xref: /linux-6.15/kernel/module/main.c (revision c287c072)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <[email protected]>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 /*
69  * Mutex protects:
70  * 1) List of modules (also safely readable with preempt_disable),
71  * 2) module_use links,
72  * 3) mod_tree.addr_min/mod_tree.addr_max.
73  * (delete and add uses RCU list operations).
74  */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77 
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82 
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 
87 struct symsearch {
88 	const struct kernel_symbol *start, *stop;
89 	const u32 *crcs;
90 	enum mod_license license;
91 };
92 
93 /*
94  * Bounds of module memory, for speeding up __module_address.
95  * Protected by module_mutex.
96  */
97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 				unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 	if (mod_mem_type_is_core_data(type)) {
105 		if (min < tree->data_addr_min)
106 			tree->data_addr_min = min;
107 		if (max > tree->data_addr_max)
108 			tree->data_addr_max = max;
109 		return;
110 	}
111 #endif
112 	if (min < tree->addr_min)
113 		tree->addr_min = min;
114 	if (max > tree->addr_max)
115 		tree->addr_max = max;
116 }
117 
118 static void mod_update_bounds(struct module *mod)
119 {
120 	for_each_mod_mem_type(type) {
121 		struct module_memory *mod_mem = &mod->mem[type];
122 
123 		if (mod_mem->size)
124 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 	}
126 }
127 
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131 
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134 
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136 
137 int register_module_notifier(struct notifier_block *nb)
138 {
139 	return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142 
143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148 
149 /*
150  * We require a truly strong try_module_get(): 0 means success.
151  * Otherwise an error is returned due to ongoing or failed
152  * initialization etc.
153  */
154 static inline int strong_try_module_get(struct module *mod)
155 {
156 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 	if (mod && mod->state == MODULE_STATE_COMING)
158 		return -EBUSY;
159 	if (try_module_get(mod))
160 		return 0;
161 	else
162 		return -ENOENT;
163 }
164 
165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 				    enum lockdep_ok lockdep_ok)
167 {
168 	add_taint(flag, lockdep_ok);
169 	set_bit(flag, &mod->taints);
170 }
171 
172 /*
173  * A thread that wants to hold a reference to a module only while it
174  * is running can call this to safely exit.
175  */
176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
177 {
178 	module_put(mod);
179 	kthread_exit(code);
180 }
181 EXPORT_SYMBOL(__module_put_and_kthread_exit);
182 
183 /* Find a module section: 0 means not found. */
184 static unsigned int find_sec(const struct load_info *info, const char *name)
185 {
186 	unsigned int i;
187 
188 	for (i = 1; i < info->hdr->e_shnum; i++) {
189 		Elf_Shdr *shdr = &info->sechdrs[i];
190 		/* Alloc bit cleared means "ignore it." */
191 		if ((shdr->sh_flags & SHF_ALLOC)
192 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
193 			return i;
194 	}
195 	return 0;
196 }
197 
198 /**
199  * find_any_unique_sec() - Find a unique section index by name
200  * @info: Load info for the module to scan
201  * @name: Name of the section we're looking for
202  *
203  * Locates a unique section by name. Ignores SHF_ALLOC.
204  *
205  * Return: Section index if found uniquely, zero if absent, negative count
206  *         of total instances if multiple were found.
207  */
208 static int find_any_unique_sec(const struct load_info *info, const char *name)
209 {
210 	unsigned int idx;
211 	unsigned int count = 0;
212 	int i;
213 
214 	for (i = 1; i < info->hdr->e_shnum; i++) {
215 		if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
216 			   name) == 0) {
217 			count++;
218 			idx = i;
219 		}
220 	}
221 	if (count == 1) {
222 		return idx;
223 	} else if (count == 0) {
224 		return 0;
225 	} else {
226 		return -count;
227 	}
228 }
229 
230 /* Find a module section, or NULL. */
231 static void *section_addr(const struct load_info *info, const char *name)
232 {
233 	/* Section 0 has sh_addr 0. */
234 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
235 }
236 
237 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
238 static void *section_objs(const struct load_info *info,
239 			  const char *name,
240 			  size_t object_size,
241 			  unsigned int *num)
242 {
243 	unsigned int sec = find_sec(info, name);
244 
245 	/* Section 0 has sh_addr 0 and sh_size 0. */
246 	*num = info->sechdrs[sec].sh_size / object_size;
247 	return (void *)info->sechdrs[sec].sh_addr;
248 }
249 
250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
251 static unsigned int find_any_sec(const struct load_info *info, const char *name)
252 {
253 	unsigned int i;
254 
255 	for (i = 1; i < info->hdr->e_shnum; i++) {
256 		Elf_Shdr *shdr = &info->sechdrs[i];
257 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
258 			return i;
259 	}
260 	return 0;
261 }
262 
263 /*
264  * Find a module section, or NULL. Fill in number of "objects" in section.
265  * Ignores SHF_ALLOC flag.
266  */
267 static __maybe_unused void *any_section_objs(const struct load_info *info,
268 					     const char *name,
269 					     size_t object_size,
270 					     unsigned int *num)
271 {
272 	unsigned int sec = find_any_sec(info, name);
273 
274 	/* Section 0 has sh_addr 0 and sh_size 0. */
275 	*num = info->sechdrs[sec].sh_size / object_size;
276 	return (void *)info->sechdrs[sec].sh_addr;
277 }
278 
279 #ifndef CONFIG_MODVERSIONS
280 #define symversion(base, idx) NULL
281 #else
282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
283 #endif
284 
285 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
286 {
287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
288 	return offset_to_ptr(&sym->name_offset);
289 #else
290 	return sym->name;
291 #endif
292 }
293 
294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
295 {
296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
297 	if (!sym->namespace_offset)
298 		return NULL;
299 	return offset_to_ptr(&sym->namespace_offset);
300 #else
301 	return sym->namespace;
302 #endif
303 }
304 
305 int cmp_name(const void *name, const void *sym)
306 {
307 	return strcmp(name, kernel_symbol_name(sym));
308 }
309 
310 static bool find_exported_symbol_in_section(const struct symsearch *syms,
311 					    struct module *owner,
312 					    struct find_symbol_arg *fsa)
313 {
314 	struct kernel_symbol *sym;
315 
316 	if (!fsa->gplok && syms->license == GPL_ONLY)
317 		return false;
318 
319 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
320 			sizeof(struct kernel_symbol), cmp_name);
321 	if (!sym)
322 		return false;
323 
324 	fsa->owner = owner;
325 	fsa->crc = symversion(syms->crcs, sym - syms->start);
326 	fsa->sym = sym;
327 	fsa->license = syms->license;
328 
329 	return true;
330 }
331 
332 /*
333  * Find an exported symbol and return it, along with, (optional) crc and
334  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
335  */
336 bool find_symbol(struct find_symbol_arg *fsa)
337 {
338 	static const struct symsearch arr[] = {
339 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
340 		  NOT_GPL_ONLY },
341 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
342 		  __start___kcrctab_gpl,
343 		  GPL_ONLY },
344 	};
345 	struct module *mod;
346 	unsigned int i;
347 
348 	module_assert_mutex_or_preempt();
349 
350 	for (i = 0; i < ARRAY_SIZE(arr); i++)
351 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
352 			return true;
353 
354 	list_for_each_entry_rcu(mod, &modules, list,
355 				lockdep_is_held(&module_mutex)) {
356 		struct symsearch arr[] = {
357 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
358 			  NOT_GPL_ONLY },
359 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
360 			  mod->gpl_crcs,
361 			  GPL_ONLY },
362 		};
363 
364 		if (mod->state == MODULE_STATE_UNFORMED)
365 			continue;
366 
367 		for (i = 0; i < ARRAY_SIZE(arr); i++)
368 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
369 				return true;
370 	}
371 
372 	pr_debug("Failed to find symbol %s\n", fsa->name);
373 	return false;
374 }
375 
376 /*
377  * Search for module by name: must hold module_mutex (or preempt disabled
378  * for read-only access).
379  */
380 struct module *find_module_all(const char *name, size_t len,
381 			       bool even_unformed)
382 {
383 	struct module *mod;
384 
385 	module_assert_mutex_or_preempt();
386 
387 	list_for_each_entry_rcu(mod, &modules, list,
388 				lockdep_is_held(&module_mutex)) {
389 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
390 			continue;
391 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
392 			return mod;
393 	}
394 	return NULL;
395 }
396 
397 struct module *find_module(const char *name)
398 {
399 	return find_module_all(name, strlen(name), false);
400 }
401 
402 #ifdef CONFIG_SMP
403 
404 static inline void __percpu *mod_percpu(struct module *mod)
405 {
406 	return mod->percpu;
407 }
408 
409 static int percpu_modalloc(struct module *mod, struct load_info *info)
410 {
411 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
412 	unsigned long align = pcpusec->sh_addralign;
413 
414 	if (!pcpusec->sh_size)
415 		return 0;
416 
417 	if (align > PAGE_SIZE) {
418 		pr_warn("%s: per-cpu alignment %li > %li\n",
419 			mod->name, align, PAGE_SIZE);
420 		align = PAGE_SIZE;
421 	}
422 
423 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
424 	if (!mod->percpu) {
425 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
426 			mod->name, (unsigned long)pcpusec->sh_size);
427 		return -ENOMEM;
428 	}
429 	mod->percpu_size = pcpusec->sh_size;
430 	return 0;
431 }
432 
433 static void percpu_modfree(struct module *mod)
434 {
435 	free_percpu(mod->percpu);
436 }
437 
438 static unsigned int find_pcpusec(struct load_info *info)
439 {
440 	return find_sec(info, ".data..percpu");
441 }
442 
443 static void percpu_modcopy(struct module *mod,
444 			   const void *from, unsigned long size)
445 {
446 	int cpu;
447 
448 	for_each_possible_cpu(cpu)
449 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
450 }
451 
452 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
453 {
454 	struct module *mod;
455 	unsigned int cpu;
456 
457 	preempt_disable();
458 
459 	list_for_each_entry_rcu(mod, &modules, list) {
460 		if (mod->state == MODULE_STATE_UNFORMED)
461 			continue;
462 		if (!mod->percpu_size)
463 			continue;
464 		for_each_possible_cpu(cpu) {
465 			void *start = per_cpu_ptr(mod->percpu, cpu);
466 			void *va = (void *)addr;
467 
468 			if (va >= start && va < start + mod->percpu_size) {
469 				if (can_addr) {
470 					*can_addr = (unsigned long) (va - start);
471 					*can_addr += (unsigned long)
472 						per_cpu_ptr(mod->percpu,
473 							    get_boot_cpu_id());
474 				}
475 				preempt_enable();
476 				return true;
477 			}
478 		}
479 	}
480 
481 	preempt_enable();
482 	return false;
483 }
484 
485 /**
486  * is_module_percpu_address() - test whether address is from module static percpu
487  * @addr: address to test
488  *
489  * Test whether @addr belongs to module static percpu area.
490  *
491  * Return: %true if @addr is from module static percpu area
492  */
493 bool is_module_percpu_address(unsigned long addr)
494 {
495 	return __is_module_percpu_address(addr, NULL);
496 }
497 
498 #else /* ... !CONFIG_SMP */
499 
500 static inline void __percpu *mod_percpu(struct module *mod)
501 {
502 	return NULL;
503 }
504 static int percpu_modalloc(struct module *mod, struct load_info *info)
505 {
506 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
507 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
508 		return -ENOMEM;
509 	return 0;
510 }
511 static inline void percpu_modfree(struct module *mod)
512 {
513 }
514 static unsigned int find_pcpusec(struct load_info *info)
515 {
516 	return 0;
517 }
518 static inline void percpu_modcopy(struct module *mod,
519 				  const void *from, unsigned long size)
520 {
521 	/* pcpusec should be 0, and size of that section should be 0. */
522 	BUG_ON(size != 0);
523 }
524 bool is_module_percpu_address(unsigned long addr)
525 {
526 	return false;
527 }
528 
529 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
530 {
531 	return false;
532 }
533 
534 #endif /* CONFIG_SMP */
535 
536 #define MODINFO_ATTR(field)	\
537 static void setup_modinfo_##field(struct module *mod, const char *s)  \
538 {                                                                     \
539 	mod->field = kstrdup(s, GFP_KERNEL);                          \
540 }                                                                     \
541 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
542 			struct module_kobject *mk, char *buffer)      \
543 {                                                                     \
544 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
545 }                                                                     \
546 static int modinfo_##field##_exists(struct module *mod)               \
547 {                                                                     \
548 	return mod->field != NULL;                                    \
549 }                                                                     \
550 static void free_modinfo_##field(struct module *mod)                  \
551 {                                                                     \
552 	kfree(mod->field);                                            \
553 	mod->field = NULL;                                            \
554 }                                                                     \
555 static const struct module_attribute modinfo_##field = {              \
556 	.attr = { .name = __stringify(field), .mode = 0444 },         \
557 	.show = show_modinfo_##field,                                 \
558 	.setup = setup_modinfo_##field,                               \
559 	.test = modinfo_##field##_exists,                             \
560 	.free = free_modinfo_##field,                                 \
561 };
562 
563 MODINFO_ATTR(version);
564 MODINFO_ATTR(srcversion);
565 
566 static struct {
567 	char name[MODULE_NAME_LEN + 1];
568 	char taints[MODULE_FLAGS_BUF_SIZE];
569 } last_unloaded_module;
570 
571 #ifdef CONFIG_MODULE_UNLOAD
572 
573 EXPORT_TRACEPOINT_SYMBOL(module_get);
574 
575 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
576 #define MODULE_REF_BASE	1
577 
578 /* Init the unload section of the module. */
579 static int module_unload_init(struct module *mod)
580 {
581 	/*
582 	 * Initialize reference counter to MODULE_REF_BASE.
583 	 * refcnt == 0 means module is going.
584 	 */
585 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
586 
587 	INIT_LIST_HEAD(&mod->source_list);
588 	INIT_LIST_HEAD(&mod->target_list);
589 
590 	/* Hold reference count during initialization. */
591 	atomic_inc(&mod->refcnt);
592 
593 	return 0;
594 }
595 
596 /* Does a already use b? */
597 static int already_uses(struct module *a, struct module *b)
598 {
599 	struct module_use *use;
600 
601 	list_for_each_entry(use, &b->source_list, source_list) {
602 		if (use->source == a)
603 			return 1;
604 	}
605 	pr_debug("%s does not use %s!\n", a->name, b->name);
606 	return 0;
607 }
608 
609 /*
610  * Module a uses b
611  *  - we add 'a' as a "source", 'b' as a "target" of module use
612  *  - the module_use is added to the list of 'b' sources (so
613  *    'b' can walk the list to see who sourced them), and of 'a'
614  *    targets (so 'a' can see what modules it targets).
615  */
616 static int add_module_usage(struct module *a, struct module *b)
617 {
618 	struct module_use *use;
619 
620 	pr_debug("Allocating new usage for %s.\n", a->name);
621 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
622 	if (!use)
623 		return -ENOMEM;
624 
625 	use->source = a;
626 	use->target = b;
627 	list_add(&use->source_list, &b->source_list);
628 	list_add(&use->target_list, &a->target_list);
629 	return 0;
630 }
631 
632 /* Module a uses b: caller needs module_mutex() */
633 static int ref_module(struct module *a, struct module *b)
634 {
635 	int err;
636 
637 	if (b == NULL || already_uses(a, b))
638 		return 0;
639 
640 	/* If module isn't available, we fail. */
641 	err = strong_try_module_get(b);
642 	if (err)
643 		return err;
644 
645 	err = add_module_usage(a, b);
646 	if (err) {
647 		module_put(b);
648 		return err;
649 	}
650 	return 0;
651 }
652 
653 /* Clear the unload stuff of the module. */
654 static void module_unload_free(struct module *mod)
655 {
656 	struct module_use *use, *tmp;
657 
658 	mutex_lock(&module_mutex);
659 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
660 		struct module *i = use->target;
661 		pr_debug("%s unusing %s\n", mod->name, i->name);
662 		module_put(i);
663 		list_del(&use->source_list);
664 		list_del(&use->target_list);
665 		kfree(use);
666 	}
667 	mutex_unlock(&module_mutex);
668 }
669 
670 #ifdef CONFIG_MODULE_FORCE_UNLOAD
671 static inline int try_force_unload(unsigned int flags)
672 {
673 	int ret = (flags & O_TRUNC);
674 	if (ret)
675 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
676 	return ret;
677 }
678 #else
679 static inline int try_force_unload(unsigned int flags)
680 {
681 	return 0;
682 }
683 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
684 
685 /* Try to release refcount of module, 0 means success. */
686 static int try_release_module_ref(struct module *mod)
687 {
688 	int ret;
689 
690 	/* Try to decrement refcnt which we set at loading */
691 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
692 	BUG_ON(ret < 0);
693 	if (ret)
694 		/* Someone can put this right now, recover with checking */
695 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
696 
697 	return ret;
698 }
699 
700 static int try_stop_module(struct module *mod, int flags, int *forced)
701 {
702 	/* If it's not unused, quit unless we're forcing. */
703 	if (try_release_module_ref(mod) != 0) {
704 		*forced = try_force_unload(flags);
705 		if (!(*forced))
706 			return -EWOULDBLOCK;
707 	}
708 
709 	/* Mark it as dying. */
710 	mod->state = MODULE_STATE_GOING;
711 
712 	return 0;
713 }
714 
715 /**
716  * module_refcount() - return the refcount or -1 if unloading
717  * @mod:	the module we're checking
718  *
719  * Return:
720  *	-1 if the module is in the process of unloading
721  *	otherwise the number of references in the kernel to the module
722  */
723 int module_refcount(struct module *mod)
724 {
725 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
726 }
727 EXPORT_SYMBOL(module_refcount);
728 
729 /* This exists whether we can unload or not */
730 static void free_module(struct module *mod);
731 
732 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
733 		unsigned int, flags)
734 {
735 	struct module *mod;
736 	char name[MODULE_NAME_LEN];
737 	char buf[MODULE_FLAGS_BUF_SIZE];
738 	int ret, forced = 0;
739 
740 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
741 		return -EPERM;
742 
743 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
744 		return -EFAULT;
745 	name[MODULE_NAME_LEN-1] = '\0';
746 
747 	audit_log_kern_module(name);
748 
749 	if (mutex_lock_interruptible(&module_mutex) != 0)
750 		return -EINTR;
751 
752 	mod = find_module(name);
753 	if (!mod) {
754 		ret = -ENOENT;
755 		goto out;
756 	}
757 
758 	if (!list_empty(&mod->source_list)) {
759 		/* Other modules depend on us: get rid of them first. */
760 		ret = -EWOULDBLOCK;
761 		goto out;
762 	}
763 
764 	/* Doing init or already dying? */
765 	if (mod->state != MODULE_STATE_LIVE) {
766 		/* FIXME: if (force), slam module count damn the torpedoes */
767 		pr_debug("%s already dying\n", mod->name);
768 		ret = -EBUSY;
769 		goto out;
770 	}
771 
772 	/* If it has an init func, it must have an exit func to unload */
773 	if (mod->init && !mod->exit) {
774 		forced = try_force_unload(flags);
775 		if (!forced) {
776 			/* This module can't be removed */
777 			ret = -EBUSY;
778 			goto out;
779 		}
780 	}
781 
782 	ret = try_stop_module(mod, flags, &forced);
783 	if (ret != 0)
784 		goto out;
785 
786 	mutex_unlock(&module_mutex);
787 	/* Final destruction now no one is using it. */
788 	if (mod->exit != NULL)
789 		mod->exit();
790 	blocking_notifier_call_chain(&module_notify_list,
791 				     MODULE_STATE_GOING, mod);
792 	klp_module_going(mod);
793 	ftrace_release_mod(mod);
794 
795 	async_synchronize_full();
796 
797 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
798 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
799 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
800 
801 	free_module(mod);
802 	/* someone could wait for the module in add_unformed_module() */
803 	wake_up_all(&module_wq);
804 	return 0;
805 out:
806 	mutex_unlock(&module_mutex);
807 	return ret;
808 }
809 
810 void __symbol_put(const char *symbol)
811 {
812 	struct find_symbol_arg fsa = {
813 		.name	= symbol,
814 		.gplok	= true,
815 	};
816 
817 	preempt_disable();
818 	BUG_ON(!find_symbol(&fsa));
819 	module_put(fsa.owner);
820 	preempt_enable();
821 }
822 EXPORT_SYMBOL(__symbol_put);
823 
824 /* Note this assumes addr is a function, which it currently always is. */
825 void symbol_put_addr(void *addr)
826 {
827 	struct module *modaddr;
828 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
829 
830 	if (core_kernel_text(a))
831 		return;
832 
833 	/*
834 	 * Even though we hold a reference on the module; we still need to
835 	 * disable preemption in order to safely traverse the data structure.
836 	 */
837 	preempt_disable();
838 	modaddr = __module_text_address(a);
839 	BUG_ON(!modaddr);
840 	module_put(modaddr);
841 	preempt_enable();
842 }
843 EXPORT_SYMBOL_GPL(symbol_put_addr);
844 
845 static ssize_t show_refcnt(const struct module_attribute *mattr,
846 			   struct module_kobject *mk, char *buffer)
847 {
848 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
849 }
850 
851 static const struct module_attribute modinfo_refcnt =
852 	__ATTR(refcnt, 0444, show_refcnt, NULL);
853 
854 void __module_get(struct module *module)
855 {
856 	if (module) {
857 		atomic_inc(&module->refcnt);
858 		trace_module_get(module, _RET_IP_);
859 	}
860 }
861 EXPORT_SYMBOL(__module_get);
862 
863 bool try_module_get(struct module *module)
864 {
865 	bool ret = true;
866 
867 	if (module) {
868 		/* Note: here, we can fail to get a reference */
869 		if (likely(module_is_live(module) &&
870 			   atomic_inc_not_zero(&module->refcnt) != 0))
871 			trace_module_get(module, _RET_IP_);
872 		else
873 			ret = false;
874 	}
875 	return ret;
876 }
877 EXPORT_SYMBOL(try_module_get);
878 
879 void module_put(struct module *module)
880 {
881 	int ret;
882 
883 	if (module) {
884 		ret = atomic_dec_if_positive(&module->refcnt);
885 		WARN_ON(ret < 0);	/* Failed to put refcount */
886 		trace_module_put(module, _RET_IP_);
887 	}
888 }
889 EXPORT_SYMBOL(module_put);
890 
891 #else /* !CONFIG_MODULE_UNLOAD */
892 static inline void module_unload_free(struct module *mod)
893 {
894 }
895 
896 static int ref_module(struct module *a, struct module *b)
897 {
898 	return strong_try_module_get(b);
899 }
900 
901 static inline int module_unload_init(struct module *mod)
902 {
903 	return 0;
904 }
905 #endif /* CONFIG_MODULE_UNLOAD */
906 
907 size_t module_flags_taint(unsigned long taints, char *buf)
908 {
909 	size_t l = 0;
910 	int i;
911 
912 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
913 		if (taint_flags[i].module && test_bit(i, &taints))
914 			buf[l++] = taint_flags[i].c_true;
915 	}
916 
917 	return l;
918 }
919 
920 static ssize_t show_initstate(const struct module_attribute *mattr,
921 			      struct module_kobject *mk, char *buffer)
922 {
923 	const char *state = "unknown";
924 
925 	switch (mk->mod->state) {
926 	case MODULE_STATE_LIVE:
927 		state = "live";
928 		break;
929 	case MODULE_STATE_COMING:
930 		state = "coming";
931 		break;
932 	case MODULE_STATE_GOING:
933 		state = "going";
934 		break;
935 	default:
936 		BUG();
937 	}
938 	return sprintf(buffer, "%s\n", state);
939 }
940 
941 static const struct module_attribute modinfo_initstate =
942 	__ATTR(initstate, 0444, show_initstate, NULL);
943 
944 static ssize_t store_uevent(const struct module_attribute *mattr,
945 			    struct module_kobject *mk,
946 			    const char *buffer, size_t count)
947 {
948 	int rc;
949 
950 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
951 	return rc ? rc : count;
952 }
953 
954 const struct module_attribute module_uevent =
955 	__ATTR(uevent, 0200, NULL, store_uevent);
956 
957 static ssize_t show_coresize(const struct module_attribute *mattr,
958 			     struct module_kobject *mk, char *buffer)
959 {
960 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
961 
962 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
963 		for_class_mod_mem_type(type, core_data)
964 			size += mk->mod->mem[type].size;
965 	}
966 	return sprintf(buffer, "%u\n", size);
967 }
968 
969 static const struct module_attribute modinfo_coresize =
970 	__ATTR(coresize, 0444, show_coresize, NULL);
971 
972 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
973 static ssize_t show_datasize(const struct module_attribute *mattr,
974 			     struct module_kobject *mk, char *buffer)
975 {
976 	unsigned int size = 0;
977 
978 	for_class_mod_mem_type(type, core_data)
979 		size += mk->mod->mem[type].size;
980 	return sprintf(buffer, "%u\n", size);
981 }
982 
983 static const struct module_attribute modinfo_datasize =
984 	__ATTR(datasize, 0444, show_datasize, NULL);
985 #endif
986 
987 static ssize_t show_initsize(const struct module_attribute *mattr,
988 			     struct module_kobject *mk, char *buffer)
989 {
990 	unsigned int size = 0;
991 
992 	for_class_mod_mem_type(type, init)
993 		size += mk->mod->mem[type].size;
994 	return sprintf(buffer, "%u\n", size);
995 }
996 
997 static const struct module_attribute modinfo_initsize =
998 	__ATTR(initsize, 0444, show_initsize, NULL);
999 
1000 static ssize_t show_taint(const struct module_attribute *mattr,
1001 			  struct module_kobject *mk, char *buffer)
1002 {
1003 	size_t l;
1004 
1005 	l = module_flags_taint(mk->mod->taints, buffer);
1006 	buffer[l++] = '\n';
1007 	return l;
1008 }
1009 
1010 static const struct module_attribute modinfo_taint =
1011 	__ATTR(taint, 0444, show_taint, NULL);
1012 
1013 const struct module_attribute *const modinfo_attrs[] = {
1014 	&module_uevent,
1015 	&modinfo_version,
1016 	&modinfo_srcversion,
1017 	&modinfo_initstate,
1018 	&modinfo_coresize,
1019 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1020 	&modinfo_datasize,
1021 #endif
1022 	&modinfo_initsize,
1023 	&modinfo_taint,
1024 #ifdef CONFIG_MODULE_UNLOAD
1025 	&modinfo_refcnt,
1026 #endif
1027 	NULL,
1028 };
1029 
1030 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1031 
1032 static const char vermagic[] = VERMAGIC_STRING;
1033 
1034 int try_to_force_load(struct module *mod, const char *reason)
1035 {
1036 #ifdef CONFIG_MODULE_FORCE_LOAD
1037 	if (!test_taint(TAINT_FORCED_MODULE))
1038 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1039 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1040 	return 0;
1041 #else
1042 	return -ENOEXEC;
1043 #endif
1044 }
1045 
1046 /* Parse tag=value strings from .modinfo section */
1047 char *module_next_tag_pair(char *string, unsigned long *secsize)
1048 {
1049 	/* Skip non-zero chars */
1050 	while (string[0]) {
1051 		string++;
1052 		if ((*secsize)-- <= 1)
1053 			return NULL;
1054 	}
1055 
1056 	/* Skip any zero padding. */
1057 	while (!string[0]) {
1058 		string++;
1059 		if ((*secsize)-- <= 1)
1060 			return NULL;
1061 	}
1062 	return string;
1063 }
1064 
1065 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1066 			      char *prev)
1067 {
1068 	char *p;
1069 	unsigned int taglen = strlen(tag);
1070 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1071 	unsigned long size = infosec->sh_size;
1072 
1073 	/*
1074 	 * get_modinfo() calls made before rewrite_section_headers()
1075 	 * must use sh_offset, as sh_addr isn't set!
1076 	 */
1077 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1078 
1079 	if (prev) {
1080 		size -= prev - modinfo;
1081 		modinfo = module_next_tag_pair(prev, &size);
1082 	}
1083 
1084 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1085 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1086 			return p + taglen + 1;
1087 	}
1088 	return NULL;
1089 }
1090 
1091 static char *get_modinfo(const struct load_info *info, const char *tag)
1092 {
1093 	return get_next_modinfo(info, tag, NULL);
1094 }
1095 
1096 static int verify_namespace_is_imported(const struct load_info *info,
1097 					const struct kernel_symbol *sym,
1098 					struct module *mod)
1099 {
1100 	const char *namespace;
1101 	char *imported_namespace;
1102 
1103 	namespace = kernel_symbol_namespace(sym);
1104 	if (namespace && namespace[0]) {
1105 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1106 			if (strcmp(namespace, imported_namespace) == 0)
1107 				return 0;
1108 		}
1109 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1110 		pr_warn(
1111 #else
1112 		pr_err(
1113 #endif
1114 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1115 			mod->name, kernel_symbol_name(sym), namespace);
1116 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1117 		return -EINVAL;
1118 #endif
1119 	}
1120 	return 0;
1121 }
1122 
1123 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1124 {
1125 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1126 		return true;
1127 
1128 	if (mod->using_gplonly_symbols) {
1129 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1130 			mod->name, name, owner->name);
1131 		return false;
1132 	}
1133 
1134 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1135 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1136 			mod->name, name, owner->name);
1137 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1138 	}
1139 	return true;
1140 }
1141 
1142 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1143 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1144 						  const struct load_info *info,
1145 						  const char *name,
1146 						  char ownername[])
1147 {
1148 	struct find_symbol_arg fsa = {
1149 		.name	= name,
1150 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1151 		.warn	= true,
1152 	};
1153 	int err;
1154 
1155 	/*
1156 	 * The module_mutex should not be a heavily contended lock;
1157 	 * if we get the occasional sleep here, we'll go an extra iteration
1158 	 * in the wait_event_interruptible(), which is harmless.
1159 	 */
1160 	sched_annotate_sleep();
1161 	mutex_lock(&module_mutex);
1162 	if (!find_symbol(&fsa))
1163 		goto unlock;
1164 
1165 	if (fsa.license == GPL_ONLY)
1166 		mod->using_gplonly_symbols = true;
1167 
1168 	if (!inherit_taint(mod, fsa.owner, name)) {
1169 		fsa.sym = NULL;
1170 		goto getname;
1171 	}
1172 
1173 	if (!check_version(info, name, mod, fsa.crc)) {
1174 		fsa.sym = ERR_PTR(-EINVAL);
1175 		goto getname;
1176 	}
1177 
1178 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1179 	if (err) {
1180 		fsa.sym = ERR_PTR(err);
1181 		goto getname;
1182 	}
1183 
1184 	err = ref_module(mod, fsa.owner);
1185 	if (err) {
1186 		fsa.sym = ERR_PTR(err);
1187 		goto getname;
1188 	}
1189 
1190 getname:
1191 	/* We must make copy under the lock if we failed to get ref. */
1192 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1193 unlock:
1194 	mutex_unlock(&module_mutex);
1195 	return fsa.sym;
1196 }
1197 
1198 static const struct kernel_symbol *
1199 resolve_symbol_wait(struct module *mod,
1200 		    const struct load_info *info,
1201 		    const char *name)
1202 {
1203 	const struct kernel_symbol *ksym;
1204 	char owner[MODULE_NAME_LEN];
1205 
1206 	if (wait_event_interruptible_timeout(module_wq,
1207 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1208 			|| PTR_ERR(ksym) != -EBUSY,
1209 					     30 * HZ) <= 0) {
1210 		pr_warn("%s: gave up waiting for init of module %s.\n",
1211 			mod->name, owner);
1212 	}
1213 	return ksym;
1214 }
1215 
1216 void __weak module_arch_cleanup(struct module *mod)
1217 {
1218 }
1219 
1220 void __weak module_arch_freeing_init(struct module *mod)
1221 {
1222 }
1223 
1224 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1225 {
1226 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1227 	enum execmem_type execmem_type;
1228 	void *ptr;
1229 
1230 	mod->mem[type].size = size;
1231 
1232 	if (mod_mem_type_is_data(type))
1233 		execmem_type = EXECMEM_MODULE_DATA;
1234 	else
1235 		execmem_type = EXECMEM_MODULE_TEXT;
1236 
1237 	ptr = execmem_alloc(execmem_type, size);
1238 	if (!ptr)
1239 		return -ENOMEM;
1240 
1241 	if (execmem_is_rox(execmem_type)) {
1242 		int err = execmem_make_temp_rw(ptr, size);
1243 
1244 		if (err) {
1245 			execmem_free(ptr);
1246 			return -ENOMEM;
1247 		}
1248 
1249 		mod->mem[type].is_rox = true;
1250 	}
1251 
1252 	/*
1253 	 * The pointer to these blocks of memory are stored on the module
1254 	 * structure and we keep that around so long as the module is
1255 	 * around. We only free that memory when we unload the module.
1256 	 * Just mark them as not being a leak then. The .init* ELF
1257 	 * sections *do* get freed after boot so we *could* treat them
1258 	 * slightly differently with kmemleak_ignore() and only grey
1259 	 * them out as they work as typical memory allocations which
1260 	 * *do* eventually get freed, but let's just keep things simple
1261 	 * and avoid *any* false positives.
1262 	 */
1263 	kmemleak_not_leak(ptr);
1264 
1265 	memset(ptr, 0, size);
1266 	mod->mem[type].base = ptr;
1267 
1268 	return 0;
1269 }
1270 
1271 static void module_memory_restore_rox(struct module *mod)
1272 {
1273 	for_class_mod_mem_type(type, text) {
1274 		struct module_memory *mem = &mod->mem[type];
1275 
1276 		if (mem->is_rox)
1277 			execmem_restore_rox(mem->base, mem->size);
1278 	}
1279 }
1280 
1281 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1282 {
1283 	struct module_memory *mem = &mod->mem[type];
1284 
1285 	execmem_free(mem->base);
1286 }
1287 
1288 static void free_mod_mem(struct module *mod)
1289 {
1290 	for_each_mod_mem_type(type) {
1291 		struct module_memory *mod_mem = &mod->mem[type];
1292 
1293 		if (type == MOD_DATA)
1294 			continue;
1295 
1296 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1297 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1298 		if (mod_mem->size)
1299 			module_memory_free(mod, type);
1300 	}
1301 
1302 	/* MOD_DATA hosts mod, so free it at last */
1303 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1304 	module_memory_free(mod, MOD_DATA);
1305 }
1306 
1307 /* Free a module, remove from lists, etc. */
1308 static void free_module(struct module *mod)
1309 {
1310 	trace_module_free(mod);
1311 
1312 	codetag_unload_module(mod);
1313 
1314 	mod_sysfs_teardown(mod);
1315 
1316 	/*
1317 	 * We leave it in list to prevent duplicate loads, but make sure
1318 	 * that noone uses it while it's being deconstructed.
1319 	 */
1320 	mutex_lock(&module_mutex);
1321 	mod->state = MODULE_STATE_UNFORMED;
1322 	mutex_unlock(&module_mutex);
1323 
1324 	/* Arch-specific cleanup. */
1325 	module_arch_cleanup(mod);
1326 
1327 	/* Module unload stuff */
1328 	module_unload_free(mod);
1329 
1330 	/* Free any allocated parameters. */
1331 	destroy_params(mod->kp, mod->num_kp);
1332 
1333 	if (is_livepatch_module(mod))
1334 		free_module_elf(mod);
1335 
1336 	/* Now we can delete it from the lists */
1337 	mutex_lock(&module_mutex);
1338 	/* Unlink carefully: kallsyms could be walking list. */
1339 	list_del_rcu(&mod->list);
1340 	mod_tree_remove(mod);
1341 	/* Remove this module from bug list, this uses list_del_rcu */
1342 	module_bug_cleanup(mod);
1343 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1344 	synchronize_rcu();
1345 	if (try_add_tainted_module(mod))
1346 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1347 		       mod->name);
1348 	mutex_unlock(&module_mutex);
1349 
1350 	/* This may be empty, but that's OK */
1351 	module_arch_freeing_init(mod);
1352 	kfree(mod->args);
1353 	percpu_modfree(mod);
1354 
1355 	free_mod_mem(mod);
1356 }
1357 
1358 void *__symbol_get(const char *symbol)
1359 {
1360 	struct find_symbol_arg fsa = {
1361 		.name	= symbol,
1362 		.gplok	= true,
1363 		.warn	= true,
1364 	};
1365 
1366 	preempt_disable();
1367 	if (!find_symbol(&fsa))
1368 		goto fail;
1369 	if (fsa.license != GPL_ONLY) {
1370 		pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1371 			symbol);
1372 		goto fail;
1373 	}
1374 	if (strong_try_module_get(fsa.owner))
1375 		goto fail;
1376 	preempt_enable();
1377 	return (void *)kernel_symbol_value(fsa.sym);
1378 fail:
1379 	preempt_enable();
1380 	return NULL;
1381 }
1382 EXPORT_SYMBOL_GPL(__symbol_get);
1383 
1384 /*
1385  * Ensure that an exported symbol [global namespace] does not already exist
1386  * in the kernel or in some other module's exported symbol table.
1387  *
1388  * You must hold the module_mutex.
1389  */
1390 static int verify_exported_symbols(struct module *mod)
1391 {
1392 	unsigned int i;
1393 	const struct kernel_symbol *s;
1394 	struct {
1395 		const struct kernel_symbol *sym;
1396 		unsigned int num;
1397 	} arr[] = {
1398 		{ mod->syms, mod->num_syms },
1399 		{ mod->gpl_syms, mod->num_gpl_syms },
1400 	};
1401 
1402 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1403 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1404 			struct find_symbol_arg fsa = {
1405 				.name	= kernel_symbol_name(s),
1406 				.gplok	= true,
1407 			};
1408 			if (find_symbol(&fsa)) {
1409 				pr_err("%s: exports duplicate symbol %s"
1410 				       " (owned by %s)\n",
1411 				       mod->name, kernel_symbol_name(s),
1412 				       module_name(fsa.owner));
1413 				return -ENOEXEC;
1414 			}
1415 		}
1416 	}
1417 	return 0;
1418 }
1419 
1420 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1421 {
1422 	/*
1423 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1424 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1425 	 * i386 has a similar problem but may not deserve a fix.
1426 	 *
1427 	 * If we ever have to ignore many symbols, consider refactoring the code to
1428 	 * only warn if referenced by a relocation.
1429 	 */
1430 	if (emachine == EM_386 || emachine == EM_X86_64)
1431 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1432 	return false;
1433 }
1434 
1435 /* Change all symbols so that st_value encodes the pointer directly. */
1436 static int simplify_symbols(struct module *mod, const struct load_info *info)
1437 {
1438 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1439 	Elf_Sym *sym = (void *)symsec->sh_addr;
1440 	unsigned long secbase;
1441 	unsigned int i;
1442 	int ret = 0;
1443 	const struct kernel_symbol *ksym;
1444 
1445 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1446 		const char *name = info->strtab + sym[i].st_name;
1447 
1448 		switch (sym[i].st_shndx) {
1449 		case SHN_COMMON:
1450 			/* Ignore common symbols */
1451 			if (!strncmp(name, "__gnu_lto", 9))
1452 				break;
1453 
1454 			/*
1455 			 * We compiled with -fno-common.  These are not
1456 			 * supposed to happen.
1457 			 */
1458 			pr_debug("Common symbol: %s\n", name);
1459 			pr_warn("%s: please compile with -fno-common\n",
1460 			       mod->name);
1461 			ret = -ENOEXEC;
1462 			break;
1463 
1464 		case SHN_ABS:
1465 			/* Don't need to do anything */
1466 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1467 				 (long)sym[i].st_value, name);
1468 			break;
1469 
1470 		case SHN_LIVEPATCH:
1471 			/* Livepatch symbols are resolved by livepatch */
1472 			break;
1473 
1474 		case SHN_UNDEF:
1475 			ksym = resolve_symbol_wait(mod, info, name);
1476 			/* Ok if resolved.  */
1477 			if (ksym && !IS_ERR(ksym)) {
1478 				sym[i].st_value = kernel_symbol_value(ksym);
1479 				break;
1480 			}
1481 
1482 			/* Ok if weak or ignored.  */
1483 			if (!ksym &&
1484 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1485 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1486 				break;
1487 
1488 			ret = PTR_ERR(ksym) ?: -ENOENT;
1489 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1490 				mod->name, name, ret);
1491 			break;
1492 
1493 		default:
1494 			/* Divert to percpu allocation if a percpu var. */
1495 			if (sym[i].st_shndx == info->index.pcpu)
1496 				secbase = (unsigned long)mod_percpu(mod);
1497 			else
1498 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1499 			sym[i].st_value += secbase;
1500 			break;
1501 		}
1502 	}
1503 
1504 	return ret;
1505 }
1506 
1507 static int apply_relocations(struct module *mod, const struct load_info *info)
1508 {
1509 	unsigned int i;
1510 	int err = 0;
1511 
1512 	/* Now do relocations. */
1513 	for (i = 1; i < info->hdr->e_shnum; i++) {
1514 		unsigned int infosec = info->sechdrs[i].sh_info;
1515 
1516 		/* Not a valid relocation section? */
1517 		if (infosec >= info->hdr->e_shnum)
1518 			continue;
1519 
1520 		/* Don't bother with non-allocated sections */
1521 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1522 			continue;
1523 
1524 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1525 			err = klp_apply_section_relocs(mod, info->sechdrs,
1526 						       info->secstrings,
1527 						       info->strtab,
1528 						       info->index.sym, i,
1529 						       NULL);
1530 		else if (info->sechdrs[i].sh_type == SHT_REL)
1531 			err = apply_relocate(info->sechdrs, info->strtab,
1532 					     info->index.sym, i, mod);
1533 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1534 			err = apply_relocate_add(info->sechdrs, info->strtab,
1535 						 info->index.sym, i, mod);
1536 		if (err < 0)
1537 			break;
1538 	}
1539 	return err;
1540 }
1541 
1542 /* Additional bytes needed by arch in front of individual sections */
1543 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1544 					     unsigned int section)
1545 {
1546 	/* default implementation just returns zero */
1547 	return 0;
1548 }
1549 
1550 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1551 				Elf_Shdr *sechdr, unsigned int section)
1552 {
1553 	long offset;
1554 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1555 
1556 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1557 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1558 	mod->mem[type].size = offset + sechdr->sh_size;
1559 
1560 	WARN_ON_ONCE(offset & mask);
1561 	return offset | mask;
1562 }
1563 
1564 bool module_init_layout_section(const char *sname)
1565 {
1566 #ifndef CONFIG_MODULE_UNLOAD
1567 	if (module_exit_section(sname))
1568 		return true;
1569 #endif
1570 	return module_init_section(sname);
1571 }
1572 
1573 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1574 {
1575 	unsigned int m, i;
1576 
1577 	static const unsigned long masks[][2] = {
1578 		/*
1579 		 * NOTE: all executable code must be the first section
1580 		 * in this array; otherwise modify the text_size
1581 		 * finder in the two loops below
1582 		 */
1583 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1584 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1585 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1586 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1587 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1588 	};
1589 	static const int core_m_to_mem_type[] = {
1590 		MOD_TEXT,
1591 		MOD_RODATA,
1592 		MOD_RO_AFTER_INIT,
1593 		MOD_DATA,
1594 		MOD_DATA,
1595 	};
1596 	static const int init_m_to_mem_type[] = {
1597 		MOD_INIT_TEXT,
1598 		MOD_INIT_RODATA,
1599 		MOD_INVALID,
1600 		MOD_INIT_DATA,
1601 		MOD_INIT_DATA,
1602 	};
1603 
1604 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1605 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1606 
1607 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1608 			Elf_Shdr *s = &info->sechdrs[i];
1609 			const char *sname = info->secstrings + s->sh_name;
1610 
1611 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1612 			    || (s->sh_flags & masks[m][1])
1613 			    || s->sh_entsize != ~0UL
1614 			    || is_init != module_init_layout_section(sname))
1615 				continue;
1616 
1617 			if (WARN_ON_ONCE(type == MOD_INVALID))
1618 				continue;
1619 
1620 			/*
1621 			 * Do not allocate codetag memory as we load it into
1622 			 * preallocated contiguous memory.
1623 			 */
1624 			if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1625 				/*
1626 				 * s->sh_entsize won't be used but populate the
1627 				 * type field to avoid confusion.
1628 				 */
1629 				s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1630 						<< SH_ENTSIZE_TYPE_SHIFT;
1631 				continue;
1632 			}
1633 
1634 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1635 			pr_debug("\t%s\n", sname);
1636 		}
1637 	}
1638 }
1639 
1640 /*
1641  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1642  * might -- code, read-only data, read-write data, small data.  Tally
1643  * sizes, and place the offsets into sh_entsize fields: high bit means it
1644  * belongs in init.
1645  */
1646 static void layout_sections(struct module *mod, struct load_info *info)
1647 {
1648 	unsigned int i;
1649 
1650 	for (i = 0; i < info->hdr->e_shnum; i++)
1651 		info->sechdrs[i].sh_entsize = ~0UL;
1652 
1653 	pr_debug("Core section allocation order for %s:\n", mod->name);
1654 	__layout_sections(mod, info, false);
1655 
1656 	pr_debug("Init section allocation order for %s:\n", mod->name);
1657 	__layout_sections(mod, info, true);
1658 }
1659 
1660 static void module_license_taint_check(struct module *mod, const char *license)
1661 {
1662 	if (!license)
1663 		license = "unspecified";
1664 
1665 	if (!license_is_gpl_compatible(license)) {
1666 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1667 			pr_warn("%s: module license '%s' taints kernel.\n",
1668 				mod->name, license);
1669 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1670 				 LOCKDEP_NOW_UNRELIABLE);
1671 	}
1672 }
1673 
1674 static void setup_modinfo(struct module *mod, struct load_info *info)
1675 {
1676 	const struct module_attribute *attr;
1677 	int i;
1678 
1679 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1680 		if (attr->setup)
1681 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1682 	}
1683 }
1684 
1685 static void free_modinfo(struct module *mod)
1686 {
1687 	const struct module_attribute *attr;
1688 	int i;
1689 
1690 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1691 		if (attr->free)
1692 			attr->free(mod);
1693 	}
1694 }
1695 
1696 bool __weak module_init_section(const char *name)
1697 {
1698 	return strstarts(name, ".init");
1699 }
1700 
1701 bool __weak module_exit_section(const char *name)
1702 {
1703 	return strstarts(name, ".exit");
1704 }
1705 
1706 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1707 {
1708 #if defined(CONFIG_64BIT)
1709 	unsigned long long secend;
1710 #else
1711 	unsigned long secend;
1712 #endif
1713 
1714 	/*
1715 	 * Check for both overflow and offset/size being
1716 	 * too large.
1717 	 */
1718 	secend = shdr->sh_offset + shdr->sh_size;
1719 	if (secend < shdr->sh_offset || secend > info->len)
1720 		return -ENOEXEC;
1721 
1722 	return 0;
1723 }
1724 
1725 /**
1726  * elf_validity_ehdr() - Checks an ELF header for module validity
1727  * @info: Load info containing the ELF header to check
1728  *
1729  * Checks whether an ELF header could belong to a valid module. Checks:
1730  *
1731  * * ELF header is within the data the user provided
1732  * * ELF magic is present
1733  * * It is relocatable (not final linked, not core file, etc.)
1734  * * The header's machine type matches what the architecture expects.
1735  * * Optional arch-specific hook for other properties
1736  *   - module_elf_check_arch() is currently only used by PPC to check
1737  *   ELF ABI version, but may be used by others in the future.
1738  *
1739  * Return: %0 if valid, %-ENOEXEC on failure.
1740  */
1741 static int elf_validity_ehdr(const struct load_info *info)
1742 {
1743 	if (info->len < sizeof(*(info->hdr))) {
1744 		pr_err("Invalid ELF header len %lu\n", info->len);
1745 		return -ENOEXEC;
1746 	}
1747 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1748 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1749 		return -ENOEXEC;
1750 	}
1751 	if (info->hdr->e_type != ET_REL) {
1752 		pr_err("Invalid ELF header type: %u != %u\n",
1753 		       info->hdr->e_type, ET_REL);
1754 		return -ENOEXEC;
1755 	}
1756 	if (!elf_check_arch(info->hdr)) {
1757 		pr_err("Invalid architecture in ELF header: %u\n",
1758 		       info->hdr->e_machine);
1759 		return -ENOEXEC;
1760 	}
1761 	if (!module_elf_check_arch(info->hdr)) {
1762 		pr_err("Invalid module architecture in ELF header: %u\n",
1763 		       info->hdr->e_machine);
1764 		return -ENOEXEC;
1765 	}
1766 	return 0;
1767 }
1768 
1769 /**
1770  * elf_validity_cache_sechdrs() - Cache section headers if valid
1771  * @info: Load info to compute section headers from
1772  *
1773  * Checks:
1774  *
1775  * * ELF header is valid (see elf_validity_ehdr())
1776  * * Section headers are the size we expect
1777  * * Section array fits in the user provided data
1778  * * Section index 0 is NULL
1779  * * Section contents are inbounds
1780  *
1781  * Then updates @info with a &load_info->sechdrs pointer if valid.
1782  *
1783  * Return: %0 if valid, negative error code if validation failed.
1784  */
1785 static int elf_validity_cache_sechdrs(struct load_info *info)
1786 {
1787 	Elf_Shdr *sechdrs;
1788 	Elf_Shdr *shdr;
1789 	int i;
1790 	int err;
1791 
1792 	err = elf_validity_ehdr(info);
1793 	if (err < 0)
1794 		return err;
1795 
1796 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1797 		pr_err("Invalid ELF section header size\n");
1798 		return -ENOEXEC;
1799 	}
1800 
1801 	/*
1802 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1803 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1804 	 * will not overflow unsigned long on any platform.
1805 	 */
1806 	if (info->hdr->e_shoff >= info->len
1807 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1808 		info->len - info->hdr->e_shoff)) {
1809 		pr_err("Invalid ELF section header overflow\n");
1810 		return -ENOEXEC;
1811 	}
1812 
1813 	sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1814 
1815 	/*
1816 	 * The code assumes that section 0 has a length of zero and
1817 	 * an addr of zero, so check for it.
1818 	 */
1819 	if (sechdrs[0].sh_type != SHT_NULL
1820 	    || sechdrs[0].sh_size != 0
1821 	    || sechdrs[0].sh_addr != 0) {
1822 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1823 		       sechdrs[0].sh_type);
1824 		return -ENOEXEC;
1825 	}
1826 
1827 	/* Validate contents are inbounds */
1828 	for (i = 1; i < info->hdr->e_shnum; i++) {
1829 		shdr = &sechdrs[i];
1830 		switch (shdr->sh_type) {
1831 		case SHT_NULL:
1832 		case SHT_NOBITS:
1833 			/* No contents, offset/size don't mean anything */
1834 			continue;
1835 		default:
1836 			err = validate_section_offset(info, shdr);
1837 			if (err < 0) {
1838 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1839 				       i, shdr->sh_type);
1840 				return err;
1841 			}
1842 		}
1843 	}
1844 
1845 	info->sechdrs = sechdrs;
1846 
1847 	return 0;
1848 }
1849 
1850 /**
1851  * elf_validity_cache_secstrings() - Caches section names if valid
1852  * @info: Load info to cache section names from. Must have valid sechdrs.
1853  *
1854  * Specifically checks:
1855  *
1856  * * Section name table index is inbounds of section headers
1857  * * Section name table is not empty
1858  * * Section name table is NUL terminated
1859  * * All section name offsets are inbounds of the section
1860  *
1861  * Then updates @info with a &load_info->secstrings pointer if valid.
1862  *
1863  * Return: %0 if valid, negative error code if validation failed.
1864  */
1865 static int elf_validity_cache_secstrings(struct load_info *info)
1866 {
1867 	Elf_Shdr *strhdr, *shdr;
1868 	char *secstrings;
1869 	int i;
1870 
1871 	/*
1872 	 * Verify if the section name table index is valid.
1873 	 */
1874 	if (info->hdr->e_shstrndx == SHN_UNDEF
1875 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1876 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1877 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1878 		       info->hdr->e_shnum);
1879 		return -ENOEXEC;
1880 	}
1881 
1882 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1883 
1884 	/*
1885 	 * The section name table must be NUL-terminated, as required
1886 	 * by the spec. This makes strcmp and pr_* calls that access
1887 	 * strings in the section safe.
1888 	 */
1889 	secstrings = (void *)info->hdr + strhdr->sh_offset;
1890 	if (strhdr->sh_size == 0) {
1891 		pr_err("empty section name table\n");
1892 		return -ENOEXEC;
1893 	}
1894 	if (secstrings[strhdr->sh_size - 1] != '\0') {
1895 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1896 		return -ENOEXEC;
1897 	}
1898 
1899 	for (i = 0; i < info->hdr->e_shnum; i++) {
1900 		shdr = &info->sechdrs[i];
1901 		/* SHT_NULL means sh_name has an undefined value */
1902 		if (shdr->sh_type == SHT_NULL)
1903 			continue;
1904 		if (shdr->sh_name >= strhdr->sh_size) {
1905 			pr_err("Invalid ELF section name in module (section %u type %u)\n",
1906 			       i, shdr->sh_type);
1907 			return -ENOEXEC;
1908 		}
1909 	}
1910 
1911 	info->secstrings = secstrings;
1912 	return 0;
1913 }
1914 
1915 /**
1916  * elf_validity_cache_index_info() - Validate and cache modinfo section
1917  * @info: Load info to populate the modinfo index on.
1918  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1919  *
1920  * Checks that if there is a .modinfo section, it is unique.
1921  * Then, it caches its index in &load_info->index.info.
1922  * Finally, it tries to populate the name to improve error messages.
1923  *
1924  * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1925  */
1926 static int elf_validity_cache_index_info(struct load_info *info)
1927 {
1928 	int info_idx;
1929 
1930 	info_idx = find_any_unique_sec(info, ".modinfo");
1931 
1932 	if (info_idx == 0)
1933 		/* Early return, no .modinfo */
1934 		return 0;
1935 
1936 	if (info_idx < 0) {
1937 		pr_err("Only one .modinfo section must exist.\n");
1938 		return -ENOEXEC;
1939 	}
1940 
1941 	info->index.info = info_idx;
1942 	/* Try to find a name early so we can log errors with a module name */
1943 	info->name = get_modinfo(info, "name");
1944 
1945 	return 0;
1946 }
1947 
1948 /**
1949  * elf_validity_cache_index_mod() - Validates and caches this_module section
1950  * @info: Load info to cache this_module on.
1951  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1952  *
1953  * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
1954  * uses to refer to __this_module and let's use rely on THIS_MODULE to point
1955  * to &__this_module properly. The kernel's modpost declares it on each
1956  * modules's *.mod.c file. If the struct module of the kernel changes a full
1957  * kernel rebuild is required.
1958  *
1959  * We have a few expectations for this special section, this function
1960  * validates all this for us:
1961  *
1962  * * The section has contents
1963  * * The section is unique
1964  * * We expect the kernel to always have to allocate it: SHF_ALLOC
1965  * * The section size must match the kernel's run time's struct module
1966  *   size
1967  *
1968  * If all checks pass, the index will be cached in &load_info->index.mod
1969  *
1970  * Return: %0 on validation success, %-ENOEXEC on failure
1971  */
1972 static int elf_validity_cache_index_mod(struct load_info *info)
1973 {
1974 	Elf_Shdr *shdr;
1975 	int mod_idx;
1976 
1977 	mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
1978 	if (mod_idx <= 0) {
1979 		pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
1980 		       info->name ?: "(missing .modinfo section or name field)");
1981 		return -ENOEXEC;
1982 	}
1983 
1984 	shdr = &info->sechdrs[mod_idx];
1985 
1986 	if (shdr->sh_type == SHT_NOBITS) {
1987 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1988 		       info->name ?: "(missing .modinfo section or name field)");
1989 		return -ENOEXEC;
1990 	}
1991 
1992 	if (!(shdr->sh_flags & SHF_ALLOC)) {
1993 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
1994 		       info->name ?: "(missing .modinfo section or name field)");
1995 		return -ENOEXEC;
1996 	}
1997 
1998 	if (shdr->sh_size != sizeof(struct module)) {
1999 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2000 		       info->name ?: "(missing .modinfo section or name field)");
2001 		return -ENOEXEC;
2002 	}
2003 
2004 	info->index.mod = mod_idx;
2005 
2006 	return 0;
2007 }
2008 
2009 /**
2010  * elf_validity_cache_index_sym() - Validate and cache symtab index
2011  * @info: Load info to cache symtab index in.
2012  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2013  *
2014  * Checks that there is exactly one symbol table, then caches its index in
2015  * &load_info->index.sym.
2016  *
2017  * Return: %0 if valid, %-ENOEXEC on failure.
2018  */
2019 static int elf_validity_cache_index_sym(struct load_info *info)
2020 {
2021 	unsigned int sym_idx;
2022 	unsigned int num_sym_secs = 0;
2023 	int i;
2024 
2025 	for (i = 1; i < info->hdr->e_shnum; i++) {
2026 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2027 			num_sym_secs++;
2028 			sym_idx = i;
2029 		}
2030 	}
2031 
2032 	if (num_sym_secs != 1) {
2033 		pr_warn("%s: module has no symbols (stripped?)\n",
2034 			info->name ?: "(missing .modinfo section or name field)");
2035 		return -ENOEXEC;
2036 	}
2037 
2038 	info->index.sym = sym_idx;
2039 
2040 	return 0;
2041 }
2042 
2043 /**
2044  * elf_validity_cache_index_str() - Validate and cache strtab index
2045  * @info: Load info to cache strtab index in.
2046  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2047  *        Must have &load_info->index.sym populated.
2048  *
2049  * Looks at the symbol table's associated string table, makes sure it is
2050  * in-bounds, and caches it.
2051  *
2052  * Return: %0 if valid, %-ENOEXEC on failure.
2053  */
2054 static int elf_validity_cache_index_str(struct load_info *info)
2055 {
2056 	unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2057 
2058 	if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2059 		pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2060 		       str_idx, str_idx, info->hdr->e_shnum);
2061 		return -ENOEXEC;
2062 	}
2063 
2064 	info->index.str = str_idx;
2065 	return 0;
2066 }
2067 
2068 /**
2069  * elf_validity_cache_index_versions() - Validate and cache version indices
2070  * @info:  Load info to cache version indices in.
2071  *         Must have &load_info->sechdrs and &load_info->secstrings populated.
2072  * @flags: Load flags, relevant to suppress version loading, see
2073  *         uapi/linux/module.h
2074  *
2075  * If we're ignoring modversions based on @flags, zero all version indices
2076  * and return validity. Othewrise check:
2077  *
2078  * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2079  * * There is a name present for every crc
2080  *
2081  * Then populate:
2082  *
2083  * * &load_info->index.vers
2084  * * &load_info->index.vers_ext_crc
2085  * * &load_info->index.vers_ext_names
2086  *
2087  * if present.
2088  *
2089  * Return: %0 if valid, %-ENOEXEC on failure.
2090  */
2091 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2092 {
2093 	unsigned int vers_ext_crc;
2094 	unsigned int vers_ext_name;
2095 	size_t crc_count;
2096 	size_t remaining_len;
2097 	size_t name_size;
2098 	char *name;
2099 
2100 	/* If modversions were suppressed, pretend we didn't find any */
2101 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2102 		info->index.vers = 0;
2103 		info->index.vers_ext_crc = 0;
2104 		info->index.vers_ext_name = 0;
2105 		return 0;
2106 	}
2107 
2108 	vers_ext_crc = find_sec(info, "__version_ext_crcs");
2109 	vers_ext_name = find_sec(info, "__version_ext_names");
2110 
2111 	/* If we have one field, we must have the other */
2112 	if (!!vers_ext_crc != !!vers_ext_name) {
2113 		pr_err("extended version crc+name presence does not match");
2114 		return -ENOEXEC;
2115 	}
2116 
2117 	/*
2118 	 * If we have extended version information, we should have the same
2119 	 * number of entries in every section.
2120 	 */
2121 	if (vers_ext_crc) {
2122 		crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2123 		name = (void *)info->hdr +
2124 			info->sechdrs[vers_ext_name].sh_offset;
2125 		remaining_len = info->sechdrs[vers_ext_name].sh_size;
2126 
2127 		while (crc_count--) {
2128 			name_size = strnlen(name, remaining_len) + 1;
2129 			if (name_size > remaining_len) {
2130 				pr_err("more extended version crcs than names");
2131 				return -ENOEXEC;
2132 			}
2133 			remaining_len -= name_size;
2134 			name += name_size;
2135 		}
2136 	}
2137 
2138 	info->index.vers = find_sec(info, "__versions");
2139 	info->index.vers_ext_crc = vers_ext_crc;
2140 	info->index.vers_ext_name = vers_ext_name;
2141 	return 0;
2142 }
2143 
2144 /**
2145  * elf_validity_cache_index() - Resolve, validate, cache section indices
2146  * @info:  Load info to read from and update.
2147  *         &load_info->sechdrs and &load_info->secstrings must be populated.
2148  * @flags: Load flags, relevant to suppress version loading, see
2149  *         uapi/linux/module.h
2150  *
2151  * Populates &load_info->index, validating as it goes.
2152  * See child functions for per-field validation:
2153  *
2154  * * elf_validity_cache_index_info()
2155  * * elf_validity_cache_index_mod()
2156  * * elf_validity_cache_index_sym()
2157  * * elf_validity_cache_index_str()
2158  * * elf_validity_cache_index_versions()
2159  *
2160  * If CONFIG_SMP is enabled, load the percpu section by name with no
2161  * validation.
2162  *
2163  * Return: 0 on success, negative error code if an index failed validation.
2164  */
2165 static int elf_validity_cache_index(struct load_info *info, int flags)
2166 {
2167 	int err;
2168 
2169 	err = elf_validity_cache_index_info(info);
2170 	if (err < 0)
2171 		return err;
2172 	err = elf_validity_cache_index_mod(info);
2173 	if (err < 0)
2174 		return err;
2175 	err = elf_validity_cache_index_sym(info);
2176 	if (err < 0)
2177 		return err;
2178 	err = elf_validity_cache_index_str(info);
2179 	if (err < 0)
2180 		return err;
2181 	err = elf_validity_cache_index_versions(info, flags);
2182 	if (err < 0)
2183 		return err;
2184 
2185 	info->index.pcpu = find_pcpusec(info);
2186 
2187 	return 0;
2188 }
2189 
2190 /**
2191  * elf_validity_cache_strtab() - Validate and cache symbol string table
2192  * @info: Load info to read from and update.
2193  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2194  *        Must have &load_info->index populated.
2195  *
2196  * Checks:
2197  *
2198  * * The string table is not empty.
2199  * * The string table starts and ends with NUL (required by ELF spec).
2200  * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2201  *   string table.
2202  *
2203  * And caches the pointer as &load_info->strtab in @info.
2204  *
2205  * Return: 0 on success, negative error code if a check failed.
2206  */
2207 static int elf_validity_cache_strtab(struct load_info *info)
2208 {
2209 	Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2210 	Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2211 	char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2212 	Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2213 	int i;
2214 
2215 	if (str_shdr->sh_size == 0) {
2216 		pr_err("empty symbol string table\n");
2217 		return -ENOEXEC;
2218 	}
2219 	if (strtab[0] != '\0') {
2220 		pr_err("symbol string table missing leading NUL\n");
2221 		return -ENOEXEC;
2222 	}
2223 	if (strtab[str_shdr->sh_size - 1] != '\0') {
2224 		pr_err("symbol string table isn't NUL terminated\n");
2225 		return -ENOEXEC;
2226 	}
2227 
2228 	/*
2229 	 * Now that we know strtab is correctly structured, check symbol
2230 	 * starts are inbounds before they're used later.
2231 	 */
2232 	for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2233 		if (syms[i].st_name >= str_shdr->sh_size) {
2234 			pr_err("symbol name out of bounds in string table");
2235 			return -ENOEXEC;
2236 		}
2237 	}
2238 
2239 	info->strtab = strtab;
2240 	return 0;
2241 }
2242 
2243 /*
2244  * Check userspace passed ELF module against our expectations, and cache
2245  * useful variables for further processing as we go.
2246  *
2247  * This does basic validity checks against section offsets and sizes, the
2248  * section name string table, and the indices used for it (sh_name).
2249  *
2250  * As a last step, since we're already checking the ELF sections we cache
2251  * useful variables which will be used later for our convenience:
2252  *
2253  * 	o pointers to section headers
2254  * 	o cache the modinfo symbol section
2255  * 	o cache the string symbol section
2256  * 	o cache the module section
2257  *
2258  * As a last step we set info->mod to the temporary copy of the module in
2259  * info->hdr. The final one will be allocated in move_module(). Any
2260  * modifications we make to our copy of the module will be carried over
2261  * to the final minted module.
2262  */
2263 static int elf_validity_cache_copy(struct load_info *info, int flags)
2264 {
2265 	int err;
2266 
2267 	err = elf_validity_cache_sechdrs(info);
2268 	if (err < 0)
2269 		return err;
2270 	err = elf_validity_cache_secstrings(info);
2271 	if (err < 0)
2272 		return err;
2273 	err = elf_validity_cache_index(info, flags);
2274 	if (err < 0)
2275 		return err;
2276 	err = elf_validity_cache_strtab(info);
2277 	if (err < 0)
2278 		return err;
2279 
2280 	/* This is temporary: point mod into copy of data. */
2281 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2282 
2283 	/*
2284 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2285 	 * on-disk struct mod 'name' field.
2286 	 */
2287 	if (!info->name)
2288 		info->name = info->mod->name;
2289 
2290 	return 0;
2291 }
2292 
2293 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2294 
2295 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2296 {
2297 	do {
2298 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2299 
2300 		if (copy_from_user(dst, usrc, n) != 0)
2301 			return -EFAULT;
2302 		cond_resched();
2303 		dst += n;
2304 		usrc += n;
2305 		len -= n;
2306 	} while (len);
2307 	return 0;
2308 }
2309 
2310 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2311 {
2312 	if (!get_modinfo(info, "livepatch"))
2313 		/* Nothing more to do */
2314 		return 0;
2315 
2316 	if (set_livepatch_module(mod))
2317 		return 0;
2318 
2319 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2320 	       mod->name);
2321 	return -ENOEXEC;
2322 }
2323 
2324 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2325 {
2326 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2327 		return;
2328 
2329 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2330 		mod->name);
2331 }
2332 
2333 /* Sets info->hdr and info->len. */
2334 static int copy_module_from_user(const void __user *umod, unsigned long len,
2335 				  struct load_info *info)
2336 {
2337 	int err;
2338 
2339 	info->len = len;
2340 	if (info->len < sizeof(*(info->hdr)))
2341 		return -ENOEXEC;
2342 
2343 	err = security_kernel_load_data(LOADING_MODULE, true);
2344 	if (err)
2345 		return err;
2346 
2347 	/* Suck in entire file: we'll want most of it. */
2348 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2349 	if (!info->hdr)
2350 		return -ENOMEM;
2351 
2352 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2353 		err = -EFAULT;
2354 		goto out;
2355 	}
2356 
2357 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2358 					     LOADING_MODULE, "init_module");
2359 out:
2360 	if (err)
2361 		vfree(info->hdr);
2362 
2363 	return err;
2364 }
2365 
2366 static void free_copy(struct load_info *info, int flags)
2367 {
2368 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2369 		module_decompress_cleanup(info);
2370 	else
2371 		vfree(info->hdr);
2372 }
2373 
2374 static int rewrite_section_headers(struct load_info *info, int flags)
2375 {
2376 	unsigned int i;
2377 
2378 	/* This should always be true, but let's be sure. */
2379 	info->sechdrs[0].sh_addr = 0;
2380 
2381 	for (i = 1; i < info->hdr->e_shnum; i++) {
2382 		Elf_Shdr *shdr = &info->sechdrs[i];
2383 
2384 		/*
2385 		 * Mark all sections sh_addr with their address in the
2386 		 * temporary image.
2387 		 */
2388 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2389 
2390 	}
2391 
2392 	/* Track but don't keep modinfo and version sections. */
2393 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2394 	info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2395 		~(unsigned long)SHF_ALLOC;
2396 	info->sechdrs[info->index.vers_ext_name].sh_flags &=
2397 		~(unsigned long)SHF_ALLOC;
2398 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2399 
2400 	return 0;
2401 }
2402 
2403 static const char *const module_license_offenders[] = {
2404 	/* driverloader was caught wrongly pretending to be under GPL */
2405 	"driverloader",
2406 
2407 	/* lve claims to be GPL but upstream won't provide source */
2408 	"lve",
2409 };
2410 
2411 /*
2412  * These calls taint the kernel depending certain module circumstances */
2413 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2414 {
2415 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2416 	size_t i;
2417 
2418 	if (!get_modinfo(info, "intree")) {
2419 		if (!test_taint(TAINT_OOT_MODULE))
2420 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2421 				mod->name);
2422 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2423 	}
2424 
2425 	check_modinfo_retpoline(mod, info);
2426 
2427 	if (get_modinfo(info, "staging")) {
2428 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2429 		pr_warn("%s: module is from the staging directory, the quality "
2430 			"is unknown, you have been warned.\n", mod->name);
2431 	}
2432 
2433 	if (is_livepatch_module(mod)) {
2434 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2435 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2436 				mod->name);
2437 	}
2438 
2439 	module_license_taint_check(mod, get_modinfo(info, "license"));
2440 
2441 	if (get_modinfo(info, "test")) {
2442 		if (!test_taint(TAINT_TEST))
2443 			pr_warn("%s: loading test module taints kernel.\n",
2444 				mod->name);
2445 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2446 	}
2447 #ifdef CONFIG_MODULE_SIG
2448 	mod->sig_ok = info->sig_ok;
2449 	if (!mod->sig_ok) {
2450 		pr_notice_once("%s: module verification failed: signature "
2451 			       "and/or required key missing - tainting "
2452 			       "kernel\n", mod->name);
2453 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2454 	}
2455 #endif
2456 
2457 	/*
2458 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2459 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2460 	 * using GPL-only symbols it needs.
2461 	 */
2462 	if (strcmp(mod->name, "ndiswrapper") == 0)
2463 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2464 
2465 	for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2466 		if (strcmp(mod->name, module_license_offenders[i]) == 0)
2467 			add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2468 					 LOCKDEP_NOW_UNRELIABLE);
2469 	}
2470 
2471 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2472 		pr_warn("%s: module license taints kernel.\n", mod->name);
2473 
2474 }
2475 
2476 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2477 {
2478 	const char *modmagic = get_modinfo(info, "vermagic");
2479 	int err;
2480 
2481 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2482 		modmagic = NULL;
2483 
2484 	/* This is allowed: modprobe --force will invalidate it. */
2485 	if (!modmagic) {
2486 		err = try_to_force_load(mod, "bad vermagic");
2487 		if (err)
2488 			return err;
2489 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2490 		pr_err("%s: version magic '%s' should be '%s'\n",
2491 		       info->name, modmagic, vermagic);
2492 		return -ENOEXEC;
2493 	}
2494 
2495 	err = check_modinfo_livepatch(mod, info);
2496 	if (err)
2497 		return err;
2498 
2499 	return 0;
2500 }
2501 
2502 static int find_module_sections(struct module *mod, struct load_info *info)
2503 {
2504 	mod->kp = section_objs(info, "__param",
2505 			       sizeof(*mod->kp), &mod->num_kp);
2506 	mod->syms = section_objs(info, "__ksymtab",
2507 				 sizeof(*mod->syms), &mod->num_syms);
2508 	mod->crcs = section_addr(info, "__kcrctab");
2509 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2510 				     sizeof(*mod->gpl_syms),
2511 				     &mod->num_gpl_syms);
2512 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2513 
2514 #ifdef CONFIG_CONSTRUCTORS
2515 	mod->ctors = section_objs(info, ".ctors",
2516 				  sizeof(*mod->ctors), &mod->num_ctors);
2517 	if (!mod->ctors)
2518 		mod->ctors = section_objs(info, ".init_array",
2519 				sizeof(*mod->ctors), &mod->num_ctors);
2520 	else if (find_sec(info, ".init_array")) {
2521 		/*
2522 		 * This shouldn't happen with same compiler and binutils
2523 		 * building all parts of the module.
2524 		 */
2525 		pr_warn("%s: has both .ctors and .init_array.\n",
2526 		       mod->name);
2527 		return -EINVAL;
2528 	}
2529 #endif
2530 
2531 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2532 						&mod->noinstr_text_size);
2533 
2534 #ifdef CONFIG_TRACEPOINTS
2535 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2536 					     sizeof(*mod->tracepoints_ptrs),
2537 					     &mod->num_tracepoints);
2538 #endif
2539 #ifdef CONFIG_TREE_SRCU
2540 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2541 					     sizeof(*mod->srcu_struct_ptrs),
2542 					     &mod->num_srcu_structs);
2543 #endif
2544 #ifdef CONFIG_BPF_EVENTS
2545 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2546 					   sizeof(*mod->bpf_raw_events),
2547 					   &mod->num_bpf_raw_events);
2548 #endif
2549 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2550 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2551 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2552 					      &mod->btf_base_data_size);
2553 #endif
2554 #ifdef CONFIG_JUMP_LABEL
2555 	mod->jump_entries = section_objs(info, "__jump_table",
2556 					sizeof(*mod->jump_entries),
2557 					&mod->num_jump_entries);
2558 #endif
2559 #ifdef CONFIG_EVENT_TRACING
2560 	mod->trace_events = section_objs(info, "_ftrace_events",
2561 					 sizeof(*mod->trace_events),
2562 					 &mod->num_trace_events);
2563 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2564 					sizeof(*mod->trace_evals),
2565 					&mod->num_trace_evals);
2566 #endif
2567 #ifdef CONFIG_TRACING
2568 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2569 					 sizeof(*mod->trace_bprintk_fmt_start),
2570 					 &mod->num_trace_bprintk_fmt);
2571 #endif
2572 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2573 	/* sechdrs[0].sh_size is always zero */
2574 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2575 					     sizeof(*mod->ftrace_callsites),
2576 					     &mod->num_ftrace_callsites);
2577 #endif
2578 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2579 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2580 					    sizeof(*mod->ei_funcs),
2581 					    &mod->num_ei_funcs);
2582 #endif
2583 #ifdef CONFIG_KPROBES
2584 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2585 						&mod->kprobes_text_size);
2586 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2587 						sizeof(unsigned long),
2588 						&mod->num_kprobe_blacklist);
2589 #endif
2590 #ifdef CONFIG_PRINTK_INDEX
2591 	mod->printk_index_start = section_objs(info, ".printk_index",
2592 					       sizeof(*mod->printk_index_start),
2593 					       &mod->printk_index_size);
2594 #endif
2595 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2596 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2597 					      sizeof(*mod->static_call_sites),
2598 					      &mod->num_static_call_sites);
2599 #endif
2600 #if IS_ENABLED(CONFIG_KUNIT)
2601 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2602 					      sizeof(*mod->kunit_suites),
2603 					      &mod->num_kunit_suites);
2604 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2605 					      sizeof(*mod->kunit_init_suites),
2606 					      &mod->num_kunit_init_suites);
2607 #endif
2608 
2609 	mod->extable = section_objs(info, "__ex_table",
2610 				    sizeof(*mod->extable), &mod->num_exentries);
2611 
2612 	if (section_addr(info, "__obsparm"))
2613 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2614 
2615 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2616 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2617 					      sizeof(*mod->dyndbg_info.descs),
2618 					      &mod->dyndbg_info.num_descs);
2619 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2620 						sizeof(*mod->dyndbg_info.classes),
2621 						&mod->dyndbg_info.num_classes);
2622 #endif
2623 
2624 	return 0;
2625 }
2626 
2627 static int move_module(struct module *mod, struct load_info *info)
2628 {
2629 	int i;
2630 	enum mod_mem_type t = 0;
2631 	int ret = -ENOMEM;
2632 	bool codetag_section_found = false;
2633 
2634 	for_each_mod_mem_type(type) {
2635 		if (!mod->mem[type].size) {
2636 			mod->mem[type].base = NULL;
2637 			continue;
2638 		}
2639 
2640 		ret = module_memory_alloc(mod, type);
2641 		if (ret) {
2642 			t = type;
2643 			goto out_err;
2644 		}
2645 	}
2646 
2647 	/* Transfer each section which specifies SHF_ALLOC */
2648 	pr_debug("Final section addresses for %s:\n", mod->name);
2649 	for (i = 0; i < info->hdr->e_shnum; i++) {
2650 		void *dest;
2651 		Elf_Shdr *shdr = &info->sechdrs[i];
2652 		const char *sname;
2653 
2654 		if (!(shdr->sh_flags & SHF_ALLOC))
2655 			continue;
2656 
2657 		sname = info->secstrings + shdr->sh_name;
2658 		/*
2659 		 * Load codetag sections separately as they might still be used
2660 		 * after module unload.
2661 		 */
2662 		if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2663 			dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2664 					arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2665 			if (WARN_ON(!dest)) {
2666 				ret = -EINVAL;
2667 				goto out_err;
2668 			}
2669 			if (IS_ERR(dest)) {
2670 				ret = PTR_ERR(dest);
2671 				goto out_err;
2672 			}
2673 			codetag_section_found = true;
2674 		} else {
2675 			enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2676 			unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2677 
2678 			dest = mod->mem[type].base + offset;
2679 		}
2680 
2681 		if (shdr->sh_type != SHT_NOBITS) {
2682 			/*
2683 			 * Our ELF checker already validated this, but let's
2684 			 * be pedantic and make the goal clearer. We actually
2685 			 * end up copying over all modifications made to the
2686 			 * userspace copy of the entire struct module.
2687 			 */
2688 			if (i == info->index.mod &&
2689 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2690 				ret = -ENOEXEC;
2691 				goto out_err;
2692 			}
2693 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2694 		}
2695 		/*
2696 		 * Update the userspace copy's ELF section address to point to
2697 		 * our newly allocated memory as a pure convenience so that
2698 		 * users of info can keep taking advantage and using the newly
2699 		 * minted official memory area.
2700 		 */
2701 		shdr->sh_addr = (unsigned long)dest;
2702 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2703 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2704 	}
2705 
2706 	return 0;
2707 out_err:
2708 	module_memory_restore_rox(mod);
2709 	for (t--; t >= 0; t--)
2710 		module_memory_free(mod, t);
2711 	if (codetag_section_found)
2712 		codetag_free_module_sections(mod);
2713 
2714 	return ret;
2715 }
2716 
2717 static int check_export_symbol_versions(struct module *mod)
2718 {
2719 #ifdef CONFIG_MODVERSIONS
2720 	if ((mod->num_syms && !mod->crcs) ||
2721 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2722 		return try_to_force_load(mod,
2723 					 "no versions for exported symbols");
2724 	}
2725 #endif
2726 	return 0;
2727 }
2728 
2729 static void flush_module_icache(const struct module *mod)
2730 {
2731 	/*
2732 	 * Flush the instruction cache, since we've played with text.
2733 	 * Do it before processing of module parameters, so the module
2734 	 * can provide parameter accessor functions of its own.
2735 	 */
2736 	for_each_mod_mem_type(type) {
2737 		const struct module_memory *mod_mem = &mod->mem[type];
2738 
2739 		if (mod_mem->size) {
2740 			flush_icache_range((unsigned long)mod_mem->base,
2741 					   (unsigned long)mod_mem->base + mod_mem->size);
2742 		}
2743 	}
2744 }
2745 
2746 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2747 {
2748 	return true;
2749 }
2750 
2751 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2752 				     Elf_Shdr *sechdrs,
2753 				     char *secstrings,
2754 				     struct module *mod)
2755 {
2756 	return 0;
2757 }
2758 
2759 /* module_blacklist is a comma-separated list of module names */
2760 static char *module_blacklist;
2761 static bool blacklisted(const char *module_name)
2762 {
2763 	const char *p;
2764 	size_t len;
2765 
2766 	if (!module_blacklist)
2767 		return false;
2768 
2769 	for (p = module_blacklist; *p; p += len) {
2770 		len = strcspn(p, ",");
2771 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2772 			return true;
2773 		if (p[len] == ',')
2774 			len++;
2775 	}
2776 	return false;
2777 }
2778 core_param(module_blacklist, module_blacklist, charp, 0400);
2779 
2780 static struct module *layout_and_allocate(struct load_info *info, int flags)
2781 {
2782 	struct module *mod;
2783 	unsigned int ndx;
2784 	int err;
2785 
2786 	/* Allow arches to frob section contents and sizes.  */
2787 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2788 					info->secstrings, info->mod);
2789 	if (err < 0)
2790 		return ERR_PTR(err);
2791 
2792 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2793 					  info->secstrings, info->mod);
2794 	if (err < 0)
2795 		return ERR_PTR(err);
2796 
2797 	/* We will do a special allocation for per-cpu sections later. */
2798 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2799 
2800 	/*
2801 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2802 	 * layout_sections() can put it in the right place.
2803 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2804 	 */
2805 	ndx = find_sec(info, ".data..ro_after_init");
2806 	if (ndx)
2807 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2808 	/*
2809 	 * Mark the __jump_table section as ro_after_init as well: these data
2810 	 * structures are never modified, with the exception of entries that
2811 	 * refer to code in the __init section, which are annotated as such
2812 	 * at module load time.
2813 	 */
2814 	ndx = find_sec(info, "__jump_table");
2815 	if (ndx)
2816 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2817 
2818 	/*
2819 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2820 	 * this is done generically; there doesn't appear to be any
2821 	 * special cases for the architectures.
2822 	 */
2823 	layout_sections(info->mod, info);
2824 	layout_symtab(info->mod, info);
2825 
2826 	/* Allocate and move to the final place */
2827 	err = move_module(info->mod, info);
2828 	if (err)
2829 		return ERR_PTR(err);
2830 
2831 	/* Module has been copied to its final place now: return it. */
2832 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2833 	kmemleak_load_module(mod, info);
2834 	codetag_module_replaced(info->mod, mod);
2835 
2836 	return mod;
2837 }
2838 
2839 /* mod is no longer valid after this! */
2840 static void module_deallocate(struct module *mod, struct load_info *info)
2841 {
2842 	percpu_modfree(mod);
2843 	module_arch_freeing_init(mod);
2844 
2845 	free_mod_mem(mod);
2846 }
2847 
2848 int __weak module_finalize(const Elf_Ehdr *hdr,
2849 			   const Elf_Shdr *sechdrs,
2850 			   struct module *me)
2851 {
2852 	return 0;
2853 }
2854 
2855 static int post_relocation(struct module *mod, const struct load_info *info)
2856 {
2857 	/* Sort exception table now relocations are done. */
2858 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2859 
2860 	/* Copy relocated percpu area over. */
2861 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2862 		       info->sechdrs[info->index.pcpu].sh_size);
2863 
2864 	/* Setup kallsyms-specific fields. */
2865 	add_kallsyms(mod, info);
2866 
2867 	/* Arch-specific module finalizing. */
2868 	return module_finalize(info->hdr, info->sechdrs, mod);
2869 }
2870 
2871 /* Call module constructors. */
2872 static void do_mod_ctors(struct module *mod)
2873 {
2874 #ifdef CONFIG_CONSTRUCTORS
2875 	unsigned long i;
2876 
2877 	for (i = 0; i < mod->num_ctors; i++)
2878 		mod->ctors[i]();
2879 #endif
2880 }
2881 
2882 /* For freeing module_init on success, in case kallsyms traversing */
2883 struct mod_initfree {
2884 	struct llist_node node;
2885 	void *init_text;
2886 	void *init_data;
2887 	void *init_rodata;
2888 };
2889 
2890 static void do_free_init(struct work_struct *w)
2891 {
2892 	struct llist_node *pos, *n, *list;
2893 	struct mod_initfree *initfree;
2894 
2895 	list = llist_del_all(&init_free_list);
2896 
2897 	synchronize_rcu();
2898 
2899 	llist_for_each_safe(pos, n, list) {
2900 		initfree = container_of(pos, struct mod_initfree, node);
2901 		execmem_free(initfree->init_text);
2902 		execmem_free(initfree->init_data);
2903 		execmem_free(initfree->init_rodata);
2904 		kfree(initfree);
2905 	}
2906 }
2907 
2908 void flush_module_init_free_work(void)
2909 {
2910 	flush_work(&init_free_wq);
2911 }
2912 
2913 #undef MODULE_PARAM_PREFIX
2914 #define MODULE_PARAM_PREFIX "module."
2915 /* Default value for module->async_probe_requested */
2916 static bool async_probe;
2917 module_param(async_probe, bool, 0644);
2918 
2919 /*
2920  * This is where the real work happens.
2921  *
2922  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2923  * helper command 'lx-symbols'.
2924  */
2925 static noinline int do_init_module(struct module *mod)
2926 {
2927 	int ret = 0;
2928 	struct mod_initfree *freeinit;
2929 #if defined(CONFIG_MODULE_STATS)
2930 	unsigned int text_size = 0, total_size = 0;
2931 
2932 	for_each_mod_mem_type(type) {
2933 		const struct module_memory *mod_mem = &mod->mem[type];
2934 		if (mod_mem->size) {
2935 			total_size += mod_mem->size;
2936 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2937 				text_size += mod_mem->size;
2938 		}
2939 	}
2940 #endif
2941 
2942 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2943 	if (!freeinit) {
2944 		ret = -ENOMEM;
2945 		goto fail;
2946 	}
2947 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2948 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2949 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2950 
2951 	do_mod_ctors(mod);
2952 	/* Start the module */
2953 	if (mod->init != NULL)
2954 		ret = do_one_initcall(mod->init);
2955 	if (ret < 0) {
2956 		goto fail_free_freeinit;
2957 	}
2958 	if (ret > 0) {
2959 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2960 			"follow 0/-E convention\n"
2961 			"%s: loading module anyway...\n",
2962 			__func__, mod->name, ret, __func__);
2963 		dump_stack();
2964 	}
2965 
2966 	/* Now it's a first class citizen! */
2967 	mod->state = MODULE_STATE_LIVE;
2968 	blocking_notifier_call_chain(&module_notify_list,
2969 				     MODULE_STATE_LIVE, mod);
2970 
2971 	/* Delay uevent until module has finished its init routine */
2972 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2973 
2974 	/*
2975 	 * We need to finish all async code before the module init sequence
2976 	 * is done. This has potential to deadlock if synchronous module
2977 	 * loading is requested from async (which is not allowed!).
2978 	 *
2979 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2980 	 * request_module() from async workers") for more details.
2981 	 */
2982 	if (!mod->async_probe_requested)
2983 		async_synchronize_full();
2984 
2985 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
2986 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
2987 	mutex_lock(&module_mutex);
2988 	/* Drop initial reference. */
2989 	module_put(mod);
2990 	trim_init_extable(mod);
2991 #ifdef CONFIG_KALLSYMS
2992 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
2993 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2994 #endif
2995 	ret = module_enable_rodata_ro_after_init(mod);
2996 	if (ret)
2997 		pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
2998 			"ro_after_init data might still be writable\n",
2999 			mod->name, ret);
3000 
3001 	mod_tree_remove_init(mod);
3002 	module_arch_freeing_init(mod);
3003 	for_class_mod_mem_type(type, init) {
3004 		mod->mem[type].base = NULL;
3005 		mod->mem[type].size = 0;
3006 	}
3007 
3008 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3009 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3010 	mod->btf_data = NULL;
3011 	mod->btf_base_data = NULL;
3012 #endif
3013 	/*
3014 	 * We want to free module_init, but be aware that kallsyms may be
3015 	 * walking this with preempt disabled.  In all the failure paths, we
3016 	 * call synchronize_rcu(), but we don't want to slow down the success
3017 	 * path. execmem_free() cannot be called in an interrupt, so do the
3018 	 * work and call synchronize_rcu() in a work queue.
3019 	 *
3020 	 * Note that execmem_alloc() on most architectures creates W+X page
3021 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3022 	 * code such as mark_rodata_ro() which depends on those mappings to
3023 	 * be cleaned up needs to sync with the queued work by invoking
3024 	 * flush_module_init_free_work().
3025 	 */
3026 	if (llist_add(&freeinit->node, &init_free_list))
3027 		schedule_work(&init_free_wq);
3028 
3029 	mutex_unlock(&module_mutex);
3030 	wake_up_all(&module_wq);
3031 
3032 	mod_stat_add_long(text_size, &total_text_size);
3033 	mod_stat_add_long(total_size, &total_mod_size);
3034 
3035 	mod_stat_inc(&modcount);
3036 
3037 	return 0;
3038 
3039 fail_free_freeinit:
3040 	kfree(freeinit);
3041 fail:
3042 	/* Try to protect us from buggy refcounters. */
3043 	mod->state = MODULE_STATE_GOING;
3044 	synchronize_rcu();
3045 	module_put(mod);
3046 	blocking_notifier_call_chain(&module_notify_list,
3047 				     MODULE_STATE_GOING, mod);
3048 	klp_module_going(mod);
3049 	ftrace_release_mod(mod);
3050 	free_module(mod);
3051 	wake_up_all(&module_wq);
3052 
3053 	return ret;
3054 }
3055 
3056 static int may_init_module(void)
3057 {
3058 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3059 		return -EPERM;
3060 
3061 	return 0;
3062 }
3063 
3064 /* Is this module of this name done loading?  No locks held. */
3065 static bool finished_loading(const char *name)
3066 {
3067 	struct module *mod;
3068 	bool ret;
3069 
3070 	/*
3071 	 * The module_mutex should not be a heavily contended lock;
3072 	 * if we get the occasional sleep here, we'll go an extra iteration
3073 	 * in the wait_event_interruptible(), which is harmless.
3074 	 */
3075 	sched_annotate_sleep();
3076 	mutex_lock(&module_mutex);
3077 	mod = find_module_all(name, strlen(name), true);
3078 	ret = !mod || mod->state == MODULE_STATE_LIVE
3079 		|| mod->state == MODULE_STATE_GOING;
3080 	mutex_unlock(&module_mutex);
3081 
3082 	return ret;
3083 }
3084 
3085 /* Must be called with module_mutex held */
3086 static int module_patient_check_exists(const char *name,
3087 				       enum fail_dup_mod_reason reason)
3088 {
3089 	struct module *old;
3090 	int err = 0;
3091 
3092 	old = find_module_all(name, strlen(name), true);
3093 	if (old == NULL)
3094 		return 0;
3095 
3096 	if (old->state == MODULE_STATE_COMING ||
3097 	    old->state == MODULE_STATE_UNFORMED) {
3098 		/* Wait in case it fails to load. */
3099 		mutex_unlock(&module_mutex);
3100 		err = wait_event_interruptible(module_wq,
3101 				       finished_loading(name));
3102 		mutex_lock(&module_mutex);
3103 		if (err)
3104 			return err;
3105 
3106 		/* The module might have gone in the meantime. */
3107 		old = find_module_all(name, strlen(name), true);
3108 	}
3109 
3110 	if (try_add_failed_module(name, reason))
3111 		pr_warn("Could not add fail-tracking for module: %s\n", name);
3112 
3113 	/*
3114 	 * We are here only when the same module was being loaded. Do
3115 	 * not try to load it again right now. It prevents long delays
3116 	 * caused by serialized module load failures. It might happen
3117 	 * when more devices of the same type trigger load of
3118 	 * a particular module.
3119 	 */
3120 	if (old && old->state == MODULE_STATE_LIVE)
3121 		return -EEXIST;
3122 	return -EBUSY;
3123 }
3124 
3125 /*
3126  * We try to place it in the list now to make sure it's unique before
3127  * we dedicate too many resources.  In particular, temporary percpu
3128  * memory exhaustion.
3129  */
3130 static int add_unformed_module(struct module *mod)
3131 {
3132 	int err;
3133 
3134 	mod->state = MODULE_STATE_UNFORMED;
3135 
3136 	mutex_lock(&module_mutex);
3137 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3138 	if (err)
3139 		goto out;
3140 
3141 	mod_update_bounds(mod);
3142 	list_add_rcu(&mod->list, &modules);
3143 	mod_tree_insert(mod);
3144 	err = 0;
3145 
3146 out:
3147 	mutex_unlock(&module_mutex);
3148 	return err;
3149 }
3150 
3151 static int complete_formation(struct module *mod, struct load_info *info)
3152 {
3153 	int err;
3154 
3155 	mutex_lock(&module_mutex);
3156 
3157 	/* Find duplicate symbols (must be called under lock). */
3158 	err = verify_exported_symbols(mod);
3159 	if (err < 0)
3160 		goto out;
3161 
3162 	/* These rely on module_mutex for list integrity. */
3163 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3164 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
3165 
3166 	err = module_enable_rodata_ro(mod);
3167 	if (err)
3168 		goto out_strict_rwx;
3169 	err = module_enable_data_nx(mod);
3170 	if (err)
3171 		goto out_strict_rwx;
3172 	err = module_enable_text_rox(mod);
3173 	if (err)
3174 		goto out_strict_rwx;
3175 
3176 	/*
3177 	 * Mark state as coming so strong_try_module_get() ignores us,
3178 	 * but kallsyms etc. can see us.
3179 	 */
3180 	mod->state = MODULE_STATE_COMING;
3181 	mutex_unlock(&module_mutex);
3182 
3183 	return 0;
3184 
3185 out_strict_rwx:
3186 	module_bug_cleanup(mod);
3187 out:
3188 	mutex_unlock(&module_mutex);
3189 	return err;
3190 }
3191 
3192 static int prepare_coming_module(struct module *mod)
3193 {
3194 	int err;
3195 
3196 	ftrace_module_enable(mod);
3197 	err = klp_module_coming(mod);
3198 	if (err)
3199 		return err;
3200 
3201 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3202 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3203 	err = notifier_to_errno(err);
3204 	if (err)
3205 		klp_module_going(mod);
3206 
3207 	return err;
3208 }
3209 
3210 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3211 				   void *arg)
3212 {
3213 	struct module *mod = arg;
3214 	int ret;
3215 
3216 	if (strcmp(param, "async_probe") == 0) {
3217 		if (kstrtobool(val, &mod->async_probe_requested))
3218 			mod->async_probe_requested = true;
3219 		return 0;
3220 	}
3221 
3222 	/* Check for magic 'dyndbg' arg */
3223 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3224 	if (ret != 0)
3225 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3226 	return 0;
3227 }
3228 
3229 /* Module within temporary copy, this doesn't do any allocation  */
3230 static int early_mod_check(struct load_info *info, int flags)
3231 {
3232 	int err;
3233 
3234 	/*
3235 	 * Now that we know we have the correct module name, check
3236 	 * if it's blacklisted.
3237 	 */
3238 	if (blacklisted(info->name)) {
3239 		pr_err("Module %s is blacklisted\n", info->name);
3240 		return -EPERM;
3241 	}
3242 
3243 	err = rewrite_section_headers(info, flags);
3244 	if (err)
3245 		return err;
3246 
3247 	/* Check module struct version now, before we try to use module. */
3248 	if (!check_modstruct_version(info, info->mod))
3249 		return -ENOEXEC;
3250 
3251 	err = check_modinfo(info->mod, info, flags);
3252 	if (err)
3253 		return err;
3254 
3255 	mutex_lock(&module_mutex);
3256 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3257 	mutex_unlock(&module_mutex);
3258 
3259 	return err;
3260 }
3261 
3262 /*
3263  * Allocate and load the module: note that size of section 0 is always
3264  * zero, and we rely on this for optional sections.
3265  */
3266 static int load_module(struct load_info *info, const char __user *uargs,
3267 		       int flags)
3268 {
3269 	struct module *mod;
3270 	bool module_allocated = false;
3271 	long err = 0;
3272 	char *after_dashes;
3273 
3274 	/*
3275 	 * Do the signature check (if any) first. All that
3276 	 * the signature check needs is info->len, it does
3277 	 * not need any of the section info. That can be
3278 	 * set up later. This will minimize the chances
3279 	 * of a corrupt module causing problems before
3280 	 * we even get to the signature check.
3281 	 *
3282 	 * The check will also adjust info->len by stripping
3283 	 * off the sig length at the end of the module, making
3284 	 * checks against info->len more correct.
3285 	 */
3286 	err = module_sig_check(info, flags);
3287 	if (err)
3288 		goto free_copy;
3289 
3290 	/*
3291 	 * Do basic sanity checks against the ELF header and
3292 	 * sections. Cache useful sections and set the
3293 	 * info->mod to the userspace passed struct module.
3294 	 */
3295 	err = elf_validity_cache_copy(info, flags);
3296 	if (err)
3297 		goto free_copy;
3298 
3299 	err = early_mod_check(info, flags);
3300 	if (err)
3301 		goto free_copy;
3302 
3303 	/* Figure out module layout, and allocate all the memory. */
3304 	mod = layout_and_allocate(info, flags);
3305 	if (IS_ERR(mod)) {
3306 		err = PTR_ERR(mod);
3307 		goto free_copy;
3308 	}
3309 
3310 	module_allocated = true;
3311 
3312 	audit_log_kern_module(mod->name);
3313 
3314 	/* Reserve our place in the list. */
3315 	err = add_unformed_module(mod);
3316 	if (err)
3317 		goto free_module;
3318 
3319 	/*
3320 	 * We are tainting your kernel if your module gets into
3321 	 * the modules linked list somehow.
3322 	 */
3323 	module_augment_kernel_taints(mod, info);
3324 
3325 	/* To avoid stressing percpu allocator, do this once we're unique. */
3326 	err = percpu_modalloc(mod, info);
3327 	if (err)
3328 		goto unlink_mod;
3329 
3330 	/* Now module is in final location, initialize linked lists, etc. */
3331 	err = module_unload_init(mod);
3332 	if (err)
3333 		goto unlink_mod;
3334 
3335 	init_param_lock(mod);
3336 
3337 	/*
3338 	 * Now we've got everything in the final locations, we can
3339 	 * find optional sections.
3340 	 */
3341 	err = find_module_sections(mod, info);
3342 	if (err)
3343 		goto free_unload;
3344 
3345 	err = check_export_symbol_versions(mod);
3346 	if (err)
3347 		goto free_unload;
3348 
3349 	/* Set up MODINFO_ATTR fields */
3350 	setup_modinfo(mod, info);
3351 
3352 	/* Fix up syms, so that st_value is a pointer to location. */
3353 	err = simplify_symbols(mod, info);
3354 	if (err < 0)
3355 		goto free_modinfo;
3356 
3357 	err = apply_relocations(mod, info);
3358 	if (err < 0)
3359 		goto free_modinfo;
3360 
3361 	err = post_relocation(mod, info);
3362 	if (err < 0)
3363 		goto free_modinfo;
3364 
3365 	flush_module_icache(mod);
3366 
3367 	/* Now copy in args */
3368 	mod->args = strndup_user(uargs, ~0UL >> 1);
3369 	if (IS_ERR(mod->args)) {
3370 		err = PTR_ERR(mod->args);
3371 		goto free_arch_cleanup;
3372 	}
3373 
3374 	init_build_id(mod, info);
3375 
3376 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3377 	ftrace_module_init(mod);
3378 
3379 	/* Finally it's fully formed, ready to start executing. */
3380 	err = complete_formation(mod, info);
3381 	if (err)
3382 		goto ddebug_cleanup;
3383 
3384 	err = prepare_coming_module(mod);
3385 	if (err)
3386 		goto bug_cleanup;
3387 
3388 	mod->async_probe_requested = async_probe;
3389 
3390 	/* Module is ready to execute: parsing args may do that. */
3391 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3392 				  -32768, 32767, mod,
3393 				  unknown_module_param_cb);
3394 	if (IS_ERR(after_dashes)) {
3395 		err = PTR_ERR(after_dashes);
3396 		goto coming_cleanup;
3397 	} else if (after_dashes) {
3398 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3399 		       mod->name, after_dashes);
3400 	}
3401 
3402 	/* Link in to sysfs. */
3403 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3404 	if (err < 0)
3405 		goto coming_cleanup;
3406 
3407 	if (is_livepatch_module(mod)) {
3408 		err = copy_module_elf(mod, info);
3409 		if (err < 0)
3410 			goto sysfs_cleanup;
3411 	}
3412 
3413 	/* Get rid of temporary copy. */
3414 	free_copy(info, flags);
3415 
3416 	codetag_load_module(mod);
3417 
3418 	/* Done! */
3419 	trace_module_load(mod);
3420 
3421 	return do_init_module(mod);
3422 
3423  sysfs_cleanup:
3424 	mod_sysfs_teardown(mod);
3425  coming_cleanup:
3426 	mod->state = MODULE_STATE_GOING;
3427 	destroy_params(mod->kp, mod->num_kp);
3428 	blocking_notifier_call_chain(&module_notify_list,
3429 				     MODULE_STATE_GOING, mod);
3430 	klp_module_going(mod);
3431  bug_cleanup:
3432 	mod->state = MODULE_STATE_GOING;
3433 	/* module_bug_cleanup needs module_mutex protection */
3434 	mutex_lock(&module_mutex);
3435 	module_bug_cleanup(mod);
3436 	mutex_unlock(&module_mutex);
3437 
3438  ddebug_cleanup:
3439 	ftrace_release_mod(mod);
3440 	synchronize_rcu();
3441 	kfree(mod->args);
3442  free_arch_cleanup:
3443 	module_arch_cleanup(mod);
3444  free_modinfo:
3445 	free_modinfo(mod);
3446  free_unload:
3447 	module_unload_free(mod);
3448  unlink_mod:
3449 	mutex_lock(&module_mutex);
3450 	/* Unlink carefully: kallsyms could be walking list. */
3451 	list_del_rcu(&mod->list);
3452 	mod_tree_remove(mod);
3453 	wake_up_all(&module_wq);
3454 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3455 	synchronize_rcu();
3456 	mutex_unlock(&module_mutex);
3457  free_module:
3458 	mod_stat_bump_invalid(info, flags);
3459 	/* Free lock-classes; relies on the preceding sync_rcu() */
3460 	for_class_mod_mem_type(type, core_data) {
3461 		lockdep_free_key_range(mod->mem[type].base,
3462 				       mod->mem[type].size);
3463 	}
3464 
3465 	module_memory_restore_rox(mod);
3466 	module_deallocate(mod, info);
3467  free_copy:
3468 	/*
3469 	 * The info->len is always set. We distinguish between
3470 	 * failures once the proper module was allocated and
3471 	 * before that.
3472 	 */
3473 	if (!module_allocated)
3474 		mod_stat_bump_becoming(info, flags);
3475 	free_copy(info, flags);
3476 	return err;
3477 }
3478 
3479 SYSCALL_DEFINE3(init_module, void __user *, umod,
3480 		unsigned long, len, const char __user *, uargs)
3481 {
3482 	int err;
3483 	struct load_info info = { };
3484 
3485 	err = may_init_module();
3486 	if (err)
3487 		return err;
3488 
3489 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3490 	       umod, len, uargs);
3491 
3492 	err = copy_module_from_user(umod, len, &info);
3493 	if (err) {
3494 		mod_stat_inc(&failed_kreads);
3495 		mod_stat_add_long(len, &invalid_kread_bytes);
3496 		return err;
3497 	}
3498 
3499 	return load_module(&info, uargs, 0);
3500 }
3501 
3502 struct idempotent {
3503 	const void *cookie;
3504 	struct hlist_node entry;
3505 	struct completion complete;
3506 	int ret;
3507 };
3508 
3509 #define IDEM_HASH_BITS 8
3510 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3511 static DEFINE_SPINLOCK(idem_lock);
3512 
3513 static bool idempotent(struct idempotent *u, const void *cookie)
3514 {
3515 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3516 	struct hlist_head *head = idem_hash + hash;
3517 	struct idempotent *existing;
3518 	bool first;
3519 
3520 	u->ret = -EINTR;
3521 	u->cookie = cookie;
3522 	init_completion(&u->complete);
3523 
3524 	spin_lock(&idem_lock);
3525 	first = true;
3526 	hlist_for_each_entry(existing, head, entry) {
3527 		if (existing->cookie != cookie)
3528 			continue;
3529 		first = false;
3530 		break;
3531 	}
3532 	hlist_add_head(&u->entry, idem_hash + hash);
3533 	spin_unlock(&idem_lock);
3534 
3535 	return !first;
3536 }
3537 
3538 /*
3539  * We were the first one with 'cookie' on the list, and we ended
3540  * up completing the operation. We now need to walk the list,
3541  * remove everybody - which includes ourselves - fill in the return
3542  * value, and then complete the operation.
3543  */
3544 static int idempotent_complete(struct idempotent *u, int ret)
3545 {
3546 	const void *cookie = u->cookie;
3547 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3548 	struct hlist_head *head = idem_hash + hash;
3549 	struct hlist_node *next;
3550 	struct idempotent *pos;
3551 
3552 	spin_lock(&idem_lock);
3553 	hlist_for_each_entry_safe(pos, next, head, entry) {
3554 		if (pos->cookie != cookie)
3555 			continue;
3556 		hlist_del_init(&pos->entry);
3557 		pos->ret = ret;
3558 		complete(&pos->complete);
3559 	}
3560 	spin_unlock(&idem_lock);
3561 	return ret;
3562 }
3563 
3564 /*
3565  * Wait for the idempotent worker.
3566  *
3567  * If we get interrupted, we need to remove ourselves from the
3568  * the idempotent list, and the completion may still come in.
3569  *
3570  * The 'idem_lock' protects against the race, and 'idem.ret' was
3571  * initialized to -EINTR and is thus always the right return
3572  * value even if the idempotent work then completes between
3573  * the wait_for_completion and the cleanup.
3574  */
3575 static int idempotent_wait_for_completion(struct idempotent *u)
3576 {
3577 	if (wait_for_completion_interruptible(&u->complete)) {
3578 		spin_lock(&idem_lock);
3579 		if (!hlist_unhashed(&u->entry))
3580 			hlist_del(&u->entry);
3581 		spin_unlock(&idem_lock);
3582 	}
3583 	return u->ret;
3584 }
3585 
3586 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3587 {
3588 	struct load_info info = { };
3589 	void *buf = NULL;
3590 	int len;
3591 
3592 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3593 	if (len < 0) {
3594 		mod_stat_inc(&failed_kreads);
3595 		return len;
3596 	}
3597 
3598 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3599 		int err = module_decompress(&info, buf, len);
3600 		vfree(buf); /* compressed data is no longer needed */
3601 		if (err) {
3602 			mod_stat_inc(&failed_decompress);
3603 			mod_stat_add_long(len, &invalid_decompress_bytes);
3604 			return err;
3605 		}
3606 	} else {
3607 		info.hdr = buf;
3608 		info.len = len;
3609 	}
3610 
3611 	return load_module(&info, uargs, flags);
3612 }
3613 
3614 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3615 {
3616 	struct idempotent idem;
3617 
3618 	if (!(f->f_mode & FMODE_READ))
3619 		return -EBADF;
3620 
3621 	/* Are we the winners of the race and get to do this? */
3622 	if (!idempotent(&idem, file_inode(f))) {
3623 		int ret = init_module_from_file(f, uargs, flags);
3624 		return idempotent_complete(&idem, ret);
3625 	}
3626 
3627 	/*
3628 	 * Somebody else won the race and is loading the module.
3629 	 */
3630 	return idempotent_wait_for_completion(&idem);
3631 }
3632 
3633 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3634 {
3635 	int err = may_init_module();
3636 	if (err)
3637 		return err;
3638 
3639 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3640 
3641 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3642 		      |MODULE_INIT_IGNORE_VERMAGIC
3643 		      |MODULE_INIT_COMPRESSED_FILE))
3644 		return -EINVAL;
3645 
3646 	CLASS(fd, f)(fd);
3647 	if (fd_empty(f))
3648 		return -EBADF;
3649 	return idempotent_init_module(fd_file(f), uargs, flags);
3650 }
3651 
3652 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
3653 char *module_flags(struct module *mod, char *buf, bool show_state)
3654 {
3655 	int bx = 0;
3656 
3657 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3658 	if (!mod->taints && !show_state)
3659 		goto out;
3660 	if (mod->taints ||
3661 	    mod->state == MODULE_STATE_GOING ||
3662 	    mod->state == MODULE_STATE_COMING) {
3663 		buf[bx++] = '(';
3664 		bx += module_flags_taint(mod->taints, buf + bx);
3665 		/* Show a - for module-is-being-unloaded */
3666 		if (mod->state == MODULE_STATE_GOING && show_state)
3667 			buf[bx++] = '-';
3668 		/* Show a + for module-is-being-loaded */
3669 		if (mod->state == MODULE_STATE_COMING && show_state)
3670 			buf[bx++] = '+';
3671 		buf[bx++] = ')';
3672 	}
3673 out:
3674 	buf[bx] = '\0';
3675 
3676 	return buf;
3677 }
3678 
3679 /* Given an address, look for it in the module exception tables. */
3680 const struct exception_table_entry *search_module_extables(unsigned long addr)
3681 {
3682 	const struct exception_table_entry *e = NULL;
3683 	struct module *mod;
3684 
3685 	preempt_disable();
3686 	mod = __module_address(addr);
3687 	if (!mod)
3688 		goto out;
3689 
3690 	if (!mod->num_exentries)
3691 		goto out;
3692 
3693 	e = search_extable(mod->extable,
3694 			   mod->num_exentries,
3695 			   addr);
3696 out:
3697 	preempt_enable();
3698 
3699 	/*
3700 	 * Now, if we found one, we are running inside it now, hence
3701 	 * we cannot unload the module, hence no refcnt needed.
3702 	 */
3703 	return e;
3704 }
3705 
3706 /**
3707  * is_module_address() - is this address inside a module?
3708  * @addr: the address to check.
3709  *
3710  * See is_module_text_address() if you simply want to see if the address
3711  * is code (not data).
3712  */
3713 bool is_module_address(unsigned long addr)
3714 {
3715 	bool ret;
3716 
3717 	preempt_disable();
3718 	ret = __module_address(addr) != NULL;
3719 	preempt_enable();
3720 
3721 	return ret;
3722 }
3723 
3724 /**
3725  * __module_address() - get the module which contains an address.
3726  * @addr: the address.
3727  *
3728  * Must be called with preempt disabled or module mutex held so that
3729  * module doesn't get freed during this.
3730  */
3731 struct module *__module_address(unsigned long addr)
3732 {
3733 	struct module *mod;
3734 
3735 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3736 		goto lookup;
3737 
3738 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3739 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3740 		goto lookup;
3741 #endif
3742 
3743 	return NULL;
3744 
3745 lookup:
3746 	module_assert_mutex_or_preempt();
3747 
3748 	mod = mod_find(addr, &mod_tree);
3749 	if (mod) {
3750 		BUG_ON(!within_module(addr, mod));
3751 		if (mod->state == MODULE_STATE_UNFORMED)
3752 			mod = NULL;
3753 	}
3754 	return mod;
3755 }
3756 
3757 /**
3758  * is_module_text_address() - is this address inside module code?
3759  * @addr: the address to check.
3760  *
3761  * See is_module_address() if you simply want to see if the address is
3762  * anywhere in a module.  See kernel_text_address() for testing if an
3763  * address corresponds to kernel or module code.
3764  */
3765 bool is_module_text_address(unsigned long addr)
3766 {
3767 	bool ret;
3768 
3769 	preempt_disable();
3770 	ret = __module_text_address(addr) != NULL;
3771 	preempt_enable();
3772 
3773 	return ret;
3774 }
3775 
3776 /**
3777  * __module_text_address() - get the module whose code contains an address.
3778  * @addr: the address.
3779  *
3780  * Must be called with preempt disabled or module mutex held so that
3781  * module doesn't get freed during this.
3782  */
3783 struct module *__module_text_address(unsigned long addr)
3784 {
3785 	struct module *mod = __module_address(addr);
3786 	if (mod) {
3787 		/* Make sure it's within the text section. */
3788 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3789 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3790 			mod = NULL;
3791 	}
3792 	return mod;
3793 }
3794 
3795 /* Don't grab lock, we're oopsing. */
3796 void print_modules(void)
3797 {
3798 	struct module *mod;
3799 	char buf[MODULE_FLAGS_BUF_SIZE];
3800 
3801 	printk(KERN_DEFAULT "Modules linked in:");
3802 	/* Most callers should already have preempt disabled, but make sure */
3803 	preempt_disable();
3804 	list_for_each_entry_rcu(mod, &modules, list) {
3805 		if (mod->state == MODULE_STATE_UNFORMED)
3806 			continue;
3807 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3808 	}
3809 
3810 	print_unloaded_tainted_modules();
3811 	preempt_enable();
3812 	if (last_unloaded_module.name[0])
3813 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3814 			last_unloaded_module.taints);
3815 	pr_cont("\n");
3816 }
3817 
3818 #ifdef CONFIG_MODULE_DEBUGFS
3819 struct dentry *mod_debugfs_root;
3820 
3821 static int module_debugfs_init(void)
3822 {
3823 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3824 	return 0;
3825 }
3826 module_init(module_debugfs_init);
3827 #endif
3828