xref: /linux-6.15/kernel/module/main.c (revision 2ff49f89)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <[email protected]>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 /*
69  * Mutex protects:
70  * 1) List of modules (also safely readable within RCU read section),
71  * 2) module_use links,
72  * 3) mod_tree.addr_min/mod_tree.addr_max.
73  * (delete and add uses RCU list operations).
74  */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77 
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82 
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 
87 struct symsearch {
88 	const struct kernel_symbol *start, *stop;
89 	const u32 *crcs;
90 	enum mod_license license;
91 };
92 
93 /*
94  * Bounds of module memory, for speeding up __module_address.
95  * Protected by module_mutex.
96  */
97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 				unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 	if (mod_mem_type_is_core_data(type)) {
105 		if (min < tree->data_addr_min)
106 			tree->data_addr_min = min;
107 		if (max > tree->data_addr_max)
108 			tree->data_addr_max = max;
109 		return;
110 	}
111 #endif
112 	if (min < tree->addr_min)
113 		tree->addr_min = min;
114 	if (max > tree->addr_max)
115 		tree->addr_max = max;
116 }
117 
118 static void mod_update_bounds(struct module *mod)
119 {
120 	for_each_mod_mem_type(type) {
121 		struct module_memory *mod_mem = &mod->mem[type];
122 
123 		if (mod_mem->size)
124 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 	}
126 }
127 
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131 
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134 
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136 
137 int register_module_notifier(struct notifier_block *nb)
138 {
139 	return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142 
143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148 
149 /*
150  * We require a truly strong try_module_get(): 0 means success.
151  * Otherwise an error is returned due to ongoing or failed
152  * initialization etc.
153  */
154 static inline int strong_try_module_get(struct module *mod)
155 {
156 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 	if (mod && mod->state == MODULE_STATE_COMING)
158 		return -EBUSY;
159 	if (try_module_get(mod))
160 		return 0;
161 	else
162 		return -ENOENT;
163 }
164 
165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 				    enum lockdep_ok lockdep_ok)
167 {
168 	add_taint(flag, lockdep_ok);
169 	set_bit(flag, &mod->taints);
170 }
171 
172 /*
173  * A thread that wants to hold a reference to a module only while it
174  * is running can call this to safely exit.
175  */
176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
177 {
178 	module_put(mod);
179 	kthread_exit(code);
180 }
181 EXPORT_SYMBOL(__module_put_and_kthread_exit);
182 
183 /* Find a module section: 0 means not found. */
184 static unsigned int find_sec(const struct load_info *info, const char *name)
185 {
186 	unsigned int i;
187 
188 	for (i = 1; i < info->hdr->e_shnum; i++) {
189 		Elf_Shdr *shdr = &info->sechdrs[i];
190 		/* Alloc bit cleared means "ignore it." */
191 		if ((shdr->sh_flags & SHF_ALLOC)
192 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
193 			return i;
194 	}
195 	return 0;
196 }
197 
198 /**
199  * find_any_unique_sec() - Find a unique section index by name
200  * @info: Load info for the module to scan
201  * @name: Name of the section we're looking for
202  *
203  * Locates a unique section by name. Ignores SHF_ALLOC.
204  *
205  * Return: Section index if found uniquely, zero if absent, negative count
206  *         of total instances if multiple were found.
207  */
208 static int find_any_unique_sec(const struct load_info *info, const char *name)
209 {
210 	unsigned int idx;
211 	unsigned int count = 0;
212 	int i;
213 
214 	for (i = 1; i < info->hdr->e_shnum; i++) {
215 		if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
216 			   name) == 0) {
217 			count++;
218 			idx = i;
219 		}
220 	}
221 	if (count == 1) {
222 		return idx;
223 	} else if (count == 0) {
224 		return 0;
225 	} else {
226 		return -count;
227 	}
228 }
229 
230 /* Find a module section, or NULL. */
231 static void *section_addr(const struct load_info *info, const char *name)
232 {
233 	/* Section 0 has sh_addr 0. */
234 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
235 }
236 
237 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
238 static void *section_objs(const struct load_info *info,
239 			  const char *name,
240 			  size_t object_size,
241 			  unsigned int *num)
242 {
243 	unsigned int sec = find_sec(info, name);
244 
245 	/* Section 0 has sh_addr 0 and sh_size 0. */
246 	*num = info->sechdrs[sec].sh_size / object_size;
247 	return (void *)info->sechdrs[sec].sh_addr;
248 }
249 
250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
251 static unsigned int find_any_sec(const struct load_info *info, const char *name)
252 {
253 	unsigned int i;
254 
255 	for (i = 1; i < info->hdr->e_shnum; i++) {
256 		Elf_Shdr *shdr = &info->sechdrs[i];
257 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
258 			return i;
259 	}
260 	return 0;
261 }
262 
263 /*
264  * Find a module section, or NULL. Fill in number of "objects" in section.
265  * Ignores SHF_ALLOC flag.
266  */
267 static __maybe_unused void *any_section_objs(const struct load_info *info,
268 					     const char *name,
269 					     size_t object_size,
270 					     unsigned int *num)
271 {
272 	unsigned int sec = find_any_sec(info, name);
273 
274 	/* Section 0 has sh_addr 0 and sh_size 0. */
275 	*num = info->sechdrs[sec].sh_size / object_size;
276 	return (void *)info->sechdrs[sec].sh_addr;
277 }
278 
279 #ifndef CONFIG_MODVERSIONS
280 #define symversion(base, idx) NULL
281 #else
282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
283 #endif
284 
285 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
286 {
287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
288 	return offset_to_ptr(&sym->name_offset);
289 #else
290 	return sym->name;
291 #endif
292 }
293 
294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
295 {
296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
297 	if (!sym->namespace_offset)
298 		return NULL;
299 	return offset_to_ptr(&sym->namespace_offset);
300 #else
301 	return sym->namespace;
302 #endif
303 }
304 
305 int cmp_name(const void *name, const void *sym)
306 {
307 	return strcmp(name, kernel_symbol_name(sym));
308 }
309 
310 static bool find_exported_symbol_in_section(const struct symsearch *syms,
311 					    struct module *owner,
312 					    struct find_symbol_arg *fsa)
313 {
314 	struct kernel_symbol *sym;
315 
316 	if (!fsa->gplok && syms->license == GPL_ONLY)
317 		return false;
318 
319 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
320 			sizeof(struct kernel_symbol), cmp_name);
321 	if (!sym)
322 		return false;
323 
324 	fsa->owner = owner;
325 	fsa->crc = symversion(syms->crcs, sym - syms->start);
326 	fsa->sym = sym;
327 	fsa->license = syms->license;
328 
329 	return true;
330 }
331 
332 /*
333  * Find an exported symbol and return it, along with, (optional) crc and
334  * (optional) module which owns it. Needs RCU or module_mutex.
335  */
336 bool find_symbol(struct find_symbol_arg *fsa)
337 {
338 	static const struct symsearch arr[] = {
339 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
340 		  NOT_GPL_ONLY },
341 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
342 		  __start___kcrctab_gpl,
343 		  GPL_ONLY },
344 	};
345 	struct module *mod;
346 	unsigned int i;
347 
348 	for (i = 0; i < ARRAY_SIZE(arr); i++)
349 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
350 			return true;
351 
352 	list_for_each_entry_rcu(mod, &modules, list,
353 				lockdep_is_held(&module_mutex)) {
354 		struct symsearch arr[] = {
355 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
356 			  NOT_GPL_ONLY },
357 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
358 			  mod->gpl_crcs,
359 			  GPL_ONLY },
360 		};
361 
362 		if (mod->state == MODULE_STATE_UNFORMED)
363 			continue;
364 
365 		for (i = 0; i < ARRAY_SIZE(arr); i++)
366 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
367 				return true;
368 	}
369 
370 	pr_debug("Failed to find symbol %s\n", fsa->name);
371 	return false;
372 }
373 
374 /*
375  * Search for module by name: must hold module_mutex (or RCU for read-only
376  * access).
377  */
378 struct module *find_module_all(const char *name, size_t len,
379 			       bool even_unformed)
380 {
381 	struct module *mod;
382 
383 	list_for_each_entry_rcu(mod, &modules, list,
384 				lockdep_is_held(&module_mutex)) {
385 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
386 			continue;
387 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
388 			return mod;
389 	}
390 	return NULL;
391 }
392 
393 struct module *find_module(const char *name)
394 {
395 	return find_module_all(name, strlen(name), false);
396 }
397 
398 #ifdef CONFIG_SMP
399 
400 static inline void __percpu *mod_percpu(struct module *mod)
401 {
402 	return mod->percpu;
403 }
404 
405 static int percpu_modalloc(struct module *mod, struct load_info *info)
406 {
407 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
408 	unsigned long align = pcpusec->sh_addralign;
409 
410 	if (!pcpusec->sh_size)
411 		return 0;
412 
413 	if (align > PAGE_SIZE) {
414 		pr_warn("%s: per-cpu alignment %li > %li\n",
415 			mod->name, align, PAGE_SIZE);
416 		align = PAGE_SIZE;
417 	}
418 
419 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
420 	if (!mod->percpu) {
421 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
422 			mod->name, (unsigned long)pcpusec->sh_size);
423 		return -ENOMEM;
424 	}
425 	mod->percpu_size = pcpusec->sh_size;
426 	return 0;
427 }
428 
429 static void percpu_modfree(struct module *mod)
430 {
431 	free_percpu(mod->percpu);
432 }
433 
434 static unsigned int find_pcpusec(struct load_info *info)
435 {
436 	return find_sec(info, ".data..percpu");
437 }
438 
439 static void percpu_modcopy(struct module *mod,
440 			   const void *from, unsigned long size)
441 {
442 	int cpu;
443 
444 	for_each_possible_cpu(cpu)
445 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
446 }
447 
448 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
449 {
450 	struct module *mod;
451 	unsigned int cpu;
452 
453 	preempt_disable();
454 
455 	list_for_each_entry_rcu(mod, &modules, list) {
456 		if (mod->state == MODULE_STATE_UNFORMED)
457 			continue;
458 		if (!mod->percpu_size)
459 			continue;
460 		for_each_possible_cpu(cpu) {
461 			void *start = per_cpu_ptr(mod->percpu, cpu);
462 			void *va = (void *)addr;
463 
464 			if (va >= start && va < start + mod->percpu_size) {
465 				if (can_addr) {
466 					*can_addr = (unsigned long) (va - start);
467 					*can_addr += (unsigned long)
468 						per_cpu_ptr(mod->percpu,
469 							    get_boot_cpu_id());
470 				}
471 				preempt_enable();
472 				return true;
473 			}
474 		}
475 	}
476 
477 	preempt_enable();
478 	return false;
479 }
480 
481 /**
482  * is_module_percpu_address() - test whether address is from module static percpu
483  * @addr: address to test
484  *
485  * Test whether @addr belongs to module static percpu area.
486  *
487  * Return: %true if @addr is from module static percpu area
488  */
489 bool is_module_percpu_address(unsigned long addr)
490 {
491 	return __is_module_percpu_address(addr, NULL);
492 }
493 
494 #else /* ... !CONFIG_SMP */
495 
496 static inline void __percpu *mod_percpu(struct module *mod)
497 {
498 	return NULL;
499 }
500 static int percpu_modalloc(struct module *mod, struct load_info *info)
501 {
502 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
503 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
504 		return -ENOMEM;
505 	return 0;
506 }
507 static inline void percpu_modfree(struct module *mod)
508 {
509 }
510 static unsigned int find_pcpusec(struct load_info *info)
511 {
512 	return 0;
513 }
514 static inline void percpu_modcopy(struct module *mod,
515 				  const void *from, unsigned long size)
516 {
517 	/* pcpusec should be 0, and size of that section should be 0. */
518 	BUG_ON(size != 0);
519 }
520 bool is_module_percpu_address(unsigned long addr)
521 {
522 	return false;
523 }
524 
525 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
526 {
527 	return false;
528 }
529 
530 #endif /* CONFIG_SMP */
531 
532 #define MODINFO_ATTR(field)	\
533 static void setup_modinfo_##field(struct module *mod, const char *s)  \
534 {                                                                     \
535 	mod->field = kstrdup(s, GFP_KERNEL);                          \
536 }                                                                     \
537 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
538 			struct module_kobject *mk, char *buffer)      \
539 {                                                                     \
540 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
541 }                                                                     \
542 static int modinfo_##field##_exists(struct module *mod)               \
543 {                                                                     \
544 	return mod->field != NULL;                                    \
545 }                                                                     \
546 static void free_modinfo_##field(struct module *mod)                  \
547 {                                                                     \
548 	kfree(mod->field);                                            \
549 	mod->field = NULL;                                            \
550 }                                                                     \
551 static const struct module_attribute modinfo_##field = {              \
552 	.attr = { .name = __stringify(field), .mode = 0444 },         \
553 	.show = show_modinfo_##field,                                 \
554 	.setup = setup_modinfo_##field,                               \
555 	.test = modinfo_##field##_exists,                             \
556 	.free = free_modinfo_##field,                                 \
557 };
558 
559 MODINFO_ATTR(version);
560 MODINFO_ATTR(srcversion);
561 
562 static struct {
563 	char name[MODULE_NAME_LEN + 1];
564 	char taints[MODULE_FLAGS_BUF_SIZE];
565 } last_unloaded_module;
566 
567 #ifdef CONFIG_MODULE_UNLOAD
568 
569 EXPORT_TRACEPOINT_SYMBOL(module_get);
570 
571 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
572 #define MODULE_REF_BASE	1
573 
574 /* Init the unload section of the module. */
575 static int module_unload_init(struct module *mod)
576 {
577 	/*
578 	 * Initialize reference counter to MODULE_REF_BASE.
579 	 * refcnt == 0 means module is going.
580 	 */
581 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
582 
583 	INIT_LIST_HEAD(&mod->source_list);
584 	INIT_LIST_HEAD(&mod->target_list);
585 
586 	/* Hold reference count during initialization. */
587 	atomic_inc(&mod->refcnt);
588 
589 	return 0;
590 }
591 
592 /* Does a already use b? */
593 static int already_uses(struct module *a, struct module *b)
594 {
595 	struct module_use *use;
596 
597 	list_for_each_entry(use, &b->source_list, source_list) {
598 		if (use->source == a)
599 			return 1;
600 	}
601 	pr_debug("%s does not use %s!\n", a->name, b->name);
602 	return 0;
603 }
604 
605 /*
606  * Module a uses b
607  *  - we add 'a' as a "source", 'b' as a "target" of module use
608  *  - the module_use is added to the list of 'b' sources (so
609  *    'b' can walk the list to see who sourced them), and of 'a'
610  *    targets (so 'a' can see what modules it targets).
611  */
612 static int add_module_usage(struct module *a, struct module *b)
613 {
614 	struct module_use *use;
615 
616 	pr_debug("Allocating new usage for %s.\n", a->name);
617 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
618 	if (!use)
619 		return -ENOMEM;
620 
621 	use->source = a;
622 	use->target = b;
623 	list_add(&use->source_list, &b->source_list);
624 	list_add(&use->target_list, &a->target_list);
625 	return 0;
626 }
627 
628 /* Module a uses b: caller needs module_mutex() */
629 static int ref_module(struct module *a, struct module *b)
630 {
631 	int err;
632 
633 	if (b == NULL || already_uses(a, b))
634 		return 0;
635 
636 	/* If module isn't available, we fail. */
637 	err = strong_try_module_get(b);
638 	if (err)
639 		return err;
640 
641 	err = add_module_usage(a, b);
642 	if (err) {
643 		module_put(b);
644 		return err;
645 	}
646 	return 0;
647 }
648 
649 /* Clear the unload stuff of the module. */
650 static void module_unload_free(struct module *mod)
651 {
652 	struct module_use *use, *tmp;
653 
654 	mutex_lock(&module_mutex);
655 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
656 		struct module *i = use->target;
657 		pr_debug("%s unusing %s\n", mod->name, i->name);
658 		module_put(i);
659 		list_del(&use->source_list);
660 		list_del(&use->target_list);
661 		kfree(use);
662 	}
663 	mutex_unlock(&module_mutex);
664 }
665 
666 #ifdef CONFIG_MODULE_FORCE_UNLOAD
667 static inline int try_force_unload(unsigned int flags)
668 {
669 	int ret = (flags & O_TRUNC);
670 	if (ret)
671 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
672 	return ret;
673 }
674 #else
675 static inline int try_force_unload(unsigned int flags)
676 {
677 	return 0;
678 }
679 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
680 
681 /* Try to release refcount of module, 0 means success. */
682 static int try_release_module_ref(struct module *mod)
683 {
684 	int ret;
685 
686 	/* Try to decrement refcnt which we set at loading */
687 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
688 	BUG_ON(ret < 0);
689 	if (ret)
690 		/* Someone can put this right now, recover with checking */
691 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
692 
693 	return ret;
694 }
695 
696 static int try_stop_module(struct module *mod, int flags, int *forced)
697 {
698 	/* If it's not unused, quit unless we're forcing. */
699 	if (try_release_module_ref(mod) != 0) {
700 		*forced = try_force_unload(flags);
701 		if (!(*forced))
702 			return -EWOULDBLOCK;
703 	}
704 
705 	/* Mark it as dying. */
706 	mod->state = MODULE_STATE_GOING;
707 
708 	return 0;
709 }
710 
711 /**
712  * module_refcount() - return the refcount or -1 if unloading
713  * @mod:	the module we're checking
714  *
715  * Return:
716  *	-1 if the module is in the process of unloading
717  *	otherwise the number of references in the kernel to the module
718  */
719 int module_refcount(struct module *mod)
720 {
721 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
722 }
723 EXPORT_SYMBOL(module_refcount);
724 
725 /* This exists whether we can unload or not */
726 static void free_module(struct module *mod);
727 
728 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
729 		unsigned int, flags)
730 {
731 	struct module *mod;
732 	char name[MODULE_NAME_LEN];
733 	char buf[MODULE_FLAGS_BUF_SIZE];
734 	int ret, forced = 0;
735 
736 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
737 		return -EPERM;
738 
739 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
740 		return -EFAULT;
741 	name[MODULE_NAME_LEN-1] = '\0';
742 
743 	audit_log_kern_module(name);
744 
745 	if (mutex_lock_interruptible(&module_mutex) != 0)
746 		return -EINTR;
747 
748 	mod = find_module(name);
749 	if (!mod) {
750 		ret = -ENOENT;
751 		goto out;
752 	}
753 
754 	if (!list_empty(&mod->source_list)) {
755 		/* Other modules depend on us: get rid of them first. */
756 		ret = -EWOULDBLOCK;
757 		goto out;
758 	}
759 
760 	/* Doing init or already dying? */
761 	if (mod->state != MODULE_STATE_LIVE) {
762 		/* FIXME: if (force), slam module count damn the torpedoes */
763 		pr_debug("%s already dying\n", mod->name);
764 		ret = -EBUSY;
765 		goto out;
766 	}
767 
768 	/* If it has an init func, it must have an exit func to unload */
769 	if (mod->init && !mod->exit) {
770 		forced = try_force_unload(flags);
771 		if (!forced) {
772 			/* This module can't be removed */
773 			ret = -EBUSY;
774 			goto out;
775 		}
776 	}
777 
778 	ret = try_stop_module(mod, flags, &forced);
779 	if (ret != 0)
780 		goto out;
781 
782 	mutex_unlock(&module_mutex);
783 	/* Final destruction now no one is using it. */
784 	if (mod->exit != NULL)
785 		mod->exit();
786 	blocking_notifier_call_chain(&module_notify_list,
787 				     MODULE_STATE_GOING, mod);
788 	klp_module_going(mod);
789 	ftrace_release_mod(mod);
790 
791 	async_synchronize_full();
792 
793 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
794 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
795 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
796 
797 	free_module(mod);
798 	/* someone could wait for the module in add_unformed_module() */
799 	wake_up_all(&module_wq);
800 	return 0;
801 out:
802 	mutex_unlock(&module_mutex);
803 	return ret;
804 }
805 
806 void __symbol_put(const char *symbol)
807 {
808 	struct find_symbol_arg fsa = {
809 		.name	= symbol,
810 		.gplok	= true,
811 	};
812 
813 	guard(rcu)();
814 	BUG_ON(!find_symbol(&fsa));
815 	module_put(fsa.owner);
816 }
817 EXPORT_SYMBOL(__symbol_put);
818 
819 /* Note this assumes addr is a function, which it currently always is. */
820 void symbol_put_addr(void *addr)
821 {
822 	struct module *modaddr;
823 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
824 
825 	if (core_kernel_text(a))
826 		return;
827 
828 	/*
829 	 * Even though we hold a reference on the module; we still need to
830 	 * disable preemption in order to safely traverse the data structure.
831 	 */
832 	preempt_disable();
833 	modaddr = __module_text_address(a);
834 	BUG_ON(!modaddr);
835 	module_put(modaddr);
836 	preempt_enable();
837 }
838 EXPORT_SYMBOL_GPL(symbol_put_addr);
839 
840 static ssize_t show_refcnt(const struct module_attribute *mattr,
841 			   struct module_kobject *mk, char *buffer)
842 {
843 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
844 }
845 
846 static const struct module_attribute modinfo_refcnt =
847 	__ATTR(refcnt, 0444, show_refcnt, NULL);
848 
849 void __module_get(struct module *module)
850 {
851 	if (module) {
852 		atomic_inc(&module->refcnt);
853 		trace_module_get(module, _RET_IP_);
854 	}
855 }
856 EXPORT_SYMBOL(__module_get);
857 
858 bool try_module_get(struct module *module)
859 {
860 	bool ret = true;
861 
862 	if (module) {
863 		/* Note: here, we can fail to get a reference */
864 		if (likely(module_is_live(module) &&
865 			   atomic_inc_not_zero(&module->refcnt) != 0))
866 			trace_module_get(module, _RET_IP_);
867 		else
868 			ret = false;
869 	}
870 	return ret;
871 }
872 EXPORT_SYMBOL(try_module_get);
873 
874 void module_put(struct module *module)
875 {
876 	int ret;
877 
878 	if (module) {
879 		ret = atomic_dec_if_positive(&module->refcnt);
880 		WARN_ON(ret < 0);	/* Failed to put refcount */
881 		trace_module_put(module, _RET_IP_);
882 	}
883 }
884 EXPORT_SYMBOL(module_put);
885 
886 #else /* !CONFIG_MODULE_UNLOAD */
887 static inline void module_unload_free(struct module *mod)
888 {
889 }
890 
891 static int ref_module(struct module *a, struct module *b)
892 {
893 	return strong_try_module_get(b);
894 }
895 
896 static inline int module_unload_init(struct module *mod)
897 {
898 	return 0;
899 }
900 #endif /* CONFIG_MODULE_UNLOAD */
901 
902 size_t module_flags_taint(unsigned long taints, char *buf)
903 {
904 	size_t l = 0;
905 	int i;
906 
907 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
908 		if (taint_flags[i].module && test_bit(i, &taints))
909 			buf[l++] = taint_flags[i].c_true;
910 	}
911 
912 	return l;
913 }
914 
915 static ssize_t show_initstate(const struct module_attribute *mattr,
916 			      struct module_kobject *mk, char *buffer)
917 {
918 	const char *state = "unknown";
919 
920 	switch (mk->mod->state) {
921 	case MODULE_STATE_LIVE:
922 		state = "live";
923 		break;
924 	case MODULE_STATE_COMING:
925 		state = "coming";
926 		break;
927 	case MODULE_STATE_GOING:
928 		state = "going";
929 		break;
930 	default:
931 		BUG();
932 	}
933 	return sprintf(buffer, "%s\n", state);
934 }
935 
936 static const struct module_attribute modinfo_initstate =
937 	__ATTR(initstate, 0444, show_initstate, NULL);
938 
939 static ssize_t store_uevent(const struct module_attribute *mattr,
940 			    struct module_kobject *mk,
941 			    const char *buffer, size_t count)
942 {
943 	int rc;
944 
945 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
946 	return rc ? rc : count;
947 }
948 
949 const struct module_attribute module_uevent =
950 	__ATTR(uevent, 0200, NULL, store_uevent);
951 
952 static ssize_t show_coresize(const struct module_attribute *mattr,
953 			     struct module_kobject *mk, char *buffer)
954 {
955 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
956 
957 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
958 		for_class_mod_mem_type(type, core_data)
959 			size += mk->mod->mem[type].size;
960 	}
961 	return sprintf(buffer, "%u\n", size);
962 }
963 
964 static const struct module_attribute modinfo_coresize =
965 	__ATTR(coresize, 0444, show_coresize, NULL);
966 
967 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
968 static ssize_t show_datasize(const struct module_attribute *mattr,
969 			     struct module_kobject *mk, char *buffer)
970 {
971 	unsigned int size = 0;
972 
973 	for_class_mod_mem_type(type, core_data)
974 		size += mk->mod->mem[type].size;
975 	return sprintf(buffer, "%u\n", size);
976 }
977 
978 static const struct module_attribute modinfo_datasize =
979 	__ATTR(datasize, 0444, show_datasize, NULL);
980 #endif
981 
982 static ssize_t show_initsize(const struct module_attribute *mattr,
983 			     struct module_kobject *mk, char *buffer)
984 {
985 	unsigned int size = 0;
986 
987 	for_class_mod_mem_type(type, init)
988 		size += mk->mod->mem[type].size;
989 	return sprintf(buffer, "%u\n", size);
990 }
991 
992 static const struct module_attribute modinfo_initsize =
993 	__ATTR(initsize, 0444, show_initsize, NULL);
994 
995 static ssize_t show_taint(const struct module_attribute *mattr,
996 			  struct module_kobject *mk, char *buffer)
997 {
998 	size_t l;
999 
1000 	l = module_flags_taint(mk->mod->taints, buffer);
1001 	buffer[l++] = '\n';
1002 	return l;
1003 }
1004 
1005 static const struct module_attribute modinfo_taint =
1006 	__ATTR(taint, 0444, show_taint, NULL);
1007 
1008 const struct module_attribute *const modinfo_attrs[] = {
1009 	&module_uevent,
1010 	&modinfo_version,
1011 	&modinfo_srcversion,
1012 	&modinfo_initstate,
1013 	&modinfo_coresize,
1014 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1015 	&modinfo_datasize,
1016 #endif
1017 	&modinfo_initsize,
1018 	&modinfo_taint,
1019 #ifdef CONFIG_MODULE_UNLOAD
1020 	&modinfo_refcnt,
1021 #endif
1022 	NULL,
1023 };
1024 
1025 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1026 
1027 static const char vermagic[] = VERMAGIC_STRING;
1028 
1029 int try_to_force_load(struct module *mod, const char *reason)
1030 {
1031 #ifdef CONFIG_MODULE_FORCE_LOAD
1032 	if (!test_taint(TAINT_FORCED_MODULE))
1033 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1034 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1035 	return 0;
1036 #else
1037 	return -ENOEXEC;
1038 #endif
1039 }
1040 
1041 /* Parse tag=value strings from .modinfo section */
1042 char *module_next_tag_pair(char *string, unsigned long *secsize)
1043 {
1044 	/* Skip non-zero chars */
1045 	while (string[0]) {
1046 		string++;
1047 		if ((*secsize)-- <= 1)
1048 			return NULL;
1049 	}
1050 
1051 	/* Skip any zero padding. */
1052 	while (!string[0]) {
1053 		string++;
1054 		if ((*secsize)-- <= 1)
1055 			return NULL;
1056 	}
1057 	return string;
1058 }
1059 
1060 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1061 			      char *prev)
1062 {
1063 	char *p;
1064 	unsigned int taglen = strlen(tag);
1065 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1066 	unsigned long size = infosec->sh_size;
1067 
1068 	/*
1069 	 * get_modinfo() calls made before rewrite_section_headers()
1070 	 * must use sh_offset, as sh_addr isn't set!
1071 	 */
1072 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1073 
1074 	if (prev) {
1075 		size -= prev - modinfo;
1076 		modinfo = module_next_tag_pair(prev, &size);
1077 	}
1078 
1079 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1080 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1081 			return p + taglen + 1;
1082 	}
1083 	return NULL;
1084 }
1085 
1086 static char *get_modinfo(const struct load_info *info, const char *tag)
1087 {
1088 	return get_next_modinfo(info, tag, NULL);
1089 }
1090 
1091 static int verify_namespace_is_imported(const struct load_info *info,
1092 					const struct kernel_symbol *sym,
1093 					struct module *mod)
1094 {
1095 	const char *namespace;
1096 	char *imported_namespace;
1097 
1098 	namespace = kernel_symbol_namespace(sym);
1099 	if (namespace && namespace[0]) {
1100 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1101 			if (strcmp(namespace, imported_namespace) == 0)
1102 				return 0;
1103 		}
1104 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1105 		pr_warn(
1106 #else
1107 		pr_err(
1108 #endif
1109 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1110 			mod->name, kernel_symbol_name(sym), namespace);
1111 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1112 		return -EINVAL;
1113 #endif
1114 	}
1115 	return 0;
1116 }
1117 
1118 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1119 {
1120 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1121 		return true;
1122 
1123 	if (mod->using_gplonly_symbols) {
1124 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1125 			mod->name, name, owner->name);
1126 		return false;
1127 	}
1128 
1129 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1130 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1131 			mod->name, name, owner->name);
1132 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1133 	}
1134 	return true;
1135 }
1136 
1137 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1138 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1139 						  const struct load_info *info,
1140 						  const char *name,
1141 						  char ownername[])
1142 {
1143 	struct find_symbol_arg fsa = {
1144 		.name	= name,
1145 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1146 		.warn	= true,
1147 	};
1148 	int err;
1149 
1150 	/*
1151 	 * The module_mutex should not be a heavily contended lock;
1152 	 * if we get the occasional sleep here, we'll go an extra iteration
1153 	 * in the wait_event_interruptible(), which is harmless.
1154 	 */
1155 	sched_annotate_sleep();
1156 	mutex_lock(&module_mutex);
1157 	if (!find_symbol(&fsa))
1158 		goto unlock;
1159 
1160 	if (fsa.license == GPL_ONLY)
1161 		mod->using_gplonly_symbols = true;
1162 
1163 	if (!inherit_taint(mod, fsa.owner, name)) {
1164 		fsa.sym = NULL;
1165 		goto getname;
1166 	}
1167 
1168 	if (!check_version(info, name, mod, fsa.crc)) {
1169 		fsa.sym = ERR_PTR(-EINVAL);
1170 		goto getname;
1171 	}
1172 
1173 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1174 	if (err) {
1175 		fsa.sym = ERR_PTR(err);
1176 		goto getname;
1177 	}
1178 
1179 	err = ref_module(mod, fsa.owner);
1180 	if (err) {
1181 		fsa.sym = ERR_PTR(err);
1182 		goto getname;
1183 	}
1184 
1185 getname:
1186 	/* We must make copy under the lock if we failed to get ref. */
1187 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1188 unlock:
1189 	mutex_unlock(&module_mutex);
1190 	return fsa.sym;
1191 }
1192 
1193 static const struct kernel_symbol *
1194 resolve_symbol_wait(struct module *mod,
1195 		    const struct load_info *info,
1196 		    const char *name)
1197 {
1198 	const struct kernel_symbol *ksym;
1199 	char owner[MODULE_NAME_LEN];
1200 
1201 	if (wait_event_interruptible_timeout(module_wq,
1202 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1203 			|| PTR_ERR(ksym) != -EBUSY,
1204 					     30 * HZ) <= 0) {
1205 		pr_warn("%s: gave up waiting for init of module %s.\n",
1206 			mod->name, owner);
1207 	}
1208 	return ksym;
1209 }
1210 
1211 void __weak module_arch_cleanup(struct module *mod)
1212 {
1213 }
1214 
1215 void __weak module_arch_freeing_init(struct module *mod)
1216 {
1217 }
1218 
1219 void *__module_writable_address(struct module *mod, void *loc)
1220 {
1221 	for_class_mod_mem_type(type, text) {
1222 		struct module_memory *mem = &mod->mem[type];
1223 
1224 		if (loc >= mem->base && loc < mem->base + mem->size)
1225 			return loc + (mem->rw_copy - mem->base);
1226 	}
1227 
1228 	return loc;
1229 }
1230 
1231 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1232 {
1233 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1234 	enum execmem_type execmem_type;
1235 	void *ptr;
1236 
1237 	mod->mem[type].size = size;
1238 
1239 	if (mod_mem_type_is_data(type))
1240 		execmem_type = EXECMEM_MODULE_DATA;
1241 	else
1242 		execmem_type = EXECMEM_MODULE_TEXT;
1243 
1244 	ptr = execmem_alloc(execmem_type, size);
1245 	if (!ptr)
1246 		return -ENOMEM;
1247 
1248 	mod->mem[type].base = ptr;
1249 
1250 	if (execmem_is_rox(execmem_type)) {
1251 		ptr = vzalloc(size);
1252 
1253 		if (!ptr) {
1254 			execmem_free(mod->mem[type].base);
1255 			return -ENOMEM;
1256 		}
1257 
1258 		mod->mem[type].rw_copy = ptr;
1259 		mod->mem[type].is_rox = true;
1260 	} else {
1261 		mod->mem[type].rw_copy = mod->mem[type].base;
1262 		memset(mod->mem[type].base, 0, size);
1263 	}
1264 
1265 	/*
1266 	 * The pointer to these blocks of memory are stored on the module
1267 	 * structure and we keep that around so long as the module is
1268 	 * around. We only free that memory when we unload the module.
1269 	 * Just mark them as not being a leak then. The .init* ELF
1270 	 * sections *do* get freed after boot so we *could* treat them
1271 	 * slightly differently with kmemleak_ignore() and only grey
1272 	 * them out as they work as typical memory allocations which
1273 	 * *do* eventually get freed, but let's just keep things simple
1274 	 * and avoid *any* false positives.
1275 	 */
1276 	kmemleak_not_leak(ptr);
1277 
1278 	return 0;
1279 }
1280 
1281 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1282 {
1283 	struct module_memory *mem = &mod->mem[type];
1284 
1285 	if (mem->is_rox)
1286 		vfree(mem->rw_copy);
1287 
1288 	execmem_free(mem->base);
1289 }
1290 
1291 static void free_mod_mem(struct module *mod)
1292 {
1293 	for_each_mod_mem_type(type) {
1294 		struct module_memory *mod_mem = &mod->mem[type];
1295 
1296 		if (type == MOD_DATA)
1297 			continue;
1298 
1299 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1300 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1301 		if (mod_mem->size)
1302 			module_memory_free(mod, type);
1303 	}
1304 
1305 	/* MOD_DATA hosts mod, so free it at last */
1306 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1307 	module_memory_free(mod, MOD_DATA);
1308 }
1309 
1310 /* Free a module, remove from lists, etc. */
1311 static void free_module(struct module *mod)
1312 {
1313 	trace_module_free(mod);
1314 
1315 	codetag_unload_module(mod);
1316 
1317 	mod_sysfs_teardown(mod);
1318 
1319 	/*
1320 	 * We leave it in list to prevent duplicate loads, but make sure
1321 	 * that noone uses it while it's being deconstructed.
1322 	 */
1323 	mutex_lock(&module_mutex);
1324 	mod->state = MODULE_STATE_UNFORMED;
1325 	mutex_unlock(&module_mutex);
1326 
1327 	/* Arch-specific cleanup. */
1328 	module_arch_cleanup(mod);
1329 
1330 	/* Module unload stuff */
1331 	module_unload_free(mod);
1332 
1333 	/* Free any allocated parameters. */
1334 	destroy_params(mod->kp, mod->num_kp);
1335 
1336 	if (is_livepatch_module(mod))
1337 		free_module_elf(mod);
1338 
1339 	/* Now we can delete it from the lists */
1340 	mutex_lock(&module_mutex);
1341 	/* Unlink carefully: kallsyms could be walking list. */
1342 	list_del_rcu(&mod->list);
1343 	mod_tree_remove(mod);
1344 	/* Remove this module from bug list, this uses list_del_rcu */
1345 	module_bug_cleanup(mod);
1346 	/* Wait for RCU synchronizing before releasing mod->list and buglist. */
1347 	synchronize_rcu();
1348 	if (try_add_tainted_module(mod))
1349 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1350 		       mod->name);
1351 	mutex_unlock(&module_mutex);
1352 
1353 	/* This may be empty, but that's OK */
1354 	module_arch_freeing_init(mod);
1355 	kfree(mod->args);
1356 	percpu_modfree(mod);
1357 
1358 	free_mod_mem(mod);
1359 }
1360 
1361 void *__symbol_get(const char *symbol)
1362 {
1363 	struct find_symbol_arg fsa = {
1364 		.name	= symbol,
1365 		.gplok	= true,
1366 		.warn	= true,
1367 	};
1368 
1369 	scoped_guard(rcu) {
1370 		if (!find_symbol(&fsa))
1371 			return NULL;
1372 		if (fsa.license != GPL_ONLY) {
1373 			pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1374 				symbol);
1375 			return NULL;
1376 		}
1377 		if (strong_try_module_get(fsa.owner))
1378 			return NULL;
1379 	}
1380 	return (void *)kernel_symbol_value(fsa.sym);
1381 }
1382 EXPORT_SYMBOL_GPL(__symbol_get);
1383 
1384 /*
1385  * Ensure that an exported symbol [global namespace] does not already exist
1386  * in the kernel or in some other module's exported symbol table.
1387  *
1388  * You must hold the module_mutex.
1389  */
1390 static int verify_exported_symbols(struct module *mod)
1391 {
1392 	unsigned int i;
1393 	const struct kernel_symbol *s;
1394 	struct {
1395 		const struct kernel_symbol *sym;
1396 		unsigned int num;
1397 	} arr[] = {
1398 		{ mod->syms, mod->num_syms },
1399 		{ mod->gpl_syms, mod->num_gpl_syms },
1400 	};
1401 
1402 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1403 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1404 			struct find_symbol_arg fsa = {
1405 				.name	= kernel_symbol_name(s),
1406 				.gplok	= true,
1407 			};
1408 			if (find_symbol(&fsa)) {
1409 				pr_err("%s: exports duplicate symbol %s"
1410 				       " (owned by %s)\n",
1411 				       mod->name, kernel_symbol_name(s),
1412 				       module_name(fsa.owner));
1413 				return -ENOEXEC;
1414 			}
1415 		}
1416 	}
1417 	return 0;
1418 }
1419 
1420 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1421 {
1422 	/*
1423 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1424 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1425 	 * i386 has a similar problem but may not deserve a fix.
1426 	 *
1427 	 * If we ever have to ignore many symbols, consider refactoring the code to
1428 	 * only warn if referenced by a relocation.
1429 	 */
1430 	if (emachine == EM_386 || emachine == EM_X86_64)
1431 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1432 	return false;
1433 }
1434 
1435 /* Change all symbols so that st_value encodes the pointer directly. */
1436 static int simplify_symbols(struct module *mod, const struct load_info *info)
1437 {
1438 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1439 	Elf_Sym *sym = (void *)symsec->sh_addr;
1440 	unsigned long secbase;
1441 	unsigned int i;
1442 	int ret = 0;
1443 	const struct kernel_symbol *ksym;
1444 
1445 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1446 		const char *name = info->strtab + sym[i].st_name;
1447 
1448 		switch (sym[i].st_shndx) {
1449 		case SHN_COMMON:
1450 			/* Ignore common symbols */
1451 			if (!strncmp(name, "__gnu_lto", 9))
1452 				break;
1453 
1454 			/*
1455 			 * We compiled with -fno-common.  These are not
1456 			 * supposed to happen.
1457 			 */
1458 			pr_debug("Common symbol: %s\n", name);
1459 			pr_warn("%s: please compile with -fno-common\n",
1460 			       mod->name);
1461 			ret = -ENOEXEC;
1462 			break;
1463 
1464 		case SHN_ABS:
1465 			/* Don't need to do anything */
1466 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1467 				 (long)sym[i].st_value, name);
1468 			break;
1469 
1470 		case SHN_LIVEPATCH:
1471 			/* Livepatch symbols are resolved by livepatch */
1472 			break;
1473 
1474 		case SHN_UNDEF:
1475 			ksym = resolve_symbol_wait(mod, info, name);
1476 			/* Ok if resolved.  */
1477 			if (ksym && !IS_ERR(ksym)) {
1478 				sym[i].st_value = kernel_symbol_value(ksym);
1479 				break;
1480 			}
1481 
1482 			/* Ok if weak or ignored.  */
1483 			if (!ksym &&
1484 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1485 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1486 				break;
1487 
1488 			ret = PTR_ERR(ksym) ?: -ENOENT;
1489 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1490 				mod->name, name, ret);
1491 			break;
1492 
1493 		default:
1494 			/* Divert to percpu allocation if a percpu var. */
1495 			if (sym[i].st_shndx == info->index.pcpu)
1496 				secbase = (unsigned long)mod_percpu(mod);
1497 			else
1498 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1499 			sym[i].st_value += secbase;
1500 			break;
1501 		}
1502 	}
1503 
1504 	return ret;
1505 }
1506 
1507 static int apply_relocations(struct module *mod, const struct load_info *info)
1508 {
1509 	unsigned int i;
1510 	int err = 0;
1511 
1512 	/* Now do relocations. */
1513 	for (i = 1; i < info->hdr->e_shnum; i++) {
1514 		unsigned int infosec = info->sechdrs[i].sh_info;
1515 
1516 		/* Not a valid relocation section? */
1517 		if (infosec >= info->hdr->e_shnum)
1518 			continue;
1519 
1520 		/* Don't bother with non-allocated sections */
1521 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1522 			continue;
1523 
1524 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1525 			err = klp_apply_section_relocs(mod, info->sechdrs,
1526 						       info->secstrings,
1527 						       info->strtab,
1528 						       info->index.sym, i,
1529 						       NULL);
1530 		else if (info->sechdrs[i].sh_type == SHT_REL)
1531 			err = apply_relocate(info->sechdrs, info->strtab,
1532 					     info->index.sym, i, mod);
1533 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1534 			err = apply_relocate_add(info->sechdrs, info->strtab,
1535 						 info->index.sym, i, mod);
1536 		if (err < 0)
1537 			break;
1538 	}
1539 	return err;
1540 }
1541 
1542 /* Additional bytes needed by arch in front of individual sections */
1543 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1544 					     unsigned int section)
1545 {
1546 	/* default implementation just returns zero */
1547 	return 0;
1548 }
1549 
1550 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1551 				Elf_Shdr *sechdr, unsigned int section)
1552 {
1553 	long offset;
1554 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1555 
1556 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1557 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1558 	mod->mem[type].size = offset + sechdr->sh_size;
1559 
1560 	WARN_ON_ONCE(offset & mask);
1561 	return offset | mask;
1562 }
1563 
1564 bool module_init_layout_section(const char *sname)
1565 {
1566 #ifndef CONFIG_MODULE_UNLOAD
1567 	if (module_exit_section(sname))
1568 		return true;
1569 #endif
1570 	return module_init_section(sname);
1571 }
1572 
1573 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1574 {
1575 	unsigned int m, i;
1576 
1577 	static const unsigned long masks[][2] = {
1578 		/*
1579 		 * NOTE: all executable code must be the first section
1580 		 * in this array; otherwise modify the text_size
1581 		 * finder in the two loops below
1582 		 */
1583 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1584 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1585 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1586 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1587 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1588 	};
1589 	static const int core_m_to_mem_type[] = {
1590 		MOD_TEXT,
1591 		MOD_RODATA,
1592 		MOD_RO_AFTER_INIT,
1593 		MOD_DATA,
1594 		MOD_DATA,
1595 	};
1596 	static const int init_m_to_mem_type[] = {
1597 		MOD_INIT_TEXT,
1598 		MOD_INIT_RODATA,
1599 		MOD_INVALID,
1600 		MOD_INIT_DATA,
1601 		MOD_INIT_DATA,
1602 	};
1603 
1604 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1605 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1606 
1607 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1608 			Elf_Shdr *s = &info->sechdrs[i];
1609 			const char *sname = info->secstrings + s->sh_name;
1610 
1611 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1612 			    || (s->sh_flags & masks[m][1])
1613 			    || s->sh_entsize != ~0UL
1614 			    || is_init != module_init_layout_section(sname))
1615 				continue;
1616 
1617 			if (WARN_ON_ONCE(type == MOD_INVALID))
1618 				continue;
1619 
1620 			/*
1621 			 * Do not allocate codetag memory as we load it into
1622 			 * preallocated contiguous memory.
1623 			 */
1624 			if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1625 				/*
1626 				 * s->sh_entsize won't be used but populate the
1627 				 * type field to avoid confusion.
1628 				 */
1629 				s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1630 						<< SH_ENTSIZE_TYPE_SHIFT;
1631 				continue;
1632 			}
1633 
1634 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1635 			pr_debug("\t%s\n", sname);
1636 		}
1637 	}
1638 }
1639 
1640 /*
1641  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1642  * might -- code, read-only data, read-write data, small data.  Tally
1643  * sizes, and place the offsets into sh_entsize fields: high bit means it
1644  * belongs in init.
1645  */
1646 static void layout_sections(struct module *mod, struct load_info *info)
1647 {
1648 	unsigned int i;
1649 
1650 	for (i = 0; i < info->hdr->e_shnum; i++)
1651 		info->sechdrs[i].sh_entsize = ~0UL;
1652 
1653 	pr_debug("Core section allocation order for %s:\n", mod->name);
1654 	__layout_sections(mod, info, false);
1655 
1656 	pr_debug("Init section allocation order for %s:\n", mod->name);
1657 	__layout_sections(mod, info, true);
1658 }
1659 
1660 static void module_license_taint_check(struct module *mod, const char *license)
1661 {
1662 	if (!license)
1663 		license = "unspecified";
1664 
1665 	if (!license_is_gpl_compatible(license)) {
1666 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1667 			pr_warn("%s: module license '%s' taints kernel.\n",
1668 				mod->name, license);
1669 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1670 				 LOCKDEP_NOW_UNRELIABLE);
1671 	}
1672 }
1673 
1674 static void setup_modinfo(struct module *mod, struct load_info *info)
1675 {
1676 	const struct module_attribute *attr;
1677 	int i;
1678 
1679 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1680 		if (attr->setup)
1681 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1682 	}
1683 }
1684 
1685 static void free_modinfo(struct module *mod)
1686 {
1687 	const struct module_attribute *attr;
1688 	int i;
1689 
1690 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1691 		if (attr->free)
1692 			attr->free(mod);
1693 	}
1694 }
1695 
1696 bool __weak module_init_section(const char *name)
1697 {
1698 	return strstarts(name, ".init");
1699 }
1700 
1701 bool __weak module_exit_section(const char *name)
1702 {
1703 	return strstarts(name, ".exit");
1704 }
1705 
1706 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1707 {
1708 #if defined(CONFIG_64BIT)
1709 	unsigned long long secend;
1710 #else
1711 	unsigned long secend;
1712 #endif
1713 
1714 	/*
1715 	 * Check for both overflow and offset/size being
1716 	 * too large.
1717 	 */
1718 	secend = shdr->sh_offset + shdr->sh_size;
1719 	if (secend < shdr->sh_offset || secend > info->len)
1720 		return -ENOEXEC;
1721 
1722 	return 0;
1723 }
1724 
1725 /**
1726  * elf_validity_ehdr() - Checks an ELF header for module validity
1727  * @info: Load info containing the ELF header to check
1728  *
1729  * Checks whether an ELF header could belong to a valid module. Checks:
1730  *
1731  * * ELF header is within the data the user provided
1732  * * ELF magic is present
1733  * * It is relocatable (not final linked, not core file, etc.)
1734  * * The header's machine type matches what the architecture expects.
1735  * * Optional arch-specific hook for other properties
1736  *   - module_elf_check_arch() is currently only used by PPC to check
1737  *   ELF ABI version, but may be used by others in the future.
1738  *
1739  * Return: %0 if valid, %-ENOEXEC on failure.
1740  */
1741 static int elf_validity_ehdr(const struct load_info *info)
1742 {
1743 	if (info->len < sizeof(*(info->hdr))) {
1744 		pr_err("Invalid ELF header len %lu\n", info->len);
1745 		return -ENOEXEC;
1746 	}
1747 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1748 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1749 		return -ENOEXEC;
1750 	}
1751 	if (info->hdr->e_type != ET_REL) {
1752 		pr_err("Invalid ELF header type: %u != %u\n",
1753 		       info->hdr->e_type, ET_REL);
1754 		return -ENOEXEC;
1755 	}
1756 	if (!elf_check_arch(info->hdr)) {
1757 		pr_err("Invalid architecture in ELF header: %u\n",
1758 		       info->hdr->e_machine);
1759 		return -ENOEXEC;
1760 	}
1761 	if (!module_elf_check_arch(info->hdr)) {
1762 		pr_err("Invalid module architecture in ELF header: %u\n",
1763 		       info->hdr->e_machine);
1764 		return -ENOEXEC;
1765 	}
1766 	return 0;
1767 }
1768 
1769 /**
1770  * elf_validity_cache_sechdrs() - Cache section headers if valid
1771  * @info: Load info to compute section headers from
1772  *
1773  * Checks:
1774  *
1775  * * ELF header is valid (see elf_validity_ehdr())
1776  * * Section headers are the size we expect
1777  * * Section array fits in the user provided data
1778  * * Section index 0 is NULL
1779  * * Section contents are inbounds
1780  *
1781  * Then updates @info with a &load_info->sechdrs pointer if valid.
1782  *
1783  * Return: %0 if valid, negative error code if validation failed.
1784  */
1785 static int elf_validity_cache_sechdrs(struct load_info *info)
1786 {
1787 	Elf_Shdr *sechdrs;
1788 	Elf_Shdr *shdr;
1789 	int i;
1790 	int err;
1791 
1792 	err = elf_validity_ehdr(info);
1793 	if (err < 0)
1794 		return err;
1795 
1796 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1797 		pr_err("Invalid ELF section header size\n");
1798 		return -ENOEXEC;
1799 	}
1800 
1801 	/*
1802 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1803 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1804 	 * will not overflow unsigned long on any platform.
1805 	 */
1806 	if (info->hdr->e_shoff >= info->len
1807 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1808 		info->len - info->hdr->e_shoff)) {
1809 		pr_err("Invalid ELF section header overflow\n");
1810 		return -ENOEXEC;
1811 	}
1812 
1813 	sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1814 
1815 	/*
1816 	 * The code assumes that section 0 has a length of zero and
1817 	 * an addr of zero, so check for it.
1818 	 */
1819 	if (sechdrs[0].sh_type != SHT_NULL
1820 	    || sechdrs[0].sh_size != 0
1821 	    || sechdrs[0].sh_addr != 0) {
1822 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1823 		       sechdrs[0].sh_type);
1824 		return -ENOEXEC;
1825 	}
1826 
1827 	/* Validate contents are inbounds */
1828 	for (i = 1; i < info->hdr->e_shnum; i++) {
1829 		shdr = &sechdrs[i];
1830 		switch (shdr->sh_type) {
1831 		case SHT_NULL:
1832 		case SHT_NOBITS:
1833 			/* No contents, offset/size don't mean anything */
1834 			continue;
1835 		default:
1836 			err = validate_section_offset(info, shdr);
1837 			if (err < 0) {
1838 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1839 				       i, shdr->sh_type);
1840 				return err;
1841 			}
1842 		}
1843 	}
1844 
1845 	info->sechdrs = sechdrs;
1846 
1847 	return 0;
1848 }
1849 
1850 /**
1851  * elf_validity_cache_secstrings() - Caches section names if valid
1852  * @info: Load info to cache section names from. Must have valid sechdrs.
1853  *
1854  * Specifically checks:
1855  *
1856  * * Section name table index is inbounds of section headers
1857  * * Section name table is not empty
1858  * * Section name table is NUL terminated
1859  * * All section name offsets are inbounds of the section
1860  *
1861  * Then updates @info with a &load_info->secstrings pointer if valid.
1862  *
1863  * Return: %0 if valid, negative error code if validation failed.
1864  */
1865 static int elf_validity_cache_secstrings(struct load_info *info)
1866 {
1867 	Elf_Shdr *strhdr, *shdr;
1868 	char *secstrings;
1869 	int i;
1870 
1871 	/*
1872 	 * Verify if the section name table index is valid.
1873 	 */
1874 	if (info->hdr->e_shstrndx == SHN_UNDEF
1875 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1876 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1877 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1878 		       info->hdr->e_shnum);
1879 		return -ENOEXEC;
1880 	}
1881 
1882 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1883 
1884 	/*
1885 	 * The section name table must be NUL-terminated, as required
1886 	 * by the spec. This makes strcmp and pr_* calls that access
1887 	 * strings in the section safe.
1888 	 */
1889 	secstrings = (void *)info->hdr + strhdr->sh_offset;
1890 	if (strhdr->sh_size == 0) {
1891 		pr_err("empty section name table\n");
1892 		return -ENOEXEC;
1893 	}
1894 	if (secstrings[strhdr->sh_size - 1] != '\0') {
1895 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1896 		return -ENOEXEC;
1897 	}
1898 
1899 	for (i = 0; i < info->hdr->e_shnum; i++) {
1900 		shdr = &info->sechdrs[i];
1901 		/* SHT_NULL means sh_name has an undefined value */
1902 		if (shdr->sh_type == SHT_NULL)
1903 			continue;
1904 		if (shdr->sh_name >= strhdr->sh_size) {
1905 			pr_err("Invalid ELF section name in module (section %u type %u)\n",
1906 			       i, shdr->sh_type);
1907 			return -ENOEXEC;
1908 		}
1909 	}
1910 
1911 	info->secstrings = secstrings;
1912 	return 0;
1913 }
1914 
1915 /**
1916  * elf_validity_cache_index_info() - Validate and cache modinfo section
1917  * @info: Load info to populate the modinfo index on.
1918  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1919  *
1920  * Checks that if there is a .modinfo section, it is unique.
1921  * Then, it caches its index in &load_info->index.info.
1922  * Finally, it tries to populate the name to improve error messages.
1923  *
1924  * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1925  */
1926 static int elf_validity_cache_index_info(struct load_info *info)
1927 {
1928 	int info_idx;
1929 
1930 	info_idx = find_any_unique_sec(info, ".modinfo");
1931 
1932 	if (info_idx == 0)
1933 		/* Early return, no .modinfo */
1934 		return 0;
1935 
1936 	if (info_idx < 0) {
1937 		pr_err("Only one .modinfo section must exist.\n");
1938 		return -ENOEXEC;
1939 	}
1940 
1941 	info->index.info = info_idx;
1942 	/* Try to find a name early so we can log errors with a module name */
1943 	info->name = get_modinfo(info, "name");
1944 
1945 	return 0;
1946 }
1947 
1948 /**
1949  * elf_validity_cache_index_mod() - Validates and caches this_module section
1950  * @info: Load info to cache this_module on.
1951  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1952  *
1953  * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
1954  * uses to refer to __this_module and let's use rely on THIS_MODULE to point
1955  * to &__this_module properly. The kernel's modpost declares it on each
1956  * modules's *.mod.c file. If the struct module of the kernel changes a full
1957  * kernel rebuild is required.
1958  *
1959  * We have a few expectations for this special section, this function
1960  * validates all this for us:
1961  *
1962  * * The section has contents
1963  * * The section is unique
1964  * * We expect the kernel to always have to allocate it: SHF_ALLOC
1965  * * The section size must match the kernel's run time's struct module
1966  *   size
1967  *
1968  * If all checks pass, the index will be cached in &load_info->index.mod
1969  *
1970  * Return: %0 on validation success, %-ENOEXEC on failure
1971  */
1972 static int elf_validity_cache_index_mod(struct load_info *info)
1973 {
1974 	Elf_Shdr *shdr;
1975 	int mod_idx;
1976 
1977 	mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
1978 	if (mod_idx <= 0) {
1979 		pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
1980 		       info->name ?: "(missing .modinfo section or name field)");
1981 		return -ENOEXEC;
1982 	}
1983 
1984 	shdr = &info->sechdrs[mod_idx];
1985 
1986 	if (shdr->sh_type == SHT_NOBITS) {
1987 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1988 		       info->name ?: "(missing .modinfo section or name field)");
1989 		return -ENOEXEC;
1990 	}
1991 
1992 	if (!(shdr->sh_flags & SHF_ALLOC)) {
1993 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
1994 		       info->name ?: "(missing .modinfo section or name field)");
1995 		return -ENOEXEC;
1996 	}
1997 
1998 	if (shdr->sh_size != sizeof(struct module)) {
1999 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
2000 		       info->name ?: "(missing .modinfo section or name field)");
2001 		return -ENOEXEC;
2002 	}
2003 
2004 	info->index.mod = mod_idx;
2005 
2006 	return 0;
2007 }
2008 
2009 /**
2010  * elf_validity_cache_index_sym() - Validate and cache symtab index
2011  * @info: Load info to cache symtab index in.
2012  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2013  *
2014  * Checks that there is exactly one symbol table, then caches its index in
2015  * &load_info->index.sym.
2016  *
2017  * Return: %0 if valid, %-ENOEXEC on failure.
2018  */
2019 static int elf_validity_cache_index_sym(struct load_info *info)
2020 {
2021 	unsigned int sym_idx;
2022 	unsigned int num_sym_secs = 0;
2023 	int i;
2024 
2025 	for (i = 1; i < info->hdr->e_shnum; i++) {
2026 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2027 			num_sym_secs++;
2028 			sym_idx = i;
2029 		}
2030 	}
2031 
2032 	if (num_sym_secs != 1) {
2033 		pr_warn("%s: module has no symbols (stripped?)\n",
2034 			info->name ?: "(missing .modinfo section or name field)");
2035 		return -ENOEXEC;
2036 	}
2037 
2038 	info->index.sym = sym_idx;
2039 
2040 	return 0;
2041 }
2042 
2043 /**
2044  * elf_validity_cache_index_str() - Validate and cache strtab index
2045  * @info: Load info to cache strtab index in.
2046  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2047  *        Must have &load_info->index.sym populated.
2048  *
2049  * Looks at the symbol table's associated string table, makes sure it is
2050  * in-bounds, and caches it.
2051  *
2052  * Return: %0 if valid, %-ENOEXEC on failure.
2053  */
2054 static int elf_validity_cache_index_str(struct load_info *info)
2055 {
2056 	unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2057 
2058 	if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2059 		pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2060 		       str_idx, str_idx, info->hdr->e_shnum);
2061 		return -ENOEXEC;
2062 	}
2063 
2064 	info->index.str = str_idx;
2065 	return 0;
2066 }
2067 
2068 /**
2069  * elf_validity_cache_index_versions() - Validate and cache version indices
2070  * @info:  Load info to cache version indices in.
2071  *         Must have &load_info->sechdrs and &load_info->secstrings populated.
2072  * @flags: Load flags, relevant to suppress version loading, see
2073  *         uapi/linux/module.h
2074  *
2075  * If we're ignoring modversions based on @flags, zero all version indices
2076  * and return validity. Othewrise check:
2077  *
2078  * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2079  * * There is a name present for every crc
2080  *
2081  * Then populate:
2082  *
2083  * * &load_info->index.vers
2084  * * &load_info->index.vers_ext_crc
2085  * * &load_info->index.vers_ext_names
2086  *
2087  * if present.
2088  *
2089  * Return: %0 if valid, %-ENOEXEC on failure.
2090  */
2091 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2092 {
2093 	unsigned int vers_ext_crc;
2094 	unsigned int vers_ext_name;
2095 	size_t crc_count;
2096 	size_t remaining_len;
2097 	size_t name_size;
2098 	char *name;
2099 
2100 	/* If modversions were suppressed, pretend we didn't find any */
2101 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2102 		info->index.vers = 0;
2103 		info->index.vers_ext_crc = 0;
2104 		info->index.vers_ext_name = 0;
2105 		return 0;
2106 	}
2107 
2108 	vers_ext_crc = find_sec(info, "__version_ext_crcs");
2109 	vers_ext_name = find_sec(info, "__version_ext_names");
2110 
2111 	/* If we have one field, we must have the other */
2112 	if (!!vers_ext_crc != !!vers_ext_name) {
2113 		pr_err("extended version crc+name presence does not match");
2114 		return -ENOEXEC;
2115 	}
2116 
2117 	/*
2118 	 * If we have extended version information, we should have the same
2119 	 * number of entries in every section.
2120 	 */
2121 	if (vers_ext_crc) {
2122 		crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2123 		name = (void *)info->hdr +
2124 			info->sechdrs[vers_ext_name].sh_offset;
2125 		remaining_len = info->sechdrs[vers_ext_name].sh_size;
2126 
2127 		while (crc_count--) {
2128 			name_size = strnlen(name, remaining_len) + 1;
2129 			if (name_size > remaining_len) {
2130 				pr_err("more extended version crcs than names");
2131 				return -ENOEXEC;
2132 			}
2133 			remaining_len -= name_size;
2134 			name += name_size;
2135 		}
2136 	}
2137 
2138 	info->index.vers = find_sec(info, "__versions");
2139 	info->index.vers_ext_crc = vers_ext_crc;
2140 	info->index.vers_ext_name = vers_ext_name;
2141 	return 0;
2142 }
2143 
2144 /**
2145  * elf_validity_cache_index() - Resolve, validate, cache section indices
2146  * @info:  Load info to read from and update.
2147  *         &load_info->sechdrs and &load_info->secstrings must be populated.
2148  * @flags: Load flags, relevant to suppress version loading, see
2149  *         uapi/linux/module.h
2150  *
2151  * Populates &load_info->index, validating as it goes.
2152  * See child functions for per-field validation:
2153  *
2154  * * elf_validity_cache_index_info()
2155  * * elf_validity_cache_index_mod()
2156  * * elf_validity_cache_index_sym()
2157  * * elf_validity_cache_index_str()
2158  * * elf_validity_cache_index_versions()
2159  *
2160  * If CONFIG_SMP is enabled, load the percpu section by name with no
2161  * validation.
2162  *
2163  * Return: 0 on success, negative error code if an index failed validation.
2164  */
2165 static int elf_validity_cache_index(struct load_info *info, int flags)
2166 {
2167 	int err;
2168 
2169 	err = elf_validity_cache_index_info(info);
2170 	if (err < 0)
2171 		return err;
2172 	err = elf_validity_cache_index_mod(info);
2173 	if (err < 0)
2174 		return err;
2175 	err = elf_validity_cache_index_sym(info);
2176 	if (err < 0)
2177 		return err;
2178 	err = elf_validity_cache_index_str(info);
2179 	if (err < 0)
2180 		return err;
2181 	err = elf_validity_cache_index_versions(info, flags);
2182 	if (err < 0)
2183 		return err;
2184 
2185 	info->index.pcpu = find_pcpusec(info);
2186 
2187 	return 0;
2188 }
2189 
2190 /**
2191  * elf_validity_cache_strtab() - Validate and cache symbol string table
2192  * @info: Load info to read from and update.
2193  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2194  *        Must have &load_info->index populated.
2195  *
2196  * Checks:
2197  *
2198  * * The string table is not empty.
2199  * * The string table starts and ends with NUL (required by ELF spec).
2200  * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2201  *   string table.
2202  *
2203  * And caches the pointer as &load_info->strtab in @info.
2204  *
2205  * Return: 0 on success, negative error code if a check failed.
2206  */
2207 static int elf_validity_cache_strtab(struct load_info *info)
2208 {
2209 	Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2210 	Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2211 	char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2212 	Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2213 	int i;
2214 
2215 	if (str_shdr->sh_size == 0) {
2216 		pr_err("empty symbol string table\n");
2217 		return -ENOEXEC;
2218 	}
2219 	if (strtab[0] != '\0') {
2220 		pr_err("symbol string table missing leading NUL\n");
2221 		return -ENOEXEC;
2222 	}
2223 	if (strtab[str_shdr->sh_size - 1] != '\0') {
2224 		pr_err("symbol string table isn't NUL terminated\n");
2225 		return -ENOEXEC;
2226 	}
2227 
2228 	/*
2229 	 * Now that we know strtab is correctly structured, check symbol
2230 	 * starts are inbounds before they're used later.
2231 	 */
2232 	for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2233 		if (syms[i].st_name >= str_shdr->sh_size) {
2234 			pr_err("symbol name out of bounds in string table");
2235 			return -ENOEXEC;
2236 		}
2237 	}
2238 
2239 	info->strtab = strtab;
2240 	return 0;
2241 }
2242 
2243 /*
2244  * Check userspace passed ELF module against our expectations, and cache
2245  * useful variables for further processing as we go.
2246  *
2247  * This does basic validity checks against section offsets and sizes, the
2248  * section name string table, and the indices used for it (sh_name).
2249  *
2250  * As a last step, since we're already checking the ELF sections we cache
2251  * useful variables which will be used later for our convenience:
2252  *
2253  * 	o pointers to section headers
2254  * 	o cache the modinfo symbol section
2255  * 	o cache the string symbol section
2256  * 	o cache the module section
2257  *
2258  * As a last step we set info->mod to the temporary copy of the module in
2259  * info->hdr. The final one will be allocated in move_module(). Any
2260  * modifications we make to our copy of the module will be carried over
2261  * to the final minted module.
2262  */
2263 static int elf_validity_cache_copy(struct load_info *info, int flags)
2264 {
2265 	int err;
2266 
2267 	err = elf_validity_cache_sechdrs(info);
2268 	if (err < 0)
2269 		return err;
2270 	err = elf_validity_cache_secstrings(info);
2271 	if (err < 0)
2272 		return err;
2273 	err = elf_validity_cache_index(info, flags);
2274 	if (err < 0)
2275 		return err;
2276 	err = elf_validity_cache_strtab(info);
2277 	if (err < 0)
2278 		return err;
2279 
2280 	/* This is temporary: point mod into copy of data. */
2281 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2282 
2283 	/*
2284 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2285 	 * on-disk struct mod 'name' field.
2286 	 */
2287 	if (!info->name)
2288 		info->name = info->mod->name;
2289 
2290 	return 0;
2291 }
2292 
2293 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2294 
2295 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2296 {
2297 	do {
2298 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2299 
2300 		if (copy_from_user(dst, usrc, n) != 0)
2301 			return -EFAULT;
2302 		cond_resched();
2303 		dst += n;
2304 		usrc += n;
2305 		len -= n;
2306 	} while (len);
2307 	return 0;
2308 }
2309 
2310 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2311 {
2312 	if (!get_modinfo(info, "livepatch"))
2313 		/* Nothing more to do */
2314 		return 0;
2315 
2316 	if (set_livepatch_module(mod))
2317 		return 0;
2318 
2319 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2320 	       mod->name);
2321 	return -ENOEXEC;
2322 }
2323 
2324 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2325 {
2326 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2327 		return;
2328 
2329 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2330 		mod->name);
2331 }
2332 
2333 /* Sets info->hdr and info->len. */
2334 static int copy_module_from_user(const void __user *umod, unsigned long len,
2335 				  struct load_info *info)
2336 {
2337 	int err;
2338 
2339 	info->len = len;
2340 	if (info->len < sizeof(*(info->hdr)))
2341 		return -ENOEXEC;
2342 
2343 	err = security_kernel_load_data(LOADING_MODULE, true);
2344 	if (err)
2345 		return err;
2346 
2347 	/* Suck in entire file: we'll want most of it. */
2348 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2349 	if (!info->hdr)
2350 		return -ENOMEM;
2351 
2352 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2353 		err = -EFAULT;
2354 		goto out;
2355 	}
2356 
2357 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2358 					     LOADING_MODULE, "init_module");
2359 out:
2360 	if (err)
2361 		vfree(info->hdr);
2362 
2363 	return err;
2364 }
2365 
2366 static void free_copy(struct load_info *info, int flags)
2367 {
2368 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2369 		module_decompress_cleanup(info);
2370 	else
2371 		vfree(info->hdr);
2372 }
2373 
2374 static int rewrite_section_headers(struct load_info *info, int flags)
2375 {
2376 	unsigned int i;
2377 
2378 	/* This should always be true, but let's be sure. */
2379 	info->sechdrs[0].sh_addr = 0;
2380 
2381 	for (i = 1; i < info->hdr->e_shnum; i++) {
2382 		Elf_Shdr *shdr = &info->sechdrs[i];
2383 
2384 		/*
2385 		 * Mark all sections sh_addr with their address in the
2386 		 * temporary image.
2387 		 */
2388 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2389 
2390 	}
2391 
2392 	/* Track but don't keep modinfo and version sections. */
2393 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2394 	info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2395 		~(unsigned long)SHF_ALLOC;
2396 	info->sechdrs[info->index.vers_ext_name].sh_flags &=
2397 		~(unsigned long)SHF_ALLOC;
2398 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2399 
2400 	return 0;
2401 }
2402 
2403 static const char *const module_license_offenders[] = {
2404 	/* driverloader was caught wrongly pretending to be under GPL */
2405 	"driverloader",
2406 
2407 	/* lve claims to be GPL but upstream won't provide source */
2408 	"lve",
2409 };
2410 
2411 /*
2412  * These calls taint the kernel depending certain module circumstances */
2413 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2414 {
2415 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2416 	size_t i;
2417 
2418 	if (!get_modinfo(info, "intree")) {
2419 		if (!test_taint(TAINT_OOT_MODULE))
2420 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2421 				mod->name);
2422 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2423 	}
2424 
2425 	check_modinfo_retpoline(mod, info);
2426 
2427 	if (get_modinfo(info, "staging")) {
2428 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2429 		pr_warn("%s: module is from the staging directory, the quality "
2430 			"is unknown, you have been warned.\n", mod->name);
2431 	}
2432 
2433 	if (is_livepatch_module(mod)) {
2434 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2435 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2436 				mod->name);
2437 	}
2438 
2439 	module_license_taint_check(mod, get_modinfo(info, "license"));
2440 
2441 	if (get_modinfo(info, "test")) {
2442 		if (!test_taint(TAINT_TEST))
2443 			pr_warn("%s: loading test module taints kernel.\n",
2444 				mod->name);
2445 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2446 	}
2447 #ifdef CONFIG_MODULE_SIG
2448 	mod->sig_ok = info->sig_ok;
2449 	if (!mod->sig_ok) {
2450 		pr_notice_once("%s: module verification failed: signature "
2451 			       "and/or required key missing - tainting "
2452 			       "kernel\n", mod->name);
2453 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2454 	}
2455 #endif
2456 
2457 	/*
2458 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2459 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2460 	 * using GPL-only symbols it needs.
2461 	 */
2462 	if (strcmp(mod->name, "ndiswrapper") == 0)
2463 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2464 
2465 	for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2466 		if (strcmp(mod->name, module_license_offenders[i]) == 0)
2467 			add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2468 					 LOCKDEP_NOW_UNRELIABLE);
2469 	}
2470 
2471 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2472 		pr_warn("%s: module license taints kernel.\n", mod->name);
2473 
2474 }
2475 
2476 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2477 {
2478 	const char *modmagic = get_modinfo(info, "vermagic");
2479 	int err;
2480 
2481 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2482 		modmagic = NULL;
2483 
2484 	/* This is allowed: modprobe --force will invalidate it. */
2485 	if (!modmagic) {
2486 		err = try_to_force_load(mod, "bad vermagic");
2487 		if (err)
2488 			return err;
2489 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2490 		pr_err("%s: version magic '%s' should be '%s'\n",
2491 		       info->name, modmagic, vermagic);
2492 		return -ENOEXEC;
2493 	}
2494 
2495 	err = check_modinfo_livepatch(mod, info);
2496 	if (err)
2497 		return err;
2498 
2499 	return 0;
2500 }
2501 
2502 static int find_module_sections(struct module *mod, struct load_info *info)
2503 {
2504 	mod->kp = section_objs(info, "__param",
2505 			       sizeof(*mod->kp), &mod->num_kp);
2506 	mod->syms = section_objs(info, "__ksymtab",
2507 				 sizeof(*mod->syms), &mod->num_syms);
2508 	mod->crcs = section_addr(info, "__kcrctab");
2509 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2510 				     sizeof(*mod->gpl_syms),
2511 				     &mod->num_gpl_syms);
2512 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2513 
2514 #ifdef CONFIG_CONSTRUCTORS
2515 	mod->ctors = section_objs(info, ".ctors",
2516 				  sizeof(*mod->ctors), &mod->num_ctors);
2517 	if (!mod->ctors)
2518 		mod->ctors = section_objs(info, ".init_array",
2519 				sizeof(*mod->ctors), &mod->num_ctors);
2520 	else if (find_sec(info, ".init_array")) {
2521 		/*
2522 		 * This shouldn't happen with same compiler and binutils
2523 		 * building all parts of the module.
2524 		 */
2525 		pr_warn("%s: has both .ctors and .init_array.\n",
2526 		       mod->name);
2527 		return -EINVAL;
2528 	}
2529 #endif
2530 
2531 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2532 						&mod->noinstr_text_size);
2533 
2534 #ifdef CONFIG_TRACEPOINTS
2535 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2536 					     sizeof(*mod->tracepoints_ptrs),
2537 					     &mod->num_tracepoints);
2538 #endif
2539 #ifdef CONFIG_TREE_SRCU
2540 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2541 					     sizeof(*mod->srcu_struct_ptrs),
2542 					     &mod->num_srcu_structs);
2543 #endif
2544 #ifdef CONFIG_BPF_EVENTS
2545 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2546 					   sizeof(*mod->bpf_raw_events),
2547 					   &mod->num_bpf_raw_events);
2548 #endif
2549 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2550 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2551 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2552 					      &mod->btf_base_data_size);
2553 #endif
2554 #ifdef CONFIG_JUMP_LABEL
2555 	mod->jump_entries = section_objs(info, "__jump_table",
2556 					sizeof(*mod->jump_entries),
2557 					&mod->num_jump_entries);
2558 #endif
2559 #ifdef CONFIG_EVENT_TRACING
2560 	mod->trace_events = section_objs(info, "_ftrace_events",
2561 					 sizeof(*mod->trace_events),
2562 					 &mod->num_trace_events);
2563 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2564 					sizeof(*mod->trace_evals),
2565 					&mod->num_trace_evals);
2566 #endif
2567 #ifdef CONFIG_TRACING
2568 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2569 					 sizeof(*mod->trace_bprintk_fmt_start),
2570 					 &mod->num_trace_bprintk_fmt);
2571 #endif
2572 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2573 	/* sechdrs[0].sh_size is always zero */
2574 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2575 					     sizeof(*mod->ftrace_callsites),
2576 					     &mod->num_ftrace_callsites);
2577 #endif
2578 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2579 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2580 					    sizeof(*mod->ei_funcs),
2581 					    &mod->num_ei_funcs);
2582 #endif
2583 #ifdef CONFIG_KPROBES
2584 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2585 						&mod->kprobes_text_size);
2586 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2587 						sizeof(unsigned long),
2588 						&mod->num_kprobe_blacklist);
2589 #endif
2590 #ifdef CONFIG_PRINTK_INDEX
2591 	mod->printk_index_start = section_objs(info, ".printk_index",
2592 					       sizeof(*mod->printk_index_start),
2593 					       &mod->printk_index_size);
2594 #endif
2595 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2596 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2597 					      sizeof(*mod->static_call_sites),
2598 					      &mod->num_static_call_sites);
2599 #endif
2600 #if IS_ENABLED(CONFIG_KUNIT)
2601 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2602 					      sizeof(*mod->kunit_suites),
2603 					      &mod->num_kunit_suites);
2604 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2605 					      sizeof(*mod->kunit_init_suites),
2606 					      &mod->num_kunit_init_suites);
2607 #endif
2608 
2609 	mod->extable = section_objs(info, "__ex_table",
2610 				    sizeof(*mod->extable), &mod->num_exentries);
2611 
2612 	if (section_addr(info, "__obsparm"))
2613 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2614 
2615 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2616 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2617 					      sizeof(*mod->dyndbg_info.descs),
2618 					      &mod->dyndbg_info.num_descs);
2619 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2620 						sizeof(*mod->dyndbg_info.classes),
2621 						&mod->dyndbg_info.num_classes);
2622 #endif
2623 
2624 	return 0;
2625 }
2626 
2627 static int move_module(struct module *mod, struct load_info *info)
2628 {
2629 	int i;
2630 	enum mod_mem_type t = 0;
2631 	int ret = -ENOMEM;
2632 	bool codetag_section_found = false;
2633 
2634 	for_each_mod_mem_type(type) {
2635 		if (!mod->mem[type].size) {
2636 			mod->mem[type].base = NULL;
2637 			mod->mem[type].rw_copy = NULL;
2638 			continue;
2639 		}
2640 
2641 		ret = module_memory_alloc(mod, type);
2642 		if (ret) {
2643 			t = type;
2644 			goto out_err;
2645 		}
2646 	}
2647 
2648 	/* Transfer each section which specifies SHF_ALLOC */
2649 	pr_debug("Final section addresses for %s:\n", mod->name);
2650 	for (i = 0; i < info->hdr->e_shnum; i++) {
2651 		void *dest;
2652 		Elf_Shdr *shdr = &info->sechdrs[i];
2653 		const char *sname;
2654 		unsigned long addr;
2655 
2656 		if (!(shdr->sh_flags & SHF_ALLOC))
2657 			continue;
2658 
2659 		sname = info->secstrings + shdr->sh_name;
2660 		/*
2661 		 * Load codetag sections separately as they might still be used
2662 		 * after module unload.
2663 		 */
2664 		if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2665 			dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2666 					arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2667 			if (WARN_ON(!dest)) {
2668 				ret = -EINVAL;
2669 				goto out_err;
2670 			}
2671 			if (IS_ERR(dest)) {
2672 				ret = PTR_ERR(dest);
2673 				goto out_err;
2674 			}
2675 			addr = (unsigned long)dest;
2676 			codetag_section_found = true;
2677 		} else {
2678 			enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2679 			unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2680 
2681 			addr = (unsigned long)mod->mem[type].base + offset;
2682 			dest = mod->mem[type].rw_copy + offset;
2683 		}
2684 
2685 		if (shdr->sh_type != SHT_NOBITS) {
2686 			/*
2687 			 * Our ELF checker already validated this, but let's
2688 			 * be pedantic and make the goal clearer. We actually
2689 			 * end up copying over all modifications made to the
2690 			 * userspace copy of the entire struct module.
2691 			 */
2692 			if (i == info->index.mod &&
2693 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2694 				ret = -ENOEXEC;
2695 				goto out_err;
2696 			}
2697 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2698 		}
2699 		/*
2700 		 * Update the userspace copy's ELF section address to point to
2701 		 * our newly allocated memory as a pure convenience so that
2702 		 * users of info can keep taking advantage and using the newly
2703 		 * minted official memory area.
2704 		 */
2705 		shdr->sh_addr = addr;
2706 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2707 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2708 	}
2709 
2710 	return 0;
2711 out_err:
2712 	for (t--; t >= 0; t--)
2713 		module_memory_free(mod, t);
2714 	if (codetag_section_found)
2715 		codetag_free_module_sections(mod);
2716 
2717 	return ret;
2718 }
2719 
2720 static int check_export_symbol_versions(struct module *mod)
2721 {
2722 #ifdef CONFIG_MODVERSIONS
2723 	if ((mod->num_syms && !mod->crcs) ||
2724 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2725 		return try_to_force_load(mod,
2726 					 "no versions for exported symbols");
2727 	}
2728 #endif
2729 	return 0;
2730 }
2731 
2732 static void flush_module_icache(const struct module *mod)
2733 {
2734 	/*
2735 	 * Flush the instruction cache, since we've played with text.
2736 	 * Do it before processing of module parameters, so the module
2737 	 * can provide parameter accessor functions of its own.
2738 	 */
2739 	for_each_mod_mem_type(type) {
2740 		const struct module_memory *mod_mem = &mod->mem[type];
2741 
2742 		if (mod_mem->size) {
2743 			flush_icache_range((unsigned long)mod_mem->base,
2744 					   (unsigned long)mod_mem->base + mod_mem->size);
2745 		}
2746 	}
2747 }
2748 
2749 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2750 {
2751 	return true;
2752 }
2753 
2754 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2755 				     Elf_Shdr *sechdrs,
2756 				     char *secstrings,
2757 				     struct module *mod)
2758 {
2759 	return 0;
2760 }
2761 
2762 /* module_blacklist is a comma-separated list of module names */
2763 static char *module_blacklist;
2764 static bool blacklisted(const char *module_name)
2765 {
2766 	const char *p;
2767 	size_t len;
2768 
2769 	if (!module_blacklist)
2770 		return false;
2771 
2772 	for (p = module_blacklist; *p; p += len) {
2773 		len = strcspn(p, ",");
2774 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2775 			return true;
2776 		if (p[len] == ',')
2777 			len++;
2778 	}
2779 	return false;
2780 }
2781 core_param(module_blacklist, module_blacklist, charp, 0400);
2782 
2783 static struct module *layout_and_allocate(struct load_info *info, int flags)
2784 {
2785 	struct module *mod;
2786 	unsigned int ndx;
2787 	int err;
2788 
2789 	/* Allow arches to frob section contents and sizes.  */
2790 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2791 					info->secstrings, info->mod);
2792 	if (err < 0)
2793 		return ERR_PTR(err);
2794 
2795 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2796 					  info->secstrings, info->mod);
2797 	if (err < 0)
2798 		return ERR_PTR(err);
2799 
2800 	/* We will do a special allocation for per-cpu sections later. */
2801 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2802 
2803 	/*
2804 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2805 	 * layout_sections() can put it in the right place.
2806 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2807 	 */
2808 	ndx = find_sec(info, ".data..ro_after_init");
2809 	if (ndx)
2810 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2811 	/*
2812 	 * Mark the __jump_table section as ro_after_init as well: these data
2813 	 * structures are never modified, with the exception of entries that
2814 	 * refer to code in the __init section, which are annotated as such
2815 	 * at module load time.
2816 	 */
2817 	ndx = find_sec(info, "__jump_table");
2818 	if (ndx)
2819 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2820 
2821 	/*
2822 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2823 	 * this is done generically; there doesn't appear to be any
2824 	 * special cases for the architectures.
2825 	 */
2826 	layout_sections(info->mod, info);
2827 	layout_symtab(info->mod, info);
2828 
2829 	/* Allocate and move to the final place */
2830 	err = move_module(info->mod, info);
2831 	if (err)
2832 		return ERR_PTR(err);
2833 
2834 	/* Module has been copied to its final place now: return it. */
2835 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2836 	kmemleak_load_module(mod, info);
2837 	codetag_module_replaced(info->mod, mod);
2838 
2839 	return mod;
2840 }
2841 
2842 /* mod is no longer valid after this! */
2843 static void module_deallocate(struct module *mod, struct load_info *info)
2844 {
2845 	percpu_modfree(mod);
2846 	module_arch_freeing_init(mod);
2847 
2848 	free_mod_mem(mod);
2849 }
2850 
2851 int __weak module_finalize(const Elf_Ehdr *hdr,
2852 			   const Elf_Shdr *sechdrs,
2853 			   struct module *me)
2854 {
2855 	return 0;
2856 }
2857 
2858 int __weak module_post_finalize(const Elf_Ehdr *hdr,
2859 				const Elf_Shdr *sechdrs,
2860 				struct module *me)
2861 {
2862 	return 0;
2863 }
2864 
2865 static int post_relocation(struct module *mod, const struct load_info *info)
2866 {
2867 	int ret;
2868 
2869 	/* Sort exception table now relocations are done. */
2870 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2871 
2872 	/* Copy relocated percpu area over. */
2873 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2874 		       info->sechdrs[info->index.pcpu].sh_size);
2875 
2876 	/* Setup kallsyms-specific fields. */
2877 	add_kallsyms(mod, info);
2878 
2879 	/* Arch-specific module finalizing. */
2880 	ret = module_finalize(info->hdr, info->sechdrs, mod);
2881 	if (ret)
2882 		return ret;
2883 
2884 	for_each_mod_mem_type(type) {
2885 		struct module_memory *mem = &mod->mem[type];
2886 
2887 		if (mem->is_rox) {
2888 			if (!execmem_update_copy(mem->base, mem->rw_copy,
2889 						 mem->size))
2890 				return -ENOMEM;
2891 
2892 			vfree(mem->rw_copy);
2893 			mem->rw_copy = NULL;
2894 		}
2895 	}
2896 
2897 	return module_post_finalize(info->hdr, info->sechdrs, mod);
2898 }
2899 
2900 /* Call module constructors. */
2901 static void do_mod_ctors(struct module *mod)
2902 {
2903 #ifdef CONFIG_CONSTRUCTORS
2904 	unsigned long i;
2905 
2906 	for (i = 0; i < mod->num_ctors; i++)
2907 		mod->ctors[i]();
2908 #endif
2909 }
2910 
2911 /* For freeing module_init on success, in case kallsyms traversing */
2912 struct mod_initfree {
2913 	struct llist_node node;
2914 	void *init_text;
2915 	void *init_data;
2916 	void *init_rodata;
2917 };
2918 
2919 static void do_free_init(struct work_struct *w)
2920 {
2921 	struct llist_node *pos, *n, *list;
2922 	struct mod_initfree *initfree;
2923 
2924 	list = llist_del_all(&init_free_list);
2925 
2926 	synchronize_rcu();
2927 
2928 	llist_for_each_safe(pos, n, list) {
2929 		initfree = container_of(pos, struct mod_initfree, node);
2930 		execmem_free(initfree->init_text);
2931 		execmem_free(initfree->init_data);
2932 		execmem_free(initfree->init_rodata);
2933 		kfree(initfree);
2934 	}
2935 }
2936 
2937 void flush_module_init_free_work(void)
2938 {
2939 	flush_work(&init_free_wq);
2940 }
2941 
2942 #undef MODULE_PARAM_PREFIX
2943 #define MODULE_PARAM_PREFIX "module."
2944 /* Default value for module->async_probe_requested */
2945 static bool async_probe;
2946 module_param(async_probe, bool, 0644);
2947 
2948 /*
2949  * This is where the real work happens.
2950  *
2951  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2952  * helper command 'lx-symbols'.
2953  */
2954 static noinline int do_init_module(struct module *mod)
2955 {
2956 	int ret = 0;
2957 	struct mod_initfree *freeinit;
2958 #if defined(CONFIG_MODULE_STATS)
2959 	unsigned int text_size = 0, total_size = 0;
2960 
2961 	for_each_mod_mem_type(type) {
2962 		const struct module_memory *mod_mem = &mod->mem[type];
2963 		if (mod_mem->size) {
2964 			total_size += mod_mem->size;
2965 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2966 				text_size += mod_mem->size;
2967 		}
2968 	}
2969 #endif
2970 
2971 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2972 	if (!freeinit) {
2973 		ret = -ENOMEM;
2974 		goto fail;
2975 	}
2976 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2977 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2978 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2979 
2980 	do_mod_ctors(mod);
2981 	/* Start the module */
2982 	if (mod->init != NULL)
2983 		ret = do_one_initcall(mod->init);
2984 	if (ret < 0) {
2985 		goto fail_free_freeinit;
2986 	}
2987 	if (ret > 0) {
2988 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2989 			"follow 0/-E convention\n"
2990 			"%s: loading module anyway...\n",
2991 			__func__, mod->name, ret, __func__);
2992 		dump_stack();
2993 	}
2994 
2995 	/* Now it's a first class citizen! */
2996 	mod->state = MODULE_STATE_LIVE;
2997 	blocking_notifier_call_chain(&module_notify_list,
2998 				     MODULE_STATE_LIVE, mod);
2999 
3000 	/* Delay uevent until module has finished its init routine */
3001 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
3002 
3003 	/*
3004 	 * We need to finish all async code before the module init sequence
3005 	 * is done. This has potential to deadlock if synchronous module
3006 	 * loading is requested from async (which is not allowed!).
3007 	 *
3008 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3009 	 * request_module() from async workers") for more details.
3010 	 */
3011 	if (!mod->async_probe_requested)
3012 		async_synchronize_full();
3013 
3014 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3015 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3016 	mutex_lock(&module_mutex);
3017 	/* Drop initial reference. */
3018 	module_put(mod);
3019 	trim_init_extable(mod);
3020 #ifdef CONFIG_KALLSYMS
3021 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3022 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3023 #endif
3024 	ret = module_enable_rodata_ro_after_init(mod);
3025 	if (ret)
3026 		pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3027 			"ro_after_init data might still be writable\n",
3028 			mod->name, ret);
3029 
3030 	mod_tree_remove_init(mod);
3031 	module_arch_freeing_init(mod);
3032 	for_class_mod_mem_type(type, init) {
3033 		mod->mem[type].base = NULL;
3034 		mod->mem[type].size = 0;
3035 	}
3036 
3037 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3038 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3039 	mod->btf_data = NULL;
3040 	mod->btf_base_data = NULL;
3041 #endif
3042 	/*
3043 	 * We want to free module_init, but be aware that kallsyms may be
3044 	 * walking this within an RCU read section. In all the failure paths, we
3045 	 * call synchronize_rcu(), but we don't want to slow down the success
3046 	 * path. execmem_free() cannot be called in an interrupt, so do the
3047 	 * work and call synchronize_rcu() in a work queue.
3048 	 *
3049 	 * Note that execmem_alloc() on most architectures creates W+X page
3050 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3051 	 * code such as mark_rodata_ro() which depends on those mappings to
3052 	 * be cleaned up needs to sync with the queued work by invoking
3053 	 * flush_module_init_free_work().
3054 	 */
3055 	if (llist_add(&freeinit->node, &init_free_list))
3056 		schedule_work(&init_free_wq);
3057 
3058 	mutex_unlock(&module_mutex);
3059 	wake_up_all(&module_wq);
3060 
3061 	mod_stat_add_long(text_size, &total_text_size);
3062 	mod_stat_add_long(total_size, &total_mod_size);
3063 
3064 	mod_stat_inc(&modcount);
3065 
3066 	return 0;
3067 
3068 fail_free_freeinit:
3069 	kfree(freeinit);
3070 fail:
3071 	/* Try to protect us from buggy refcounters. */
3072 	mod->state = MODULE_STATE_GOING;
3073 	synchronize_rcu();
3074 	module_put(mod);
3075 	blocking_notifier_call_chain(&module_notify_list,
3076 				     MODULE_STATE_GOING, mod);
3077 	klp_module_going(mod);
3078 	ftrace_release_mod(mod);
3079 	free_module(mod);
3080 	wake_up_all(&module_wq);
3081 
3082 	return ret;
3083 }
3084 
3085 static int may_init_module(void)
3086 {
3087 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3088 		return -EPERM;
3089 
3090 	return 0;
3091 }
3092 
3093 /* Is this module of this name done loading?  No locks held. */
3094 static bool finished_loading(const char *name)
3095 {
3096 	struct module *mod;
3097 	bool ret;
3098 
3099 	/*
3100 	 * The module_mutex should not be a heavily contended lock;
3101 	 * if we get the occasional sleep here, we'll go an extra iteration
3102 	 * in the wait_event_interruptible(), which is harmless.
3103 	 */
3104 	sched_annotate_sleep();
3105 	mutex_lock(&module_mutex);
3106 	mod = find_module_all(name, strlen(name), true);
3107 	ret = !mod || mod->state == MODULE_STATE_LIVE
3108 		|| mod->state == MODULE_STATE_GOING;
3109 	mutex_unlock(&module_mutex);
3110 
3111 	return ret;
3112 }
3113 
3114 /* Must be called with module_mutex held */
3115 static int module_patient_check_exists(const char *name,
3116 				       enum fail_dup_mod_reason reason)
3117 {
3118 	struct module *old;
3119 	int err = 0;
3120 
3121 	old = find_module_all(name, strlen(name), true);
3122 	if (old == NULL)
3123 		return 0;
3124 
3125 	if (old->state == MODULE_STATE_COMING ||
3126 	    old->state == MODULE_STATE_UNFORMED) {
3127 		/* Wait in case it fails to load. */
3128 		mutex_unlock(&module_mutex);
3129 		err = wait_event_interruptible(module_wq,
3130 				       finished_loading(name));
3131 		mutex_lock(&module_mutex);
3132 		if (err)
3133 			return err;
3134 
3135 		/* The module might have gone in the meantime. */
3136 		old = find_module_all(name, strlen(name), true);
3137 	}
3138 
3139 	if (try_add_failed_module(name, reason))
3140 		pr_warn("Could not add fail-tracking for module: %s\n", name);
3141 
3142 	/*
3143 	 * We are here only when the same module was being loaded. Do
3144 	 * not try to load it again right now. It prevents long delays
3145 	 * caused by serialized module load failures. It might happen
3146 	 * when more devices of the same type trigger load of
3147 	 * a particular module.
3148 	 */
3149 	if (old && old->state == MODULE_STATE_LIVE)
3150 		return -EEXIST;
3151 	return -EBUSY;
3152 }
3153 
3154 /*
3155  * We try to place it in the list now to make sure it's unique before
3156  * we dedicate too many resources.  In particular, temporary percpu
3157  * memory exhaustion.
3158  */
3159 static int add_unformed_module(struct module *mod)
3160 {
3161 	int err;
3162 
3163 	mod->state = MODULE_STATE_UNFORMED;
3164 
3165 	mutex_lock(&module_mutex);
3166 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3167 	if (err)
3168 		goto out;
3169 
3170 	mod_update_bounds(mod);
3171 	list_add_rcu(&mod->list, &modules);
3172 	mod_tree_insert(mod);
3173 	err = 0;
3174 
3175 out:
3176 	mutex_unlock(&module_mutex);
3177 	return err;
3178 }
3179 
3180 static int complete_formation(struct module *mod, struct load_info *info)
3181 {
3182 	int err;
3183 
3184 	mutex_lock(&module_mutex);
3185 
3186 	/* Find duplicate symbols (must be called under lock). */
3187 	err = verify_exported_symbols(mod);
3188 	if (err < 0)
3189 		goto out;
3190 
3191 	/* These rely on module_mutex for list integrity. */
3192 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3193 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
3194 
3195 	err = module_enable_rodata_ro(mod);
3196 	if (err)
3197 		goto out_strict_rwx;
3198 	err = module_enable_data_nx(mod);
3199 	if (err)
3200 		goto out_strict_rwx;
3201 	err = module_enable_text_rox(mod);
3202 	if (err)
3203 		goto out_strict_rwx;
3204 
3205 	/*
3206 	 * Mark state as coming so strong_try_module_get() ignores us,
3207 	 * but kallsyms etc. can see us.
3208 	 */
3209 	mod->state = MODULE_STATE_COMING;
3210 	mutex_unlock(&module_mutex);
3211 
3212 	return 0;
3213 
3214 out_strict_rwx:
3215 	module_bug_cleanup(mod);
3216 out:
3217 	mutex_unlock(&module_mutex);
3218 	return err;
3219 }
3220 
3221 static int prepare_coming_module(struct module *mod)
3222 {
3223 	int err;
3224 
3225 	ftrace_module_enable(mod);
3226 	err = klp_module_coming(mod);
3227 	if (err)
3228 		return err;
3229 
3230 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3231 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3232 	err = notifier_to_errno(err);
3233 	if (err)
3234 		klp_module_going(mod);
3235 
3236 	return err;
3237 }
3238 
3239 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3240 				   void *arg)
3241 {
3242 	struct module *mod = arg;
3243 	int ret;
3244 
3245 	if (strcmp(param, "async_probe") == 0) {
3246 		if (kstrtobool(val, &mod->async_probe_requested))
3247 			mod->async_probe_requested = true;
3248 		return 0;
3249 	}
3250 
3251 	/* Check for magic 'dyndbg' arg */
3252 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3253 	if (ret != 0)
3254 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3255 	return 0;
3256 }
3257 
3258 /* Module within temporary copy, this doesn't do any allocation  */
3259 static int early_mod_check(struct load_info *info, int flags)
3260 {
3261 	int err;
3262 
3263 	/*
3264 	 * Now that we know we have the correct module name, check
3265 	 * if it's blacklisted.
3266 	 */
3267 	if (blacklisted(info->name)) {
3268 		pr_err("Module %s is blacklisted\n", info->name);
3269 		return -EPERM;
3270 	}
3271 
3272 	err = rewrite_section_headers(info, flags);
3273 	if (err)
3274 		return err;
3275 
3276 	/* Check module struct version now, before we try to use module. */
3277 	if (!check_modstruct_version(info, info->mod))
3278 		return -ENOEXEC;
3279 
3280 	err = check_modinfo(info->mod, info, flags);
3281 	if (err)
3282 		return err;
3283 
3284 	mutex_lock(&module_mutex);
3285 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3286 	mutex_unlock(&module_mutex);
3287 
3288 	return err;
3289 }
3290 
3291 /*
3292  * Allocate and load the module: note that size of section 0 is always
3293  * zero, and we rely on this for optional sections.
3294  */
3295 static int load_module(struct load_info *info, const char __user *uargs,
3296 		       int flags)
3297 {
3298 	struct module *mod;
3299 	bool module_allocated = false;
3300 	long err = 0;
3301 	char *after_dashes;
3302 
3303 	/*
3304 	 * Do the signature check (if any) first. All that
3305 	 * the signature check needs is info->len, it does
3306 	 * not need any of the section info. That can be
3307 	 * set up later. This will minimize the chances
3308 	 * of a corrupt module causing problems before
3309 	 * we even get to the signature check.
3310 	 *
3311 	 * The check will also adjust info->len by stripping
3312 	 * off the sig length at the end of the module, making
3313 	 * checks against info->len more correct.
3314 	 */
3315 	err = module_sig_check(info, flags);
3316 	if (err)
3317 		goto free_copy;
3318 
3319 	/*
3320 	 * Do basic sanity checks against the ELF header and
3321 	 * sections. Cache useful sections and set the
3322 	 * info->mod to the userspace passed struct module.
3323 	 */
3324 	err = elf_validity_cache_copy(info, flags);
3325 	if (err)
3326 		goto free_copy;
3327 
3328 	err = early_mod_check(info, flags);
3329 	if (err)
3330 		goto free_copy;
3331 
3332 	/* Figure out module layout, and allocate all the memory. */
3333 	mod = layout_and_allocate(info, flags);
3334 	if (IS_ERR(mod)) {
3335 		err = PTR_ERR(mod);
3336 		goto free_copy;
3337 	}
3338 
3339 	module_allocated = true;
3340 
3341 	audit_log_kern_module(mod->name);
3342 
3343 	/* Reserve our place in the list. */
3344 	err = add_unformed_module(mod);
3345 	if (err)
3346 		goto free_module;
3347 
3348 	/*
3349 	 * We are tainting your kernel if your module gets into
3350 	 * the modules linked list somehow.
3351 	 */
3352 	module_augment_kernel_taints(mod, info);
3353 
3354 	/* To avoid stressing percpu allocator, do this once we're unique. */
3355 	err = percpu_modalloc(mod, info);
3356 	if (err)
3357 		goto unlink_mod;
3358 
3359 	/* Now module is in final location, initialize linked lists, etc. */
3360 	err = module_unload_init(mod);
3361 	if (err)
3362 		goto unlink_mod;
3363 
3364 	init_param_lock(mod);
3365 
3366 	/*
3367 	 * Now we've got everything in the final locations, we can
3368 	 * find optional sections.
3369 	 */
3370 	err = find_module_sections(mod, info);
3371 	if (err)
3372 		goto free_unload;
3373 
3374 	err = check_export_symbol_versions(mod);
3375 	if (err)
3376 		goto free_unload;
3377 
3378 	/* Set up MODINFO_ATTR fields */
3379 	setup_modinfo(mod, info);
3380 
3381 	/* Fix up syms, so that st_value is a pointer to location. */
3382 	err = simplify_symbols(mod, info);
3383 	if (err < 0)
3384 		goto free_modinfo;
3385 
3386 	err = apply_relocations(mod, info);
3387 	if (err < 0)
3388 		goto free_modinfo;
3389 
3390 	err = post_relocation(mod, info);
3391 	if (err < 0)
3392 		goto free_modinfo;
3393 
3394 	flush_module_icache(mod);
3395 
3396 	/* Now copy in args */
3397 	mod->args = strndup_user(uargs, ~0UL >> 1);
3398 	if (IS_ERR(mod->args)) {
3399 		err = PTR_ERR(mod->args);
3400 		goto free_arch_cleanup;
3401 	}
3402 
3403 	init_build_id(mod, info);
3404 
3405 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3406 	ftrace_module_init(mod);
3407 
3408 	/* Finally it's fully formed, ready to start executing. */
3409 	err = complete_formation(mod, info);
3410 	if (err)
3411 		goto ddebug_cleanup;
3412 
3413 	err = prepare_coming_module(mod);
3414 	if (err)
3415 		goto bug_cleanup;
3416 
3417 	mod->async_probe_requested = async_probe;
3418 
3419 	/* Module is ready to execute: parsing args may do that. */
3420 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3421 				  -32768, 32767, mod,
3422 				  unknown_module_param_cb);
3423 	if (IS_ERR(after_dashes)) {
3424 		err = PTR_ERR(after_dashes);
3425 		goto coming_cleanup;
3426 	} else if (after_dashes) {
3427 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3428 		       mod->name, after_dashes);
3429 	}
3430 
3431 	/* Link in to sysfs. */
3432 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3433 	if (err < 0)
3434 		goto coming_cleanup;
3435 
3436 	if (is_livepatch_module(mod)) {
3437 		err = copy_module_elf(mod, info);
3438 		if (err < 0)
3439 			goto sysfs_cleanup;
3440 	}
3441 
3442 	/* Get rid of temporary copy. */
3443 	free_copy(info, flags);
3444 
3445 	codetag_load_module(mod);
3446 
3447 	/* Done! */
3448 	trace_module_load(mod);
3449 
3450 	return do_init_module(mod);
3451 
3452  sysfs_cleanup:
3453 	mod_sysfs_teardown(mod);
3454  coming_cleanup:
3455 	mod->state = MODULE_STATE_GOING;
3456 	destroy_params(mod->kp, mod->num_kp);
3457 	blocking_notifier_call_chain(&module_notify_list,
3458 				     MODULE_STATE_GOING, mod);
3459 	klp_module_going(mod);
3460  bug_cleanup:
3461 	mod->state = MODULE_STATE_GOING;
3462 	/* module_bug_cleanup needs module_mutex protection */
3463 	mutex_lock(&module_mutex);
3464 	module_bug_cleanup(mod);
3465 	mutex_unlock(&module_mutex);
3466 
3467  ddebug_cleanup:
3468 	ftrace_release_mod(mod);
3469 	synchronize_rcu();
3470 	kfree(mod->args);
3471  free_arch_cleanup:
3472 	module_arch_cleanup(mod);
3473  free_modinfo:
3474 	free_modinfo(mod);
3475  free_unload:
3476 	module_unload_free(mod);
3477  unlink_mod:
3478 	mutex_lock(&module_mutex);
3479 	/* Unlink carefully: kallsyms could be walking list. */
3480 	list_del_rcu(&mod->list);
3481 	mod_tree_remove(mod);
3482 	wake_up_all(&module_wq);
3483 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3484 	synchronize_rcu();
3485 	mutex_unlock(&module_mutex);
3486  free_module:
3487 	mod_stat_bump_invalid(info, flags);
3488 	/* Free lock-classes; relies on the preceding sync_rcu() */
3489 	for_class_mod_mem_type(type, core_data) {
3490 		lockdep_free_key_range(mod->mem[type].base,
3491 				       mod->mem[type].size);
3492 	}
3493 
3494 	module_deallocate(mod, info);
3495  free_copy:
3496 	/*
3497 	 * The info->len is always set. We distinguish between
3498 	 * failures once the proper module was allocated and
3499 	 * before that.
3500 	 */
3501 	if (!module_allocated)
3502 		mod_stat_bump_becoming(info, flags);
3503 	free_copy(info, flags);
3504 	return err;
3505 }
3506 
3507 SYSCALL_DEFINE3(init_module, void __user *, umod,
3508 		unsigned long, len, const char __user *, uargs)
3509 {
3510 	int err;
3511 	struct load_info info = { };
3512 
3513 	err = may_init_module();
3514 	if (err)
3515 		return err;
3516 
3517 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3518 	       umod, len, uargs);
3519 
3520 	err = copy_module_from_user(umod, len, &info);
3521 	if (err) {
3522 		mod_stat_inc(&failed_kreads);
3523 		mod_stat_add_long(len, &invalid_kread_bytes);
3524 		return err;
3525 	}
3526 
3527 	return load_module(&info, uargs, 0);
3528 }
3529 
3530 struct idempotent {
3531 	const void *cookie;
3532 	struct hlist_node entry;
3533 	struct completion complete;
3534 	int ret;
3535 };
3536 
3537 #define IDEM_HASH_BITS 8
3538 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3539 static DEFINE_SPINLOCK(idem_lock);
3540 
3541 static bool idempotent(struct idempotent *u, const void *cookie)
3542 {
3543 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3544 	struct hlist_head *head = idem_hash + hash;
3545 	struct idempotent *existing;
3546 	bool first;
3547 
3548 	u->ret = -EINTR;
3549 	u->cookie = cookie;
3550 	init_completion(&u->complete);
3551 
3552 	spin_lock(&idem_lock);
3553 	first = true;
3554 	hlist_for_each_entry(existing, head, entry) {
3555 		if (existing->cookie != cookie)
3556 			continue;
3557 		first = false;
3558 		break;
3559 	}
3560 	hlist_add_head(&u->entry, idem_hash + hash);
3561 	spin_unlock(&idem_lock);
3562 
3563 	return !first;
3564 }
3565 
3566 /*
3567  * We were the first one with 'cookie' on the list, and we ended
3568  * up completing the operation. We now need to walk the list,
3569  * remove everybody - which includes ourselves - fill in the return
3570  * value, and then complete the operation.
3571  */
3572 static int idempotent_complete(struct idempotent *u, int ret)
3573 {
3574 	const void *cookie = u->cookie;
3575 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3576 	struct hlist_head *head = idem_hash + hash;
3577 	struct hlist_node *next;
3578 	struct idempotent *pos;
3579 
3580 	spin_lock(&idem_lock);
3581 	hlist_for_each_entry_safe(pos, next, head, entry) {
3582 		if (pos->cookie != cookie)
3583 			continue;
3584 		hlist_del_init(&pos->entry);
3585 		pos->ret = ret;
3586 		complete(&pos->complete);
3587 	}
3588 	spin_unlock(&idem_lock);
3589 	return ret;
3590 }
3591 
3592 /*
3593  * Wait for the idempotent worker.
3594  *
3595  * If we get interrupted, we need to remove ourselves from the
3596  * the idempotent list, and the completion may still come in.
3597  *
3598  * The 'idem_lock' protects against the race, and 'idem.ret' was
3599  * initialized to -EINTR and is thus always the right return
3600  * value even if the idempotent work then completes between
3601  * the wait_for_completion and the cleanup.
3602  */
3603 static int idempotent_wait_for_completion(struct idempotent *u)
3604 {
3605 	if (wait_for_completion_interruptible(&u->complete)) {
3606 		spin_lock(&idem_lock);
3607 		if (!hlist_unhashed(&u->entry))
3608 			hlist_del(&u->entry);
3609 		spin_unlock(&idem_lock);
3610 	}
3611 	return u->ret;
3612 }
3613 
3614 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3615 {
3616 	struct load_info info = { };
3617 	void *buf = NULL;
3618 	int len;
3619 
3620 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3621 	if (len < 0) {
3622 		mod_stat_inc(&failed_kreads);
3623 		return len;
3624 	}
3625 
3626 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3627 		int err = module_decompress(&info, buf, len);
3628 		vfree(buf); /* compressed data is no longer needed */
3629 		if (err) {
3630 			mod_stat_inc(&failed_decompress);
3631 			mod_stat_add_long(len, &invalid_decompress_bytes);
3632 			return err;
3633 		}
3634 	} else {
3635 		info.hdr = buf;
3636 		info.len = len;
3637 	}
3638 
3639 	return load_module(&info, uargs, flags);
3640 }
3641 
3642 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3643 {
3644 	struct idempotent idem;
3645 
3646 	if (!(f->f_mode & FMODE_READ))
3647 		return -EBADF;
3648 
3649 	/* Are we the winners of the race and get to do this? */
3650 	if (!idempotent(&idem, file_inode(f))) {
3651 		int ret = init_module_from_file(f, uargs, flags);
3652 		return idempotent_complete(&idem, ret);
3653 	}
3654 
3655 	/*
3656 	 * Somebody else won the race and is loading the module.
3657 	 */
3658 	return idempotent_wait_for_completion(&idem);
3659 }
3660 
3661 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3662 {
3663 	int err = may_init_module();
3664 	if (err)
3665 		return err;
3666 
3667 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3668 
3669 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3670 		      |MODULE_INIT_IGNORE_VERMAGIC
3671 		      |MODULE_INIT_COMPRESSED_FILE))
3672 		return -EINVAL;
3673 
3674 	CLASS(fd, f)(fd);
3675 	if (fd_empty(f))
3676 		return -EBADF;
3677 	return idempotent_init_module(fd_file(f), uargs, flags);
3678 }
3679 
3680 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
3681 char *module_flags(struct module *mod, char *buf, bool show_state)
3682 {
3683 	int bx = 0;
3684 
3685 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3686 	if (!mod->taints && !show_state)
3687 		goto out;
3688 	if (mod->taints ||
3689 	    mod->state == MODULE_STATE_GOING ||
3690 	    mod->state == MODULE_STATE_COMING) {
3691 		buf[bx++] = '(';
3692 		bx += module_flags_taint(mod->taints, buf + bx);
3693 		/* Show a - for module-is-being-unloaded */
3694 		if (mod->state == MODULE_STATE_GOING && show_state)
3695 			buf[bx++] = '-';
3696 		/* Show a + for module-is-being-loaded */
3697 		if (mod->state == MODULE_STATE_COMING && show_state)
3698 			buf[bx++] = '+';
3699 		buf[bx++] = ')';
3700 	}
3701 out:
3702 	buf[bx] = '\0';
3703 
3704 	return buf;
3705 }
3706 
3707 /* Given an address, look for it in the module exception tables. */
3708 const struct exception_table_entry *search_module_extables(unsigned long addr)
3709 {
3710 	const struct exception_table_entry *e = NULL;
3711 	struct module *mod;
3712 
3713 	preempt_disable();
3714 	mod = __module_address(addr);
3715 	if (!mod)
3716 		goto out;
3717 
3718 	if (!mod->num_exentries)
3719 		goto out;
3720 
3721 	e = search_extable(mod->extable,
3722 			   mod->num_exentries,
3723 			   addr);
3724 out:
3725 	preempt_enable();
3726 
3727 	/*
3728 	 * Now, if we found one, we are running inside it now, hence
3729 	 * we cannot unload the module, hence no refcnt needed.
3730 	 */
3731 	return e;
3732 }
3733 
3734 /**
3735  * is_module_address() - is this address inside a module?
3736  * @addr: the address to check.
3737  *
3738  * See is_module_text_address() if you simply want to see if the address
3739  * is code (not data).
3740  */
3741 bool is_module_address(unsigned long addr)
3742 {
3743 	bool ret;
3744 
3745 	preempt_disable();
3746 	ret = __module_address(addr) != NULL;
3747 	preempt_enable();
3748 
3749 	return ret;
3750 }
3751 
3752 /**
3753  * __module_address() - get the module which contains an address.
3754  * @addr: the address.
3755  *
3756  * Must be called with preempt disabled or module mutex held so that
3757  * module doesn't get freed during this.
3758  */
3759 struct module *__module_address(unsigned long addr)
3760 {
3761 	struct module *mod;
3762 
3763 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3764 		goto lookup;
3765 
3766 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3767 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3768 		goto lookup;
3769 #endif
3770 
3771 	return NULL;
3772 
3773 lookup:
3774 	module_assert_mutex_or_preempt();
3775 
3776 	mod = mod_find(addr, &mod_tree);
3777 	if (mod) {
3778 		BUG_ON(!within_module(addr, mod));
3779 		if (mod->state == MODULE_STATE_UNFORMED)
3780 			mod = NULL;
3781 	}
3782 	return mod;
3783 }
3784 
3785 /**
3786  * is_module_text_address() - is this address inside module code?
3787  * @addr: the address to check.
3788  *
3789  * See is_module_address() if you simply want to see if the address is
3790  * anywhere in a module.  See kernel_text_address() for testing if an
3791  * address corresponds to kernel or module code.
3792  */
3793 bool is_module_text_address(unsigned long addr)
3794 {
3795 	bool ret;
3796 
3797 	preempt_disable();
3798 	ret = __module_text_address(addr) != NULL;
3799 	preempt_enable();
3800 
3801 	return ret;
3802 }
3803 
3804 /**
3805  * __module_text_address() - get the module whose code contains an address.
3806  * @addr: the address.
3807  *
3808  * Must be called with preempt disabled or module mutex held so that
3809  * module doesn't get freed during this.
3810  */
3811 struct module *__module_text_address(unsigned long addr)
3812 {
3813 	struct module *mod = __module_address(addr);
3814 	if (mod) {
3815 		/* Make sure it's within the text section. */
3816 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3817 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3818 			mod = NULL;
3819 	}
3820 	return mod;
3821 }
3822 
3823 /* Don't grab lock, we're oopsing. */
3824 void print_modules(void)
3825 {
3826 	struct module *mod;
3827 	char buf[MODULE_FLAGS_BUF_SIZE];
3828 
3829 	printk(KERN_DEFAULT "Modules linked in:");
3830 	/* Most callers should already have preempt disabled, but make sure */
3831 	guard(rcu)();
3832 	list_for_each_entry_rcu(mod, &modules, list) {
3833 		if (mod->state == MODULE_STATE_UNFORMED)
3834 			continue;
3835 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3836 	}
3837 
3838 	print_unloaded_tainted_modules();
3839 	if (last_unloaded_module.name[0])
3840 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3841 			last_unloaded_module.taints);
3842 	pr_cont("\n");
3843 }
3844 
3845 #ifdef CONFIG_MODULE_DEBUGFS
3846 struct dentry *mod_debugfs_root;
3847 
3848 static int module_debugfs_init(void)
3849 {
3850 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3851 	return 0;
3852 }
3853 module_init(module_debugfs_init);
3854 #endif
3855