1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <[email protected]> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/codetag.h> 60 #include <linux/debugfs.h> 61 #include <linux/execmem.h> 62 #include <uapi/linux/module.h> 63 #include "internal.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/module.h> 67 68 /* 69 * Mutex protects: 70 * 1) List of modules (also safely readable within RCU read section), 71 * 2) module_use links, 72 * 3) mod_tree.addr_min/mod_tree.addr_max. 73 * (delete and add uses RCU list operations). 74 */ 75 DEFINE_MUTEX(module_mutex); 76 LIST_HEAD(modules); 77 78 /* Work queue for freeing init sections in success case */ 79 static void do_free_init(struct work_struct *w); 80 static DECLARE_WORK(init_free_wq, do_free_init); 81 static LLIST_HEAD(init_free_list); 82 83 struct mod_tree_root mod_tree __cacheline_aligned = { 84 .addr_min = -1UL, 85 }; 86 87 struct symsearch { 88 const struct kernel_symbol *start, *stop; 89 const u32 *crcs; 90 enum mod_license license; 91 }; 92 93 /* 94 * Bounds of module memory, for speeding up __module_address. 95 * Protected by module_mutex. 96 */ 97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 98 unsigned int size, struct mod_tree_root *tree) 99 { 100 unsigned long min = (unsigned long)base; 101 unsigned long max = min + size; 102 103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 104 if (mod_mem_type_is_core_data(type)) { 105 if (min < tree->data_addr_min) 106 tree->data_addr_min = min; 107 if (max > tree->data_addr_max) 108 tree->data_addr_max = max; 109 return; 110 } 111 #endif 112 if (min < tree->addr_min) 113 tree->addr_min = min; 114 if (max > tree->addr_max) 115 tree->addr_max = max; 116 } 117 118 static void mod_update_bounds(struct module *mod) 119 { 120 for_each_mod_mem_type(type) { 121 struct module_memory *mod_mem = &mod->mem[type]; 122 123 if (mod_mem->size) 124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 125 } 126 } 127 128 /* Block module loading/unloading? */ 129 int modules_disabled; 130 core_param(nomodule, modules_disabled, bint, 0); 131 132 /* Waiting for a module to finish initializing? */ 133 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 134 135 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 136 137 int register_module_notifier(struct notifier_block *nb) 138 { 139 return blocking_notifier_chain_register(&module_notify_list, nb); 140 } 141 EXPORT_SYMBOL(register_module_notifier); 142 143 int unregister_module_notifier(struct notifier_block *nb) 144 { 145 return blocking_notifier_chain_unregister(&module_notify_list, nb); 146 } 147 EXPORT_SYMBOL(unregister_module_notifier); 148 149 /* 150 * We require a truly strong try_module_get(): 0 means success. 151 * Otherwise an error is returned due to ongoing or failed 152 * initialization etc. 153 */ 154 static inline int strong_try_module_get(struct module *mod) 155 { 156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 157 if (mod && mod->state == MODULE_STATE_COMING) 158 return -EBUSY; 159 if (try_module_get(mod)) 160 return 0; 161 else 162 return -ENOENT; 163 } 164 165 static inline void add_taint_module(struct module *mod, unsigned flag, 166 enum lockdep_ok lockdep_ok) 167 { 168 add_taint(flag, lockdep_ok); 169 set_bit(flag, &mod->taints); 170 } 171 172 /* 173 * A thread that wants to hold a reference to a module only while it 174 * is running can call this to safely exit. 175 */ 176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 177 { 178 module_put(mod); 179 kthread_exit(code); 180 } 181 EXPORT_SYMBOL(__module_put_and_kthread_exit); 182 183 /* Find a module section: 0 means not found. */ 184 static unsigned int find_sec(const struct load_info *info, const char *name) 185 { 186 unsigned int i; 187 188 for (i = 1; i < info->hdr->e_shnum; i++) { 189 Elf_Shdr *shdr = &info->sechdrs[i]; 190 /* Alloc bit cleared means "ignore it." */ 191 if ((shdr->sh_flags & SHF_ALLOC) 192 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 193 return i; 194 } 195 return 0; 196 } 197 198 /** 199 * find_any_unique_sec() - Find a unique section index by name 200 * @info: Load info for the module to scan 201 * @name: Name of the section we're looking for 202 * 203 * Locates a unique section by name. Ignores SHF_ALLOC. 204 * 205 * Return: Section index if found uniquely, zero if absent, negative count 206 * of total instances if multiple were found. 207 */ 208 static int find_any_unique_sec(const struct load_info *info, const char *name) 209 { 210 unsigned int idx; 211 unsigned int count = 0; 212 int i; 213 214 for (i = 1; i < info->hdr->e_shnum; i++) { 215 if (strcmp(info->secstrings + info->sechdrs[i].sh_name, 216 name) == 0) { 217 count++; 218 idx = i; 219 } 220 } 221 if (count == 1) { 222 return idx; 223 } else if (count == 0) { 224 return 0; 225 } else { 226 return -count; 227 } 228 } 229 230 /* Find a module section, or NULL. */ 231 static void *section_addr(const struct load_info *info, const char *name) 232 { 233 /* Section 0 has sh_addr 0. */ 234 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 235 } 236 237 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 238 static void *section_objs(const struct load_info *info, 239 const char *name, 240 size_t object_size, 241 unsigned int *num) 242 { 243 unsigned int sec = find_sec(info, name); 244 245 /* Section 0 has sh_addr 0 and sh_size 0. */ 246 *num = info->sechdrs[sec].sh_size / object_size; 247 return (void *)info->sechdrs[sec].sh_addr; 248 } 249 250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 251 static unsigned int find_any_sec(const struct load_info *info, const char *name) 252 { 253 unsigned int i; 254 255 for (i = 1; i < info->hdr->e_shnum; i++) { 256 Elf_Shdr *shdr = &info->sechdrs[i]; 257 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 258 return i; 259 } 260 return 0; 261 } 262 263 /* 264 * Find a module section, or NULL. Fill in number of "objects" in section. 265 * Ignores SHF_ALLOC flag. 266 */ 267 static __maybe_unused void *any_section_objs(const struct load_info *info, 268 const char *name, 269 size_t object_size, 270 unsigned int *num) 271 { 272 unsigned int sec = find_any_sec(info, name); 273 274 /* Section 0 has sh_addr 0 and sh_size 0. */ 275 *num = info->sechdrs[sec].sh_size / object_size; 276 return (void *)info->sechdrs[sec].sh_addr; 277 } 278 279 #ifndef CONFIG_MODVERSIONS 280 #define symversion(base, idx) NULL 281 #else 282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 283 #endif 284 285 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 286 { 287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 288 return offset_to_ptr(&sym->name_offset); 289 #else 290 return sym->name; 291 #endif 292 } 293 294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 295 { 296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 297 if (!sym->namespace_offset) 298 return NULL; 299 return offset_to_ptr(&sym->namespace_offset); 300 #else 301 return sym->namespace; 302 #endif 303 } 304 305 int cmp_name(const void *name, const void *sym) 306 { 307 return strcmp(name, kernel_symbol_name(sym)); 308 } 309 310 static bool find_exported_symbol_in_section(const struct symsearch *syms, 311 struct module *owner, 312 struct find_symbol_arg *fsa) 313 { 314 struct kernel_symbol *sym; 315 316 if (!fsa->gplok && syms->license == GPL_ONLY) 317 return false; 318 319 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 320 sizeof(struct kernel_symbol), cmp_name); 321 if (!sym) 322 return false; 323 324 fsa->owner = owner; 325 fsa->crc = symversion(syms->crcs, sym - syms->start); 326 fsa->sym = sym; 327 fsa->license = syms->license; 328 329 return true; 330 } 331 332 /* 333 * Find an exported symbol and return it, along with, (optional) crc and 334 * (optional) module which owns it. Needs preempt disabled or module_mutex. 335 */ 336 bool find_symbol(struct find_symbol_arg *fsa) 337 { 338 static const struct symsearch arr[] = { 339 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 340 NOT_GPL_ONLY }, 341 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 342 __start___kcrctab_gpl, 343 GPL_ONLY }, 344 }; 345 struct module *mod; 346 unsigned int i; 347 348 module_assert_mutex_or_preempt(); 349 350 for (i = 0; i < ARRAY_SIZE(arr); i++) 351 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 352 return true; 353 354 list_for_each_entry_rcu(mod, &modules, list, 355 lockdep_is_held(&module_mutex)) { 356 struct symsearch arr[] = { 357 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 358 NOT_GPL_ONLY }, 359 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 360 mod->gpl_crcs, 361 GPL_ONLY }, 362 }; 363 364 if (mod->state == MODULE_STATE_UNFORMED) 365 continue; 366 367 for (i = 0; i < ARRAY_SIZE(arr); i++) 368 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 369 return true; 370 } 371 372 pr_debug("Failed to find symbol %s\n", fsa->name); 373 return false; 374 } 375 376 /* 377 * Search for module by name: must hold module_mutex (or RCU for read-only 378 * access). 379 */ 380 struct module *find_module_all(const char *name, size_t len, 381 bool even_unformed) 382 { 383 struct module *mod; 384 385 list_for_each_entry_rcu(mod, &modules, list, 386 lockdep_is_held(&module_mutex)) { 387 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 388 continue; 389 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 390 return mod; 391 } 392 return NULL; 393 } 394 395 struct module *find_module(const char *name) 396 { 397 return find_module_all(name, strlen(name), false); 398 } 399 400 #ifdef CONFIG_SMP 401 402 static inline void __percpu *mod_percpu(struct module *mod) 403 { 404 return mod->percpu; 405 } 406 407 static int percpu_modalloc(struct module *mod, struct load_info *info) 408 { 409 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 410 unsigned long align = pcpusec->sh_addralign; 411 412 if (!pcpusec->sh_size) 413 return 0; 414 415 if (align > PAGE_SIZE) { 416 pr_warn("%s: per-cpu alignment %li > %li\n", 417 mod->name, align, PAGE_SIZE); 418 align = PAGE_SIZE; 419 } 420 421 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 422 if (!mod->percpu) { 423 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 424 mod->name, (unsigned long)pcpusec->sh_size); 425 return -ENOMEM; 426 } 427 mod->percpu_size = pcpusec->sh_size; 428 return 0; 429 } 430 431 static void percpu_modfree(struct module *mod) 432 { 433 free_percpu(mod->percpu); 434 } 435 436 static unsigned int find_pcpusec(struct load_info *info) 437 { 438 return find_sec(info, ".data..percpu"); 439 } 440 441 static void percpu_modcopy(struct module *mod, 442 const void *from, unsigned long size) 443 { 444 int cpu; 445 446 for_each_possible_cpu(cpu) 447 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 448 } 449 450 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 451 { 452 struct module *mod; 453 unsigned int cpu; 454 455 preempt_disable(); 456 457 list_for_each_entry_rcu(mod, &modules, list) { 458 if (mod->state == MODULE_STATE_UNFORMED) 459 continue; 460 if (!mod->percpu_size) 461 continue; 462 for_each_possible_cpu(cpu) { 463 void *start = per_cpu_ptr(mod->percpu, cpu); 464 void *va = (void *)addr; 465 466 if (va >= start && va < start + mod->percpu_size) { 467 if (can_addr) { 468 *can_addr = (unsigned long) (va - start); 469 *can_addr += (unsigned long) 470 per_cpu_ptr(mod->percpu, 471 get_boot_cpu_id()); 472 } 473 preempt_enable(); 474 return true; 475 } 476 } 477 } 478 479 preempt_enable(); 480 return false; 481 } 482 483 /** 484 * is_module_percpu_address() - test whether address is from module static percpu 485 * @addr: address to test 486 * 487 * Test whether @addr belongs to module static percpu area. 488 * 489 * Return: %true if @addr is from module static percpu area 490 */ 491 bool is_module_percpu_address(unsigned long addr) 492 { 493 return __is_module_percpu_address(addr, NULL); 494 } 495 496 #else /* ... !CONFIG_SMP */ 497 498 static inline void __percpu *mod_percpu(struct module *mod) 499 { 500 return NULL; 501 } 502 static int percpu_modalloc(struct module *mod, struct load_info *info) 503 { 504 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 505 if (info->sechdrs[info->index.pcpu].sh_size != 0) 506 return -ENOMEM; 507 return 0; 508 } 509 static inline void percpu_modfree(struct module *mod) 510 { 511 } 512 static unsigned int find_pcpusec(struct load_info *info) 513 { 514 return 0; 515 } 516 static inline void percpu_modcopy(struct module *mod, 517 const void *from, unsigned long size) 518 { 519 /* pcpusec should be 0, and size of that section should be 0. */ 520 BUG_ON(size != 0); 521 } 522 bool is_module_percpu_address(unsigned long addr) 523 { 524 return false; 525 } 526 527 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 528 { 529 return false; 530 } 531 532 #endif /* CONFIG_SMP */ 533 534 #define MODINFO_ATTR(field) \ 535 static void setup_modinfo_##field(struct module *mod, const char *s) \ 536 { \ 537 mod->field = kstrdup(s, GFP_KERNEL); \ 538 } \ 539 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \ 540 struct module_kobject *mk, char *buffer) \ 541 { \ 542 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 543 } \ 544 static int modinfo_##field##_exists(struct module *mod) \ 545 { \ 546 return mod->field != NULL; \ 547 } \ 548 static void free_modinfo_##field(struct module *mod) \ 549 { \ 550 kfree(mod->field); \ 551 mod->field = NULL; \ 552 } \ 553 static const struct module_attribute modinfo_##field = { \ 554 .attr = { .name = __stringify(field), .mode = 0444 }, \ 555 .show = show_modinfo_##field, \ 556 .setup = setup_modinfo_##field, \ 557 .test = modinfo_##field##_exists, \ 558 .free = free_modinfo_##field, \ 559 }; 560 561 MODINFO_ATTR(version); 562 MODINFO_ATTR(srcversion); 563 564 static struct { 565 char name[MODULE_NAME_LEN + 1]; 566 char taints[MODULE_FLAGS_BUF_SIZE]; 567 } last_unloaded_module; 568 569 #ifdef CONFIG_MODULE_UNLOAD 570 571 EXPORT_TRACEPOINT_SYMBOL(module_get); 572 573 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 574 #define MODULE_REF_BASE 1 575 576 /* Init the unload section of the module. */ 577 static int module_unload_init(struct module *mod) 578 { 579 /* 580 * Initialize reference counter to MODULE_REF_BASE. 581 * refcnt == 0 means module is going. 582 */ 583 atomic_set(&mod->refcnt, MODULE_REF_BASE); 584 585 INIT_LIST_HEAD(&mod->source_list); 586 INIT_LIST_HEAD(&mod->target_list); 587 588 /* Hold reference count during initialization. */ 589 atomic_inc(&mod->refcnt); 590 591 return 0; 592 } 593 594 /* Does a already use b? */ 595 static int already_uses(struct module *a, struct module *b) 596 { 597 struct module_use *use; 598 599 list_for_each_entry(use, &b->source_list, source_list) { 600 if (use->source == a) 601 return 1; 602 } 603 pr_debug("%s does not use %s!\n", a->name, b->name); 604 return 0; 605 } 606 607 /* 608 * Module a uses b 609 * - we add 'a' as a "source", 'b' as a "target" of module use 610 * - the module_use is added to the list of 'b' sources (so 611 * 'b' can walk the list to see who sourced them), and of 'a' 612 * targets (so 'a' can see what modules it targets). 613 */ 614 static int add_module_usage(struct module *a, struct module *b) 615 { 616 struct module_use *use; 617 618 pr_debug("Allocating new usage for %s.\n", a->name); 619 use = kmalloc(sizeof(*use), GFP_ATOMIC); 620 if (!use) 621 return -ENOMEM; 622 623 use->source = a; 624 use->target = b; 625 list_add(&use->source_list, &b->source_list); 626 list_add(&use->target_list, &a->target_list); 627 return 0; 628 } 629 630 /* Module a uses b: caller needs module_mutex() */ 631 static int ref_module(struct module *a, struct module *b) 632 { 633 int err; 634 635 if (b == NULL || already_uses(a, b)) 636 return 0; 637 638 /* If module isn't available, we fail. */ 639 err = strong_try_module_get(b); 640 if (err) 641 return err; 642 643 err = add_module_usage(a, b); 644 if (err) { 645 module_put(b); 646 return err; 647 } 648 return 0; 649 } 650 651 /* Clear the unload stuff of the module. */ 652 static void module_unload_free(struct module *mod) 653 { 654 struct module_use *use, *tmp; 655 656 mutex_lock(&module_mutex); 657 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 658 struct module *i = use->target; 659 pr_debug("%s unusing %s\n", mod->name, i->name); 660 module_put(i); 661 list_del(&use->source_list); 662 list_del(&use->target_list); 663 kfree(use); 664 } 665 mutex_unlock(&module_mutex); 666 } 667 668 #ifdef CONFIG_MODULE_FORCE_UNLOAD 669 static inline int try_force_unload(unsigned int flags) 670 { 671 int ret = (flags & O_TRUNC); 672 if (ret) 673 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 674 return ret; 675 } 676 #else 677 static inline int try_force_unload(unsigned int flags) 678 { 679 return 0; 680 } 681 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 682 683 /* Try to release refcount of module, 0 means success. */ 684 static int try_release_module_ref(struct module *mod) 685 { 686 int ret; 687 688 /* Try to decrement refcnt which we set at loading */ 689 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 690 BUG_ON(ret < 0); 691 if (ret) 692 /* Someone can put this right now, recover with checking */ 693 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 694 695 return ret; 696 } 697 698 static int try_stop_module(struct module *mod, int flags, int *forced) 699 { 700 /* If it's not unused, quit unless we're forcing. */ 701 if (try_release_module_ref(mod) != 0) { 702 *forced = try_force_unload(flags); 703 if (!(*forced)) 704 return -EWOULDBLOCK; 705 } 706 707 /* Mark it as dying. */ 708 mod->state = MODULE_STATE_GOING; 709 710 return 0; 711 } 712 713 /** 714 * module_refcount() - return the refcount or -1 if unloading 715 * @mod: the module we're checking 716 * 717 * Return: 718 * -1 if the module is in the process of unloading 719 * otherwise the number of references in the kernel to the module 720 */ 721 int module_refcount(struct module *mod) 722 { 723 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 724 } 725 EXPORT_SYMBOL(module_refcount); 726 727 /* This exists whether we can unload or not */ 728 static void free_module(struct module *mod); 729 730 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 731 unsigned int, flags) 732 { 733 struct module *mod; 734 char name[MODULE_NAME_LEN]; 735 char buf[MODULE_FLAGS_BUF_SIZE]; 736 int ret, forced = 0; 737 738 if (!capable(CAP_SYS_MODULE) || modules_disabled) 739 return -EPERM; 740 741 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 742 return -EFAULT; 743 name[MODULE_NAME_LEN-1] = '\0'; 744 745 audit_log_kern_module(name); 746 747 if (mutex_lock_interruptible(&module_mutex) != 0) 748 return -EINTR; 749 750 mod = find_module(name); 751 if (!mod) { 752 ret = -ENOENT; 753 goto out; 754 } 755 756 if (!list_empty(&mod->source_list)) { 757 /* Other modules depend on us: get rid of them first. */ 758 ret = -EWOULDBLOCK; 759 goto out; 760 } 761 762 /* Doing init or already dying? */ 763 if (mod->state != MODULE_STATE_LIVE) { 764 /* FIXME: if (force), slam module count damn the torpedoes */ 765 pr_debug("%s already dying\n", mod->name); 766 ret = -EBUSY; 767 goto out; 768 } 769 770 /* If it has an init func, it must have an exit func to unload */ 771 if (mod->init && !mod->exit) { 772 forced = try_force_unload(flags); 773 if (!forced) { 774 /* This module can't be removed */ 775 ret = -EBUSY; 776 goto out; 777 } 778 } 779 780 ret = try_stop_module(mod, flags, &forced); 781 if (ret != 0) 782 goto out; 783 784 mutex_unlock(&module_mutex); 785 /* Final destruction now no one is using it. */ 786 if (mod->exit != NULL) 787 mod->exit(); 788 blocking_notifier_call_chain(&module_notify_list, 789 MODULE_STATE_GOING, mod); 790 klp_module_going(mod); 791 ftrace_release_mod(mod); 792 793 async_synchronize_full(); 794 795 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 796 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name)); 797 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints)); 798 799 free_module(mod); 800 /* someone could wait for the module in add_unformed_module() */ 801 wake_up_all(&module_wq); 802 return 0; 803 out: 804 mutex_unlock(&module_mutex); 805 return ret; 806 } 807 808 void __symbol_put(const char *symbol) 809 { 810 struct find_symbol_arg fsa = { 811 .name = symbol, 812 .gplok = true, 813 }; 814 815 preempt_disable(); 816 BUG_ON(!find_symbol(&fsa)); 817 module_put(fsa.owner); 818 preempt_enable(); 819 } 820 EXPORT_SYMBOL(__symbol_put); 821 822 /* Note this assumes addr is a function, which it currently always is. */ 823 void symbol_put_addr(void *addr) 824 { 825 struct module *modaddr; 826 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 827 828 if (core_kernel_text(a)) 829 return; 830 831 /* 832 * Even though we hold a reference on the module; we still need to 833 * disable preemption in order to safely traverse the data structure. 834 */ 835 preempt_disable(); 836 modaddr = __module_text_address(a); 837 BUG_ON(!modaddr); 838 module_put(modaddr); 839 preempt_enable(); 840 } 841 EXPORT_SYMBOL_GPL(symbol_put_addr); 842 843 static ssize_t show_refcnt(const struct module_attribute *mattr, 844 struct module_kobject *mk, char *buffer) 845 { 846 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 847 } 848 849 static const struct module_attribute modinfo_refcnt = 850 __ATTR(refcnt, 0444, show_refcnt, NULL); 851 852 void __module_get(struct module *module) 853 { 854 if (module) { 855 atomic_inc(&module->refcnt); 856 trace_module_get(module, _RET_IP_); 857 } 858 } 859 EXPORT_SYMBOL(__module_get); 860 861 bool try_module_get(struct module *module) 862 { 863 bool ret = true; 864 865 if (module) { 866 /* Note: here, we can fail to get a reference */ 867 if (likely(module_is_live(module) && 868 atomic_inc_not_zero(&module->refcnt) != 0)) 869 trace_module_get(module, _RET_IP_); 870 else 871 ret = false; 872 } 873 return ret; 874 } 875 EXPORT_SYMBOL(try_module_get); 876 877 void module_put(struct module *module) 878 { 879 int ret; 880 881 if (module) { 882 ret = atomic_dec_if_positive(&module->refcnt); 883 WARN_ON(ret < 0); /* Failed to put refcount */ 884 trace_module_put(module, _RET_IP_); 885 } 886 } 887 EXPORT_SYMBOL(module_put); 888 889 #else /* !CONFIG_MODULE_UNLOAD */ 890 static inline void module_unload_free(struct module *mod) 891 { 892 } 893 894 static int ref_module(struct module *a, struct module *b) 895 { 896 return strong_try_module_get(b); 897 } 898 899 static inline int module_unload_init(struct module *mod) 900 { 901 return 0; 902 } 903 #endif /* CONFIG_MODULE_UNLOAD */ 904 905 size_t module_flags_taint(unsigned long taints, char *buf) 906 { 907 size_t l = 0; 908 int i; 909 910 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 911 if (taint_flags[i].module && test_bit(i, &taints)) 912 buf[l++] = taint_flags[i].c_true; 913 } 914 915 return l; 916 } 917 918 static ssize_t show_initstate(const struct module_attribute *mattr, 919 struct module_kobject *mk, char *buffer) 920 { 921 const char *state = "unknown"; 922 923 switch (mk->mod->state) { 924 case MODULE_STATE_LIVE: 925 state = "live"; 926 break; 927 case MODULE_STATE_COMING: 928 state = "coming"; 929 break; 930 case MODULE_STATE_GOING: 931 state = "going"; 932 break; 933 default: 934 BUG(); 935 } 936 return sprintf(buffer, "%s\n", state); 937 } 938 939 static const struct module_attribute modinfo_initstate = 940 __ATTR(initstate, 0444, show_initstate, NULL); 941 942 static ssize_t store_uevent(const struct module_attribute *mattr, 943 struct module_kobject *mk, 944 const char *buffer, size_t count) 945 { 946 int rc; 947 948 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 949 return rc ? rc : count; 950 } 951 952 const struct module_attribute module_uevent = 953 __ATTR(uevent, 0200, NULL, store_uevent); 954 955 static ssize_t show_coresize(const struct module_attribute *mattr, 956 struct module_kobject *mk, char *buffer) 957 { 958 unsigned int size = mk->mod->mem[MOD_TEXT].size; 959 960 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 961 for_class_mod_mem_type(type, core_data) 962 size += mk->mod->mem[type].size; 963 } 964 return sprintf(buffer, "%u\n", size); 965 } 966 967 static const struct module_attribute modinfo_coresize = 968 __ATTR(coresize, 0444, show_coresize, NULL); 969 970 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 971 static ssize_t show_datasize(const struct module_attribute *mattr, 972 struct module_kobject *mk, char *buffer) 973 { 974 unsigned int size = 0; 975 976 for_class_mod_mem_type(type, core_data) 977 size += mk->mod->mem[type].size; 978 return sprintf(buffer, "%u\n", size); 979 } 980 981 static const struct module_attribute modinfo_datasize = 982 __ATTR(datasize, 0444, show_datasize, NULL); 983 #endif 984 985 static ssize_t show_initsize(const struct module_attribute *mattr, 986 struct module_kobject *mk, char *buffer) 987 { 988 unsigned int size = 0; 989 990 for_class_mod_mem_type(type, init) 991 size += mk->mod->mem[type].size; 992 return sprintf(buffer, "%u\n", size); 993 } 994 995 static const struct module_attribute modinfo_initsize = 996 __ATTR(initsize, 0444, show_initsize, NULL); 997 998 static ssize_t show_taint(const struct module_attribute *mattr, 999 struct module_kobject *mk, char *buffer) 1000 { 1001 size_t l; 1002 1003 l = module_flags_taint(mk->mod->taints, buffer); 1004 buffer[l++] = '\n'; 1005 return l; 1006 } 1007 1008 static const struct module_attribute modinfo_taint = 1009 __ATTR(taint, 0444, show_taint, NULL); 1010 1011 const struct module_attribute *const modinfo_attrs[] = { 1012 &module_uevent, 1013 &modinfo_version, 1014 &modinfo_srcversion, 1015 &modinfo_initstate, 1016 &modinfo_coresize, 1017 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1018 &modinfo_datasize, 1019 #endif 1020 &modinfo_initsize, 1021 &modinfo_taint, 1022 #ifdef CONFIG_MODULE_UNLOAD 1023 &modinfo_refcnt, 1024 #endif 1025 NULL, 1026 }; 1027 1028 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 1029 1030 static const char vermagic[] = VERMAGIC_STRING; 1031 1032 int try_to_force_load(struct module *mod, const char *reason) 1033 { 1034 #ifdef CONFIG_MODULE_FORCE_LOAD 1035 if (!test_taint(TAINT_FORCED_MODULE)) 1036 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1037 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1038 return 0; 1039 #else 1040 return -ENOEXEC; 1041 #endif 1042 } 1043 1044 /* Parse tag=value strings from .modinfo section */ 1045 char *module_next_tag_pair(char *string, unsigned long *secsize) 1046 { 1047 /* Skip non-zero chars */ 1048 while (string[0]) { 1049 string++; 1050 if ((*secsize)-- <= 1) 1051 return NULL; 1052 } 1053 1054 /* Skip any zero padding. */ 1055 while (!string[0]) { 1056 string++; 1057 if ((*secsize)-- <= 1) 1058 return NULL; 1059 } 1060 return string; 1061 } 1062 1063 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1064 char *prev) 1065 { 1066 char *p; 1067 unsigned int taglen = strlen(tag); 1068 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1069 unsigned long size = infosec->sh_size; 1070 1071 /* 1072 * get_modinfo() calls made before rewrite_section_headers() 1073 * must use sh_offset, as sh_addr isn't set! 1074 */ 1075 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1076 1077 if (prev) { 1078 size -= prev - modinfo; 1079 modinfo = module_next_tag_pair(prev, &size); 1080 } 1081 1082 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1083 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1084 return p + taglen + 1; 1085 } 1086 return NULL; 1087 } 1088 1089 static char *get_modinfo(const struct load_info *info, const char *tag) 1090 { 1091 return get_next_modinfo(info, tag, NULL); 1092 } 1093 1094 static int verify_namespace_is_imported(const struct load_info *info, 1095 const struct kernel_symbol *sym, 1096 struct module *mod) 1097 { 1098 const char *namespace; 1099 char *imported_namespace; 1100 1101 namespace = kernel_symbol_namespace(sym); 1102 if (namespace && namespace[0]) { 1103 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1104 if (strcmp(namespace, imported_namespace) == 0) 1105 return 0; 1106 } 1107 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1108 pr_warn( 1109 #else 1110 pr_err( 1111 #endif 1112 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1113 mod->name, kernel_symbol_name(sym), namespace); 1114 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1115 return -EINVAL; 1116 #endif 1117 } 1118 return 0; 1119 } 1120 1121 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1122 { 1123 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1124 return true; 1125 1126 if (mod->using_gplonly_symbols) { 1127 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1128 mod->name, name, owner->name); 1129 return false; 1130 } 1131 1132 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1133 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1134 mod->name, name, owner->name); 1135 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1136 } 1137 return true; 1138 } 1139 1140 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1141 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1142 const struct load_info *info, 1143 const char *name, 1144 char ownername[]) 1145 { 1146 struct find_symbol_arg fsa = { 1147 .name = name, 1148 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1149 .warn = true, 1150 }; 1151 int err; 1152 1153 /* 1154 * The module_mutex should not be a heavily contended lock; 1155 * if we get the occasional sleep here, we'll go an extra iteration 1156 * in the wait_event_interruptible(), which is harmless. 1157 */ 1158 sched_annotate_sleep(); 1159 mutex_lock(&module_mutex); 1160 if (!find_symbol(&fsa)) 1161 goto unlock; 1162 1163 if (fsa.license == GPL_ONLY) 1164 mod->using_gplonly_symbols = true; 1165 1166 if (!inherit_taint(mod, fsa.owner, name)) { 1167 fsa.sym = NULL; 1168 goto getname; 1169 } 1170 1171 if (!check_version(info, name, mod, fsa.crc)) { 1172 fsa.sym = ERR_PTR(-EINVAL); 1173 goto getname; 1174 } 1175 1176 err = verify_namespace_is_imported(info, fsa.sym, mod); 1177 if (err) { 1178 fsa.sym = ERR_PTR(err); 1179 goto getname; 1180 } 1181 1182 err = ref_module(mod, fsa.owner); 1183 if (err) { 1184 fsa.sym = ERR_PTR(err); 1185 goto getname; 1186 } 1187 1188 getname: 1189 /* We must make copy under the lock if we failed to get ref. */ 1190 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1191 unlock: 1192 mutex_unlock(&module_mutex); 1193 return fsa.sym; 1194 } 1195 1196 static const struct kernel_symbol * 1197 resolve_symbol_wait(struct module *mod, 1198 const struct load_info *info, 1199 const char *name) 1200 { 1201 const struct kernel_symbol *ksym; 1202 char owner[MODULE_NAME_LEN]; 1203 1204 if (wait_event_interruptible_timeout(module_wq, 1205 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1206 || PTR_ERR(ksym) != -EBUSY, 1207 30 * HZ) <= 0) { 1208 pr_warn("%s: gave up waiting for init of module %s.\n", 1209 mod->name, owner); 1210 } 1211 return ksym; 1212 } 1213 1214 void __weak module_arch_cleanup(struct module *mod) 1215 { 1216 } 1217 1218 void __weak module_arch_freeing_init(struct module *mod) 1219 { 1220 } 1221 1222 void *__module_writable_address(struct module *mod, void *loc) 1223 { 1224 for_class_mod_mem_type(type, text) { 1225 struct module_memory *mem = &mod->mem[type]; 1226 1227 if (loc >= mem->base && loc < mem->base + mem->size) 1228 return loc + (mem->rw_copy - mem->base); 1229 } 1230 1231 return loc; 1232 } 1233 1234 static int module_memory_alloc(struct module *mod, enum mod_mem_type type) 1235 { 1236 unsigned int size = PAGE_ALIGN(mod->mem[type].size); 1237 enum execmem_type execmem_type; 1238 void *ptr; 1239 1240 mod->mem[type].size = size; 1241 1242 if (mod_mem_type_is_data(type)) 1243 execmem_type = EXECMEM_MODULE_DATA; 1244 else 1245 execmem_type = EXECMEM_MODULE_TEXT; 1246 1247 ptr = execmem_alloc(execmem_type, size); 1248 if (!ptr) 1249 return -ENOMEM; 1250 1251 mod->mem[type].base = ptr; 1252 1253 if (execmem_is_rox(execmem_type)) { 1254 ptr = vzalloc(size); 1255 1256 if (!ptr) { 1257 execmem_free(mod->mem[type].base); 1258 return -ENOMEM; 1259 } 1260 1261 mod->mem[type].rw_copy = ptr; 1262 mod->mem[type].is_rox = true; 1263 } else { 1264 mod->mem[type].rw_copy = mod->mem[type].base; 1265 memset(mod->mem[type].base, 0, size); 1266 } 1267 1268 /* 1269 * The pointer to these blocks of memory are stored on the module 1270 * structure and we keep that around so long as the module is 1271 * around. We only free that memory when we unload the module. 1272 * Just mark them as not being a leak then. The .init* ELF 1273 * sections *do* get freed after boot so we *could* treat them 1274 * slightly differently with kmemleak_ignore() and only grey 1275 * them out as they work as typical memory allocations which 1276 * *do* eventually get freed, but let's just keep things simple 1277 * and avoid *any* false positives. 1278 */ 1279 kmemleak_not_leak(ptr); 1280 1281 return 0; 1282 } 1283 1284 static void module_memory_free(struct module *mod, enum mod_mem_type type) 1285 { 1286 struct module_memory *mem = &mod->mem[type]; 1287 1288 if (mem->is_rox) 1289 vfree(mem->rw_copy); 1290 1291 execmem_free(mem->base); 1292 } 1293 1294 static void free_mod_mem(struct module *mod) 1295 { 1296 for_each_mod_mem_type(type) { 1297 struct module_memory *mod_mem = &mod->mem[type]; 1298 1299 if (type == MOD_DATA) 1300 continue; 1301 1302 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1303 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1304 if (mod_mem->size) 1305 module_memory_free(mod, type); 1306 } 1307 1308 /* MOD_DATA hosts mod, so free it at last */ 1309 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1310 module_memory_free(mod, MOD_DATA); 1311 } 1312 1313 /* Free a module, remove from lists, etc. */ 1314 static void free_module(struct module *mod) 1315 { 1316 trace_module_free(mod); 1317 1318 codetag_unload_module(mod); 1319 1320 mod_sysfs_teardown(mod); 1321 1322 /* 1323 * We leave it in list to prevent duplicate loads, but make sure 1324 * that noone uses it while it's being deconstructed. 1325 */ 1326 mutex_lock(&module_mutex); 1327 mod->state = MODULE_STATE_UNFORMED; 1328 mutex_unlock(&module_mutex); 1329 1330 /* Arch-specific cleanup. */ 1331 module_arch_cleanup(mod); 1332 1333 /* Module unload stuff */ 1334 module_unload_free(mod); 1335 1336 /* Free any allocated parameters. */ 1337 destroy_params(mod->kp, mod->num_kp); 1338 1339 if (is_livepatch_module(mod)) 1340 free_module_elf(mod); 1341 1342 /* Now we can delete it from the lists */ 1343 mutex_lock(&module_mutex); 1344 /* Unlink carefully: kallsyms could be walking list. */ 1345 list_del_rcu(&mod->list); 1346 mod_tree_remove(mod); 1347 /* Remove this module from bug list, this uses list_del_rcu */ 1348 module_bug_cleanup(mod); 1349 /* Wait for RCU synchronizing before releasing mod->list and buglist. */ 1350 synchronize_rcu(); 1351 if (try_add_tainted_module(mod)) 1352 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1353 mod->name); 1354 mutex_unlock(&module_mutex); 1355 1356 /* This may be empty, but that's OK */ 1357 module_arch_freeing_init(mod); 1358 kfree(mod->args); 1359 percpu_modfree(mod); 1360 1361 free_mod_mem(mod); 1362 } 1363 1364 void *__symbol_get(const char *symbol) 1365 { 1366 struct find_symbol_arg fsa = { 1367 .name = symbol, 1368 .gplok = true, 1369 .warn = true, 1370 }; 1371 1372 preempt_disable(); 1373 if (!find_symbol(&fsa)) 1374 goto fail; 1375 if (fsa.license != GPL_ONLY) { 1376 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n", 1377 symbol); 1378 goto fail; 1379 } 1380 if (strong_try_module_get(fsa.owner)) 1381 goto fail; 1382 preempt_enable(); 1383 return (void *)kernel_symbol_value(fsa.sym); 1384 fail: 1385 preempt_enable(); 1386 return NULL; 1387 } 1388 EXPORT_SYMBOL_GPL(__symbol_get); 1389 1390 /* 1391 * Ensure that an exported symbol [global namespace] does not already exist 1392 * in the kernel or in some other module's exported symbol table. 1393 * 1394 * You must hold the module_mutex. 1395 */ 1396 static int verify_exported_symbols(struct module *mod) 1397 { 1398 unsigned int i; 1399 const struct kernel_symbol *s; 1400 struct { 1401 const struct kernel_symbol *sym; 1402 unsigned int num; 1403 } arr[] = { 1404 { mod->syms, mod->num_syms }, 1405 { mod->gpl_syms, mod->num_gpl_syms }, 1406 }; 1407 1408 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1409 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1410 struct find_symbol_arg fsa = { 1411 .name = kernel_symbol_name(s), 1412 .gplok = true, 1413 }; 1414 if (find_symbol(&fsa)) { 1415 pr_err("%s: exports duplicate symbol %s" 1416 " (owned by %s)\n", 1417 mod->name, kernel_symbol_name(s), 1418 module_name(fsa.owner)); 1419 return -ENOEXEC; 1420 } 1421 } 1422 } 1423 return 0; 1424 } 1425 1426 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1427 { 1428 /* 1429 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1430 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1431 * i386 has a similar problem but may not deserve a fix. 1432 * 1433 * If we ever have to ignore many symbols, consider refactoring the code to 1434 * only warn if referenced by a relocation. 1435 */ 1436 if (emachine == EM_386 || emachine == EM_X86_64) 1437 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1438 return false; 1439 } 1440 1441 /* Change all symbols so that st_value encodes the pointer directly. */ 1442 static int simplify_symbols(struct module *mod, const struct load_info *info) 1443 { 1444 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1445 Elf_Sym *sym = (void *)symsec->sh_addr; 1446 unsigned long secbase; 1447 unsigned int i; 1448 int ret = 0; 1449 const struct kernel_symbol *ksym; 1450 1451 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1452 const char *name = info->strtab + sym[i].st_name; 1453 1454 switch (sym[i].st_shndx) { 1455 case SHN_COMMON: 1456 /* Ignore common symbols */ 1457 if (!strncmp(name, "__gnu_lto", 9)) 1458 break; 1459 1460 /* 1461 * We compiled with -fno-common. These are not 1462 * supposed to happen. 1463 */ 1464 pr_debug("Common symbol: %s\n", name); 1465 pr_warn("%s: please compile with -fno-common\n", 1466 mod->name); 1467 ret = -ENOEXEC; 1468 break; 1469 1470 case SHN_ABS: 1471 /* Don't need to do anything */ 1472 pr_debug("Absolute symbol: 0x%08lx %s\n", 1473 (long)sym[i].st_value, name); 1474 break; 1475 1476 case SHN_LIVEPATCH: 1477 /* Livepatch symbols are resolved by livepatch */ 1478 break; 1479 1480 case SHN_UNDEF: 1481 ksym = resolve_symbol_wait(mod, info, name); 1482 /* Ok if resolved. */ 1483 if (ksym && !IS_ERR(ksym)) { 1484 sym[i].st_value = kernel_symbol_value(ksym); 1485 break; 1486 } 1487 1488 /* Ok if weak or ignored. */ 1489 if (!ksym && 1490 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1491 ignore_undef_symbol(info->hdr->e_machine, name))) 1492 break; 1493 1494 ret = PTR_ERR(ksym) ?: -ENOENT; 1495 pr_warn("%s: Unknown symbol %s (err %d)\n", 1496 mod->name, name, ret); 1497 break; 1498 1499 default: 1500 /* Divert to percpu allocation if a percpu var. */ 1501 if (sym[i].st_shndx == info->index.pcpu) 1502 secbase = (unsigned long)mod_percpu(mod); 1503 else 1504 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1505 sym[i].st_value += secbase; 1506 break; 1507 } 1508 } 1509 1510 return ret; 1511 } 1512 1513 static int apply_relocations(struct module *mod, const struct load_info *info) 1514 { 1515 unsigned int i; 1516 int err = 0; 1517 1518 /* Now do relocations. */ 1519 for (i = 1; i < info->hdr->e_shnum; i++) { 1520 unsigned int infosec = info->sechdrs[i].sh_info; 1521 1522 /* Not a valid relocation section? */ 1523 if (infosec >= info->hdr->e_shnum) 1524 continue; 1525 1526 /* Don't bother with non-allocated sections */ 1527 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1528 continue; 1529 1530 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1531 err = klp_apply_section_relocs(mod, info->sechdrs, 1532 info->secstrings, 1533 info->strtab, 1534 info->index.sym, i, 1535 NULL); 1536 else if (info->sechdrs[i].sh_type == SHT_REL) 1537 err = apply_relocate(info->sechdrs, info->strtab, 1538 info->index.sym, i, mod); 1539 else if (info->sechdrs[i].sh_type == SHT_RELA) 1540 err = apply_relocate_add(info->sechdrs, info->strtab, 1541 info->index.sym, i, mod); 1542 if (err < 0) 1543 break; 1544 } 1545 return err; 1546 } 1547 1548 /* Additional bytes needed by arch in front of individual sections */ 1549 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1550 unsigned int section) 1551 { 1552 /* default implementation just returns zero */ 1553 return 0; 1554 } 1555 1556 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1557 Elf_Shdr *sechdr, unsigned int section) 1558 { 1559 long offset; 1560 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1561 1562 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1563 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1564 mod->mem[type].size = offset + sechdr->sh_size; 1565 1566 WARN_ON_ONCE(offset & mask); 1567 return offset | mask; 1568 } 1569 1570 bool module_init_layout_section(const char *sname) 1571 { 1572 #ifndef CONFIG_MODULE_UNLOAD 1573 if (module_exit_section(sname)) 1574 return true; 1575 #endif 1576 return module_init_section(sname); 1577 } 1578 1579 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1580 { 1581 unsigned int m, i; 1582 1583 static const unsigned long masks[][2] = { 1584 /* 1585 * NOTE: all executable code must be the first section 1586 * in this array; otherwise modify the text_size 1587 * finder in the two loops below 1588 */ 1589 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1590 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1591 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1592 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1593 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1594 }; 1595 static const int core_m_to_mem_type[] = { 1596 MOD_TEXT, 1597 MOD_RODATA, 1598 MOD_RO_AFTER_INIT, 1599 MOD_DATA, 1600 MOD_DATA, 1601 }; 1602 static const int init_m_to_mem_type[] = { 1603 MOD_INIT_TEXT, 1604 MOD_INIT_RODATA, 1605 MOD_INVALID, 1606 MOD_INIT_DATA, 1607 MOD_INIT_DATA, 1608 }; 1609 1610 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1611 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1612 1613 for (i = 0; i < info->hdr->e_shnum; ++i) { 1614 Elf_Shdr *s = &info->sechdrs[i]; 1615 const char *sname = info->secstrings + s->sh_name; 1616 1617 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1618 || (s->sh_flags & masks[m][1]) 1619 || s->sh_entsize != ~0UL 1620 || is_init != module_init_layout_section(sname)) 1621 continue; 1622 1623 if (WARN_ON_ONCE(type == MOD_INVALID)) 1624 continue; 1625 1626 /* 1627 * Do not allocate codetag memory as we load it into 1628 * preallocated contiguous memory. 1629 */ 1630 if (codetag_needs_module_section(mod, sname, s->sh_size)) { 1631 /* 1632 * s->sh_entsize won't be used but populate the 1633 * type field to avoid confusion. 1634 */ 1635 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) 1636 << SH_ENTSIZE_TYPE_SHIFT; 1637 continue; 1638 } 1639 1640 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1641 pr_debug("\t%s\n", sname); 1642 } 1643 } 1644 } 1645 1646 /* 1647 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1648 * might -- code, read-only data, read-write data, small data. Tally 1649 * sizes, and place the offsets into sh_entsize fields: high bit means it 1650 * belongs in init. 1651 */ 1652 static void layout_sections(struct module *mod, struct load_info *info) 1653 { 1654 unsigned int i; 1655 1656 for (i = 0; i < info->hdr->e_shnum; i++) 1657 info->sechdrs[i].sh_entsize = ~0UL; 1658 1659 pr_debug("Core section allocation order for %s:\n", mod->name); 1660 __layout_sections(mod, info, false); 1661 1662 pr_debug("Init section allocation order for %s:\n", mod->name); 1663 __layout_sections(mod, info, true); 1664 } 1665 1666 static void module_license_taint_check(struct module *mod, const char *license) 1667 { 1668 if (!license) 1669 license = "unspecified"; 1670 1671 if (!license_is_gpl_compatible(license)) { 1672 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1673 pr_warn("%s: module license '%s' taints kernel.\n", 1674 mod->name, license); 1675 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1676 LOCKDEP_NOW_UNRELIABLE); 1677 } 1678 } 1679 1680 static void setup_modinfo(struct module *mod, struct load_info *info) 1681 { 1682 const struct module_attribute *attr; 1683 int i; 1684 1685 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1686 if (attr->setup) 1687 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1688 } 1689 } 1690 1691 static void free_modinfo(struct module *mod) 1692 { 1693 const struct module_attribute *attr; 1694 int i; 1695 1696 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1697 if (attr->free) 1698 attr->free(mod); 1699 } 1700 } 1701 1702 bool __weak module_init_section(const char *name) 1703 { 1704 return strstarts(name, ".init"); 1705 } 1706 1707 bool __weak module_exit_section(const char *name) 1708 { 1709 return strstarts(name, ".exit"); 1710 } 1711 1712 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr) 1713 { 1714 #if defined(CONFIG_64BIT) 1715 unsigned long long secend; 1716 #else 1717 unsigned long secend; 1718 #endif 1719 1720 /* 1721 * Check for both overflow and offset/size being 1722 * too large. 1723 */ 1724 secend = shdr->sh_offset + shdr->sh_size; 1725 if (secend < shdr->sh_offset || secend > info->len) 1726 return -ENOEXEC; 1727 1728 return 0; 1729 } 1730 1731 /** 1732 * elf_validity_ehdr() - Checks an ELF header for module validity 1733 * @info: Load info containing the ELF header to check 1734 * 1735 * Checks whether an ELF header could belong to a valid module. Checks: 1736 * 1737 * * ELF header is within the data the user provided 1738 * * ELF magic is present 1739 * * It is relocatable (not final linked, not core file, etc.) 1740 * * The header's machine type matches what the architecture expects. 1741 * * Optional arch-specific hook for other properties 1742 * - module_elf_check_arch() is currently only used by PPC to check 1743 * ELF ABI version, but may be used by others in the future. 1744 * 1745 * Return: %0 if valid, %-ENOEXEC on failure. 1746 */ 1747 static int elf_validity_ehdr(const struct load_info *info) 1748 { 1749 if (info->len < sizeof(*(info->hdr))) { 1750 pr_err("Invalid ELF header len %lu\n", info->len); 1751 return -ENOEXEC; 1752 } 1753 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1754 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1755 return -ENOEXEC; 1756 } 1757 if (info->hdr->e_type != ET_REL) { 1758 pr_err("Invalid ELF header type: %u != %u\n", 1759 info->hdr->e_type, ET_REL); 1760 return -ENOEXEC; 1761 } 1762 if (!elf_check_arch(info->hdr)) { 1763 pr_err("Invalid architecture in ELF header: %u\n", 1764 info->hdr->e_machine); 1765 return -ENOEXEC; 1766 } 1767 if (!module_elf_check_arch(info->hdr)) { 1768 pr_err("Invalid module architecture in ELF header: %u\n", 1769 info->hdr->e_machine); 1770 return -ENOEXEC; 1771 } 1772 return 0; 1773 } 1774 1775 /** 1776 * elf_validity_cache_sechdrs() - Cache section headers if valid 1777 * @info: Load info to compute section headers from 1778 * 1779 * Checks: 1780 * 1781 * * ELF header is valid (see elf_validity_ehdr()) 1782 * * Section headers are the size we expect 1783 * * Section array fits in the user provided data 1784 * * Section index 0 is NULL 1785 * * Section contents are inbounds 1786 * 1787 * Then updates @info with a &load_info->sechdrs pointer if valid. 1788 * 1789 * Return: %0 if valid, negative error code if validation failed. 1790 */ 1791 static int elf_validity_cache_sechdrs(struct load_info *info) 1792 { 1793 Elf_Shdr *sechdrs; 1794 Elf_Shdr *shdr; 1795 int i; 1796 int err; 1797 1798 err = elf_validity_ehdr(info); 1799 if (err < 0) 1800 return err; 1801 1802 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1803 pr_err("Invalid ELF section header size\n"); 1804 return -ENOEXEC; 1805 } 1806 1807 /* 1808 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1809 * known and small. So e_shnum * sizeof(Elf_Shdr) 1810 * will not overflow unsigned long on any platform. 1811 */ 1812 if (info->hdr->e_shoff >= info->len 1813 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1814 info->len - info->hdr->e_shoff)) { 1815 pr_err("Invalid ELF section header overflow\n"); 1816 return -ENOEXEC; 1817 } 1818 1819 sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1820 1821 /* 1822 * The code assumes that section 0 has a length of zero and 1823 * an addr of zero, so check for it. 1824 */ 1825 if (sechdrs[0].sh_type != SHT_NULL 1826 || sechdrs[0].sh_size != 0 1827 || sechdrs[0].sh_addr != 0) { 1828 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1829 sechdrs[0].sh_type); 1830 return -ENOEXEC; 1831 } 1832 1833 /* Validate contents are inbounds */ 1834 for (i = 1; i < info->hdr->e_shnum; i++) { 1835 shdr = &sechdrs[i]; 1836 switch (shdr->sh_type) { 1837 case SHT_NULL: 1838 case SHT_NOBITS: 1839 /* No contents, offset/size don't mean anything */ 1840 continue; 1841 default: 1842 err = validate_section_offset(info, shdr); 1843 if (err < 0) { 1844 pr_err("Invalid ELF section in module (section %u type %u)\n", 1845 i, shdr->sh_type); 1846 return err; 1847 } 1848 } 1849 } 1850 1851 info->sechdrs = sechdrs; 1852 1853 return 0; 1854 } 1855 1856 /** 1857 * elf_validity_cache_secstrings() - Caches section names if valid 1858 * @info: Load info to cache section names from. Must have valid sechdrs. 1859 * 1860 * Specifically checks: 1861 * 1862 * * Section name table index is inbounds of section headers 1863 * * Section name table is not empty 1864 * * Section name table is NUL terminated 1865 * * All section name offsets are inbounds of the section 1866 * 1867 * Then updates @info with a &load_info->secstrings pointer if valid. 1868 * 1869 * Return: %0 if valid, negative error code if validation failed. 1870 */ 1871 static int elf_validity_cache_secstrings(struct load_info *info) 1872 { 1873 Elf_Shdr *strhdr, *shdr; 1874 char *secstrings; 1875 int i; 1876 1877 /* 1878 * Verify if the section name table index is valid. 1879 */ 1880 if (info->hdr->e_shstrndx == SHN_UNDEF 1881 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1882 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1883 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1884 info->hdr->e_shnum); 1885 return -ENOEXEC; 1886 } 1887 1888 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1889 1890 /* 1891 * The section name table must be NUL-terminated, as required 1892 * by the spec. This makes strcmp and pr_* calls that access 1893 * strings in the section safe. 1894 */ 1895 secstrings = (void *)info->hdr + strhdr->sh_offset; 1896 if (strhdr->sh_size == 0) { 1897 pr_err("empty section name table\n"); 1898 return -ENOEXEC; 1899 } 1900 if (secstrings[strhdr->sh_size - 1] != '\0') { 1901 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1902 return -ENOEXEC; 1903 } 1904 1905 for (i = 0; i < info->hdr->e_shnum; i++) { 1906 shdr = &info->sechdrs[i]; 1907 /* SHT_NULL means sh_name has an undefined value */ 1908 if (shdr->sh_type == SHT_NULL) 1909 continue; 1910 if (shdr->sh_name >= strhdr->sh_size) { 1911 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1912 i, shdr->sh_type); 1913 return -ENOEXEC; 1914 } 1915 } 1916 1917 info->secstrings = secstrings; 1918 return 0; 1919 } 1920 1921 /** 1922 * elf_validity_cache_index_info() - Validate and cache modinfo section 1923 * @info: Load info to populate the modinfo index on. 1924 * Must have &load_info->sechdrs and &load_info->secstrings populated 1925 * 1926 * Checks that if there is a .modinfo section, it is unique. 1927 * Then, it caches its index in &load_info->index.info. 1928 * Finally, it tries to populate the name to improve error messages. 1929 * 1930 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found. 1931 */ 1932 static int elf_validity_cache_index_info(struct load_info *info) 1933 { 1934 int info_idx; 1935 1936 info_idx = find_any_unique_sec(info, ".modinfo"); 1937 1938 if (info_idx == 0) 1939 /* Early return, no .modinfo */ 1940 return 0; 1941 1942 if (info_idx < 0) { 1943 pr_err("Only one .modinfo section must exist.\n"); 1944 return -ENOEXEC; 1945 } 1946 1947 info->index.info = info_idx; 1948 /* Try to find a name early so we can log errors with a module name */ 1949 info->name = get_modinfo(info, "name"); 1950 1951 return 0; 1952 } 1953 1954 /** 1955 * elf_validity_cache_index_mod() - Validates and caches this_module section 1956 * @info: Load info to cache this_module on. 1957 * Must have &load_info->sechdrs and &load_info->secstrings populated 1958 * 1959 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost 1960 * uses to refer to __this_module and let's use rely on THIS_MODULE to point 1961 * to &__this_module properly. The kernel's modpost declares it on each 1962 * modules's *.mod.c file. If the struct module of the kernel changes a full 1963 * kernel rebuild is required. 1964 * 1965 * We have a few expectations for this special section, this function 1966 * validates all this for us: 1967 * 1968 * * The section has contents 1969 * * The section is unique 1970 * * We expect the kernel to always have to allocate it: SHF_ALLOC 1971 * * The section size must match the kernel's run time's struct module 1972 * size 1973 * 1974 * If all checks pass, the index will be cached in &load_info->index.mod 1975 * 1976 * Return: %0 on validation success, %-ENOEXEC on failure 1977 */ 1978 static int elf_validity_cache_index_mod(struct load_info *info) 1979 { 1980 Elf_Shdr *shdr; 1981 int mod_idx; 1982 1983 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module"); 1984 if (mod_idx <= 0) { 1985 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n", 1986 info->name ?: "(missing .modinfo section or name field)"); 1987 return -ENOEXEC; 1988 } 1989 1990 shdr = &info->sechdrs[mod_idx]; 1991 1992 if (shdr->sh_type == SHT_NOBITS) { 1993 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 1994 info->name ?: "(missing .modinfo section or name field)"); 1995 return -ENOEXEC; 1996 } 1997 1998 if (!(shdr->sh_flags & SHF_ALLOC)) { 1999 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 2000 info->name ?: "(missing .modinfo section or name field)"); 2001 return -ENOEXEC; 2002 } 2003 2004 if (shdr->sh_size != sizeof(struct module)) { 2005 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 2006 info->name ?: "(missing .modinfo section or name field)"); 2007 return -ENOEXEC; 2008 } 2009 2010 info->index.mod = mod_idx; 2011 2012 return 0; 2013 } 2014 2015 /** 2016 * elf_validity_cache_index_sym() - Validate and cache symtab index 2017 * @info: Load info to cache symtab index in. 2018 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2019 * 2020 * Checks that there is exactly one symbol table, then caches its index in 2021 * &load_info->index.sym. 2022 * 2023 * Return: %0 if valid, %-ENOEXEC on failure. 2024 */ 2025 static int elf_validity_cache_index_sym(struct load_info *info) 2026 { 2027 unsigned int sym_idx; 2028 unsigned int num_sym_secs = 0; 2029 int i; 2030 2031 for (i = 1; i < info->hdr->e_shnum; i++) { 2032 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 2033 num_sym_secs++; 2034 sym_idx = i; 2035 } 2036 } 2037 2038 if (num_sym_secs != 1) { 2039 pr_warn("%s: module has no symbols (stripped?)\n", 2040 info->name ?: "(missing .modinfo section or name field)"); 2041 return -ENOEXEC; 2042 } 2043 2044 info->index.sym = sym_idx; 2045 2046 return 0; 2047 } 2048 2049 /** 2050 * elf_validity_cache_index_str() - Validate and cache strtab index 2051 * @info: Load info to cache strtab index in. 2052 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2053 * Must have &load_info->index.sym populated. 2054 * 2055 * Looks at the symbol table's associated string table, makes sure it is 2056 * in-bounds, and caches it. 2057 * 2058 * Return: %0 if valid, %-ENOEXEC on failure. 2059 */ 2060 static int elf_validity_cache_index_str(struct load_info *info) 2061 { 2062 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link; 2063 2064 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) { 2065 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 2066 str_idx, str_idx, info->hdr->e_shnum); 2067 return -ENOEXEC; 2068 } 2069 2070 info->index.str = str_idx; 2071 return 0; 2072 } 2073 2074 /** 2075 * elf_validity_cache_index_versions() - Validate and cache version indices 2076 * @info: Load info to cache version indices in. 2077 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2078 * @flags: Load flags, relevant to suppress version loading, see 2079 * uapi/linux/module.h 2080 * 2081 * If we're ignoring modversions based on @flags, zero all version indices 2082 * and return validity. Othewrise check: 2083 * 2084 * * If "__version_ext_crcs" is present, "__version_ext_names" is present 2085 * * There is a name present for every crc 2086 * 2087 * Then populate: 2088 * 2089 * * &load_info->index.vers 2090 * * &load_info->index.vers_ext_crc 2091 * * &load_info->index.vers_ext_names 2092 * 2093 * if present. 2094 * 2095 * Return: %0 if valid, %-ENOEXEC on failure. 2096 */ 2097 static int elf_validity_cache_index_versions(struct load_info *info, int flags) 2098 { 2099 unsigned int vers_ext_crc; 2100 unsigned int vers_ext_name; 2101 size_t crc_count; 2102 size_t remaining_len; 2103 size_t name_size; 2104 char *name; 2105 2106 /* If modversions were suppressed, pretend we didn't find any */ 2107 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) { 2108 info->index.vers = 0; 2109 info->index.vers_ext_crc = 0; 2110 info->index.vers_ext_name = 0; 2111 return 0; 2112 } 2113 2114 vers_ext_crc = find_sec(info, "__version_ext_crcs"); 2115 vers_ext_name = find_sec(info, "__version_ext_names"); 2116 2117 /* If we have one field, we must have the other */ 2118 if (!!vers_ext_crc != !!vers_ext_name) { 2119 pr_err("extended version crc+name presence does not match"); 2120 return -ENOEXEC; 2121 } 2122 2123 /* 2124 * If we have extended version information, we should have the same 2125 * number of entries in every section. 2126 */ 2127 if (vers_ext_crc) { 2128 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32); 2129 name = (void *)info->hdr + 2130 info->sechdrs[vers_ext_name].sh_offset; 2131 remaining_len = info->sechdrs[vers_ext_name].sh_size; 2132 2133 while (crc_count--) { 2134 name_size = strnlen(name, remaining_len) + 1; 2135 if (name_size > remaining_len) { 2136 pr_err("more extended version crcs than names"); 2137 return -ENOEXEC; 2138 } 2139 remaining_len -= name_size; 2140 name += name_size; 2141 } 2142 } 2143 2144 info->index.vers = find_sec(info, "__versions"); 2145 info->index.vers_ext_crc = vers_ext_crc; 2146 info->index.vers_ext_name = vers_ext_name; 2147 return 0; 2148 } 2149 2150 /** 2151 * elf_validity_cache_index() - Resolve, validate, cache section indices 2152 * @info: Load info to read from and update. 2153 * &load_info->sechdrs and &load_info->secstrings must be populated. 2154 * @flags: Load flags, relevant to suppress version loading, see 2155 * uapi/linux/module.h 2156 * 2157 * Populates &load_info->index, validating as it goes. 2158 * See child functions for per-field validation: 2159 * 2160 * * elf_validity_cache_index_info() 2161 * * elf_validity_cache_index_mod() 2162 * * elf_validity_cache_index_sym() 2163 * * elf_validity_cache_index_str() 2164 * * elf_validity_cache_index_versions() 2165 * 2166 * If CONFIG_SMP is enabled, load the percpu section by name with no 2167 * validation. 2168 * 2169 * Return: 0 on success, negative error code if an index failed validation. 2170 */ 2171 static int elf_validity_cache_index(struct load_info *info, int flags) 2172 { 2173 int err; 2174 2175 err = elf_validity_cache_index_info(info); 2176 if (err < 0) 2177 return err; 2178 err = elf_validity_cache_index_mod(info); 2179 if (err < 0) 2180 return err; 2181 err = elf_validity_cache_index_sym(info); 2182 if (err < 0) 2183 return err; 2184 err = elf_validity_cache_index_str(info); 2185 if (err < 0) 2186 return err; 2187 err = elf_validity_cache_index_versions(info, flags); 2188 if (err < 0) 2189 return err; 2190 2191 info->index.pcpu = find_pcpusec(info); 2192 2193 return 0; 2194 } 2195 2196 /** 2197 * elf_validity_cache_strtab() - Validate and cache symbol string table 2198 * @info: Load info to read from and update. 2199 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2200 * Must have &load_info->index populated. 2201 * 2202 * Checks: 2203 * 2204 * * The string table is not empty. 2205 * * The string table starts and ends with NUL (required by ELF spec). 2206 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the 2207 * string table. 2208 * 2209 * And caches the pointer as &load_info->strtab in @info. 2210 * 2211 * Return: 0 on success, negative error code if a check failed. 2212 */ 2213 static int elf_validity_cache_strtab(struct load_info *info) 2214 { 2215 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str]; 2216 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym]; 2217 char *strtab = (char *)info->hdr + str_shdr->sh_offset; 2218 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset; 2219 int i; 2220 2221 if (str_shdr->sh_size == 0) { 2222 pr_err("empty symbol string table\n"); 2223 return -ENOEXEC; 2224 } 2225 if (strtab[0] != '\0') { 2226 pr_err("symbol string table missing leading NUL\n"); 2227 return -ENOEXEC; 2228 } 2229 if (strtab[str_shdr->sh_size - 1] != '\0') { 2230 pr_err("symbol string table isn't NUL terminated\n"); 2231 return -ENOEXEC; 2232 } 2233 2234 /* 2235 * Now that we know strtab is correctly structured, check symbol 2236 * starts are inbounds before they're used later. 2237 */ 2238 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) { 2239 if (syms[i].st_name >= str_shdr->sh_size) { 2240 pr_err("symbol name out of bounds in string table"); 2241 return -ENOEXEC; 2242 } 2243 } 2244 2245 info->strtab = strtab; 2246 return 0; 2247 } 2248 2249 /* 2250 * Check userspace passed ELF module against our expectations, and cache 2251 * useful variables for further processing as we go. 2252 * 2253 * This does basic validity checks against section offsets and sizes, the 2254 * section name string table, and the indices used for it (sh_name). 2255 * 2256 * As a last step, since we're already checking the ELF sections we cache 2257 * useful variables which will be used later for our convenience: 2258 * 2259 * o pointers to section headers 2260 * o cache the modinfo symbol section 2261 * o cache the string symbol section 2262 * o cache the module section 2263 * 2264 * As a last step we set info->mod to the temporary copy of the module in 2265 * info->hdr. The final one will be allocated in move_module(). Any 2266 * modifications we make to our copy of the module will be carried over 2267 * to the final minted module. 2268 */ 2269 static int elf_validity_cache_copy(struct load_info *info, int flags) 2270 { 2271 int err; 2272 2273 err = elf_validity_cache_sechdrs(info); 2274 if (err < 0) 2275 return err; 2276 err = elf_validity_cache_secstrings(info); 2277 if (err < 0) 2278 return err; 2279 err = elf_validity_cache_index(info, flags); 2280 if (err < 0) 2281 return err; 2282 err = elf_validity_cache_strtab(info); 2283 if (err < 0) 2284 return err; 2285 2286 /* This is temporary: point mod into copy of data. */ 2287 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 2288 2289 /* 2290 * If we didn't load the .modinfo 'name' field earlier, fall back to 2291 * on-disk struct mod 'name' field. 2292 */ 2293 if (!info->name) 2294 info->name = info->mod->name; 2295 2296 return 0; 2297 } 2298 2299 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 2300 2301 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 2302 { 2303 do { 2304 unsigned long n = min(len, COPY_CHUNK_SIZE); 2305 2306 if (copy_from_user(dst, usrc, n) != 0) 2307 return -EFAULT; 2308 cond_resched(); 2309 dst += n; 2310 usrc += n; 2311 len -= n; 2312 } while (len); 2313 return 0; 2314 } 2315 2316 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 2317 { 2318 if (!get_modinfo(info, "livepatch")) 2319 /* Nothing more to do */ 2320 return 0; 2321 2322 if (set_livepatch_module(mod)) 2323 return 0; 2324 2325 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 2326 mod->name); 2327 return -ENOEXEC; 2328 } 2329 2330 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 2331 { 2332 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 2333 return; 2334 2335 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 2336 mod->name); 2337 } 2338 2339 /* Sets info->hdr and info->len. */ 2340 static int copy_module_from_user(const void __user *umod, unsigned long len, 2341 struct load_info *info) 2342 { 2343 int err; 2344 2345 info->len = len; 2346 if (info->len < sizeof(*(info->hdr))) 2347 return -ENOEXEC; 2348 2349 err = security_kernel_load_data(LOADING_MODULE, true); 2350 if (err) 2351 return err; 2352 2353 /* Suck in entire file: we'll want most of it. */ 2354 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 2355 if (!info->hdr) 2356 return -ENOMEM; 2357 2358 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 2359 err = -EFAULT; 2360 goto out; 2361 } 2362 2363 err = security_kernel_post_load_data((char *)info->hdr, info->len, 2364 LOADING_MODULE, "init_module"); 2365 out: 2366 if (err) 2367 vfree(info->hdr); 2368 2369 return err; 2370 } 2371 2372 static void free_copy(struct load_info *info, int flags) 2373 { 2374 if (flags & MODULE_INIT_COMPRESSED_FILE) 2375 module_decompress_cleanup(info); 2376 else 2377 vfree(info->hdr); 2378 } 2379 2380 static int rewrite_section_headers(struct load_info *info, int flags) 2381 { 2382 unsigned int i; 2383 2384 /* This should always be true, but let's be sure. */ 2385 info->sechdrs[0].sh_addr = 0; 2386 2387 for (i = 1; i < info->hdr->e_shnum; i++) { 2388 Elf_Shdr *shdr = &info->sechdrs[i]; 2389 2390 /* 2391 * Mark all sections sh_addr with their address in the 2392 * temporary image. 2393 */ 2394 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 2395 2396 } 2397 2398 /* Track but don't keep modinfo and version sections. */ 2399 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 2400 info->sechdrs[info->index.vers_ext_crc].sh_flags &= 2401 ~(unsigned long)SHF_ALLOC; 2402 info->sechdrs[info->index.vers_ext_name].sh_flags &= 2403 ~(unsigned long)SHF_ALLOC; 2404 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 2405 2406 return 0; 2407 } 2408 2409 static const char *const module_license_offenders[] = { 2410 /* driverloader was caught wrongly pretending to be under GPL */ 2411 "driverloader", 2412 2413 /* lve claims to be GPL but upstream won't provide source */ 2414 "lve", 2415 }; 2416 2417 /* 2418 * These calls taint the kernel depending certain module circumstances */ 2419 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2420 { 2421 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2422 size_t i; 2423 2424 if (!get_modinfo(info, "intree")) { 2425 if (!test_taint(TAINT_OOT_MODULE)) 2426 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2427 mod->name); 2428 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2429 } 2430 2431 check_modinfo_retpoline(mod, info); 2432 2433 if (get_modinfo(info, "staging")) { 2434 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2435 pr_warn("%s: module is from the staging directory, the quality " 2436 "is unknown, you have been warned.\n", mod->name); 2437 } 2438 2439 if (is_livepatch_module(mod)) { 2440 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2441 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2442 mod->name); 2443 } 2444 2445 module_license_taint_check(mod, get_modinfo(info, "license")); 2446 2447 if (get_modinfo(info, "test")) { 2448 if (!test_taint(TAINT_TEST)) 2449 pr_warn("%s: loading test module taints kernel.\n", 2450 mod->name); 2451 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2452 } 2453 #ifdef CONFIG_MODULE_SIG 2454 mod->sig_ok = info->sig_ok; 2455 if (!mod->sig_ok) { 2456 pr_notice_once("%s: module verification failed: signature " 2457 "and/or required key missing - tainting " 2458 "kernel\n", mod->name); 2459 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2460 } 2461 #endif 2462 2463 /* 2464 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2465 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2466 * using GPL-only symbols it needs. 2467 */ 2468 if (strcmp(mod->name, "ndiswrapper") == 0) 2469 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2470 2471 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) { 2472 if (strcmp(mod->name, module_license_offenders[i]) == 0) 2473 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2474 LOCKDEP_NOW_UNRELIABLE); 2475 } 2476 2477 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2478 pr_warn("%s: module license taints kernel.\n", mod->name); 2479 2480 } 2481 2482 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2483 { 2484 const char *modmagic = get_modinfo(info, "vermagic"); 2485 int err; 2486 2487 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2488 modmagic = NULL; 2489 2490 /* This is allowed: modprobe --force will invalidate it. */ 2491 if (!modmagic) { 2492 err = try_to_force_load(mod, "bad vermagic"); 2493 if (err) 2494 return err; 2495 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2496 pr_err("%s: version magic '%s' should be '%s'\n", 2497 info->name, modmagic, vermagic); 2498 return -ENOEXEC; 2499 } 2500 2501 err = check_modinfo_livepatch(mod, info); 2502 if (err) 2503 return err; 2504 2505 return 0; 2506 } 2507 2508 static int find_module_sections(struct module *mod, struct load_info *info) 2509 { 2510 mod->kp = section_objs(info, "__param", 2511 sizeof(*mod->kp), &mod->num_kp); 2512 mod->syms = section_objs(info, "__ksymtab", 2513 sizeof(*mod->syms), &mod->num_syms); 2514 mod->crcs = section_addr(info, "__kcrctab"); 2515 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2516 sizeof(*mod->gpl_syms), 2517 &mod->num_gpl_syms); 2518 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2519 2520 #ifdef CONFIG_CONSTRUCTORS 2521 mod->ctors = section_objs(info, ".ctors", 2522 sizeof(*mod->ctors), &mod->num_ctors); 2523 if (!mod->ctors) 2524 mod->ctors = section_objs(info, ".init_array", 2525 sizeof(*mod->ctors), &mod->num_ctors); 2526 else if (find_sec(info, ".init_array")) { 2527 /* 2528 * This shouldn't happen with same compiler and binutils 2529 * building all parts of the module. 2530 */ 2531 pr_warn("%s: has both .ctors and .init_array.\n", 2532 mod->name); 2533 return -EINVAL; 2534 } 2535 #endif 2536 2537 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2538 &mod->noinstr_text_size); 2539 2540 #ifdef CONFIG_TRACEPOINTS 2541 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2542 sizeof(*mod->tracepoints_ptrs), 2543 &mod->num_tracepoints); 2544 #endif 2545 #ifdef CONFIG_TREE_SRCU 2546 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2547 sizeof(*mod->srcu_struct_ptrs), 2548 &mod->num_srcu_structs); 2549 #endif 2550 #ifdef CONFIG_BPF_EVENTS 2551 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2552 sizeof(*mod->bpf_raw_events), 2553 &mod->num_bpf_raw_events); 2554 #endif 2555 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2556 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2557 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1, 2558 &mod->btf_base_data_size); 2559 #endif 2560 #ifdef CONFIG_JUMP_LABEL 2561 mod->jump_entries = section_objs(info, "__jump_table", 2562 sizeof(*mod->jump_entries), 2563 &mod->num_jump_entries); 2564 #endif 2565 #ifdef CONFIG_EVENT_TRACING 2566 mod->trace_events = section_objs(info, "_ftrace_events", 2567 sizeof(*mod->trace_events), 2568 &mod->num_trace_events); 2569 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2570 sizeof(*mod->trace_evals), 2571 &mod->num_trace_evals); 2572 #endif 2573 #ifdef CONFIG_TRACING 2574 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2575 sizeof(*mod->trace_bprintk_fmt_start), 2576 &mod->num_trace_bprintk_fmt); 2577 #endif 2578 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2579 /* sechdrs[0].sh_size is always zero */ 2580 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2581 sizeof(*mod->ftrace_callsites), 2582 &mod->num_ftrace_callsites); 2583 #endif 2584 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2585 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2586 sizeof(*mod->ei_funcs), 2587 &mod->num_ei_funcs); 2588 #endif 2589 #ifdef CONFIG_KPROBES 2590 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2591 &mod->kprobes_text_size); 2592 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2593 sizeof(unsigned long), 2594 &mod->num_kprobe_blacklist); 2595 #endif 2596 #ifdef CONFIG_PRINTK_INDEX 2597 mod->printk_index_start = section_objs(info, ".printk_index", 2598 sizeof(*mod->printk_index_start), 2599 &mod->printk_index_size); 2600 #endif 2601 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2602 mod->static_call_sites = section_objs(info, ".static_call_sites", 2603 sizeof(*mod->static_call_sites), 2604 &mod->num_static_call_sites); 2605 #endif 2606 #if IS_ENABLED(CONFIG_KUNIT) 2607 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2608 sizeof(*mod->kunit_suites), 2609 &mod->num_kunit_suites); 2610 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites", 2611 sizeof(*mod->kunit_init_suites), 2612 &mod->num_kunit_init_suites); 2613 #endif 2614 2615 mod->extable = section_objs(info, "__ex_table", 2616 sizeof(*mod->extable), &mod->num_exentries); 2617 2618 if (section_addr(info, "__obsparm")) 2619 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2620 2621 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2622 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2623 sizeof(*mod->dyndbg_info.descs), 2624 &mod->dyndbg_info.num_descs); 2625 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2626 sizeof(*mod->dyndbg_info.classes), 2627 &mod->dyndbg_info.num_classes); 2628 #endif 2629 2630 return 0; 2631 } 2632 2633 static int move_module(struct module *mod, struct load_info *info) 2634 { 2635 int i; 2636 enum mod_mem_type t = 0; 2637 int ret = -ENOMEM; 2638 bool codetag_section_found = false; 2639 2640 for_each_mod_mem_type(type) { 2641 if (!mod->mem[type].size) { 2642 mod->mem[type].base = NULL; 2643 mod->mem[type].rw_copy = NULL; 2644 continue; 2645 } 2646 2647 ret = module_memory_alloc(mod, type); 2648 if (ret) { 2649 t = type; 2650 goto out_err; 2651 } 2652 } 2653 2654 /* Transfer each section which specifies SHF_ALLOC */ 2655 pr_debug("Final section addresses for %s:\n", mod->name); 2656 for (i = 0; i < info->hdr->e_shnum; i++) { 2657 void *dest; 2658 Elf_Shdr *shdr = &info->sechdrs[i]; 2659 const char *sname; 2660 unsigned long addr; 2661 2662 if (!(shdr->sh_flags & SHF_ALLOC)) 2663 continue; 2664 2665 sname = info->secstrings + shdr->sh_name; 2666 /* 2667 * Load codetag sections separately as they might still be used 2668 * after module unload. 2669 */ 2670 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) { 2671 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size, 2672 arch_mod_section_prepend(mod, i), shdr->sh_addralign); 2673 if (WARN_ON(!dest)) { 2674 ret = -EINVAL; 2675 goto out_err; 2676 } 2677 if (IS_ERR(dest)) { 2678 ret = PTR_ERR(dest); 2679 goto out_err; 2680 } 2681 addr = (unsigned long)dest; 2682 codetag_section_found = true; 2683 } else { 2684 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2685 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK; 2686 2687 addr = (unsigned long)mod->mem[type].base + offset; 2688 dest = mod->mem[type].rw_copy + offset; 2689 } 2690 2691 if (shdr->sh_type != SHT_NOBITS) { 2692 /* 2693 * Our ELF checker already validated this, but let's 2694 * be pedantic and make the goal clearer. We actually 2695 * end up copying over all modifications made to the 2696 * userspace copy of the entire struct module. 2697 */ 2698 if (i == info->index.mod && 2699 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2700 ret = -ENOEXEC; 2701 goto out_err; 2702 } 2703 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2704 } 2705 /* 2706 * Update the userspace copy's ELF section address to point to 2707 * our newly allocated memory as a pure convenience so that 2708 * users of info can keep taking advantage and using the newly 2709 * minted official memory area. 2710 */ 2711 shdr->sh_addr = addr; 2712 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2713 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2714 } 2715 2716 return 0; 2717 out_err: 2718 for (t--; t >= 0; t--) 2719 module_memory_free(mod, t); 2720 if (codetag_section_found) 2721 codetag_free_module_sections(mod); 2722 2723 return ret; 2724 } 2725 2726 static int check_export_symbol_versions(struct module *mod) 2727 { 2728 #ifdef CONFIG_MODVERSIONS 2729 if ((mod->num_syms && !mod->crcs) || 2730 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2731 return try_to_force_load(mod, 2732 "no versions for exported symbols"); 2733 } 2734 #endif 2735 return 0; 2736 } 2737 2738 static void flush_module_icache(const struct module *mod) 2739 { 2740 /* 2741 * Flush the instruction cache, since we've played with text. 2742 * Do it before processing of module parameters, so the module 2743 * can provide parameter accessor functions of its own. 2744 */ 2745 for_each_mod_mem_type(type) { 2746 const struct module_memory *mod_mem = &mod->mem[type]; 2747 2748 if (mod_mem->size) { 2749 flush_icache_range((unsigned long)mod_mem->base, 2750 (unsigned long)mod_mem->base + mod_mem->size); 2751 } 2752 } 2753 } 2754 2755 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2756 { 2757 return true; 2758 } 2759 2760 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2761 Elf_Shdr *sechdrs, 2762 char *secstrings, 2763 struct module *mod) 2764 { 2765 return 0; 2766 } 2767 2768 /* module_blacklist is a comma-separated list of module names */ 2769 static char *module_blacklist; 2770 static bool blacklisted(const char *module_name) 2771 { 2772 const char *p; 2773 size_t len; 2774 2775 if (!module_blacklist) 2776 return false; 2777 2778 for (p = module_blacklist; *p; p += len) { 2779 len = strcspn(p, ","); 2780 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2781 return true; 2782 if (p[len] == ',') 2783 len++; 2784 } 2785 return false; 2786 } 2787 core_param(module_blacklist, module_blacklist, charp, 0400); 2788 2789 static struct module *layout_and_allocate(struct load_info *info, int flags) 2790 { 2791 struct module *mod; 2792 unsigned int ndx; 2793 int err; 2794 2795 /* Allow arches to frob section contents and sizes. */ 2796 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2797 info->secstrings, info->mod); 2798 if (err < 0) 2799 return ERR_PTR(err); 2800 2801 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2802 info->secstrings, info->mod); 2803 if (err < 0) 2804 return ERR_PTR(err); 2805 2806 /* We will do a special allocation for per-cpu sections later. */ 2807 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2808 2809 /* 2810 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2811 * layout_sections() can put it in the right place. 2812 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2813 */ 2814 ndx = find_sec(info, ".data..ro_after_init"); 2815 if (ndx) 2816 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2817 /* 2818 * Mark the __jump_table section as ro_after_init as well: these data 2819 * structures are never modified, with the exception of entries that 2820 * refer to code in the __init section, which are annotated as such 2821 * at module load time. 2822 */ 2823 ndx = find_sec(info, "__jump_table"); 2824 if (ndx) 2825 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2826 2827 /* 2828 * Determine total sizes, and put offsets in sh_entsize. For now 2829 * this is done generically; there doesn't appear to be any 2830 * special cases for the architectures. 2831 */ 2832 layout_sections(info->mod, info); 2833 layout_symtab(info->mod, info); 2834 2835 /* Allocate and move to the final place */ 2836 err = move_module(info->mod, info); 2837 if (err) 2838 return ERR_PTR(err); 2839 2840 /* Module has been copied to its final place now: return it. */ 2841 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2842 kmemleak_load_module(mod, info); 2843 codetag_module_replaced(info->mod, mod); 2844 2845 return mod; 2846 } 2847 2848 /* mod is no longer valid after this! */ 2849 static void module_deallocate(struct module *mod, struct load_info *info) 2850 { 2851 percpu_modfree(mod); 2852 module_arch_freeing_init(mod); 2853 2854 free_mod_mem(mod); 2855 } 2856 2857 int __weak module_finalize(const Elf_Ehdr *hdr, 2858 const Elf_Shdr *sechdrs, 2859 struct module *me) 2860 { 2861 return 0; 2862 } 2863 2864 int __weak module_post_finalize(const Elf_Ehdr *hdr, 2865 const Elf_Shdr *sechdrs, 2866 struct module *me) 2867 { 2868 return 0; 2869 } 2870 2871 static int post_relocation(struct module *mod, const struct load_info *info) 2872 { 2873 int ret; 2874 2875 /* Sort exception table now relocations are done. */ 2876 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2877 2878 /* Copy relocated percpu area over. */ 2879 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2880 info->sechdrs[info->index.pcpu].sh_size); 2881 2882 /* Setup kallsyms-specific fields. */ 2883 add_kallsyms(mod, info); 2884 2885 /* Arch-specific module finalizing. */ 2886 ret = module_finalize(info->hdr, info->sechdrs, mod); 2887 if (ret) 2888 return ret; 2889 2890 for_each_mod_mem_type(type) { 2891 struct module_memory *mem = &mod->mem[type]; 2892 2893 if (mem->is_rox) { 2894 if (!execmem_update_copy(mem->base, mem->rw_copy, 2895 mem->size)) 2896 return -ENOMEM; 2897 2898 vfree(mem->rw_copy); 2899 mem->rw_copy = NULL; 2900 } 2901 } 2902 2903 return module_post_finalize(info->hdr, info->sechdrs, mod); 2904 } 2905 2906 /* Call module constructors. */ 2907 static void do_mod_ctors(struct module *mod) 2908 { 2909 #ifdef CONFIG_CONSTRUCTORS 2910 unsigned long i; 2911 2912 for (i = 0; i < mod->num_ctors; i++) 2913 mod->ctors[i](); 2914 #endif 2915 } 2916 2917 /* For freeing module_init on success, in case kallsyms traversing */ 2918 struct mod_initfree { 2919 struct llist_node node; 2920 void *init_text; 2921 void *init_data; 2922 void *init_rodata; 2923 }; 2924 2925 static void do_free_init(struct work_struct *w) 2926 { 2927 struct llist_node *pos, *n, *list; 2928 struct mod_initfree *initfree; 2929 2930 list = llist_del_all(&init_free_list); 2931 2932 synchronize_rcu(); 2933 2934 llist_for_each_safe(pos, n, list) { 2935 initfree = container_of(pos, struct mod_initfree, node); 2936 execmem_free(initfree->init_text); 2937 execmem_free(initfree->init_data); 2938 execmem_free(initfree->init_rodata); 2939 kfree(initfree); 2940 } 2941 } 2942 2943 void flush_module_init_free_work(void) 2944 { 2945 flush_work(&init_free_wq); 2946 } 2947 2948 #undef MODULE_PARAM_PREFIX 2949 #define MODULE_PARAM_PREFIX "module." 2950 /* Default value for module->async_probe_requested */ 2951 static bool async_probe; 2952 module_param(async_probe, bool, 0644); 2953 2954 /* 2955 * This is where the real work happens. 2956 * 2957 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2958 * helper command 'lx-symbols'. 2959 */ 2960 static noinline int do_init_module(struct module *mod) 2961 { 2962 int ret = 0; 2963 struct mod_initfree *freeinit; 2964 #if defined(CONFIG_MODULE_STATS) 2965 unsigned int text_size = 0, total_size = 0; 2966 2967 for_each_mod_mem_type(type) { 2968 const struct module_memory *mod_mem = &mod->mem[type]; 2969 if (mod_mem->size) { 2970 total_size += mod_mem->size; 2971 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 2972 text_size += mod_mem->size; 2973 } 2974 } 2975 #endif 2976 2977 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2978 if (!freeinit) { 2979 ret = -ENOMEM; 2980 goto fail; 2981 } 2982 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 2983 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 2984 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 2985 2986 do_mod_ctors(mod); 2987 /* Start the module */ 2988 if (mod->init != NULL) 2989 ret = do_one_initcall(mod->init); 2990 if (ret < 0) { 2991 goto fail_free_freeinit; 2992 } 2993 if (ret > 0) { 2994 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2995 "follow 0/-E convention\n" 2996 "%s: loading module anyway...\n", 2997 __func__, mod->name, ret, __func__); 2998 dump_stack(); 2999 } 3000 3001 /* Now it's a first class citizen! */ 3002 mod->state = MODULE_STATE_LIVE; 3003 blocking_notifier_call_chain(&module_notify_list, 3004 MODULE_STATE_LIVE, mod); 3005 3006 /* Delay uevent until module has finished its init routine */ 3007 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 3008 3009 /* 3010 * We need to finish all async code before the module init sequence 3011 * is done. This has potential to deadlock if synchronous module 3012 * loading is requested from async (which is not allowed!). 3013 * 3014 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 3015 * request_module() from async workers") for more details. 3016 */ 3017 if (!mod->async_probe_requested) 3018 async_synchronize_full(); 3019 3020 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 3021 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 3022 mutex_lock(&module_mutex); 3023 /* Drop initial reference. */ 3024 module_put(mod); 3025 trim_init_extable(mod); 3026 #ifdef CONFIG_KALLSYMS 3027 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 3028 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 3029 #endif 3030 ret = module_enable_rodata_ro_after_init(mod); 3031 if (ret) 3032 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, " 3033 "ro_after_init data might still be writable\n", 3034 mod->name, ret); 3035 3036 mod_tree_remove_init(mod); 3037 module_arch_freeing_init(mod); 3038 for_class_mod_mem_type(type, init) { 3039 mod->mem[type].base = NULL; 3040 mod->mem[type].size = 0; 3041 } 3042 3043 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 3044 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */ 3045 mod->btf_data = NULL; 3046 mod->btf_base_data = NULL; 3047 #endif 3048 /* 3049 * We want to free module_init, but be aware that kallsyms may be 3050 * walking this within an RCU read section. In all the failure paths, we 3051 * call synchronize_rcu(), but we don't want to slow down the success 3052 * path. execmem_free() cannot be called in an interrupt, so do the 3053 * work and call synchronize_rcu() in a work queue. 3054 * 3055 * Note that execmem_alloc() on most architectures creates W+X page 3056 * mappings which won't be cleaned up until do_free_init() runs. Any 3057 * code such as mark_rodata_ro() which depends on those mappings to 3058 * be cleaned up needs to sync with the queued work by invoking 3059 * flush_module_init_free_work(). 3060 */ 3061 if (llist_add(&freeinit->node, &init_free_list)) 3062 schedule_work(&init_free_wq); 3063 3064 mutex_unlock(&module_mutex); 3065 wake_up_all(&module_wq); 3066 3067 mod_stat_add_long(text_size, &total_text_size); 3068 mod_stat_add_long(total_size, &total_mod_size); 3069 3070 mod_stat_inc(&modcount); 3071 3072 return 0; 3073 3074 fail_free_freeinit: 3075 kfree(freeinit); 3076 fail: 3077 /* Try to protect us from buggy refcounters. */ 3078 mod->state = MODULE_STATE_GOING; 3079 synchronize_rcu(); 3080 module_put(mod); 3081 blocking_notifier_call_chain(&module_notify_list, 3082 MODULE_STATE_GOING, mod); 3083 klp_module_going(mod); 3084 ftrace_release_mod(mod); 3085 free_module(mod); 3086 wake_up_all(&module_wq); 3087 3088 return ret; 3089 } 3090 3091 static int may_init_module(void) 3092 { 3093 if (!capable(CAP_SYS_MODULE) || modules_disabled) 3094 return -EPERM; 3095 3096 return 0; 3097 } 3098 3099 /* Is this module of this name done loading? No locks held. */ 3100 static bool finished_loading(const char *name) 3101 { 3102 struct module *mod; 3103 bool ret; 3104 3105 /* 3106 * The module_mutex should not be a heavily contended lock; 3107 * if we get the occasional sleep here, we'll go an extra iteration 3108 * in the wait_event_interruptible(), which is harmless. 3109 */ 3110 sched_annotate_sleep(); 3111 mutex_lock(&module_mutex); 3112 mod = find_module_all(name, strlen(name), true); 3113 ret = !mod || mod->state == MODULE_STATE_LIVE 3114 || mod->state == MODULE_STATE_GOING; 3115 mutex_unlock(&module_mutex); 3116 3117 return ret; 3118 } 3119 3120 /* Must be called with module_mutex held */ 3121 static int module_patient_check_exists(const char *name, 3122 enum fail_dup_mod_reason reason) 3123 { 3124 struct module *old; 3125 int err = 0; 3126 3127 old = find_module_all(name, strlen(name), true); 3128 if (old == NULL) 3129 return 0; 3130 3131 if (old->state == MODULE_STATE_COMING || 3132 old->state == MODULE_STATE_UNFORMED) { 3133 /* Wait in case it fails to load. */ 3134 mutex_unlock(&module_mutex); 3135 err = wait_event_interruptible(module_wq, 3136 finished_loading(name)); 3137 mutex_lock(&module_mutex); 3138 if (err) 3139 return err; 3140 3141 /* The module might have gone in the meantime. */ 3142 old = find_module_all(name, strlen(name), true); 3143 } 3144 3145 if (try_add_failed_module(name, reason)) 3146 pr_warn("Could not add fail-tracking for module: %s\n", name); 3147 3148 /* 3149 * We are here only when the same module was being loaded. Do 3150 * not try to load it again right now. It prevents long delays 3151 * caused by serialized module load failures. It might happen 3152 * when more devices of the same type trigger load of 3153 * a particular module. 3154 */ 3155 if (old && old->state == MODULE_STATE_LIVE) 3156 return -EEXIST; 3157 return -EBUSY; 3158 } 3159 3160 /* 3161 * We try to place it in the list now to make sure it's unique before 3162 * we dedicate too many resources. In particular, temporary percpu 3163 * memory exhaustion. 3164 */ 3165 static int add_unformed_module(struct module *mod) 3166 { 3167 int err; 3168 3169 mod->state = MODULE_STATE_UNFORMED; 3170 3171 mutex_lock(&module_mutex); 3172 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 3173 if (err) 3174 goto out; 3175 3176 mod_update_bounds(mod); 3177 list_add_rcu(&mod->list, &modules); 3178 mod_tree_insert(mod); 3179 err = 0; 3180 3181 out: 3182 mutex_unlock(&module_mutex); 3183 return err; 3184 } 3185 3186 static int complete_formation(struct module *mod, struct load_info *info) 3187 { 3188 int err; 3189 3190 mutex_lock(&module_mutex); 3191 3192 /* Find duplicate symbols (must be called under lock). */ 3193 err = verify_exported_symbols(mod); 3194 if (err < 0) 3195 goto out; 3196 3197 /* These rely on module_mutex for list integrity. */ 3198 module_bug_finalize(info->hdr, info->sechdrs, mod); 3199 module_cfi_finalize(info->hdr, info->sechdrs, mod); 3200 3201 err = module_enable_rodata_ro(mod); 3202 if (err) 3203 goto out_strict_rwx; 3204 err = module_enable_data_nx(mod); 3205 if (err) 3206 goto out_strict_rwx; 3207 err = module_enable_text_rox(mod); 3208 if (err) 3209 goto out_strict_rwx; 3210 3211 /* 3212 * Mark state as coming so strong_try_module_get() ignores us, 3213 * but kallsyms etc. can see us. 3214 */ 3215 mod->state = MODULE_STATE_COMING; 3216 mutex_unlock(&module_mutex); 3217 3218 return 0; 3219 3220 out_strict_rwx: 3221 module_bug_cleanup(mod); 3222 out: 3223 mutex_unlock(&module_mutex); 3224 return err; 3225 } 3226 3227 static int prepare_coming_module(struct module *mod) 3228 { 3229 int err; 3230 3231 ftrace_module_enable(mod); 3232 err = klp_module_coming(mod); 3233 if (err) 3234 return err; 3235 3236 err = blocking_notifier_call_chain_robust(&module_notify_list, 3237 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 3238 err = notifier_to_errno(err); 3239 if (err) 3240 klp_module_going(mod); 3241 3242 return err; 3243 } 3244 3245 static int unknown_module_param_cb(char *param, char *val, const char *modname, 3246 void *arg) 3247 { 3248 struct module *mod = arg; 3249 int ret; 3250 3251 if (strcmp(param, "async_probe") == 0) { 3252 if (kstrtobool(val, &mod->async_probe_requested)) 3253 mod->async_probe_requested = true; 3254 return 0; 3255 } 3256 3257 /* Check for magic 'dyndbg' arg */ 3258 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 3259 if (ret != 0) 3260 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 3261 return 0; 3262 } 3263 3264 /* Module within temporary copy, this doesn't do any allocation */ 3265 static int early_mod_check(struct load_info *info, int flags) 3266 { 3267 int err; 3268 3269 /* 3270 * Now that we know we have the correct module name, check 3271 * if it's blacklisted. 3272 */ 3273 if (blacklisted(info->name)) { 3274 pr_err("Module %s is blacklisted\n", info->name); 3275 return -EPERM; 3276 } 3277 3278 err = rewrite_section_headers(info, flags); 3279 if (err) 3280 return err; 3281 3282 /* Check module struct version now, before we try to use module. */ 3283 if (!check_modstruct_version(info, info->mod)) 3284 return -ENOEXEC; 3285 3286 err = check_modinfo(info->mod, info, flags); 3287 if (err) 3288 return err; 3289 3290 mutex_lock(&module_mutex); 3291 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 3292 mutex_unlock(&module_mutex); 3293 3294 return err; 3295 } 3296 3297 /* 3298 * Allocate and load the module: note that size of section 0 is always 3299 * zero, and we rely on this for optional sections. 3300 */ 3301 static int load_module(struct load_info *info, const char __user *uargs, 3302 int flags) 3303 { 3304 struct module *mod; 3305 bool module_allocated = false; 3306 long err = 0; 3307 char *after_dashes; 3308 3309 /* 3310 * Do the signature check (if any) first. All that 3311 * the signature check needs is info->len, it does 3312 * not need any of the section info. That can be 3313 * set up later. This will minimize the chances 3314 * of a corrupt module causing problems before 3315 * we even get to the signature check. 3316 * 3317 * The check will also adjust info->len by stripping 3318 * off the sig length at the end of the module, making 3319 * checks against info->len more correct. 3320 */ 3321 err = module_sig_check(info, flags); 3322 if (err) 3323 goto free_copy; 3324 3325 /* 3326 * Do basic sanity checks against the ELF header and 3327 * sections. Cache useful sections and set the 3328 * info->mod to the userspace passed struct module. 3329 */ 3330 err = elf_validity_cache_copy(info, flags); 3331 if (err) 3332 goto free_copy; 3333 3334 err = early_mod_check(info, flags); 3335 if (err) 3336 goto free_copy; 3337 3338 /* Figure out module layout, and allocate all the memory. */ 3339 mod = layout_and_allocate(info, flags); 3340 if (IS_ERR(mod)) { 3341 err = PTR_ERR(mod); 3342 goto free_copy; 3343 } 3344 3345 module_allocated = true; 3346 3347 audit_log_kern_module(mod->name); 3348 3349 /* Reserve our place in the list. */ 3350 err = add_unformed_module(mod); 3351 if (err) 3352 goto free_module; 3353 3354 /* 3355 * We are tainting your kernel if your module gets into 3356 * the modules linked list somehow. 3357 */ 3358 module_augment_kernel_taints(mod, info); 3359 3360 /* To avoid stressing percpu allocator, do this once we're unique. */ 3361 err = percpu_modalloc(mod, info); 3362 if (err) 3363 goto unlink_mod; 3364 3365 /* Now module is in final location, initialize linked lists, etc. */ 3366 err = module_unload_init(mod); 3367 if (err) 3368 goto unlink_mod; 3369 3370 init_param_lock(mod); 3371 3372 /* 3373 * Now we've got everything in the final locations, we can 3374 * find optional sections. 3375 */ 3376 err = find_module_sections(mod, info); 3377 if (err) 3378 goto free_unload; 3379 3380 err = check_export_symbol_versions(mod); 3381 if (err) 3382 goto free_unload; 3383 3384 /* Set up MODINFO_ATTR fields */ 3385 setup_modinfo(mod, info); 3386 3387 /* Fix up syms, so that st_value is a pointer to location. */ 3388 err = simplify_symbols(mod, info); 3389 if (err < 0) 3390 goto free_modinfo; 3391 3392 err = apply_relocations(mod, info); 3393 if (err < 0) 3394 goto free_modinfo; 3395 3396 err = post_relocation(mod, info); 3397 if (err < 0) 3398 goto free_modinfo; 3399 3400 flush_module_icache(mod); 3401 3402 /* Now copy in args */ 3403 mod->args = strndup_user(uargs, ~0UL >> 1); 3404 if (IS_ERR(mod->args)) { 3405 err = PTR_ERR(mod->args); 3406 goto free_arch_cleanup; 3407 } 3408 3409 init_build_id(mod, info); 3410 3411 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 3412 ftrace_module_init(mod); 3413 3414 /* Finally it's fully formed, ready to start executing. */ 3415 err = complete_formation(mod, info); 3416 if (err) 3417 goto ddebug_cleanup; 3418 3419 err = prepare_coming_module(mod); 3420 if (err) 3421 goto bug_cleanup; 3422 3423 mod->async_probe_requested = async_probe; 3424 3425 /* Module is ready to execute: parsing args may do that. */ 3426 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 3427 -32768, 32767, mod, 3428 unknown_module_param_cb); 3429 if (IS_ERR(after_dashes)) { 3430 err = PTR_ERR(after_dashes); 3431 goto coming_cleanup; 3432 } else if (after_dashes) { 3433 pr_warn("%s: parameters '%s' after `--' ignored\n", 3434 mod->name, after_dashes); 3435 } 3436 3437 /* Link in to sysfs. */ 3438 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 3439 if (err < 0) 3440 goto coming_cleanup; 3441 3442 if (is_livepatch_module(mod)) { 3443 err = copy_module_elf(mod, info); 3444 if (err < 0) 3445 goto sysfs_cleanup; 3446 } 3447 3448 /* Get rid of temporary copy. */ 3449 free_copy(info, flags); 3450 3451 codetag_load_module(mod); 3452 3453 /* Done! */ 3454 trace_module_load(mod); 3455 3456 return do_init_module(mod); 3457 3458 sysfs_cleanup: 3459 mod_sysfs_teardown(mod); 3460 coming_cleanup: 3461 mod->state = MODULE_STATE_GOING; 3462 destroy_params(mod->kp, mod->num_kp); 3463 blocking_notifier_call_chain(&module_notify_list, 3464 MODULE_STATE_GOING, mod); 3465 klp_module_going(mod); 3466 bug_cleanup: 3467 mod->state = MODULE_STATE_GOING; 3468 /* module_bug_cleanup needs module_mutex protection */ 3469 mutex_lock(&module_mutex); 3470 module_bug_cleanup(mod); 3471 mutex_unlock(&module_mutex); 3472 3473 ddebug_cleanup: 3474 ftrace_release_mod(mod); 3475 synchronize_rcu(); 3476 kfree(mod->args); 3477 free_arch_cleanup: 3478 module_arch_cleanup(mod); 3479 free_modinfo: 3480 free_modinfo(mod); 3481 free_unload: 3482 module_unload_free(mod); 3483 unlink_mod: 3484 mutex_lock(&module_mutex); 3485 /* Unlink carefully: kallsyms could be walking list. */ 3486 list_del_rcu(&mod->list); 3487 mod_tree_remove(mod); 3488 wake_up_all(&module_wq); 3489 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3490 synchronize_rcu(); 3491 mutex_unlock(&module_mutex); 3492 free_module: 3493 mod_stat_bump_invalid(info, flags); 3494 /* Free lock-classes; relies on the preceding sync_rcu() */ 3495 for_class_mod_mem_type(type, core_data) { 3496 lockdep_free_key_range(mod->mem[type].base, 3497 mod->mem[type].size); 3498 } 3499 3500 module_deallocate(mod, info); 3501 free_copy: 3502 /* 3503 * The info->len is always set. We distinguish between 3504 * failures once the proper module was allocated and 3505 * before that. 3506 */ 3507 if (!module_allocated) 3508 mod_stat_bump_becoming(info, flags); 3509 free_copy(info, flags); 3510 return err; 3511 } 3512 3513 SYSCALL_DEFINE3(init_module, void __user *, umod, 3514 unsigned long, len, const char __user *, uargs) 3515 { 3516 int err; 3517 struct load_info info = { }; 3518 3519 err = may_init_module(); 3520 if (err) 3521 return err; 3522 3523 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3524 umod, len, uargs); 3525 3526 err = copy_module_from_user(umod, len, &info); 3527 if (err) { 3528 mod_stat_inc(&failed_kreads); 3529 mod_stat_add_long(len, &invalid_kread_bytes); 3530 return err; 3531 } 3532 3533 return load_module(&info, uargs, 0); 3534 } 3535 3536 struct idempotent { 3537 const void *cookie; 3538 struct hlist_node entry; 3539 struct completion complete; 3540 int ret; 3541 }; 3542 3543 #define IDEM_HASH_BITS 8 3544 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3545 static DEFINE_SPINLOCK(idem_lock); 3546 3547 static bool idempotent(struct idempotent *u, const void *cookie) 3548 { 3549 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3550 struct hlist_head *head = idem_hash + hash; 3551 struct idempotent *existing; 3552 bool first; 3553 3554 u->ret = -EINTR; 3555 u->cookie = cookie; 3556 init_completion(&u->complete); 3557 3558 spin_lock(&idem_lock); 3559 first = true; 3560 hlist_for_each_entry(existing, head, entry) { 3561 if (existing->cookie != cookie) 3562 continue; 3563 first = false; 3564 break; 3565 } 3566 hlist_add_head(&u->entry, idem_hash + hash); 3567 spin_unlock(&idem_lock); 3568 3569 return !first; 3570 } 3571 3572 /* 3573 * We were the first one with 'cookie' on the list, and we ended 3574 * up completing the operation. We now need to walk the list, 3575 * remove everybody - which includes ourselves - fill in the return 3576 * value, and then complete the operation. 3577 */ 3578 static int idempotent_complete(struct idempotent *u, int ret) 3579 { 3580 const void *cookie = u->cookie; 3581 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3582 struct hlist_head *head = idem_hash + hash; 3583 struct hlist_node *next; 3584 struct idempotent *pos; 3585 3586 spin_lock(&idem_lock); 3587 hlist_for_each_entry_safe(pos, next, head, entry) { 3588 if (pos->cookie != cookie) 3589 continue; 3590 hlist_del_init(&pos->entry); 3591 pos->ret = ret; 3592 complete(&pos->complete); 3593 } 3594 spin_unlock(&idem_lock); 3595 return ret; 3596 } 3597 3598 /* 3599 * Wait for the idempotent worker. 3600 * 3601 * If we get interrupted, we need to remove ourselves from the 3602 * the idempotent list, and the completion may still come in. 3603 * 3604 * The 'idem_lock' protects against the race, and 'idem.ret' was 3605 * initialized to -EINTR and is thus always the right return 3606 * value even if the idempotent work then completes between 3607 * the wait_for_completion and the cleanup. 3608 */ 3609 static int idempotent_wait_for_completion(struct idempotent *u) 3610 { 3611 if (wait_for_completion_interruptible(&u->complete)) { 3612 spin_lock(&idem_lock); 3613 if (!hlist_unhashed(&u->entry)) 3614 hlist_del(&u->entry); 3615 spin_unlock(&idem_lock); 3616 } 3617 return u->ret; 3618 } 3619 3620 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3621 { 3622 struct load_info info = { }; 3623 void *buf = NULL; 3624 int len; 3625 3626 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3627 if (len < 0) { 3628 mod_stat_inc(&failed_kreads); 3629 return len; 3630 } 3631 3632 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3633 int err = module_decompress(&info, buf, len); 3634 vfree(buf); /* compressed data is no longer needed */ 3635 if (err) { 3636 mod_stat_inc(&failed_decompress); 3637 mod_stat_add_long(len, &invalid_decompress_bytes); 3638 return err; 3639 } 3640 } else { 3641 info.hdr = buf; 3642 info.len = len; 3643 } 3644 3645 return load_module(&info, uargs, flags); 3646 } 3647 3648 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3649 { 3650 struct idempotent idem; 3651 3652 if (!(f->f_mode & FMODE_READ)) 3653 return -EBADF; 3654 3655 /* Are we the winners of the race and get to do this? */ 3656 if (!idempotent(&idem, file_inode(f))) { 3657 int ret = init_module_from_file(f, uargs, flags); 3658 return idempotent_complete(&idem, ret); 3659 } 3660 3661 /* 3662 * Somebody else won the race and is loading the module. 3663 */ 3664 return idempotent_wait_for_completion(&idem); 3665 } 3666 3667 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3668 { 3669 int err = may_init_module(); 3670 if (err) 3671 return err; 3672 3673 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3674 3675 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3676 |MODULE_INIT_IGNORE_VERMAGIC 3677 |MODULE_INIT_COMPRESSED_FILE)) 3678 return -EINVAL; 3679 3680 CLASS(fd, f)(fd); 3681 if (fd_empty(f)) 3682 return -EBADF; 3683 return idempotent_init_module(fd_file(f), uargs, flags); 3684 } 3685 3686 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3687 char *module_flags(struct module *mod, char *buf, bool show_state) 3688 { 3689 int bx = 0; 3690 3691 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3692 if (!mod->taints && !show_state) 3693 goto out; 3694 if (mod->taints || 3695 mod->state == MODULE_STATE_GOING || 3696 mod->state == MODULE_STATE_COMING) { 3697 buf[bx++] = '('; 3698 bx += module_flags_taint(mod->taints, buf + bx); 3699 /* Show a - for module-is-being-unloaded */ 3700 if (mod->state == MODULE_STATE_GOING && show_state) 3701 buf[bx++] = '-'; 3702 /* Show a + for module-is-being-loaded */ 3703 if (mod->state == MODULE_STATE_COMING && show_state) 3704 buf[bx++] = '+'; 3705 buf[bx++] = ')'; 3706 } 3707 out: 3708 buf[bx] = '\0'; 3709 3710 return buf; 3711 } 3712 3713 /* Given an address, look for it in the module exception tables. */ 3714 const struct exception_table_entry *search_module_extables(unsigned long addr) 3715 { 3716 const struct exception_table_entry *e = NULL; 3717 struct module *mod; 3718 3719 preempt_disable(); 3720 mod = __module_address(addr); 3721 if (!mod) 3722 goto out; 3723 3724 if (!mod->num_exentries) 3725 goto out; 3726 3727 e = search_extable(mod->extable, 3728 mod->num_exentries, 3729 addr); 3730 out: 3731 preempt_enable(); 3732 3733 /* 3734 * Now, if we found one, we are running inside it now, hence 3735 * we cannot unload the module, hence no refcnt needed. 3736 */ 3737 return e; 3738 } 3739 3740 /** 3741 * is_module_address() - is this address inside a module? 3742 * @addr: the address to check. 3743 * 3744 * See is_module_text_address() if you simply want to see if the address 3745 * is code (not data). 3746 */ 3747 bool is_module_address(unsigned long addr) 3748 { 3749 bool ret; 3750 3751 preempt_disable(); 3752 ret = __module_address(addr) != NULL; 3753 preempt_enable(); 3754 3755 return ret; 3756 } 3757 3758 /** 3759 * __module_address() - get the module which contains an address. 3760 * @addr: the address. 3761 * 3762 * Must be called with preempt disabled or module mutex held so that 3763 * module doesn't get freed during this. 3764 */ 3765 struct module *__module_address(unsigned long addr) 3766 { 3767 struct module *mod; 3768 3769 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3770 goto lookup; 3771 3772 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3773 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3774 goto lookup; 3775 #endif 3776 3777 return NULL; 3778 3779 lookup: 3780 module_assert_mutex_or_preempt(); 3781 3782 mod = mod_find(addr, &mod_tree); 3783 if (mod) { 3784 BUG_ON(!within_module(addr, mod)); 3785 if (mod->state == MODULE_STATE_UNFORMED) 3786 mod = NULL; 3787 } 3788 return mod; 3789 } 3790 3791 /** 3792 * is_module_text_address() - is this address inside module code? 3793 * @addr: the address to check. 3794 * 3795 * See is_module_address() if you simply want to see if the address is 3796 * anywhere in a module. See kernel_text_address() for testing if an 3797 * address corresponds to kernel or module code. 3798 */ 3799 bool is_module_text_address(unsigned long addr) 3800 { 3801 bool ret; 3802 3803 preempt_disable(); 3804 ret = __module_text_address(addr) != NULL; 3805 preempt_enable(); 3806 3807 return ret; 3808 } 3809 3810 /** 3811 * __module_text_address() - get the module whose code contains an address. 3812 * @addr: the address. 3813 * 3814 * Must be called with preempt disabled or module mutex held so that 3815 * module doesn't get freed during this. 3816 */ 3817 struct module *__module_text_address(unsigned long addr) 3818 { 3819 struct module *mod = __module_address(addr); 3820 if (mod) { 3821 /* Make sure it's within the text section. */ 3822 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3823 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3824 mod = NULL; 3825 } 3826 return mod; 3827 } 3828 3829 /* Don't grab lock, we're oopsing. */ 3830 void print_modules(void) 3831 { 3832 struct module *mod; 3833 char buf[MODULE_FLAGS_BUF_SIZE]; 3834 3835 printk(KERN_DEFAULT "Modules linked in:"); 3836 /* Most callers should already have preempt disabled, but make sure */ 3837 guard(rcu)(); 3838 list_for_each_entry_rcu(mod, &modules, list) { 3839 if (mod->state == MODULE_STATE_UNFORMED) 3840 continue; 3841 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3842 } 3843 3844 print_unloaded_tainted_modules(); 3845 if (last_unloaded_module.name[0]) 3846 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3847 last_unloaded_module.taints); 3848 pr_cont("\n"); 3849 } 3850 3851 #ifdef CONFIG_MODULE_DEBUGFS 3852 struct dentry *mod_debugfs_root; 3853 3854 static int module_debugfs_init(void) 3855 { 3856 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3857 return 0; 3858 } 3859 module_init(module_debugfs_init); 3860 #endif 3861