xref: /linux-6.15/kernel/module/main.c (revision d593e0ca)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <[email protected]>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 /*
69  * Mutex protects:
70  * 1) List of modules (also safely readable within RCU read section),
71  * 2) module_use links,
72  * 3) mod_tree.addr_min/mod_tree.addr_max.
73  * (delete and add uses RCU list operations).
74  */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77 
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82 
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 
87 struct symsearch {
88 	const struct kernel_symbol *start, *stop;
89 	const u32 *crcs;
90 	enum mod_license license;
91 };
92 
93 /*
94  * Bounds of module memory, for speeding up __module_address.
95  * Protected by module_mutex.
96  */
97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 				unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 	if (mod_mem_type_is_core_data(type)) {
105 		if (min < tree->data_addr_min)
106 			tree->data_addr_min = min;
107 		if (max > tree->data_addr_max)
108 			tree->data_addr_max = max;
109 		return;
110 	}
111 #endif
112 	if (min < tree->addr_min)
113 		tree->addr_min = min;
114 	if (max > tree->addr_max)
115 		tree->addr_max = max;
116 }
117 
118 static void mod_update_bounds(struct module *mod)
119 {
120 	for_each_mod_mem_type(type) {
121 		struct module_memory *mod_mem = &mod->mem[type];
122 
123 		if (mod_mem->size)
124 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 	}
126 }
127 
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131 
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134 
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136 
137 int register_module_notifier(struct notifier_block *nb)
138 {
139 	return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142 
143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148 
149 /*
150  * We require a truly strong try_module_get(): 0 means success.
151  * Otherwise an error is returned due to ongoing or failed
152  * initialization etc.
153  */
154 static inline int strong_try_module_get(struct module *mod)
155 {
156 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 	if (mod && mod->state == MODULE_STATE_COMING)
158 		return -EBUSY;
159 	if (try_module_get(mod))
160 		return 0;
161 	else
162 		return -ENOENT;
163 }
164 
165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 				    enum lockdep_ok lockdep_ok)
167 {
168 	add_taint(flag, lockdep_ok);
169 	set_bit(flag, &mod->taints);
170 }
171 
172 /*
173  * A thread that wants to hold a reference to a module only while it
174  * is running can call this to safely exit.
175  */
176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
177 {
178 	module_put(mod);
179 	kthread_exit(code);
180 }
181 EXPORT_SYMBOL(__module_put_and_kthread_exit);
182 
183 /* Find a module section: 0 means not found. */
184 static unsigned int find_sec(const struct load_info *info, const char *name)
185 {
186 	unsigned int i;
187 
188 	for (i = 1; i < info->hdr->e_shnum; i++) {
189 		Elf_Shdr *shdr = &info->sechdrs[i];
190 		/* Alloc bit cleared means "ignore it." */
191 		if ((shdr->sh_flags & SHF_ALLOC)
192 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
193 			return i;
194 	}
195 	return 0;
196 }
197 
198 /**
199  * find_any_unique_sec() - Find a unique section index by name
200  * @info: Load info for the module to scan
201  * @name: Name of the section we're looking for
202  *
203  * Locates a unique section by name. Ignores SHF_ALLOC.
204  *
205  * Return: Section index if found uniquely, zero if absent, negative count
206  *         of total instances if multiple were found.
207  */
208 static int find_any_unique_sec(const struct load_info *info, const char *name)
209 {
210 	unsigned int idx;
211 	unsigned int count = 0;
212 	int i;
213 
214 	for (i = 1; i < info->hdr->e_shnum; i++) {
215 		if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
216 			   name) == 0) {
217 			count++;
218 			idx = i;
219 		}
220 	}
221 	if (count == 1) {
222 		return idx;
223 	} else if (count == 0) {
224 		return 0;
225 	} else {
226 		return -count;
227 	}
228 }
229 
230 /* Find a module section, or NULL. */
231 static void *section_addr(const struct load_info *info, const char *name)
232 {
233 	/* Section 0 has sh_addr 0. */
234 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
235 }
236 
237 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
238 static void *section_objs(const struct load_info *info,
239 			  const char *name,
240 			  size_t object_size,
241 			  unsigned int *num)
242 {
243 	unsigned int sec = find_sec(info, name);
244 
245 	/* Section 0 has sh_addr 0 and sh_size 0. */
246 	*num = info->sechdrs[sec].sh_size / object_size;
247 	return (void *)info->sechdrs[sec].sh_addr;
248 }
249 
250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
251 static unsigned int find_any_sec(const struct load_info *info, const char *name)
252 {
253 	unsigned int i;
254 
255 	for (i = 1; i < info->hdr->e_shnum; i++) {
256 		Elf_Shdr *shdr = &info->sechdrs[i];
257 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
258 			return i;
259 	}
260 	return 0;
261 }
262 
263 /*
264  * Find a module section, or NULL. Fill in number of "objects" in section.
265  * Ignores SHF_ALLOC flag.
266  */
267 static __maybe_unused void *any_section_objs(const struct load_info *info,
268 					     const char *name,
269 					     size_t object_size,
270 					     unsigned int *num)
271 {
272 	unsigned int sec = find_any_sec(info, name);
273 
274 	/* Section 0 has sh_addr 0 and sh_size 0. */
275 	*num = info->sechdrs[sec].sh_size / object_size;
276 	return (void *)info->sechdrs[sec].sh_addr;
277 }
278 
279 #ifndef CONFIG_MODVERSIONS
280 #define symversion(base, idx) NULL
281 #else
282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
283 #endif
284 
285 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
286 {
287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
288 	return offset_to_ptr(&sym->name_offset);
289 #else
290 	return sym->name;
291 #endif
292 }
293 
294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
295 {
296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
297 	if (!sym->namespace_offset)
298 		return NULL;
299 	return offset_to_ptr(&sym->namespace_offset);
300 #else
301 	return sym->namespace;
302 #endif
303 }
304 
305 int cmp_name(const void *name, const void *sym)
306 {
307 	return strcmp(name, kernel_symbol_name(sym));
308 }
309 
310 static bool find_exported_symbol_in_section(const struct symsearch *syms,
311 					    struct module *owner,
312 					    struct find_symbol_arg *fsa)
313 {
314 	struct kernel_symbol *sym;
315 
316 	if (!fsa->gplok && syms->license == GPL_ONLY)
317 		return false;
318 
319 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
320 			sizeof(struct kernel_symbol), cmp_name);
321 	if (!sym)
322 		return false;
323 
324 	fsa->owner = owner;
325 	fsa->crc = symversion(syms->crcs, sym - syms->start);
326 	fsa->sym = sym;
327 	fsa->license = syms->license;
328 
329 	return true;
330 }
331 
332 /*
333  * Find an exported symbol and return it, along with, (optional) crc and
334  * (optional) module which owns it. Needs RCU or module_mutex.
335  */
336 bool find_symbol(struct find_symbol_arg *fsa)
337 {
338 	static const struct symsearch arr[] = {
339 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
340 		  NOT_GPL_ONLY },
341 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
342 		  __start___kcrctab_gpl,
343 		  GPL_ONLY },
344 	};
345 	struct module *mod;
346 	unsigned int i;
347 
348 	for (i = 0; i < ARRAY_SIZE(arr); i++)
349 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
350 			return true;
351 
352 	list_for_each_entry_rcu(mod, &modules, list,
353 				lockdep_is_held(&module_mutex)) {
354 		struct symsearch arr[] = {
355 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
356 			  NOT_GPL_ONLY },
357 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
358 			  mod->gpl_crcs,
359 			  GPL_ONLY },
360 		};
361 
362 		if (mod->state == MODULE_STATE_UNFORMED)
363 			continue;
364 
365 		for (i = 0; i < ARRAY_SIZE(arr); i++)
366 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
367 				return true;
368 	}
369 
370 	pr_debug("Failed to find symbol %s\n", fsa->name);
371 	return false;
372 }
373 
374 /*
375  * Search for module by name: must hold module_mutex (or RCU for read-only
376  * access).
377  */
378 struct module *find_module_all(const char *name, size_t len,
379 			       bool even_unformed)
380 {
381 	struct module *mod;
382 
383 	list_for_each_entry_rcu(mod, &modules, list,
384 				lockdep_is_held(&module_mutex)) {
385 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
386 			continue;
387 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
388 			return mod;
389 	}
390 	return NULL;
391 }
392 
393 struct module *find_module(const char *name)
394 {
395 	return find_module_all(name, strlen(name), false);
396 }
397 
398 #ifdef CONFIG_SMP
399 
400 static inline void __percpu *mod_percpu(struct module *mod)
401 {
402 	return mod->percpu;
403 }
404 
405 static int percpu_modalloc(struct module *mod, struct load_info *info)
406 {
407 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
408 	unsigned long align = pcpusec->sh_addralign;
409 
410 	if (!pcpusec->sh_size)
411 		return 0;
412 
413 	if (align > PAGE_SIZE) {
414 		pr_warn("%s: per-cpu alignment %li > %li\n",
415 			mod->name, align, PAGE_SIZE);
416 		align = PAGE_SIZE;
417 	}
418 
419 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
420 	if (!mod->percpu) {
421 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
422 			mod->name, (unsigned long)pcpusec->sh_size);
423 		return -ENOMEM;
424 	}
425 	mod->percpu_size = pcpusec->sh_size;
426 	return 0;
427 }
428 
429 static void percpu_modfree(struct module *mod)
430 {
431 	free_percpu(mod->percpu);
432 }
433 
434 static unsigned int find_pcpusec(struct load_info *info)
435 {
436 	return find_sec(info, ".data..percpu");
437 }
438 
439 static void percpu_modcopy(struct module *mod,
440 			   const void *from, unsigned long size)
441 {
442 	int cpu;
443 
444 	for_each_possible_cpu(cpu)
445 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
446 }
447 
448 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
449 {
450 	struct module *mod;
451 	unsigned int cpu;
452 
453 	guard(rcu)();
454 	list_for_each_entry_rcu(mod, &modules, list) {
455 		if (mod->state == MODULE_STATE_UNFORMED)
456 			continue;
457 		if (!mod->percpu_size)
458 			continue;
459 		for_each_possible_cpu(cpu) {
460 			void *start = per_cpu_ptr(mod->percpu, cpu);
461 			void *va = (void *)addr;
462 
463 			if (va >= start && va < start + mod->percpu_size) {
464 				if (can_addr) {
465 					*can_addr = (unsigned long) (va - start);
466 					*can_addr += (unsigned long)
467 						per_cpu_ptr(mod->percpu,
468 							    get_boot_cpu_id());
469 				}
470 				return true;
471 			}
472 		}
473 	}
474 	return false;
475 }
476 
477 /**
478  * is_module_percpu_address() - test whether address is from module static percpu
479  * @addr: address to test
480  *
481  * Test whether @addr belongs to module static percpu area.
482  *
483  * Return: %true if @addr is from module static percpu area
484  */
485 bool is_module_percpu_address(unsigned long addr)
486 {
487 	return __is_module_percpu_address(addr, NULL);
488 }
489 
490 #else /* ... !CONFIG_SMP */
491 
492 static inline void __percpu *mod_percpu(struct module *mod)
493 {
494 	return NULL;
495 }
496 static int percpu_modalloc(struct module *mod, struct load_info *info)
497 {
498 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
499 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
500 		return -ENOMEM;
501 	return 0;
502 }
503 static inline void percpu_modfree(struct module *mod)
504 {
505 }
506 static unsigned int find_pcpusec(struct load_info *info)
507 {
508 	return 0;
509 }
510 static inline void percpu_modcopy(struct module *mod,
511 				  const void *from, unsigned long size)
512 {
513 	/* pcpusec should be 0, and size of that section should be 0. */
514 	BUG_ON(size != 0);
515 }
516 bool is_module_percpu_address(unsigned long addr)
517 {
518 	return false;
519 }
520 
521 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
522 {
523 	return false;
524 }
525 
526 #endif /* CONFIG_SMP */
527 
528 #define MODINFO_ATTR(field)	\
529 static void setup_modinfo_##field(struct module *mod, const char *s)  \
530 {                                                                     \
531 	mod->field = kstrdup(s, GFP_KERNEL);                          \
532 }                                                                     \
533 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
534 			struct module_kobject *mk, char *buffer)      \
535 {                                                                     \
536 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
537 }                                                                     \
538 static int modinfo_##field##_exists(struct module *mod)               \
539 {                                                                     \
540 	return mod->field != NULL;                                    \
541 }                                                                     \
542 static void free_modinfo_##field(struct module *mod)                  \
543 {                                                                     \
544 	kfree(mod->field);                                            \
545 	mod->field = NULL;                                            \
546 }                                                                     \
547 static const struct module_attribute modinfo_##field = {              \
548 	.attr = { .name = __stringify(field), .mode = 0444 },         \
549 	.show = show_modinfo_##field,                                 \
550 	.setup = setup_modinfo_##field,                               \
551 	.test = modinfo_##field##_exists,                             \
552 	.free = free_modinfo_##field,                                 \
553 };
554 
555 MODINFO_ATTR(version);
556 MODINFO_ATTR(srcversion);
557 
558 static struct {
559 	char name[MODULE_NAME_LEN + 1];
560 	char taints[MODULE_FLAGS_BUF_SIZE];
561 } last_unloaded_module;
562 
563 #ifdef CONFIG_MODULE_UNLOAD
564 
565 EXPORT_TRACEPOINT_SYMBOL(module_get);
566 
567 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
568 #define MODULE_REF_BASE	1
569 
570 /* Init the unload section of the module. */
571 static int module_unload_init(struct module *mod)
572 {
573 	/*
574 	 * Initialize reference counter to MODULE_REF_BASE.
575 	 * refcnt == 0 means module is going.
576 	 */
577 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
578 
579 	INIT_LIST_HEAD(&mod->source_list);
580 	INIT_LIST_HEAD(&mod->target_list);
581 
582 	/* Hold reference count during initialization. */
583 	atomic_inc(&mod->refcnt);
584 
585 	return 0;
586 }
587 
588 /* Does a already use b? */
589 static int already_uses(struct module *a, struct module *b)
590 {
591 	struct module_use *use;
592 
593 	list_for_each_entry(use, &b->source_list, source_list) {
594 		if (use->source == a)
595 			return 1;
596 	}
597 	pr_debug("%s does not use %s!\n", a->name, b->name);
598 	return 0;
599 }
600 
601 /*
602  * Module a uses b
603  *  - we add 'a' as a "source", 'b' as a "target" of module use
604  *  - the module_use is added to the list of 'b' sources (so
605  *    'b' can walk the list to see who sourced them), and of 'a'
606  *    targets (so 'a' can see what modules it targets).
607  */
608 static int add_module_usage(struct module *a, struct module *b)
609 {
610 	struct module_use *use;
611 
612 	pr_debug("Allocating new usage for %s.\n", a->name);
613 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
614 	if (!use)
615 		return -ENOMEM;
616 
617 	use->source = a;
618 	use->target = b;
619 	list_add(&use->source_list, &b->source_list);
620 	list_add(&use->target_list, &a->target_list);
621 	return 0;
622 }
623 
624 /* Module a uses b: caller needs module_mutex() */
625 static int ref_module(struct module *a, struct module *b)
626 {
627 	int err;
628 
629 	if (b == NULL || already_uses(a, b))
630 		return 0;
631 
632 	/* If module isn't available, we fail. */
633 	err = strong_try_module_get(b);
634 	if (err)
635 		return err;
636 
637 	err = add_module_usage(a, b);
638 	if (err) {
639 		module_put(b);
640 		return err;
641 	}
642 	return 0;
643 }
644 
645 /* Clear the unload stuff of the module. */
646 static void module_unload_free(struct module *mod)
647 {
648 	struct module_use *use, *tmp;
649 
650 	mutex_lock(&module_mutex);
651 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
652 		struct module *i = use->target;
653 		pr_debug("%s unusing %s\n", mod->name, i->name);
654 		module_put(i);
655 		list_del(&use->source_list);
656 		list_del(&use->target_list);
657 		kfree(use);
658 	}
659 	mutex_unlock(&module_mutex);
660 }
661 
662 #ifdef CONFIG_MODULE_FORCE_UNLOAD
663 static inline int try_force_unload(unsigned int flags)
664 {
665 	int ret = (flags & O_TRUNC);
666 	if (ret)
667 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
668 	return ret;
669 }
670 #else
671 static inline int try_force_unload(unsigned int flags)
672 {
673 	return 0;
674 }
675 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
676 
677 /* Try to release refcount of module, 0 means success. */
678 static int try_release_module_ref(struct module *mod)
679 {
680 	int ret;
681 
682 	/* Try to decrement refcnt which we set at loading */
683 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
684 	BUG_ON(ret < 0);
685 	if (ret)
686 		/* Someone can put this right now, recover with checking */
687 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
688 
689 	return ret;
690 }
691 
692 static int try_stop_module(struct module *mod, int flags, int *forced)
693 {
694 	/* If it's not unused, quit unless we're forcing. */
695 	if (try_release_module_ref(mod) != 0) {
696 		*forced = try_force_unload(flags);
697 		if (!(*forced))
698 			return -EWOULDBLOCK;
699 	}
700 
701 	/* Mark it as dying. */
702 	mod->state = MODULE_STATE_GOING;
703 
704 	return 0;
705 }
706 
707 /**
708  * module_refcount() - return the refcount or -1 if unloading
709  * @mod:	the module we're checking
710  *
711  * Return:
712  *	-1 if the module is in the process of unloading
713  *	otherwise the number of references in the kernel to the module
714  */
715 int module_refcount(struct module *mod)
716 {
717 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
718 }
719 EXPORT_SYMBOL(module_refcount);
720 
721 /* This exists whether we can unload or not */
722 static void free_module(struct module *mod);
723 
724 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
725 		unsigned int, flags)
726 {
727 	struct module *mod;
728 	char name[MODULE_NAME_LEN];
729 	char buf[MODULE_FLAGS_BUF_SIZE];
730 	int ret, forced = 0;
731 
732 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
733 		return -EPERM;
734 
735 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
736 		return -EFAULT;
737 	name[MODULE_NAME_LEN-1] = '\0';
738 
739 	audit_log_kern_module(name);
740 
741 	if (mutex_lock_interruptible(&module_mutex) != 0)
742 		return -EINTR;
743 
744 	mod = find_module(name);
745 	if (!mod) {
746 		ret = -ENOENT;
747 		goto out;
748 	}
749 
750 	if (!list_empty(&mod->source_list)) {
751 		/* Other modules depend on us: get rid of them first. */
752 		ret = -EWOULDBLOCK;
753 		goto out;
754 	}
755 
756 	/* Doing init or already dying? */
757 	if (mod->state != MODULE_STATE_LIVE) {
758 		/* FIXME: if (force), slam module count damn the torpedoes */
759 		pr_debug("%s already dying\n", mod->name);
760 		ret = -EBUSY;
761 		goto out;
762 	}
763 
764 	/* If it has an init func, it must have an exit func to unload */
765 	if (mod->init && !mod->exit) {
766 		forced = try_force_unload(flags);
767 		if (!forced) {
768 			/* This module can't be removed */
769 			ret = -EBUSY;
770 			goto out;
771 		}
772 	}
773 
774 	ret = try_stop_module(mod, flags, &forced);
775 	if (ret != 0)
776 		goto out;
777 
778 	mutex_unlock(&module_mutex);
779 	/* Final destruction now no one is using it. */
780 	if (mod->exit != NULL)
781 		mod->exit();
782 	blocking_notifier_call_chain(&module_notify_list,
783 				     MODULE_STATE_GOING, mod);
784 	klp_module_going(mod);
785 	ftrace_release_mod(mod);
786 
787 	async_synchronize_full();
788 
789 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
790 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
791 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
792 
793 	free_module(mod);
794 	/* someone could wait for the module in add_unformed_module() */
795 	wake_up_all(&module_wq);
796 	return 0;
797 out:
798 	mutex_unlock(&module_mutex);
799 	return ret;
800 }
801 
802 void __symbol_put(const char *symbol)
803 {
804 	struct find_symbol_arg fsa = {
805 		.name	= symbol,
806 		.gplok	= true,
807 	};
808 
809 	guard(rcu)();
810 	BUG_ON(!find_symbol(&fsa));
811 	module_put(fsa.owner);
812 }
813 EXPORT_SYMBOL(__symbol_put);
814 
815 /* Note this assumes addr is a function, which it currently always is. */
816 void symbol_put_addr(void *addr)
817 {
818 	struct module *modaddr;
819 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
820 
821 	if (core_kernel_text(a))
822 		return;
823 
824 	/*
825 	 * Even though we hold a reference on the module; we still need to
826 	 * RCU read section in order to safely traverse the data structure.
827 	 */
828 	guard(rcu)();
829 	modaddr = __module_text_address(a);
830 	BUG_ON(!modaddr);
831 	module_put(modaddr);
832 }
833 EXPORT_SYMBOL_GPL(symbol_put_addr);
834 
835 static ssize_t show_refcnt(const struct module_attribute *mattr,
836 			   struct module_kobject *mk, char *buffer)
837 {
838 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
839 }
840 
841 static const struct module_attribute modinfo_refcnt =
842 	__ATTR(refcnt, 0444, show_refcnt, NULL);
843 
844 void __module_get(struct module *module)
845 {
846 	if (module) {
847 		atomic_inc(&module->refcnt);
848 		trace_module_get(module, _RET_IP_);
849 	}
850 }
851 EXPORT_SYMBOL(__module_get);
852 
853 bool try_module_get(struct module *module)
854 {
855 	bool ret = true;
856 
857 	if (module) {
858 		/* Note: here, we can fail to get a reference */
859 		if (likely(module_is_live(module) &&
860 			   atomic_inc_not_zero(&module->refcnt) != 0))
861 			trace_module_get(module, _RET_IP_);
862 		else
863 			ret = false;
864 	}
865 	return ret;
866 }
867 EXPORT_SYMBOL(try_module_get);
868 
869 void module_put(struct module *module)
870 {
871 	int ret;
872 
873 	if (module) {
874 		ret = atomic_dec_if_positive(&module->refcnt);
875 		WARN_ON(ret < 0);	/* Failed to put refcount */
876 		trace_module_put(module, _RET_IP_);
877 	}
878 }
879 EXPORT_SYMBOL(module_put);
880 
881 #else /* !CONFIG_MODULE_UNLOAD */
882 static inline void module_unload_free(struct module *mod)
883 {
884 }
885 
886 static int ref_module(struct module *a, struct module *b)
887 {
888 	return strong_try_module_get(b);
889 }
890 
891 static inline int module_unload_init(struct module *mod)
892 {
893 	return 0;
894 }
895 #endif /* CONFIG_MODULE_UNLOAD */
896 
897 size_t module_flags_taint(unsigned long taints, char *buf)
898 {
899 	size_t l = 0;
900 	int i;
901 
902 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
903 		if (taint_flags[i].module && test_bit(i, &taints))
904 			buf[l++] = taint_flags[i].c_true;
905 	}
906 
907 	return l;
908 }
909 
910 static ssize_t show_initstate(const struct module_attribute *mattr,
911 			      struct module_kobject *mk, char *buffer)
912 {
913 	const char *state = "unknown";
914 
915 	switch (mk->mod->state) {
916 	case MODULE_STATE_LIVE:
917 		state = "live";
918 		break;
919 	case MODULE_STATE_COMING:
920 		state = "coming";
921 		break;
922 	case MODULE_STATE_GOING:
923 		state = "going";
924 		break;
925 	default:
926 		BUG();
927 	}
928 	return sprintf(buffer, "%s\n", state);
929 }
930 
931 static const struct module_attribute modinfo_initstate =
932 	__ATTR(initstate, 0444, show_initstate, NULL);
933 
934 static ssize_t store_uevent(const struct module_attribute *mattr,
935 			    struct module_kobject *mk,
936 			    const char *buffer, size_t count)
937 {
938 	int rc;
939 
940 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
941 	return rc ? rc : count;
942 }
943 
944 const struct module_attribute module_uevent =
945 	__ATTR(uevent, 0200, NULL, store_uevent);
946 
947 static ssize_t show_coresize(const struct module_attribute *mattr,
948 			     struct module_kobject *mk, char *buffer)
949 {
950 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
951 
952 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
953 		for_class_mod_mem_type(type, core_data)
954 			size += mk->mod->mem[type].size;
955 	}
956 	return sprintf(buffer, "%u\n", size);
957 }
958 
959 static const struct module_attribute modinfo_coresize =
960 	__ATTR(coresize, 0444, show_coresize, NULL);
961 
962 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
963 static ssize_t show_datasize(const struct module_attribute *mattr,
964 			     struct module_kobject *mk, char *buffer)
965 {
966 	unsigned int size = 0;
967 
968 	for_class_mod_mem_type(type, core_data)
969 		size += mk->mod->mem[type].size;
970 	return sprintf(buffer, "%u\n", size);
971 }
972 
973 static const struct module_attribute modinfo_datasize =
974 	__ATTR(datasize, 0444, show_datasize, NULL);
975 #endif
976 
977 static ssize_t show_initsize(const struct module_attribute *mattr,
978 			     struct module_kobject *mk, char *buffer)
979 {
980 	unsigned int size = 0;
981 
982 	for_class_mod_mem_type(type, init)
983 		size += mk->mod->mem[type].size;
984 	return sprintf(buffer, "%u\n", size);
985 }
986 
987 static const struct module_attribute modinfo_initsize =
988 	__ATTR(initsize, 0444, show_initsize, NULL);
989 
990 static ssize_t show_taint(const struct module_attribute *mattr,
991 			  struct module_kobject *mk, char *buffer)
992 {
993 	size_t l;
994 
995 	l = module_flags_taint(mk->mod->taints, buffer);
996 	buffer[l++] = '\n';
997 	return l;
998 }
999 
1000 static const struct module_attribute modinfo_taint =
1001 	__ATTR(taint, 0444, show_taint, NULL);
1002 
1003 const struct module_attribute *const modinfo_attrs[] = {
1004 	&module_uevent,
1005 	&modinfo_version,
1006 	&modinfo_srcversion,
1007 	&modinfo_initstate,
1008 	&modinfo_coresize,
1009 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1010 	&modinfo_datasize,
1011 #endif
1012 	&modinfo_initsize,
1013 	&modinfo_taint,
1014 #ifdef CONFIG_MODULE_UNLOAD
1015 	&modinfo_refcnt,
1016 #endif
1017 	NULL,
1018 };
1019 
1020 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1021 
1022 static const char vermagic[] = VERMAGIC_STRING;
1023 
1024 int try_to_force_load(struct module *mod, const char *reason)
1025 {
1026 #ifdef CONFIG_MODULE_FORCE_LOAD
1027 	if (!test_taint(TAINT_FORCED_MODULE))
1028 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1029 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1030 	return 0;
1031 #else
1032 	return -ENOEXEC;
1033 #endif
1034 }
1035 
1036 /* Parse tag=value strings from .modinfo section */
1037 char *module_next_tag_pair(char *string, unsigned long *secsize)
1038 {
1039 	/* Skip non-zero chars */
1040 	while (string[0]) {
1041 		string++;
1042 		if ((*secsize)-- <= 1)
1043 			return NULL;
1044 	}
1045 
1046 	/* Skip any zero padding. */
1047 	while (!string[0]) {
1048 		string++;
1049 		if ((*secsize)-- <= 1)
1050 			return NULL;
1051 	}
1052 	return string;
1053 }
1054 
1055 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1056 			      char *prev)
1057 {
1058 	char *p;
1059 	unsigned int taglen = strlen(tag);
1060 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1061 	unsigned long size = infosec->sh_size;
1062 
1063 	/*
1064 	 * get_modinfo() calls made before rewrite_section_headers()
1065 	 * must use sh_offset, as sh_addr isn't set!
1066 	 */
1067 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1068 
1069 	if (prev) {
1070 		size -= prev - modinfo;
1071 		modinfo = module_next_tag_pair(prev, &size);
1072 	}
1073 
1074 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1075 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1076 			return p + taglen + 1;
1077 	}
1078 	return NULL;
1079 }
1080 
1081 static char *get_modinfo(const struct load_info *info, const char *tag)
1082 {
1083 	return get_next_modinfo(info, tag, NULL);
1084 }
1085 
1086 static int verify_namespace_is_imported(const struct load_info *info,
1087 					const struct kernel_symbol *sym,
1088 					struct module *mod)
1089 {
1090 	const char *namespace;
1091 	char *imported_namespace;
1092 
1093 	namespace = kernel_symbol_namespace(sym);
1094 	if (namespace && namespace[0]) {
1095 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1096 			if (strcmp(namespace, imported_namespace) == 0)
1097 				return 0;
1098 		}
1099 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1100 		pr_warn(
1101 #else
1102 		pr_err(
1103 #endif
1104 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1105 			mod->name, kernel_symbol_name(sym), namespace);
1106 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1107 		return -EINVAL;
1108 #endif
1109 	}
1110 	return 0;
1111 }
1112 
1113 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1114 {
1115 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1116 		return true;
1117 
1118 	if (mod->using_gplonly_symbols) {
1119 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1120 			mod->name, name, owner->name);
1121 		return false;
1122 	}
1123 
1124 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1125 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1126 			mod->name, name, owner->name);
1127 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1128 	}
1129 	return true;
1130 }
1131 
1132 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1133 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1134 						  const struct load_info *info,
1135 						  const char *name,
1136 						  char ownername[])
1137 {
1138 	struct find_symbol_arg fsa = {
1139 		.name	= name,
1140 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1141 		.warn	= true,
1142 	};
1143 	int err;
1144 
1145 	/*
1146 	 * The module_mutex should not be a heavily contended lock;
1147 	 * if we get the occasional sleep here, we'll go an extra iteration
1148 	 * in the wait_event_interruptible(), which is harmless.
1149 	 */
1150 	sched_annotate_sleep();
1151 	mutex_lock(&module_mutex);
1152 	if (!find_symbol(&fsa))
1153 		goto unlock;
1154 
1155 	if (fsa.license == GPL_ONLY)
1156 		mod->using_gplonly_symbols = true;
1157 
1158 	if (!inherit_taint(mod, fsa.owner, name)) {
1159 		fsa.sym = NULL;
1160 		goto getname;
1161 	}
1162 
1163 	if (!check_version(info, name, mod, fsa.crc)) {
1164 		fsa.sym = ERR_PTR(-EINVAL);
1165 		goto getname;
1166 	}
1167 
1168 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1169 	if (err) {
1170 		fsa.sym = ERR_PTR(err);
1171 		goto getname;
1172 	}
1173 
1174 	err = ref_module(mod, fsa.owner);
1175 	if (err) {
1176 		fsa.sym = ERR_PTR(err);
1177 		goto getname;
1178 	}
1179 
1180 getname:
1181 	/* We must make copy under the lock if we failed to get ref. */
1182 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1183 unlock:
1184 	mutex_unlock(&module_mutex);
1185 	return fsa.sym;
1186 }
1187 
1188 static const struct kernel_symbol *
1189 resolve_symbol_wait(struct module *mod,
1190 		    const struct load_info *info,
1191 		    const char *name)
1192 {
1193 	const struct kernel_symbol *ksym;
1194 	char owner[MODULE_NAME_LEN];
1195 
1196 	if (wait_event_interruptible_timeout(module_wq,
1197 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1198 			|| PTR_ERR(ksym) != -EBUSY,
1199 					     30 * HZ) <= 0) {
1200 		pr_warn("%s: gave up waiting for init of module %s.\n",
1201 			mod->name, owner);
1202 	}
1203 	return ksym;
1204 }
1205 
1206 void __weak module_arch_cleanup(struct module *mod)
1207 {
1208 }
1209 
1210 void __weak module_arch_freeing_init(struct module *mod)
1211 {
1212 }
1213 
1214 void *__module_writable_address(struct module *mod, void *loc)
1215 {
1216 	for_class_mod_mem_type(type, text) {
1217 		struct module_memory *mem = &mod->mem[type];
1218 
1219 		if (loc >= mem->base && loc < mem->base + mem->size)
1220 			return loc + (mem->rw_copy - mem->base);
1221 	}
1222 
1223 	return loc;
1224 }
1225 
1226 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1227 {
1228 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1229 	enum execmem_type execmem_type;
1230 	void *ptr;
1231 
1232 	mod->mem[type].size = size;
1233 
1234 	if (mod_mem_type_is_data(type))
1235 		execmem_type = EXECMEM_MODULE_DATA;
1236 	else
1237 		execmem_type = EXECMEM_MODULE_TEXT;
1238 
1239 	ptr = execmem_alloc(execmem_type, size);
1240 	if (!ptr)
1241 		return -ENOMEM;
1242 
1243 	mod->mem[type].base = ptr;
1244 
1245 	if (execmem_is_rox(execmem_type)) {
1246 		ptr = vzalloc(size);
1247 
1248 		if (!ptr) {
1249 			execmem_free(mod->mem[type].base);
1250 			return -ENOMEM;
1251 		}
1252 
1253 		mod->mem[type].rw_copy = ptr;
1254 		mod->mem[type].is_rox = true;
1255 	} else {
1256 		mod->mem[type].rw_copy = mod->mem[type].base;
1257 		memset(mod->mem[type].base, 0, size);
1258 	}
1259 
1260 	/*
1261 	 * The pointer to these blocks of memory are stored on the module
1262 	 * structure and we keep that around so long as the module is
1263 	 * around. We only free that memory when we unload the module.
1264 	 * Just mark them as not being a leak then. The .init* ELF
1265 	 * sections *do* get freed after boot so we *could* treat them
1266 	 * slightly differently with kmemleak_ignore() and only grey
1267 	 * them out as they work as typical memory allocations which
1268 	 * *do* eventually get freed, but let's just keep things simple
1269 	 * and avoid *any* false positives.
1270 	 */
1271 	kmemleak_not_leak(ptr);
1272 
1273 	return 0;
1274 }
1275 
1276 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1277 {
1278 	struct module_memory *mem = &mod->mem[type];
1279 
1280 	if (mem->is_rox)
1281 		vfree(mem->rw_copy);
1282 
1283 	execmem_free(mem->base);
1284 }
1285 
1286 static void free_mod_mem(struct module *mod)
1287 {
1288 	for_each_mod_mem_type(type) {
1289 		struct module_memory *mod_mem = &mod->mem[type];
1290 
1291 		if (type == MOD_DATA)
1292 			continue;
1293 
1294 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1295 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1296 		if (mod_mem->size)
1297 			module_memory_free(mod, type);
1298 	}
1299 
1300 	/* MOD_DATA hosts mod, so free it at last */
1301 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1302 	module_memory_free(mod, MOD_DATA);
1303 }
1304 
1305 /* Free a module, remove from lists, etc. */
1306 static void free_module(struct module *mod)
1307 {
1308 	trace_module_free(mod);
1309 
1310 	codetag_unload_module(mod);
1311 
1312 	mod_sysfs_teardown(mod);
1313 
1314 	/*
1315 	 * We leave it in list to prevent duplicate loads, but make sure
1316 	 * that noone uses it while it's being deconstructed.
1317 	 */
1318 	mutex_lock(&module_mutex);
1319 	mod->state = MODULE_STATE_UNFORMED;
1320 	mutex_unlock(&module_mutex);
1321 
1322 	/* Arch-specific cleanup. */
1323 	module_arch_cleanup(mod);
1324 
1325 	/* Module unload stuff */
1326 	module_unload_free(mod);
1327 
1328 	/* Free any allocated parameters. */
1329 	destroy_params(mod->kp, mod->num_kp);
1330 
1331 	if (is_livepatch_module(mod))
1332 		free_module_elf(mod);
1333 
1334 	/* Now we can delete it from the lists */
1335 	mutex_lock(&module_mutex);
1336 	/* Unlink carefully: kallsyms could be walking list. */
1337 	list_del_rcu(&mod->list);
1338 	mod_tree_remove(mod);
1339 	/* Remove this module from bug list, this uses list_del_rcu */
1340 	module_bug_cleanup(mod);
1341 	/* Wait for RCU synchronizing before releasing mod->list and buglist. */
1342 	synchronize_rcu();
1343 	if (try_add_tainted_module(mod))
1344 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1345 		       mod->name);
1346 	mutex_unlock(&module_mutex);
1347 
1348 	/* This may be empty, but that's OK */
1349 	module_arch_freeing_init(mod);
1350 	kfree(mod->args);
1351 	percpu_modfree(mod);
1352 
1353 	free_mod_mem(mod);
1354 }
1355 
1356 void *__symbol_get(const char *symbol)
1357 {
1358 	struct find_symbol_arg fsa = {
1359 		.name	= symbol,
1360 		.gplok	= true,
1361 		.warn	= true,
1362 	};
1363 
1364 	scoped_guard(rcu) {
1365 		if (!find_symbol(&fsa))
1366 			return NULL;
1367 		if (fsa.license != GPL_ONLY) {
1368 			pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1369 				symbol);
1370 			return NULL;
1371 		}
1372 		if (strong_try_module_get(fsa.owner))
1373 			return NULL;
1374 	}
1375 	return (void *)kernel_symbol_value(fsa.sym);
1376 }
1377 EXPORT_SYMBOL_GPL(__symbol_get);
1378 
1379 /*
1380  * Ensure that an exported symbol [global namespace] does not already exist
1381  * in the kernel or in some other module's exported symbol table.
1382  *
1383  * You must hold the module_mutex.
1384  */
1385 static int verify_exported_symbols(struct module *mod)
1386 {
1387 	unsigned int i;
1388 	const struct kernel_symbol *s;
1389 	struct {
1390 		const struct kernel_symbol *sym;
1391 		unsigned int num;
1392 	} arr[] = {
1393 		{ mod->syms, mod->num_syms },
1394 		{ mod->gpl_syms, mod->num_gpl_syms },
1395 	};
1396 
1397 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1398 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1399 			struct find_symbol_arg fsa = {
1400 				.name	= kernel_symbol_name(s),
1401 				.gplok	= true,
1402 			};
1403 			if (find_symbol(&fsa)) {
1404 				pr_err("%s: exports duplicate symbol %s"
1405 				       " (owned by %s)\n",
1406 				       mod->name, kernel_symbol_name(s),
1407 				       module_name(fsa.owner));
1408 				return -ENOEXEC;
1409 			}
1410 		}
1411 	}
1412 	return 0;
1413 }
1414 
1415 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1416 {
1417 	/*
1418 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1419 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1420 	 * i386 has a similar problem but may not deserve a fix.
1421 	 *
1422 	 * If we ever have to ignore many symbols, consider refactoring the code to
1423 	 * only warn if referenced by a relocation.
1424 	 */
1425 	if (emachine == EM_386 || emachine == EM_X86_64)
1426 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1427 	return false;
1428 }
1429 
1430 /* Change all symbols so that st_value encodes the pointer directly. */
1431 static int simplify_symbols(struct module *mod, const struct load_info *info)
1432 {
1433 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1434 	Elf_Sym *sym = (void *)symsec->sh_addr;
1435 	unsigned long secbase;
1436 	unsigned int i;
1437 	int ret = 0;
1438 	const struct kernel_symbol *ksym;
1439 
1440 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1441 		const char *name = info->strtab + sym[i].st_name;
1442 
1443 		switch (sym[i].st_shndx) {
1444 		case SHN_COMMON:
1445 			/* Ignore common symbols */
1446 			if (!strncmp(name, "__gnu_lto", 9))
1447 				break;
1448 
1449 			/*
1450 			 * We compiled with -fno-common.  These are not
1451 			 * supposed to happen.
1452 			 */
1453 			pr_debug("Common symbol: %s\n", name);
1454 			pr_warn("%s: please compile with -fno-common\n",
1455 			       mod->name);
1456 			ret = -ENOEXEC;
1457 			break;
1458 
1459 		case SHN_ABS:
1460 			/* Don't need to do anything */
1461 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1462 				 (long)sym[i].st_value, name);
1463 			break;
1464 
1465 		case SHN_LIVEPATCH:
1466 			/* Livepatch symbols are resolved by livepatch */
1467 			break;
1468 
1469 		case SHN_UNDEF:
1470 			ksym = resolve_symbol_wait(mod, info, name);
1471 			/* Ok if resolved.  */
1472 			if (ksym && !IS_ERR(ksym)) {
1473 				sym[i].st_value = kernel_symbol_value(ksym);
1474 				break;
1475 			}
1476 
1477 			/* Ok if weak or ignored.  */
1478 			if (!ksym &&
1479 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1480 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1481 				break;
1482 
1483 			ret = PTR_ERR(ksym) ?: -ENOENT;
1484 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1485 				mod->name, name, ret);
1486 			break;
1487 
1488 		default:
1489 			/* Divert to percpu allocation if a percpu var. */
1490 			if (sym[i].st_shndx == info->index.pcpu)
1491 				secbase = (unsigned long)mod_percpu(mod);
1492 			else
1493 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1494 			sym[i].st_value += secbase;
1495 			break;
1496 		}
1497 	}
1498 
1499 	return ret;
1500 }
1501 
1502 static int apply_relocations(struct module *mod, const struct load_info *info)
1503 {
1504 	unsigned int i;
1505 	int err = 0;
1506 
1507 	/* Now do relocations. */
1508 	for (i = 1; i < info->hdr->e_shnum; i++) {
1509 		unsigned int infosec = info->sechdrs[i].sh_info;
1510 
1511 		/* Not a valid relocation section? */
1512 		if (infosec >= info->hdr->e_shnum)
1513 			continue;
1514 
1515 		/* Don't bother with non-allocated sections */
1516 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1517 			continue;
1518 
1519 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1520 			err = klp_apply_section_relocs(mod, info->sechdrs,
1521 						       info->secstrings,
1522 						       info->strtab,
1523 						       info->index.sym, i,
1524 						       NULL);
1525 		else if (info->sechdrs[i].sh_type == SHT_REL)
1526 			err = apply_relocate(info->sechdrs, info->strtab,
1527 					     info->index.sym, i, mod);
1528 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1529 			err = apply_relocate_add(info->sechdrs, info->strtab,
1530 						 info->index.sym, i, mod);
1531 		if (err < 0)
1532 			break;
1533 	}
1534 	return err;
1535 }
1536 
1537 /* Additional bytes needed by arch in front of individual sections */
1538 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1539 					     unsigned int section)
1540 {
1541 	/* default implementation just returns zero */
1542 	return 0;
1543 }
1544 
1545 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1546 				Elf_Shdr *sechdr, unsigned int section)
1547 {
1548 	long offset;
1549 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1550 
1551 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1552 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1553 	mod->mem[type].size = offset + sechdr->sh_size;
1554 
1555 	WARN_ON_ONCE(offset & mask);
1556 	return offset | mask;
1557 }
1558 
1559 bool module_init_layout_section(const char *sname)
1560 {
1561 #ifndef CONFIG_MODULE_UNLOAD
1562 	if (module_exit_section(sname))
1563 		return true;
1564 #endif
1565 	return module_init_section(sname);
1566 }
1567 
1568 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1569 {
1570 	unsigned int m, i;
1571 
1572 	static const unsigned long masks[][2] = {
1573 		/*
1574 		 * NOTE: all executable code must be the first section
1575 		 * in this array; otherwise modify the text_size
1576 		 * finder in the two loops below
1577 		 */
1578 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1579 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1580 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1581 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1582 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1583 	};
1584 	static const int core_m_to_mem_type[] = {
1585 		MOD_TEXT,
1586 		MOD_RODATA,
1587 		MOD_RO_AFTER_INIT,
1588 		MOD_DATA,
1589 		MOD_DATA,
1590 	};
1591 	static const int init_m_to_mem_type[] = {
1592 		MOD_INIT_TEXT,
1593 		MOD_INIT_RODATA,
1594 		MOD_INVALID,
1595 		MOD_INIT_DATA,
1596 		MOD_INIT_DATA,
1597 	};
1598 
1599 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1600 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1601 
1602 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1603 			Elf_Shdr *s = &info->sechdrs[i];
1604 			const char *sname = info->secstrings + s->sh_name;
1605 
1606 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1607 			    || (s->sh_flags & masks[m][1])
1608 			    || s->sh_entsize != ~0UL
1609 			    || is_init != module_init_layout_section(sname))
1610 				continue;
1611 
1612 			if (WARN_ON_ONCE(type == MOD_INVALID))
1613 				continue;
1614 
1615 			/*
1616 			 * Do not allocate codetag memory as we load it into
1617 			 * preallocated contiguous memory.
1618 			 */
1619 			if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1620 				/*
1621 				 * s->sh_entsize won't be used but populate the
1622 				 * type field to avoid confusion.
1623 				 */
1624 				s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1625 						<< SH_ENTSIZE_TYPE_SHIFT;
1626 				continue;
1627 			}
1628 
1629 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1630 			pr_debug("\t%s\n", sname);
1631 		}
1632 	}
1633 }
1634 
1635 /*
1636  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1637  * might -- code, read-only data, read-write data, small data.  Tally
1638  * sizes, and place the offsets into sh_entsize fields: high bit means it
1639  * belongs in init.
1640  */
1641 static void layout_sections(struct module *mod, struct load_info *info)
1642 {
1643 	unsigned int i;
1644 
1645 	for (i = 0; i < info->hdr->e_shnum; i++)
1646 		info->sechdrs[i].sh_entsize = ~0UL;
1647 
1648 	pr_debug("Core section allocation order for %s:\n", mod->name);
1649 	__layout_sections(mod, info, false);
1650 
1651 	pr_debug("Init section allocation order for %s:\n", mod->name);
1652 	__layout_sections(mod, info, true);
1653 }
1654 
1655 static void module_license_taint_check(struct module *mod, const char *license)
1656 {
1657 	if (!license)
1658 		license = "unspecified";
1659 
1660 	if (!license_is_gpl_compatible(license)) {
1661 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1662 			pr_warn("%s: module license '%s' taints kernel.\n",
1663 				mod->name, license);
1664 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1665 				 LOCKDEP_NOW_UNRELIABLE);
1666 	}
1667 }
1668 
1669 static void setup_modinfo(struct module *mod, struct load_info *info)
1670 {
1671 	const struct module_attribute *attr;
1672 	int i;
1673 
1674 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1675 		if (attr->setup)
1676 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1677 	}
1678 }
1679 
1680 static void free_modinfo(struct module *mod)
1681 {
1682 	const struct module_attribute *attr;
1683 	int i;
1684 
1685 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1686 		if (attr->free)
1687 			attr->free(mod);
1688 	}
1689 }
1690 
1691 bool __weak module_init_section(const char *name)
1692 {
1693 	return strstarts(name, ".init");
1694 }
1695 
1696 bool __weak module_exit_section(const char *name)
1697 {
1698 	return strstarts(name, ".exit");
1699 }
1700 
1701 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1702 {
1703 #if defined(CONFIG_64BIT)
1704 	unsigned long long secend;
1705 #else
1706 	unsigned long secend;
1707 #endif
1708 
1709 	/*
1710 	 * Check for both overflow and offset/size being
1711 	 * too large.
1712 	 */
1713 	secend = shdr->sh_offset + shdr->sh_size;
1714 	if (secend < shdr->sh_offset || secend > info->len)
1715 		return -ENOEXEC;
1716 
1717 	return 0;
1718 }
1719 
1720 /**
1721  * elf_validity_ehdr() - Checks an ELF header for module validity
1722  * @info: Load info containing the ELF header to check
1723  *
1724  * Checks whether an ELF header could belong to a valid module. Checks:
1725  *
1726  * * ELF header is within the data the user provided
1727  * * ELF magic is present
1728  * * It is relocatable (not final linked, not core file, etc.)
1729  * * The header's machine type matches what the architecture expects.
1730  * * Optional arch-specific hook for other properties
1731  *   - module_elf_check_arch() is currently only used by PPC to check
1732  *   ELF ABI version, but may be used by others in the future.
1733  *
1734  * Return: %0 if valid, %-ENOEXEC on failure.
1735  */
1736 static int elf_validity_ehdr(const struct load_info *info)
1737 {
1738 	if (info->len < sizeof(*(info->hdr))) {
1739 		pr_err("Invalid ELF header len %lu\n", info->len);
1740 		return -ENOEXEC;
1741 	}
1742 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1743 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1744 		return -ENOEXEC;
1745 	}
1746 	if (info->hdr->e_type != ET_REL) {
1747 		pr_err("Invalid ELF header type: %u != %u\n",
1748 		       info->hdr->e_type, ET_REL);
1749 		return -ENOEXEC;
1750 	}
1751 	if (!elf_check_arch(info->hdr)) {
1752 		pr_err("Invalid architecture in ELF header: %u\n",
1753 		       info->hdr->e_machine);
1754 		return -ENOEXEC;
1755 	}
1756 	if (!module_elf_check_arch(info->hdr)) {
1757 		pr_err("Invalid module architecture in ELF header: %u\n",
1758 		       info->hdr->e_machine);
1759 		return -ENOEXEC;
1760 	}
1761 	return 0;
1762 }
1763 
1764 /**
1765  * elf_validity_cache_sechdrs() - Cache section headers if valid
1766  * @info: Load info to compute section headers from
1767  *
1768  * Checks:
1769  *
1770  * * ELF header is valid (see elf_validity_ehdr())
1771  * * Section headers are the size we expect
1772  * * Section array fits in the user provided data
1773  * * Section index 0 is NULL
1774  * * Section contents are inbounds
1775  *
1776  * Then updates @info with a &load_info->sechdrs pointer if valid.
1777  *
1778  * Return: %0 if valid, negative error code if validation failed.
1779  */
1780 static int elf_validity_cache_sechdrs(struct load_info *info)
1781 {
1782 	Elf_Shdr *sechdrs;
1783 	Elf_Shdr *shdr;
1784 	int i;
1785 	int err;
1786 
1787 	err = elf_validity_ehdr(info);
1788 	if (err < 0)
1789 		return err;
1790 
1791 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1792 		pr_err("Invalid ELF section header size\n");
1793 		return -ENOEXEC;
1794 	}
1795 
1796 	/*
1797 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1798 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1799 	 * will not overflow unsigned long on any platform.
1800 	 */
1801 	if (info->hdr->e_shoff >= info->len
1802 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1803 		info->len - info->hdr->e_shoff)) {
1804 		pr_err("Invalid ELF section header overflow\n");
1805 		return -ENOEXEC;
1806 	}
1807 
1808 	sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1809 
1810 	/*
1811 	 * The code assumes that section 0 has a length of zero and
1812 	 * an addr of zero, so check for it.
1813 	 */
1814 	if (sechdrs[0].sh_type != SHT_NULL
1815 	    || sechdrs[0].sh_size != 0
1816 	    || sechdrs[0].sh_addr != 0) {
1817 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1818 		       sechdrs[0].sh_type);
1819 		return -ENOEXEC;
1820 	}
1821 
1822 	/* Validate contents are inbounds */
1823 	for (i = 1; i < info->hdr->e_shnum; i++) {
1824 		shdr = &sechdrs[i];
1825 		switch (shdr->sh_type) {
1826 		case SHT_NULL:
1827 		case SHT_NOBITS:
1828 			/* No contents, offset/size don't mean anything */
1829 			continue;
1830 		default:
1831 			err = validate_section_offset(info, shdr);
1832 			if (err < 0) {
1833 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1834 				       i, shdr->sh_type);
1835 				return err;
1836 			}
1837 		}
1838 	}
1839 
1840 	info->sechdrs = sechdrs;
1841 
1842 	return 0;
1843 }
1844 
1845 /**
1846  * elf_validity_cache_secstrings() - Caches section names if valid
1847  * @info: Load info to cache section names from. Must have valid sechdrs.
1848  *
1849  * Specifically checks:
1850  *
1851  * * Section name table index is inbounds of section headers
1852  * * Section name table is not empty
1853  * * Section name table is NUL terminated
1854  * * All section name offsets are inbounds of the section
1855  *
1856  * Then updates @info with a &load_info->secstrings pointer if valid.
1857  *
1858  * Return: %0 if valid, negative error code if validation failed.
1859  */
1860 static int elf_validity_cache_secstrings(struct load_info *info)
1861 {
1862 	Elf_Shdr *strhdr, *shdr;
1863 	char *secstrings;
1864 	int i;
1865 
1866 	/*
1867 	 * Verify if the section name table index is valid.
1868 	 */
1869 	if (info->hdr->e_shstrndx == SHN_UNDEF
1870 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1871 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1872 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1873 		       info->hdr->e_shnum);
1874 		return -ENOEXEC;
1875 	}
1876 
1877 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1878 
1879 	/*
1880 	 * The section name table must be NUL-terminated, as required
1881 	 * by the spec. This makes strcmp and pr_* calls that access
1882 	 * strings in the section safe.
1883 	 */
1884 	secstrings = (void *)info->hdr + strhdr->sh_offset;
1885 	if (strhdr->sh_size == 0) {
1886 		pr_err("empty section name table\n");
1887 		return -ENOEXEC;
1888 	}
1889 	if (secstrings[strhdr->sh_size - 1] != '\0') {
1890 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1891 		return -ENOEXEC;
1892 	}
1893 
1894 	for (i = 0; i < info->hdr->e_shnum; i++) {
1895 		shdr = &info->sechdrs[i];
1896 		/* SHT_NULL means sh_name has an undefined value */
1897 		if (shdr->sh_type == SHT_NULL)
1898 			continue;
1899 		if (shdr->sh_name >= strhdr->sh_size) {
1900 			pr_err("Invalid ELF section name in module (section %u type %u)\n",
1901 			       i, shdr->sh_type);
1902 			return -ENOEXEC;
1903 		}
1904 	}
1905 
1906 	info->secstrings = secstrings;
1907 	return 0;
1908 }
1909 
1910 /**
1911  * elf_validity_cache_index_info() - Validate and cache modinfo section
1912  * @info: Load info to populate the modinfo index on.
1913  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1914  *
1915  * Checks that if there is a .modinfo section, it is unique.
1916  * Then, it caches its index in &load_info->index.info.
1917  * Finally, it tries to populate the name to improve error messages.
1918  *
1919  * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1920  */
1921 static int elf_validity_cache_index_info(struct load_info *info)
1922 {
1923 	int info_idx;
1924 
1925 	info_idx = find_any_unique_sec(info, ".modinfo");
1926 
1927 	if (info_idx == 0)
1928 		/* Early return, no .modinfo */
1929 		return 0;
1930 
1931 	if (info_idx < 0) {
1932 		pr_err("Only one .modinfo section must exist.\n");
1933 		return -ENOEXEC;
1934 	}
1935 
1936 	info->index.info = info_idx;
1937 	/* Try to find a name early so we can log errors with a module name */
1938 	info->name = get_modinfo(info, "name");
1939 
1940 	return 0;
1941 }
1942 
1943 /**
1944  * elf_validity_cache_index_mod() - Validates and caches this_module section
1945  * @info: Load info to cache this_module on.
1946  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1947  *
1948  * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
1949  * uses to refer to __this_module and let's use rely on THIS_MODULE to point
1950  * to &__this_module properly. The kernel's modpost declares it on each
1951  * modules's *.mod.c file. If the struct module of the kernel changes a full
1952  * kernel rebuild is required.
1953  *
1954  * We have a few expectations for this special section, this function
1955  * validates all this for us:
1956  *
1957  * * The section has contents
1958  * * The section is unique
1959  * * We expect the kernel to always have to allocate it: SHF_ALLOC
1960  * * The section size must match the kernel's run time's struct module
1961  *   size
1962  *
1963  * If all checks pass, the index will be cached in &load_info->index.mod
1964  *
1965  * Return: %0 on validation success, %-ENOEXEC on failure
1966  */
1967 static int elf_validity_cache_index_mod(struct load_info *info)
1968 {
1969 	Elf_Shdr *shdr;
1970 	int mod_idx;
1971 
1972 	mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
1973 	if (mod_idx <= 0) {
1974 		pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
1975 		       info->name ?: "(missing .modinfo section or name field)");
1976 		return -ENOEXEC;
1977 	}
1978 
1979 	shdr = &info->sechdrs[mod_idx];
1980 
1981 	if (shdr->sh_type == SHT_NOBITS) {
1982 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1983 		       info->name ?: "(missing .modinfo section or name field)");
1984 		return -ENOEXEC;
1985 	}
1986 
1987 	if (!(shdr->sh_flags & SHF_ALLOC)) {
1988 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
1989 		       info->name ?: "(missing .modinfo section or name field)");
1990 		return -ENOEXEC;
1991 	}
1992 
1993 	if (shdr->sh_size != sizeof(struct module)) {
1994 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
1995 		       info->name ?: "(missing .modinfo section or name field)");
1996 		return -ENOEXEC;
1997 	}
1998 
1999 	info->index.mod = mod_idx;
2000 
2001 	return 0;
2002 }
2003 
2004 /**
2005  * elf_validity_cache_index_sym() - Validate and cache symtab index
2006  * @info: Load info to cache symtab index in.
2007  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2008  *
2009  * Checks that there is exactly one symbol table, then caches its index in
2010  * &load_info->index.sym.
2011  *
2012  * Return: %0 if valid, %-ENOEXEC on failure.
2013  */
2014 static int elf_validity_cache_index_sym(struct load_info *info)
2015 {
2016 	unsigned int sym_idx;
2017 	unsigned int num_sym_secs = 0;
2018 	int i;
2019 
2020 	for (i = 1; i < info->hdr->e_shnum; i++) {
2021 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2022 			num_sym_secs++;
2023 			sym_idx = i;
2024 		}
2025 	}
2026 
2027 	if (num_sym_secs != 1) {
2028 		pr_warn("%s: module has no symbols (stripped?)\n",
2029 			info->name ?: "(missing .modinfo section or name field)");
2030 		return -ENOEXEC;
2031 	}
2032 
2033 	info->index.sym = sym_idx;
2034 
2035 	return 0;
2036 }
2037 
2038 /**
2039  * elf_validity_cache_index_str() - Validate and cache strtab index
2040  * @info: Load info to cache strtab index in.
2041  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2042  *        Must have &load_info->index.sym populated.
2043  *
2044  * Looks at the symbol table's associated string table, makes sure it is
2045  * in-bounds, and caches it.
2046  *
2047  * Return: %0 if valid, %-ENOEXEC on failure.
2048  */
2049 static int elf_validity_cache_index_str(struct load_info *info)
2050 {
2051 	unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2052 
2053 	if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2054 		pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2055 		       str_idx, str_idx, info->hdr->e_shnum);
2056 		return -ENOEXEC;
2057 	}
2058 
2059 	info->index.str = str_idx;
2060 	return 0;
2061 }
2062 
2063 /**
2064  * elf_validity_cache_index_versions() - Validate and cache version indices
2065  * @info:  Load info to cache version indices in.
2066  *         Must have &load_info->sechdrs and &load_info->secstrings populated.
2067  * @flags: Load flags, relevant to suppress version loading, see
2068  *         uapi/linux/module.h
2069  *
2070  * If we're ignoring modversions based on @flags, zero all version indices
2071  * and return validity. Othewrise check:
2072  *
2073  * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2074  * * There is a name present for every crc
2075  *
2076  * Then populate:
2077  *
2078  * * &load_info->index.vers
2079  * * &load_info->index.vers_ext_crc
2080  * * &load_info->index.vers_ext_names
2081  *
2082  * if present.
2083  *
2084  * Return: %0 if valid, %-ENOEXEC on failure.
2085  */
2086 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2087 {
2088 	unsigned int vers_ext_crc;
2089 	unsigned int vers_ext_name;
2090 	size_t crc_count;
2091 	size_t remaining_len;
2092 	size_t name_size;
2093 	char *name;
2094 
2095 	/* If modversions were suppressed, pretend we didn't find any */
2096 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2097 		info->index.vers = 0;
2098 		info->index.vers_ext_crc = 0;
2099 		info->index.vers_ext_name = 0;
2100 		return 0;
2101 	}
2102 
2103 	vers_ext_crc = find_sec(info, "__version_ext_crcs");
2104 	vers_ext_name = find_sec(info, "__version_ext_names");
2105 
2106 	/* If we have one field, we must have the other */
2107 	if (!!vers_ext_crc != !!vers_ext_name) {
2108 		pr_err("extended version crc+name presence does not match");
2109 		return -ENOEXEC;
2110 	}
2111 
2112 	/*
2113 	 * If we have extended version information, we should have the same
2114 	 * number of entries in every section.
2115 	 */
2116 	if (vers_ext_crc) {
2117 		crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2118 		name = (void *)info->hdr +
2119 			info->sechdrs[vers_ext_name].sh_offset;
2120 		remaining_len = info->sechdrs[vers_ext_name].sh_size;
2121 
2122 		while (crc_count--) {
2123 			name_size = strnlen(name, remaining_len) + 1;
2124 			if (name_size > remaining_len) {
2125 				pr_err("more extended version crcs than names");
2126 				return -ENOEXEC;
2127 			}
2128 			remaining_len -= name_size;
2129 			name += name_size;
2130 		}
2131 	}
2132 
2133 	info->index.vers = find_sec(info, "__versions");
2134 	info->index.vers_ext_crc = vers_ext_crc;
2135 	info->index.vers_ext_name = vers_ext_name;
2136 	return 0;
2137 }
2138 
2139 /**
2140  * elf_validity_cache_index() - Resolve, validate, cache section indices
2141  * @info:  Load info to read from and update.
2142  *         &load_info->sechdrs and &load_info->secstrings must be populated.
2143  * @flags: Load flags, relevant to suppress version loading, see
2144  *         uapi/linux/module.h
2145  *
2146  * Populates &load_info->index, validating as it goes.
2147  * See child functions for per-field validation:
2148  *
2149  * * elf_validity_cache_index_info()
2150  * * elf_validity_cache_index_mod()
2151  * * elf_validity_cache_index_sym()
2152  * * elf_validity_cache_index_str()
2153  * * elf_validity_cache_index_versions()
2154  *
2155  * If CONFIG_SMP is enabled, load the percpu section by name with no
2156  * validation.
2157  *
2158  * Return: 0 on success, negative error code if an index failed validation.
2159  */
2160 static int elf_validity_cache_index(struct load_info *info, int flags)
2161 {
2162 	int err;
2163 
2164 	err = elf_validity_cache_index_info(info);
2165 	if (err < 0)
2166 		return err;
2167 	err = elf_validity_cache_index_mod(info);
2168 	if (err < 0)
2169 		return err;
2170 	err = elf_validity_cache_index_sym(info);
2171 	if (err < 0)
2172 		return err;
2173 	err = elf_validity_cache_index_str(info);
2174 	if (err < 0)
2175 		return err;
2176 	err = elf_validity_cache_index_versions(info, flags);
2177 	if (err < 0)
2178 		return err;
2179 
2180 	info->index.pcpu = find_pcpusec(info);
2181 
2182 	return 0;
2183 }
2184 
2185 /**
2186  * elf_validity_cache_strtab() - Validate and cache symbol string table
2187  * @info: Load info to read from and update.
2188  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2189  *        Must have &load_info->index populated.
2190  *
2191  * Checks:
2192  *
2193  * * The string table is not empty.
2194  * * The string table starts and ends with NUL (required by ELF spec).
2195  * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2196  *   string table.
2197  *
2198  * And caches the pointer as &load_info->strtab in @info.
2199  *
2200  * Return: 0 on success, negative error code if a check failed.
2201  */
2202 static int elf_validity_cache_strtab(struct load_info *info)
2203 {
2204 	Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2205 	Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2206 	char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2207 	Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2208 	int i;
2209 
2210 	if (str_shdr->sh_size == 0) {
2211 		pr_err("empty symbol string table\n");
2212 		return -ENOEXEC;
2213 	}
2214 	if (strtab[0] != '\0') {
2215 		pr_err("symbol string table missing leading NUL\n");
2216 		return -ENOEXEC;
2217 	}
2218 	if (strtab[str_shdr->sh_size - 1] != '\0') {
2219 		pr_err("symbol string table isn't NUL terminated\n");
2220 		return -ENOEXEC;
2221 	}
2222 
2223 	/*
2224 	 * Now that we know strtab is correctly structured, check symbol
2225 	 * starts are inbounds before they're used later.
2226 	 */
2227 	for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2228 		if (syms[i].st_name >= str_shdr->sh_size) {
2229 			pr_err("symbol name out of bounds in string table");
2230 			return -ENOEXEC;
2231 		}
2232 	}
2233 
2234 	info->strtab = strtab;
2235 	return 0;
2236 }
2237 
2238 /*
2239  * Check userspace passed ELF module against our expectations, and cache
2240  * useful variables for further processing as we go.
2241  *
2242  * This does basic validity checks against section offsets and sizes, the
2243  * section name string table, and the indices used for it (sh_name).
2244  *
2245  * As a last step, since we're already checking the ELF sections we cache
2246  * useful variables which will be used later for our convenience:
2247  *
2248  * 	o pointers to section headers
2249  * 	o cache the modinfo symbol section
2250  * 	o cache the string symbol section
2251  * 	o cache the module section
2252  *
2253  * As a last step we set info->mod to the temporary copy of the module in
2254  * info->hdr. The final one will be allocated in move_module(). Any
2255  * modifications we make to our copy of the module will be carried over
2256  * to the final minted module.
2257  */
2258 static int elf_validity_cache_copy(struct load_info *info, int flags)
2259 {
2260 	int err;
2261 
2262 	err = elf_validity_cache_sechdrs(info);
2263 	if (err < 0)
2264 		return err;
2265 	err = elf_validity_cache_secstrings(info);
2266 	if (err < 0)
2267 		return err;
2268 	err = elf_validity_cache_index(info, flags);
2269 	if (err < 0)
2270 		return err;
2271 	err = elf_validity_cache_strtab(info);
2272 	if (err < 0)
2273 		return err;
2274 
2275 	/* This is temporary: point mod into copy of data. */
2276 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2277 
2278 	/*
2279 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2280 	 * on-disk struct mod 'name' field.
2281 	 */
2282 	if (!info->name)
2283 		info->name = info->mod->name;
2284 
2285 	return 0;
2286 }
2287 
2288 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2289 
2290 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2291 {
2292 	do {
2293 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2294 
2295 		if (copy_from_user(dst, usrc, n) != 0)
2296 			return -EFAULT;
2297 		cond_resched();
2298 		dst += n;
2299 		usrc += n;
2300 		len -= n;
2301 	} while (len);
2302 	return 0;
2303 }
2304 
2305 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2306 {
2307 	if (!get_modinfo(info, "livepatch"))
2308 		/* Nothing more to do */
2309 		return 0;
2310 
2311 	if (set_livepatch_module(mod))
2312 		return 0;
2313 
2314 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2315 	       mod->name);
2316 	return -ENOEXEC;
2317 }
2318 
2319 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2320 {
2321 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2322 		return;
2323 
2324 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2325 		mod->name);
2326 }
2327 
2328 /* Sets info->hdr and info->len. */
2329 static int copy_module_from_user(const void __user *umod, unsigned long len,
2330 				  struct load_info *info)
2331 {
2332 	int err;
2333 
2334 	info->len = len;
2335 	if (info->len < sizeof(*(info->hdr)))
2336 		return -ENOEXEC;
2337 
2338 	err = security_kernel_load_data(LOADING_MODULE, true);
2339 	if (err)
2340 		return err;
2341 
2342 	/* Suck in entire file: we'll want most of it. */
2343 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2344 	if (!info->hdr)
2345 		return -ENOMEM;
2346 
2347 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2348 		err = -EFAULT;
2349 		goto out;
2350 	}
2351 
2352 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2353 					     LOADING_MODULE, "init_module");
2354 out:
2355 	if (err)
2356 		vfree(info->hdr);
2357 
2358 	return err;
2359 }
2360 
2361 static void free_copy(struct load_info *info, int flags)
2362 {
2363 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2364 		module_decompress_cleanup(info);
2365 	else
2366 		vfree(info->hdr);
2367 }
2368 
2369 static int rewrite_section_headers(struct load_info *info, int flags)
2370 {
2371 	unsigned int i;
2372 
2373 	/* This should always be true, but let's be sure. */
2374 	info->sechdrs[0].sh_addr = 0;
2375 
2376 	for (i = 1; i < info->hdr->e_shnum; i++) {
2377 		Elf_Shdr *shdr = &info->sechdrs[i];
2378 
2379 		/*
2380 		 * Mark all sections sh_addr with their address in the
2381 		 * temporary image.
2382 		 */
2383 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2384 
2385 	}
2386 
2387 	/* Track but don't keep modinfo and version sections. */
2388 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2389 	info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2390 		~(unsigned long)SHF_ALLOC;
2391 	info->sechdrs[info->index.vers_ext_name].sh_flags &=
2392 		~(unsigned long)SHF_ALLOC;
2393 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2394 
2395 	return 0;
2396 }
2397 
2398 static const char *const module_license_offenders[] = {
2399 	/* driverloader was caught wrongly pretending to be under GPL */
2400 	"driverloader",
2401 
2402 	/* lve claims to be GPL but upstream won't provide source */
2403 	"lve",
2404 };
2405 
2406 /*
2407  * These calls taint the kernel depending certain module circumstances */
2408 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2409 {
2410 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2411 	size_t i;
2412 
2413 	if (!get_modinfo(info, "intree")) {
2414 		if (!test_taint(TAINT_OOT_MODULE))
2415 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2416 				mod->name);
2417 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2418 	}
2419 
2420 	check_modinfo_retpoline(mod, info);
2421 
2422 	if (get_modinfo(info, "staging")) {
2423 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2424 		pr_warn("%s: module is from the staging directory, the quality "
2425 			"is unknown, you have been warned.\n", mod->name);
2426 	}
2427 
2428 	if (is_livepatch_module(mod)) {
2429 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2430 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2431 				mod->name);
2432 	}
2433 
2434 	module_license_taint_check(mod, get_modinfo(info, "license"));
2435 
2436 	if (get_modinfo(info, "test")) {
2437 		if (!test_taint(TAINT_TEST))
2438 			pr_warn("%s: loading test module taints kernel.\n",
2439 				mod->name);
2440 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2441 	}
2442 #ifdef CONFIG_MODULE_SIG
2443 	mod->sig_ok = info->sig_ok;
2444 	if (!mod->sig_ok) {
2445 		pr_notice_once("%s: module verification failed: signature "
2446 			       "and/or required key missing - tainting "
2447 			       "kernel\n", mod->name);
2448 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2449 	}
2450 #endif
2451 
2452 	/*
2453 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2454 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2455 	 * using GPL-only symbols it needs.
2456 	 */
2457 	if (strcmp(mod->name, "ndiswrapper") == 0)
2458 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2459 
2460 	for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2461 		if (strcmp(mod->name, module_license_offenders[i]) == 0)
2462 			add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2463 					 LOCKDEP_NOW_UNRELIABLE);
2464 	}
2465 
2466 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2467 		pr_warn("%s: module license taints kernel.\n", mod->name);
2468 
2469 }
2470 
2471 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2472 {
2473 	const char *modmagic = get_modinfo(info, "vermagic");
2474 	int err;
2475 
2476 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2477 		modmagic = NULL;
2478 
2479 	/* This is allowed: modprobe --force will invalidate it. */
2480 	if (!modmagic) {
2481 		err = try_to_force_load(mod, "bad vermagic");
2482 		if (err)
2483 			return err;
2484 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2485 		pr_err("%s: version magic '%s' should be '%s'\n",
2486 		       info->name, modmagic, vermagic);
2487 		return -ENOEXEC;
2488 	}
2489 
2490 	err = check_modinfo_livepatch(mod, info);
2491 	if (err)
2492 		return err;
2493 
2494 	return 0;
2495 }
2496 
2497 static int find_module_sections(struct module *mod, struct load_info *info)
2498 {
2499 	mod->kp = section_objs(info, "__param",
2500 			       sizeof(*mod->kp), &mod->num_kp);
2501 	mod->syms = section_objs(info, "__ksymtab",
2502 				 sizeof(*mod->syms), &mod->num_syms);
2503 	mod->crcs = section_addr(info, "__kcrctab");
2504 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2505 				     sizeof(*mod->gpl_syms),
2506 				     &mod->num_gpl_syms);
2507 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2508 
2509 #ifdef CONFIG_CONSTRUCTORS
2510 	mod->ctors = section_objs(info, ".ctors",
2511 				  sizeof(*mod->ctors), &mod->num_ctors);
2512 	if (!mod->ctors)
2513 		mod->ctors = section_objs(info, ".init_array",
2514 				sizeof(*mod->ctors), &mod->num_ctors);
2515 	else if (find_sec(info, ".init_array")) {
2516 		/*
2517 		 * This shouldn't happen with same compiler and binutils
2518 		 * building all parts of the module.
2519 		 */
2520 		pr_warn("%s: has both .ctors and .init_array.\n",
2521 		       mod->name);
2522 		return -EINVAL;
2523 	}
2524 #endif
2525 
2526 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2527 						&mod->noinstr_text_size);
2528 
2529 #ifdef CONFIG_TRACEPOINTS
2530 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2531 					     sizeof(*mod->tracepoints_ptrs),
2532 					     &mod->num_tracepoints);
2533 #endif
2534 #ifdef CONFIG_TREE_SRCU
2535 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2536 					     sizeof(*mod->srcu_struct_ptrs),
2537 					     &mod->num_srcu_structs);
2538 #endif
2539 #ifdef CONFIG_BPF_EVENTS
2540 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2541 					   sizeof(*mod->bpf_raw_events),
2542 					   &mod->num_bpf_raw_events);
2543 #endif
2544 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2545 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2546 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2547 					      &mod->btf_base_data_size);
2548 #endif
2549 #ifdef CONFIG_JUMP_LABEL
2550 	mod->jump_entries = section_objs(info, "__jump_table",
2551 					sizeof(*mod->jump_entries),
2552 					&mod->num_jump_entries);
2553 #endif
2554 #ifdef CONFIG_EVENT_TRACING
2555 	mod->trace_events = section_objs(info, "_ftrace_events",
2556 					 sizeof(*mod->trace_events),
2557 					 &mod->num_trace_events);
2558 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2559 					sizeof(*mod->trace_evals),
2560 					&mod->num_trace_evals);
2561 #endif
2562 #ifdef CONFIG_TRACING
2563 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2564 					 sizeof(*mod->trace_bprintk_fmt_start),
2565 					 &mod->num_trace_bprintk_fmt);
2566 #endif
2567 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2568 	/* sechdrs[0].sh_size is always zero */
2569 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2570 					     sizeof(*mod->ftrace_callsites),
2571 					     &mod->num_ftrace_callsites);
2572 #endif
2573 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2574 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2575 					    sizeof(*mod->ei_funcs),
2576 					    &mod->num_ei_funcs);
2577 #endif
2578 #ifdef CONFIG_KPROBES
2579 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2580 						&mod->kprobes_text_size);
2581 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2582 						sizeof(unsigned long),
2583 						&mod->num_kprobe_blacklist);
2584 #endif
2585 #ifdef CONFIG_PRINTK_INDEX
2586 	mod->printk_index_start = section_objs(info, ".printk_index",
2587 					       sizeof(*mod->printk_index_start),
2588 					       &mod->printk_index_size);
2589 #endif
2590 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2591 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2592 					      sizeof(*mod->static_call_sites),
2593 					      &mod->num_static_call_sites);
2594 #endif
2595 #if IS_ENABLED(CONFIG_KUNIT)
2596 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2597 					      sizeof(*mod->kunit_suites),
2598 					      &mod->num_kunit_suites);
2599 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2600 					      sizeof(*mod->kunit_init_suites),
2601 					      &mod->num_kunit_init_suites);
2602 #endif
2603 
2604 	mod->extable = section_objs(info, "__ex_table",
2605 				    sizeof(*mod->extable), &mod->num_exentries);
2606 
2607 	if (section_addr(info, "__obsparm"))
2608 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2609 
2610 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2611 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2612 					      sizeof(*mod->dyndbg_info.descs),
2613 					      &mod->dyndbg_info.num_descs);
2614 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2615 						sizeof(*mod->dyndbg_info.classes),
2616 						&mod->dyndbg_info.num_classes);
2617 #endif
2618 
2619 	return 0;
2620 }
2621 
2622 static int move_module(struct module *mod, struct load_info *info)
2623 {
2624 	int i;
2625 	enum mod_mem_type t = 0;
2626 	int ret = -ENOMEM;
2627 	bool codetag_section_found = false;
2628 
2629 	for_each_mod_mem_type(type) {
2630 		if (!mod->mem[type].size) {
2631 			mod->mem[type].base = NULL;
2632 			mod->mem[type].rw_copy = NULL;
2633 			continue;
2634 		}
2635 
2636 		ret = module_memory_alloc(mod, type);
2637 		if (ret) {
2638 			t = type;
2639 			goto out_err;
2640 		}
2641 	}
2642 
2643 	/* Transfer each section which specifies SHF_ALLOC */
2644 	pr_debug("Final section addresses for %s:\n", mod->name);
2645 	for (i = 0; i < info->hdr->e_shnum; i++) {
2646 		void *dest;
2647 		Elf_Shdr *shdr = &info->sechdrs[i];
2648 		const char *sname;
2649 		unsigned long addr;
2650 
2651 		if (!(shdr->sh_flags & SHF_ALLOC))
2652 			continue;
2653 
2654 		sname = info->secstrings + shdr->sh_name;
2655 		/*
2656 		 * Load codetag sections separately as they might still be used
2657 		 * after module unload.
2658 		 */
2659 		if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2660 			dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2661 					arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2662 			if (WARN_ON(!dest)) {
2663 				ret = -EINVAL;
2664 				goto out_err;
2665 			}
2666 			if (IS_ERR(dest)) {
2667 				ret = PTR_ERR(dest);
2668 				goto out_err;
2669 			}
2670 			addr = (unsigned long)dest;
2671 			codetag_section_found = true;
2672 		} else {
2673 			enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2674 			unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2675 
2676 			addr = (unsigned long)mod->mem[type].base + offset;
2677 			dest = mod->mem[type].rw_copy + offset;
2678 		}
2679 
2680 		if (shdr->sh_type != SHT_NOBITS) {
2681 			/*
2682 			 * Our ELF checker already validated this, but let's
2683 			 * be pedantic and make the goal clearer. We actually
2684 			 * end up copying over all modifications made to the
2685 			 * userspace copy of the entire struct module.
2686 			 */
2687 			if (i == info->index.mod &&
2688 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2689 				ret = -ENOEXEC;
2690 				goto out_err;
2691 			}
2692 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2693 		}
2694 		/*
2695 		 * Update the userspace copy's ELF section address to point to
2696 		 * our newly allocated memory as a pure convenience so that
2697 		 * users of info can keep taking advantage and using the newly
2698 		 * minted official memory area.
2699 		 */
2700 		shdr->sh_addr = addr;
2701 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2702 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2703 	}
2704 
2705 	return 0;
2706 out_err:
2707 	for (t--; t >= 0; t--)
2708 		module_memory_free(mod, t);
2709 	if (codetag_section_found)
2710 		codetag_free_module_sections(mod);
2711 
2712 	return ret;
2713 }
2714 
2715 static int check_export_symbol_versions(struct module *mod)
2716 {
2717 #ifdef CONFIG_MODVERSIONS
2718 	if ((mod->num_syms && !mod->crcs) ||
2719 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2720 		return try_to_force_load(mod,
2721 					 "no versions for exported symbols");
2722 	}
2723 #endif
2724 	return 0;
2725 }
2726 
2727 static void flush_module_icache(const struct module *mod)
2728 {
2729 	/*
2730 	 * Flush the instruction cache, since we've played with text.
2731 	 * Do it before processing of module parameters, so the module
2732 	 * can provide parameter accessor functions of its own.
2733 	 */
2734 	for_each_mod_mem_type(type) {
2735 		const struct module_memory *mod_mem = &mod->mem[type];
2736 
2737 		if (mod_mem->size) {
2738 			flush_icache_range((unsigned long)mod_mem->base,
2739 					   (unsigned long)mod_mem->base + mod_mem->size);
2740 		}
2741 	}
2742 }
2743 
2744 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2745 {
2746 	return true;
2747 }
2748 
2749 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2750 				     Elf_Shdr *sechdrs,
2751 				     char *secstrings,
2752 				     struct module *mod)
2753 {
2754 	return 0;
2755 }
2756 
2757 /* module_blacklist is a comma-separated list of module names */
2758 static char *module_blacklist;
2759 static bool blacklisted(const char *module_name)
2760 {
2761 	const char *p;
2762 	size_t len;
2763 
2764 	if (!module_blacklist)
2765 		return false;
2766 
2767 	for (p = module_blacklist; *p; p += len) {
2768 		len = strcspn(p, ",");
2769 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2770 			return true;
2771 		if (p[len] == ',')
2772 			len++;
2773 	}
2774 	return false;
2775 }
2776 core_param(module_blacklist, module_blacklist, charp, 0400);
2777 
2778 static struct module *layout_and_allocate(struct load_info *info, int flags)
2779 {
2780 	struct module *mod;
2781 	unsigned int ndx;
2782 	int err;
2783 
2784 	/* Allow arches to frob section contents and sizes.  */
2785 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2786 					info->secstrings, info->mod);
2787 	if (err < 0)
2788 		return ERR_PTR(err);
2789 
2790 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2791 					  info->secstrings, info->mod);
2792 	if (err < 0)
2793 		return ERR_PTR(err);
2794 
2795 	/* We will do a special allocation for per-cpu sections later. */
2796 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2797 
2798 	/*
2799 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2800 	 * layout_sections() can put it in the right place.
2801 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2802 	 */
2803 	ndx = find_sec(info, ".data..ro_after_init");
2804 	if (ndx)
2805 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2806 	/*
2807 	 * Mark the __jump_table section as ro_after_init as well: these data
2808 	 * structures are never modified, with the exception of entries that
2809 	 * refer to code in the __init section, which are annotated as such
2810 	 * at module load time.
2811 	 */
2812 	ndx = find_sec(info, "__jump_table");
2813 	if (ndx)
2814 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2815 
2816 	/*
2817 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2818 	 * this is done generically; there doesn't appear to be any
2819 	 * special cases for the architectures.
2820 	 */
2821 	layout_sections(info->mod, info);
2822 	layout_symtab(info->mod, info);
2823 
2824 	/* Allocate and move to the final place */
2825 	err = move_module(info->mod, info);
2826 	if (err)
2827 		return ERR_PTR(err);
2828 
2829 	/* Module has been copied to its final place now: return it. */
2830 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2831 	kmemleak_load_module(mod, info);
2832 	codetag_module_replaced(info->mod, mod);
2833 
2834 	return mod;
2835 }
2836 
2837 /* mod is no longer valid after this! */
2838 static void module_deallocate(struct module *mod, struct load_info *info)
2839 {
2840 	percpu_modfree(mod);
2841 	module_arch_freeing_init(mod);
2842 
2843 	free_mod_mem(mod);
2844 }
2845 
2846 int __weak module_finalize(const Elf_Ehdr *hdr,
2847 			   const Elf_Shdr *sechdrs,
2848 			   struct module *me)
2849 {
2850 	return 0;
2851 }
2852 
2853 int __weak module_post_finalize(const Elf_Ehdr *hdr,
2854 				const Elf_Shdr *sechdrs,
2855 				struct module *me)
2856 {
2857 	return 0;
2858 }
2859 
2860 static int post_relocation(struct module *mod, const struct load_info *info)
2861 {
2862 	int ret;
2863 
2864 	/* Sort exception table now relocations are done. */
2865 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2866 
2867 	/* Copy relocated percpu area over. */
2868 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2869 		       info->sechdrs[info->index.pcpu].sh_size);
2870 
2871 	/* Setup kallsyms-specific fields. */
2872 	add_kallsyms(mod, info);
2873 
2874 	/* Arch-specific module finalizing. */
2875 	ret = module_finalize(info->hdr, info->sechdrs, mod);
2876 	if (ret)
2877 		return ret;
2878 
2879 	for_each_mod_mem_type(type) {
2880 		struct module_memory *mem = &mod->mem[type];
2881 
2882 		if (mem->is_rox) {
2883 			if (!execmem_update_copy(mem->base, mem->rw_copy,
2884 						 mem->size))
2885 				return -ENOMEM;
2886 
2887 			vfree(mem->rw_copy);
2888 			mem->rw_copy = NULL;
2889 		}
2890 	}
2891 
2892 	return module_post_finalize(info->hdr, info->sechdrs, mod);
2893 }
2894 
2895 /* Call module constructors. */
2896 static void do_mod_ctors(struct module *mod)
2897 {
2898 #ifdef CONFIG_CONSTRUCTORS
2899 	unsigned long i;
2900 
2901 	for (i = 0; i < mod->num_ctors; i++)
2902 		mod->ctors[i]();
2903 #endif
2904 }
2905 
2906 /* For freeing module_init on success, in case kallsyms traversing */
2907 struct mod_initfree {
2908 	struct llist_node node;
2909 	void *init_text;
2910 	void *init_data;
2911 	void *init_rodata;
2912 };
2913 
2914 static void do_free_init(struct work_struct *w)
2915 {
2916 	struct llist_node *pos, *n, *list;
2917 	struct mod_initfree *initfree;
2918 
2919 	list = llist_del_all(&init_free_list);
2920 
2921 	synchronize_rcu();
2922 
2923 	llist_for_each_safe(pos, n, list) {
2924 		initfree = container_of(pos, struct mod_initfree, node);
2925 		execmem_free(initfree->init_text);
2926 		execmem_free(initfree->init_data);
2927 		execmem_free(initfree->init_rodata);
2928 		kfree(initfree);
2929 	}
2930 }
2931 
2932 void flush_module_init_free_work(void)
2933 {
2934 	flush_work(&init_free_wq);
2935 }
2936 
2937 #undef MODULE_PARAM_PREFIX
2938 #define MODULE_PARAM_PREFIX "module."
2939 /* Default value for module->async_probe_requested */
2940 static bool async_probe;
2941 module_param(async_probe, bool, 0644);
2942 
2943 /*
2944  * This is where the real work happens.
2945  *
2946  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2947  * helper command 'lx-symbols'.
2948  */
2949 static noinline int do_init_module(struct module *mod)
2950 {
2951 	int ret = 0;
2952 	struct mod_initfree *freeinit;
2953 #if defined(CONFIG_MODULE_STATS)
2954 	unsigned int text_size = 0, total_size = 0;
2955 
2956 	for_each_mod_mem_type(type) {
2957 		const struct module_memory *mod_mem = &mod->mem[type];
2958 		if (mod_mem->size) {
2959 			total_size += mod_mem->size;
2960 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2961 				text_size += mod_mem->size;
2962 		}
2963 	}
2964 #endif
2965 
2966 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2967 	if (!freeinit) {
2968 		ret = -ENOMEM;
2969 		goto fail;
2970 	}
2971 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2972 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2973 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2974 
2975 	do_mod_ctors(mod);
2976 	/* Start the module */
2977 	if (mod->init != NULL)
2978 		ret = do_one_initcall(mod->init);
2979 	if (ret < 0) {
2980 		goto fail_free_freeinit;
2981 	}
2982 	if (ret > 0) {
2983 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2984 			"follow 0/-E convention\n"
2985 			"%s: loading module anyway...\n",
2986 			__func__, mod->name, ret, __func__);
2987 		dump_stack();
2988 	}
2989 
2990 	/* Now it's a first class citizen! */
2991 	mod->state = MODULE_STATE_LIVE;
2992 	blocking_notifier_call_chain(&module_notify_list,
2993 				     MODULE_STATE_LIVE, mod);
2994 
2995 	/* Delay uevent until module has finished its init routine */
2996 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2997 
2998 	/*
2999 	 * We need to finish all async code before the module init sequence
3000 	 * is done. This has potential to deadlock if synchronous module
3001 	 * loading is requested from async (which is not allowed!).
3002 	 *
3003 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3004 	 * request_module() from async workers") for more details.
3005 	 */
3006 	if (!mod->async_probe_requested)
3007 		async_synchronize_full();
3008 
3009 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3010 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3011 	mutex_lock(&module_mutex);
3012 	/* Drop initial reference. */
3013 	module_put(mod);
3014 	trim_init_extable(mod);
3015 #ifdef CONFIG_KALLSYMS
3016 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3017 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3018 #endif
3019 	ret = module_enable_rodata_ro_after_init(mod);
3020 	if (ret)
3021 		pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3022 			"ro_after_init data might still be writable\n",
3023 			mod->name, ret);
3024 
3025 	mod_tree_remove_init(mod);
3026 	module_arch_freeing_init(mod);
3027 	for_class_mod_mem_type(type, init) {
3028 		mod->mem[type].base = NULL;
3029 		mod->mem[type].size = 0;
3030 	}
3031 
3032 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3033 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3034 	mod->btf_data = NULL;
3035 	mod->btf_base_data = NULL;
3036 #endif
3037 	/*
3038 	 * We want to free module_init, but be aware that kallsyms may be
3039 	 * walking this within an RCU read section. In all the failure paths, we
3040 	 * call synchronize_rcu(), but we don't want to slow down the success
3041 	 * path. execmem_free() cannot be called in an interrupt, so do the
3042 	 * work and call synchronize_rcu() in a work queue.
3043 	 *
3044 	 * Note that execmem_alloc() on most architectures creates W+X page
3045 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3046 	 * code such as mark_rodata_ro() which depends on those mappings to
3047 	 * be cleaned up needs to sync with the queued work by invoking
3048 	 * flush_module_init_free_work().
3049 	 */
3050 	if (llist_add(&freeinit->node, &init_free_list))
3051 		schedule_work(&init_free_wq);
3052 
3053 	mutex_unlock(&module_mutex);
3054 	wake_up_all(&module_wq);
3055 
3056 	mod_stat_add_long(text_size, &total_text_size);
3057 	mod_stat_add_long(total_size, &total_mod_size);
3058 
3059 	mod_stat_inc(&modcount);
3060 
3061 	return 0;
3062 
3063 fail_free_freeinit:
3064 	kfree(freeinit);
3065 fail:
3066 	/* Try to protect us from buggy refcounters. */
3067 	mod->state = MODULE_STATE_GOING;
3068 	synchronize_rcu();
3069 	module_put(mod);
3070 	blocking_notifier_call_chain(&module_notify_list,
3071 				     MODULE_STATE_GOING, mod);
3072 	klp_module_going(mod);
3073 	ftrace_release_mod(mod);
3074 	free_module(mod);
3075 	wake_up_all(&module_wq);
3076 
3077 	return ret;
3078 }
3079 
3080 static int may_init_module(void)
3081 {
3082 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3083 		return -EPERM;
3084 
3085 	return 0;
3086 }
3087 
3088 /* Is this module of this name done loading?  No locks held. */
3089 static bool finished_loading(const char *name)
3090 {
3091 	struct module *mod;
3092 	bool ret;
3093 
3094 	/*
3095 	 * The module_mutex should not be a heavily contended lock;
3096 	 * if we get the occasional sleep here, we'll go an extra iteration
3097 	 * in the wait_event_interruptible(), which is harmless.
3098 	 */
3099 	sched_annotate_sleep();
3100 	mutex_lock(&module_mutex);
3101 	mod = find_module_all(name, strlen(name), true);
3102 	ret = !mod || mod->state == MODULE_STATE_LIVE
3103 		|| mod->state == MODULE_STATE_GOING;
3104 	mutex_unlock(&module_mutex);
3105 
3106 	return ret;
3107 }
3108 
3109 /* Must be called with module_mutex held */
3110 static int module_patient_check_exists(const char *name,
3111 				       enum fail_dup_mod_reason reason)
3112 {
3113 	struct module *old;
3114 	int err = 0;
3115 
3116 	old = find_module_all(name, strlen(name), true);
3117 	if (old == NULL)
3118 		return 0;
3119 
3120 	if (old->state == MODULE_STATE_COMING ||
3121 	    old->state == MODULE_STATE_UNFORMED) {
3122 		/* Wait in case it fails to load. */
3123 		mutex_unlock(&module_mutex);
3124 		err = wait_event_interruptible(module_wq,
3125 				       finished_loading(name));
3126 		mutex_lock(&module_mutex);
3127 		if (err)
3128 			return err;
3129 
3130 		/* The module might have gone in the meantime. */
3131 		old = find_module_all(name, strlen(name), true);
3132 	}
3133 
3134 	if (try_add_failed_module(name, reason))
3135 		pr_warn("Could not add fail-tracking for module: %s\n", name);
3136 
3137 	/*
3138 	 * We are here only when the same module was being loaded. Do
3139 	 * not try to load it again right now. It prevents long delays
3140 	 * caused by serialized module load failures. It might happen
3141 	 * when more devices of the same type trigger load of
3142 	 * a particular module.
3143 	 */
3144 	if (old && old->state == MODULE_STATE_LIVE)
3145 		return -EEXIST;
3146 	return -EBUSY;
3147 }
3148 
3149 /*
3150  * We try to place it in the list now to make sure it's unique before
3151  * we dedicate too many resources.  In particular, temporary percpu
3152  * memory exhaustion.
3153  */
3154 static int add_unformed_module(struct module *mod)
3155 {
3156 	int err;
3157 
3158 	mod->state = MODULE_STATE_UNFORMED;
3159 
3160 	mutex_lock(&module_mutex);
3161 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3162 	if (err)
3163 		goto out;
3164 
3165 	mod_update_bounds(mod);
3166 	list_add_rcu(&mod->list, &modules);
3167 	mod_tree_insert(mod);
3168 	err = 0;
3169 
3170 out:
3171 	mutex_unlock(&module_mutex);
3172 	return err;
3173 }
3174 
3175 static int complete_formation(struct module *mod, struct load_info *info)
3176 {
3177 	int err;
3178 
3179 	mutex_lock(&module_mutex);
3180 
3181 	/* Find duplicate symbols (must be called under lock). */
3182 	err = verify_exported_symbols(mod);
3183 	if (err < 0)
3184 		goto out;
3185 
3186 	/* These rely on module_mutex for list integrity. */
3187 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3188 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
3189 
3190 	err = module_enable_rodata_ro(mod);
3191 	if (err)
3192 		goto out_strict_rwx;
3193 	err = module_enable_data_nx(mod);
3194 	if (err)
3195 		goto out_strict_rwx;
3196 	err = module_enable_text_rox(mod);
3197 	if (err)
3198 		goto out_strict_rwx;
3199 
3200 	/*
3201 	 * Mark state as coming so strong_try_module_get() ignores us,
3202 	 * but kallsyms etc. can see us.
3203 	 */
3204 	mod->state = MODULE_STATE_COMING;
3205 	mutex_unlock(&module_mutex);
3206 
3207 	return 0;
3208 
3209 out_strict_rwx:
3210 	module_bug_cleanup(mod);
3211 out:
3212 	mutex_unlock(&module_mutex);
3213 	return err;
3214 }
3215 
3216 static int prepare_coming_module(struct module *mod)
3217 {
3218 	int err;
3219 
3220 	ftrace_module_enable(mod);
3221 	err = klp_module_coming(mod);
3222 	if (err)
3223 		return err;
3224 
3225 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3226 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3227 	err = notifier_to_errno(err);
3228 	if (err)
3229 		klp_module_going(mod);
3230 
3231 	return err;
3232 }
3233 
3234 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3235 				   void *arg)
3236 {
3237 	struct module *mod = arg;
3238 	int ret;
3239 
3240 	if (strcmp(param, "async_probe") == 0) {
3241 		if (kstrtobool(val, &mod->async_probe_requested))
3242 			mod->async_probe_requested = true;
3243 		return 0;
3244 	}
3245 
3246 	/* Check for magic 'dyndbg' arg */
3247 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3248 	if (ret != 0)
3249 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3250 	return 0;
3251 }
3252 
3253 /* Module within temporary copy, this doesn't do any allocation  */
3254 static int early_mod_check(struct load_info *info, int flags)
3255 {
3256 	int err;
3257 
3258 	/*
3259 	 * Now that we know we have the correct module name, check
3260 	 * if it's blacklisted.
3261 	 */
3262 	if (blacklisted(info->name)) {
3263 		pr_err("Module %s is blacklisted\n", info->name);
3264 		return -EPERM;
3265 	}
3266 
3267 	err = rewrite_section_headers(info, flags);
3268 	if (err)
3269 		return err;
3270 
3271 	/* Check module struct version now, before we try to use module. */
3272 	if (!check_modstruct_version(info, info->mod))
3273 		return -ENOEXEC;
3274 
3275 	err = check_modinfo(info->mod, info, flags);
3276 	if (err)
3277 		return err;
3278 
3279 	mutex_lock(&module_mutex);
3280 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3281 	mutex_unlock(&module_mutex);
3282 
3283 	return err;
3284 }
3285 
3286 /*
3287  * Allocate and load the module: note that size of section 0 is always
3288  * zero, and we rely on this for optional sections.
3289  */
3290 static int load_module(struct load_info *info, const char __user *uargs,
3291 		       int flags)
3292 {
3293 	struct module *mod;
3294 	bool module_allocated = false;
3295 	long err = 0;
3296 	char *after_dashes;
3297 
3298 	/*
3299 	 * Do the signature check (if any) first. All that
3300 	 * the signature check needs is info->len, it does
3301 	 * not need any of the section info. That can be
3302 	 * set up later. This will minimize the chances
3303 	 * of a corrupt module causing problems before
3304 	 * we even get to the signature check.
3305 	 *
3306 	 * The check will also adjust info->len by stripping
3307 	 * off the sig length at the end of the module, making
3308 	 * checks against info->len more correct.
3309 	 */
3310 	err = module_sig_check(info, flags);
3311 	if (err)
3312 		goto free_copy;
3313 
3314 	/*
3315 	 * Do basic sanity checks against the ELF header and
3316 	 * sections. Cache useful sections and set the
3317 	 * info->mod to the userspace passed struct module.
3318 	 */
3319 	err = elf_validity_cache_copy(info, flags);
3320 	if (err)
3321 		goto free_copy;
3322 
3323 	err = early_mod_check(info, flags);
3324 	if (err)
3325 		goto free_copy;
3326 
3327 	/* Figure out module layout, and allocate all the memory. */
3328 	mod = layout_and_allocate(info, flags);
3329 	if (IS_ERR(mod)) {
3330 		err = PTR_ERR(mod);
3331 		goto free_copy;
3332 	}
3333 
3334 	module_allocated = true;
3335 
3336 	audit_log_kern_module(mod->name);
3337 
3338 	/* Reserve our place in the list. */
3339 	err = add_unformed_module(mod);
3340 	if (err)
3341 		goto free_module;
3342 
3343 	/*
3344 	 * We are tainting your kernel if your module gets into
3345 	 * the modules linked list somehow.
3346 	 */
3347 	module_augment_kernel_taints(mod, info);
3348 
3349 	/* To avoid stressing percpu allocator, do this once we're unique. */
3350 	err = percpu_modalloc(mod, info);
3351 	if (err)
3352 		goto unlink_mod;
3353 
3354 	/* Now module is in final location, initialize linked lists, etc. */
3355 	err = module_unload_init(mod);
3356 	if (err)
3357 		goto unlink_mod;
3358 
3359 	init_param_lock(mod);
3360 
3361 	/*
3362 	 * Now we've got everything in the final locations, we can
3363 	 * find optional sections.
3364 	 */
3365 	err = find_module_sections(mod, info);
3366 	if (err)
3367 		goto free_unload;
3368 
3369 	err = check_export_symbol_versions(mod);
3370 	if (err)
3371 		goto free_unload;
3372 
3373 	/* Set up MODINFO_ATTR fields */
3374 	setup_modinfo(mod, info);
3375 
3376 	/* Fix up syms, so that st_value is a pointer to location. */
3377 	err = simplify_symbols(mod, info);
3378 	if (err < 0)
3379 		goto free_modinfo;
3380 
3381 	err = apply_relocations(mod, info);
3382 	if (err < 0)
3383 		goto free_modinfo;
3384 
3385 	err = post_relocation(mod, info);
3386 	if (err < 0)
3387 		goto free_modinfo;
3388 
3389 	flush_module_icache(mod);
3390 
3391 	/* Now copy in args */
3392 	mod->args = strndup_user(uargs, ~0UL >> 1);
3393 	if (IS_ERR(mod->args)) {
3394 		err = PTR_ERR(mod->args);
3395 		goto free_arch_cleanup;
3396 	}
3397 
3398 	init_build_id(mod, info);
3399 
3400 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3401 	ftrace_module_init(mod);
3402 
3403 	/* Finally it's fully formed, ready to start executing. */
3404 	err = complete_formation(mod, info);
3405 	if (err)
3406 		goto ddebug_cleanup;
3407 
3408 	err = prepare_coming_module(mod);
3409 	if (err)
3410 		goto bug_cleanup;
3411 
3412 	mod->async_probe_requested = async_probe;
3413 
3414 	/* Module is ready to execute: parsing args may do that. */
3415 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3416 				  -32768, 32767, mod,
3417 				  unknown_module_param_cb);
3418 	if (IS_ERR(after_dashes)) {
3419 		err = PTR_ERR(after_dashes);
3420 		goto coming_cleanup;
3421 	} else if (after_dashes) {
3422 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3423 		       mod->name, after_dashes);
3424 	}
3425 
3426 	/* Link in to sysfs. */
3427 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3428 	if (err < 0)
3429 		goto coming_cleanup;
3430 
3431 	if (is_livepatch_module(mod)) {
3432 		err = copy_module_elf(mod, info);
3433 		if (err < 0)
3434 			goto sysfs_cleanup;
3435 	}
3436 
3437 	/* Get rid of temporary copy. */
3438 	free_copy(info, flags);
3439 
3440 	codetag_load_module(mod);
3441 
3442 	/* Done! */
3443 	trace_module_load(mod);
3444 
3445 	return do_init_module(mod);
3446 
3447  sysfs_cleanup:
3448 	mod_sysfs_teardown(mod);
3449  coming_cleanup:
3450 	mod->state = MODULE_STATE_GOING;
3451 	destroy_params(mod->kp, mod->num_kp);
3452 	blocking_notifier_call_chain(&module_notify_list,
3453 				     MODULE_STATE_GOING, mod);
3454 	klp_module_going(mod);
3455  bug_cleanup:
3456 	mod->state = MODULE_STATE_GOING;
3457 	/* module_bug_cleanup needs module_mutex protection */
3458 	mutex_lock(&module_mutex);
3459 	module_bug_cleanup(mod);
3460 	mutex_unlock(&module_mutex);
3461 
3462  ddebug_cleanup:
3463 	ftrace_release_mod(mod);
3464 	synchronize_rcu();
3465 	kfree(mod->args);
3466  free_arch_cleanup:
3467 	module_arch_cleanup(mod);
3468  free_modinfo:
3469 	free_modinfo(mod);
3470  free_unload:
3471 	module_unload_free(mod);
3472  unlink_mod:
3473 	mutex_lock(&module_mutex);
3474 	/* Unlink carefully: kallsyms could be walking list. */
3475 	list_del_rcu(&mod->list);
3476 	mod_tree_remove(mod);
3477 	wake_up_all(&module_wq);
3478 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3479 	synchronize_rcu();
3480 	mutex_unlock(&module_mutex);
3481  free_module:
3482 	mod_stat_bump_invalid(info, flags);
3483 	/* Free lock-classes; relies on the preceding sync_rcu() */
3484 	for_class_mod_mem_type(type, core_data) {
3485 		lockdep_free_key_range(mod->mem[type].base,
3486 				       mod->mem[type].size);
3487 	}
3488 
3489 	module_deallocate(mod, info);
3490  free_copy:
3491 	/*
3492 	 * The info->len is always set. We distinguish between
3493 	 * failures once the proper module was allocated and
3494 	 * before that.
3495 	 */
3496 	if (!module_allocated)
3497 		mod_stat_bump_becoming(info, flags);
3498 	free_copy(info, flags);
3499 	return err;
3500 }
3501 
3502 SYSCALL_DEFINE3(init_module, void __user *, umod,
3503 		unsigned long, len, const char __user *, uargs)
3504 {
3505 	int err;
3506 	struct load_info info = { };
3507 
3508 	err = may_init_module();
3509 	if (err)
3510 		return err;
3511 
3512 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3513 	       umod, len, uargs);
3514 
3515 	err = copy_module_from_user(umod, len, &info);
3516 	if (err) {
3517 		mod_stat_inc(&failed_kreads);
3518 		mod_stat_add_long(len, &invalid_kread_bytes);
3519 		return err;
3520 	}
3521 
3522 	return load_module(&info, uargs, 0);
3523 }
3524 
3525 struct idempotent {
3526 	const void *cookie;
3527 	struct hlist_node entry;
3528 	struct completion complete;
3529 	int ret;
3530 };
3531 
3532 #define IDEM_HASH_BITS 8
3533 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3534 static DEFINE_SPINLOCK(idem_lock);
3535 
3536 static bool idempotent(struct idempotent *u, const void *cookie)
3537 {
3538 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3539 	struct hlist_head *head = idem_hash + hash;
3540 	struct idempotent *existing;
3541 	bool first;
3542 
3543 	u->ret = -EINTR;
3544 	u->cookie = cookie;
3545 	init_completion(&u->complete);
3546 
3547 	spin_lock(&idem_lock);
3548 	first = true;
3549 	hlist_for_each_entry(existing, head, entry) {
3550 		if (existing->cookie != cookie)
3551 			continue;
3552 		first = false;
3553 		break;
3554 	}
3555 	hlist_add_head(&u->entry, idem_hash + hash);
3556 	spin_unlock(&idem_lock);
3557 
3558 	return !first;
3559 }
3560 
3561 /*
3562  * We were the first one with 'cookie' on the list, and we ended
3563  * up completing the operation. We now need to walk the list,
3564  * remove everybody - which includes ourselves - fill in the return
3565  * value, and then complete the operation.
3566  */
3567 static int idempotent_complete(struct idempotent *u, int ret)
3568 {
3569 	const void *cookie = u->cookie;
3570 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3571 	struct hlist_head *head = idem_hash + hash;
3572 	struct hlist_node *next;
3573 	struct idempotent *pos;
3574 
3575 	spin_lock(&idem_lock);
3576 	hlist_for_each_entry_safe(pos, next, head, entry) {
3577 		if (pos->cookie != cookie)
3578 			continue;
3579 		hlist_del_init(&pos->entry);
3580 		pos->ret = ret;
3581 		complete(&pos->complete);
3582 	}
3583 	spin_unlock(&idem_lock);
3584 	return ret;
3585 }
3586 
3587 /*
3588  * Wait for the idempotent worker.
3589  *
3590  * If we get interrupted, we need to remove ourselves from the
3591  * the idempotent list, and the completion may still come in.
3592  *
3593  * The 'idem_lock' protects against the race, and 'idem.ret' was
3594  * initialized to -EINTR and is thus always the right return
3595  * value even if the idempotent work then completes between
3596  * the wait_for_completion and the cleanup.
3597  */
3598 static int idempotent_wait_for_completion(struct idempotent *u)
3599 {
3600 	if (wait_for_completion_interruptible(&u->complete)) {
3601 		spin_lock(&idem_lock);
3602 		if (!hlist_unhashed(&u->entry))
3603 			hlist_del(&u->entry);
3604 		spin_unlock(&idem_lock);
3605 	}
3606 	return u->ret;
3607 }
3608 
3609 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3610 {
3611 	struct load_info info = { };
3612 	void *buf = NULL;
3613 	int len;
3614 
3615 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3616 	if (len < 0) {
3617 		mod_stat_inc(&failed_kreads);
3618 		return len;
3619 	}
3620 
3621 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3622 		int err = module_decompress(&info, buf, len);
3623 		vfree(buf); /* compressed data is no longer needed */
3624 		if (err) {
3625 			mod_stat_inc(&failed_decompress);
3626 			mod_stat_add_long(len, &invalid_decompress_bytes);
3627 			return err;
3628 		}
3629 	} else {
3630 		info.hdr = buf;
3631 		info.len = len;
3632 	}
3633 
3634 	return load_module(&info, uargs, flags);
3635 }
3636 
3637 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3638 {
3639 	struct idempotent idem;
3640 
3641 	if (!(f->f_mode & FMODE_READ))
3642 		return -EBADF;
3643 
3644 	/* Are we the winners of the race and get to do this? */
3645 	if (!idempotent(&idem, file_inode(f))) {
3646 		int ret = init_module_from_file(f, uargs, flags);
3647 		return idempotent_complete(&idem, ret);
3648 	}
3649 
3650 	/*
3651 	 * Somebody else won the race and is loading the module.
3652 	 */
3653 	return idempotent_wait_for_completion(&idem);
3654 }
3655 
3656 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3657 {
3658 	int err = may_init_module();
3659 	if (err)
3660 		return err;
3661 
3662 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3663 
3664 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3665 		      |MODULE_INIT_IGNORE_VERMAGIC
3666 		      |MODULE_INIT_COMPRESSED_FILE))
3667 		return -EINVAL;
3668 
3669 	CLASS(fd, f)(fd);
3670 	if (fd_empty(f))
3671 		return -EBADF;
3672 	return idempotent_init_module(fd_file(f), uargs, flags);
3673 }
3674 
3675 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
3676 char *module_flags(struct module *mod, char *buf, bool show_state)
3677 {
3678 	int bx = 0;
3679 
3680 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3681 	if (!mod->taints && !show_state)
3682 		goto out;
3683 	if (mod->taints ||
3684 	    mod->state == MODULE_STATE_GOING ||
3685 	    mod->state == MODULE_STATE_COMING) {
3686 		buf[bx++] = '(';
3687 		bx += module_flags_taint(mod->taints, buf + bx);
3688 		/* Show a - for module-is-being-unloaded */
3689 		if (mod->state == MODULE_STATE_GOING && show_state)
3690 			buf[bx++] = '-';
3691 		/* Show a + for module-is-being-loaded */
3692 		if (mod->state == MODULE_STATE_COMING && show_state)
3693 			buf[bx++] = '+';
3694 		buf[bx++] = ')';
3695 	}
3696 out:
3697 	buf[bx] = '\0';
3698 
3699 	return buf;
3700 }
3701 
3702 /* Given an address, look for it in the module exception tables. */
3703 const struct exception_table_entry *search_module_extables(unsigned long addr)
3704 {
3705 	struct module *mod;
3706 
3707 	guard(rcu)();
3708 	mod = __module_address(addr);
3709 	if (!mod)
3710 		return NULL;
3711 
3712 	if (!mod->num_exentries)
3713 		return NULL;
3714 	/*
3715 	 * The address passed here belongs to a module that is currently
3716 	 * invoked (we are running inside it). Therefore its module::refcnt
3717 	 * needs already be >0 to ensure that it is not removed at this stage.
3718 	 * All other user need to invoke this function within a RCU read
3719 	 * section.
3720 	 */
3721 	return search_extable(mod->extable, mod->num_exentries, addr);
3722 }
3723 
3724 /**
3725  * is_module_address() - is this address inside a module?
3726  * @addr: the address to check.
3727  *
3728  * See is_module_text_address() if you simply want to see if the address
3729  * is code (not data).
3730  */
3731 bool is_module_address(unsigned long addr)
3732 {
3733 	guard(rcu)();
3734 	return __module_address(addr) != NULL;
3735 }
3736 
3737 /**
3738  * __module_address() - get the module which contains an address.
3739  * @addr: the address.
3740  *
3741  * Must be called within RCU read section or module mutex held so that
3742  * module doesn't get freed during this.
3743  */
3744 struct module *__module_address(unsigned long addr)
3745 {
3746 	struct module *mod;
3747 
3748 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3749 		goto lookup;
3750 
3751 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3752 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3753 		goto lookup;
3754 #endif
3755 
3756 	return NULL;
3757 
3758 lookup:
3759 	mod = mod_find(addr, &mod_tree);
3760 	if (mod) {
3761 		BUG_ON(!within_module(addr, mod));
3762 		if (mod->state == MODULE_STATE_UNFORMED)
3763 			mod = NULL;
3764 	}
3765 	return mod;
3766 }
3767 
3768 /**
3769  * is_module_text_address() - is this address inside module code?
3770  * @addr: the address to check.
3771  *
3772  * See is_module_address() if you simply want to see if the address is
3773  * anywhere in a module.  See kernel_text_address() for testing if an
3774  * address corresponds to kernel or module code.
3775  */
3776 bool is_module_text_address(unsigned long addr)
3777 {
3778 	guard(rcu)();
3779 	return __module_text_address(addr) != NULL;
3780 }
3781 
3782 /**
3783  * __module_text_address() - get the module whose code contains an address.
3784  * @addr: the address.
3785  *
3786  * Must be called within RCU read section or module mutex held so that
3787  * module doesn't get freed during this.
3788  */
3789 struct module *__module_text_address(unsigned long addr)
3790 {
3791 	struct module *mod = __module_address(addr);
3792 	if (mod) {
3793 		/* Make sure it's within the text section. */
3794 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3795 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3796 			mod = NULL;
3797 	}
3798 	return mod;
3799 }
3800 
3801 /* Don't grab lock, we're oopsing. */
3802 void print_modules(void)
3803 {
3804 	struct module *mod;
3805 	char buf[MODULE_FLAGS_BUF_SIZE];
3806 
3807 	printk(KERN_DEFAULT "Modules linked in:");
3808 	/* Most callers should already have preempt disabled, but make sure */
3809 	guard(rcu)();
3810 	list_for_each_entry_rcu(mod, &modules, list) {
3811 		if (mod->state == MODULE_STATE_UNFORMED)
3812 			continue;
3813 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3814 	}
3815 
3816 	print_unloaded_tainted_modules();
3817 	if (last_unloaded_module.name[0])
3818 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3819 			last_unloaded_module.taints);
3820 	pr_cont("\n");
3821 }
3822 
3823 #ifdef CONFIG_MODULE_DEBUGFS
3824 struct dentry *mod_debugfs_root;
3825 
3826 static int module_debugfs_init(void)
3827 {
3828 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3829 	return 0;
3830 }
3831 module_init(module_debugfs_init);
3832 #endif
3833