xref: /linux-6.15/kernel/pid.c (revision 0c9bd6bc)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Generic pidhash and scalable, time-bounded PID allocator
4  *
5  * (C) 2002-2003 Nadia Yvette Chambers, IBM
6  * (C) 2004 Nadia Yvette Chambers, Oracle
7  * (C) 2002-2004 Ingo Molnar, Red Hat
8  *
9  * pid-structures are backing objects for tasks sharing a given ID to chain
10  * against. There is very little to them aside from hashing them and
11  * parking tasks using given ID's on a list.
12  *
13  * The hash is always changed with the tasklist_lock write-acquired,
14  * and the hash is only accessed with the tasklist_lock at least
15  * read-acquired, so there's no additional SMP locking needed here.
16  *
17  * We have a list of bitmap pages, which bitmaps represent the PID space.
18  * Allocating and freeing PIDs is completely lockless. The worst-case
19  * allocation scenario when all but one out of 1 million PIDs possible are
20  * allocated already: the scanning of 32 list entries and at most PAGE_SIZE
21  * bytes. The typical fastpath is a single successful setbit. Freeing is O(1).
22  *
23  * Pid namespaces:
24  *    (C) 2007 Pavel Emelyanov <[email protected]>, OpenVZ, SWsoft Inc.
25  *    (C) 2007 Sukadev Bhattiprolu <[email protected]>, IBM
26  *     Many thanks to Oleg Nesterov for comments and help
27  *
28  */
29 
30 #include <linux/mm.h>
31 #include <linux/export.h>
32 #include <linux/slab.h>
33 #include <linux/init.h>
34 #include <linux/rculist.h>
35 #include <linux/memblock.h>
36 #include <linux/pid_namespace.h>
37 #include <linux/init_task.h>
38 #include <linux/syscalls.h>
39 #include <linux/proc_ns.h>
40 #include <linux/refcount.h>
41 #include <linux/anon_inodes.h>
42 #include <linux/sched/signal.h>
43 #include <linux/sched/task.h>
44 #include <linux/idr.h>
45 #include <net/sock.h>
46 #include <uapi/linux/pidfd.h>
47 
48 struct pid init_struct_pid = {
49 	.count		= REFCOUNT_INIT(1),
50 	.tasks		= {
51 		{ .first = NULL },
52 		{ .first = NULL },
53 		{ .first = NULL },
54 	},
55 	.level		= 0,
56 	.numbers	= { {
57 		.nr		= 0,
58 		.ns		= &init_pid_ns,
59 	}, }
60 };
61 
62 int pid_max = PID_MAX_DEFAULT;
63 
64 #define RESERVED_PIDS		300
65 
66 int pid_max_min = RESERVED_PIDS + 1;
67 int pid_max_max = PID_MAX_LIMIT;
68 
69 /*
70  * PID-map pages start out as NULL, they get allocated upon
71  * first use and are never deallocated. This way a low pid_max
72  * value does not cause lots of bitmaps to be allocated, but
73  * the scheme scales to up to 4 million PIDs, runtime.
74  */
75 struct pid_namespace init_pid_ns = {
76 	.ns.count = REFCOUNT_INIT(2),
77 	.idr = IDR_INIT(init_pid_ns.idr),
78 	.pid_allocated = PIDNS_ADDING,
79 	.level = 0,
80 	.child_reaper = &init_task,
81 	.user_ns = &init_user_ns,
82 	.ns.inum = PROC_PID_INIT_INO,
83 #ifdef CONFIG_PID_NS
84 	.ns.ops = &pidns_operations,
85 #endif
86 #if defined(CONFIG_SYSCTL) && defined(CONFIG_MEMFD_CREATE)
87 	.memfd_noexec_scope = MEMFD_NOEXEC_SCOPE_EXEC,
88 #endif
89 };
90 EXPORT_SYMBOL_GPL(init_pid_ns);
91 
92 /*
93  * Note: disable interrupts while the pidmap_lock is held as an
94  * interrupt might come in and do read_lock(&tasklist_lock).
95  *
96  * If we don't disable interrupts there is a nasty deadlock between
97  * detach_pid()->free_pid() and another cpu that does
98  * spin_lock(&pidmap_lock) followed by an interrupt routine that does
99  * read_lock(&tasklist_lock);
100  *
101  * After we clean up the tasklist_lock and know there are no
102  * irq handlers that take it we can leave the interrupts enabled.
103  * For now it is easier to be safe than to prove it can't happen.
104  */
105 
106 static  __cacheline_aligned_in_smp DEFINE_SPINLOCK(pidmap_lock);
107 
108 void put_pid(struct pid *pid)
109 {
110 	struct pid_namespace *ns;
111 
112 	if (!pid)
113 		return;
114 
115 	ns = pid->numbers[pid->level].ns;
116 	if (refcount_dec_and_test(&pid->count)) {
117 		kmem_cache_free(ns->pid_cachep, pid);
118 		put_pid_ns(ns);
119 	}
120 }
121 EXPORT_SYMBOL_GPL(put_pid);
122 
123 static void delayed_put_pid(struct rcu_head *rhp)
124 {
125 	struct pid *pid = container_of(rhp, struct pid, rcu);
126 	put_pid(pid);
127 }
128 
129 void free_pid(struct pid *pid)
130 {
131 	/* We can be called with write_lock_irq(&tasklist_lock) held */
132 	int i;
133 	unsigned long flags;
134 
135 	spin_lock_irqsave(&pidmap_lock, flags);
136 	for (i = 0; i <= pid->level; i++) {
137 		struct upid *upid = pid->numbers + i;
138 		struct pid_namespace *ns = upid->ns;
139 		switch (--ns->pid_allocated) {
140 		case 2:
141 		case 1:
142 			/* When all that is left in the pid namespace
143 			 * is the reaper wake up the reaper.  The reaper
144 			 * may be sleeping in zap_pid_ns_processes().
145 			 */
146 			wake_up_process(ns->child_reaper);
147 			break;
148 		case PIDNS_ADDING:
149 			/* Handle a fork failure of the first process */
150 			WARN_ON(ns->child_reaper);
151 			ns->pid_allocated = 0;
152 			break;
153 		}
154 
155 		idr_remove(&ns->idr, upid->nr);
156 	}
157 	spin_unlock_irqrestore(&pidmap_lock, flags);
158 
159 	call_rcu(&pid->rcu, delayed_put_pid);
160 }
161 
162 struct pid *alloc_pid(struct pid_namespace *ns, pid_t *set_tid,
163 		      size_t set_tid_size)
164 {
165 	struct pid *pid;
166 	enum pid_type type;
167 	int i, nr;
168 	struct pid_namespace *tmp;
169 	struct upid *upid;
170 	int retval = -ENOMEM;
171 
172 	/*
173 	 * set_tid_size contains the size of the set_tid array. Starting at
174 	 * the most nested currently active PID namespace it tells alloc_pid()
175 	 * which PID to set for a process in that most nested PID namespace
176 	 * up to set_tid_size PID namespaces. It does not have to set the PID
177 	 * for a process in all nested PID namespaces but set_tid_size must
178 	 * never be greater than the current ns->level + 1.
179 	 */
180 	if (set_tid_size > ns->level + 1)
181 		return ERR_PTR(-EINVAL);
182 
183 	pid = kmem_cache_alloc(ns->pid_cachep, GFP_KERNEL);
184 	if (!pid)
185 		return ERR_PTR(retval);
186 
187 	tmp = ns;
188 	pid->level = ns->level;
189 
190 	for (i = ns->level; i >= 0; i--) {
191 		int tid = 0;
192 
193 		if (set_tid_size) {
194 			tid = set_tid[ns->level - i];
195 
196 			retval = -EINVAL;
197 			if (tid < 1 || tid >= pid_max)
198 				goto out_free;
199 			/*
200 			 * Also fail if a PID != 1 is requested and
201 			 * no PID 1 exists.
202 			 */
203 			if (tid != 1 && !tmp->child_reaper)
204 				goto out_free;
205 			retval = -EPERM;
206 			if (!checkpoint_restore_ns_capable(tmp->user_ns))
207 				goto out_free;
208 			set_tid_size--;
209 		}
210 
211 		idr_preload(GFP_KERNEL);
212 		spin_lock_irq(&pidmap_lock);
213 
214 		if (tid) {
215 			nr = idr_alloc(&tmp->idr, NULL, tid,
216 				       tid + 1, GFP_ATOMIC);
217 			/*
218 			 * If ENOSPC is returned it means that the PID is
219 			 * alreay in use. Return EEXIST in that case.
220 			 */
221 			if (nr == -ENOSPC)
222 				nr = -EEXIST;
223 		} else {
224 			int pid_min = 1;
225 			/*
226 			 * init really needs pid 1, but after reaching the
227 			 * maximum wrap back to RESERVED_PIDS
228 			 */
229 			if (idr_get_cursor(&tmp->idr) > RESERVED_PIDS)
230 				pid_min = RESERVED_PIDS;
231 
232 			/*
233 			 * Store a null pointer so find_pid_ns does not find
234 			 * a partially initialized PID (see below).
235 			 */
236 			nr = idr_alloc_cyclic(&tmp->idr, NULL, pid_min,
237 					      pid_max, GFP_ATOMIC);
238 		}
239 		spin_unlock_irq(&pidmap_lock);
240 		idr_preload_end();
241 
242 		if (nr < 0) {
243 			retval = (nr == -ENOSPC) ? -EAGAIN : nr;
244 			goto out_free;
245 		}
246 
247 		pid->numbers[i].nr = nr;
248 		pid->numbers[i].ns = tmp;
249 		tmp = tmp->parent;
250 	}
251 
252 	/*
253 	 * ENOMEM is not the most obvious choice especially for the case
254 	 * where the child subreaper has already exited and the pid
255 	 * namespace denies the creation of any new processes. But ENOMEM
256 	 * is what we have exposed to userspace for a long time and it is
257 	 * documented behavior for pid namespaces. So we can't easily
258 	 * change it even if there were an error code better suited.
259 	 */
260 	retval = -ENOMEM;
261 
262 	get_pid_ns(ns);
263 	refcount_set(&pid->count, 1);
264 	spin_lock_init(&pid->lock);
265 	for (type = 0; type < PIDTYPE_MAX; ++type)
266 		INIT_HLIST_HEAD(&pid->tasks[type]);
267 
268 	init_waitqueue_head(&pid->wait_pidfd);
269 	INIT_HLIST_HEAD(&pid->inodes);
270 
271 	upid = pid->numbers + ns->level;
272 	spin_lock_irq(&pidmap_lock);
273 	if (!(ns->pid_allocated & PIDNS_ADDING))
274 		goto out_unlock;
275 	for ( ; upid >= pid->numbers; --upid) {
276 		/* Make the PID visible to find_pid_ns. */
277 		idr_replace(&upid->ns->idr, pid, upid->nr);
278 		upid->ns->pid_allocated++;
279 	}
280 	spin_unlock_irq(&pidmap_lock);
281 
282 	return pid;
283 
284 out_unlock:
285 	spin_unlock_irq(&pidmap_lock);
286 	put_pid_ns(ns);
287 
288 out_free:
289 	spin_lock_irq(&pidmap_lock);
290 	while (++i <= ns->level) {
291 		upid = pid->numbers + i;
292 		idr_remove(&upid->ns->idr, upid->nr);
293 	}
294 
295 	/* On failure to allocate the first pid, reset the state */
296 	if (ns->pid_allocated == PIDNS_ADDING)
297 		idr_set_cursor(&ns->idr, 0);
298 
299 	spin_unlock_irq(&pidmap_lock);
300 
301 	kmem_cache_free(ns->pid_cachep, pid);
302 	return ERR_PTR(retval);
303 }
304 
305 void disable_pid_allocation(struct pid_namespace *ns)
306 {
307 	spin_lock_irq(&pidmap_lock);
308 	ns->pid_allocated &= ~PIDNS_ADDING;
309 	spin_unlock_irq(&pidmap_lock);
310 }
311 
312 struct pid *find_pid_ns(int nr, struct pid_namespace *ns)
313 {
314 	return idr_find(&ns->idr, nr);
315 }
316 EXPORT_SYMBOL_GPL(find_pid_ns);
317 
318 struct pid *find_vpid(int nr)
319 {
320 	return find_pid_ns(nr, task_active_pid_ns(current));
321 }
322 EXPORT_SYMBOL_GPL(find_vpid);
323 
324 static struct pid **task_pid_ptr(struct task_struct *task, enum pid_type type)
325 {
326 	return (type == PIDTYPE_PID) ?
327 		&task->thread_pid :
328 		&task->signal->pids[type];
329 }
330 
331 /*
332  * attach_pid() must be called with the tasklist_lock write-held.
333  */
334 void attach_pid(struct task_struct *task, enum pid_type type)
335 {
336 	struct pid *pid = *task_pid_ptr(task, type);
337 	hlist_add_head_rcu(&task->pid_links[type], &pid->tasks[type]);
338 }
339 
340 static void __change_pid(struct task_struct *task, enum pid_type type,
341 			struct pid *new)
342 {
343 	struct pid **pid_ptr = task_pid_ptr(task, type);
344 	struct pid *pid;
345 	int tmp;
346 
347 	pid = *pid_ptr;
348 
349 	hlist_del_rcu(&task->pid_links[type]);
350 	*pid_ptr = new;
351 
352 	if (type == PIDTYPE_PID) {
353 		WARN_ON_ONCE(pid_has_task(pid, PIDTYPE_PID));
354 		wake_up_all(&pid->wait_pidfd);
355 	}
356 
357 	for (tmp = PIDTYPE_MAX; --tmp >= 0; )
358 		if (pid_has_task(pid, tmp))
359 			return;
360 
361 	free_pid(pid);
362 }
363 
364 void detach_pid(struct task_struct *task, enum pid_type type)
365 {
366 	__change_pid(task, type, NULL);
367 }
368 
369 void change_pid(struct task_struct *task, enum pid_type type,
370 		struct pid *pid)
371 {
372 	__change_pid(task, type, pid);
373 	attach_pid(task, type);
374 }
375 
376 void exchange_tids(struct task_struct *left, struct task_struct *right)
377 {
378 	struct pid *pid1 = left->thread_pid;
379 	struct pid *pid2 = right->thread_pid;
380 	struct hlist_head *head1 = &pid1->tasks[PIDTYPE_PID];
381 	struct hlist_head *head2 = &pid2->tasks[PIDTYPE_PID];
382 
383 	/* Swap the single entry tid lists */
384 	hlists_swap_heads_rcu(head1, head2);
385 
386 	/* Swap the per task_struct pid */
387 	rcu_assign_pointer(left->thread_pid, pid2);
388 	rcu_assign_pointer(right->thread_pid, pid1);
389 
390 	/* Swap the cached value */
391 	WRITE_ONCE(left->pid, pid_nr(pid2));
392 	WRITE_ONCE(right->pid, pid_nr(pid1));
393 }
394 
395 /* transfer_pid is an optimization of attach_pid(new), detach_pid(old) */
396 void transfer_pid(struct task_struct *old, struct task_struct *new,
397 			   enum pid_type type)
398 {
399 	WARN_ON_ONCE(type == PIDTYPE_PID);
400 	hlist_replace_rcu(&old->pid_links[type], &new->pid_links[type]);
401 }
402 
403 struct task_struct *pid_task(struct pid *pid, enum pid_type type)
404 {
405 	struct task_struct *result = NULL;
406 	if (pid) {
407 		struct hlist_node *first;
408 		first = rcu_dereference_check(hlist_first_rcu(&pid->tasks[type]),
409 					      lockdep_tasklist_lock_is_held());
410 		if (first)
411 			result = hlist_entry(first, struct task_struct, pid_links[(type)]);
412 	}
413 	return result;
414 }
415 EXPORT_SYMBOL(pid_task);
416 
417 /*
418  * Must be called under rcu_read_lock().
419  */
420 struct task_struct *find_task_by_pid_ns(pid_t nr, struct pid_namespace *ns)
421 {
422 	RCU_LOCKDEP_WARN(!rcu_read_lock_held(),
423 			 "find_task_by_pid_ns() needs rcu_read_lock() protection");
424 	return pid_task(find_pid_ns(nr, ns), PIDTYPE_PID);
425 }
426 
427 struct task_struct *find_task_by_vpid(pid_t vnr)
428 {
429 	return find_task_by_pid_ns(vnr, task_active_pid_ns(current));
430 }
431 
432 struct task_struct *find_get_task_by_vpid(pid_t nr)
433 {
434 	struct task_struct *task;
435 
436 	rcu_read_lock();
437 	task = find_task_by_vpid(nr);
438 	if (task)
439 		get_task_struct(task);
440 	rcu_read_unlock();
441 
442 	return task;
443 }
444 
445 struct pid *get_task_pid(struct task_struct *task, enum pid_type type)
446 {
447 	struct pid *pid;
448 	rcu_read_lock();
449 	pid = get_pid(rcu_dereference(*task_pid_ptr(task, type)));
450 	rcu_read_unlock();
451 	return pid;
452 }
453 EXPORT_SYMBOL_GPL(get_task_pid);
454 
455 struct task_struct *get_pid_task(struct pid *pid, enum pid_type type)
456 {
457 	struct task_struct *result;
458 	rcu_read_lock();
459 	result = pid_task(pid, type);
460 	if (result)
461 		get_task_struct(result);
462 	rcu_read_unlock();
463 	return result;
464 }
465 EXPORT_SYMBOL_GPL(get_pid_task);
466 
467 struct pid *find_get_pid(pid_t nr)
468 {
469 	struct pid *pid;
470 
471 	rcu_read_lock();
472 	pid = get_pid(find_vpid(nr));
473 	rcu_read_unlock();
474 
475 	return pid;
476 }
477 EXPORT_SYMBOL_GPL(find_get_pid);
478 
479 pid_t pid_nr_ns(struct pid *pid, struct pid_namespace *ns)
480 {
481 	struct upid *upid;
482 	pid_t nr = 0;
483 
484 	if (pid && ns->level <= pid->level) {
485 		upid = &pid->numbers[ns->level];
486 		if (upid->ns == ns)
487 			nr = upid->nr;
488 	}
489 	return nr;
490 }
491 EXPORT_SYMBOL_GPL(pid_nr_ns);
492 
493 pid_t pid_vnr(struct pid *pid)
494 {
495 	return pid_nr_ns(pid, task_active_pid_ns(current));
496 }
497 EXPORT_SYMBOL_GPL(pid_vnr);
498 
499 pid_t __task_pid_nr_ns(struct task_struct *task, enum pid_type type,
500 			struct pid_namespace *ns)
501 {
502 	pid_t nr = 0;
503 
504 	rcu_read_lock();
505 	if (!ns)
506 		ns = task_active_pid_ns(current);
507 	nr = pid_nr_ns(rcu_dereference(*task_pid_ptr(task, type)), ns);
508 	rcu_read_unlock();
509 
510 	return nr;
511 }
512 EXPORT_SYMBOL(__task_pid_nr_ns);
513 
514 struct pid_namespace *task_active_pid_ns(struct task_struct *tsk)
515 {
516 	return ns_of_pid(task_pid(tsk));
517 }
518 EXPORT_SYMBOL_GPL(task_active_pid_ns);
519 
520 /*
521  * Used by proc to find the first pid that is greater than or equal to nr.
522  *
523  * If there is a pid at nr this function is exactly the same as find_pid_ns.
524  */
525 struct pid *find_ge_pid(int nr, struct pid_namespace *ns)
526 {
527 	return idr_get_next(&ns->idr, &nr);
528 }
529 EXPORT_SYMBOL_GPL(find_ge_pid);
530 
531 struct pid *pidfd_get_pid(unsigned int fd, unsigned int *flags)
532 {
533 	struct fd f;
534 	struct pid *pid;
535 
536 	f = fdget(fd);
537 	if (!f.file)
538 		return ERR_PTR(-EBADF);
539 
540 	pid = pidfd_pid(f.file);
541 	if (!IS_ERR(pid)) {
542 		get_pid(pid);
543 		*flags = f.file->f_flags;
544 	}
545 
546 	fdput(f);
547 	return pid;
548 }
549 
550 /**
551  * pidfd_get_task() - Get the task associated with a pidfd
552  *
553  * @pidfd: pidfd for which to get the task
554  * @flags: flags associated with this pidfd
555  *
556  * Return the task associated with @pidfd. The function takes a reference on
557  * the returned task. The caller is responsible for releasing that reference.
558  *
559  * Return: On success, the task_struct associated with the pidfd.
560  *	   On error, a negative errno number will be returned.
561  */
562 struct task_struct *pidfd_get_task(int pidfd, unsigned int *flags)
563 {
564 	unsigned int f_flags;
565 	struct pid *pid;
566 	struct task_struct *task;
567 
568 	pid = pidfd_get_pid(pidfd, &f_flags);
569 	if (IS_ERR(pid))
570 		return ERR_CAST(pid);
571 
572 	task = get_pid_task(pid, PIDTYPE_TGID);
573 	put_pid(pid);
574 	if (!task)
575 		return ERR_PTR(-ESRCH);
576 
577 	*flags = f_flags;
578 	return task;
579 }
580 
581 /**
582  * pidfd_create() - Create a new pid file descriptor.
583  *
584  * @pid:   struct pid that the pidfd will reference
585  * @flags: flags to pass
586  *
587  * This creates a new pid file descriptor with the O_CLOEXEC flag set.
588  *
589  * Note, that this function can only be called after the fd table has
590  * been unshared to avoid leaking the pidfd to the new process.
591  *
592  * This symbol should not be explicitly exported to loadable modules.
593  *
594  * Return: On success, a cloexec pidfd is returned.
595  *         On error, a negative errno number will be returned.
596  */
597 static int pidfd_create(struct pid *pid, unsigned int flags)
598 {
599 	int pidfd;
600 	struct file *pidfd_file;
601 
602 	pidfd = pidfd_prepare(pid, flags, &pidfd_file);
603 	if (pidfd < 0)
604 		return pidfd;
605 
606 	fd_install(pidfd, pidfd_file);
607 	return pidfd;
608 }
609 
610 /**
611  * sys_pidfd_open() - Open new pid file descriptor.
612  *
613  * @pid:   pid for which to retrieve a pidfd
614  * @flags: flags to pass
615  *
616  * This creates a new pid file descriptor with the O_CLOEXEC flag set for
617  * the task identified by @pid. Without PIDFD_THREAD flag the target task
618  * must be a thread-group leader.
619  *
620  * Return: On success, a cloexec pidfd is returned.
621  *         On error, a negative errno number will be returned.
622  */
623 SYSCALL_DEFINE2(pidfd_open, pid_t, pid, unsigned int, flags)
624 {
625 	int fd;
626 	struct pid *p;
627 
628 	if (flags & ~(PIDFD_NONBLOCK | PIDFD_THREAD))
629 		return -EINVAL;
630 
631 	if (pid <= 0)
632 		return -EINVAL;
633 
634 	p = find_get_pid(pid);
635 	if (!p)
636 		return -ESRCH;
637 
638 	fd = pidfd_create(p, flags);
639 
640 	put_pid(p);
641 	return fd;
642 }
643 
644 void __init pid_idr_init(void)
645 {
646 	/* Verify no one has done anything silly: */
647 	BUILD_BUG_ON(PID_MAX_LIMIT >= PIDNS_ADDING);
648 
649 	/* bump default and minimum pid_max based on number of cpus */
650 	pid_max = min(pid_max_max, max_t(int, pid_max,
651 				PIDS_PER_CPU_DEFAULT * num_possible_cpus()));
652 	pid_max_min = max_t(int, pid_max_min,
653 				PIDS_PER_CPU_MIN * num_possible_cpus());
654 	pr_info("pid_max: default: %u minimum: %u\n", pid_max, pid_max_min);
655 
656 	idr_init(&init_pid_ns.idr);
657 
658 	init_pid_ns.pid_cachep = kmem_cache_create("pid",
659 			struct_size_t(struct pid, numbers, 1),
660 			__alignof__(struct pid),
661 			SLAB_HWCACHE_ALIGN | SLAB_PANIC | SLAB_ACCOUNT,
662 			NULL);
663 }
664 
665 static struct file *__pidfd_fget(struct task_struct *task, int fd)
666 {
667 	struct file *file;
668 	int ret;
669 
670 	ret = down_read_killable(&task->signal->exec_update_lock);
671 	if (ret)
672 		return ERR_PTR(ret);
673 
674 	if (ptrace_may_access(task, PTRACE_MODE_ATTACH_REALCREDS))
675 		file = fget_task(task, fd);
676 	else
677 		file = ERR_PTR(-EPERM);
678 
679 	up_read(&task->signal->exec_update_lock);
680 
681 	if (!file) {
682 		/*
683 		 * It is possible that the target thread is exiting; it can be
684 		 * either:
685 		 * 1. before exit_signals(), which gives a real fd
686 		 * 2. before exit_files() takes the task_lock() gives a real fd
687 		 * 3. after exit_files() releases task_lock(), ->files is NULL;
688 		 *    this has PF_EXITING, since it was set in exit_signals(),
689 		 *    __pidfd_fget() returns EBADF.
690 		 * In case 3 we get EBADF, but that really means ESRCH, since
691 		 * the task is currently exiting and has freed its files
692 		 * struct, so we fix it up.
693 		 */
694 		if (task->flags & PF_EXITING)
695 			file = ERR_PTR(-ESRCH);
696 		else
697 			file = ERR_PTR(-EBADF);
698 	}
699 
700 	return file;
701 }
702 
703 static int pidfd_getfd(struct pid *pid, int fd)
704 {
705 	struct task_struct *task;
706 	struct file *file;
707 	int ret;
708 
709 	task = get_pid_task(pid, PIDTYPE_PID);
710 	if (!task)
711 		return -ESRCH;
712 
713 	file = __pidfd_fget(task, fd);
714 	put_task_struct(task);
715 	if (IS_ERR(file))
716 		return PTR_ERR(file);
717 
718 	ret = receive_fd(file, NULL, O_CLOEXEC);
719 	fput(file);
720 
721 	return ret;
722 }
723 
724 /**
725  * sys_pidfd_getfd() - Get a file descriptor from another process
726  *
727  * @pidfd:	the pidfd file descriptor of the process
728  * @fd:		the file descriptor number to get
729  * @flags:	flags on how to get the fd (reserved)
730  *
731  * This syscall gets a copy of a file descriptor from another process
732  * based on the pidfd, and file descriptor number. It requires that
733  * the calling process has the ability to ptrace the process represented
734  * by the pidfd. The process which is having its file descriptor copied
735  * is otherwise unaffected.
736  *
737  * Return: On success, a cloexec file descriptor is returned.
738  *         On error, a negative errno number will be returned.
739  */
740 SYSCALL_DEFINE3(pidfd_getfd, int, pidfd, int, fd,
741 		unsigned int, flags)
742 {
743 	struct pid *pid;
744 	struct fd f;
745 	int ret;
746 
747 	/* flags is currently unused - make sure it's unset */
748 	if (flags)
749 		return -EINVAL;
750 
751 	f = fdget(pidfd);
752 	if (!f.file)
753 		return -EBADF;
754 
755 	pid = pidfd_pid(f.file);
756 	if (IS_ERR(pid))
757 		ret = PTR_ERR(pid);
758 	else
759 		ret = pidfd_getfd(pid, fd);
760 
761 	fdput(f);
762 	return ret;
763 }
764