xref: /linux-6.15/kernel/module/main.c (revision 2bee0177)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <[email protected]>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 /*
69  * Mutex protects:
70  * 1) List of modules (also safely readable within RCU read section),
71  * 2) module_use links,
72  * 3) mod_tree.addr_min/mod_tree.addr_max.
73  * (delete and add uses RCU list operations).
74  */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77 
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82 
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 
87 struct symsearch {
88 	const struct kernel_symbol *start, *stop;
89 	const u32 *crcs;
90 	enum mod_license license;
91 };
92 
93 /*
94  * Bounds of module memory, for speeding up __module_address.
95  * Protected by module_mutex.
96  */
97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 				unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 	if (mod_mem_type_is_core_data(type)) {
105 		if (min < tree->data_addr_min)
106 			tree->data_addr_min = min;
107 		if (max > tree->data_addr_max)
108 			tree->data_addr_max = max;
109 		return;
110 	}
111 #endif
112 	if (min < tree->addr_min)
113 		tree->addr_min = min;
114 	if (max > tree->addr_max)
115 		tree->addr_max = max;
116 }
117 
118 static void mod_update_bounds(struct module *mod)
119 {
120 	for_each_mod_mem_type(type) {
121 		struct module_memory *mod_mem = &mod->mem[type];
122 
123 		if (mod_mem->size)
124 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 	}
126 }
127 
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131 
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134 
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136 
137 int register_module_notifier(struct notifier_block *nb)
138 {
139 	return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142 
143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148 
149 /*
150  * We require a truly strong try_module_get(): 0 means success.
151  * Otherwise an error is returned due to ongoing or failed
152  * initialization etc.
153  */
154 static inline int strong_try_module_get(struct module *mod)
155 {
156 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 	if (mod && mod->state == MODULE_STATE_COMING)
158 		return -EBUSY;
159 	if (try_module_get(mod))
160 		return 0;
161 	else
162 		return -ENOENT;
163 }
164 
165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 				    enum lockdep_ok lockdep_ok)
167 {
168 	add_taint(flag, lockdep_ok);
169 	set_bit(flag, &mod->taints);
170 }
171 
172 /*
173  * A thread that wants to hold a reference to a module only while it
174  * is running can call this to safely exit.
175  */
176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
177 {
178 	module_put(mod);
179 	kthread_exit(code);
180 }
181 EXPORT_SYMBOL(__module_put_and_kthread_exit);
182 
183 /* Find a module section: 0 means not found. */
184 static unsigned int find_sec(const struct load_info *info, const char *name)
185 {
186 	unsigned int i;
187 
188 	for (i = 1; i < info->hdr->e_shnum; i++) {
189 		Elf_Shdr *shdr = &info->sechdrs[i];
190 		/* Alloc bit cleared means "ignore it." */
191 		if ((shdr->sh_flags & SHF_ALLOC)
192 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
193 			return i;
194 	}
195 	return 0;
196 }
197 
198 /**
199  * find_any_unique_sec() - Find a unique section index by name
200  * @info: Load info for the module to scan
201  * @name: Name of the section we're looking for
202  *
203  * Locates a unique section by name. Ignores SHF_ALLOC.
204  *
205  * Return: Section index if found uniquely, zero if absent, negative count
206  *         of total instances if multiple were found.
207  */
208 static int find_any_unique_sec(const struct load_info *info, const char *name)
209 {
210 	unsigned int idx;
211 	unsigned int count = 0;
212 	int i;
213 
214 	for (i = 1; i < info->hdr->e_shnum; i++) {
215 		if (strcmp(info->secstrings + info->sechdrs[i].sh_name,
216 			   name) == 0) {
217 			count++;
218 			idx = i;
219 		}
220 	}
221 	if (count == 1) {
222 		return idx;
223 	} else if (count == 0) {
224 		return 0;
225 	} else {
226 		return -count;
227 	}
228 }
229 
230 /* Find a module section, or NULL. */
231 static void *section_addr(const struct load_info *info, const char *name)
232 {
233 	/* Section 0 has sh_addr 0. */
234 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
235 }
236 
237 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
238 static void *section_objs(const struct load_info *info,
239 			  const char *name,
240 			  size_t object_size,
241 			  unsigned int *num)
242 {
243 	unsigned int sec = find_sec(info, name);
244 
245 	/* Section 0 has sh_addr 0 and sh_size 0. */
246 	*num = info->sechdrs[sec].sh_size / object_size;
247 	return (void *)info->sechdrs[sec].sh_addr;
248 }
249 
250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
251 static unsigned int find_any_sec(const struct load_info *info, const char *name)
252 {
253 	unsigned int i;
254 
255 	for (i = 1; i < info->hdr->e_shnum; i++) {
256 		Elf_Shdr *shdr = &info->sechdrs[i];
257 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
258 			return i;
259 	}
260 	return 0;
261 }
262 
263 /*
264  * Find a module section, or NULL. Fill in number of "objects" in section.
265  * Ignores SHF_ALLOC flag.
266  */
267 static __maybe_unused void *any_section_objs(const struct load_info *info,
268 					     const char *name,
269 					     size_t object_size,
270 					     unsigned int *num)
271 {
272 	unsigned int sec = find_any_sec(info, name);
273 
274 	/* Section 0 has sh_addr 0 and sh_size 0. */
275 	*num = info->sechdrs[sec].sh_size / object_size;
276 	return (void *)info->sechdrs[sec].sh_addr;
277 }
278 
279 #ifndef CONFIG_MODVERSIONS
280 #define symversion(base, idx) NULL
281 #else
282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
283 #endif
284 
285 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
286 {
287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
288 	return offset_to_ptr(&sym->name_offset);
289 #else
290 	return sym->name;
291 #endif
292 }
293 
294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
295 {
296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
297 	if (!sym->namespace_offset)
298 		return NULL;
299 	return offset_to_ptr(&sym->namespace_offset);
300 #else
301 	return sym->namespace;
302 #endif
303 }
304 
305 int cmp_name(const void *name, const void *sym)
306 {
307 	return strcmp(name, kernel_symbol_name(sym));
308 }
309 
310 static bool find_exported_symbol_in_section(const struct symsearch *syms,
311 					    struct module *owner,
312 					    struct find_symbol_arg *fsa)
313 {
314 	struct kernel_symbol *sym;
315 
316 	if (!fsa->gplok && syms->license == GPL_ONLY)
317 		return false;
318 
319 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
320 			sizeof(struct kernel_symbol), cmp_name);
321 	if (!sym)
322 		return false;
323 
324 	fsa->owner = owner;
325 	fsa->crc = symversion(syms->crcs, sym - syms->start);
326 	fsa->sym = sym;
327 	fsa->license = syms->license;
328 
329 	return true;
330 }
331 
332 /*
333  * Find an exported symbol and return it, along with, (optional) crc and
334  * (optional) module which owns it. Needs RCU or module_mutex.
335  */
336 bool find_symbol(struct find_symbol_arg *fsa)
337 {
338 	static const struct symsearch arr[] = {
339 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
340 		  NOT_GPL_ONLY },
341 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
342 		  __start___kcrctab_gpl,
343 		  GPL_ONLY },
344 	};
345 	struct module *mod;
346 	unsigned int i;
347 
348 	for (i = 0; i < ARRAY_SIZE(arr); i++)
349 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
350 			return true;
351 
352 	list_for_each_entry_rcu(mod, &modules, list,
353 				lockdep_is_held(&module_mutex)) {
354 		struct symsearch arr[] = {
355 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
356 			  NOT_GPL_ONLY },
357 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
358 			  mod->gpl_crcs,
359 			  GPL_ONLY },
360 		};
361 
362 		if (mod->state == MODULE_STATE_UNFORMED)
363 			continue;
364 
365 		for (i = 0; i < ARRAY_SIZE(arr); i++)
366 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
367 				return true;
368 	}
369 
370 	pr_debug("Failed to find symbol %s\n", fsa->name);
371 	return false;
372 }
373 
374 /*
375  * Search for module by name: must hold module_mutex (or RCU for read-only
376  * access).
377  */
378 struct module *find_module_all(const char *name, size_t len,
379 			       bool even_unformed)
380 {
381 	struct module *mod;
382 
383 	list_for_each_entry_rcu(mod, &modules, list,
384 				lockdep_is_held(&module_mutex)) {
385 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
386 			continue;
387 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
388 			return mod;
389 	}
390 	return NULL;
391 }
392 
393 struct module *find_module(const char *name)
394 {
395 	return find_module_all(name, strlen(name), false);
396 }
397 
398 #ifdef CONFIG_SMP
399 
400 static inline void __percpu *mod_percpu(struct module *mod)
401 {
402 	return mod->percpu;
403 }
404 
405 static int percpu_modalloc(struct module *mod, struct load_info *info)
406 {
407 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
408 	unsigned long align = pcpusec->sh_addralign;
409 
410 	if (!pcpusec->sh_size)
411 		return 0;
412 
413 	if (align > PAGE_SIZE) {
414 		pr_warn("%s: per-cpu alignment %li > %li\n",
415 			mod->name, align, PAGE_SIZE);
416 		align = PAGE_SIZE;
417 	}
418 
419 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
420 	if (!mod->percpu) {
421 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
422 			mod->name, (unsigned long)pcpusec->sh_size);
423 		return -ENOMEM;
424 	}
425 	mod->percpu_size = pcpusec->sh_size;
426 	return 0;
427 }
428 
429 static void percpu_modfree(struct module *mod)
430 {
431 	free_percpu(mod->percpu);
432 }
433 
434 static unsigned int find_pcpusec(struct load_info *info)
435 {
436 	return find_sec(info, ".data..percpu");
437 }
438 
439 static void percpu_modcopy(struct module *mod,
440 			   const void *from, unsigned long size)
441 {
442 	int cpu;
443 
444 	for_each_possible_cpu(cpu)
445 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
446 }
447 
448 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
449 {
450 	struct module *mod;
451 	unsigned int cpu;
452 
453 	guard(rcu)();
454 	list_for_each_entry_rcu(mod, &modules, list) {
455 		if (mod->state == MODULE_STATE_UNFORMED)
456 			continue;
457 		if (!mod->percpu_size)
458 			continue;
459 		for_each_possible_cpu(cpu) {
460 			void *start = per_cpu_ptr(mod->percpu, cpu);
461 			void *va = (void *)addr;
462 
463 			if (va >= start && va < start + mod->percpu_size) {
464 				if (can_addr) {
465 					*can_addr = (unsigned long) (va - start);
466 					*can_addr += (unsigned long)
467 						per_cpu_ptr(mod->percpu,
468 							    get_boot_cpu_id());
469 				}
470 				return true;
471 			}
472 		}
473 	}
474 	return false;
475 }
476 
477 /**
478  * is_module_percpu_address() - test whether address is from module static percpu
479  * @addr: address to test
480  *
481  * Test whether @addr belongs to module static percpu area.
482  *
483  * Return: %true if @addr is from module static percpu area
484  */
485 bool is_module_percpu_address(unsigned long addr)
486 {
487 	return __is_module_percpu_address(addr, NULL);
488 }
489 
490 #else /* ... !CONFIG_SMP */
491 
492 static inline void __percpu *mod_percpu(struct module *mod)
493 {
494 	return NULL;
495 }
496 static int percpu_modalloc(struct module *mod, struct load_info *info)
497 {
498 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
499 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
500 		return -ENOMEM;
501 	return 0;
502 }
503 static inline void percpu_modfree(struct module *mod)
504 {
505 }
506 static unsigned int find_pcpusec(struct load_info *info)
507 {
508 	return 0;
509 }
510 static inline void percpu_modcopy(struct module *mod,
511 				  const void *from, unsigned long size)
512 {
513 	/* pcpusec should be 0, and size of that section should be 0. */
514 	BUG_ON(size != 0);
515 }
516 bool is_module_percpu_address(unsigned long addr)
517 {
518 	return false;
519 }
520 
521 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
522 {
523 	return false;
524 }
525 
526 #endif /* CONFIG_SMP */
527 
528 #define MODINFO_ATTR(field)	\
529 static void setup_modinfo_##field(struct module *mod, const char *s)  \
530 {                                                                     \
531 	mod->field = kstrdup(s, GFP_KERNEL);                          \
532 }                                                                     \
533 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \
534 			struct module_kobject *mk, char *buffer)      \
535 {                                                                     \
536 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
537 }                                                                     \
538 static int modinfo_##field##_exists(struct module *mod)               \
539 {                                                                     \
540 	return mod->field != NULL;                                    \
541 }                                                                     \
542 static void free_modinfo_##field(struct module *mod)                  \
543 {                                                                     \
544 	kfree(mod->field);                                            \
545 	mod->field = NULL;                                            \
546 }                                                                     \
547 static const struct module_attribute modinfo_##field = {              \
548 	.attr = { .name = __stringify(field), .mode = 0444 },         \
549 	.show = show_modinfo_##field,                                 \
550 	.setup = setup_modinfo_##field,                               \
551 	.test = modinfo_##field##_exists,                             \
552 	.free = free_modinfo_##field,                                 \
553 };
554 
555 MODINFO_ATTR(version);
556 MODINFO_ATTR(srcversion);
557 
558 static struct {
559 	char name[MODULE_NAME_LEN + 1];
560 	char taints[MODULE_FLAGS_BUF_SIZE];
561 } last_unloaded_module;
562 
563 #ifdef CONFIG_MODULE_UNLOAD
564 
565 EXPORT_TRACEPOINT_SYMBOL(module_get);
566 
567 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
568 #define MODULE_REF_BASE	1
569 
570 /* Init the unload section of the module. */
571 static int module_unload_init(struct module *mod)
572 {
573 	/*
574 	 * Initialize reference counter to MODULE_REF_BASE.
575 	 * refcnt == 0 means module is going.
576 	 */
577 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
578 
579 	INIT_LIST_HEAD(&mod->source_list);
580 	INIT_LIST_HEAD(&mod->target_list);
581 
582 	/* Hold reference count during initialization. */
583 	atomic_inc(&mod->refcnt);
584 
585 	return 0;
586 }
587 
588 /* Does a already use b? */
589 static int already_uses(struct module *a, struct module *b)
590 {
591 	struct module_use *use;
592 
593 	list_for_each_entry(use, &b->source_list, source_list) {
594 		if (use->source == a)
595 			return 1;
596 	}
597 	pr_debug("%s does not use %s!\n", a->name, b->name);
598 	return 0;
599 }
600 
601 /*
602  * Module a uses b
603  *  - we add 'a' as a "source", 'b' as a "target" of module use
604  *  - the module_use is added to the list of 'b' sources (so
605  *    'b' can walk the list to see who sourced them), and of 'a'
606  *    targets (so 'a' can see what modules it targets).
607  */
608 static int add_module_usage(struct module *a, struct module *b)
609 {
610 	struct module_use *use;
611 
612 	pr_debug("Allocating new usage for %s.\n", a->name);
613 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
614 	if (!use)
615 		return -ENOMEM;
616 
617 	use->source = a;
618 	use->target = b;
619 	list_add(&use->source_list, &b->source_list);
620 	list_add(&use->target_list, &a->target_list);
621 	return 0;
622 }
623 
624 /* Module a uses b: caller needs module_mutex() */
625 static int ref_module(struct module *a, struct module *b)
626 {
627 	int err;
628 
629 	if (b == NULL || already_uses(a, b))
630 		return 0;
631 
632 	/* If module isn't available, we fail. */
633 	err = strong_try_module_get(b);
634 	if (err)
635 		return err;
636 
637 	err = add_module_usage(a, b);
638 	if (err) {
639 		module_put(b);
640 		return err;
641 	}
642 	return 0;
643 }
644 
645 /* Clear the unload stuff of the module. */
646 static void module_unload_free(struct module *mod)
647 {
648 	struct module_use *use, *tmp;
649 
650 	mutex_lock(&module_mutex);
651 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
652 		struct module *i = use->target;
653 		pr_debug("%s unusing %s\n", mod->name, i->name);
654 		module_put(i);
655 		list_del(&use->source_list);
656 		list_del(&use->target_list);
657 		kfree(use);
658 	}
659 	mutex_unlock(&module_mutex);
660 }
661 
662 #ifdef CONFIG_MODULE_FORCE_UNLOAD
663 static inline int try_force_unload(unsigned int flags)
664 {
665 	int ret = (flags & O_TRUNC);
666 	if (ret)
667 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
668 	return ret;
669 }
670 #else
671 static inline int try_force_unload(unsigned int flags)
672 {
673 	return 0;
674 }
675 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
676 
677 /* Try to release refcount of module, 0 means success. */
678 static int try_release_module_ref(struct module *mod)
679 {
680 	int ret;
681 
682 	/* Try to decrement refcnt which we set at loading */
683 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
684 	BUG_ON(ret < 0);
685 	if (ret)
686 		/* Someone can put this right now, recover with checking */
687 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
688 
689 	return ret;
690 }
691 
692 static int try_stop_module(struct module *mod, int flags, int *forced)
693 {
694 	/* If it's not unused, quit unless we're forcing. */
695 	if (try_release_module_ref(mod) != 0) {
696 		*forced = try_force_unload(flags);
697 		if (!(*forced))
698 			return -EWOULDBLOCK;
699 	}
700 
701 	/* Mark it as dying. */
702 	mod->state = MODULE_STATE_GOING;
703 
704 	return 0;
705 }
706 
707 /**
708  * module_refcount() - return the refcount or -1 if unloading
709  * @mod:	the module we're checking
710  *
711  * Return:
712  *	-1 if the module is in the process of unloading
713  *	otherwise the number of references in the kernel to the module
714  */
715 int module_refcount(struct module *mod)
716 {
717 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
718 }
719 EXPORT_SYMBOL(module_refcount);
720 
721 /* This exists whether we can unload or not */
722 static void free_module(struct module *mod);
723 
724 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
725 		unsigned int, flags)
726 {
727 	struct module *mod;
728 	char name[MODULE_NAME_LEN];
729 	char buf[MODULE_FLAGS_BUF_SIZE];
730 	int ret, forced = 0;
731 
732 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
733 		return -EPERM;
734 
735 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
736 		return -EFAULT;
737 	name[MODULE_NAME_LEN-1] = '\0';
738 
739 	audit_log_kern_module(name);
740 
741 	if (mutex_lock_interruptible(&module_mutex) != 0)
742 		return -EINTR;
743 
744 	mod = find_module(name);
745 	if (!mod) {
746 		ret = -ENOENT;
747 		goto out;
748 	}
749 
750 	if (!list_empty(&mod->source_list)) {
751 		/* Other modules depend on us: get rid of them first. */
752 		ret = -EWOULDBLOCK;
753 		goto out;
754 	}
755 
756 	/* Doing init or already dying? */
757 	if (mod->state != MODULE_STATE_LIVE) {
758 		/* FIXME: if (force), slam module count damn the torpedoes */
759 		pr_debug("%s already dying\n", mod->name);
760 		ret = -EBUSY;
761 		goto out;
762 	}
763 
764 	/* If it has an init func, it must have an exit func to unload */
765 	if (mod->init && !mod->exit) {
766 		forced = try_force_unload(flags);
767 		if (!forced) {
768 			/* This module can't be removed */
769 			ret = -EBUSY;
770 			goto out;
771 		}
772 	}
773 
774 	ret = try_stop_module(mod, flags, &forced);
775 	if (ret != 0)
776 		goto out;
777 
778 	mutex_unlock(&module_mutex);
779 	/* Final destruction now no one is using it. */
780 	if (mod->exit != NULL)
781 		mod->exit();
782 	blocking_notifier_call_chain(&module_notify_list,
783 				     MODULE_STATE_GOING, mod);
784 	klp_module_going(mod);
785 	ftrace_release_mod(mod);
786 
787 	async_synchronize_full();
788 
789 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
790 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
791 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
792 
793 	free_module(mod);
794 	/* someone could wait for the module in add_unformed_module() */
795 	wake_up_all(&module_wq);
796 	return 0;
797 out:
798 	mutex_unlock(&module_mutex);
799 	return ret;
800 }
801 
802 void __symbol_put(const char *symbol)
803 {
804 	struct find_symbol_arg fsa = {
805 		.name	= symbol,
806 		.gplok	= true,
807 	};
808 
809 	guard(rcu)();
810 	BUG_ON(!find_symbol(&fsa));
811 	module_put(fsa.owner);
812 }
813 EXPORT_SYMBOL(__symbol_put);
814 
815 /* Note this assumes addr is a function, which it currently always is. */
816 void symbol_put_addr(void *addr)
817 {
818 	struct module *modaddr;
819 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
820 
821 	if (core_kernel_text(a))
822 		return;
823 
824 	/*
825 	 * Even though we hold a reference on the module; we still need to
826 	 * disable preemption in order to safely traverse the data structure.
827 	 */
828 	preempt_disable();
829 	modaddr = __module_text_address(a);
830 	BUG_ON(!modaddr);
831 	module_put(modaddr);
832 	preempt_enable();
833 }
834 EXPORT_SYMBOL_GPL(symbol_put_addr);
835 
836 static ssize_t show_refcnt(const struct module_attribute *mattr,
837 			   struct module_kobject *mk, char *buffer)
838 {
839 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
840 }
841 
842 static const struct module_attribute modinfo_refcnt =
843 	__ATTR(refcnt, 0444, show_refcnt, NULL);
844 
845 void __module_get(struct module *module)
846 {
847 	if (module) {
848 		atomic_inc(&module->refcnt);
849 		trace_module_get(module, _RET_IP_);
850 	}
851 }
852 EXPORT_SYMBOL(__module_get);
853 
854 bool try_module_get(struct module *module)
855 {
856 	bool ret = true;
857 
858 	if (module) {
859 		/* Note: here, we can fail to get a reference */
860 		if (likely(module_is_live(module) &&
861 			   atomic_inc_not_zero(&module->refcnt) != 0))
862 			trace_module_get(module, _RET_IP_);
863 		else
864 			ret = false;
865 	}
866 	return ret;
867 }
868 EXPORT_SYMBOL(try_module_get);
869 
870 void module_put(struct module *module)
871 {
872 	int ret;
873 
874 	if (module) {
875 		ret = atomic_dec_if_positive(&module->refcnt);
876 		WARN_ON(ret < 0);	/* Failed to put refcount */
877 		trace_module_put(module, _RET_IP_);
878 	}
879 }
880 EXPORT_SYMBOL(module_put);
881 
882 #else /* !CONFIG_MODULE_UNLOAD */
883 static inline void module_unload_free(struct module *mod)
884 {
885 }
886 
887 static int ref_module(struct module *a, struct module *b)
888 {
889 	return strong_try_module_get(b);
890 }
891 
892 static inline int module_unload_init(struct module *mod)
893 {
894 	return 0;
895 }
896 #endif /* CONFIG_MODULE_UNLOAD */
897 
898 size_t module_flags_taint(unsigned long taints, char *buf)
899 {
900 	size_t l = 0;
901 	int i;
902 
903 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
904 		if (taint_flags[i].module && test_bit(i, &taints))
905 			buf[l++] = taint_flags[i].c_true;
906 	}
907 
908 	return l;
909 }
910 
911 static ssize_t show_initstate(const struct module_attribute *mattr,
912 			      struct module_kobject *mk, char *buffer)
913 {
914 	const char *state = "unknown";
915 
916 	switch (mk->mod->state) {
917 	case MODULE_STATE_LIVE:
918 		state = "live";
919 		break;
920 	case MODULE_STATE_COMING:
921 		state = "coming";
922 		break;
923 	case MODULE_STATE_GOING:
924 		state = "going";
925 		break;
926 	default:
927 		BUG();
928 	}
929 	return sprintf(buffer, "%s\n", state);
930 }
931 
932 static const struct module_attribute modinfo_initstate =
933 	__ATTR(initstate, 0444, show_initstate, NULL);
934 
935 static ssize_t store_uevent(const struct module_attribute *mattr,
936 			    struct module_kobject *mk,
937 			    const char *buffer, size_t count)
938 {
939 	int rc;
940 
941 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
942 	return rc ? rc : count;
943 }
944 
945 const struct module_attribute module_uevent =
946 	__ATTR(uevent, 0200, NULL, store_uevent);
947 
948 static ssize_t show_coresize(const struct module_attribute *mattr,
949 			     struct module_kobject *mk, char *buffer)
950 {
951 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
952 
953 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
954 		for_class_mod_mem_type(type, core_data)
955 			size += mk->mod->mem[type].size;
956 	}
957 	return sprintf(buffer, "%u\n", size);
958 }
959 
960 static const struct module_attribute modinfo_coresize =
961 	__ATTR(coresize, 0444, show_coresize, NULL);
962 
963 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
964 static ssize_t show_datasize(const struct module_attribute *mattr,
965 			     struct module_kobject *mk, char *buffer)
966 {
967 	unsigned int size = 0;
968 
969 	for_class_mod_mem_type(type, core_data)
970 		size += mk->mod->mem[type].size;
971 	return sprintf(buffer, "%u\n", size);
972 }
973 
974 static const struct module_attribute modinfo_datasize =
975 	__ATTR(datasize, 0444, show_datasize, NULL);
976 #endif
977 
978 static ssize_t show_initsize(const struct module_attribute *mattr,
979 			     struct module_kobject *mk, char *buffer)
980 {
981 	unsigned int size = 0;
982 
983 	for_class_mod_mem_type(type, init)
984 		size += mk->mod->mem[type].size;
985 	return sprintf(buffer, "%u\n", size);
986 }
987 
988 static const struct module_attribute modinfo_initsize =
989 	__ATTR(initsize, 0444, show_initsize, NULL);
990 
991 static ssize_t show_taint(const struct module_attribute *mattr,
992 			  struct module_kobject *mk, char *buffer)
993 {
994 	size_t l;
995 
996 	l = module_flags_taint(mk->mod->taints, buffer);
997 	buffer[l++] = '\n';
998 	return l;
999 }
1000 
1001 static const struct module_attribute modinfo_taint =
1002 	__ATTR(taint, 0444, show_taint, NULL);
1003 
1004 const struct module_attribute *const modinfo_attrs[] = {
1005 	&module_uevent,
1006 	&modinfo_version,
1007 	&modinfo_srcversion,
1008 	&modinfo_initstate,
1009 	&modinfo_coresize,
1010 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
1011 	&modinfo_datasize,
1012 #endif
1013 	&modinfo_initsize,
1014 	&modinfo_taint,
1015 #ifdef CONFIG_MODULE_UNLOAD
1016 	&modinfo_refcnt,
1017 #endif
1018 	NULL,
1019 };
1020 
1021 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
1022 
1023 static const char vermagic[] = VERMAGIC_STRING;
1024 
1025 int try_to_force_load(struct module *mod, const char *reason)
1026 {
1027 #ifdef CONFIG_MODULE_FORCE_LOAD
1028 	if (!test_taint(TAINT_FORCED_MODULE))
1029 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1030 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1031 	return 0;
1032 #else
1033 	return -ENOEXEC;
1034 #endif
1035 }
1036 
1037 /* Parse tag=value strings from .modinfo section */
1038 char *module_next_tag_pair(char *string, unsigned long *secsize)
1039 {
1040 	/* Skip non-zero chars */
1041 	while (string[0]) {
1042 		string++;
1043 		if ((*secsize)-- <= 1)
1044 			return NULL;
1045 	}
1046 
1047 	/* Skip any zero padding. */
1048 	while (!string[0]) {
1049 		string++;
1050 		if ((*secsize)-- <= 1)
1051 			return NULL;
1052 	}
1053 	return string;
1054 }
1055 
1056 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1057 			      char *prev)
1058 {
1059 	char *p;
1060 	unsigned int taglen = strlen(tag);
1061 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1062 	unsigned long size = infosec->sh_size;
1063 
1064 	/*
1065 	 * get_modinfo() calls made before rewrite_section_headers()
1066 	 * must use sh_offset, as sh_addr isn't set!
1067 	 */
1068 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1069 
1070 	if (prev) {
1071 		size -= prev - modinfo;
1072 		modinfo = module_next_tag_pair(prev, &size);
1073 	}
1074 
1075 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1076 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1077 			return p + taglen + 1;
1078 	}
1079 	return NULL;
1080 }
1081 
1082 static char *get_modinfo(const struct load_info *info, const char *tag)
1083 {
1084 	return get_next_modinfo(info, tag, NULL);
1085 }
1086 
1087 static int verify_namespace_is_imported(const struct load_info *info,
1088 					const struct kernel_symbol *sym,
1089 					struct module *mod)
1090 {
1091 	const char *namespace;
1092 	char *imported_namespace;
1093 
1094 	namespace = kernel_symbol_namespace(sym);
1095 	if (namespace && namespace[0]) {
1096 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1097 			if (strcmp(namespace, imported_namespace) == 0)
1098 				return 0;
1099 		}
1100 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1101 		pr_warn(
1102 #else
1103 		pr_err(
1104 #endif
1105 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1106 			mod->name, kernel_symbol_name(sym), namespace);
1107 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1108 		return -EINVAL;
1109 #endif
1110 	}
1111 	return 0;
1112 }
1113 
1114 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1115 {
1116 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1117 		return true;
1118 
1119 	if (mod->using_gplonly_symbols) {
1120 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1121 			mod->name, name, owner->name);
1122 		return false;
1123 	}
1124 
1125 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1126 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1127 			mod->name, name, owner->name);
1128 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1129 	}
1130 	return true;
1131 }
1132 
1133 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1134 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1135 						  const struct load_info *info,
1136 						  const char *name,
1137 						  char ownername[])
1138 {
1139 	struct find_symbol_arg fsa = {
1140 		.name	= name,
1141 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1142 		.warn	= true,
1143 	};
1144 	int err;
1145 
1146 	/*
1147 	 * The module_mutex should not be a heavily contended lock;
1148 	 * if we get the occasional sleep here, we'll go an extra iteration
1149 	 * in the wait_event_interruptible(), which is harmless.
1150 	 */
1151 	sched_annotate_sleep();
1152 	mutex_lock(&module_mutex);
1153 	if (!find_symbol(&fsa))
1154 		goto unlock;
1155 
1156 	if (fsa.license == GPL_ONLY)
1157 		mod->using_gplonly_symbols = true;
1158 
1159 	if (!inherit_taint(mod, fsa.owner, name)) {
1160 		fsa.sym = NULL;
1161 		goto getname;
1162 	}
1163 
1164 	if (!check_version(info, name, mod, fsa.crc)) {
1165 		fsa.sym = ERR_PTR(-EINVAL);
1166 		goto getname;
1167 	}
1168 
1169 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1170 	if (err) {
1171 		fsa.sym = ERR_PTR(err);
1172 		goto getname;
1173 	}
1174 
1175 	err = ref_module(mod, fsa.owner);
1176 	if (err) {
1177 		fsa.sym = ERR_PTR(err);
1178 		goto getname;
1179 	}
1180 
1181 getname:
1182 	/* We must make copy under the lock if we failed to get ref. */
1183 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1184 unlock:
1185 	mutex_unlock(&module_mutex);
1186 	return fsa.sym;
1187 }
1188 
1189 static const struct kernel_symbol *
1190 resolve_symbol_wait(struct module *mod,
1191 		    const struct load_info *info,
1192 		    const char *name)
1193 {
1194 	const struct kernel_symbol *ksym;
1195 	char owner[MODULE_NAME_LEN];
1196 
1197 	if (wait_event_interruptible_timeout(module_wq,
1198 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1199 			|| PTR_ERR(ksym) != -EBUSY,
1200 					     30 * HZ) <= 0) {
1201 		pr_warn("%s: gave up waiting for init of module %s.\n",
1202 			mod->name, owner);
1203 	}
1204 	return ksym;
1205 }
1206 
1207 void __weak module_arch_cleanup(struct module *mod)
1208 {
1209 }
1210 
1211 void __weak module_arch_freeing_init(struct module *mod)
1212 {
1213 }
1214 
1215 void *__module_writable_address(struct module *mod, void *loc)
1216 {
1217 	for_class_mod_mem_type(type, text) {
1218 		struct module_memory *mem = &mod->mem[type];
1219 
1220 		if (loc >= mem->base && loc < mem->base + mem->size)
1221 			return loc + (mem->rw_copy - mem->base);
1222 	}
1223 
1224 	return loc;
1225 }
1226 
1227 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1228 {
1229 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1230 	enum execmem_type execmem_type;
1231 	void *ptr;
1232 
1233 	mod->mem[type].size = size;
1234 
1235 	if (mod_mem_type_is_data(type))
1236 		execmem_type = EXECMEM_MODULE_DATA;
1237 	else
1238 		execmem_type = EXECMEM_MODULE_TEXT;
1239 
1240 	ptr = execmem_alloc(execmem_type, size);
1241 	if (!ptr)
1242 		return -ENOMEM;
1243 
1244 	mod->mem[type].base = ptr;
1245 
1246 	if (execmem_is_rox(execmem_type)) {
1247 		ptr = vzalloc(size);
1248 
1249 		if (!ptr) {
1250 			execmem_free(mod->mem[type].base);
1251 			return -ENOMEM;
1252 		}
1253 
1254 		mod->mem[type].rw_copy = ptr;
1255 		mod->mem[type].is_rox = true;
1256 	} else {
1257 		mod->mem[type].rw_copy = mod->mem[type].base;
1258 		memset(mod->mem[type].base, 0, size);
1259 	}
1260 
1261 	/*
1262 	 * The pointer to these blocks of memory are stored on the module
1263 	 * structure and we keep that around so long as the module is
1264 	 * around. We only free that memory when we unload the module.
1265 	 * Just mark them as not being a leak then. The .init* ELF
1266 	 * sections *do* get freed after boot so we *could* treat them
1267 	 * slightly differently with kmemleak_ignore() and only grey
1268 	 * them out as they work as typical memory allocations which
1269 	 * *do* eventually get freed, but let's just keep things simple
1270 	 * and avoid *any* false positives.
1271 	 */
1272 	kmemleak_not_leak(ptr);
1273 
1274 	return 0;
1275 }
1276 
1277 static void module_memory_free(struct module *mod, enum mod_mem_type type)
1278 {
1279 	struct module_memory *mem = &mod->mem[type];
1280 
1281 	if (mem->is_rox)
1282 		vfree(mem->rw_copy);
1283 
1284 	execmem_free(mem->base);
1285 }
1286 
1287 static void free_mod_mem(struct module *mod)
1288 {
1289 	for_each_mod_mem_type(type) {
1290 		struct module_memory *mod_mem = &mod->mem[type];
1291 
1292 		if (type == MOD_DATA)
1293 			continue;
1294 
1295 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1296 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1297 		if (mod_mem->size)
1298 			module_memory_free(mod, type);
1299 	}
1300 
1301 	/* MOD_DATA hosts mod, so free it at last */
1302 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1303 	module_memory_free(mod, MOD_DATA);
1304 }
1305 
1306 /* Free a module, remove from lists, etc. */
1307 static void free_module(struct module *mod)
1308 {
1309 	trace_module_free(mod);
1310 
1311 	codetag_unload_module(mod);
1312 
1313 	mod_sysfs_teardown(mod);
1314 
1315 	/*
1316 	 * We leave it in list to prevent duplicate loads, but make sure
1317 	 * that noone uses it while it's being deconstructed.
1318 	 */
1319 	mutex_lock(&module_mutex);
1320 	mod->state = MODULE_STATE_UNFORMED;
1321 	mutex_unlock(&module_mutex);
1322 
1323 	/* Arch-specific cleanup. */
1324 	module_arch_cleanup(mod);
1325 
1326 	/* Module unload stuff */
1327 	module_unload_free(mod);
1328 
1329 	/* Free any allocated parameters. */
1330 	destroy_params(mod->kp, mod->num_kp);
1331 
1332 	if (is_livepatch_module(mod))
1333 		free_module_elf(mod);
1334 
1335 	/* Now we can delete it from the lists */
1336 	mutex_lock(&module_mutex);
1337 	/* Unlink carefully: kallsyms could be walking list. */
1338 	list_del_rcu(&mod->list);
1339 	mod_tree_remove(mod);
1340 	/* Remove this module from bug list, this uses list_del_rcu */
1341 	module_bug_cleanup(mod);
1342 	/* Wait for RCU synchronizing before releasing mod->list and buglist. */
1343 	synchronize_rcu();
1344 	if (try_add_tainted_module(mod))
1345 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1346 		       mod->name);
1347 	mutex_unlock(&module_mutex);
1348 
1349 	/* This may be empty, but that's OK */
1350 	module_arch_freeing_init(mod);
1351 	kfree(mod->args);
1352 	percpu_modfree(mod);
1353 
1354 	free_mod_mem(mod);
1355 }
1356 
1357 void *__symbol_get(const char *symbol)
1358 {
1359 	struct find_symbol_arg fsa = {
1360 		.name	= symbol,
1361 		.gplok	= true,
1362 		.warn	= true,
1363 	};
1364 
1365 	scoped_guard(rcu) {
1366 		if (!find_symbol(&fsa))
1367 			return NULL;
1368 		if (fsa.license != GPL_ONLY) {
1369 			pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1370 				symbol);
1371 			return NULL;
1372 		}
1373 		if (strong_try_module_get(fsa.owner))
1374 			return NULL;
1375 	}
1376 	return (void *)kernel_symbol_value(fsa.sym);
1377 }
1378 EXPORT_SYMBOL_GPL(__symbol_get);
1379 
1380 /*
1381  * Ensure that an exported symbol [global namespace] does not already exist
1382  * in the kernel or in some other module's exported symbol table.
1383  *
1384  * You must hold the module_mutex.
1385  */
1386 static int verify_exported_symbols(struct module *mod)
1387 {
1388 	unsigned int i;
1389 	const struct kernel_symbol *s;
1390 	struct {
1391 		const struct kernel_symbol *sym;
1392 		unsigned int num;
1393 	} arr[] = {
1394 		{ mod->syms, mod->num_syms },
1395 		{ mod->gpl_syms, mod->num_gpl_syms },
1396 	};
1397 
1398 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1399 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1400 			struct find_symbol_arg fsa = {
1401 				.name	= kernel_symbol_name(s),
1402 				.gplok	= true,
1403 			};
1404 			if (find_symbol(&fsa)) {
1405 				pr_err("%s: exports duplicate symbol %s"
1406 				       " (owned by %s)\n",
1407 				       mod->name, kernel_symbol_name(s),
1408 				       module_name(fsa.owner));
1409 				return -ENOEXEC;
1410 			}
1411 		}
1412 	}
1413 	return 0;
1414 }
1415 
1416 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1417 {
1418 	/*
1419 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1420 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1421 	 * i386 has a similar problem but may not deserve a fix.
1422 	 *
1423 	 * If we ever have to ignore many symbols, consider refactoring the code to
1424 	 * only warn if referenced by a relocation.
1425 	 */
1426 	if (emachine == EM_386 || emachine == EM_X86_64)
1427 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1428 	return false;
1429 }
1430 
1431 /* Change all symbols so that st_value encodes the pointer directly. */
1432 static int simplify_symbols(struct module *mod, const struct load_info *info)
1433 {
1434 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1435 	Elf_Sym *sym = (void *)symsec->sh_addr;
1436 	unsigned long secbase;
1437 	unsigned int i;
1438 	int ret = 0;
1439 	const struct kernel_symbol *ksym;
1440 
1441 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1442 		const char *name = info->strtab + sym[i].st_name;
1443 
1444 		switch (sym[i].st_shndx) {
1445 		case SHN_COMMON:
1446 			/* Ignore common symbols */
1447 			if (!strncmp(name, "__gnu_lto", 9))
1448 				break;
1449 
1450 			/*
1451 			 * We compiled with -fno-common.  These are not
1452 			 * supposed to happen.
1453 			 */
1454 			pr_debug("Common symbol: %s\n", name);
1455 			pr_warn("%s: please compile with -fno-common\n",
1456 			       mod->name);
1457 			ret = -ENOEXEC;
1458 			break;
1459 
1460 		case SHN_ABS:
1461 			/* Don't need to do anything */
1462 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1463 				 (long)sym[i].st_value, name);
1464 			break;
1465 
1466 		case SHN_LIVEPATCH:
1467 			/* Livepatch symbols are resolved by livepatch */
1468 			break;
1469 
1470 		case SHN_UNDEF:
1471 			ksym = resolve_symbol_wait(mod, info, name);
1472 			/* Ok if resolved.  */
1473 			if (ksym && !IS_ERR(ksym)) {
1474 				sym[i].st_value = kernel_symbol_value(ksym);
1475 				break;
1476 			}
1477 
1478 			/* Ok if weak or ignored.  */
1479 			if (!ksym &&
1480 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1481 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1482 				break;
1483 
1484 			ret = PTR_ERR(ksym) ?: -ENOENT;
1485 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1486 				mod->name, name, ret);
1487 			break;
1488 
1489 		default:
1490 			/* Divert to percpu allocation if a percpu var. */
1491 			if (sym[i].st_shndx == info->index.pcpu)
1492 				secbase = (unsigned long)mod_percpu(mod);
1493 			else
1494 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1495 			sym[i].st_value += secbase;
1496 			break;
1497 		}
1498 	}
1499 
1500 	return ret;
1501 }
1502 
1503 static int apply_relocations(struct module *mod, const struct load_info *info)
1504 {
1505 	unsigned int i;
1506 	int err = 0;
1507 
1508 	/* Now do relocations. */
1509 	for (i = 1; i < info->hdr->e_shnum; i++) {
1510 		unsigned int infosec = info->sechdrs[i].sh_info;
1511 
1512 		/* Not a valid relocation section? */
1513 		if (infosec >= info->hdr->e_shnum)
1514 			continue;
1515 
1516 		/* Don't bother with non-allocated sections */
1517 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1518 			continue;
1519 
1520 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1521 			err = klp_apply_section_relocs(mod, info->sechdrs,
1522 						       info->secstrings,
1523 						       info->strtab,
1524 						       info->index.sym, i,
1525 						       NULL);
1526 		else if (info->sechdrs[i].sh_type == SHT_REL)
1527 			err = apply_relocate(info->sechdrs, info->strtab,
1528 					     info->index.sym, i, mod);
1529 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1530 			err = apply_relocate_add(info->sechdrs, info->strtab,
1531 						 info->index.sym, i, mod);
1532 		if (err < 0)
1533 			break;
1534 	}
1535 	return err;
1536 }
1537 
1538 /* Additional bytes needed by arch in front of individual sections */
1539 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1540 					     unsigned int section)
1541 {
1542 	/* default implementation just returns zero */
1543 	return 0;
1544 }
1545 
1546 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1547 				Elf_Shdr *sechdr, unsigned int section)
1548 {
1549 	long offset;
1550 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1551 
1552 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1553 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1554 	mod->mem[type].size = offset + sechdr->sh_size;
1555 
1556 	WARN_ON_ONCE(offset & mask);
1557 	return offset | mask;
1558 }
1559 
1560 bool module_init_layout_section(const char *sname)
1561 {
1562 #ifndef CONFIG_MODULE_UNLOAD
1563 	if (module_exit_section(sname))
1564 		return true;
1565 #endif
1566 	return module_init_section(sname);
1567 }
1568 
1569 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1570 {
1571 	unsigned int m, i;
1572 
1573 	static const unsigned long masks[][2] = {
1574 		/*
1575 		 * NOTE: all executable code must be the first section
1576 		 * in this array; otherwise modify the text_size
1577 		 * finder in the two loops below
1578 		 */
1579 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1580 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1581 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1582 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1583 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1584 	};
1585 	static const int core_m_to_mem_type[] = {
1586 		MOD_TEXT,
1587 		MOD_RODATA,
1588 		MOD_RO_AFTER_INIT,
1589 		MOD_DATA,
1590 		MOD_DATA,
1591 	};
1592 	static const int init_m_to_mem_type[] = {
1593 		MOD_INIT_TEXT,
1594 		MOD_INIT_RODATA,
1595 		MOD_INVALID,
1596 		MOD_INIT_DATA,
1597 		MOD_INIT_DATA,
1598 	};
1599 
1600 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1601 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1602 
1603 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1604 			Elf_Shdr *s = &info->sechdrs[i];
1605 			const char *sname = info->secstrings + s->sh_name;
1606 
1607 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1608 			    || (s->sh_flags & masks[m][1])
1609 			    || s->sh_entsize != ~0UL
1610 			    || is_init != module_init_layout_section(sname))
1611 				continue;
1612 
1613 			if (WARN_ON_ONCE(type == MOD_INVALID))
1614 				continue;
1615 
1616 			/*
1617 			 * Do not allocate codetag memory as we load it into
1618 			 * preallocated contiguous memory.
1619 			 */
1620 			if (codetag_needs_module_section(mod, sname, s->sh_size)) {
1621 				/*
1622 				 * s->sh_entsize won't be used but populate the
1623 				 * type field to avoid confusion.
1624 				 */
1625 				s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK)
1626 						<< SH_ENTSIZE_TYPE_SHIFT;
1627 				continue;
1628 			}
1629 
1630 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1631 			pr_debug("\t%s\n", sname);
1632 		}
1633 	}
1634 }
1635 
1636 /*
1637  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1638  * might -- code, read-only data, read-write data, small data.  Tally
1639  * sizes, and place the offsets into sh_entsize fields: high bit means it
1640  * belongs in init.
1641  */
1642 static void layout_sections(struct module *mod, struct load_info *info)
1643 {
1644 	unsigned int i;
1645 
1646 	for (i = 0; i < info->hdr->e_shnum; i++)
1647 		info->sechdrs[i].sh_entsize = ~0UL;
1648 
1649 	pr_debug("Core section allocation order for %s:\n", mod->name);
1650 	__layout_sections(mod, info, false);
1651 
1652 	pr_debug("Init section allocation order for %s:\n", mod->name);
1653 	__layout_sections(mod, info, true);
1654 }
1655 
1656 static void module_license_taint_check(struct module *mod, const char *license)
1657 {
1658 	if (!license)
1659 		license = "unspecified";
1660 
1661 	if (!license_is_gpl_compatible(license)) {
1662 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1663 			pr_warn("%s: module license '%s' taints kernel.\n",
1664 				mod->name, license);
1665 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1666 				 LOCKDEP_NOW_UNRELIABLE);
1667 	}
1668 }
1669 
1670 static void setup_modinfo(struct module *mod, struct load_info *info)
1671 {
1672 	const struct module_attribute *attr;
1673 	int i;
1674 
1675 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1676 		if (attr->setup)
1677 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1678 	}
1679 }
1680 
1681 static void free_modinfo(struct module *mod)
1682 {
1683 	const struct module_attribute *attr;
1684 	int i;
1685 
1686 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1687 		if (attr->free)
1688 			attr->free(mod);
1689 	}
1690 }
1691 
1692 bool __weak module_init_section(const char *name)
1693 {
1694 	return strstarts(name, ".init");
1695 }
1696 
1697 bool __weak module_exit_section(const char *name)
1698 {
1699 	return strstarts(name, ".exit");
1700 }
1701 
1702 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr)
1703 {
1704 #if defined(CONFIG_64BIT)
1705 	unsigned long long secend;
1706 #else
1707 	unsigned long secend;
1708 #endif
1709 
1710 	/*
1711 	 * Check for both overflow and offset/size being
1712 	 * too large.
1713 	 */
1714 	secend = shdr->sh_offset + shdr->sh_size;
1715 	if (secend < shdr->sh_offset || secend > info->len)
1716 		return -ENOEXEC;
1717 
1718 	return 0;
1719 }
1720 
1721 /**
1722  * elf_validity_ehdr() - Checks an ELF header for module validity
1723  * @info: Load info containing the ELF header to check
1724  *
1725  * Checks whether an ELF header could belong to a valid module. Checks:
1726  *
1727  * * ELF header is within the data the user provided
1728  * * ELF magic is present
1729  * * It is relocatable (not final linked, not core file, etc.)
1730  * * The header's machine type matches what the architecture expects.
1731  * * Optional arch-specific hook for other properties
1732  *   - module_elf_check_arch() is currently only used by PPC to check
1733  *   ELF ABI version, but may be used by others in the future.
1734  *
1735  * Return: %0 if valid, %-ENOEXEC on failure.
1736  */
1737 static int elf_validity_ehdr(const struct load_info *info)
1738 {
1739 	if (info->len < sizeof(*(info->hdr))) {
1740 		pr_err("Invalid ELF header len %lu\n", info->len);
1741 		return -ENOEXEC;
1742 	}
1743 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1744 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1745 		return -ENOEXEC;
1746 	}
1747 	if (info->hdr->e_type != ET_REL) {
1748 		pr_err("Invalid ELF header type: %u != %u\n",
1749 		       info->hdr->e_type, ET_REL);
1750 		return -ENOEXEC;
1751 	}
1752 	if (!elf_check_arch(info->hdr)) {
1753 		pr_err("Invalid architecture in ELF header: %u\n",
1754 		       info->hdr->e_machine);
1755 		return -ENOEXEC;
1756 	}
1757 	if (!module_elf_check_arch(info->hdr)) {
1758 		pr_err("Invalid module architecture in ELF header: %u\n",
1759 		       info->hdr->e_machine);
1760 		return -ENOEXEC;
1761 	}
1762 	return 0;
1763 }
1764 
1765 /**
1766  * elf_validity_cache_sechdrs() - Cache section headers if valid
1767  * @info: Load info to compute section headers from
1768  *
1769  * Checks:
1770  *
1771  * * ELF header is valid (see elf_validity_ehdr())
1772  * * Section headers are the size we expect
1773  * * Section array fits in the user provided data
1774  * * Section index 0 is NULL
1775  * * Section contents are inbounds
1776  *
1777  * Then updates @info with a &load_info->sechdrs pointer if valid.
1778  *
1779  * Return: %0 if valid, negative error code if validation failed.
1780  */
1781 static int elf_validity_cache_sechdrs(struct load_info *info)
1782 {
1783 	Elf_Shdr *sechdrs;
1784 	Elf_Shdr *shdr;
1785 	int i;
1786 	int err;
1787 
1788 	err = elf_validity_ehdr(info);
1789 	if (err < 0)
1790 		return err;
1791 
1792 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1793 		pr_err("Invalid ELF section header size\n");
1794 		return -ENOEXEC;
1795 	}
1796 
1797 	/*
1798 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1799 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1800 	 * will not overflow unsigned long on any platform.
1801 	 */
1802 	if (info->hdr->e_shoff >= info->len
1803 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1804 		info->len - info->hdr->e_shoff)) {
1805 		pr_err("Invalid ELF section header overflow\n");
1806 		return -ENOEXEC;
1807 	}
1808 
1809 	sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1810 
1811 	/*
1812 	 * The code assumes that section 0 has a length of zero and
1813 	 * an addr of zero, so check for it.
1814 	 */
1815 	if (sechdrs[0].sh_type != SHT_NULL
1816 	    || sechdrs[0].sh_size != 0
1817 	    || sechdrs[0].sh_addr != 0) {
1818 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1819 		       sechdrs[0].sh_type);
1820 		return -ENOEXEC;
1821 	}
1822 
1823 	/* Validate contents are inbounds */
1824 	for (i = 1; i < info->hdr->e_shnum; i++) {
1825 		shdr = &sechdrs[i];
1826 		switch (shdr->sh_type) {
1827 		case SHT_NULL:
1828 		case SHT_NOBITS:
1829 			/* No contents, offset/size don't mean anything */
1830 			continue;
1831 		default:
1832 			err = validate_section_offset(info, shdr);
1833 			if (err < 0) {
1834 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1835 				       i, shdr->sh_type);
1836 				return err;
1837 			}
1838 		}
1839 	}
1840 
1841 	info->sechdrs = sechdrs;
1842 
1843 	return 0;
1844 }
1845 
1846 /**
1847  * elf_validity_cache_secstrings() - Caches section names if valid
1848  * @info: Load info to cache section names from. Must have valid sechdrs.
1849  *
1850  * Specifically checks:
1851  *
1852  * * Section name table index is inbounds of section headers
1853  * * Section name table is not empty
1854  * * Section name table is NUL terminated
1855  * * All section name offsets are inbounds of the section
1856  *
1857  * Then updates @info with a &load_info->secstrings pointer if valid.
1858  *
1859  * Return: %0 if valid, negative error code if validation failed.
1860  */
1861 static int elf_validity_cache_secstrings(struct load_info *info)
1862 {
1863 	Elf_Shdr *strhdr, *shdr;
1864 	char *secstrings;
1865 	int i;
1866 
1867 	/*
1868 	 * Verify if the section name table index is valid.
1869 	 */
1870 	if (info->hdr->e_shstrndx == SHN_UNDEF
1871 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1872 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1873 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1874 		       info->hdr->e_shnum);
1875 		return -ENOEXEC;
1876 	}
1877 
1878 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1879 
1880 	/*
1881 	 * The section name table must be NUL-terminated, as required
1882 	 * by the spec. This makes strcmp and pr_* calls that access
1883 	 * strings in the section safe.
1884 	 */
1885 	secstrings = (void *)info->hdr + strhdr->sh_offset;
1886 	if (strhdr->sh_size == 0) {
1887 		pr_err("empty section name table\n");
1888 		return -ENOEXEC;
1889 	}
1890 	if (secstrings[strhdr->sh_size - 1] != '\0') {
1891 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1892 		return -ENOEXEC;
1893 	}
1894 
1895 	for (i = 0; i < info->hdr->e_shnum; i++) {
1896 		shdr = &info->sechdrs[i];
1897 		/* SHT_NULL means sh_name has an undefined value */
1898 		if (shdr->sh_type == SHT_NULL)
1899 			continue;
1900 		if (shdr->sh_name >= strhdr->sh_size) {
1901 			pr_err("Invalid ELF section name in module (section %u type %u)\n",
1902 			       i, shdr->sh_type);
1903 			return -ENOEXEC;
1904 		}
1905 	}
1906 
1907 	info->secstrings = secstrings;
1908 	return 0;
1909 }
1910 
1911 /**
1912  * elf_validity_cache_index_info() - Validate and cache modinfo section
1913  * @info: Load info to populate the modinfo index on.
1914  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1915  *
1916  * Checks that if there is a .modinfo section, it is unique.
1917  * Then, it caches its index in &load_info->index.info.
1918  * Finally, it tries to populate the name to improve error messages.
1919  *
1920  * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found.
1921  */
1922 static int elf_validity_cache_index_info(struct load_info *info)
1923 {
1924 	int info_idx;
1925 
1926 	info_idx = find_any_unique_sec(info, ".modinfo");
1927 
1928 	if (info_idx == 0)
1929 		/* Early return, no .modinfo */
1930 		return 0;
1931 
1932 	if (info_idx < 0) {
1933 		pr_err("Only one .modinfo section must exist.\n");
1934 		return -ENOEXEC;
1935 	}
1936 
1937 	info->index.info = info_idx;
1938 	/* Try to find a name early so we can log errors with a module name */
1939 	info->name = get_modinfo(info, "name");
1940 
1941 	return 0;
1942 }
1943 
1944 /**
1945  * elf_validity_cache_index_mod() - Validates and caches this_module section
1946  * @info: Load info to cache this_module on.
1947  *        Must have &load_info->sechdrs and &load_info->secstrings populated
1948  *
1949  * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost
1950  * uses to refer to __this_module and let's use rely on THIS_MODULE to point
1951  * to &__this_module properly. The kernel's modpost declares it on each
1952  * modules's *.mod.c file. If the struct module of the kernel changes a full
1953  * kernel rebuild is required.
1954  *
1955  * We have a few expectations for this special section, this function
1956  * validates all this for us:
1957  *
1958  * * The section has contents
1959  * * The section is unique
1960  * * We expect the kernel to always have to allocate it: SHF_ALLOC
1961  * * The section size must match the kernel's run time's struct module
1962  *   size
1963  *
1964  * If all checks pass, the index will be cached in &load_info->index.mod
1965  *
1966  * Return: %0 on validation success, %-ENOEXEC on failure
1967  */
1968 static int elf_validity_cache_index_mod(struct load_info *info)
1969 {
1970 	Elf_Shdr *shdr;
1971 	int mod_idx;
1972 
1973 	mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module");
1974 	if (mod_idx <= 0) {
1975 		pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n",
1976 		       info->name ?: "(missing .modinfo section or name field)");
1977 		return -ENOEXEC;
1978 	}
1979 
1980 	shdr = &info->sechdrs[mod_idx];
1981 
1982 	if (shdr->sh_type == SHT_NOBITS) {
1983 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1984 		       info->name ?: "(missing .modinfo section or name field)");
1985 		return -ENOEXEC;
1986 	}
1987 
1988 	if (!(shdr->sh_flags & SHF_ALLOC)) {
1989 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
1990 		       info->name ?: "(missing .modinfo section or name field)");
1991 		return -ENOEXEC;
1992 	}
1993 
1994 	if (shdr->sh_size != sizeof(struct module)) {
1995 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
1996 		       info->name ?: "(missing .modinfo section or name field)");
1997 		return -ENOEXEC;
1998 	}
1999 
2000 	info->index.mod = mod_idx;
2001 
2002 	return 0;
2003 }
2004 
2005 /**
2006  * elf_validity_cache_index_sym() - Validate and cache symtab index
2007  * @info: Load info to cache symtab index in.
2008  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2009  *
2010  * Checks that there is exactly one symbol table, then caches its index in
2011  * &load_info->index.sym.
2012  *
2013  * Return: %0 if valid, %-ENOEXEC on failure.
2014  */
2015 static int elf_validity_cache_index_sym(struct load_info *info)
2016 {
2017 	unsigned int sym_idx;
2018 	unsigned int num_sym_secs = 0;
2019 	int i;
2020 
2021 	for (i = 1; i < info->hdr->e_shnum; i++) {
2022 		if (info->sechdrs[i].sh_type == SHT_SYMTAB) {
2023 			num_sym_secs++;
2024 			sym_idx = i;
2025 		}
2026 	}
2027 
2028 	if (num_sym_secs != 1) {
2029 		pr_warn("%s: module has no symbols (stripped?)\n",
2030 			info->name ?: "(missing .modinfo section or name field)");
2031 		return -ENOEXEC;
2032 	}
2033 
2034 	info->index.sym = sym_idx;
2035 
2036 	return 0;
2037 }
2038 
2039 /**
2040  * elf_validity_cache_index_str() - Validate and cache strtab index
2041  * @info: Load info to cache strtab index in.
2042  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2043  *        Must have &load_info->index.sym populated.
2044  *
2045  * Looks at the symbol table's associated string table, makes sure it is
2046  * in-bounds, and caches it.
2047  *
2048  * Return: %0 if valid, %-ENOEXEC on failure.
2049  */
2050 static int elf_validity_cache_index_str(struct load_info *info)
2051 {
2052 	unsigned int str_idx = info->sechdrs[info->index.sym].sh_link;
2053 
2054 	if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) {
2055 		pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
2056 		       str_idx, str_idx, info->hdr->e_shnum);
2057 		return -ENOEXEC;
2058 	}
2059 
2060 	info->index.str = str_idx;
2061 	return 0;
2062 }
2063 
2064 /**
2065  * elf_validity_cache_index_versions() - Validate and cache version indices
2066  * @info:  Load info to cache version indices in.
2067  *         Must have &load_info->sechdrs and &load_info->secstrings populated.
2068  * @flags: Load flags, relevant to suppress version loading, see
2069  *         uapi/linux/module.h
2070  *
2071  * If we're ignoring modversions based on @flags, zero all version indices
2072  * and return validity. Othewrise check:
2073  *
2074  * * If "__version_ext_crcs" is present, "__version_ext_names" is present
2075  * * There is a name present for every crc
2076  *
2077  * Then populate:
2078  *
2079  * * &load_info->index.vers
2080  * * &load_info->index.vers_ext_crc
2081  * * &load_info->index.vers_ext_names
2082  *
2083  * if present.
2084  *
2085  * Return: %0 if valid, %-ENOEXEC on failure.
2086  */
2087 static int elf_validity_cache_index_versions(struct load_info *info, int flags)
2088 {
2089 	unsigned int vers_ext_crc;
2090 	unsigned int vers_ext_name;
2091 	size_t crc_count;
2092 	size_t remaining_len;
2093 	size_t name_size;
2094 	char *name;
2095 
2096 	/* If modversions were suppressed, pretend we didn't find any */
2097 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS) {
2098 		info->index.vers = 0;
2099 		info->index.vers_ext_crc = 0;
2100 		info->index.vers_ext_name = 0;
2101 		return 0;
2102 	}
2103 
2104 	vers_ext_crc = find_sec(info, "__version_ext_crcs");
2105 	vers_ext_name = find_sec(info, "__version_ext_names");
2106 
2107 	/* If we have one field, we must have the other */
2108 	if (!!vers_ext_crc != !!vers_ext_name) {
2109 		pr_err("extended version crc+name presence does not match");
2110 		return -ENOEXEC;
2111 	}
2112 
2113 	/*
2114 	 * If we have extended version information, we should have the same
2115 	 * number of entries in every section.
2116 	 */
2117 	if (vers_ext_crc) {
2118 		crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32);
2119 		name = (void *)info->hdr +
2120 			info->sechdrs[vers_ext_name].sh_offset;
2121 		remaining_len = info->sechdrs[vers_ext_name].sh_size;
2122 
2123 		while (crc_count--) {
2124 			name_size = strnlen(name, remaining_len) + 1;
2125 			if (name_size > remaining_len) {
2126 				pr_err("more extended version crcs than names");
2127 				return -ENOEXEC;
2128 			}
2129 			remaining_len -= name_size;
2130 			name += name_size;
2131 		}
2132 	}
2133 
2134 	info->index.vers = find_sec(info, "__versions");
2135 	info->index.vers_ext_crc = vers_ext_crc;
2136 	info->index.vers_ext_name = vers_ext_name;
2137 	return 0;
2138 }
2139 
2140 /**
2141  * elf_validity_cache_index() - Resolve, validate, cache section indices
2142  * @info:  Load info to read from and update.
2143  *         &load_info->sechdrs and &load_info->secstrings must be populated.
2144  * @flags: Load flags, relevant to suppress version loading, see
2145  *         uapi/linux/module.h
2146  *
2147  * Populates &load_info->index, validating as it goes.
2148  * See child functions for per-field validation:
2149  *
2150  * * elf_validity_cache_index_info()
2151  * * elf_validity_cache_index_mod()
2152  * * elf_validity_cache_index_sym()
2153  * * elf_validity_cache_index_str()
2154  * * elf_validity_cache_index_versions()
2155  *
2156  * If CONFIG_SMP is enabled, load the percpu section by name with no
2157  * validation.
2158  *
2159  * Return: 0 on success, negative error code if an index failed validation.
2160  */
2161 static int elf_validity_cache_index(struct load_info *info, int flags)
2162 {
2163 	int err;
2164 
2165 	err = elf_validity_cache_index_info(info);
2166 	if (err < 0)
2167 		return err;
2168 	err = elf_validity_cache_index_mod(info);
2169 	if (err < 0)
2170 		return err;
2171 	err = elf_validity_cache_index_sym(info);
2172 	if (err < 0)
2173 		return err;
2174 	err = elf_validity_cache_index_str(info);
2175 	if (err < 0)
2176 		return err;
2177 	err = elf_validity_cache_index_versions(info, flags);
2178 	if (err < 0)
2179 		return err;
2180 
2181 	info->index.pcpu = find_pcpusec(info);
2182 
2183 	return 0;
2184 }
2185 
2186 /**
2187  * elf_validity_cache_strtab() - Validate and cache symbol string table
2188  * @info: Load info to read from and update.
2189  *        Must have &load_info->sechdrs and &load_info->secstrings populated.
2190  *        Must have &load_info->index populated.
2191  *
2192  * Checks:
2193  *
2194  * * The string table is not empty.
2195  * * The string table starts and ends with NUL (required by ELF spec).
2196  * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the
2197  *   string table.
2198  *
2199  * And caches the pointer as &load_info->strtab in @info.
2200  *
2201  * Return: 0 on success, negative error code if a check failed.
2202  */
2203 static int elf_validity_cache_strtab(struct load_info *info)
2204 {
2205 	Elf_Shdr *str_shdr = &info->sechdrs[info->index.str];
2206 	Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym];
2207 	char *strtab = (char *)info->hdr + str_shdr->sh_offset;
2208 	Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset;
2209 	int i;
2210 
2211 	if (str_shdr->sh_size == 0) {
2212 		pr_err("empty symbol string table\n");
2213 		return -ENOEXEC;
2214 	}
2215 	if (strtab[0] != '\0') {
2216 		pr_err("symbol string table missing leading NUL\n");
2217 		return -ENOEXEC;
2218 	}
2219 	if (strtab[str_shdr->sh_size - 1] != '\0') {
2220 		pr_err("symbol string table isn't NUL terminated\n");
2221 		return -ENOEXEC;
2222 	}
2223 
2224 	/*
2225 	 * Now that we know strtab is correctly structured, check symbol
2226 	 * starts are inbounds before they're used later.
2227 	 */
2228 	for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) {
2229 		if (syms[i].st_name >= str_shdr->sh_size) {
2230 			pr_err("symbol name out of bounds in string table");
2231 			return -ENOEXEC;
2232 		}
2233 	}
2234 
2235 	info->strtab = strtab;
2236 	return 0;
2237 }
2238 
2239 /*
2240  * Check userspace passed ELF module against our expectations, and cache
2241  * useful variables for further processing as we go.
2242  *
2243  * This does basic validity checks against section offsets and sizes, the
2244  * section name string table, and the indices used for it (sh_name).
2245  *
2246  * As a last step, since we're already checking the ELF sections we cache
2247  * useful variables which will be used later for our convenience:
2248  *
2249  * 	o pointers to section headers
2250  * 	o cache the modinfo symbol section
2251  * 	o cache the string symbol section
2252  * 	o cache the module section
2253  *
2254  * As a last step we set info->mod to the temporary copy of the module in
2255  * info->hdr. The final one will be allocated in move_module(). Any
2256  * modifications we make to our copy of the module will be carried over
2257  * to the final minted module.
2258  */
2259 static int elf_validity_cache_copy(struct load_info *info, int flags)
2260 {
2261 	int err;
2262 
2263 	err = elf_validity_cache_sechdrs(info);
2264 	if (err < 0)
2265 		return err;
2266 	err = elf_validity_cache_secstrings(info);
2267 	if (err < 0)
2268 		return err;
2269 	err = elf_validity_cache_index(info, flags);
2270 	if (err < 0)
2271 		return err;
2272 	err = elf_validity_cache_strtab(info);
2273 	if (err < 0)
2274 		return err;
2275 
2276 	/* This is temporary: point mod into copy of data. */
2277 	info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset;
2278 
2279 	/*
2280 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
2281 	 * on-disk struct mod 'name' field.
2282 	 */
2283 	if (!info->name)
2284 		info->name = info->mod->name;
2285 
2286 	return 0;
2287 }
2288 
2289 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
2290 
2291 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
2292 {
2293 	do {
2294 		unsigned long n = min(len, COPY_CHUNK_SIZE);
2295 
2296 		if (copy_from_user(dst, usrc, n) != 0)
2297 			return -EFAULT;
2298 		cond_resched();
2299 		dst += n;
2300 		usrc += n;
2301 		len -= n;
2302 	} while (len);
2303 	return 0;
2304 }
2305 
2306 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
2307 {
2308 	if (!get_modinfo(info, "livepatch"))
2309 		/* Nothing more to do */
2310 		return 0;
2311 
2312 	if (set_livepatch_module(mod))
2313 		return 0;
2314 
2315 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
2316 	       mod->name);
2317 	return -ENOEXEC;
2318 }
2319 
2320 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
2321 {
2322 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
2323 		return;
2324 
2325 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
2326 		mod->name);
2327 }
2328 
2329 /* Sets info->hdr and info->len. */
2330 static int copy_module_from_user(const void __user *umod, unsigned long len,
2331 				  struct load_info *info)
2332 {
2333 	int err;
2334 
2335 	info->len = len;
2336 	if (info->len < sizeof(*(info->hdr)))
2337 		return -ENOEXEC;
2338 
2339 	err = security_kernel_load_data(LOADING_MODULE, true);
2340 	if (err)
2341 		return err;
2342 
2343 	/* Suck in entire file: we'll want most of it. */
2344 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2345 	if (!info->hdr)
2346 		return -ENOMEM;
2347 
2348 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2349 		err = -EFAULT;
2350 		goto out;
2351 	}
2352 
2353 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2354 					     LOADING_MODULE, "init_module");
2355 out:
2356 	if (err)
2357 		vfree(info->hdr);
2358 
2359 	return err;
2360 }
2361 
2362 static void free_copy(struct load_info *info, int flags)
2363 {
2364 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2365 		module_decompress_cleanup(info);
2366 	else
2367 		vfree(info->hdr);
2368 }
2369 
2370 static int rewrite_section_headers(struct load_info *info, int flags)
2371 {
2372 	unsigned int i;
2373 
2374 	/* This should always be true, but let's be sure. */
2375 	info->sechdrs[0].sh_addr = 0;
2376 
2377 	for (i = 1; i < info->hdr->e_shnum; i++) {
2378 		Elf_Shdr *shdr = &info->sechdrs[i];
2379 
2380 		/*
2381 		 * Mark all sections sh_addr with their address in the
2382 		 * temporary image.
2383 		 */
2384 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2385 
2386 	}
2387 
2388 	/* Track but don't keep modinfo and version sections. */
2389 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2390 	info->sechdrs[info->index.vers_ext_crc].sh_flags &=
2391 		~(unsigned long)SHF_ALLOC;
2392 	info->sechdrs[info->index.vers_ext_name].sh_flags &=
2393 		~(unsigned long)SHF_ALLOC;
2394 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2395 
2396 	return 0;
2397 }
2398 
2399 static const char *const module_license_offenders[] = {
2400 	/* driverloader was caught wrongly pretending to be under GPL */
2401 	"driverloader",
2402 
2403 	/* lve claims to be GPL but upstream won't provide source */
2404 	"lve",
2405 };
2406 
2407 /*
2408  * These calls taint the kernel depending certain module circumstances */
2409 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2410 {
2411 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2412 	size_t i;
2413 
2414 	if (!get_modinfo(info, "intree")) {
2415 		if (!test_taint(TAINT_OOT_MODULE))
2416 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2417 				mod->name);
2418 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2419 	}
2420 
2421 	check_modinfo_retpoline(mod, info);
2422 
2423 	if (get_modinfo(info, "staging")) {
2424 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2425 		pr_warn("%s: module is from the staging directory, the quality "
2426 			"is unknown, you have been warned.\n", mod->name);
2427 	}
2428 
2429 	if (is_livepatch_module(mod)) {
2430 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2431 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2432 				mod->name);
2433 	}
2434 
2435 	module_license_taint_check(mod, get_modinfo(info, "license"));
2436 
2437 	if (get_modinfo(info, "test")) {
2438 		if (!test_taint(TAINT_TEST))
2439 			pr_warn("%s: loading test module taints kernel.\n",
2440 				mod->name);
2441 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2442 	}
2443 #ifdef CONFIG_MODULE_SIG
2444 	mod->sig_ok = info->sig_ok;
2445 	if (!mod->sig_ok) {
2446 		pr_notice_once("%s: module verification failed: signature "
2447 			       "and/or required key missing - tainting "
2448 			       "kernel\n", mod->name);
2449 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2450 	}
2451 #endif
2452 
2453 	/*
2454 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2455 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2456 	 * using GPL-only symbols it needs.
2457 	 */
2458 	if (strcmp(mod->name, "ndiswrapper") == 0)
2459 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2460 
2461 	for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) {
2462 		if (strcmp(mod->name, module_license_offenders[i]) == 0)
2463 			add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2464 					 LOCKDEP_NOW_UNRELIABLE);
2465 	}
2466 
2467 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2468 		pr_warn("%s: module license taints kernel.\n", mod->name);
2469 
2470 }
2471 
2472 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2473 {
2474 	const char *modmagic = get_modinfo(info, "vermagic");
2475 	int err;
2476 
2477 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2478 		modmagic = NULL;
2479 
2480 	/* This is allowed: modprobe --force will invalidate it. */
2481 	if (!modmagic) {
2482 		err = try_to_force_load(mod, "bad vermagic");
2483 		if (err)
2484 			return err;
2485 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2486 		pr_err("%s: version magic '%s' should be '%s'\n",
2487 		       info->name, modmagic, vermagic);
2488 		return -ENOEXEC;
2489 	}
2490 
2491 	err = check_modinfo_livepatch(mod, info);
2492 	if (err)
2493 		return err;
2494 
2495 	return 0;
2496 }
2497 
2498 static int find_module_sections(struct module *mod, struct load_info *info)
2499 {
2500 	mod->kp = section_objs(info, "__param",
2501 			       sizeof(*mod->kp), &mod->num_kp);
2502 	mod->syms = section_objs(info, "__ksymtab",
2503 				 sizeof(*mod->syms), &mod->num_syms);
2504 	mod->crcs = section_addr(info, "__kcrctab");
2505 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2506 				     sizeof(*mod->gpl_syms),
2507 				     &mod->num_gpl_syms);
2508 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2509 
2510 #ifdef CONFIG_CONSTRUCTORS
2511 	mod->ctors = section_objs(info, ".ctors",
2512 				  sizeof(*mod->ctors), &mod->num_ctors);
2513 	if (!mod->ctors)
2514 		mod->ctors = section_objs(info, ".init_array",
2515 				sizeof(*mod->ctors), &mod->num_ctors);
2516 	else if (find_sec(info, ".init_array")) {
2517 		/*
2518 		 * This shouldn't happen with same compiler and binutils
2519 		 * building all parts of the module.
2520 		 */
2521 		pr_warn("%s: has both .ctors and .init_array.\n",
2522 		       mod->name);
2523 		return -EINVAL;
2524 	}
2525 #endif
2526 
2527 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2528 						&mod->noinstr_text_size);
2529 
2530 #ifdef CONFIG_TRACEPOINTS
2531 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2532 					     sizeof(*mod->tracepoints_ptrs),
2533 					     &mod->num_tracepoints);
2534 #endif
2535 #ifdef CONFIG_TREE_SRCU
2536 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2537 					     sizeof(*mod->srcu_struct_ptrs),
2538 					     &mod->num_srcu_structs);
2539 #endif
2540 #ifdef CONFIG_BPF_EVENTS
2541 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2542 					   sizeof(*mod->bpf_raw_events),
2543 					   &mod->num_bpf_raw_events);
2544 #endif
2545 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2546 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2547 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2548 					      &mod->btf_base_data_size);
2549 #endif
2550 #ifdef CONFIG_JUMP_LABEL
2551 	mod->jump_entries = section_objs(info, "__jump_table",
2552 					sizeof(*mod->jump_entries),
2553 					&mod->num_jump_entries);
2554 #endif
2555 #ifdef CONFIG_EVENT_TRACING
2556 	mod->trace_events = section_objs(info, "_ftrace_events",
2557 					 sizeof(*mod->trace_events),
2558 					 &mod->num_trace_events);
2559 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2560 					sizeof(*mod->trace_evals),
2561 					&mod->num_trace_evals);
2562 #endif
2563 #ifdef CONFIG_TRACING
2564 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2565 					 sizeof(*mod->trace_bprintk_fmt_start),
2566 					 &mod->num_trace_bprintk_fmt);
2567 #endif
2568 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2569 	/* sechdrs[0].sh_size is always zero */
2570 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2571 					     sizeof(*mod->ftrace_callsites),
2572 					     &mod->num_ftrace_callsites);
2573 #endif
2574 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2575 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2576 					    sizeof(*mod->ei_funcs),
2577 					    &mod->num_ei_funcs);
2578 #endif
2579 #ifdef CONFIG_KPROBES
2580 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2581 						&mod->kprobes_text_size);
2582 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2583 						sizeof(unsigned long),
2584 						&mod->num_kprobe_blacklist);
2585 #endif
2586 #ifdef CONFIG_PRINTK_INDEX
2587 	mod->printk_index_start = section_objs(info, ".printk_index",
2588 					       sizeof(*mod->printk_index_start),
2589 					       &mod->printk_index_size);
2590 #endif
2591 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2592 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2593 					      sizeof(*mod->static_call_sites),
2594 					      &mod->num_static_call_sites);
2595 #endif
2596 #if IS_ENABLED(CONFIG_KUNIT)
2597 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2598 					      sizeof(*mod->kunit_suites),
2599 					      &mod->num_kunit_suites);
2600 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2601 					      sizeof(*mod->kunit_init_suites),
2602 					      &mod->num_kunit_init_suites);
2603 #endif
2604 
2605 	mod->extable = section_objs(info, "__ex_table",
2606 				    sizeof(*mod->extable), &mod->num_exentries);
2607 
2608 	if (section_addr(info, "__obsparm"))
2609 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2610 
2611 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2612 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2613 					      sizeof(*mod->dyndbg_info.descs),
2614 					      &mod->dyndbg_info.num_descs);
2615 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2616 						sizeof(*mod->dyndbg_info.classes),
2617 						&mod->dyndbg_info.num_classes);
2618 #endif
2619 
2620 	return 0;
2621 }
2622 
2623 static int move_module(struct module *mod, struct load_info *info)
2624 {
2625 	int i;
2626 	enum mod_mem_type t = 0;
2627 	int ret = -ENOMEM;
2628 	bool codetag_section_found = false;
2629 
2630 	for_each_mod_mem_type(type) {
2631 		if (!mod->mem[type].size) {
2632 			mod->mem[type].base = NULL;
2633 			mod->mem[type].rw_copy = NULL;
2634 			continue;
2635 		}
2636 
2637 		ret = module_memory_alloc(mod, type);
2638 		if (ret) {
2639 			t = type;
2640 			goto out_err;
2641 		}
2642 	}
2643 
2644 	/* Transfer each section which specifies SHF_ALLOC */
2645 	pr_debug("Final section addresses for %s:\n", mod->name);
2646 	for (i = 0; i < info->hdr->e_shnum; i++) {
2647 		void *dest;
2648 		Elf_Shdr *shdr = &info->sechdrs[i];
2649 		const char *sname;
2650 		unsigned long addr;
2651 
2652 		if (!(shdr->sh_flags & SHF_ALLOC))
2653 			continue;
2654 
2655 		sname = info->secstrings + shdr->sh_name;
2656 		/*
2657 		 * Load codetag sections separately as they might still be used
2658 		 * after module unload.
2659 		 */
2660 		if (codetag_needs_module_section(mod, sname, shdr->sh_size)) {
2661 			dest = codetag_alloc_module_section(mod, sname, shdr->sh_size,
2662 					arch_mod_section_prepend(mod, i), shdr->sh_addralign);
2663 			if (WARN_ON(!dest)) {
2664 				ret = -EINVAL;
2665 				goto out_err;
2666 			}
2667 			if (IS_ERR(dest)) {
2668 				ret = PTR_ERR(dest);
2669 				goto out_err;
2670 			}
2671 			addr = (unsigned long)dest;
2672 			codetag_section_found = true;
2673 		} else {
2674 			enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2675 			unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2676 
2677 			addr = (unsigned long)mod->mem[type].base + offset;
2678 			dest = mod->mem[type].rw_copy + offset;
2679 		}
2680 
2681 		if (shdr->sh_type != SHT_NOBITS) {
2682 			/*
2683 			 * Our ELF checker already validated this, but let's
2684 			 * be pedantic and make the goal clearer. We actually
2685 			 * end up copying over all modifications made to the
2686 			 * userspace copy of the entire struct module.
2687 			 */
2688 			if (i == info->index.mod &&
2689 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2690 				ret = -ENOEXEC;
2691 				goto out_err;
2692 			}
2693 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2694 		}
2695 		/*
2696 		 * Update the userspace copy's ELF section address to point to
2697 		 * our newly allocated memory as a pure convenience so that
2698 		 * users of info can keep taking advantage and using the newly
2699 		 * minted official memory area.
2700 		 */
2701 		shdr->sh_addr = addr;
2702 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2703 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2704 	}
2705 
2706 	return 0;
2707 out_err:
2708 	for (t--; t >= 0; t--)
2709 		module_memory_free(mod, t);
2710 	if (codetag_section_found)
2711 		codetag_free_module_sections(mod);
2712 
2713 	return ret;
2714 }
2715 
2716 static int check_export_symbol_versions(struct module *mod)
2717 {
2718 #ifdef CONFIG_MODVERSIONS
2719 	if ((mod->num_syms && !mod->crcs) ||
2720 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2721 		return try_to_force_load(mod,
2722 					 "no versions for exported symbols");
2723 	}
2724 #endif
2725 	return 0;
2726 }
2727 
2728 static void flush_module_icache(const struct module *mod)
2729 {
2730 	/*
2731 	 * Flush the instruction cache, since we've played with text.
2732 	 * Do it before processing of module parameters, so the module
2733 	 * can provide parameter accessor functions of its own.
2734 	 */
2735 	for_each_mod_mem_type(type) {
2736 		const struct module_memory *mod_mem = &mod->mem[type];
2737 
2738 		if (mod_mem->size) {
2739 			flush_icache_range((unsigned long)mod_mem->base,
2740 					   (unsigned long)mod_mem->base + mod_mem->size);
2741 		}
2742 	}
2743 }
2744 
2745 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2746 {
2747 	return true;
2748 }
2749 
2750 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2751 				     Elf_Shdr *sechdrs,
2752 				     char *secstrings,
2753 				     struct module *mod)
2754 {
2755 	return 0;
2756 }
2757 
2758 /* module_blacklist is a comma-separated list of module names */
2759 static char *module_blacklist;
2760 static bool blacklisted(const char *module_name)
2761 {
2762 	const char *p;
2763 	size_t len;
2764 
2765 	if (!module_blacklist)
2766 		return false;
2767 
2768 	for (p = module_blacklist; *p; p += len) {
2769 		len = strcspn(p, ",");
2770 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2771 			return true;
2772 		if (p[len] == ',')
2773 			len++;
2774 	}
2775 	return false;
2776 }
2777 core_param(module_blacklist, module_blacklist, charp, 0400);
2778 
2779 static struct module *layout_and_allocate(struct load_info *info, int flags)
2780 {
2781 	struct module *mod;
2782 	unsigned int ndx;
2783 	int err;
2784 
2785 	/* Allow arches to frob section contents and sizes.  */
2786 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2787 					info->secstrings, info->mod);
2788 	if (err < 0)
2789 		return ERR_PTR(err);
2790 
2791 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2792 					  info->secstrings, info->mod);
2793 	if (err < 0)
2794 		return ERR_PTR(err);
2795 
2796 	/* We will do a special allocation for per-cpu sections later. */
2797 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2798 
2799 	/*
2800 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2801 	 * layout_sections() can put it in the right place.
2802 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2803 	 */
2804 	ndx = find_sec(info, ".data..ro_after_init");
2805 	if (ndx)
2806 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2807 	/*
2808 	 * Mark the __jump_table section as ro_after_init as well: these data
2809 	 * structures are never modified, with the exception of entries that
2810 	 * refer to code in the __init section, which are annotated as such
2811 	 * at module load time.
2812 	 */
2813 	ndx = find_sec(info, "__jump_table");
2814 	if (ndx)
2815 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2816 
2817 	/*
2818 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2819 	 * this is done generically; there doesn't appear to be any
2820 	 * special cases for the architectures.
2821 	 */
2822 	layout_sections(info->mod, info);
2823 	layout_symtab(info->mod, info);
2824 
2825 	/* Allocate and move to the final place */
2826 	err = move_module(info->mod, info);
2827 	if (err)
2828 		return ERR_PTR(err);
2829 
2830 	/* Module has been copied to its final place now: return it. */
2831 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2832 	kmemleak_load_module(mod, info);
2833 	codetag_module_replaced(info->mod, mod);
2834 
2835 	return mod;
2836 }
2837 
2838 /* mod is no longer valid after this! */
2839 static void module_deallocate(struct module *mod, struct load_info *info)
2840 {
2841 	percpu_modfree(mod);
2842 	module_arch_freeing_init(mod);
2843 
2844 	free_mod_mem(mod);
2845 }
2846 
2847 int __weak module_finalize(const Elf_Ehdr *hdr,
2848 			   const Elf_Shdr *sechdrs,
2849 			   struct module *me)
2850 {
2851 	return 0;
2852 }
2853 
2854 int __weak module_post_finalize(const Elf_Ehdr *hdr,
2855 				const Elf_Shdr *sechdrs,
2856 				struct module *me)
2857 {
2858 	return 0;
2859 }
2860 
2861 static int post_relocation(struct module *mod, const struct load_info *info)
2862 {
2863 	int ret;
2864 
2865 	/* Sort exception table now relocations are done. */
2866 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2867 
2868 	/* Copy relocated percpu area over. */
2869 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2870 		       info->sechdrs[info->index.pcpu].sh_size);
2871 
2872 	/* Setup kallsyms-specific fields. */
2873 	add_kallsyms(mod, info);
2874 
2875 	/* Arch-specific module finalizing. */
2876 	ret = module_finalize(info->hdr, info->sechdrs, mod);
2877 	if (ret)
2878 		return ret;
2879 
2880 	for_each_mod_mem_type(type) {
2881 		struct module_memory *mem = &mod->mem[type];
2882 
2883 		if (mem->is_rox) {
2884 			if (!execmem_update_copy(mem->base, mem->rw_copy,
2885 						 mem->size))
2886 				return -ENOMEM;
2887 
2888 			vfree(mem->rw_copy);
2889 			mem->rw_copy = NULL;
2890 		}
2891 	}
2892 
2893 	return module_post_finalize(info->hdr, info->sechdrs, mod);
2894 }
2895 
2896 /* Call module constructors. */
2897 static void do_mod_ctors(struct module *mod)
2898 {
2899 #ifdef CONFIG_CONSTRUCTORS
2900 	unsigned long i;
2901 
2902 	for (i = 0; i < mod->num_ctors; i++)
2903 		mod->ctors[i]();
2904 #endif
2905 }
2906 
2907 /* For freeing module_init on success, in case kallsyms traversing */
2908 struct mod_initfree {
2909 	struct llist_node node;
2910 	void *init_text;
2911 	void *init_data;
2912 	void *init_rodata;
2913 };
2914 
2915 static void do_free_init(struct work_struct *w)
2916 {
2917 	struct llist_node *pos, *n, *list;
2918 	struct mod_initfree *initfree;
2919 
2920 	list = llist_del_all(&init_free_list);
2921 
2922 	synchronize_rcu();
2923 
2924 	llist_for_each_safe(pos, n, list) {
2925 		initfree = container_of(pos, struct mod_initfree, node);
2926 		execmem_free(initfree->init_text);
2927 		execmem_free(initfree->init_data);
2928 		execmem_free(initfree->init_rodata);
2929 		kfree(initfree);
2930 	}
2931 }
2932 
2933 void flush_module_init_free_work(void)
2934 {
2935 	flush_work(&init_free_wq);
2936 }
2937 
2938 #undef MODULE_PARAM_PREFIX
2939 #define MODULE_PARAM_PREFIX "module."
2940 /* Default value for module->async_probe_requested */
2941 static bool async_probe;
2942 module_param(async_probe, bool, 0644);
2943 
2944 /*
2945  * This is where the real work happens.
2946  *
2947  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2948  * helper command 'lx-symbols'.
2949  */
2950 static noinline int do_init_module(struct module *mod)
2951 {
2952 	int ret = 0;
2953 	struct mod_initfree *freeinit;
2954 #if defined(CONFIG_MODULE_STATS)
2955 	unsigned int text_size = 0, total_size = 0;
2956 
2957 	for_each_mod_mem_type(type) {
2958 		const struct module_memory *mod_mem = &mod->mem[type];
2959 		if (mod_mem->size) {
2960 			total_size += mod_mem->size;
2961 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2962 				text_size += mod_mem->size;
2963 		}
2964 	}
2965 #endif
2966 
2967 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2968 	if (!freeinit) {
2969 		ret = -ENOMEM;
2970 		goto fail;
2971 	}
2972 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2973 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2974 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2975 
2976 	do_mod_ctors(mod);
2977 	/* Start the module */
2978 	if (mod->init != NULL)
2979 		ret = do_one_initcall(mod->init);
2980 	if (ret < 0) {
2981 		goto fail_free_freeinit;
2982 	}
2983 	if (ret > 0) {
2984 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2985 			"follow 0/-E convention\n"
2986 			"%s: loading module anyway...\n",
2987 			__func__, mod->name, ret, __func__);
2988 		dump_stack();
2989 	}
2990 
2991 	/* Now it's a first class citizen! */
2992 	mod->state = MODULE_STATE_LIVE;
2993 	blocking_notifier_call_chain(&module_notify_list,
2994 				     MODULE_STATE_LIVE, mod);
2995 
2996 	/* Delay uevent until module has finished its init routine */
2997 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2998 
2999 	/*
3000 	 * We need to finish all async code before the module init sequence
3001 	 * is done. This has potential to deadlock if synchronous module
3002 	 * loading is requested from async (which is not allowed!).
3003 	 *
3004 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
3005 	 * request_module() from async workers") for more details.
3006 	 */
3007 	if (!mod->async_probe_requested)
3008 		async_synchronize_full();
3009 
3010 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
3011 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
3012 	mutex_lock(&module_mutex);
3013 	/* Drop initial reference. */
3014 	module_put(mod);
3015 	trim_init_extable(mod);
3016 #ifdef CONFIG_KALLSYMS
3017 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
3018 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
3019 #endif
3020 	ret = module_enable_rodata_ro_after_init(mod);
3021 	if (ret)
3022 		pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, "
3023 			"ro_after_init data might still be writable\n",
3024 			mod->name, ret);
3025 
3026 	mod_tree_remove_init(mod);
3027 	module_arch_freeing_init(mod);
3028 	for_class_mod_mem_type(type, init) {
3029 		mod->mem[type].base = NULL;
3030 		mod->mem[type].size = 0;
3031 	}
3032 
3033 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
3034 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
3035 	mod->btf_data = NULL;
3036 	mod->btf_base_data = NULL;
3037 #endif
3038 	/*
3039 	 * We want to free module_init, but be aware that kallsyms may be
3040 	 * walking this within an RCU read section. In all the failure paths, we
3041 	 * call synchronize_rcu(), but we don't want to slow down the success
3042 	 * path. execmem_free() cannot be called in an interrupt, so do the
3043 	 * work and call synchronize_rcu() in a work queue.
3044 	 *
3045 	 * Note that execmem_alloc() on most architectures creates W+X page
3046 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
3047 	 * code such as mark_rodata_ro() which depends on those mappings to
3048 	 * be cleaned up needs to sync with the queued work by invoking
3049 	 * flush_module_init_free_work().
3050 	 */
3051 	if (llist_add(&freeinit->node, &init_free_list))
3052 		schedule_work(&init_free_wq);
3053 
3054 	mutex_unlock(&module_mutex);
3055 	wake_up_all(&module_wq);
3056 
3057 	mod_stat_add_long(text_size, &total_text_size);
3058 	mod_stat_add_long(total_size, &total_mod_size);
3059 
3060 	mod_stat_inc(&modcount);
3061 
3062 	return 0;
3063 
3064 fail_free_freeinit:
3065 	kfree(freeinit);
3066 fail:
3067 	/* Try to protect us from buggy refcounters. */
3068 	mod->state = MODULE_STATE_GOING;
3069 	synchronize_rcu();
3070 	module_put(mod);
3071 	blocking_notifier_call_chain(&module_notify_list,
3072 				     MODULE_STATE_GOING, mod);
3073 	klp_module_going(mod);
3074 	ftrace_release_mod(mod);
3075 	free_module(mod);
3076 	wake_up_all(&module_wq);
3077 
3078 	return ret;
3079 }
3080 
3081 static int may_init_module(void)
3082 {
3083 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
3084 		return -EPERM;
3085 
3086 	return 0;
3087 }
3088 
3089 /* Is this module of this name done loading?  No locks held. */
3090 static bool finished_loading(const char *name)
3091 {
3092 	struct module *mod;
3093 	bool ret;
3094 
3095 	/*
3096 	 * The module_mutex should not be a heavily contended lock;
3097 	 * if we get the occasional sleep here, we'll go an extra iteration
3098 	 * in the wait_event_interruptible(), which is harmless.
3099 	 */
3100 	sched_annotate_sleep();
3101 	mutex_lock(&module_mutex);
3102 	mod = find_module_all(name, strlen(name), true);
3103 	ret = !mod || mod->state == MODULE_STATE_LIVE
3104 		|| mod->state == MODULE_STATE_GOING;
3105 	mutex_unlock(&module_mutex);
3106 
3107 	return ret;
3108 }
3109 
3110 /* Must be called with module_mutex held */
3111 static int module_patient_check_exists(const char *name,
3112 				       enum fail_dup_mod_reason reason)
3113 {
3114 	struct module *old;
3115 	int err = 0;
3116 
3117 	old = find_module_all(name, strlen(name), true);
3118 	if (old == NULL)
3119 		return 0;
3120 
3121 	if (old->state == MODULE_STATE_COMING ||
3122 	    old->state == MODULE_STATE_UNFORMED) {
3123 		/* Wait in case it fails to load. */
3124 		mutex_unlock(&module_mutex);
3125 		err = wait_event_interruptible(module_wq,
3126 				       finished_loading(name));
3127 		mutex_lock(&module_mutex);
3128 		if (err)
3129 			return err;
3130 
3131 		/* The module might have gone in the meantime. */
3132 		old = find_module_all(name, strlen(name), true);
3133 	}
3134 
3135 	if (try_add_failed_module(name, reason))
3136 		pr_warn("Could not add fail-tracking for module: %s\n", name);
3137 
3138 	/*
3139 	 * We are here only when the same module was being loaded. Do
3140 	 * not try to load it again right now. It prevents long delays
3141 	 * caused by serialized module load failures. It might happen
3142 	 * when more devices of the same type trigger load of
3143 	 * a particular module.
3144 	 */
3145 	if (old && old->state == MODULE_STATE_LIVE)
3146 		return -EEXIST;
3147 	return -EBUSY;
3148 }
3149 
3150 /*
3151  * We try to place it in the list now to make sure it's unique before
3152  * we dedicate too many resources.  In particular, temporary percpu
3153  * memory exhaustion.
3154  */
3155 static int add_unformed_module(struct module *mod)
3156 {
3157 	int err;
3158 
3159 	mod->state = MODULE_STATE_UNFORMED;
3160 
3161 	mutex_lock(&module_mutex);
3162 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
3163 	if (err)
3164 		goto out;
3165 
3166 	mod_update_bounds(mod);
3167 	list_add_rcu(&mod->list, &modules);
3168 	mod_tree_insert(mod);
3169 	err = 0;
3170 
3171 out:
3172 	mutex_unlock(&module_mutex);
3173 	return err;
3174 }
3175 
3176 static int complete_formation(struct module *mod, struct load_info *info)
3177 {
3178 	int err;
3179 
3180 	mutex_lock(&module_mutex);
3181 
3182 	/* Find duplicate symbols (must be called under lock). */
3183 	err = verify_exported_symbols(mod);
3184 	if (err < 0)
3185 		goto out;
3186 
3187 	/* These rely on module_mutex for list integrity. */
3188 	module_bug_finalize(info->hdr, info->sechdrs, mod);
3189 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
3190 
3191 	err = module_enable_rodata_ro(mod);
3192 	if (err)
3193 		goto out_strict_rwx;
3194 	err = module_enable_data_nx(mod);
3195 	if (err)
3196 		goto out_strict_rwx;
3197 	err = module_enable_text_rox(mod);
3198 	if (err)
3199 		goto out_strict_rwx;
3200 
3201 	/*
3202 	 * Mark state as coming so strong_try_module_get() ignores us,
3203 	 * but kallsyms etc. can see us.
3204 	 */
3205 	mod->state = MODULE_STATE_COMING;
3206 	mutex_unlock(&module_mutex);
3207 
3208 	return 0;
3209 
3210 out_strict_rwx:
3211 	module_bug_cleanup(mod);
3212 out:
3213 	mutex_unlock(&module_mutex);
3214 	return err;
3215 }
3216 
3217 static int prepare_coming_module(struct module *mod)
3218 {
3219 	int err;
3220 
3221 	ftrace_module_enable(mod);
3222 	err = klp_module_coming(mod);
3223 	if (err)
3224 		return err;
3225 
3226 	err = blocking_notifier_call_chain_robust(&module_notify_list,
3227 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
3228 	err = notifier_to_errno(err);
3229 	if (err)
3230 		klp_module_going(mod);
3231 
3232 	return err;
3233 }
3234 
3235 static int unknown_module_param_cb(char *param, char *val, const char *modname,
3236 				   void *arg)
3237 {
3238 	struct module *mod = arg;
3239 	int ret;
3240 
3241 	if (strcmp(param, "async_probe") == 0) {
3242 		if (kstrtobool(val, &mod->async_probe_requested))
3243 			mod->async_probe_requested = true;
3244 		return 0;
3245 	}
3246 
3247 	/* Check for magic 'dyndbg' arg */
3248 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
3249 	if (ret != 0)
3250 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
3251 	return 0;
3252 }
3253 
3254 /* Module within temporary copy, this doesn't do any allocation  */
3255 static int early_mod_check(struct load_info *info, int flags)
3256 {
3257 	int err;
3258 
3259 	/*
3260 	 * Now that we know we have the correct module name, check
3261 	 * if it's blacklisted.
3262 	 */
3263 	if (blacklisted(info->name)) {
3264 		pr_err("Module %s is blacklisted\n", info->name);
3265 		return -EPERM;
3266 	}
3267 
3268 	err = rewrite_section_headers(info, flags);
3269 	if (err)
3270 		return err;
3271 
3272 	/* Check module struct version now, before we try to use module. */
3273 	if (!check_modstruct_version(info, info->mod))
3274 		return -ENOEXEC;
3275 
3276 	err = check_modinfo(info->mod, info, flags);
3277 	if (err)
3278 		return err;
3279 
3280 	mutex_lock(&module_mutex);
3281 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
3282 	mutex_unlock(&module_mutex);
3283 
3284 	return err;
3285 }
3286 
3287 /*
3288  * Allocate and load the module: note that size of section 0 is always
3289  * zero, and we rely on this for optional sections.
3290  */
3291 static int load_module(struct load_info *info, const char __user *uargs,
3292 		       int flags)
3293 {
3294 	struct module *mod;
3295 	bool module_allocated = false;
3296 	long err = 0;
3297 	char *after_dashes;
3298 
3299 	/*
3300 	 * Do the signature check (if any) first. All that
3301 	 * the signature check needs is info->len, it does
3302 	 * not need any of the section info. That can be
3303 	 * set up later. This will minimize the chances
3304 	 * of a corrupt module causing problems before
3305 	 * we even get to the signature check.
3306 	 *
3307 	 * The check will also adjust info->len by stripping
3308 	 * off the sig length at the end of the module, making
3309 	 * checks against info->len more correct.
3310 	 */
3311 	err = module_sig_check(info, flags);
3312 	if (err)
3313 		goto free_copy;
3314 
3315 	/*
3316 	 * Do basic sanity checks against the ELF header and
3317 	 * sections. Cache useful sections and set the
3318 	 * info->mod to the userspace passed struct module.
3319 	 */
3320 	err = elf_validity_cache_copy(info, flags);
3321 	if (err)
3322 		goto free_copy;
3323 
3324 	err = early_mod_check(info, flags);
3325 	if (err)
3326 		goto free_copy;
3327 
3328 	/* Figure out module layout, and allocate all the memory. */
3329 	mod = layout_and_allocate(info, flags);
3330 	if (IS_ERR(mod)) {
3331 		err = PTR_ERR(mod);
3332 		goto free_copy;
3333 	}
3334 
3335 	module_allocated = true;
3336 
3337 	audit_log_kern_module(mod->name);
3338 
3339 	/* Reserve our place in the list. */
3340 	err = add_unformed_module(mod);
3341 	if (err)
3342 		goto free_module;
3343 
3344 	/*
3345 	 * We are tainting your kernel if your module gets into
3346 	 * the modules linked list somehow.
3347 	 */
3348 	module_augment_kernel_taints(mod, info);
3349 
3350 	/* To avoid stressing percpu allocator, do this once we're unique. */
3351 	err = percpu_modalloc(mod, info);
3352 	if (err)
3353 		goto unlink_mod;
3354 
3355 	/* Now module is in final location, initialize linked lists, etc. */
3356 	err = module_unload_init(mod);
3357 	if (err)
3358 		goto unlink_mod;
3359 
3360 	init_param_lock(mod);
3361 
3362 	/*
3363 	 * Now we've got everything in the final locations, we can
3364 	 * find optional sections.
3365 	 */
3366 	err = find_module_sections(mod, info);
3367 	if (err)
3368 		goto free_unload;
3369 
3370 	err = check_export_symbol_versions(mod);
3371 	if (err)
3372 		goto free_unload;
3373 
3374 	/* Set up MODINFO_ATTR fields */
3375 	setup_modinfo(mod, info);
3376 
3377 	/* Fix up syms, so that st_value is a pointer to location. */
3378 	err = simplify_symbols(mod, info);
3379 	if (err < 0)
3380 		goto free_modinfo;
3381 
3382 	err = apply_relocations(mod, info);
3383 	if (err < 0)
3384 		goto free_modinfo;
3385 
3386 	err = post_relocation(mod, info);
3387 	if (err < 0)
3388 		goto free_modinfo;
3389 
3390 	flush_module_icache(mod);
3391 
3392 	/* Now copy in args */
3393 	mod->args = strndup_user(uargs, ~0UL >> 1);
3394 	if (IS_ERR(mod->args)) {
3395 		err = PTR_ERR(mod->args);
3396 		goto free_arch_cleanup;
3397 	}
3398 
3399 	init_build_id(mod, info);
3400 
3401 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3402 	ftrace_module_init(mod);
3403 
3404 	/* Finally it's fully formed, ready to start executing. */
3405 	err = complete_formation(mod, info);
3406 	if (err)
3407 		goto ddebug_cleanup;
3408 
3409 	err = prepare_coming_module(mod);
3410 	if (err)
3411 		goto bug_cleanup;
3412 
3413 	mod->async_probe_requested = async_probe;
3414 
3415 	/* Module is ready to execute: parsing args may do that. */
3416 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3417 				  -32768, 32767, mod,
3418 				  unknown_module_param_cb);
3419 	if (IS_ERR(after_dashes)) {
3420 		err = PTR_ERR(after_dashes);
3421 		goto coming_cleanup;
3422 	} else if (after_dashes) {
3423 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3424 		       mod->name, after_dashes);
3425 	}
3426 
3427 	/* Link in to sysfs. */
3428 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3429 	if (err < 0)
3430 		goto coming_cleanup;
3431 
3432 	if (is_livepatch_module(mod)) {
3433 		err = copy_module_elf(mod, info);
3434 		if (err < 0)
3435 			goto sysfs_cleanup;
3436 	}
3437 
3438 	/* Get rid of temporary copy. */
3439 	free_copy(info, flags);
3440 
3441 	codetag_load_module(mod);
3442 
3443 	/* Done! */
3444 	trace_module_load(mod);
3445 
3446 	return do_init_module(mod);
3447 
3448  sysfs_cleanup:
3449 	mod_sysfs_teardown(mod);
3450  coming_cleanup:
3451 	mod->state = MODULE_STATE_GOING;
3452 	destroy_params(mod->kp, mod->num_kp);
3453 	blocking_notifier_call_chain(&module_notify_list,
3454 				     MODULE_STATE_GOING, mod);
3455 	klp_module_going(mod);
3456  bug_cleanup:
3457 	mod->state = MODULE_STATE_GOING;
3458 	/* module_bug_cleanup needs module_mutex protection */
3459 	mutex_lock(&module_mutex);
3460 	module_bug_cleanup(mod);
3461 	mutex_unlock(&module_mutex);
3462 
3463  ddebug_cleanup:
3464 	ftrace_release_mod(mod);
3465 	synchronize_rcu();
3466 	kfree(mod->args);
3467  free_arch_cleanup:
3468 	module_arch_cleanup(mod);
3469  free_modinfo:
3470 	free_modinfo(mod);
3471  free_unload:
3472 	module_unload_free(mod);
3473  unlink_mod:
3474 	mutex_lock(&module_mutex);
3475 	/* Unlink carefully: kallsyms could be walking list. */
3476 	list_del_rcu(&mod->list);
3477 	mod_tree_remove(mod);
3478 	wake_up_all(&module_wq);
3479 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3480 	synchronize_rcu();
3481 	mutex_unlock(&module_mutex);
3482  free_module:
3483 	mod_stat_bump_invalid(info, flags);
3484 	/* Free lock-classes; relies on the preceding sync_rcu() */
3485 	for_class_mod_mem_type(type, core_data) {
3486 		lockdep_free_key_range(mod->mem[type].base,
3487 				       mod->mem[type].size);
3488 	}
3489 
3490 	module_deallocate(mod, info);
3491  free_copy:
3492 	/*
3493 	 * The info->len is always set. We distinguish between
3494 	 * failures once the proper module was allocated and
3495 	 * before that.
3496 	 */
3497 	if (!module_allocated)
3498 		mod_stat_bump_becoming(info, flags);
3499 	free_copy(info, flags);
3500 	return err;
3501 }
3502 
3503 SYSCALL_DEFINE3(init_module, void __user *, umod,
3504 		unsigned long, len, const char __user *, uargs)
3505 {
3506 	int err;
3507 	struct load_info info = { };
3508 
3509 	err = may_init_module();
3510 	if (err)
3511 		return err;
3512 
3513 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3514 	       umod, len, uargs);
3515 
3516 	err = copy_module_from_user(umod, len, &info);
3517 	if (err) {
3518 		mod_stat_inc(&failed_kreads);
3519 		mod_stat_add_long(len, &invalid_kread_bytes);
3520 		return err;
3521 	}
3522 
3523 	return load_module(&info, uargs, 0);
3524 }
3525 
3526 struct idempotent {
3527 	const void *cookie;
3528 	struct hlist_node entry;
3529 	struct completion complete;
3530 	int ret;
3531 };
3532 
3533 #define IDEM_HASH_BITS 8
3534 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3535 static DEFINE_SPINLOCK(idem_lock);
3536 
3537 static bool idempotent(struct idempotent *u, const void *cookie)
3538 {
3539 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3540 	struct hlist_head *head = idem_hash + hash;
3541 	struct idempotent *existing;
3542 	bool first;
3543 
3544 	u->ret = -EINTR;
3545 	u->cookie = cookie;
3546 	init_completion(&u->complete);
3547 
3548 	spin_lock(&idem_lock);
3549 	first = true;
3550 	hlist_for_each_entry(existing, head, entry) {
3551 		if (existing->cookie != cookie)
3552 			continue;
3553 		first = false;
3554 		break;
3555 	}
3556 	hlist_add_head(&u->entry, idem_hash + hash);
3557 	spin_unlock(&idem_lock);
3558 
3559 	return !first;
3560 }
3561 
3562 /*
3563  * We were the first one with 'cookie' on the list, and we ended
3564  * up completing the operation. We now need to walk the list,
3565  * remove everybody - which includes ourselves - fill in the return
3566  * value, and then complete the operation.
3567  */
3568 static int idempotent_complete(struct idempotent *u, int ret)
3569 {
3570 	const void *cookie = u->cookie;
3571 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3572 	struct hlist_head *head = idem_hash + hash;
3573 	struct hlist_node *next;
3574 	struct idempotent *pos;
3575 
3576 	spin_lock(&idem_lock);
3577 	hlist_for_each_entry_safe(pos, next, head, entry) {
3578 		if (pos->cookie != cookie)
3579 			continue;
3580 		hlist_del_init(&pos->entry);
3581 		pos->ret = ret;
3582 		complete(&pos->complete);
3583 	}
3584 	spin_unlock(&idem_lock);
3585 	return ret;
3586 }
3587 
3588 /*
3589  * Wait for the idempotent worker.
3590  *
3591  * If we get interrupted, we need to remove ourselves from the
3592  * the idempotent list, and the completion may still come in.
3593  *
3594  * The 'idem_lock' protects against the race, and 'idem.ret' was
3595  * initialized to -EINTR and is thus always the right return
3596  * value even if the idempotent work then completes between
3597  * the wait_for_completion and the cleanup.
3598  */
3599 static int idempotent_wait_for_completion(struct idempotent *u)
3600 {
3601 	if (wait_for_completion_interruptible(&u->complete)) {
3602 		spin_lock(&idem_lock);
3603 		if (!hlist_unhashed(&u->entry))
3604 			hlist_del(&u->entry);
3605 		spin_unlock(&idem_lock);
3606 	}
3607 	return u->ret;
3608 }
3609 
3610 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3611 {
3612 	struct load_info info = { };
3613 	void *buf = NULL;
3614 	int len;
3615 
3616 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3617 	if (len < 0) {
3618 		mod_stat_inc(&failed_kreads);
3619 		return len;
3620 	}
3621 
3622 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3623 		int err = module_decompress(&info, buf, len);
3624 		vfree(buf); /* compressed data is no longer needed */
3625 		if (err) {
3626 			mod_stat_inc(&failed_decompress);
3627 			mod_stat_add_long(len, &invalid_decompress_bytes);
3628 			return err;
3629 		}
3630 	} else {
3631 		info.hdr = buf;
3632 		info.len = len;
3633 	}
3634 
3635 	return load_module(&info, uargs, flags);
3636 }
3637 
3638 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3639 {
3640 	struct idempotent idem;
3641 
3642 	if (!(f->f_mode & FMODE_READ))
3643 		return -EBADF;
3644 
3645 	/* Are we the winners of the race and get to do this? */
3646 	if (!idempotent(&idem, file_inode(f))) {
3647 		int ret = init_module_from_file(f, uargs, flags);
3648 		return idempotent_complete(&idem, ret);
3649 	}
3650 
3651 	/*
3652 	 * Somebody else won the race and is loading the module.
3653 	 */
3654 	return idempotent_wait_for_completion(&idem);
3655 }
3656 
3657 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3658 {
3659 	int err = may_init_module();
3660 	if (err)
3661 		return err;
3662 
3663 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3664 
3665 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3666 		      |MODULE_INIT_IGNORE_VERMAGIC
3667 		      |MODULE_INIT_COMPRESSED_FILE))
3668 		return -EINVAL;
3669 
3670 	CLASS(fd, f)(fd);
3671 	if (fd_empty(f))
3672 		return -EBADF;
3673 	return idempotent_init_module(fd_file(f), uargs, flags);
3674 }
3675 
3676 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
3677 char *module_flags(struct module *mod, char *buf, bool show_state)
3678 {
3679 	int bx = 0;
3680 
3681 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3682 	if (!mod->taints && !show_state)
3683 		goto out;
3684 	if (mod->taints ||
3685 	    mod->state == MODULE_STATE_GOING ||
3686 	    mod->state == MODULE_STATE_COMING) {
3687 		buf[bx++] = '(';
3688 		bx += module_flags_taint(mod->taints, buf + bx);
3689 		/* Show a - for module-is-being-unloaded */
3690 		if (mod->state == MODULE_STATE_GOING && show_state)
3691 			buf[bx++] = '-';
3692 		/* Show a + for module-is-being-loaded */
3693 		if (mod->state == MODULE_STATE_COMING && show_state)
3694 			buf[bx++] = '+';
3695 		buf[bx++] = ')';
3696 	}
3697 out:
3698 	buf[bx] = '\0';
3699 
3700 	return buf;
3701 }
3702 
3703 /* Given an address, look for it in the module exception tables. */
3704 const struct exception_table_entry *search_module_extables(unsigned long addr)
3705 {
3706 	const struct exception_table_entry *e = NULL;
3707 	struct module *mod;
3708 
3709 	preempt_disable();
3710 	mod = __module_address(addr);
3711 	if (!mod)
3712 		goto out;
3713 
3714 	if (!mod->num_exentries)
3715 		goto out;
3716 
3717 	e = search_extable(mod->extable,
3718 			   mod->num_exentries,
3719 			   addr);
3720 out:
3721 	preempt_enable();
3722 
3723 	/*
3724 	 * Now, if we found one, we are running inside it now, hence
3725 	 * we cannot unload the module, hence no refcnt needed.
3726 	 */
3727 	return e;
3728 }
3729 
3730 /**
3731  * is_module_address() - is this address inside a module?
3732  * @addr: the address to check.
3733  *
3734  * See is_module_text_address() if you simply want to see if the address
3735  * is code (not data).
3736  */
3737 bool is_module_address(unsigned long addr)
3738 {
3739 	bool ret;
3740 
3741 	preempt_disable();
3742 	ret = __module_address(addr) != NULL;
3743 	preempt_enable();
3744 
3745 	return ret;
3746 }
3747 
3748 /**
3749  * __module_address() - get the module which contains an address.
3750  * @addr: the address.
3751  *
3752  * Must be called with preempt disabled or module mutex held so that
3753  * module doesn't get freed during this.
3754  */
3755 struct module *__module_address(unsigned long addr)
3756 {
3757 	struct module *mod;
3758 
3759 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3760 		goto lookup;
3761 
3762 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3763 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3764 		goto lookup;
3765 #endif
3766 
3767 	return NULL;
3768 
3769 lookup:
3770 	module_assert_mutex_or_preempt();
3771 
3772 	mod = mod_find(addr, &mod_tree);
3773 	if (mod) {
3774 		BUG_ON(!within_module(addr, mod));
3775 		if (mod->state == MODULE_STATE_UNFORMED)
3776 			mod = NULL;
3777 	}
3778 	return mod;
3779 }
3780 
3781 /**
3782  * is_module_text_address() - is this address inside module code?
3783  * @addr: the address to check.
3784  *
3785  * See is_module_address() if you simply want to see if the address is
3786  * anywhere in a module.  See kernel_text_address() for testing if an
3787  * address corresponds to kernel or module code.
3788  */
3789 bool is_module_text_address(unsigned long addr)
3790 {
3791 	bool ret;
3792 
3793 	preempt_disable();
3794 	ret = __module_text_address(addr) != NULL;
3795 	preempt_enable();
3796 
3797 	return ret;
3798 }
3799 
3800 /**
3801  * __module_text_address() - get the module whose code contains an address.
3802  * @addr: the address.
3803  *
3804  * Must be called with preempt disabled or module mutex held so that
3805  * module doesn't get freed during this.
3806  */
3807 struct module *__module_text_address(unsigned long addr)
3808 {
3809 	struct module *mod = __module_address(addr);
3810 	if (mod) {
3811 		/* Make sure it's within the text section. */
3812 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3813 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3814 			mod = NULL;
3815 	}
3816 	return mod;
3817 }
3818 
3819 /* Don't grab lock, we're oopsing. */
3820 void print_modules(void)
3821 {
3822 	struct module *mod;
3823 	char buf[MODULE_FLAGS_BUF_SIZE];
3824 
3825 	printk(KERN_DEFAULT "Modules linked in:");
3826 	/* Most callers should already have preempt disabled, but make sure */
3827 	guard(rcu)();
3828 	list_for_each_entry_rcu(mod, &modules, list) {
3829 		if (mod->state == MODULE_STATE_UNFORMED)
3830 			continue;
3831 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3832 	}
3833 
3834 	print_unloaded_tainted_modules();
3835 	if (last_unloaded_module.name[0])
3836 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3837 			last_unloaded_module.taints);
3838 	pr_cont("\n");
3839 }
3840 
3841 #ifdef CONFIG_MODULE_DEBUGFS
3842 struct dentry *mod_debugfs_root;
3843 
3844 static int module_debugfs_init(void)
3845 {
3846 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3847 	return 0;
3848 }
3849 module_init(module_debugfs_init);
3850 #endif
3851