xref: /linux-6.15/kernel/panic.c (revision a115bc07)
1 /*
2  *  linux/kernel/panic.c
3  *
4  *  Copyright (C) 1991, 1992  Linus Torvalds
5  */
6 
7 /*
8  * This function is used through-out the kernel (including mm and fs)
9  * to indicate a major problem.
10  */
11 #include <linux/debug_locks.h>
12 #include <linux/interrupt.h>
13 #include <linux/kmsg_dump.h>
14 #include <linux/kallsyms.h>
15 #include <linux/notifier.h>
16 #include <linux/module.h>
17 #include <linux/random.h>
18 #include <linux/reboot.h>
19 #include <linux/delay.h>
20 #include <linux/kexec.h>
21 #include <linux/sched.h>
22 #include <linux/sysrq.h>
23 #include <linux/init.h>
24 #include <linux/nmi.h>
25 #include <linux/dmi.h>
26 
27 int panic_on_oops;
28 static unsigned long tainted_mask;
29 static int pause_on_oops;
30 static int pause_on_oops_flag;
31 static DEFINE_SPINLOCK(pause_on_oops_lock);
32 
33 int panic_timeout;
34 
35 ATOMIC_NOTIFIER_HEAD(panic_notifier_list);
36 
37 EXPORT_SYMBOL(panic_notifier_list);
38 
39 /* Returns how long it waited in ms */
40 long (*panic_blink)(long time);
41 EXPORT_SYMBOL(panic_blink);
42 
43 static void panic_blink_one_second(void)
44 {
45 	static long i = 0, end;
46 
47 	if (panic_blink) {
48 		end = i + MSEC_PER_SEC;
49 
50 		while (i < end) {
51 			i += panic_blink(i);
52 			mdelay(1);
53 			i++;
54 		}
55 	} else {
56 		/*
57 		 * When running under a hypervisor a small mdelay may get
58 		 * rounded up to the hypervisor timeslice. For example, with
59 		 * a 1ms in 10ms hypervisor timeslice we might inflate a
60 		 * mdelay(1) loop by 10x.
61 		 *
62 		 * If we have nothing to blink, spin on 1 second calls to
63 		 * mdelay to avoid this.
64 		 */
65 		mdelay(MSEC_PER_SEC);
66 	}
67 }
68 
69 /**
70  *	panic - halt the system
71  *	@fmt: The text string to print
72  *
73  *	Display a message, then perform cleanups.
74  *
75  *	This function never returns.
76  */
77 NORET_TYPE void panic(const char * fmt, ...)
78 {
79 	static char buf[1024];
80 	va_list args;
81 	long i;
82 
83 	/*
84 	 * It's possible to come here directly from a panic-assertion and
85 	 * not have preempt disabled. Some functions called from here want
86 	 * preempt to be disabled. No point enabling it later though...
87 	 */
88 	preempt_disable();
89 
90 	bust_spinlocks(1);
91 	va_start(args, fmt);
92 	vsnprintf(buf, sizeof(buf), fmt, args);
93 	va_end(args);
94 	printk(KERN_EMERG "Kernel panic - not syncing: %s\n",buf);
95 #ifdef CONFIG_DEBUG_BUGVERBOSE
96 	dump_stack();
97 #endif
98 
99 	/*
100 	 * If we have crashed and we have a crash kernel loaded let it handle
101 	 * everything else.
102 	 * Do we want to call this before we try to display a message?
103 	 */
104 	crash_kexec(NULL);
105 
106 	kmsg_dump(KMSG_DUMP_PANIC);
107 
108 	/*
109 	 * Note smp_send_stop is the usual smp shutdown function, which
110 	 * unfortunately means it may not be hardened to work in a panic
111 	 * situation.
112 	 */
113 	smp_send_stop();
114 
115 	atomic_notifier_call_chain(&panic_notifier_list, 0, buf);
116 
117 	bust_spinlocks(0);
118 
119 	if (panic_timeout > 0) {
120 		/*
121 		 * Delay timeout seconds before rebooting the machine.
122 		 * We can't use the "normal" timers since we just panicked.
123 		 */
124 		printk(KERN_EMERG "Rebooting in %d seconds..", panic_timeout);
125 
126 		for (i = 0; i < panic_timeout; i++) {
127 			touch_nmi_watchdog();
128 			panic_blink_one_second();
129 		}
130 		/*
131 		 * This will not be a clean reboot, with everything
132 		 * shutting down.  But if there is a chance of
133 		 * rebooting the system it will be rebooted.
134 		 */
135 		emergency_restart();
136 	}
137 #ifdef __sparc__
138 	{
139 		extern int stop_a_enabled;
140 		/* Make sure the user can actually press Stop-A (L1-A) */
141 		stop_a_enabled = 1;
142 		printk(KERN_EMERG "Press Stop-A (L1-A) to return to the boot prom\n");
143 	}
144 #endif
145 #if defined(CONFIG_S390)
146 	{
147 		unsigned long caller;
148 
149 		caller = (unsigned long)__builtin_return_address(0);
150 		disabled_wait(caller);
151 	}
152 #endif
153 	local_irq_enable();
154 	while (1) {
155 		touch_softlockup_watchdog();
156 		panic_blink_one_second();
157 	}
158 }
159 
160 EXPORT_SYMBOL(panic);
161 
162 
163 struct tnt {
164 	u8	bit;
165 	char	true;
166 	char	false;
167 };
168 
169 static const struct tnt tnts[] = {
170 	{ TAINT_PROPRIETARY_MODULE,	'P', 'G' },
171 	{ TAINT_FORCED_MODULE,		'F', ' ' },
172 	{ TAINT_UNSAFE_SMP,		'S', ' ' },
173 	{ TAINT_FORCED_RMMOD,		'R', ' ' },
174 	{ TAINT_MACHINE_CHECK,		'M', ' ' },
175 	{ TAINT_BAD_PAGE,		'B', ' ' },
176 	{ TAINT_USER,			'U', ' ' },
177 	{ TAINT_DIE,			'D', ' ' },
178 	{ TAINT_OVERRIDDEN_ACPI_TABLE,	'A', ' ' },
179 	{ TAINT_WARN,			'W', ' ' },
180 	{ TAINT_CRAP,			'C', ' ' },
181 };
182 
183 /**
184  *	print_tainted - return a string to represent the kernel taint state.
185  *
186  *  'P' - Proprietary module has been loaded.
187  *  'F' - Module has been forcibly loaded.
188  *  'S' - SMP with CPUs not designed for SMP.
189  *  'R' - User forced a module unload.
190  *  'M' - System experienced a machine check exception.
191  *  'B' - System has hit bad_page.
192  *  'U' - Userspace-defined naughtiness.
193  *  'D' - Kernel has oopsed before
194  *  'A' - ACPI table overridden.
195  *  'W' - Taint on warning.
196  *  'C' - modules from drivers/staging are loaded.
197  *
198  *	The string is overwritten by the next call to print_tainted().
199  */
200 const char *print_tainted(void)
201 {
202 	static char buf[ARRAY_SIZE(tnts) + sizeof("Tainted: ") + 1];
203 
204 	if (tainted_mask) {
205 		char *s;
206 		int i;
207 
208 		s = buf + sprintf(buf, "Tainted: ");
209 		for (i = 0; i < ARRAY_SIZE(tnts); i++) {
210 			const struct tnt *t = &tnts[i];
211 			*s++ = test_bit(t->bit, &tainted_mask) ?
212 					t->true : t->false;
213 		}
214 		*s = 0;
215 	} else
216 		snprintf(buf, sizeof(buf), "Not tainted");
217 
218 	return buf;
219 }
220 
221 int test_taint(unsigned flag)
222 {
223 	return test_bit(flag, &tainted_mask);
224 }
225 EXPORT_SYMBOL(test_taint);
226 
227 unsigned long get_taint(void)
228 {
229 	return tainted_mask;
230 }
231 
232 void add_taint(unsigned flag)
233 {
234 	/*
235 	 * Can't trust the integrity of the kernel anymore.
236 	 * We don't call directly debug_locks_off() because the issue
237 	 * is not necessarily serious enough to set oops_in_progress to 1
238 	 * Also we want to keep up lockdep for staging development and
239 	 * post-warning case.
240 	 */
241 	if (flag != TAINT_CRAP && flag != TAINT_WARN && __debug_locks_off())
242 		printk(KERN_WARNING "Disabling lock debugging due to kernel taint\n");
243 
244 	set_bit(flag, &tainted_mask);
245 }
246 EXPORT_SYMBOL(add_taint);
247 
248 static void spin_msec(int msecs)
249 {
250 	int i;
251 
252 	for (i = 0; i < msecs; i++) {
253 		touch_nmi_watchdog();
254 		mdelay(1);
255 	}
256 }
257 
258 /*
259  * It just happens that oops_enter() and oops_exit() are identically
260  * implemented...
261  */
262 static void do_oops_enter_exit(void)
263 {
264 	unsigned long flags;
265 	static int spin_counter;
266 
267 	if (!pause_on_oops)
268 		return;
269 
270 	spin_lock_irqsave(&pause_on_oops_lock, flags);
271 	if (pause_on_oops_flag == 0) {
272 		/* This CPU may now print the oops message */
273 		pause_on_oops_flag = 1;
274 	} else {
275 		/* We need to stall this CPU */
276 		if (!spin_counter) {
277 			/* This CPU gets to do the counting */
278 			spin_counter = pause_on_oops;
279 			do {
280 				spin_unlock(&pause_on_oops_lock);
281 				spin_msec(MSEC_PER_SEC);
282 				spin_lock(&pause_on_oops_lock);
283 			} while (--spin_counter);
284 			pause_on_oops_flag = 0;
285 		} else {
286 			/* This CPU waits for a different one */
287 			while (spin_counter) {
288 				spin_unlock(&pause_on_oops_lock);
289 				spin_msec(1);
290 				spin_lock(&pause_on_oops_lock);
291 			}
292 		}
293 	}
294 	spin_unlock_irqrestore(&pause_on_oops_lock, flags);
295 }
296 
297 /*
298  * Return true if the calling CPU is allowed to print oops-related info.
299  * This is a bit racy..
300  */
301 int oops_may_print(void)
302 {
303 	return pause_on_oops_flag == 0;
304 }
305 
306 /*
307  * Called when the architecture enters its oops handler, before it prints
308  * anything.  If this is the first CPU to oops, and it's oopsing the first
309  * time then let it proceed.
310  *
311  * This is all enabled by the pause_on_oops kernel boot option.  We do all
312  * this to ensure that oopses don't scroll off the screen.  It has the
313  * side-effect of preventing later-oopsing CPUs from mucking up the display,
314  * too.
315  *
316  * It turns out that the CPU which is allowed to print ends up pausing for
317  * the right duration, whereas all the other CPUs pause for twice as long:
318  * once in oops_enter(), once in oops_exit().
319  */
320 void oops_enter(void)
321 {
322 	tracing_off();
323 	/* can't trust the integrity of the kernel anymore: */
324 	debug_locks_off();
325 	do_oops_enter_exit();
326 }
327 
328 /*
329  * 64-bit random ID for oopses:
330  */
331 static u64 oops_id;
332 
333 static int init_oops_id(void)
334 {
335 	if (!oops_id)
336 		get_random_bytes(&oops_id, sizeof(oops_id));
337 	else
338 		oops_id++;
339 
340 	return 0;
341 }
342 late_initcall(init_oops_id);
343 
344 static void print_oops_end_marker(void)
345 {
346 	init_oops_id();
347 	printk(KERN_WARNING "---[ end trace %016llx ]---\n",
348 		(unsigned long long)oops_id);
349 }
350 
351 /*
352  * Called when the architecture exits its oops handler, after printing
353  * everything.
354  */
355 void oops_exit(void)
356 {
357 	do_oops_enter_exit();
358 	print_oops_end_marker();
359 	kmsg_dump(KMSG_DUMP_OOPS);
360 }
361 
362 #ifdef WANT_WARN_ON_SLOWPATH
363 struct slowpath_args {
364 	const char *fmt;
365 	va_list args;
366 };
367 
368 static void warn_slowpath_common(const char *file, int line, void *caller, struct slowpath_args *args)
369 {
370 	const char *board;
371 
372 	printk(KERN_WARNING "------------[ cut here ]------------\n");
373 	printk(KERN_WARNING "WARNING: at %s:%d %pS()\n", file, line, caller);
374 	board = dmi_get_system_info(DMI_PRODUCT_NAME);
375 	if (board)
376 		printk(KERN_WARNING "Hardware name: %s\n", board);
377 
378 	if (args)
379 		vprintk(args->fmt, args->args);
380 
381 	print_modules();
382 	dump_stack();
383 	print_oops_end_marker();
384 	add_taint(TAINT_WARN);
385 }
386 
387 void warn_slowpath_fmt(const char *file, int line, const char *fmt, ...)
388 {
389 	struct slowpath_args args;
390 
391 	args.fmt = fmt;
392 	va_start(args.args, fmt);
393 	warn_slowpath_common(file, line, __builtin_return_address(0), &args);
394 	va_end(args.args);
395 }
396 EXPORT_SYMBOL(warn_slowpath_fmt);
397 
398 void warn_slowpath_null(const char *file, int line)
399 {
400 	warn_slowpath_common(file, line, __builtin_return_address(0), NULL);
401 }
402 EXPORT_SYMBOL(warn_slowpath_null);
403 #endif
404 
405 #ifdef CONFIG_CC_STACKPROTECTOR
406 
407 /*
408  * Called when gcc's -fstack-protector feature is used, and
409  * gcc detects corruption of the on-stack canary value
410  */
411 void __stack_chk_fail(void)
412 {
413 	panic("stack-protector: Kernel stack is corrupted in: %p\n",
414 		__builtin_return_address(0));
415 }
416 EXPORT_SYMBOL(__stack_chk_fail);
417 
418 #endif
419 
420 core_param(panic, panic_timeout, int, 0644);
421 core_param(pause_on_oops, pause_on_oops, int, 0644);
422