_read_lock();
478 	pid = get_pid(find_vpid(nr));
479 	rcu_read_unlock();
480 
481 	return pid;
482 }
483 EXPORT_SYMBOL_GPL(find_get_pid);
484 
485 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
486 {
487 	struct upid *upid;
488 	pid_t nr = 0;
489 
490 	if (pid && ns->level <= pid->level) {
491 		upid = &pid->numbers[ns->level];
492 		if (upid->ns == ns)
493 			nr = upid->nr;
494 	}
495 	return nr;
496 }
497 EXPORT_SYMBOL_GPL(pid_nr_ns);
498 
499 pid_t pid_vnr(struct pid *pid)
500 {
501 	return pid_nr_ns(pid, task_active_pid_ns(current));
502 }
503 EXPORT_SYMBOL_GPL(pid_vnr);
504 
505 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
506 			struct pid_namespace *ns)
507 {
508 	pid_t nr = 0;
509 
510 	rcu_read_lock();
511 	if (!ns)
512 		ns = task_active_pid_ns(current);
513 	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
514 	rcu_read_unlock();
515 
516 	return nr;
517 }
518 EXPORT_SYMBOL(__task_pid_nr_ns);
519 
520 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
521 {
522 	return ns_of_pid(task_pid(tsk));
523 }
524 EXPORT_SYMBOL_GPL(task_active_pid_ns);
525 
526 /*
527  * Used by proc to find the first pid that is greater than or equal to nr.
528  *
529  * If there is a pid at nr this function is exactly the same as find_pid_ns.
530  */
531 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
532 {
533 	return idr_get_next(&ns->idr, &nr);
534 }
535 EXPORT_SYMBOL_GPL(find_ge_pid);
536 
537 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
538 {
539 	CLASS(fd, f)(fd);
540 	struct pid *pid;
541 
542 	if (fd_empty(f))
543 		return ERR_PTR(-EBADF);
544 
545 	pid = pidfd_pid(fd_file(f));
546 	if (!IS_ERR(pid)) {
547 		get_pid(pid);
548 		*flags = fd_file(f)->f_flags;
549 	}
550 	return pid;
551 }
552 
553 /**
554  * pidfd_get_task() - Get the task associated with a pidfd
555  *
556  * @pidfd: pidfd for which to get the task
557  * @flags: flags associated with this pidfd
558  *
559  * Return the task associated with @pidfd. The function takes a reference on
560  * the returned task. The caller is responsible for releasing that reference.
561  *
562  * Return: On success, the task_struct associated with the pidfd.
563  *	   On error, a negative errno number will be returned.
564  */
565 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
566 {
567 	unsigned int f_flags;
568 	struct pid *pid;
569 	struct task_struct *task;
570 
571 	pid = pidfd_get_pid(pidfd, &f_flags);
572 	if (IS_ERR(pid))
573 		return ERR_CAST(pid);
574 
575 	task = get_pid_task(pid, PIDTYPE_TGID);
576 	put_pid(pid);
577 	if (!task)
578 		return ERR_PTR(-ESRCH);
579 
580 	*flags = f_flags;
581 	return task;
582 }
583 
584 /**
585  * pidfd_create() - Create a new pid file descriptor.
586  *
587  * @pid:   struct pid that the pidfd will reference
588  * @flags: flags to pass
589  *
590  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
591  *
592  * Note, that this function can only be called after the fd table has
593  * been unshared to avoid leaking the pidfd to the new process.
594  *
595  * This symbol should not be explicitly exported to loadable modules.
596  *
597  * Return: On success, a cloexec pidfd is returned.
598  *         On error, a negative errno number will be returned.
599  */
600 static int pidfd_create(struct pid *pid, unsigned int flags)
601 {
602 	int pidfd;
603 	struct file *pidfd_file;
604 
605 	pidfd = pidfd_prepare(pid, flags, &pidfd_file);
606 	if (pidfd < 0)
607 		return pidfd;
608 
609 	fd_install(pidfd, pidfd_file);
610 	return pidfd;
611 }
612 
613 /**
614  * sys_pidfd_open() - Open new pid file descriptor.
615  *
616  * @pid:   pid for which to retrieve a pidfd
617  * @flags: flags to pass
618  *
619  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
620  * the task identified by @pid. Without PIDFD_THREAD flag the target task
621  * must be a thread-group leader.
622  *
623  * Return: On success, a cloexec pidfd is returned.
624  *         On error, a negative errno number will be returned.
625  */
626 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
627 {
628 	int fd;
629 	struct pid *p;
630 
631 	if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
632 		return -EINVAL;
633 
634 	if (pid <= 0)
635 		return -EINVAL;
636 
637 	p = find_get_pid(pid);
638 	if (!p)
639 		return -ESRCH;
640 
641 	fd = pidfd_create(p, flags);
642 
643 	put_pid(p);
644 	return fd;
645 }
646 
647 void __init pid_idr_init(void)
648 {
649 	/* Verify no one has done anything silly: */
650 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
651 
652 	/* bump default and minimum pid_max based on number of cpus */
653 	pid_max = min(pid_max_max, max_t(int, pid_max,
654 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
655 	pid_max_min = max_t(int, pid_max_min,
656 				PIDS_PER_CPU_MIN * num_possible_cpus());
657 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
658 
659 	idr_init(&init_pid_ns.idr);
660 
661 	init_pid_ns.pid_cachep = kmem_cache_create("pid",
662 			struct_size_t(struct pid, numbers, 1),
663 			__alignof__(struct pid),
664 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
665 			NULL);
666 }
667 
668 static struct file *__pidfd_fget(struct task_struct *task, int fd)
669 {
670 	struct file *file;
671 	int ret;
672 
673 	ret = down_read_killable(&task->signal->exec_update_lock);
674 	if (ret)
675 		return ERR_PTR(ret);
676 
677 	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
678 		file = fget_task(task, fd);
679 	else
680 		file = ERR_PTR(-EPERM);
681 
682 	up_read(&task->signal->exec_update_lock);
683 
684 	if (!file) {
685 		/*
686 		 * It is possible that the target thread is exiting; it can be
687 		 * either:
688 		 * 1. before exit_signals(), which gives a real fd
689 		 * 2. before exit_files() takes the task_lock() gives a real fd
690 		 * 3. after exit_files() releases task_lock(), ->files is NULL;
691 		 *    this has PF_EXITING, since it was set in exit_signals(),
692 		 *    __pidfd_fget() returns EBADF.
693 		 * In case 3 we get EBADF, but that really means ESRCH, since
694 		 * the task is currently exiting and has freed its files
695 		 * struct, so we fix it up.
696 		 */
697 		if (task->flags & PF_EXITING)
698 			file = ERR_PTR(-ESRCH);
699 		else
700 			file = ERR_PTR(-EBADF);
701 	}
702 
703 	return file;
704 }
705 
706 static int pidfd_getfd(struct pid *pid, int fd)
707 {
708 	struct task_struct *task;
709 	struct file *file;
710 	int ret;
711 
712 	task = get_pid_task(pid, PIDTYPE_PID);
713 	if (!task)
714 		return -ESRCH;
715 
716 	file = __pidfd_fget(task, fd);
717 	put_task_struct(task);
718 	if (IS_ERR(file))
719 		return PTR_ERR(file);
720 
721 	ret = receive_fd(file, NULL, O_CLOEXEC);
722 	fput(file);
723 
724 	return ret;
725 }
726 
727 /**
728  * sys_pidfd_getfd() - Get a file descriptor from another process
729  *
730  * @pidfd:	the pidfd file descriptor of the process
731  * @fd:		the file descriptor number to get
732  * @flags:	flags on how to get the fd (reserved)
733  *
734  * This syscall gets a copy of a file descriptor from another process
735  * based on the pidfd, and file descriptor number. It requires that
736  * the calling process has the ability to ptrace the process represented
737  * by the pidfd. The process which is having its file descriptor copied
738  * is otherwise unaffected.
739  *
740  * Return: On success, a cloexec file descriptor is returned.
741  *         On error, a negative errno number will be returned.
742  */
743 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
744 		unsigned int, flags)
745 {
746 	struct pid *pid;
747 
748 	/* flags is currently unused - make sure it's unset */
749 	if (flags)
750 		return -EINVAL;
751 
752 	CLASS(fd, f)(pidfd);
753 	if (fd_empty(f))
754 		return -EBADF;
755 
756 	pid = pidfd_pid(fd_file(f));
757 	if (IS_ERR(pid))
758 		return PTR_ERR(pid);
759 
760 	return pidfd_getfd(pid, fd);
761 }
762