1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/panic.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * This function is used through-out the kernel (including mm and fs) 10 * to indicate a major problem. 11 */ 12 #include <linux/debug_locks.h> 13 #include <linux/sched/debug.h> 14 #include <linux/interrupt.h> 15 #include <linux/kgdb.h> 16 #include <linux/kmsg_dump.h> 17 #include <linux/kallsyms.h> 18 #include <linux/notifier.h> 19 #include <linux/vt_kern.h> 20 #include <linux/module.h> 21 #include <linux/random.h> 22 #include <linux/ftrace.h> 23 #include <linux/reboot.h> 24 #include <linux/delay.h> 25 #include <linux/kexec.h> 26 #include <linux/sched.h> 27 #include <linux/sysrq.h> 28 #include <linux/init.h> 29 #include <linux/nmi.h> 30 #include <linux/console.h> 31 #include <linux/bug.h> 32 #include <linux/ratelimit.h> 33 #include <linux/debugfs.h> 34 #include <asm/sections.h> 35 36 #define PANIC_TIMER_STEP 100 37 #define PANIC_BLINK_SPD 18 38 39 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 40 static unsigned long tainted_mask = 41 IS_ENABLED(CONFIG_GCC_PLUGIN_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0; 42 static int pause_on_oops; 43 static int pause_on_oops_flag; 44 static DEFINE_SPINLOCK(pause_on_oops_lock); 45 bool crash_kexec_post_notifiers; 46 int panic_on_warn __read_mostly; 47 unsigned long panic_on_taint; 48 bool panic_on_taint_nousertaint = false; 49 50 int panic_timeout = CONFIG_PANIC_TIMEOUT; 51 EXPORT_SYMBOL_GPL(panic_timeout); 52 53 #define PANIC_PRINT_TASK_INFO 0x00000001 54 #define PANIC_PRINT_MEM_INFO 0x00000002 55 #define PANIC_PRINT_TIMER_INFO 0x00000004 56 #define PANIC_PRINT_LOCK_INFO 0x00000008 57 #define PANIC_PRINT_FTRACE_INFO 0x00000010 58 #define PANIC_PRINT_ALL_PRINTK_MSG 0x00000020 59 unsigned long panic_print; 60 61 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 62 63 EXPORT_SYMBOL(panic_notifier_list); 64 65 static long no_blink(int state) 66 { 67 return 0; 68 } 69 70 /* Returns how long it waited in ms */ 71 long (*panic_blink)(int state); 72 EXPORT_SYMBOL(panic_blink); 73 74 /* 75 * Stop ourself in panic -- architecture code may override this 76 */ 77 void __weak panic_smp_self_stop(void) 78 { 79 while (1) 80 cpu_relax(); 81 } 82 83 /* 84 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 85 * may override this to prepare for crash dumping, e.g. save regs info. 86 */ 87 void __weak nmi_panic_self_stop(struct pt_regs *regs) 88 { 89 panic_smp_self_stop(); 90 } 91 92 /* 93 * Stop other CPUs in panic. Architecture dependent code may override this 94 * with more suitable version. For example, if the architecture supports 95 * crash dump, it should save registers of each stopped CPU and disable 96 * per-CPU features such as virtualization extensions. 97 */ 98 void __weak crash_smp_send_stop(void) 99 { 100 static int cpus_stopped; 101 102 /* 103 * This function can be called twice in panic path, but obviously 104 * we execute this only once. 105 */ 106 if (cpus_stopped) 107 return; 108 109 /* 110 * Note smp_send_stop is the usual smp shutdown function, which 111 * unfortunately means it may not be hardened to work in a panic 112 * situation. 113 */ 114 smp_send_stop(); 115 cpus_stopped = 1; 116 } 117 118 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 119 120 /* 121 * A variant of panic() called from NMI context. We return if we've already 122 * panicked on this CPU. If another CPU already panicked, loop in 123 * nmi_panic_self_stop() which can provide architecture dependent code such 124 * as saving register state for crash dump. 125 */ 126 void nmi_panic(struct pt_regs *regs, const char *msg) 127 { 128 int old_cpu, cpu; 129 130 cpu = raw_smp_processor_id(); 131 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu); 132 133 if (old_cpu == PANIC_CPU_INVALID) 134 panic("%s", msg); 135 else if (old_cpu != cpu) 136 nmi_panic_self_stop(regs); 137 } 138 EXPORT_SYMBOL(nmi_panic); 139 140 static void panic_print_sys_info(void) 141 { 142 if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG) 143 console_flush_on_panic(CONSOLE_REPLAY_ALL); 144 145 if (panic_print & PANIC_PRINT_TASK_INFO) 146 show_state(); 147 148 if (panic_print & PANIC_PRINT_MEM_INFO) 149 show_mem(0, NULL); 150 151 if (panic_print & PANIC_PRINT_TIMER_INFO) 152 sysrq_timer_list_show(); 153 154 if (panic_print & PANIC_PRINT_LOCK_INFO) 155 debug_show_all_locks(); 156 157 if (panic_print & PANIC_PRINT_FTRACE_INFO) 158 ftrace_dump(DUMP_ALL); 159 } 160 161 /** 162 * panic - halt the system 163 * @fmt: The text string to print 164 * 165 * Display a message, then perform cleanups. 166 * 167 * This function never returns. 168 */ 169 void panic(const char *fmt, ...) 170 { 171 static char buf[1024]; 172 va_list args; 173 long i, i_next = 0, len; 174 int state = 0; 175 int old_cpu, this_cpu; 176 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; 177 178 /* 179 * Disable local interrupts. This will prevent panic_smp_self_stop 180 * from deadlocking the first cpu that invokes the panic, since 181 * there is nothing to prevent an interrupt handler (that runs 182 * after setting panic_cpu) from invoking panic() again. 183 */ 184 local_irq_disable(); 185 preempt_disable_notrace(); 186 187 /* 188 * It's possible to come here directly from a panic-assertion and 189 * not have preempt disabled. Some functions called from here want 190 * preempt to be disabled. No point enabling it later though... 191 * 192 * Only one CPU is allowed to execute the panic code from here. For 193 * multiple parallel invocations of panic, all other CPUs either 194 * stop themself or will wait until they are stopped by the 1st CPU 195 * with smp_send_stop(). 196 * 197 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which 198 * comes here, so go ahead. 199 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 200 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 201 */ 202 this_cpu = raw_smp_processor_id(); 203 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 204 205 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) 206 panic_smp_self_stop(); 207 208 console_verbose(); 209 bust_spinlocks(1); 210 va_start(args, fmt); 211 len = vscnprintf(buf, sizeof(buf), fmt, args); 212 va_end(args); 213 214 if (len && buf[len - 1] == '\n') 215 buf[len - 1] = '\0'; 216 217 pr_emerg("Kernel panic - not syncing: %s\n", buf); 218 #ifdef CONFIG_DEBUG_BUGVERBOSE 219 /* 220 * Avoid nested stack-dumping if a panic occurs during oops processing 221 */ 222 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 223 dump_stack(); 224 #endif 225 226 /* 227 * If kgdb is enabled, give it a chance to run before we stop all 228 * the other CPUs or else we won't be able to debug processes left 229 * running on them. 230 */ 231 kgdb_panic(buf); 232 233 /* 234 * If we have crashed and we have a crash kernel loaded let it handle 235 * everything else. 236 * If we want to run this after calling panic_notifiers, pass 237 * the "crash_kexec_post_notifiers" option to the kernel. 238 * 239 * Bypass the panic_cpu check and call __crash_kexec directly. 240 */ 241 if (!_crash_kexec_post_notifiers) { 242 printk_safe_flush_on_panic(); 243 __crash_kexec(NULL); 244 245 /* 246 * Note smp_send_stop is the usual smp shutdown function, which 247 * unfortunately means it may not be hardened to work in a 248 * panic situation. 249 */ 250 smp_send_stop(); 251 } else { 252 /* 253 * If we want to do crash dump after notifier calls and 254 * kmsg_dump, we will need architecture dependent extra 255 * works in addition to stopping other CPUs. 256 */ 257 crash_smp_send_stop(); 258 } 259 260 /* 261 * Run any panic handlers, including those that might need to 262 * add information to the kmsg dump output. 263 */ 264 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 265 266 /* Call flush even twice. It tries harder with a single online CPU */ 267 printk_safe_flush_on_panic(); 268 kmsg_dump(KMSG_DUMP_PANIC); 269 270 /* 271 * If you doubt kdump always works fine in any situation, 272 * "crash_kexec_post_notifiers" offers you a chance to run 273 * panic_notifiers and dumping kmsg before kdump. 274 * Note: since some panic_notifiers can make crashed kernel 275 * more unstable, it can increase risks of the kdump failure too. 276 * 277 * Bypass the panic_cpu check and call __crash_kexec directly. 278 */ 279 if (_crash_kexec_post_notifiers) 280 __crash_kexec(NULL); 281 282 #ifdef CONFIG_VT 283 unblank_screen(); 284 #endif 285 console_unblank(); 286 287 /* 288 * We may have ended up stopping the CPU holding the lock (in 289 * smp_send_stop()) while still having some valuable data in the console 290 * buffer. Try to acquire the lock then release it regardless of the 291 * result. The release will also print the buffers out. Locks debug 292 * should be disabled to avoid reporting bad unlock balance when 293 * panic() is not being callled from OOPS. 294 */ 295 debug_locks_off(); 296 console_flush_on_panic(CONSOLE_FLUSH_PENDING); 297 298 panic_print_sys_info(); 299 300 if (!panic_blink) 301 panic_blink = no_blink; 302 303 if (panic_timeout > 0) { 304 /* 305 * Delay timeout seconds before rebooting the machine. 306 * We can't use the "normal" timers since we just panicked. 307 */ 308 pr_emerg("Rebooting in %d seconds..\n", panic_timeout); 309 310 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 311 touch_nmi_watchdog(); 312 if (i >= i_next) { 313 i += panic_blink(state ^= 1); 314 i_next = i + 3600 / PANIC_BLINK_SPD; 315 } 316 mdelay(PANIC_TIMER_STEP); 317 } 318 } 319 if (panic_timeout != 0) { 320 /* 321 * This will not be a clean reboot, with everything 322 * shutting down. But if there is a chance of 323 * rebooting the system it will be rebooted. 324 */ 325 if (panic_reboot_mode != REBOOT_UNDEFINED) 326 reboot_mode = panic_reboot_mode; 327 emergency_restart(); 328 } 329 #ifdef __sparc__ 330 { 331 extern int stop_a_enabled; 332 /* Make sure the user can actually press Stop-A (L1-A) */ 333 stop_a_enabled = 1; 334 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" 335 "twice on console to return to the boot prom\n"); 336 } 337 #endif 338 #if defined(CONFIG_S390) 339 disabled_wait(); 340 #endif 341 pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf); 342 343 /* Do not scroll important messages printed above */ 344 suppress_printk = 1; 345 local_irq_enable(); 346 for (i = 0; ; i += PANIC_TIMER_STEP) { 347 touch_softlockup_watchdog(); 348 if (i >= i_next) { 349 i += panic_blink(state ^= 1); 350 i_next = i + 3600 / PANIC_BLINK_SPD; 351 } 352 mdelay(PANIC_TIMER_STEP); 353 } 354 } 355 356 EXPORT_SYMBOL(panic); 357 358 /* 359 * TAINT_FORCED_RMMOD could be a per-module flag but the module 360 * is being removed anyway. 361 */ 362 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { 363 [ TAINT_PROPRIETARY_MODULE ] = { 'P', 'G', true }, 364 [ TAINT_FORCED_MODULE ] = { 'F', ' ', true }, 365 [ TAINT_CPU_OUT_OF_SPEC ] = { 'S', ' ', false }, 366 [ TAINT_FORCED_RMMOD ] = { 'R', ' ', false }, 367 [ TAINT_MACHINE_CHECK ] = { 'M', ' ', false }, 368 [ TAINT_BAD_PAGE ] = { 'B', ' ', false }, 369 [ TAINT_USER ] = { 'U', ' ', false }, 370 [ TAINT_DIE ] = { 'D', ' ', false }, 371 [ TAINT_OVERRIDDEN_ACPI_TABLE ] = { 'A', ' ', false }, 372 [ TAINT_WARN ] = { 'W', ' ', false }, 373 [ TAINT_CRAP ] = { 'C', ' ', true }, 374 [ TAINT_FIRMWARE_WORKAROUND ] = { 'I', ' ', false }, 375 [ TAINT_OOT_MODULE ] = { 'O', ' ', true }, 376 [ TAINT_UNSIGNED_MODULE ] = { 'E', ' ', true }, 377 [ TAINT_SOFTLOCKUP ] = { 'L', ' ', false }, 378 [ TAINT_LIVEPATCH ] = { 'K', ' ', true }, 379 [ TAINT_AUX ] = { 'X', ' ', true }, 380 [ TAINT_RANDSTRUCT ] = { 'T', ' ', true }, 381 }; 382 383 /** 384 * print_tainted - return a string to represent the kernel taint state. 385 * 386 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst 387 * 388 * The string is overwritten by the next call to print_tainted(), 389 * but is always NULL terminated. 390 */ 391 const char *print_tainted(void) 392 { 393 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; 394 395 BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT); 396 397 if (tainted_mask) { 398 char *s; 399 int i; 400 401 s = buf + sprintf(buf, "Tainted: "); 402 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 403 const struct taint_flag *t = &taint_flags[i]; 404 *s++ = test_bit(i, &tainted_mask) ? 405 t->c_true : t->c_false; 406 } 407 *s = 0; 408 } else 409 snprintf(buf, sizeof(buf), "Not tainted"); 410 411 return buf; 412 } 413 414 int test_taint(unsigned flag) 415 { 416 return test_bit(flag, &tainted_mask); 417 } 418 EXPORT_SYMBOL(test_taint); 419 420 unsigned long get_taint(void) 421 { 422 return tainted_mask; 423 } 424 425 /** 426 * add_taint: add a taint flag if not already set. 427 * @flag: one of the TAINT_* constants. 428 * @lockdep_ok: whether lock debugging is still OK. 429 * 430 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 431 * some notewortht-but-not-corrupting cases, it can be set to true. 432 */ 433 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 434 { 435 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 436 pr_warn("Disabling lock debugging due to kernel taint\n"); 437 438 set_bit(flag, &tainted_mask); 439 440 if (tainted_mask & panic_on_taint) { 441 panic_on_taint = 0; 442 panic("panic_on_taint set ..."); 443 } 444 } 445 EXPORT_SYMBOL(add_taint); 446 447 static void spin_msec(int msecs) 448 { 449 int i; 450 451 for (i = 0; i < msecs; i++) { 452 touch_nmi_watchdog(); 453 mdelay(1); 454 } 455 } 456 457 /* 458 * It just happens that oops_enter() and oops_exit() are identically 459 * implemented... 460 */ 461 static void do_oops_enter_exit(void) 462 { 463 unsigned long flags; 464 static int spin_counter; 465 466 if (!pause_on_oops) 467 return; 468 469 spin_lock_irqsave(&pause_on_oops_lock, flags); 470 if (pause_on_oops_flag == 0) { 471 /* This CPU may now print the oops message */ 472 pause_on_oops_flag = 1; 473 } else { 474 /* We need to stall this CPU */ 475 if (!spin_counter) { 476 /* This CPU gets to do the counting */ 477 spin_counter = pause_on_oops; 478 do { 479 spin_unlock(&pause_on_oops_lock); 480 spin_msec(MSEC_PER_SEC); 481 spin_lock(&pause_on_oops_lock); 482 } while (--spin_counter); 483 pause_on_oops_flag = 0; 484 } else { 485 /* This CPU waits for a different one */ 486 while (spin_counter) { 487 spin_unlock(&pause_on_oops_lock); 488 spin_msec(1); 489 spin_lock(&pause_on_oops_lock); 490 } 491 } 492 } 493 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 494 } 495 496 /* 497 * Return true if the calling CPU is allowed to print oops-related info. 498 * This is a bit racy.. 499 */ 500 int oops_may_print(void) 501 { 502 return pause_on_oops_flag == 0; 503 } 504 505 /* 506 * Called when the architecture enters its oops handler, before it prints 507 * anything. If this is the first CPU to oops, and it's oopsing the first 508 * time then let it proceed. 509 * 510 * This is all enabled by the pause_on_oops kernel boot option. We do all 511 * this to ensure that oopses don't scroll off the screen. It has the 512 * side-effect of preventing later-oopsing CPUs from mucking up the display, 513 * too. 514 * 515 * It turns out that the CPU which is allowed to print ends up pausing for 516 * the right duration, whereas all the other CPUs pause for twice as long: 517 * once in oops_enter(), once in oops_exit(). 518 */ 519 void oops_enter(void) 520 { 521 tracing_off(); 522 /* can't trust the integrity of the kernel anymore: */ 523 debug_locks_off(); 524 do_oops_enter_exit(); 525 } 526 527 /* 528 * 64-bit random ID for oopses: 529 */ 530 static u64 oops_id; 531 532 static int init_oops_id(void) 533 { 534 if (!oops_id) 535 get_random_bytes(&oops_id, sizeof(oops_id)); 536 else 537 oops_id++; 538 539 return 0; 540 } 541 late_initcall(init_oops_id); 542 543 void print_oops_end_marker(void) 544 { 545 init_oops_id(); 546 pr_warn("---[ end trace %016llx ]---\n", (unsigned long long)oops_id); 547 } 548 549 /* 550 * Called when the architecture exits its oops handler, after printing 551 * everything. 552 */ 553 void oops_exit(void) 554 { 555 do_oops_enter_exit(); 556 print_oops_end_marker(); 557 kmsg_dump(KMSG_DUMP_OOPS); 558 } 559 560 struct warn_args { 561 const char *fmt; 562 va_list args; 563 }; 564 565 void __warn(const char *file, int line, void *caller, unsigned taint, 566 struct pt_regs *regs, struct warn_args *args) 567 { 568 disable_trace_on_warning(); 569 570 if (file) 571 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", 572 raw_smp_processor_id(), current->pid, file, line, 573 caller); 574 else 575 pr_warn("WARNING: CPU: %d PID: %d at %pS\n", 576 raw_smp_processor_id(), current->pid, caller); 577 578 if (args) 579 vprintk(args->fmt, args->args); 580 581 if (panic_on_warn) { 582 /* 583 * This thread may hit another WARN() in the panic path. 584 * Resetting this prevents additional WARN() from panicking the 585 * system on this thread. Other threads are blocked by the 586 * panic_mutex in panic(). 587 */ 588 panic_on_warn = 0; 589 panic("panic_on_warn set ...\n"); 590 } 591 592 print_modules(); 593 594 if (regs) 595 show_regs(regs); 596 else 597 dump_stack(); 598 599 print_irqtrace_events(current); 600 601 print_oops_end_marker(); 602 603 /* Just a warning, don't kill lockdep. */ 604 add_taint(taint, LOCKDEP_STILL_OK); 605 } 606 607 #ifndef __WARN_FLAGS 608 void warn_slowpath_fmt(const char *file, int line, unsigned taint, 609 const char *fmt, ...) 610 { 611 struct warn_args args; 612 613 pr_warn(CUT_HERE); 614 615 if (!fmt) { 616 __warn(file, line, __builtin_return_address(0), taint, 617 NULL, NULL); 618 return; 619 } 620 621 args.fmt = fmt; 622 va_start(args.args, fmt); 623 __warn(file, line, __builtin_return_address(0), taint, NULL, &args); 624 va_end(args.args); 625 } 626 EXPORT_SYMBOL(warn_slowpath_fmt); 627 #else 628 void __warn_printk(const char *fmt, ...) 629 { 630 va_list args; 631 632 pr_warn(CUT_HERE); 633 634 va_start(args, fmt); 635 vprintk(fmt, args); 636 va_end(args); 637 } 638 EXPORT_SYMBOL(__warn_printk); 639 #endif 640 641 #ifdef CONFIG_BUG 642 643 /* Support resetting WARN*_ONCE state */ 644 645 static int clear_warn_once_set(void *data, u64 val) 646 { 647 generic_bug_clear_once(); 648 memset(__start_once, 0, __end_once - __start_once); 649 return 0; 650 } 651 652 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set, 653 "%lld\n"); 654 655 static __init int register_warn_debugfs(void) 656 { 657 /* Don't care about failure */ 658 debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL, 659 &clear_warn_once_fops); 660 return 0; 661 } 662 663 device_initcall(register_warn_debugfs); 664 #endif 665 666 #ifdef CONFIG_STACKPROTECTOR 667 668 /* 669 * Called when gcc's -fstack-protector feature is used, and 670 * gcc detects corruption of the on-stack canary value 671 */ 672 __visible void __stack_chk_fail(void) 673 { 674 panic("stack-protector: Kernel stack is corrupted in: %pB", 675 __builtin_return_address(0)); 676 } 677 EXPORT_SYMBOL(__stack_chk_fail); 678 679 #endif 680 681 core_param(panic, panic_timeout, int, 0644); 682 core_param(panic_print, panic_print, ulong, 0644); 683 core_param(pause_on_oops, pause_on_oops, int, 0644); 684 core_param(panic_on_warn, panic_on_warn, int, 0644); 685 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); 686 687 static int __init oops_setup(char *s) 688 { 689 if (!s) 690 return -EINVAL; 691 if (!strcmp(s, "panic")) 692 panic_on_oops = 1; 693 return 0; 694 } 695 early_param("oops", oops_setup); 696 697 static int __init panic_on_taint_setup(char *s) 698 { 699 char *taint_str; 700 701 if (!s) 702 return -EINVAL; 703 704 taint_str = strsep(&s, ","); 705 if (kstrtoul(taint_str, 16, &panic_on_taint)) 706 return -EINVAL; 707 708 /* make sure panic_on_taint doesn't hold out-of-range TAINT flags */ 709 panic_on_taint &= TAINT_FLAGS_MAX; 710 711 if (!panic_on_taint) 712 return -EINVAL; 713 714 if (s && !strcmp(s, "nousertaint")) 715 panic_on_taint_nousertaint = true; 716 717 pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%sabled\n", 718 panic_on_taint, panic_on_taint_nousertaint ? "en" : "dis"); 719 720 return 0; 721 } 722 early_param("panic_on_taint", panic_on_taint_setup); 723