1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/kernel/panic.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * This function is used through-out the kernel (including mm and fs) 10 * to indicate a major problem. 11 */ 12 #include <linux/debug_locks.h> 13 #include <linux/sched/debug.h> 14 #include <linux/interrupt.h> 15 #include <linux/kgdb.h> 16 #include <linux/kmsg_dump.h> 17 #include <linux/kallsyms.h> 18 #include <linux/notifier.h> 19 #include <linux/vt_kern.h> 20 #include <linux/module.h> 21 #include <linux/random.h> 22 #include <linux/ftrace.h> 23 #include <linux/reboot.h> 24 #include <linux/delay.h> 25 #include <linux/kexec.h> 26 #include <linux/panic_notifier.h> 27 #include <linux/sched.h> 28 #include <linux/sysrq.h> 29 #include <linux/init.h> 30 #include <linux/nmi.h> 31 #include <linux/console.h> 32 #include <linux/bug.h> 33 #include <linux/ratelimit.h> 34 #include <linux/debugfs.h> 35 #include <linux/sysfs.h> 36 #include <trace/events/error_report.h> 37 #include <asm/sections.h> 38 39 #define PANIC_TIMER_STEP 100 40 #define PANIC_BLINK_SPD 18 41 42 #ifdef CONFIG_SMP 43 /* 44 * Should we dump all CPUs backtraces in an oops event? 45 * Defaults to 0, can be changed via sysctl. 46 */ 47 static unsigned int __read_mostly sysctl_oops_all_cpu_backtrace; 48 #else 49 #define sysctl_oops_all_cpu_backtrace 0 50 #endif /* CONFIG_SMP */ 51 52 int panic_on_oops = CONFIG_PANIC_ON_OOPS_VALUE; 53 static unsigned long tainted_mask = 54 IS_ENABLED(CONFIG_RANDSTRUCT) ? (1 << TAINT_RANDSTRUCT) : 0; 55 static int pause_on_oops; 56 static int pause_on_oops_flag; 57 static DEFINE_SPINLOCK(pause_on_oops_lock); 58 bool crash_kexec_post_notifiers; 59 int panic_on_warn __read_mostly; 60 unsigned long panic_on_taint; 61 bool panic_on_taint_nousertaint = false; 62 static unsigned int warn_limit __read_mostly; 63 64 int panic_timeout = CONFIG_PANIC_TIMEOUT; 65 EXPORT_SYMBOL_GPL(panic_timeout); 66 67 #define PANIC_PRINT_TASK_INFO 0x00000001 68 #define PANIC_PRINT_MEM_INFO 0x00000002 69 #define PANIC_PRINT_TIMER_INFO 0x00000004 70 #define PANIC_PRINT_LOCK_INFO 0x00000008 71 #define PANIC_PRINT_FTRACE_INFO 0x00000010 72 #define PANIC_PRINT_ALL_PRINTK_MSG 0x00000020 73 #define PANIC_PRINT_ALL_CPU_BT 0x00000040 74 unsigned long panic_print; 75 76 ATOMIC_NOTIFIER_HEAD(panic_notifier_list); 77 78 EXPORT_SYMBOL(panic_notifier_list); 79 80 #ifdef CONFIG_SYSCTL 81 static struct ctl_table kern_panic_table[] = { 82 #ifdef CONFIG_SMP 83 { 84 .procname = "oops_all_cpu_backtrace", 85 .data = &sysctl_oops_all_cpu_backtrace, 86 .maxlen = sizeof(int), 87 .mode = 0644, 88 .proc_handler = proc_dointvec_minmax, 89 .extra1 = SYSCTL_ZERO, 90 .extra2 = SYSCTL_ONE, 91 }, 92 #endif 93 { 94 .procname = "warn_limit", 95 .data = &warn_limit, 96 .maxlen = sizeof(warn_limit), 97 .mode = 0644, 98 .proc_handler = proc_douintvec, 99 }, 100 { } 101 }; 102 103 static __init int kernel_panic_sysctls_init(void) 104 { 105 register_sysctl_init("kernel", kern_panic_table); 106 return 0; 107 } 108 late_initcall(kernel_panic_sysctls_init); 109 #endif 110 111 static atomic_t warn_count = ATOMIC_INIT(0); 112 113 #ifdef CONFIG_SYSFS 114 static ssize_t warn_count_show(struct kobject *kobj, struct kobj_attribute *attr, 115 char *page) 116 { 117 return sysfs_emit(page, "%d\n", atomic_read(&warn_count)); 118 } 119 120 static struct kobj_attribute warn_count_attr = __ATTR_RO(warn_count); 121 122 static __init int kernel_panic_sysfs_init(void) 123 { 124 sysfs_add_file_to_group(kernel_kobj, &warn_count_attr.attr, NULL); 125 return 0; 126 } 127 late_initcall(kernel_panic_sysfs_init); 128 #endif 129 130 static long no_blink(int state) 131 { 132 return 0; 133 } 134 135 /* Returns how long it waited in ms */ 136 long (*panic_blink)(int state); 137 EXPORT_SYMBOL(panic_blink); 138 139 /* 140 * Stop ourself in panic -- architecture code may override this 141 */ 142 void __weak panic_smp_self_stop(void) 143 { 144 while (1) 145 cpu_relax(); 146 } 147 148 /* 149 * Stop ourselves in NMI context if another CPU has already panicked. Arch code 150 * may override this to prepare for crash dumping, e.g. save regs info. 151 */ 152 void __weak nmi_panic_self_stop(struct pt_regs *regs) 153 { 154 panic_smp_self_stop(); 155 } 156 157 /* 158 * Stop other CPUs in panic. Architecture dependent code may override this 159 * with more suitable version. For example, if the architecture supports 160 * crash dump, it should save registers of each stopped CPU and disable 161 * per-CPU features such as virtualization extensions. 162 */ 163 void __weak crash_smp_send_stop(void) 164 { 165 static int cpus_stopped; 166 167 /* 168 * This function can be called twice in panic path, but obviously 169 * we execute this only once. 170 */ 171 if (cpus_stopped) 172 return; 173 174 /* 175 * Note smp_send_stop is the usual smp shutdown function, which 176 * unfortunately means it may not be hardened to work in a panic 177 * situation. 178 */ 179 smp_send_stop(); 180 cpus_stopped = 1; 181 } 182 183 atomic_t panic_cpu = ATOMIC_INIT(PANIC_CPU_INVALID); 184 185 /* 186 * A variant of panic() called from NMI context. We return if we've already 187 * panicked on this CPU. If another CPU already panicked, loop in 188 * nmi_panic_self_stop() which can provide architecture dependent code such 189 * as saving register state for crash dump. 190 */ 191 void nmi_panic(struct pt_regs *regs, const char *msg) 192 { 193 int old_cpu, cpu; 194 195 cpu = raw_smp_processor_id(); 196 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, cpu); 197 198 if (old_cpu == PANIC_CPU_INVALID) 199 panic("%s", msg); 200 else if (old_cpu != cpu) 201 nmi_panic_self_stop(regs); 202 } 203 EXPORT_SYMBOL(nmi_panic); 204 205 static void panic_print_sys_info(bool console_flush) 206 { 207 if (console_flush) { 208 if (panic_print & PANIC_PRINT_ALL_PRINTK_MSG) 209 console_flush_on_panic(CONSOLE_REPLAY_ALL); 210 return; 211 } 212 213 if (panic_print & PANIC_PRINT_ALL_CPU_BT) 214 trigger_all_cpu_backtrace(); 215 216 if (panic_print & PANIC_PRINT_TASK_INFO) 217 show_state(); 218 219 if (panic_print & PANIC_PRINT_MEM_INFO) 220 show_mem(0, NULL); 221 222 if (panic_print & PANIC_PRINT_TIMER_INFO) 223 sysrq_timer_list_show(); 224 225 if (panic_print & PANIC_PRINT_LOCK_INFO) 226 debug_show_all_locks(); 227 228 if (panic_print & PANIC_PRINT_FTRACE_INFO) 229 ftrace_dump(DUMP_ALL); 230 } 231 232 void check_panic_on_warn(const char *origin) 233 { 234 if (panic_on_warn) 235 panic("%s: panic_on_warn set ...\n", origin); 236 237 if (atomic_inc_return(&warn_count) >= READ_ONCE(warn_limit) && warn_limit) 238 panic("%s: system warned too often (kernel.warn_limit is %d)", 239 origin, warn_limit); 240 } 241 242 /** 243 * panic - halt the system 244 * @fmt: The text string to print 245 * 246 * Display a message, then perform cleanups. 247 * 248 * This function never returns. 249 */ 250 void panic(const char *fmt, ...) 251 { 252 static char buf[1024]; 253 va_list args; 254 long i, i_next = 0, len; 255 int state = 0; 256 int old_cpu, this_cpu; 257 bool _crash_kexec_post_notifiers = crash_kexec_post_notifiers; 258 259 if (panic_on_warn) { 260 /* 261 * This thread may hit another WARN() in the panic path. 262 * Resetting this prevents additional WARN() from panicking the 263 * system on this thread. Other threads are blocked by the 264 * panic_mutex in panic(). 265 */ 266 panic_on_warn = 0; 267 } 268 269 /* 270 * Disable local interrupts. This will prevent panic_smp_self_stop 271 * from deadlocking the first cpu that invokes the panic, since 272 * there is nothing to prevent an interrupt handler (that runs 273 * after setting panic_cpu) from invoking panic() again. 274 */ 275 local_irq_disable(); 276 preempt_disable_notrace(); 277 278 /* 279 * It's possible to come here directly from a panic-assertion and 280 * not have preempt disabled. Some functions called from here want 281 * preempt to be disabled. No point enabling it later though... 282 * 283 * Only one CPU is allowed to execute the panic code from here. For 284 * multiple parallel invocations of panic, all other CPUs either 285 * stop themself or will wait until they are stopped by the 1st CPU 286 * with smp_send_stop(). 287 * 288 * `old_cpu == PANIC_CPU_INVALID' means this is the 1st CPU which 289 * comes here, so go ahead. 290 * `old_cpu == this_cpu' means we came from nmi_panic() which sets 291 * panic_cpu to this CPU. In this case, this is also the 1st CPU. 292 */ 293 this_cpu = raw_smp_processor_id(); 294 old_cpu = atomic_cmpxchg(&panic_cpu, PANIC_CPU_INVALID, this_cpu); 295 296 if (old_cpu != PANIC_CPU_INVALID && old_cpu != this_cpu) 297 panic_smp_self_stop(); 298 299 console_verbose(); 300 bust_spinlocks(1); 301 va_start(args, fmt); 302 len = vscnprintf(buf, sizeof(buf), fmt, args); 303 va_end(args); 304 305 if (len && buf[len - 1] == '\n') 306 buf[len - 1] = '\0'; 307 308 pr_emerg("Kernel panic - not syncing: %s\n", buf); 309 #ifdef CONFIG_DEBUG_BUGVERBOSE 310 /* 311 * Avoid nested stack-dumping if a panic occurs during oops processing 312 */ 313 if (!test_taint(TAINT_DIE) && oops_in_progress <= 1) 314 dump_stack(); 315 #endif 316 317 /* 318 * If kgdb is enabled, give it a chance to run before we stop all 319 * the other CPUs or else we won't be able to debug processes left 320 * running on them. 321 */ 322 kgdb_panic(buf); 323 324 /* 325 * If we have crashed and we have a crash kernel loaded let it handle 326 * everything else. 327 * If we want to run this after calling panic_notifiers, pass 328 * the "crash_kexec_post_notifiers" option to the kernel. 329 * 330 * Bypass the panic_cpu check and call __crash_kexec directly. 331 */ 332 if (!_crash_kexec_post_notifiers) { 333 __crash_kexec(NULL); 334 335 /* 336 * Note smp_send_stop is the usual smp shutdown function, which 337 * unfortunately means it may not be hardened to work in a 338 * panic situation. 339 */ 340 smp_send_stop(); 341 } else { 342 /* 343 * If we want to do crash dump after notifier calls and 344 * kmsg_dump, we will need architecture dependent extra 345 * works in addition to stopping other CPUs. 346 */ 347 crash_smp_send_stop(); 348 } 349 350 /* 351 * Run any panic handlers, including those that might need to 352 * add information to the kmsg dump output. 353 */ 354 atomic_notifier_call_chain(&panic_notifier_list, 0, buf); 355 356 panic_print_sys_info(false); 357 358 kmsg_dump(KMSG_DUMP_PANIC); 359 360 /* 361 * If you doubt kdump always works fine in any situation, 362 * "crash_kexec_post_notifiers" offers you a chance to run 363 * panic_notifiers and dumping kmsg before kdump. 364 * Note: since some panic_notifiers can make crashed kernel 365 * more unstable, it can increase risks of the kdump failure too. 366 * 367 * Bypass the panic_cpu check and call __crash_kexec directly. 368 */ 369 if (_crash_kexec_post_notifiers) 370 __crash_kexec(NULL); 371 372 console_unblank(); 373 374 /* 375 * We may have ended up stopping the CPU holding the lock (in 376 * smp_send_stop()) while still having some valuable data in the console 377 * buffer. Try to acquire the lock then release it regardless of the 378 * result. The release will also print the buffers out. Locks debug 379 * should be disabled to avoid reporting bad unlock balance when 380 * panic() is not being callled from OOPS. 381 */ 382 debug_locks_off(); 383 console_flush_on_panic(CONSOLE_FLUSH_PENDING); 384 385 panic_print_sys_info(true); 386 387 if (!panic_blink) 388 panic_blink = no_blink; 389 390 if (panic_timeout > 0) { 391 /* 392 * Delay timeout seconds before rebooting the machine. 393 * We can't use the "normal" timers since we just panicked. 394 */ 395 pr_emerg("Rebooting in %d seconds..\n", panic_timeout); 396 397 for (i = 0; i < panic_timeout * 1000; i += PANIC_TIMER_STEP) { 398 touch_nmi_watchdog(); 399 if (i >= i_next) { 400 i += panic_blink(state ^= 1); 401 i_next = i + 3600 / PANIC_BLINK_SPD; 402 } 403 mdelay(PANIC_TIMER_STEP); 404 } 405 } 406 if (panic_timeout != 0) { 407 /* 408 * This will not be a clean reboot, with everything 409 * shutting down. But if there is a chance of 410 * rebooting the system it will be rebooted. 411 */ 412 if (panic_reboot_mode != REBOOT_UNDEFINED) 413 reboot_mode = panic_reboot_mode; 414 emergency_restart(); 415 } 416 #ifdef __sparc__ 417 { 418 extern int stop_a_enabled; 419 /* Make sure the user can actually press Stop-A (L1-A) */ 420 stop_a_enabled = 1; 421 pr_emerg("Press Stop-A (L1-A) from sun keyboard or send break\n" 422 "twice on console to return to the boot prom\n"); 423 } 424 #endif 425 #if defined(CONFIG_S390) 426 disabled_wait(); 427 #endif 428 pr_emerg("---[ end Kernel panic - not syncing: %s ]---\n", buf); 429 430 /* Do not scroll important messages printed above */ 431 suppress_printk = 1; 432 local_irq_enable(); 433 for (i = 0; ; i += PANIC_TIMER_STEP) { 434 touch_softlockup_watchdog(); 435 if (i >= i_next) { 436 i += panic_blink(state ^= 1); 437 i_next = i + 3600 / PANIC_BLINK_SPD; 438 } 439 mdelay(PANIC_TIMER_STEP); 440 } 441 } 442 443 EXPORT_SYMBOL(panic); 444 445 /* 446 * TAINT_FORCED_RMMOD could be a per-module flag but the module 447 * is being removed anyway. 448 */ 449 const struct taint_flag taint_flags[TAINT_FLAGS_COUNT] = { 450 [ TAINT_PROPRIETARY_MODULE ] = { 'P', 'G', true }, 451 [ TAINT_FORCED_MODULE ] = { 'F', ' ', true }, 452 [ TAINT_CPU_OUT_OF_SPEC ] = { 'S', ' ', false }, 453 [ TAINT_FORCED_RMMOD ] = { 'R', ' ', false }, 454 [ TAINT_MACHINE_CHECK ] = { 'M', ' ', false }, 455 [ TAINT_BAD_PAGE ] = { 'B', ' ', false }, 456 [ TAINT_USER ] = { 'U', ' ', false }, 457 [ TAINT_DIE ] = { 'D', ' ', false }, 458 [ TAINT_OVERRIDDEN_ACPI_TABLE ] = { 'A', ' ', false }, 459 [ TAINT_WARN ] = { 'W', ' ', false }, 460 [ TAINT_CRAP ] = { 'C', ' ', true }, 461 [ TAINT_FIRMWARE_WORKAROUND ] = { 'I', ' ', false }, 462 [ TAINT_OOT_MODULE ] = { 'O', ' ', true }, 463 [ TAINT_UNSIGNED_MODULE ] = { 'E', ' ', true }, 464 [ TAINT_SOFTLOCKUP ] = { 'L', ' ', false }, 465 [ TAINT_LIVEPATCH ] = { 'K', ' ', true }, 466 [ TAINT_AUX ] = { 'X', ' ', true }, 467 [ TAINT_RANDSTRUCT ] = { 'T', ' ', true }, 468 [ TAINT_TEST ] = { 'N', ' ', true }, 469 }; 470 471 /** 472 * print_tainted - return a string to represent the kernel taint state. 473 * 474 * For individual taint flag meanings, see Documentation/admin-guide/sysctl/kernel.rst 475 * 476 * The string is overwritten by the next call to print_tainted(), 477 * but is always NULL terminated. 478 */ 479 const char *print_tainted(void) 480 { 481 static char buf[TAINT_FLAGS_COUNT + sizeof("Tainted: ")]; 482 483 BUILD_BUG_ON(ARRAY_SIZE(taint_flags) != TAINT_FLAGS_COUNT); 484 485 if (tainted_mask) { 486 char *s; 487 int i; 488 489 s = buf + sprintf(buf, "Tainted: "); 490 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 491 const struct taint_flag *t = &taint_flags[i]; 492 *s++ = test_bit(i, &tainted_mask) ? 493 t->c_true : t->c_false; 494 } 495 *s = 0; 496 } else 497 snprintf(buf, sizeof(buf), "Not tainted"); 498 499 return buf; 500 } 501 502 int test_taint(unsigned flag) 503 { 504 return test_bit(flag, &tainted_mask); 505 } 506 EXPORT_SYMBOL(test_taint); 507 508 unsigned long get_taint(void) 509 { 510 return tainted_mask; 511 } 512 513 /** 514 * add_taint: add a taint flag if not already set. 515 * @flag: one of the TAINT_* constants. 516 * @lockdep_ok: whether lock debugging is still OK. 517 * 518 * If something bad has gone wrong, you'll want @lockdebug_ok = false, but for 519 * some notewortht-but-not-corrupting cases, it can be set to true. 520 */ 521 void add_taint(unsigned flag, enum lockdep_ok lockdep_ok) 522 { 523 if (lockdep_ok == LOCKDEP_NOW_UNRELIABLE && __debug_locks_off()) 524 pr_warn("Disabling lock debugging due to kernel taint\n"); 525 526 set_bit(flag, &tainted_mask); 527 528 if (tainted_mask & panic_on_taint) { 529 panic_on_taint = 0; 530 panic("panic_on_taint set ..."); 531 } 532 } 533 EXPORT_SYMBOL(add_taint); 534 535 static void spin_msec(int msecs) 536 { 537 int i; 538 539 for (i = 0; i < msecs; i++) { 540 touch_nmi_watchdog(); 541 mdelay(1); 542 } 543 } 544 545 /* 546 * It just happens that oops_enter() and oops_exit() are identically 547 * implemented... 548 */ 549 static void do_oops_enter_exit(void) 550 { 551 unsigned long flags; 552 static int spin_counter; 553 554 if (!pause_on_oops) 555 return; 556 557 spin_lock_irqsave(&pause_on_oops_lock, flags); 558 if (pause_on_oops_flag == 0) { 559 /* This CPU may now print the oops message */ 560 pause_on_oops_flag = 1; 561 } else { 562 /* We need to stall this CPU */ 563 if (!spin_counter) { 564 /* This CPU gets to do the counting */ 565 spin_counter = pause_on_oops; 566 do { 567 spin_unlock(&pause_on_oops_lock); 568 spin_msec(MSEC_PER_SEC); 569 spin_lock(&pause_on_oops_lock); 570 } while (--spin_counter); 571 pause_on_oops_flag = 0; 572 } else { 573 /* This CPU waits for a different one */ 574 while (spin_counter) { 575 spin_unlock(&pause_on_oops_lock); 576 spin_msec(1); 577 spin_lock(&pause_on_oops_lock); 578 } 579 } 580 } 581 spin_unlock_irqrestore(&pause_on_oops_lock, flags); 582 } 583 584 /* 585 * Return true if the calling CPU is allowed to print oops-related info. 586 * This is a bit racy.. 587 */ 588 bool oops_may_print(void) 589 { 590 return pause_on_oops_flag == 0; 591 } 592 593 /* 594 * Called when the architecture enters its oops handler, before it prints 595 * anything. If this is the first CPU to oops, and it's oopsing the first 596 * time then let it proceed. 597 * 598 * This is all enabled by the pause_on_oops kernel boot option. We do all 599 * this to ensure that oopses don't scroll off the screen. It has the 600 * side-effect of preventing later-oopsing CPUs from mucking up the display, 601 * too. 602 * 603 * It turns out that the CPU which is allowed to print ends up pausing for 604 * the right duration, whereas all the other CPUs pause for twice as long: 605 * once in oops_enter(), once in oops_exit(). 606 */ 607 void oops_enter(void) 608 { 609 tracing_off(); 610 /* can't trust the integrity of the kernel anymore: */ 611 debug_locks_off(); 612 do_oops_enter_exit(); 613 614 if (sysctl_oops_all_cpu_backtrace) 615 trigger_all_cpu_backtrace(); 616 } 617 618 static void print_oops_end_marker(void) 619 { 620 pr_warn("---[ end trace %016llx ]---\n", 0ULL); 621 } 622 623 /* 624 * Called when the architecture exits its oops handler, after printing 625 * everything. 626 */ 627 void oops_exit(void) 628 { 629 do_oops_enter_exit(); 630 print_oops_end_marker(); 631 kmsg_dump(KMSG_DUMP_OOPS); 632 } 633 634 struct warn_args { 635 const char *fmt; 636 va_list args; 637 }; 638 639 void __warn(const char *file, int line, void *caller, unsigned taint, 640 struct pt_regs *regs, struct warn_args *args) 641 { 642 disable_trace_on_warning(); 643 644 if (file) 645 pr_warn("WARNING: CPU: %d PID: %d at %s:%d %pS\n", 646 raw_smp_processor_id(), current->pid, file, line, 647 caller); 648 else 649 pr_warn("WARNING: CPU: %d PID: %d at %pS\n", 650 raw_smp_processor_id(), current->pid, caller); 651 652 if (args) 653 vprintk(args->fmt, args->args); 654 655 print_modules(); 656 657 if (regs) 658 show_regs(regs); 659 660 check_panic_on_warn("kernel"); 661 662 if (!regs) 663 dump_stack(); 664 665 print_irqtrace_events(current); 666 667 print_oops_end_marker(); 668 trace_error_report_end(ERROR_DETECTOR_WARN, (unsigned long)caller); 669 670 /* Just a warning, don't kill lockdep. */ 671 add_taint(taint, LOCKDEP_STILL_OK); 672 } 673 674 #ifndef __WARN_FLAGS 675 void warn_slowpath_fmt(const char *file, int line, unsigned taint, 676 const char *fmt, ...) 677 { 678 struct warn_args args; 679 680 pr_warn(CUT_HERE); 681 682 if (!fmt) { 683 __warn(file, line, __builtin_return_address(0), taint, 684 NULL, NULL); 685 return; 686 } 687 688 args.fmt = fmt; 689 va_start(args.args, fmt); 690 __warn(file, line, __builtin_return_address(0), taint, NULL, &args); 691 va_end(args.args); 692 } 693 EXPORT_SYMBOL(warn_slowpath_fmt); 694 #else 695 void __warn_printk(const char *fmt, ...) 696 { 697 va_list args; 698 699 pr_warn(CUT_HERE); 700 701 va_start(args, fmt); 702 vprintk(fmt, args); 703 va_end(args); 704 } 705 EXPORT_SYMBOL(__warn_printk); 706 #endif 707 708 #ifdef CONFIG_BUG 709 710 /* Support resetting WARN*_ONCE state */ 711 712 static int clear_warn_once_set(void *data, u64 val) 713 { 714 generic_bug_clear_once(); 715 memset(__start_once, 0, __end_once - __start_once); 716 return 0; 717 } 718 719 DEFINE_DEBUGFS_ATTRIBUTE(clear_warn_once_fops, NULL, clear_warn_once_set, 720 "%lld\n"); 721 722 static __init int register_warn_debugfs(void) 723 { 724 /* Don't care about failure */ 725 debugfs_create_file_unsafe("clear_warn_once", 0200, NULL, NULL, 726 &clear_warn_once_fops); 727 return 0; 728 } 729 730 device_initcall(register_warn_debugfs); 731 #endif 732 733 #ifdef CONFIG_STACKPROTECTOR 734 735 /* 736 * Called when gcc's -fstack-protector feature is used, and 737 * gcc detects corruption of the on-stack canary value 738 */ 739 __visible noinstr void __stack_chk_fail(void) 740 { 741 instrumentation_begin(); 742 panic("stack-protector: Kernel stack is corrupted in: %pB", 743 __builtin_return_address(0)); 744 instrumentation_end(); 745 } 746 EXPORT_SYMBOL(__stack_chk_fail); 747 748 #endif 749 750 core_param(panic, panic_timeout, int, 0644); 751 core_param(panic_print, panic_print, ulong, 0644); 752 core_param(pause_on_oops, pause_on_oops, int, 0644); 753 core_param(panic_on_warn, panic_on_warn, int, 0644); 754 core_param(crash_kexec_post_notifiers, crash_kexec_post_notifiers, bool, 0644); 755 756 static int __init oops_setup(char *s) 757 { 758 if (!s) 759 return -EINVAL; 760 if (!strcmp(s, "panic")) 761 panic_on_oops = 1; 762 return 0; 763 } 764 early_param("oops", oops_setup); 765 766 static int __init panic_on_taint_setup(char *s) 767 { 768 char *taint_str; 769 770 if (!s) 771 return -EINVAL; 772 773 taint_str = strsep(&s, ","); 774 if (kstrtoul(taint_str, 16, &panic_on_taint)) 775 return -EINVAL; 776 777 /* make sure panic_on_taint doesn't hold out-of-range TAINT flags */ 778 panic_on_taint &= TAINT_FLAGS_MAX; 779 780 if (!panic_on_taint) 781 return -EINVAL; 782 783 if (s && !strcmp(s, "nousertaint")) 784 panic_on_taint_nousertaint = true; 785 786 pr_info("panic_on_taint: bitmask=0x%lx nousertaint_mode=%sabled\n", 787 panic_on_taint, panic_on_taint_nousertaint ? "en" : "dis"); 788 789 return 0; 790 } 791 early_param("panic_on_taint", panic_on_taint_setup); 792