1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <[email protected]> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/codetag.h> 60 #include <linux/debugfs.h> 61 #include <linux/execmem.h> 62 #include <uapi/linux/module.h> 63 #include "internal.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/module.h> 67 68 /* 69 * Mutex protects: 70 * 1) List of modules (also safely readable with preempt_disable), 71 * 2) module_use links, 72 * 3) mod_tree.addr_min/mod_tree.addr_max. 73 * (delete and add uses RCU list operations). 74 */ 75 DEFINE_MUTEX(module_mutex); 76 LIST_HEAD(modules); 77 78 /* Work queue for freeing init sections in success case */ 79 static void do_free_init(struct work_struct *w); 80 static DECLARE_WORK(init_free_wq, do_free_init); 81 static LLIST_HEAD(init_free_list); 82 83 struct mod_tree_root mod_tree __cacheline_aligned = { 84 .addr_min = -1UL, 85 }; 86 87 struct symsearch { 88 const struct kernel_symbol *start, *stop; 89 const u32 *crcs; 90 enum mod_license license; 91 }; 92 93 /* 94 * Bounds of module memory, for speeding up __module_address. 95 * Protected by module_mutex. 96 */ 97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 98 unsigned int size, struct mod_tree_root *tree) 99 { 100 unsigned long min = (unsigned long)base; 101 unsigned long max = min + size; 102 103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 104 if (mod_mem_type_is_core_data(type)) { 105 if (min < tree->data_addr_min) 106 tree->data_addr_min = min; 107 if (max > tree->data_addr_max) 108 tree->data_addr_max = max; 109 return; 110 } 111 #endif 112 if (min < tree->addr_min) 113 tree->addr_min = min; 114 if (max > tree->addr_max) 115 tree->addr_max = max; 116 } 117 118 static void mod_update_bounds(struct module *mod) 119 { 120 for_each_mod_mem_type(type) { 121 struct module_memory *mod_mem = &mod->mem[type]; 122 123 if (mod_mem->size) 124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 125 } 126 } 127 128 /* Block module loading/unloading? */ 129 int modules_disabled; 130 core_param(nomodule, modules_disabled, bint, 0); 131 132 /* Waiting for a module to finish initializing? */ 133 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 134 135 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 136 137 int register_module_notifier(struct notifier_block *nb) 138 { 139 return blocking_notifier_chain_register(&module_notify_list, nb); 140 } 141 EXPORT_SYMBOL(register_module_notifier); 142 143 int unregister_module_notifier(struct notifier_block *nb) 144 { 145 return blocking_notifier_chain_unregister(&module_notify_list, nb); 146 } 147 EXPORT_SYMBOL(unregister_module_notifier); 148 149 /* 150 * We require a truly strong try_module_get(): 0 means success. 151 * Otherwise an error is returned due to ongoing or failed 152 * initialization etc. 153 */ 154 static inline int strong_try_module_get(struct module *mod) 155 { 156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 157 if (mod && mod->state == MODULE_STATE_COMING) 158 return -EBUSY; 159 if (try_module_get(mod)) 160 return 0; 161 else 162 return -ENOENT; 163 } 164 165 static inline void add_taint_module(struct module *mod, unsigned flag, 166 enum lockdep_ok lockdep_ok) 167 { 168 add_taint(flag, lockdep_ok); 169 set_bit(flag, &mod->taints); 170 } 171 172 /* 173 * A thread that wants to hold a reference to a module only while it 174 * is running can call this to safely exit. 175 */ 176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 177 { 178 module_put(mod); 179 kthread_exit(code); 180 } 181 EXPORT_SYMBOL(__module_put_and_kthread_exit); 182 183 /* Find a module section: 0 means not found. */ 184 static unsigned int find_sec(const struct load_info *info, const char *name) 185 { 186 unsigned int i; 187 188 for (i = 1; i < info->hdr->e_shnum; i++) { 189 Elf_Shdr *shdr = &info->sechdrs[i]; 190 /* Alloc bit cleared means "ignore it." */ 191 if ((shdr->sh_flags & SHF_ALLOC) 192 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 193 return i; 194 } 195 return 0; 196 } 197 198 /** 199 * find_any_unique_sec() - Find a unique section index by name 200 * @info: Load info for the module to scan 201 * @name: Name of the section we're looking for 202 * 203 * Locates a unique section by name. Ignores SHF_ALLOC. 204 * 205 * Return: Section index if found uniquely, zero if absent, negative count 206 * of total instances if multiple were found. 207 */ 208 static int find_any_unique_sec(const struct load_info *info, const char *name) 209 { 210 unsigned int idx; 211 unsigned int count = 0; 212 int i; 213 214 for (i = 1; i < info->hdr->e_shnum; i++) { 215 if (strcmp(info->secstrings + info->sechdrs[i].sh_name, 216 name) == 0) { 217 count++; 218 idx = i; 219 } 220 } 221 if (count == 1) { 222 return idx; 223 } else if (count == 0) { 224 return 0; 225 } else { 226 return -count; 227 } 228 } 229 230 /* Find a module section, or NULL. */ 231 static void *section_addr(const struct load_info *info, const char *name) 232 { 233 /* Section 0 has sh_addr 0. */ 234 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 235 } 236 237 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 238 static void *section_objs(const struct load_info *info, 239 const char *name, 240 size_t object_size, 241 unsigned int *num) 242 { 243 unsigned int sec = find_sec(info, name); 244 245 /* Section 0 has sh_addr 0 and sh_size 0. */ 246 *num = info->sechdrs[sec].sh_size / object_size; 247 return (void *)info->sechdrs[sec].sh_addr; 248 } 249 250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 251 static unsigned int find_any_sec(const struct load_info *info, const char *name) 252 { 253 unsigned int i; 254 255 for (i = 1; i < info->hdr->e_shnum; i++) { 256 Elf_Shdr *shdr = &info->sechdrs[i]; 257 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 258 return i; 259 } 260 return 0; 261 } 262 263 /* 264 * Find a module section, or NULL. Fill in number of "objects" in section. 265 * Ignores SHF_ALLOC flag. 266 */ 267 static __maybe_unused void *any_section_objs(const struct load_info *info, 268 const char *name, 269 size_t object_size, 270 unsigned int *num) 271 { 272 unsigned int sec = find_any_sec(info, name); 273 274 /* Section 0 has sh_addr 0 and sh_size 0. */ 275 *num = info->sechdrs[sec].sh_size / object_size; 276 return (void *)info->sechdrs[sec].sh_addr; 277 } 278 279 #ifndef CONFIG_MODVERSIONS 280 #define symversion(base, idx) NULL 281 #else 282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 283 #endif 284 285 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 286 { 287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 288 return offset_to_ptr(&sym->name_offset); 289 #else 290 return sym->name; 291 #endif 292 } 293 294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 295 { 296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 297 if (!sym->namespace_offset) 298 return NULL; 299 return offset_to_ptr(&sym->namespace_offset); 300 #else 301 return sym->namespace; 302 #endif 303 } 304 305 int cmp_name(const void *name, const void *sym) 306 { 307 return strcmp(name, kernel_symbol_name(sym)); 308 } 309 310 static bool find_exported_symbol_in_section(const struct symsearch *syms, 311 struct module *owner, 312 struct find_symbol_arg *fsa) 313 { 314 struct kernel_symbol *sym; 315 316 if (!fsa->gplok && syms->license == GPL_ONLY) 317 return false; 318 319 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 320 sizeof(struct kernel_symbol), cmp_name); 321 if (!sym) 322 return false; 323 324 fsa->owner = owner; 325 fsa->crc = symversion(syms->crcs, sym - syms->start); 326 fsa->sym = sym; 327 fsa->license = syms->license; 328 329 return true; 330 } 331 332 /* 333 * Find an exported symbol and return it, along with, (optional) crc and 334 * (optional) module which owns it. Needs preempt disabled or module_mutex. 335 */ 336 bool find_symbol(struct find_symbol_arg *fsa) 337 { 338 static const struct symsearch arr[] = { 339 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 340 NOT_GPL_ONLY }, 341 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 342 __start___kcrctab_gpl, 343 GPL_ONLY }, 344 }; 345 struct module *mod; 346 unsigned int i; 347 348 module_assert_mutex_or_preempt(); 349 350 for (i = 0; i < ARRAY_SIZE(arr); i++) 351 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 352 return true; 353 354 list_for_each_entry_rcu(mod, &modules, list, 355 lockdep_is_held(&module_mutex)) { 356 struct symsearch arr[] = { 357 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 358 NOT_GPL_ONLY }, 359 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 360 mod->gpl_crcs, 361 GPL_ONLY }, 362 }; 363 364 if (mod->state == MODULE_STATE_UNFORMED) 365 continue; 366 367 for (i = 0; i < ARRAY_SIZE(arr); i++) 368 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 369 return true; 370 } 371 372 pr_debug("Failed to find symbol %s\n", fsa->name); 373 return false; 374 } 375 376 /* 377 * Search for module by name: must hold module_mutex (or preempt disabled 378 * for read-only access). 379 */ 380 struct module *find_module_all(const char *name, size_t len, 381 bool even_unformed) 382 { 383 struct module *mod; 384 385 module_assert_mutex_or_preempt(); 386 387 list_for_each_entry_rcu(mod, &modules, list, 388 lockdep_is_held(&module_mutex)) { 389 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 390 continue; 391 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 392 return mod; 393 } 394 return NULL; 395 } 396 397 struct module *find_module(const char *name) 398 { 399 return find_module_all(name, strlen(name), false); 400 } 401 402 #ifdef CONFIG_SMP 403 404 static inline void __percpu *mod_percpu(struct module *mod) 405 { 406 return mod->percpu; 407 } 408 409 static int percpu_modalloc(struct module *mod, struct load_info *info) 410 { 411 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 412 unsigned long align = pcpusec->sh_addralign; 413 414 if (!pcpusec->sh_size) 415 return 0; 416 417 if (align > PAGE_SIZE) { 418 pr_warn("%s: per-cpu alignment %li > %li\n", 419 mod->name, align, PAGE_SIZE); 420 align = PAGE_SIZE; 421 } 422 423 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 424 if (!mod->percpu) { 425 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 426 mod->name, (unsigned long)pcpusec->sh_size); 427 return -ENOMEM; 428 } 429 mod->percpu_size = pcpusec->sh_size; 430 return 0; 431 } 432 433 static void percpu_modfree(struct module *mod) 434 { 435 free_percpu(mod->percpu); 436 } 437 438 static unsigned int find_pcpusec(struct load_info *info) 439 { 440 return find_sec(info, ".data..percpu"); 441 } 442 443 static void percpu_modcopy(struct module *mod, 444 const void *from, unsigned long size) 445 { 446 int cpu; 447 448 for_each_possible_cpu(cpu) 449 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 450 } 451 452 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 453 { 454 struct module *mod; 455 unsigned int cpu; 456 457 preempt_disable(); 458 459 list_for_each_entry_rcu(mod, &modules, list) { 460 if (mod->state == MODULE_STATE_UNFORMED) 461 continue; 462 if (!mod->percpu_size) 463 continue; 464 for_each_possible_cpu(cpu) { 465 void *start = per_cpu_ptr(mod->percpu, cpu); 466 void *va = (void *)addr; 467 468 if (va >= start && va < start + mod->percpu_size) { 469 if (can_addr) { 470 *can_addr = (unsigned long) (va - start); 471 *can_addr += (unsigned long) 472 per_cpu_ptr(mod->percpu, 473 get_boot_cpu_id()); 474 } 475 preempt_enable(); 476 return true; 477 } 478 } 479 } 480 481 preempt_enable(); 482 return false; 483 } 484 485 /** 486 * is_module_percpu_address() - test whether address is from module static percpu 487 * @addr: address to test 488 * 489 * Test whether @addr belongs to module static percpu area. 490 * 491 * Return: %true if @addr is from module static percpu area 492 */ 493 bool is_module_percpu_address(unsigned long addr) 494 { 495 return __is_module_percpu_address(addr, NULL); 496 } 497 498 #else /* ... !CONFIG_SMP */ 499 500 static inline void __percpu *mod_percpu(struct module *mod) 501 { 502 return NULL; 503 } 504 static int percpu_modalloc(struct module *mod, struct load_info *info) 505 { 506 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 507 if (info->sechdrs[info->index.pcpu].sh_size != 0) 508 return -ENOMEM; 509 return 0; 510 } 511 static inline void percpu_modfree(struct module *mod) 512 { 513 } 514 static unsigned int find_pcpusec(struct load_info *info) 515 { 516 return 0; 517 } 518 static inline void percpu_modcopy(struct module *mod, 519 const void *from, unsigned long size) 520 { 521 /* pcpusec should be 0, and size of that section should be 0. */ 522 BUG_ON(size != 0); 523 } 524 bool is_module_percpu_address(unsigned long addr) 525 { 526 return false; 527 } 528 529 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 530 { 531 return false; 532 } 533 534 #endif /* CONFIG_SMP */ 535 536 #define MODINFO_ATTR(field) \ 537 static void setup_modinfo_##field(struct module *mod, const char *s) \ 538 { \ 539 mod->field = kstrdup(s, GFP_KERNEL); \ 540 } \ 541 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \ 542 struct module_kobject *mk, char *buffer) \ 543 { \ 544 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 545 } \ 546 static int modinfo_##field##_exists(struct module *mod) \ 547 { \ 548 return mod->field != NULL; \ 549 } \ 550 static void free_modinfo_##field(struct module *mod) \ 551 { \ 552 kfree(mod->field); \ 553 mod->field = NULL; \ 554 } \ 555 static const struct module_attribute modinfo_##field = { \ 556 .attr = { .name = __stringify(field), .mode = 0444 }, \ 557 .show = show_modinfo_##field, \ 558 .setup = setup_modinfo_##field, \ 559 .test = modinfo_##field##_exists, \ 560 .free = free_modinfo_##field, \ 561 }; 562 563 MODINFO_ATTR(version); 564 MODINFO_ATTR(srcversion); 565 566 static struct { 567 char name[MODULE_NAME_LEN + 1]; 568 char taints[MODULE_FLAGS_BUF_SIZE]; 569 } last_unloaded_module; 570 571 #ifdef CONFIG_MODULE_UNLOAD 572 573 EXPORT_TRACEPOINT_SYMBOL(module_get); 574 575 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 576 #define MODULE_REF_BASE 1 577 578 /* Init the unload section of the module. */ 579 static int module_unload_init(struct module *mod) 580 { 581 /* 582 * Initialize reference counter to MODULE_REF_BASE. 583 * refcnt == 0 means module is going. 584 */ 585 atomic_set(&mod->refcnt, MODULE_REF_BASE); 586 587 INIT_LIST_HEAD(&mod->source_list); 588 INIT_LIST_HEAD(&mod->target_list); 589 590 /* Hold reference count during initialization. */ 591 atomic_inc(&mod->refcnt); 592 593 return 0; 594 } 595 596 /* Does a already use b? */ 597 static int already_uses(struct module *a, struct module *b) 598 { 599 struct module_use *use; 600 601 list_for_each_entry(use, &b->source_list, source_list) { 602 if (use->source == a) 603 return 1; 604 } 605 pr_debug("%s does not use %s!\n", a->name, b->name); 606 return 0; 607 } 608 609 /* 610 * Module a uses b 611 * - we add 'a' as a "source", 'b' as a "target" of module use 612 * - the module_use is added to the list of 'b' sources (so 613 * 'b' can walk the list to see who sourced them), and of 'a' 614 * targets (so 'a' can see what modules it targets). 615 */ 616 static int add_module_usage(struct module *a, struct module *b) 617 { 618 struct module_use *use; 619 620 pr_debug("Allocating new usage for %s.\n", a->name); 621 use = kmalloc(sizeof(*use), GFP_ATOMIC); 622 if (!use) 623 return -ENOMEM; 624 625 use->source = a; 626 use->target = b; 627 list_add(&use->source_list, &b->source_list); 628 list_add(&use->target_list, &a->target_list); 629 return 0; 630 } 631 632 /* Module a uses b: caller needs module_mutex() */ 633 static int ref_module(struct module *a, struct module *b) 634 { 635 int err; 636 637 if (b == NULL || already_uses(a, b)) 638 return 0; 639 640 /* If module isn't available, we fail. */ 641 err = strong_try_module_get(b); 642 if (err) 643 return err; 644 645 err = add_module_usage(a, b); 646 if (err) { 647 module_put(b); 648 return err; 649 } 650 return 0; 651 } 652 653 /* Clear the unload stuff of the module. */ 654 static void module_unload_free(struct module *mod) 655 { 656 struct module_use *use, *tmp; 657 658 mutex_lock(&module_mutex); 659 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 660 struct module *i = use->target; 661 pr_debug("%s unusing %s\n", mod->name, i->name); 662 module_put(i); 663 list_del(&use->source_list); 664 list_del(&use->target_list); 665 kfree(use); 666 } 667 mutex_unlock(&module_mutex); 668 } 669 670 #ifdef CONFIG_MODULE_FORCE_UNLOAD 671 static inline int try_force_unload(unsigned int flags) 672 { 673 int ret = (flags & O_TRUNC); 674 if (ret) 675 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 676 return ret; 677 } 678 #else 679 static inline int try_force_unload(unsigned int flags) 680 { 681 return 0; 682 } 683 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 684 685 /* Try to release refcount of module, 0 means success. */ 686 static int try_release_module_ref(struct module *mod) 687 { 688 int ret; 689 690 /* Try to decrement refcnt which we set at loading */ 691 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 692 BUG_ON(ret < 0); 693 if (ret) 694 /* Someone can put this right now, recover with checking */ 695 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 696 697 return ret; 698 } 699 700 static int try_stop_module(struct module *mod, int flags, int *forced) 701 { 702 /* If it's not unused, quit unless we're forcing. */ 703 if (try_release_module_ref(mod) != 0) { 704 *forced = try_force_unload(flags); 705 if (!(*forced)) 706 return -EWOULDBLOCK; 707 } 708 709 /* Mark it as dying. */ 710 mod->state = MODULE_STATE_GOING; 711 712 return 0; 713 } 714 715 /** 716 * module_refcount() - return the refcount or -1 if unloading 717 * @mod: the module we're checking 718 * 719 * Return: 720 * -1 if the module is in the process of unloading 721 * otherwise the number of references in the kernel to the module 722 */ 723 int module_refcount(struct module *mod) 724 { 725 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 726 } 727 EXPORT_SYMBOL(module_refcount); 728 729 /* This exists whether we can unload or not */ 730 static void free_module(struct module *mod); 731 732 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 733 unsigned int, flags) 734 { 735 struct module *mod; 736 char name[MODULE_NAME_LEN]; 737 char buf[MODULE_FLAGS_BUF_SIZE]; 738 int ret, forced = 0; 739 740 if (!capable(CAP_SYS_MODULE) || modules_disabled) 741 return -EPERM; 742 743 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 744 return -EFAULT; 745 name[MODULE_NAME_LEN-1] = '\0'; 746 747 audit_log_kern_module(name); 748 749 if (mutex_lock_interruptible(&module_mutex) != 0) 750 return -EINTR; 751 752 mod = find_module(name); 753 if (!mod) { 754 ret = -ENOENT; 755 goto out; 756 } 757 758 if (!list_empty(&mod->source_list)) { 759 /* Other modules depend on us: get rid of them first. */ 760 ret = -EWOULDBLOCK; 761 goto out; 762 } 763 764 /* Doing init or already dying? */ 765 if (mod->state != MODULE_STATE_LIVE) { 766 /* FIXME: if (force), slam module count damn the torpedoes */ 767 pr_debug("%s already dying\n", mod->name); 768 ret = -EBUSY; 769 goto out; 770 } 771 772 /* If it has an init func, it must have an exit func to unload */ 773 if (mod->init && !mod->exit) { 774 forced = try_force_unload(flags); 775 if (!forced) { 776 /* This module can't be removed */ 777 ret = -EBUSY; 778 goto out; 779 } 780 } 781 782 ret = try_stop_module(mod, flags, &forced); 783 if (ret != 0) 784 goto out; 785 786 mutex_unlock(&module_mutex); 787 /* Final destruction now no one is using it. */ 788 if (mod->exit != NULL) 789 mod->exit(); 790 blocking_notifier_call_chain(&module_notify_list, 791 MODULE_STATE_GOING, mod); 792 klp_module_going(mod); 793 ftrace_release_mod(mod); 794 795 async_synchronize_full(); 796 797 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 798 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name)); 799 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints)); 800 801 free_module(mod); 802 /* someone could wait for the module in add_unformed_module() */ 803 wake_up_all(&module_wq); 804 return 0; 805 out: 806 mutex_unlock(&module_mutex); 807 return ret; 808 } 809 810 void __symbol_put(const char *symbol) 811 { 812 struct find_symbol_arg fsa = { 813 .name = symbol, 814 .gplok = true, 815 }; 816 817 preempt_disable(); 818 BUG_ON(!find_symbol(&fsa)); 819 module_put(fsa.owner); 820 preempt_enable(); 821 } 822 EXPORT_SYMBOL(__symbol_put); 823 824 /* Note this assumes addr is a function, which it currently always is. */ 825 void symbol_put_addr(void *addr) 826 { 827 struct module *modaddr; 828 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 829 830 if (core_kernel_text(a)) 831 return; 832 833 /* 834 * Even though we hold a reference on the module; we still need to 835 * disable preemption in order to safely traverse the data structure. 836 */ 837 preempt_disable(); 838 modaddr = __module_text_address(a); 839 BUG_ON(!modaddr); 840 module_put(modaddr); 841 preempt_enable(); 842 } 843 EXPORT_SYMBOL_GPL(symbol_put_addr); 844 845 static ssize_t show_refcnt(const struct module_attribute *mattr, 846 struct module_kobject *mk, char *buffer) 847 { 848 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 849 } 850 851 static const struct module_attribute modinfo_refcnt = 852 __ATTR(refcnt, 0444, show_refcnt, NULL); 853 854 void __module_get(struct module *module) 855 { 856 if (module) { 857 atomic_inc(&module->refcnt); 858 trace_module_get(module, _RET_IP_); 859 } 860 } 861 EXPORT_SYMBOL(__module_get); 862 863 bool try_module_get(struct module *module) 864 { 865 bool ret = true; 866 867 if (module) { 868 /* Note: here, we can fail to get a reference */ 869 if (likely(module_is_live(module) && 870 atomic_inc_not_zero(&module->refcnt) != 0)) 871 trace_module_get(module, _RET_IP_); 872 else 873 ret = false; 874 } 875 return ret; 876 } 877 EXPORT_SYMBOL(try_module_get); 878 879 void module_put(struct module *module) 880 { 881 int ret; 882 883 if (module) { 884 ret = atomic_dec_if_positive(&module->refcnt); 885 WARN_ON(ret < 0); /* Failed to put refcount */ 886 trace_module_put(module, _RET_IP_); 887 } 888 } 889 EXPORT_SYMBOL(module_put); 890 891 #else /* !CONFIG_MODULE_UNLOAD */ 892 static inline void module_unload_free(struct module *mod) 893 { 894 } 895 896 static int ref_module(struct module *a, struct module *b) 897 { 898 return strong_try_module_get(b); 899 } 900 901 static inline int module_unload_init(struct module *mod) 902 { 903 return 0; 904 } 905 #endif /* CONFIG_MODULE_UNLOAD */ 906 907 size_t module_flags_taint(unsigned long taints, char *buf) 908 { 909 size_t l = 0; 910 int i; 911 912 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 913 if (taint_flags[i].module && test_bit(i, &taints)) 914 buf[l++] = taint_flags[i].c_true; 915 } 916 917 return l; 918 } 919 920 static ssize_t show_initstate(const struct module_attribute *mattr, 921 struct module_kobject *mk, char *buffer) 922 { 923 const char *state = "unknown"; 924 925 switch (mk->mod->state) { 926 case MODULE_STATE_LIVE: 927 state = "live"; 928 break; 929 case MODULE_STATE_COMING: 930 state = "coming"; 931 break; 932 case MODULE_STATE_GOING: 933 state = "going"; 934 break; 935 default: 936 BUG(); 937 } 938 return sprintf(buffer, "%s\n", state); 939 } 940 941 static const struct module_attribute modinfo_initstate = 942 __ATTR(initstate, 0444, show_initstate, NULL); 943 944 static ssize_t store_uevent(const struct module_attribute *mattr, 945 struct module_kobject *mk, 946 const char *buffer, size_t count) 947 { 948 int rc; 949 950 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 951 return rc ? rc : count; 952 } 953 954 const struct module_attribute module_uevent = 955 __ATTR(uevent, 0200, NULL, store_uevent); 956 957 static ssize_t show_coresize(const struct module_attribute *mattr, 958 struct module_kobject *mk, char *buffer) 959 { 960 unsigned int size = mk->mod->mem[MOD_TEXT].size; 961 962 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 963 for_class_mod_mem_type(type, core_data) 964 size += mk->mod->mem[type].size; 965 } 966 return sprintf(buffer, "%u\n", size); 967 } 968 969 static const struct module_attribute modinfo_coresize = 970 __ATTR(coresize, 0444, show_coresize, NULL); 971 972 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 973 static ssize_t show_datasize(const struct module_attribute *mattr, 974 struct module_kobject *mk, char *buffer) 975 { 976 unsigned int size = 0; 977 978 for_class_mod_mem_type(type, core_data) 979 size += mk->mod->mem[type].size; 980 return sprintf(buffer, "%u\n", size); 981 } 982 983 static const struct module_attribute modinfo_datasize = 984 __ATTR(datasize, 0444, show_datasize, NULL); 985 #endif 986 987 static ssize_t show_initsize(const struct module_attribute *mattr, 988 struct module_kobject *mk, char *buffer) 989 { 990 unsigned int size = 0; 991 992 for_class_mod_mem_type(type, init) 993 size += mk->mod->mem[type].size; 994 return sprintf(buffer, "%u\n", size); 995 } 996 997 static const struct module_attribute modinfo_initsize = 998 __ATTR(initsize, 0444, show_initsize, NULL); 999 1000 static ssize_t show_taint(const struct module_attribute *mattr, 1001 struct module_kobject *mk, char *buffer) 1002 { 1003 size_t l; 1004 1005 l = module_flags_taint(mk->mod->taints, buffer); 1006 buffer[l++] = '\n'; 1007 return l; 1008 } 1009 1010 static const struct module_attribute modinfo_taint = 1011 __ATTR(taint, 0444, show_taint, NULL); 1012 1013 const struct module_attribute *const modinfo_attrs[] = { 1014 &module_uevent, 1015 &modinfo_version, 1016 &modinfo_srcversion, 1017 &modinfo_initstate, 1018 &modinfo_coresize, 1019 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1020 &modinfo_datasize, 1021 #endif 1022 &modinfo_initsize, 1023 &modinfo_taint, 1024 #ifdef CONFIG_MODULE_UNLOAD 1025 &modinfo_refcnt, 1026 #endif 1027 NULL, 1028 }; 1029 1030 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 1031 1032 static const char vermagic[] = VERMAGIC_STRING; 1033 1034 int try_to_force_load(struct module *mod, const char *reason) 1035 { 1036 #ifdef CONFIG_MODULE_FORCE_LOAD 1037 if (!test_taint(TAINT_FORCED_MODULE)) 1038 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1039 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1040 return 0; 1041 #else 1042 return -ENOEXEC; 1043 #endif 1044 } 1045 1046 /* Parse tag=value strings from .modinfo section */ 1047 char *module_next_tag_pair(char *string, unsigned long *secsize) 1048 { 1049 /* Skip non-zero chars */ 1050 while (string[0]) { 1051 string++; 1052 if ((*secsize)-- <= 1) 1053 return NULL; 1054 } 1055 1056 /* Skip any zero padding. */ 1057 while (!string[0]) { 1058 string++; 1059 if ((*secsize)-- <= 1) 1060 return NULL; 1061 } 1062 return string; 1063 } 1064 1065 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1066 char *prev) 1067 { 1068 char *p; 1069 unsigned int taglen = strlen(tag); 1070 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1071 unsigned long size = infosec->sh_size; 1072 1073 /* 1074 * get_modinfo() calls made before rewrite_section_headers() 1075 * must use sh_offset, as sh_addr isn't set! 1076 */ 1077 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1078 1079 if (prev) { 1080 size -= prev - modinfo; 1081 modinfo = module_next_tag_pair(prev, &size); 1082 } 1083 1084 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1085 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1086 return p + taglen + 1; 1087 } 1088 return NULL; 1089 } 1090 1091 static char *get_modinfo(const struct load_info *info, const char *tag) 1092 { 1093 return get_next_modinfo(info, tag, NULL); 1094 } 1095 1096 static int verify_namespace_is_imported(const struct load_info *info, 1097 const struct kernel_symbol *sym, 1098 struct module *mod) 1099 { 1100 const char *namespace; 1101 char *imported_namespace; 1102 1103 namespace = kernel_symbol_namespace(sym); 1104 if (namespace && namespace[0]) { 1105 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1106 if (strcmp(namespace, imported_namespace) == 0) 1107 return 0; 1108 } 1109 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1110 pr_warn( 1111 #else 1112 pr_err( 1113 #endif 1114 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1115 mod->name, kernel_symbol_name(sym), namespace); 1116 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1117 return -EINVAL; 1118 #endif 1119 } 1120 return 0; 1121 } 1122 1123 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1124 { 1125 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1126 return true; 1127 1128 if (mod->using_gplonly_symbols) { 1129 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1130 mod->name, name, owner->name); 1131 return false; 1132 } 1133 1134 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1135 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1136 mod->name, name, owner->name); 1137 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1138 } 1139 return true; 1140 } 1141 1142 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1143 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1144 const struct load_info *info, 1145 const char *name, 1146 char ownername[]) 1147 { 1148 struct find_symbol_arg fsa = { 1149 .name = name, 1150 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1151 .warn = true, 1152 }; 1153 int err; 1154 1155 /* 1156 * The module_mutex should not be a heavily contended lock; 1157 * if we get the occasional sleep here, we'll go an extra iteration 1158 * in the wait_event_interruptible(), which is harmless. 1159 */ 1160 sched_annotate_sleep(); 1161 mutex_lock(&module_mutex); 1162 if (!find_symbol(&fsa)) 1163 goto unlock; 1164 1165 if (fsa.license == GPL_ONLY) 1166 mod->using_gplonly_symbols = true; 1167 1168 if (!inherit_taint(mod, fsa.owner, name)) { 1169 fsa.sym = NULL; 1170 goto getname; 1171 } 1172 1173 if (!check_version(info, name, mod, fsa.crc)) { 1174 fsa.sym = ERR_PTR(-EINVAL); 1175 goto getname; 1176 } 1177 1178 err = verify_namespace_is_imported(info, fsa.sym, mod); 1179 if (err) { 1180 fsa.sym = ERR_PTR(err); 1181 goto getname; 1182 } 1183 1184 err = ref_module(mod, fsa.owner); 1185 if (err) { 1186 fsa.sym = ERR_PTR(err); 1187 goto getname; 1188 } 1189 1190 getname: 1191 /* We must make copy under the lock if we failed to get ref. */ 1192 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1193 unlock: 1194 mutex_unlock(&module_mutex); 1195 return fsa.sym; 1196 } 1197 1198 static const struct kernel_symbol * 1199 resolve_symbol_wait(struct module *mod, 1200 const struct load_info *info, 1201 const char *name) 1202 { 1203 const struct kernel_symbol *ksym; 1204 char owner[MODULE_NAME_LEN]; 1205 1206 if (wait_event_interruptible_timeout(module_wq, 1207 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1208 || PTR_ERR(ksym) != -EBUSY, 1209 30 * HZ) <= 0) { 1210 pr_warn("%s: gave up waiting for init of module %s.\n", 1211 mod->name, owner); 1212 } 1213 return ksym; 1214 } 1215 1216 void __weak module_arch_cleanup(struct module *mod) 1217 { 1218 } 1219 1220 void __weak module_arch_freeing_init(struct module *mod) 1221 { 1222 } 1223 1224 static int module_memory_alloc(struct module *mod, enum mod_mem_type type) 1225 { 1226 unsigned int size = PAGE_ALIGN(mod->mem[type].size); 1227 enum execmem_type execmem_type; 1228 void *ptr; 1229 1230 mod->mem[type].size = size; 1231 1232 if (mod_mem_type_is_data(type)) 1233 execmem_type = EXECMEM_MODULE_DATA; 1234 else 1235 execmem_type = EXECMEM_MODULE_TEXT; 1236 1237 ptr = execmem_alloc(execmem_type, size); 1238 if (!ptr) 1239 return -ENOMEM; 1240 1241 if (execmem_is_rox(execmem_type)) { 1242 int err = execmem_make_temp_rw(ptr, size); 1243 1244 if (err) { 1245 execmem_free(ptr); 1246 return -ENOMEM; 1247 } 1248 1249 mod->mem[type].is_rox = true; 1250 } 1251 1252 /* 1253 * The pointer to these blocks of memory are stored on the module 1254 * structure and we keep that around so long as the module is 1255 * around. We only free that memory when we unload the module. 1256 * Just mark them as not being a leak then. The .init* ELF 1257 * sections *do* get freed after boot so we *could* treat them 1258 * slightly differently with kmemleak_ignore() and only grey 1259 * them out as they work as typical memory allocations which 1260 * *do* eventually get freed, but let's just keep things simple 1261 * and avoid *any* false positives. 1262 */ 1263 kmemleak_not_leak(ptr); 1264 1265 memset(ptr, 0, size); 1266 mod->mem[type].base = ptr; 1267 1268 return 0; 1269 } 1270 1271 static void module_memory_restore_rox(struct module *mod) 1272 { 1273 for_class_mod_mem_type(type, text) { 1274 struct module_memory *mem = &mod->mem[type]; 1275 1276 if (mem->is_rox) 1277 execmem_restore_rox(mem->base, mem->size); 1278 } 1279 } 1280 1281 static void module_memory_free(struct module *mod, enum mod_mem_type type) 1282 { 1283 struct module_memory *mem = &mod->mem[type]; 1284 1285 execmem_free(mem->base); 1286 } 1287 1288 static void free_mod_mem(struct module *mod) 1289 { 1290 for_each_mod_mem_type(type) { 1291 struct module_memory *mod_mem = &mod->mem[type]; 1292 1293 if (type == MOD_DATA) 1294 continue; 1295 1296 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1297 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1298 if (mod_mem->size) 1299 module_memory_free(mod, type); 1300 } 1301 1302 /* MOD_DATA hosts mod, so free it at last */ 1303 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1304 module_memory_free(mod, MOD_DATA); 1305 } 1306 1307 /* Free a module, remove from lists, etc. */ 1308 static void free_module(struct module *mod) 1309 { 1310 trace_module_free(mod); 1311 1312 codetag_unload_module(mod); 1313 1314 mod_sysfs_teardown(mod); 1315 1316 /* 1317 * We leave it in list to prevent duplicate loads, but make sure 1318 * that noone uses it while it's being deconstructed. 1319 */ 1320 mutex_lock(&module_mutex); 1321 mod->state = MODULE_STATE_UNFORMED; 1322 mutex_unlock(&module_mutex); 1323 1324 /* Arch-specific cleanup. */ 1325 module_arch_cleanup(mod); 1326 1327 /* Module unload stuff */ 1328 module_unload_free(mod); 1329 1330 /* Free any allocated parameters. */ 1331 destroy_params(mod->kp, mod->num_kp); 1332 1333 if (is_livepatch_module(mod)) 1334 free_module_elf(mod); 1335 1336 /* Now we can delete it from the lists */ 1337 mutex_lock(&module_mutex); 1338 /* Unlink carefully: kallsyms could be walking list. */ 1339 list_del_rcu(&mod->list); 1340 mod_tree_remove(mod); 1341 /* Remove this module from bug list, this uses list_del_rcu */ 1342 module_bug_cleanup(mod); 1343 /* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */ 1344 synchronize_rcu(); 1345 if (try_add_tainted_module(mod)) 1346 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1347 mod->name); 1348 mutex_unlock(&module_mutex); 1349 1350 /* This may be empty, but that's OK */ 1351 module_arch_freeing_init(mod); 1352 kfree(mod->args); 1353 percpu_modfree(mod); 1354 1355 free_mod_mem(mod); 1356 } 1357 1358 void *__symbol_get(const char *symbol) 1359 { 1360 struct find_symbol_arg fsa = { 1361 .name = symbol, 1362 .gplok = true, 1363 .warn = true, 1364 }; 1365 1366 preempt_disable(); 1367 if (!find_symbol(&fsa)) 1368 goto fail; 1369 if (fsa.license != GPL_ONLY) { 1370 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n", 1371 symbol); 1372 goto fail; 1373 } 1374 if (strong_try_module_get(fsa.owner)) 1375 goto fail; 1376 preempt_enable(); 1377 return (void *)kernel_symbol_value(fsa.sym); 1378 fail: 1379 preempt_enable(); 1380 return NULL; 1381 } 1382 EXPORT_SYMBOL_GPL(__symbol_get); 1383 1384 /* 1385 * Ensure that an exported symbol [global namespace] does not already exist 1386 * in the kernel or in some other module's exported symbol table. 1387 * 1388 * You must hold the module_mutex. 1389 */ 1390 static int verify_exported_symbols(struct module *mod) 1391 { 1392 unsigned int i; 1393 const struct kernel_symbol *s; 1394 struct { 1395 const struct kernel_symbol *sym; 1396 unsigned int num; 1397 } arr[] = { 1398 { mod->syms, mod->num_syms }, 1399 { mod->gpl_syms, mod->num_gpl_syms }, 1400 }; 1401 1402 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1403 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1404 struct find_symbol_arg fsa = { 1405 .name = kernel_symbol_name(s), 1406 .gplok = true, 1407 }; 1408 if (find_symbol(&fsa)) { 1409 pr_err("%s: exports duplicate symbol %s" 1410 " (owned by %s)\n", 1411 mod->name, kernel_symbol_name(s), 1412 module_name(fsa.owner)); 1413 return -ENOEXEC; 1414 } 1415 } 1416 } 1417 return 0; 1418 } 1419 1420 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1421 { 1422 /* 1423 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1424 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1425 * i386 has a similar problem but may not deserve a fix. 1426 * 1427 * If we ever have to ignore many symbols, consider refactoring the code to 1428 * only warn if referenced by a relocation. 1429 */ 1430 if (emachine == EM_386 || emachine == EM_X86_64) 1431 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1432 return false; 1433 } 1434 1435 /* Change all symbols so that st_value encodes the pointer directly. */ 1436 static int simplify_symbols(struct module *mod, const struct load_info *info) 1437 { 1438 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1439 Elf_Sym *sym = (void *)symsec->sh_addr; 1440 unsigned long secbase; 1441 unsigned int i; 1442 int ret = 0; 1443 const struct kernel_symbol *ksym; 1444 1445 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1446 const char *name = info->strtab + sym[i].st_name; 1447 1448 switch (sym[i].st_shndx) { 1449 case SHN_COMMON: 1450 /* Ignore common symbols */ 1451 if (!strncmp(name, "__gnu_lto", 9)) 1452 break; 1453 1454 /* 1455 * We compiled with -fno-common. These are not 1456 * supposed to happen. 1457 */ 1458 pr_debug("Common symbol: %s\n", name); 1459 pr_warn("%s: please compile with -fno-common\n", 1460 mod->name); 1461 ret = -ENOEXEC; 1462 break; 1463 1464 case SHN_ABS: 1465 /* Don't need to do anything */ 1466 pr_debug("Absolute symbol: 0x%08lx %s\n", 1467 (long)sym[i].st_value, name); 1468 break; 1469 1470 case SHN_LIVEPATCH: 1471 /* Livepatch symbols are resolved by livepatch */ 1472 break; 1473 1474 case SHN_UNDEF: 1475 ksym = resolve_symbol_wait(mod, info, name); 1476 /* Ok if resolved. */ 1477 if (ksym && !IS_ERR(ksym)) { 1478 sym[i].st_value = kernel_symbol_value(ksym); 1479 break; 1480 } 1481 1482 /* Ok if weak or ignored. */ 1483 if (!ksym && 1484 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1485 ignore_undef_symbol(info->hdr->e_machine, name))) 1486 break; 1487 1488 ret = PTR_ERR(ksym) ?: -ENOENT; 1489 pr_warn("%s: Unknown symbol %s (err %d)\n", 1490 mod->name, name, ret); 1491 break; 1492 1493 default: 1494 /* Divert to percpu allocation if a percpu var. */ 1495 if (sym[i].st_shndx == info->index.pcpu) 1496 secbase = (unsigned long)mod_percpu(mod); 1497 else 1498 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1499 sym[i].st_value += secbase; 1500 break; 1501 } 1502 } 1503 1504 return ret; 1505 } 1506 1507 static int apply_relocations(struct module *mod, const struct load_info *info) 1508 { 1509 unsigned int i; 1510 int err = 0; 1511 1512 /* Now do relocations. */ 1513 for (i = 1; i < info->hdr->e_shnum; i++) { 1514 unsigned int infosec = info->sechdrs[i].sh_info; 1515 1516 /* Not a valid relocation section? */ 1517 if (infosec >= info->hdr->e_shnum) 1518 continue; 1519 1520 /* Don't bother with non-allocated sections */ 1521 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1522 continue; 1523 1524 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1525 err = klp_apply_section_relocs(mod, info->sechdrs, 1526 info->secstrings, 1527 info->strtab, 1528 info->index.sym, i, 1529 NULL); 1530 else if (info->sechdrs[i].sh_type == SHT_REL) 1531 err = apply_relocate(info->sechdrs, info->strtab, 1532 info->index.sym, i, mod); 1533 else if (info->sechdrs[i].sh_type == SHT_RELA) 1534 err = apply_relocate_add(info->sechdrs, info->strtab, 1535 info->index.sym, i, mod); 1536 if (err < 0) 1537 break; 1538 } 1539 return err; 1540 } 1541 1542 /* Additional bytes needed by arch in front of individual sections */ 1543 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1544 unsigned int section) 1545 { 1546 /* default implementation just returns zero */ 1547 return 0; 1548 } 1549 1550 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1551 Elf_Shdr *sechdr, unsigned int section) 1552 { 1553 long offset; 1554 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1555 1556 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1557 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1558 mod->mem[type].size = offset + sechdr->sh_size; 1559 1560 WARN_ON_ONCE(offset & mask); 1561 return offset | mask; 1562 } 1563 1564 bool module_init_layout_section(const char *sname) 1565 { 1566 #ifndef CONFIG_MODULE_UNLOAD 1567 if (module_exit_section(sname)) 1568 return true; 1569 #endif 1570 return module_init_section(sname); 1571 } 1572 1573 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1574 { 1575 unsigned int m, i; 1576 1577 static const unsigned long masks[][2] = { 1578 /* 1579 * NOTE: all executable code must be the first section 1580 * in this array; otherwise modify the text_size 1581 * finder in the two loops below 1582 */ 1583 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1584 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1585 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1586 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1587 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1588 }; 1589 static const int core_m_to_mem_type[] = { 1590 MOD_TEXT, 1591 MOD_RODATA, 1592 MOD_RO_AFTER_INIT, 1593 MOD_DATA, 1594 MOD_DATA, 1595 }; 1596 static const int init_m_to_mem_type[] = { 1597 MOD_INIT_TEXT, 1598 MOD_INIT_RODATA, 1599 MOD_INVALID, 1600 MOD_INIT_DATA, 1601 MOD_INIT_DATA, 1602 }; 1603 1604 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1605 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1606 1607 for (i = 0; i < info->hdr->e_shnum; ++i) { 1608 Elf_Shdr *s = &info->sechdrs[i]; 1609 const char *sname = info->secstrings + s->sh_name; 1610 1611 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1612 || (s->sh_flags & masks[m][1]) 1613 || s->sh_entsize != ~0UL 1614 || is_init != module_init_layout_section(sname)) 1615 continue; 1616 1617 if (WARN_ON_ONCE(type == MOD_INVALID)) 1618 continue; 1619 1620 /* 1621 * Do not allocate codetag memory as we load it into 1622 * preallocated contiguous memory. 1623 */ 1624 if (codetag_needs_module_section(mod, sname, s->sh_size)) { 1625 /* 1626 * s->sh_entsize won't be used but populate the 1627 * type field to avoid confusion. 1628 */ 1629 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) 1630 << SH_ENTSIZE_TYPE_SHIFT; 1631 continue; 1632 } 1633 1634 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1635 pr_debug("\t%s\n", sname); 1636 } 1637 } 1638 } 1639 1640 /* 1641 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1642 * might -- code, read-only data, read-write data, small data. Tally 1643 * sizes, and place the offsets into sh_entsize fields: high bit means it 1644 * belongs in init. 1645 */ 1646 static void layout_sections(struct module *mod, struct load_info *info) 1647 { 1648 unsigned int i; 1649 1650 for (i = 0; i < info->hdr->e_shnum; i++) 1651 info->sechdrs[i].sh_entsize = ~0UL; 1652 1653 pr_debug("Core section allocation order for %s:\n", mod->name); 1654 __layout_sections(mod, info, false); 1655 1656 pr_debug("Init section allocation order for %s:\n", mod->name); 1657 __layout_sections(mod, info, true); 1658 } 1659 1660 static void module_license_taint_check(struct module *mod, const char *license) 1661 { 1662 if (!license) 1663 license = "unspecified"; 1664 1665 if (!license_is_gpl_compatible(license)) { 1666 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1667 pr_warn("%s: module license '%s' taints kernel.\n", 1668 mod->name, license); 1669 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1670 LOCKDEP_NOW_UNRELIABLE); 1671 } 1672 } 1673 1674 static void setup_modinfo(struct module *mod, struct load_info *info) 1675 { 1676 const struct module_attribute *attr; 1677 int i; 1678 1679 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1680 if (attr->setup) 1681 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1682 } 1683 } 1684 1685 static void free_modinfo(struct module *mod) 1686 { 1687 const struct module_attribute *attr; 1688 int i; 1689 1690 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1691 if (attr->free) 1692 attr->free(mod); 1693 } 1694 } 1695 1696 bool __weak module_init_section(const char *name) 1697 { 1698 return strstarts(name, ".init"); 1699 } 1700 1701 bool __weak module_exit_section(const char *name) 1702 { 1703 return strstarts(name, ".exit"); 1704 } 1705 1706 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr) 1707 { 1708 #if defined(CONFIG_64BIT) 1709 unsigned long long secend; 1710 #else 1711 unsigned long secend; 1712 #endif 1713 1714 /* 1715 * Check for both overflow and offset/size being 1716 * too large. 1717 */ 1718 secend = shdr->sh_offset + shdr->sh_size; 1719 if (secend < shdr->sh_offset || secend > info->len) 1720 return -ENOEXEC; 1721 1722 return 0; 1723 } 1724 1725 /** 1726 * elf_validity_ehdr() - Checks an ELF header for module validity 1727 * @info: Load info containing the ELF header to check 1728 * 1729 * Checks whether an ELF header could belong to a valid module. Checks: 1730 * 1731 * * ELF header is within the data the user provided 1732 * * ELF magic is present 1733 * * It is relocatable (not final linked, not core file, etc.) 1734 * * The header's machine type matches what the architecture expects. 1735 * * Optional arch-specific hook for other properties 1736 * - module_elf_check_arch() is currently only used by PPC to check 1737 * ELF ABI version, but may be used by others in the future. 1738 * 1739 * Return: %0 if valid, %-ENOEXEC on failure. 1740 */ 1741 static int elf_validity_ehdr(const struct load_info *info) 1742 { 1743 if (info->len < sizeof(*(info->hdr))) { 1744 pr_err("Invalid ELF header len %lu\n", info->len); 1745 return -ENOEXEC; 1746 } 1747 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1748 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1749 return -ENOEXEC; 1750 } 1751 if (info->hdr->e_type != ET_REL) { 1752 pr_err("Invalid ELF header type: %u != %u\n", 1753 info->hdr->e_type, ET_REL); 1754 return -ENOEXEC; 1755 } 1756 if (!elf_check_arch(info->hdr)) { 1757 pr_err("Invalid architecture in ELF header: %u\n", 1758 info->hdr->e_machine); 1759 return -ENOEXEC; 1760 } 1761 if (!module_elf_check_arch(info->hdr)) { 1762 pr_err("Invalid module architecture in ELF header: %u\n", 1763 info->hdr->e_machine); 1764 return -ENOEXEC; 1765 } 1766 return 0; 1767 } 1768 1769 /** 1770 * elf_validity_cache_sechdrs() - Cache section headers if valid 1771 * @info: Load info to compute section headers from 1772 * 1773 * Checks: 1774 * 1775 * * ELF header is valid (see elf_validity_ehdr()) 1776 * * Section headers are the size we expect 1777 * * Section array fits in the user provided data 1778 * * Section index 0 is NULL 1779 * * Section contents are inbounds 1780 * 1781 * Then updates @info with a &load_info->sechdrs pointer if valid. 1782 * 1783 * Return: %0 if valid, negative error code if validation failed. 1784 */ 1785 static int elf_validity_cache_sechdrs(struct load_info *info) 1786 { 1787 Elf_Shdr *sechdrs; 1788 Elf_Shdr *shdr; 1789 int i; 1790 int err; 1791 1792 err = elf_validity_ehdr(info); 1793 if (err < 0) 1794 return err; 1795 1796 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1797 pr_err("Invalid ELF section header size\n"); 1798 return -ENOEXEC; 1799 } 1800 1801 /* 1802 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1803 * known and small. So e_shnum * sizeof(Elf_Shdr) 1804 * will not overflow unsigned long on any platform. 1805 */ 1806 if (info->hdr->e_shoff >= info->len 1807 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1808 info->len - info->hdr->e_shoff)) { 1809 pr_err("Invalid ELF section header overflow\n"); 1810 return -ENOEXEC; 1811 } 1812 1813 sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1814 1815 /* 1816 * The code assumes that section 0 has a length of zero and 1817 * an addr of zero, so check for it. 1818 */ 1819 if (sechdrs[0].sh_type != SHT_NULL 1820 || sechdrs[0].sh_size != 0 1821 || sechdrs[0].sh_addr != 0) { 1822 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1823 sechdrs[0].sh_type); 1824 return -ENOEXEC; 1825 } 1826 1827 /* Validate contents are inbounds */ 1828 for (i = 1; i < info->hdr->e_shnum; i++) { 1829 shdr = &sechdrs[i]; 1830 switch (shdr->sh_type) { 1831 case SHT_NULL: 1832 case SHT_NOBITS: 1833 /* No contents, offset/size don't mean anything */ 1834 continue; 1835 default: 1836 err = validate_section_offset(info, shdr); 1837 if (err < 0) { 1838 pr_err("Invalid ELF section in module (section %u type %u)\n", 1839 i, shdr->sh_type); 1840 return err; 1841 } 1842 } 1843 } 1844 1845 info->sechdrs = sechdrs; 1846 1847 return 0; 1848 } 1849 1850 /** 1851 * elf_validity_cache_secstrings() - Caches section names if valid 1852 * @info: Load info to cache section names from. Must have valid sechdrs. 1853 * 1854 * Specifically checks: 1855 * 1856 * * Section name table index is inbounds of section headers 1857 * * Section name table is not empty 1858 * * Section name table is NUL terminated 1859 * * All section name offsets are inbounds of the section 1860 * 1861 * Then updates @info with a &load_info->secstrings pointer if valid. 1862 * 1863 * Return: %0 if valid, negative error code if validation failed. 1864 */ 1865 static int elf_validity_cache_secstrings(struct load_info *info) 1866 { 1867 Elf_Shdr *strhdr, *shdr; 1868 char *secstrings; 1869 int i; 1870 1871 /* 1872 * Verify if the section name table index is valid. 1873 */ 1874 if (info->hdr->e_shstrndx == SHN_UNDEF 1875 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1876 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1877 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1878 info->hdr->e_shnum); 1879 return -ENOEXEC; 1880 } 1881 1882 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1883 1884 /* 1885 * The section name table must be NUL-terminated, as required 1886 * by the spec. This makes strcmp and pr_* calls that access 1887 * strings in the section safe. 1888 */ 1889 secstrings = (void *)info->hdr + strhdr->sh_offset; 1890 if (strhdr->sh_size == 0) { 1891 pr_err("empty section name table\n"); 1892 return -ENOEXEC; 1893 } 1894 if (secstrings[strhdr->sh_size - 1] != '\0') { 1895 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1896 return -ENOEXEC; 1897 } 1898 1899 for (i = 0; i < info->hdr->e_shnum; i++) { 1900 shdr = &info->sechdrs[i]; 1901 /* SHT_NULL means sh_name has an undefined value */ 1902 if (shdr->sh_type == SHT_NULL) 1903 continue; 1904 if (shdr->sh_name >= strhdr->sh_size) { 1905 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1906 i, shdr->sh_type); 1907 return -ENOEXEC; 1908 } 1909 } 1910 1911 info->secstrings = secstrings; 1912 return 0; 1913 } 1914 1915 /** 1916 * elf_validity_cache_index_info() - Validate and cache modinfo section 1917 * @info: Load info to populate the modinfo index on. 1918 * Must have &load_info->sechdrs and &load_info->secstrings populated 1919 * 1920 * Checks that if there is a .modinfo section, it is unique. 1921 * Then, it caches its index in &load_info->index.info. 1922 * Finally, it tries to populate the name to improve error messages. 1923 * 1924 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found. 1925 */ 1926 static int elf_validity_cache_index_info(struct load_info *info) 1927 { 1928 int info_idx; 1929 1930 info_idx = find_any_unique_sec(info, ".modinfo"); 1931 1932 if (info_idx == 0) 1933 /* Early return, no .modinfo */ 1934 return 0; 1935 1936 if (info_idx < 0) { 1937 pr_err("Only one .modinfo section must exist.\n"); 1938 return -ENOEXEC; 1939 } 1940 1941 info->index.info = info_idx; 1942 /* Try to find a name early so we can log errors with a module name */ 1943 info->name = get_modinfo(info, "name"); 1944 1945 return 0; 1946 } 1947 1948 /** 1949 * elf_validity_cache_index_mod() - Validates and caches this_module section 1950 * @info: Load info to cache this_module on. 1951 * Must have &load_info->sechdrs and &load_info->secstrings populated 1952 * 1953 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost 1954 * uses to refer to __this_module and let's use rely on THIS_MODULE to point 1955 * to &__this_module properly. The kernel's modpost declares it on each 1956 * modules's *.mod.c file. If the struct module of the kernel changes a full 1957 * kernel rebuild is required. 1958 * 1959 * We have a few expectations for this special section, this function 1960 * validates all this for us: 1961 * 1962 * * The section has contents 1963 * * The section is unique 1964 * * We expect the kernel to always have to allocate it: SHF_ALLOC 1965 * * The section size must match the kernel's run time's struct module 1966 * size 1967 * 1968 * If all checks pass, the index will be cached in &load_info->index.mod 1969 * 1970 * Return: %0 on validation success, %-ENOEXEC on failure 1971 */ 1972 static int elf_validity_cache_index_mod(struct load_info *info) 1973 { 1974 Elf_Shdr *shdr; 1975 int mod_idx; 1976 1977 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module"); 1978 if (mod_idx <= 0) { 1979 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n", 1980 info->name ?: "(missing .modinfo section or name field)"); 1981 return -ENOEXEC; 1982 } 1983 1984 shdr = &info->sechdrs[mod_idx]; 1985 1986 if (shdr->sh_type == SHT_NOBITS) { 1987 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 1988 info->name ?: "(missing .modinfo section or name field)"); 1989 return -ENOEXEC; 1990 } 1991 1992 if (!(shdr->sh_flags & SHF_ALLOC)) { 1993 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 1994 info->name ?: "(missing .modinfo section or name field)"); 1995 return -ENOEXEC; 1996 } 1997 1998 if (shdr->sh_size != sizeof(struct module)) { 1999 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 2000 info->name ?: "(missing .modinfo section or name field)"); 2001 return -ENOEXEC; 2002 } 2003 2004 info->index.mod = mod_idx; 2005 2006 return 0; 2007 } 2008 2009 /** 2010 * elf_validity_cache_index_sym() - Validate and cache symtab index 2011 * @info: Load info to cache symtab index in. 2012 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2013 * 2014 * Checks that there is exactly one symbol table, then caches its index in 2015 * &load_info->index.sym. 2016 * 2017 * Return: %0 if valid, %-ENOEXEC on failure. 2018 */ 2019 static int elf_validity_cache_index_sym(struct load_info *info) 2020 { 2021 unsigned int sym_idx; 2022 unsigned int num_sym_secs = 0; 2023 int i; 2024 2025 for (i = 1; i < info->hdr->e_shnum; i++) { 2026 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 2027 num_sym_secs++; 2028 sym_idx = i; 2029 } 2030 } 2031 2032 if (num_sym_secs != 1) { 2033 pr_warn("%s: module has no symbols (stripped?)\n", 2034 info->name ?: "(missing .modinfo section or name field)"); 2035 return -ENOEXEC; 2036 } 2037 2038 info->index.sym = sym_idx; 2039 2040 return 0; 2041 } 2042 2043 /** 2044 * elf_validity_cache_index_str() - Validate and cache strtab index 2045 * @info: Load info to cache strtab index in. 2046 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2047 * Must have &load_info->index.sym populated. 2048 * 2049 * Looks at the symbol table's associated string table, makes sure it is 2050 * in-bounds, and caches it. 2051 * 2052 * Return: %0 if valid, %-ENOEXEC on failure. 2053 */ 2054 static int elf_validity_cache_index_str(struct load_info *info) 2055 { 2056 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link; 2057 2058 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) { 2059 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 2060 str_idx, str_idx, info->hdr->e_shnum); 2061 return -ENOEXEC; 2062 } 2063 2064 info->index.str = str_idx; 2065 return 0; 2066 } 2067 2068 /** 2069 * elf_validity_cache_index_versions() - Validate and cache version indices 2070 * @info: Load info to cache version indices in. 2071 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2072 * @flags: Load flags, relevant to suppress version loading, see 2073 * uapi/linux/module.h 2074 * 2075 * If we're ignoring modversions based on @flags, zero all version indices 2076 * and return validity. Othewrise check: 2077 * 2078 * * If "__version_ext_crcs" is present, "__version_ext_names" is present 2079 * * There is a name present for every crc 2080 * 2081 * Then populate: 2082 * 2083 * * &load_info->index.vers 2084 * * &load_info->index.vers_ext_crc 2085 * * &load_info->index.vers_ext_names 2086 * 2087 * if present. 2088 * 2089 * Return: %0 if valid, %-ENOEXEC on failure. 2090 */ 2091 static int elf_validity_cache_index_versions(struct load_info *info, int flags) 2092 { 2093 unsigned int vers_ext_crc; 2094 unsigned int vers_ext_name; 2095 size_t crc_count; 2096 size_t remaining_len; 2097 size_t name_size; 2098 char *name; 2099 2100 /* If modversions were suppressed, pretend we didn't find any */ 2101 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) { 2102 info->index.vers = 0; 2103 info->index.vers_ext_crc = 0; 2104 info->index.vers_ext_name = 0; 2105 return 0; 2106 } 2107 2108 vers_ext_crc = find_sec(info, "__version_ext_crcs"); 2109 vers_ext_name = find_sec(info, "__version_ext_names"); 2110 2111 /* If we have one field, we must have the other */ 2112 if (!!vers_ext_crc != !!vers_ext_name) { 2113 pr_err("extended version crc+name presence does not match"); 2114 return -ENOEXEC; 2115 } 2116 2117 /* 2118 * If we have extended version information, we should have the same 2119 * number of entries in every section. 2120 */ 2121 if (vers_ext_crc) { 2122 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32); 2123 name = (void *)info->hdr + 2124 info->sechdrs[vers_ext_name].sh_offset; 2125 remaining_len = info->sechdrs[vers_ext_name].sh_size; 2126 2127 while (crc_count--) { 2128 name_size = strnlen(name, remaining_len) + 1; 2129 if (name_size > remaining_len) { 2130 pr_err("more extended version crcs than names"); 2131 return -ENOEXEC; 2132 } 2133 remaining_len -= name_size; 2134 name += name_size; 2135 } 2136 } 2137 2138 info->index.vers = find_sec(info, "__versions"); 2139 info->index.vers_ext_crc = vers_ext_crc; 2140 info->index.vers_ext_name = vers_ext_name; 2141 return 0; 2142 } 2143 2144 /** 2145 * elf_validity_cache_index() - Resolve, validate, cache section indices 2146 * @info: Load info to read from and update. 2147 * &load_info->sechdrs and &load_info->secstrings must be populated. 2148 * @flags: Load flags, relevant to suppress version loading, see 2149 * uapi/linux/module.h 2150 * 2151 * Populates &load_info->index, validating as it goes. 2152 * See child functions for per-field validation: 2153 * 2154 * * elf_validity_cache_index_info() 2155 * * elf_validity_cache_index_mod() 2156 * * elf_validity_cache_index_sym() 2157 * * elf_validity_cache_index_str() 2158 * * elf_validity_cache_index_versions() 2159 * 2160 * If CONFIG_SMP is enabled, load the percpu section by name with no 2161 * validation. 2162 * 2163 * Return: 0 on success, negative error code if an index failed validation. 2164 */ 2165 static int elf_validity_cache_index(struct load_info *info, int flags) 2166 { 2167 int err; 2168 2169 err = elf_validity_cache_index_info(info); 2170 if (err < 0) 2171 return err; 2172 err = elf_validity_cache_index_mod(info); 2173 if (err < 0) 2174 return err; 2175 err = elf_validity_cache_index_sym(info); 2176 if (err < 0) 2177 return err; 2178 err = elf_validity_cache_index_str(info); 2179 if (err < 0) 2180 return err; 2181 err = elf_validity_cache_index_versions(info, flags); 2182 if (err < 0) 2183 return err; 2184 2185 info->index.pcpu = find_pcpusec(info); 2186 2187 return 0; 2188 } 2189 2190 /** 2191 * elf_validity_cache_strtab() - Validate and cache symbol string table 2192 * @info: Load info to read from and update. 2193 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2194 * Must have &load_info->index populated. 2195 * 2196 * Checks: 2197 * 2198 * * The string table is not empty. 2199 * * The string table starts and ends with NUL (required by ELF spec). 2200 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the 2201 * string table. 2202 * 2203 * And caches the pointer as &load_info->strtab in @info. 2204 * 2205 * Return: 0 on success, negative error code if a check failed. 2206 */ 2207 static int elf_validity_cache_strtab(struct load_info *info) 2208 { 2209 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str]; 2210 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym]; 2211 char *strtab = (char *)info->hdr + str_shdr->sh_offset; 2212 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset; 2213 int i; 2214 2215 if (str_shdr->sh_size == 0) { 2216 pr_err("empty symbol string table\n"); 2217 return -ENOEXEC; 2218 } 2219 if (strtab[0] != '\0') { 2220 pr_err("symbol string table missing leading NUL\n"); 2221 return -ENOEXEC; 2222 } 2223 if (strtab[str_shdr->sh_size - 1] != '\0') { 2224 pr_err("symbol string table isn't NUL terminated\n"); 2225 return -ENOEXEC; 2226 } 2227 2228 /* 2229 * Now that we know strtab is correctly structured, check symbol 2230 * starts are inbounds before they're used later. 2231 */ 2232 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) { 2233 if (syms[i].st_name >= str_shdr->sh_size) { 2234 pr_err("symbol name out of bounds in string table"); 2235 return -ENOEXEC; 2236 } 2237 } 2238 2239 info->strtab = strtab; 2240 return 0; 2241 } 2242 2243 /* 2244 * Check userspace passed ELF module against our expectations, and cache 2245 * useful variables for further processing as we go. 2246 * 2247 * This does basic validity checks against section offsets and sizes, the 2248 * section name string table, and the indices used for it (sh_name). 2249 * 2250 * As a last step, since we're already checking the ELF sections we cache 2251 * useful variables which will be used later for our convenience: 2252 * 2253 * o pointers to section headers 2254 * o cache the modinfo symbol section 2255 * o cache the string symbol section 2256 * o cache the module section 2257 * 2258 * As a last step we set info->mod to the temporary copy of the module in 2259 * info->hdr. The final one will be allocated in move_module(). Any 2260 * modifications we make to our copy of the module will be carried over 2261 * to the final minted module. 2262 */ 2263 static int elf_validity_cache_copy(struct load_info *info, int flags) 2264 { 2265 int err; 2266 2267 err = elf_validity_cache_sechdrs(info); 2268 if (err < 0) 2269 return err; 2270 err = elf_validity_cache_secstrings(info); 2271 if (err < 0) 2272 return err; 2273 err = elf_validity_cache_index(info, flags); 2274 if (err < 0) 2275 return err; 2276 err = elf_validity_cache_strtab(info); 2277 if (err < 0) 2278 return err; 2279 2280 /* This is temporary: point mod into copy of data. */ 2281 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 2282 2283 /* 2284 * If we didn't load the .modinfo 'name' field earlier, fall back to 2285 * on-disk struct mod 'name' field. 2286 */ 2287 if (!info->name) 2288 info->name = info->mod->name; 2289 2290 return 0; 2291 } 2292 2293 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 2294 2295 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 2296 { 2297 do { 2298 unsigned long n = min(len, COPY_CHUNK_SIZE); 2299 2300 if (copy_from_user(dst, usrc, n) != 0) 2301 return -EFAULT; 2302 cond_resched(); 2303 dst += n; 2304 usrc += n; 2305 len -= n; 2306 } while (len); 2307 return 0; 2308 } 2309 2310 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 2311 { 2312 if (!get_modinfo(info, "livepatch")) 2313 /* Nothing more to do */ 2314 return 0; 2315 2316 if (set_livepatch_module(mod)) 2317 return 0; 2318 2319 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 2320 mod->name); 2321 return -ENOEXEC; 2322 } 2323 2324 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 2325 { 2326 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 2327 return; 2328 2329 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 2330 mod->name); 2331 } 2332 2333 /* Sets info->hdr and info->len. */ 2334 static int copy_module_from_user(const void __user *umod, unsigned long len, 2335 struct load_info *info) 2336 { 2337 int err; 2338 2339 info->len = len; 2340 if (info->len < sizeof(*(info->hdr))) 2341 return -ENOEXEC; 2342 2343 err = security_kernel_load_data(LOADING_MODULE, true); 2344 if (err) 2345 return err; 2346 2347 /* Suck in entire file: we'll want most of it. */ 2348 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 2349 if (!info->hdr) 2350 return -ENOMEM; 2351 2352 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 2353 err = -EFAULT; 2354 goto out; 2355 } 2356 2357 err = security_kernel_post_load_data((char *)info->hdr, info->len, 2358 LOADING_MODULE, "init_module"); 2359 out: 2360 if (err) 2361 vfree(info->hdr); 2362 2363 return err; 2364 } 2365 2366 static void free_copy(struct load_info *info, int flags) 2367 { 2368 if (flags & MODULE_INIT_COMPRESSED_FILE) 2369 module_decompress_cleanup(info); 2370 else 2371 vfree(info->hdr); 2372 } 2373 2374 static int rewrite_section_headers(struct load_info *info, int flags) 2375 { 2376 unsigned int i; 2377 2378 /* This should always be true, but let's be sure. */ 2379 info->sechdrs[0].sh_addr = 0; 2380 2381 for (i = 1; i < info->hdr->e_shnum; i++) { 2382 Elf_Shdr *shdr = &info->sechdrs[i]; 2383 2384 /* 2385 * Mark all sections sh_addr with their address in the 2386 * temporary image. 2387 */ 2388 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 2389 2390 } 2391 2392 /* Track but don't keep modinfo and version sections. */ 2393 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 2394 info->sechdrs[info->index.vers_ext_crc].sh_flags &= 2395 ~(unsigned long)SHF_ALLOC; 2396 info->sechdrs[info->index.vers_ext_name].sh_flags &= 2397 ~(unsigned long)SHF_ALLOC; 2398 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 2399 2400 return 0; 2401 } 2402 2403 static const char *const module_license_offenders[] = { 2404 /* driverloader was caught wrongly pretending to be under GPL */ 2405 "driverloader", 2406 2407 /* lve claims to be GPL but upstream won't provide source */ 2408 "lve", 2409 }; 2410 2411 /* 2412 * These calls taint the kernel depending certain module circumstances */ 2413 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2414 { 2415 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2416 size_t i; 2417 2418 if (!get_modinfo(info, "intree")) { 2419 if (!test_taint(TAINT_OOT_MODULE)) 2420 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2421 mod->name); 2422 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2423 } 2424 2425 check_modinfo_retpoline(mod, info); 2426 2427 if (get_modinfo(info, "staging")) { 2428 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2429 pr_warn("%s: module is from the staging directory, the quality " 2430 "is unknown, you have been warned.\n", mod->name); 2431 } 2432 2433 if (is_livepatch_module(mod)) { 2434 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2435 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2436 mod->name); 2437 } 2438 2439 module_license_taint_check(mod, get_modinfo(info, "license")); 2440 2441 if (get_modinfo(info, "test")) { 2442 if (!test_taint(TAINT_TEST)) 2443 pr_warn("%s: loading test module taints kernel.\n", 2444 mod->name); 2445 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2446 } 2447 #ifdef CONFIG_MODULE_SIG 2448 mod->sig_ok = info->sig_ok; 2449 if (!mod->sig_ok) { 2450 pr_notice_once("%s: module verification failed: signature " 2451 "and/or required key missing - tainting " 2452 "kernel\n", mod->name); 2453 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2454 } 2455 #endif 2456 2457 /* 2458 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2459 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2460 * using GPL-only symbols it needs. 2461 */ 2462 if (strcmp(mod->name, "ndiswrapper") == 0) 2463 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2464 2465 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) { 2466 if (strcmp(mod->name, module_license_offenders[i]) == 0) 2467 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2468 LOCKDEP_NOW_UNRELIABLE); 2469 } 2470 2471 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2472 pr_warn("%s: module license taints kernel.\n", mod->name); 2473 2474 } 2475 2476 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2477 { 2478 const char *modmagic = get_modinfo(info, "vermagic"); 2479 int err; 2480 2481 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2482 modmagic = NULL; 2483 2484 /* This is allowed: modprobe --force will invalidate it. */ 2485 if (!modmagic) { 2486 err = try_to_force_load(mod, "bad vermagic"); 2487 if (err) 2488 return err; 2489 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2490 pr_err("%s: version magic '%s' should be '%s'\n", 2491 info->name, modmagic, vermagic); 2492 return -ENOEXEC; 2493 } 2494 2495 err = check_modinfo_livepatch(mod, info); 2496 if (err) 2497 return err; 2498 2499 return 0; 2500 } 2501 2502 static int find_module_sections(struct module *mod, struct load_info *info) 2503 { 2504 mod->kp = section_objs(info, "__param", 2505 sizeof(*mod->kp), &mod->num_kp); 2506 mod->syms = section_objs(info, "__ksymtab", 2507 sizeof(*mod->syms), &mod->num_syms); 2508 mod->crcs = section_addr(info, "__kcrctab"); 2509 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2510 sizeof(*mod->gpl_syms), 2511 &mod->num_gpl_syms); 2512 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2513 2514 #ifdef CONFIG_CONSTRUCTORS 2515 mod->ctors = section_objs(info, ".ctors", 2516 sizeof(*mod->ctors), &mod->num_ctors); 2517 if (!mod->ctors) 2518 mod->ctors = section_objs(info, ".init_array", 2519 sizeof(*mod->ctors), &mod->num_ctors); 2520 else if (find_sec(info, ".init_array")) { 2521 /* 2522 * This shouldn't happen with same compiler and binutils 2523 * building all parts of the module. 2524 */ 2525 pr_warn("%s: has both .ctors and .init_array.\n", 2526 mod->name); 2527 return -EINVAL; 2528 } 2529 #endif 2530 2531 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2532 &mod->noinstr_text_size); 2533 2534 #ifdef CONFIG_TRACEPOINTS 2535 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2536 sizeof(*mod->tracepoints_ptrs), 2537 &mod->num_tracepoints); 2538 #endif 2539 #ifdef CONFIG_TREE_SRCU 2540 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2541 sizeof(*mod->srcu_struct_ptrs), 2542 &mod->num_srcu_structs); 2543 #endif 2544 #ifdef CONFIG_BPF_EVENTS 2545 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2546 sizeof(*mod->bpf_raw_events), 2547 &mod->num_bpf_raw_events); 2548 #endif 2549 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2550 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2551 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1, 2552 &mod->btf_base_data_size); 2553 #endif 2554 #ifdef CONFIG_JUMP_LABEL 2555 mod->jump_entries = section_objs(info, "__jump_table", 2556 sizeof(*mod->jump_entries), 2557 &mod->num_jump_entries); 2558 #endif 2559 #ifdef CONFIG_EVENT_TRACING 2560 mod->trace_events = section_objs(info, "_ftrace_events", 2561 sizeof(*mod->trace_events), 2562 &mod->num_trace_events); 2563 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2564 sizeof(*mod->trace_evals), 2565 &mod->num_trace_evals); 2566 #endif 2567 #ifdef CONFIG_TRACING 2568 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2569 sizeof(*mod->trace_bprintk_fmt_start), 2570 &mod->num_trace_bprintk_fmt); 2571 #endif 2572 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2573 /* sechdrs[0].sh_size is always zero */ 2574 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2575 sizeof(*mod->ftrace_callsites), 2576 &mod->num_ftrace_callsites); 2577 #endif 2578 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2579 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2580 sizeof(*mod->ei_funcs), 2581 &mod->num_ei_funcs); 2582 #endif 2583 #ifdef CONFIG_KPROBES 2584 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2585 &mod->kprobes_text_size); 2586 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2587 sizeof(unsigned long), 2588 &mod->num_kprobe_blacklist); 2589 #endif 2590 #ifdef CONFIG_PRINTK_INDEX 2591 mod->printk_index_start = section_objs(info, ".printk_index", 2592 sizeof(*mod->printk_index_start), 2593 &mod->printk_index_size); 2594 #endif 2595 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2596 mod->static_call_sites = section_objs(info, ".static_call_sites", 2597 sizeof(*mod->static_call_sites), 2598 &mod->num_static_call_sites); 2599 #endif 2600 #if IS_ENABLED(CONFIG_KUNIT) 2601 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2602 sizeof(*mod->kunit_suites), 2603 &mod->num_kunit_suites); 2604 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites", 2605 sizeof(*mod->kunit_init_suites), 2606 &mod->num_kunit_init_suites); 2607 #endif 2608 2609 mod->extable = section_objs(info, "__ex_table", 2610 sizeof(*mod->extable), &mod->num_exentries); 2611 2612 if (section_addr(info, "__obsparm")) 2613 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2614 2615 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2616 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2617 sizeof(*mod->dyndbg_info.descs), 2618 &mod->dyndbg_info.num_descs); 2619 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2620 sizeof(*mod->dyndbg_info.classes), 2621 &mod->dyndbg_info.num_classes); 2622 #endif 2623 2624 return 0; 2625 } 2626 2627 static int move_module(struct module *mod, struct load_info *info) 2628 { 2629 int i; 2630 enum mod_mem_type t = 0; 2631 int ret = -ENOMEM; 2632 bool codetag_section_found = false; 2633 2634 for_each_mod_mem_type(type) { 2635 if (!mod->mem[type].size) { 2636 mod->mem[type].base = NULL; 2637 continue; 2638 } 2639 2640 ret = module_memory_alloc(mod, type); 2641 if (ret) { 2642 t = type; 2643 goto out_err; 2644 } 2645 } 2646 2647 /* Transfer each section which specifies SHF_ALLOC */ 2648 pr_debug("Final section addresses for %s:\n", mod->name); 2649 for (i = 0; i < info->hdr->e_shnum; i++) { 2650 void *dest; 2651 Elf_Shdr *shdr = &info->sechdrs[i]; 2652 const char *sname; 2653 2654 if (!(shdr->sh_flags & SHF_ALLOC)) 2655 continue; 2656 2657 sname = info->secstrings + shdr->sh_name; 2658 /* 2659 * Load codetag sections separately as they might still be used 2660 * after module unload. 2661 */ 2662 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) { 2663 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size, 2664 arch_mod_section_prepend(mod, i), shdr->sh_addralign); 2665 if (WARN_ON(!dest)) { 2666 ret = -EINVAL; 2667 goto out_err; 2668 } 2669 if (IS_ERR(dest)) { 2670 ret = PTR_ERR(dest); 2671 goto out_err; 2672 } 2673 codetag_section_found = true; 2674 } else { 2675 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2676 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK; 2677 2678 dest = mod->mem[type].base + offset; 2679 } 2680 2681 if (shdr->sh_type != SHT_NOBITS) { 2682 /* 2683 * Our ELF checker already validated this, but let's 2684 * be pedantic and make the goal clearer. We actually 2685 * end up copying over all modifications made to the 2686 * userspace copy of the entire struct module. 2687 */ 2688 if (i == info->index.mod && 2689 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2690 ret = -ENOEXEC; 2691 goto out_err; 2692 } 2693 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2694 } 2695 /* 2696 * Update the userspace copy's ELF section address to point to 2697 * our newly allocated memory as a pure convenience so that 2698 * users of info can keep taking advantage and using the newly 2699 * minted official memory area. 2700 */ 2701 shdr->sh_addr = (unsigned long)dest; 2702 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2703 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2704 } 2705 2706 return 0; 2707 out_err: 2708 module_memory_restore_rox(mod); 2709 for (t--; t >= 0; t--) 2710 module_memory_free(mod, t); 2711 if (codetag_section_found) 2712 codetag_free_module_sections(mod); 2713 2714 return ret; 2715 } 2716 2717 static int check_export_symbol_versions(struct module *mod) 2718 { 2719 #ifdef CONFIG_MODVERSIONS 2720 if ((mod->num_syms && !mod->crcs) || 2721 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2722 return try_to_force_load(mod, 2723 "no versions for exported symbols"); 2724 } 2725 #endif 2726 return 0; 2727 } 2728 2729 static void flush_module_icache(const struct module *mod) 2730 { 2731 /* 2732 * Flush the instruction cache, since we've played with text. 2733 * Do it before processing of module parameters, so the module 2734 * can provide parameter accessor functions of its own. 2735 */ 2736 for_each_mod_mem_type(type) { 2737 const struct module_memory *mod_mem = &mod->mem[type]; 2738 2739 if (mod_mem->size) { 2740 flush_icache_range((unsigned long)mod_mem->base, 2741 (unsigned long)mod_mem->base + mod_mem->size); 2742 } 2743 } 2744 } 2745 2746 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2747 { 2748 return true; 2749 } 2750 2751 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2752 Elf_Shdr *sechdrs, 2753 char *secstrings, 2754 struct module *mod) 2755 { 2756 return 0; 2757 } 2758 2759 /* module_blacklist is a comma-separated list of module names */ 2760 static char *module_blacklist; 2761 static bool blacklisted(const char *module_name) 2762 { 2763 const char *p; 2764 size_t len; 2765 2766 if (!module_blacklist) 2767 return false; 2768 2769 for (p = module_blacklist; *p; p += len) { 2770 len = strcspn(p, ","); 2771 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2772 return true; 2773 if (p[len] == ',') 2774 len++; 2775 } 2776 return false; 2777 } 2778 core_param(module_blacklist, module_blacklist, charp, 0400); 2779 2780 static struct module *layout_and_allocate(struct load_info *info, int flags) 2781 { 2782 struct module *mod; 2783 unsigned int ndx; 2784 int err; 2785 2786 /* Allow arches to frob section contents and sizes. */ 2787 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2788 info->secstrings, info->mod); 2789 if (err < 0) 2790 return ERR_PTR(err); 2791 2792 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2793 info->secstrings, info->mod); 2794 if (err < 0) 2795 return ERR_PTR(err); 2796 2797 /* We will do a special allocation for per-cpu sections later. */ 2798 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2799 2800 /* 2801 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2802 * layout_sections() can put it in the right place. 2803 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2804 */ 2805 ndx = find_sec(info, ".data..ro_after_init"); 2806 if (ndx) 2807 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2808 /* 2809 * Mark the __jump_table section as ro_after_init as well: these data 2810 * structures are never modified, with the exception of entries that 2811 * refer to code in the __init section, which are annotated as such 2812 * at module load time. 2813 */ 2814 ndx = find_sec(info, "__jump_table"); 2815 if (ndx) 2816 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2817 2818 /* 2819 * Determine total sizes, and put offsets in sh_entsize. For now 2820 * this is done generically; there doesn't appear to be any 2821 * special cases for the architectures. 2822 */ 2823 layout_sections(info->mod, info); 2824 layout_symtab(info->mod, info); 2825 2826 /* Allocate and move to the final place */ 2827 err = move_module(info->mod, info); 2828 if (err) 2829 return ERR_PTR(err); 2830 2831 /* Module has been copied to its final place now: return it. */ 2832 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2833 kmemleak_load_module(mod, info); 2834 codetag_module_replaced(info->mod, mod); 2835 2836 return mod; 2837 } 2838 2839 /* mod is no longer valid after this! */ 2840 static void module_deallocate(struct module *mod, struct load_info *info) 2841 { 2842 percpu_modfree(mod); 2843 module_arch_freeing_init(mod); 2844 2845 free_mod_mem(mod); 2846 } 2847 2848 int __weak module_finalize(const Elf_Ehdr *hdr, 2849 const Elf_Shdr *sechdrs, 2850 struct module *me) 2851 { 2852 return 0; 2853 } 2854 2855 static int post_relocation(struct module *mod, const struct load_info *info) 2856 { 2857 /* Sort exception table now relocations are done. */ 2858 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2859 2860 /* Copy relocated percpu area over. */ 2861 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2862 info->sechdrs[info->index.pcpu].sh_size); 2863 2864 /* Setup kallsyms-specific fields. */ 2865 add_kallsyms(mod, info); 2866 2867 /* Arch-specific module finalizing. */ 2868 return module_finalize(info->hdr, info->sechdrs, mod); 2869 } 2870 2871 /* Call module constructors. */ 2872 static void do_mod_ctors(struct module *mod) 2873 { 2874 #ifdef CONFIG_CONSTRUCTORS 2875 unsigned long i; 2876 2877 for (i = 0; i < mod->num_ctors; i++) 2878 mod->ctors[i](); 2879 #endif 2880 } 2881 2882 /* For freeing module_init on success, in case kallsyms traversing */ 2883 struct mod_initfree { 2884 struct llist_node node; 2885 void *init_text; 2886 void *init_data; 2887 void *init_rodata; 2888 }; 2889 2890 static void do_free_init(struct work_struct *w) 2891 { 2892 struct llist_node *pos, *n, *list; 2893 struct mod_initfree *initfree; 2894 2895 list = llist_del_all(&init_free_list); 2896 2897 synchronize_rcu(); 2898 2899 llist_for_each_safe(pos, n, list) { 2900 initfree = container_of(pos, struct mod_initfree, node); 2901 execmem_free(initfree->init_text); 2902 execmem_free(initfree->init_data); 2903 execmem_free(initfree->init_rodata); 2904 kfree(initfree); 2905 } 2906 } 2907 2908 void flush_module_init_free_work(void) 2909 { 2910 flush_work(&init_free_wq); 2911 } 2912 2913 #undef MODULE_PARAM_PREFIX 2914 #define MODULE_PARAM_PREFIX "module." 2915 /* Default value for module->async_probe_requested */ 2916 static bool async_probe; 2917 module_param(async_probe, bool, 0644); 2918 2919 /* 2920 * This is where the real work happens. 2921 * 2922 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2923 * helper command 'lx-symbols'. 2924 */ 2925 static noinline int do_init_module(struct module *mod) 2926 { 2927 int ret = 0; 2928 struct mod_initfree *freeinit; 2929 #if defined(CONFIG_MODULE_STATS) 2930 unsigned int text_size = 0, total_size = 0; 2931 2932 for_each_mod_mem_type(type) { 2933 const struct module_memory *mod_mem = &mod->mem[type]; 2934 if (mod_mem->size) { 2935 total_size += mod_mem->size; 2936 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 2937 text_size += mod_mem->size; 2938 } 2939 } 2940 #endif 2941 2942 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2943 if (!freeinit) { 2944 ret = -ENOMEM; 2945 goto fail; 2946 } 2947 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 2948 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 2949 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 2950 2951 do_mod_ctors(mod); 2952 /* Start the module */ 2953 if (mod->init != NULL) 2954 ret = do_one_initcall(mod->init); 2955 if (ret < 0) { 2956 goto fail_free_freeinit; 2957 } 2958 if (ret > 0) { 2959 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2960 "follow 0/-E convention\n" 2961 "%s: loading module anyway...\n", 2962 __func__, mod->name, ret, __func__); 2963 dump_stack(); 2964 } 2965 2966 /* Now it's a first class citizen! */ 2967 mod->state = MODULE_STATE_LIVE; 2968 blocking_notifier_call_chain(&module_notify_list, 2969 MODULE_STATE_LIVE, mod); 2970 2971 /* Delay uevent until module has finished its init routine */ 2972 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2973 2974 /* 2975 * We need to finish all async code before the module init sequence 2976 * is done. This has potential to deadlock if synchronous module 2977 * loading is requested from async (which is not allowed!). 2978 * 2979 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 2980 * request_module() from async workers") for more details. 2981 */ 2982 if (!mod->async_probe_requested) 2983 async_synchronize_full(); 2984 2985 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 2986 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 2987 mutex_lock(&module_mutex); 2988 /* Drop initial reference. */ 2989 module_put(mod); 2990 trim_init_extable(mod); 2991 #ifdef CONFIG_KALLSYMS 2992 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 2993 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 2994 #endif 2995 ret = module_enable_rodata_ro_after_init(mod); 2996 if (ret) 2997 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, " 2998 "ro_after_init data might still be writable\n", 2999 mod->name, ret); 3000 3001 mod_tree_remove_init(mod); 3002 module_arch_freeing_init(mod); 3003 for_class_mod_mem_type(type, init) { 3004 mod->mem[type].base = NULL; 3005 mod->mem[type].size = 0; 3006 } 3007 3008 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 3009 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */ 3010 mod->btf_data = NULL; 3011 mod->btf_base_data = NULL; 3012 #endif 3013 /* 3014 * We want to free module_init, but be aware that kallsyms may be 3015 * walking this with preempt disabled. In all the failure paths, we 3016 * call synchronize_rcu(), but we don't want to slow down the success 3017 * path. execmem_free() cannot be called in an interrupt, so do the 3018 * work and call synchronize_rcu() in a work queue. 3019 * 3020 * Note that execmem_alloc() on most architectures creates W+X page 3021 * mappings which won't be cleaned up until do_free_init() runs. Any 3022 * code such as mark_rodata_ro() which depends on those mappings to 3023 * be cleaned up needs to sync with the queued work by invoking 3024 * flush_module_init_free_work(). 3025 */ 3026 if (llist_add(&freeinit->node, &init_free_list)) 3027 schedule_work(&init_free_wq); 3028 3029 mutex_unlock(&module_mutex); 3030 wake_up_all(&module_wq); 3031 3032 mod_stat_add_long(text_size, &total_text_size); 3033 mod_stat_add_long(total_size, &total_mod_size); 3034 3035 mod_stat_inc(&modcount); 3036 3037 return 0; 3038 3039 fail_free_freeinit: 3040 kfree(freeinit); 3041 fail: 3042 /* Try to protect us from buggy refcounters. */ 3043 mod->state = MODULE_STATE_GOING; 3044 synchronize_rcu(); 3045 module_put(mod); 3046 blocking_notifier_call_chain(&module_notify_list, 3047 MODULE_STATE_GOING, mod); 3048 klp_module_going(mod); 3049 ftrace_release_mod(mod); 3050 free_module(mod); 3051 wake_up_all(&module_wq); 3052 3053 return ret; 3054 } 3055 3056 static int may_init_module(void) 3057 { 3058 if (!capable(CAP_SYS_MODULE) || modules_disabled) 3059 return -EPERM; 3060 3061 return 0; 3062 } 3063 3064 /* Is this module of this name done loading? No locks held. */ 3065 static bool finished_loading(const char *name) 3066 { 3067 struct module *mod; 3068 bool ret; 3069 3070 /* 3071 * The module_mutex should not be a heavily contended lock; 3072 * if we get the occasional sleep here, we'll go an extra iteration 3073 * in the wait_event_interruptible(), which is harmless. 3074 */ 3075 sched_annotate_sleep(); 3076 mutex_lock(&module_mutex); 3077 mod = find_module_all(name, strlen(name), true); 3078 ret = !mod || mod->state == MODULE_STATE_LIVE 3079 || mod->state == MODULE_STATE_GOING; 3080 mutex_unlock(&module_mutex); 3081 3082 return ret; 3083 } 3084 3085 /* Must be called with module_mutex held */ 3086 static int module_patient_check_exists(const char *name, 3087 enum fail_dup_mod_reason reason) 3088 { 3089 struct module *old; 3090 int err = 0; 3091 3092 old = find_module_all(name, strlen(name), true); 3093 if (old == NULL) 3094 return 0; 3095 3096 if (old->state == MODULE_STATE_COMING || 3097 old->state == MODULE_STATE_UNFORMED) { 3098 /* Wait in case it fails to load. */ 3099 mutex_unlock(&module_mutex); 3100 err = wait_event_interruptible(module_wq, 3101 finished_loading(name)); 3102 mutex_lock(&module_mutex); 3103 if (err) 3104 return err; 3105 3106 /* The module might have gone in the meantime. */ 3107 old = find_module_all(name, strlen(name), true); 3108 } 3109 3110 if (try_add_failed_module(name, reason)) 3111 pr_warn("Could not add fail-tracking for module: %s\n", name); 3112 3113 /* 3114 * We are here only when the same module was being loaded. Do 3115 * not try to load it again right now. It prevents long delays 3116 * caused by serialized module load failures. It might happen 3117 * when more devices of the same type trigger load of 3118 * a particular module. 3119 */ 3120 if (old && old->state == MODULE_STATE_LIVE) 3121 return -EEXIST; 3122 return -EBUSY; 3123 } 3124 3125 /* 3126 * We try to place it in the list now to make sure it's unique before 3127 * we dedicate too many resources. In particular, temporary percpu 3128 * memory exhaustion. 3129 */ 3130 static int add_unformed_module(struct module *mod) 3131 { 3132 int err; 3133 3134 mod->state = MODULE_STATE_UNFORMED; 3135 3136 mutex_lock(&module_mutex); 3137 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 3138 if (err) 3139 goto out; 3140 3141 mod_update_bounds(mod); 3142 list_add_rcu(&mod->list, &modules); 3143 mod_tree_insert(mod); 3144 err = 0; 3145 3146 out: 3147 mutex_unlock(&module_mutex); 3148 return err; 3149 } 3150 3151 static int complete_formation(struct module *mod, struct load_info *info) 3152 { 3153 int err; 3154 3155 mutex_lock(&module_mutex); 3156 3157 /* Find duplicate symbols (must be called under lock). */ 3158 err = verify_exported_symbols(mod); 3159 if (err < 0) 3160 goto out; 3161 3162 /* These rely on module_mutex for list integrity. */ 3163 module_bug_finalize(info->hdr, info->sechdrs, mod); 3164 module_cfi_finalize(info->hdr, info->sechdrs, mod); 3165 3166 err = module_enable_rodata_ro(mod); 3167 if (err) 3168 goto out_strict_rwx; 3169 err = module_enable_data_nx(mod); 3170 if (err) 3171 goto out_strict_rwx; 3172 err = module_enable_text_rox(mod); 3173 if (err) 3174 goto out_strict_rwx; 3175 3176 /* 3177 * Mark state as coming so strong_try_module_get() ignores us, 3178 * but kallsyms etc. can see us. 3179 */ 3180 mod->state = MODULE_STATE_COMING; 3181 mutex_unlock(&module_mutex); 3182 3183 return 0; 3184 3185 out_strict_rwx: 3186 module_bug_cleanup(mod); 3187 out: 3188 mutex_unlock(&module_mutex); 3189 return err; 3190 } 3191 3192 static int prepare_coming_module(struct module *mod) 3193 { 3194 int err; 3195 3196 ftrace_module_enable(mod); 3197 err = klp_module_coming(mod); 3198 if (err) 3199 return err; 3200 3201 err = blocking_notifier_call_chain_robust(&module_notify_list, 3202 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 3203 err = notifier_to_errno(err); 3204 if (err) 3205 klp_module_going(mod); 3206 3207 return err; 3208 } 3209 3210 static int unknown_module_param_cb(char *param, char *val, const char *modname, 3211 void *arg) 3212 { 3213 struct module *mod = arg; 3214 int ret; 3215 3216 if (strcmp(param, "async_probe") == 0) { 3217 if (kstrtobool(val, &mod->async_probe_requested)) 3218 mod->async_probe_requested = true; 3219 return 0; 3220 } 3221 3222 /* Check for magic 'dyndbg' arg */ 3223 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 3224 if (ret != 0) 3225 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 3226 return 0; 3227 } 3228 3229 /* Module within temporary copy, this doesn't do any allocation */ 3230 static int early_mod_check(struct load_info *info, int flags) 3231 { 3232 int err; 3233 3234 /* 3235 * Now that we know we have the correct module name, check 3236 * if it's blacklisted. 3237 */ 3238 if (blacklisted(info->name)) { 3239 pr_err("Module %s is blacklisted\n", info->name); 3240 return -EPERM; 3241 } 3242 3243 err = rewrite_section_headers(info, flags); 3244 if (err) 3245 return err; 3246 3247 /* Check module struct version now, before we try to use module. */ 3248 if (!check_modstruct_version(info, info->mod)) 3249 return -ENOEXEC; 3250 3251 err = check_modinfo(info->mod, info, flags); 3252 if (err) 3253 return err; 3254 3255 mutex_lock(&module_mutex); 3256 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 3257 mutex_unlock(&module_mutex); 3258 3259 return err; 3260 } 3261 3262 /* 3263 * Allocate and load the module: note that size of section 0 is always 3264 * zero, and we rely on this for optional sections. 3265 */ 3266 static int load_module(struct load_info *info, const char __user *uargs, 3267 int flags) 3268 { 3269 struct module *mod; 3270 bool module_allocated = false; 3271 long err = 0; 3272 char *after_dashes; 3273 3274 /* 3275 * Do the signature check (if any) first. All that 3276 * the signature check needs is info->len, it does 3277 * not need any of the section info. That can be 3278 * set up later. This will minimize the chances 3279 * of a corrupt module causing problems before 3280 * we even get to the signature check. 3281 * 3282 * The check will also adjust info->len by stripping 3283 * off the sig length at the end of the module, making 3284 * checks against info->len more correct. 3285 */ 3286 err = module_sig_check(info, flags); 3287 if (err) 3288 goto free_copy; 3289 3290 /* 3291 * Do basic sanity checks against the ELF header and 3292 * sections. Cache useful sections and set the 3293 * info->mod to the userspace passed struct module. 3294 */ 3295 err = elf_validity_cache_copy(info, flags); 3296 if (err) 3297 goto free_copy; 3298 3299 err = early_mod_check(info, flags); 3300 if (err) 3301 goto free_copy; 3302 3303 /* Figure out module layout, and allocate all the memory. */ 3304 mod = layout_and_allocate(info, flags); 3305 if (IS_ERR(mod)) { 3306 err = PTR_ERR(mod); 3307 goto free_copy; 3308 } 3309 3310 module_allocated = true; 3311 3312 audit_log_kern_module(mod->name); 3313 3314 /* Reserve our place in the list. */ 3315 err = add_unformed_module(mod); 3316 if (err) 3317 goto free_module; 3318 3319 /* 3320 * We are tainting your kernel if your module gets into 3321 * the modules linked list somehow. 3322 */ 3323 module_augment_kernel_taints(mod, info); 3324 3325 /* To avoid stressing percpu allocator, do this once we're unique. */ 3326 err = percpu_modalloc(mod, info); 3327 if (err) 3328 goto unlink_mod; 3329 3330 /* Now module is in final location, initialize linked lists, etc. */ 3331 err = module_unload_init(mod); 3332 if (err) 3333 goto unlink_mod; 3334 3335 init_param_lock(mod); 3336 3337 /* 3338 * Now we've got everything in the final locations, we can 3339 * find optional sections. 3340 */ 3341 err = find_module_sections(mod, info); 3342 if (err) 3343 goto free_unload; 3344 3345 err = check_export_symbol_versions(mod); 3346 if (err) 3347 goto free_unload; 3348 3349 /* Set up MODINFO_ATTR fields */ 3350 setup_modinfo(mod, info); 3351 3352 /* Fix up syms, so that st_value is a pointer to location. */ 3353 err = simplify_symbols(mod, info); 3354 if (err < 0) 3355 goto free_modinfo; 3356 3357 err = apply_relocations(mod, info); 3358 if (err < 0) 3359 goto free_modinfo; 3360 3361 err = post_relocation(mod, info); 3362 if (err < 0) 3363 goto free_modinfo; 3364 3365 flush_module_icache(mod); 3366 3367 /* Now copy in args */ 3368 mod->args = strndup_user(uargs, ~0UL >> 1); 3369 if (IS_ERR(mod->args)) { 3370 err = PTR_ERR(mod->args); 3371 goto free_arch_cleanup; 3372 } 3373 3374 init_build_id(mod, info); 3375 3376 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 3377 ftrace_module_init(mod); 3378 3379 /* Finally it's fully formed, ready to start executing. */ 3380 err = complete_formation(mod, info); 3381 if (err) 3382 goto ddebug_cleanup; 3383 3384 err = prepare_coming_module(mod); 3385 if (err) 3386 goto bug_cleanup; 3387 3388 mod->async_probe_requested = async_probe; 3389 3390 /* Module is ready to execute: parsing args may do that. */ 3391 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 3392 -32768, 32767, mod, 3393 unknown_module_param_cb); 3394 if (IS_ERR(after_dashes)) { 3395 err = PTR_ERR(after_dashes); 3396 goto coming_cleanup; 3397 } else if (after_dashes) { 3398 pr_warn("%s: parameters '%s' after `--' ignored\n", 3399 mod->name, after_dashes); 3400 } 3401 3402 /* Link in to sysfs. */ 3403 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 3404 if (err < 0) 3405 goto coming_cleanup; 3406 3407 if (is_livepatch_module(mod)) { 3408 err = copy_module_elf(mod, info); 3409 if (err < 0) 3410 goto sysfs_cleanup; 3411 } 3412 3413 /* Get rid of temporary copy. */ 3414 free_copy(info, flags); 3415 3416 codetag_load_module(mod); 3417 3418 /* Done! */ 3419 trace_module_load(mod); 3420 3421 return do_init_module(mod); 3422 3423 sysfs_cleanup: 3424 mod_sysfs_teardown(mod); 3425 coming_cleanup: 3426 mod->state = MODULE_STATE_GOING; 3427 destroy_params(mod->kp, mod->num_kp); 3428 blocking_notifier_call_chain(&module_notify_list, 3429 MODULE_STATE_GOING, mod); 3430 klp_module_going(mod); 3431 bug_cleanup: 3432 mod->state = MODULE_STATE_GOING; 3433 /* module_bug_cleanup needs module_mutex protection */ 3434 mutex_lock(&module_mutex); 3435 module_bug_cleanup(mod); 3436 mutex_unlock(&module_mutex); 3437 3438 ddebug_cleanup: 3439 ftrace_release_mod(mod); 3440 synchronize_rcu(); 3441 kfree(mod->args); 3442 free_arch_cleanup: 3443 module_arch_cleanup(mod); 3444 free_modinfo: 3445 free_modinfo(mod); 3446 free_unload: 3447 module_unload_free(mod); 3448 unlink_mod: 3449 mutex_lock(&module_mutex); 3450 /* Unlink carefully: kallsyms could be walking list. */ 3451 list_del_rcu(&mod->list); 3452 mod_tree_remove(mod); 3453 wake_up_all(&module_wq); 3454 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3455 synchronize_rcu(); 3456 mutex_unlock(&module_mutex); 3457 free_module: 3458 mod_stat_bump_invalid(info, flags); 3459 /* Free lock-classes; relies on the preceding sync_rcu() */ 3460 for_class_mod_mem_type(type, core_data) { 3461 lockdep_free_key_range(mod->mem[type].base, 3462 mod->mem[type].size); 3463 } 3464 3465 module_memory_restore_rox(mod); 3466 module_deallocate(mod, info); 3467 free_copy: 3468 /* 3469 * The info->len is always set. We distinguish between 3470 * failures once the proper module was allocated and 3471 * before that. 3472 */ 3473 if (!module_allocated) 3474 mod_stat_bump_becoming(info, flags); 3475 free_copy(info, flags); 3476 return err; 3477 } 3478 3479 SYSCALL_DEFINE3(init_module, void __user *, umod, 3480 unsigned long, len, const char __user *, uargs) 3481 { 3482 int err; 3483 struct load_info info = { }; 3484 3485 err = may_init_module(); 3486 if (err) 3487 return err; 3488 3489 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3490 umod, len, uargs); 3491 3492 err = copy_module_from_user(umod, len, &info); 3493 if (err) { 3494 mod_stat_inc(&failed_kreads); 3495 mod_stat_add_long(len, &invalid_kread_bytes); 3496 return err; 3497 } 3498 3499 return load_module(&info, uargs, 0); 3500 } 3501 3502 struct idempotent { 3503 const void *cookie; 3504 struct hlist_node entry; 3505 struct completion complete; 3506 int ret; 3507 }; 3508 3509 #define IDEM_HASH_BITS 8 3510 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3511 static DEFINE_SPINLOCK(idem_lock); 3512 3513 static bool idempotent(struct idempotent *u, const void *cookie) 3514 { 3515 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3516 struct hlist_head *head = idem_hash + hash; 3517 struct idempotent *existing; 3518 bool first; 3519 3520 u->ret = -EINTR; 3521 u->cookie = cookie; 3522 init_completion(&u->complete); 3523 3524 spin_lock(&idem_lock); 3525 first = true; 3526 hlist_for_each_entry(existing, head, entry) { 3527 if (existing->cookie != cookie) 3528 continue; 3529 first = false; 3530 break; 3531 } 3532 hlist_add_head(&u->entry, idem_hash + hash); 3533 spin_unlock(&idem_lock); 3534 3535 return !first; 3536 } 3537 3538 /* 3539 * We were the first one with 'cookie' on the list, and we ended 3540 * up completing the operation. We now need to walk the list, 3541 * remove everybody - which includes ourselves - fill in the return 3542 * value, and then complete the operation. 3543 */ 3544 static int idempotent_complete(struct idempotent *u, int ret) 3545 { 3546 const void *cookie = u->cookie; 3547 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3548 struct hlist_head *head = idem_hash + hash; 3549 struct hlist_node *next; 3550 struct idempotent *pos; 3551 3552 spin_lock(&idem_lock); 3553 hlist_for_each_entry_safe(pos, next, head, entry) { 3554 if (pos->cookie != cookie) 3555 continue; 3556 hlist_del_init(&pos->entry); 3557 pos->ret = ret; 3558 complete(&pos->complete); 3559 } 3560 spin_unlock(&idem_lock); 3561 return ret; 3562 } 3563 3564 /* 3565 * Wait for the idempotent worker. 3566 * 3567 * If we get interrupted, we need to remove ourselves from the 3568 * the idempotent list, and the completion may still come in. 3569 * 3570 * The 'idem_lock' protects against the race, and 'idem.ret' was 3571 * initialized to -EINTR and is thus always the right return 3572 * value even if the idempotent work then completes between 3573 * the wait_for_completion and the cleanup. 3574 */ 3575 static int idempotent_wait_for_completion(struct idempotent *u) 3576 { 3577 if (wait_for_completion_interruptible(&u->complete)) { 3578 spin_lock(&idem_lock); 3579 if (!hlist_unhashed(&u->entry)) 3580 hlist_del(&u->entry); 3581 spin_unlock(&idem_lock); 3582 } 3583 return u->ret; 3584 } 3585 3586 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3587 { 3588 struct load_info info = { }; 3589 void *buf = NULL; 3590 int len; 3591 3592 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3593 if (len < 0) { 3594 mod_stat_inc(&failed_kreads); 3595 return len; 3596 } 3597 3598 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3599 int err = module_decompress(&info, buf, len); 3600 vfree(buf); /* compressed data is no longer needed */ 3601 if (err) { 3602 mod_stat_inc(&failed_decompress); 3603 mod_stat_add_long(len, &invalid_decompress_bytes); 3604 return err; 3605 } 3606 } else { 3607 info.hdr = buf; 3608 info.len = len; 3609 } 3610 3611 return load_module(&info, uargs, flags); 3612 } 3613 3614 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3615 { 3616 struct idempotent idem; 3617 3618 if (!(f->f_mode & FMODE_READ)) 3619 return -EBADF; 3620 3621 /* Are we the winners of the race and get to do this? */ 3622 if (!idempotent(&idem, file_inode(f))) { 3623 int ret = init_module_from_file(f, uargs, flags); 3624 return idempotent_complete(&idem, ret); 3625 } 3626 3627 /* 3628 * Somebody else won the race and is loading the module. 3629 */ 3630 return idempotent_wait_for_completion(&idem); 3631 } 3632 3633 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3634 { 3635 int err = may_init_module(); 3636 if (err) 3637 return err; 3638 3639 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3640 3641 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3642 |MODULE_INIT_IGNORE_VERMAGIC 3643 |MODULE_INIT_COMPRESSED_FILE)) 3644 return -EINVAL; 3645 3646 CLASS(fd, f)(fd); 3647 if (fd_empty(f)) 3648 return -EBADF; 3649 return idempotent_init_module(fd_file(f), uargs, flags); 3650 } 3651 3652 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3653 char *module_flags(struct module *mod, char *buf, bool show_state) 3654 { 3655 int bx = 0; 3656 3657 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3658 if (!mod->taints && !show_state) 3659 goto out; 3660 if (mod->taints || 3661 mod->state == MODULE_STATE_GOING || 3662 mod->state == MODULE_STATE_COMING) { 3663 buf[bx++] = '('; 3664 bx += module_flags_taint(mod->taints, buf + bx); 3665 /* Show a - for module-is-being-unloaded */ 3666 if (mod->state == MODULE_STATE_GOING && show_state) 3667 buf[bx++] = '-'; 3668 /* Show a + for module-is-being-loaded */ 3669 if (mod->state == MODULE_STATE_COMING && show_state) 3670 buf[bx++] = '+'; 3671 buf[bx++] = ')'; 3672 } 3673 out: 3674 buf[bx] = '\0'; 3675 3676 return buf; 3677 } 3678 3679 /* Given an address, look for it in the module exception tables. */ 3680 const struct exception_table_entry *search_module_extables(unsigned long addr) 3681 { 3682 const struct exception_table_entry *e = NULL; 3683 struct module *mod; 3684 3685 preempt_disable(); 3686 mod = __module_address(addr); 3687 if (!mod) 3688 goto out; 3689 3690 if (!mod->num_exentries) 3691 goto out; 3692 3693 e = search_extable(mod->extable, 3694 mod->num_exentries, 3695 addr); 3696 out: 3697 preempt_enable(); 3698 3699 /* 3700 * Now, if we found one, we are running inside it now, hence 3701 * we cannot unload the module, hence no refcnt needed. 3702 */ 3703 return e; 3704 } 3705 3706 /** 3707 * is_module_address() - is this address inside a module? 3708 * @addr: the address to check. 3709 * 3710 * See is_module_text_address() if you simply want to see if the address 3711 * is code (not data). 3712 */ 3713 bool is_module_address(unsigned long addr) 3714 { 3715 bool ret; 3716 3717 preempt_disable(); 3718 ret = __module_address(addr) != NULL; 3719 preempt_enable(); 3720 3721 return ret; 3722 } 3723 3724 /** 3725 * __module_address() - get the module which contains an address. 3726 * @addr: the address. 3727 * 3728 * Must be called with preempt disabled or module mutex held so that 3729 * module doesn't get freed during this. 3730 */ 3731 struct module *__module_address(unsigned long addr) 3732 { 3733 struct module *mod; 3734 3735 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3736 goto lookup; 3737 3738 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3739 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3740 goto lookup; 3741 #endif 3742 3743 return NULL; 3744 3745 lookup: 3746 module_assert_mutex_or_preempt(); 3747 3748 mod = mod_find(addr, &mod_tree); 3749 if (mod) { 3750 BUG_ON(!within_module(addr, mod)); 3751 if (mod->state == MODULE_STATE_UNFORMED) 3752 mod = NULL; 3753 } 3754 return mod; 3755 } 3756 3757 /** 3758 * is_module_text_address() - is this address inside module code? 3759 * @addr: the address to check. 3760 * 3761 * See is_module_address() if you simply want to see if the address is 3762 * anywhere in a module. See kernel_text_address() for testing if an 3763 * address corresponds to kernel or module code. 3764 */ 3765 bool is_module_text_address(unsigned long addr) 3766 { 3767 bool ret; 3768 3769 preempt_disable(); 3770 ret = __module_text_address(addr) != NULL; 3771 preempt_enable(); 3772 3773 return ret; 3774 } 3775 3776 /** 3777 * __module_text_address() - get the module whose code contains an address. 3778 * @addr: the address. 3779 * 3780 * Must be called with preempt disabled or module mutex held so that 3781 * module doesn't get freed during this. 3782 */ 3783 struct module *__module_text_address(unsigned long addr) 3784 { 3785 struct module *mod = __module_address(addr); 3786 if (mod) { 3787 /* Make sure it's within the text section. */ 3788 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3789 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3790 mod = NULL; 3791 } 3792 return mod; 3793 } 3794 3795 /* Don't grab lock, we're oopsing. */ 3796 void print_modules(void) 3797 { 3798 struct module *mod; 3799 char buf[MODULE_FLAGS_BUF_SIZE]; 3800 3801 printk(KERN_DEFAULT "Modules linked in:"); 3802 /* Most callers should already have preempt disabled, but make sure */ 3803 preempt_disable(); 3804 list_for_each_entry_rcu(mod, &modules, list) { 3805 if (mod->state == MODULE_STATE_UNFORMED) 3806 continue; 3807 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3808 } 3809 3810 print_unloaded_tainted_modules(); 3811 preempt_enable(); 3812 if (last_unloaded_module.name[0]) 3813 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3814 last_unloaded_module.taints); 3815 pr_cont("\n"); 3816 } 3817 3818 #ifdef CONFIG_MODULE_DEBUGFS 3819 struct dentry *mod_debugfs_root; 3820 3821 static int module_debugfs_init(void) 3822 { 3823 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3824 return 0; 3825 } 3826 module_init(module_debugfs_init); 3827 #endif 3828