1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Copyright (C) 2002 Richard Henderson 4 * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM. 5 * Copyright (C) 2023 Luis Chamberlain <[email protected]> 6 */ 7 8 #define INCLUDE_VERMAGIC 9 10 #include <linux/export.h> 11 #include <linux/extable.h> 12 #include <linux/moduleloader.h> 13 #include <linux/module_signature.h> 14 #include <linux/trace_events.h> 15 #include <linux/init.h> 16 #include <linux/kallsyms.h> 17 #include <linux/buildid.h> 18 #include <linux/fs.h> 19 #include <linux/kernel.h> 20 #include <linux/kernel_read_file.h> 21 #include <linux/kstrtox.h> 22 #include <linux/slab.h> 23 #include <linux/vmalloc.h> 24 #include <linux/elf.h> 25 #include <linux/seq_file.h> 26 #include <linux/syscalls.h> 27 #include <linux/fcntl.h> 28 #include <linux/rcupdate.h> 29 #include <linux/capability.h> 30 #include <linux/cpu.h> 31 #include <linux/moduleparam.h> 32 #include <linux/errno.h> 33 #include <linux/err.h> 34 #include <linux/vermagic.h> 35 #include <linux/notifier.h> 36 #include <linux/sched.h> 37 #include <linux/device.h> 38 #include <linux/string.h> 39 #include <linux/mutex.h> 40 #include <linux/rculist.h> 41 #include <linux/uaccess.h> 42 #include <asm/cacheflush.h> 43 #include <linux/set_memory.h> 44 #include <asm/mmu_context.h> 45 #include <linux/license.h> 46 #include <asm/sections.h> 47 #include <linux/tracepoint.h> 48 #include <linux/ftrace.h> 49 #include <linux/livepatch.h> 50 #include <linux/async.h> 51 #include <linux/percpu.h> 52 #include <linux/kmemleak.h> 53 #include <linux/jump_label.h> 54 #include <linux/pfn.h> 55 #include <linux/bsearch.h> 56 #include <linux/dynamic_debug.h> 57 #include <linux/audit.h> 58 #include <linux/cfi.h> 59 #include <linux/codetag.h> 60 #include <linux/debugfs.h> 61 #include <linux/execmem.h> 62 #include <uapi/linux/module.h> 63 #include "internal.h" 64 65 #define CREATE_TRACE_POINTS 66 #include <trace/events/module.h> 67 68 /* 69 * Mutex protects: 70 * 1) List of modules (also safely readable within RCU read section), 71 * 2) module_use links, 72 * 3) mod_tree.addr_min/mod_tree.addr_max. 73 * (delete and add uses RCU list operations). 74 */ 75 DEFINE_MUTEX(module_mutex); 76 LIST_HEAD(modules); 77 78 /* Work queue for freeing init sections in success case */ 79 static void do_free_init(struct work_struct *w); 80 static DECLARE_WORK(init_free_wq, do_free_init); 81 static LLIST_HEAD(init_free_list); 82 83 struct mod_tree_root mod_tree __cacheline_aligned = { 84 .addr_min = -1UL, 85 }; 86 87 struct symsearch { 88 const struct kernel_symbol *start, *stop; 89 const u32 *crcs; 90 enum mod_license license; 91 }; 92 93 /* 94 * Bounds of module memory, for speeding up __module_address. 95 * Protected by module_mutex. 96 */ 97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base, 98 unsigned int size, struct mod_tree_root *tree) 99 { 100 unsigned long min = (unsigned long)base; 101 unsigned long max = min + size; 102 103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 104 if (mod_mem_type_is_core_data(type)) { 105 if (min < tree->data_addr_min) 106 tree->data_addr_min = min; 107 if (max > tree->data_addr_max) 108 tree->data_addr_max = max; 109 return; 110 } 111 #endif 112 if (min < tree->addr_min) 113 tree->addr_min = min; 114 if (max > tree->addr_max) 115 tree->addr_max = max; 116 } 117 118 static void mod_update_bounds(struct module *mod) 119 { 120 for_each_mod_mem_type(type) { 121 struct module_memory *mod_mem = &mod->mem[type]; 122 123 if (mod_mem->size) 124 __mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree); 125 } 126 } 127 128 /* Block module loading/unloading? */ 129 int modules_disabled; 130 core_param(nomodule, modules_disabled, bint, 0); 131 132 /* Waiting for a module to finish initializing? */ 133 static DECLARE_WAIT_QUEUE_HEAD(module_wq); 134 135 static BLOCKING_NOTIFIER_HEAD(module_notify_list); 136 137 int register_module_notifier(struct notifier_block *nb) 138 { 139 return blocking_notifier_chain_register(&module_notify_list, nb); 140 } 141 EXPORT_SYMBOL(register_module_notifier); 142 143 int unregister_module_notifier(struct notifier_block *nb) 144 { 145 return blocking_notifier_chain_unregister(&module_notify_list, nb); 146 } 147 EXPORT_SYMBOL(unregister_module_notifier); 148 149 /* 150 * We require a truly strong try_module_get(): 0 means success. 151 * Otherwise an error is returned due to ongoing or failed 152 * initialization etc. 153 */ 154 static inline int strong_try_module_get(struct module *mod) 155 { 156 BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED); 157 if (mod && mod->state == MODULE_STATE_COMING) 158 return -EBUSY; 159 if (try_module_get(mod)) 160 return 0; 161 else 162 return -ENOENT; 163 } 164 165 static inline void add_taint_module(struct module *mod, unsigned flag, 166 enum lockdep_ok lockdep_ok) 167 { 168 add_taint(flag, lockdep_ok); 169 set_bit(flag, &mod->taints); 170 } 171 172 /* 173 * A thread that wants to hold a reference to a module only while it 174 * is running can call this to safely exit. 175 */ 176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code) 177 { 178 module_put(mod); 179 kthread_exit(code); 180 } 181 EXPORT_SYMBOL(__module_put_and_kthread_exit); 182 183 /* Find a module section: 0 means not found. */ 184 static unsigned int find_sec(const struct load_info *info, const char *name) 185 { 186 unsigned int i; 187 188 for (i = 1; i < info->hdr->e_shnum; i++) { 189 Elf_Shdr *shdr = &info->sechdrs[i]; 190 /* Alloc bit cleared means "ignore it." */ 191 if ((shdr->sh_flags & SHF_ALLOC) 192 && strcmp(info->secstrings + shdr->sh_name, name) == 0) 193 return i; 194 } 195 return 0; 196 } 197 198 /** 199 * find_any_unique_sec() - Find a unique section index by name 200 * @info: Load info for the module to scan 201 * @name: Name of the section we're looking for 202 * 203 * Locates a unique section by name. Ignores SHF_ALLOC. 204 * 205 * Return: Section index if found uniquely, zero if absent, negative count 206 * of total instances if multiple were found. 207 */ 208 static int find_any_unique_sec(const struct load_info *info, const char *name) 209 { 210 unsigned int idx; 211 unsigned int count = 0; 212 int i; 213 214 for (i = 1; i < info->hdr->e_shnum; i++) { 215 if (strcmp(info->secstrings + info->sechdrs[i].sh_name, 216 name) == 0) { 217 count++; 218 idx = i; 219 } 220 } 221 if (count == 1) { 222 return idx; 223 } else if (count == 0) { 224 return 0; 225 } else { 226 return -count; 227 } 228 } 229 230 /* Find a module section, or NULL. */ 231 static void *section_addr(const struct load_info *info, const char *name) 232 { 233 /* Section 0 has sh_addr 0. */ 234 return (void *)info->sechdrs[find_sec(info, name)].sh_addr; 235 } 236 237 /* Find a module section, or NULL. Fill in number of "objects" in section. */ 238 static void *section_objs(const struct load_info *info, 239 const char *name, 240 size_t object_size, 241 unsigned int *num) 242 { 243 unsigned int sec = find_sec(info, name); 244 245 /* Section 0 has sh_addr 0 and sh_size 0. */ 246 *num = info->sechdrs[sec].sh_size / object_size; 247 return (void *)info->sechdrs[sec].sh_addr; 248 } 249 250 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */ 251 static unsigned int find_any_sec(const struct load_info *info, const char *name) 252 { 253 unsigned int i; 254 255 for (i = 1; i < info->hdr->e_shnum; i++) { 256 Elf_Shdr *shdr = &info->sechdrs[i]; 257 if (strcmp(info->secstrings + shdr->sh_name, name) == 0) 258 return i; 259 } 260 return 0; 261 } 262 263 /* 264 * Find a module section, or NULL. Fill in number of "objects" in section. 265 * Ignores SHF_ALLOC flag. 266 */ 267 static __maybe_unused void *any_section_objs(const struct load_info *info, 268 const char *name, 269 size_t object_size, 270 unsigned int *num) 271 { 272 unsigned int sec = find_any_sec(info, name); 273 274 /* Section 0 has sh_addr 0 and sh_size 0. */ 275 *num = info->sechdrs[sec].sh_size / object_size; 276 return (void *)info->sechdrs[sec].sh_addr; 277 } 278 279 #ifndef CONFIG_MODVERSIONS 280 #define symversion(base, idx) NULL 281 #else 282 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL) 283 #endif 284 285 static const char *kernel_symbol_name(const struct kernel_symbol *sym) 286 { 287 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 288 return offset_to_ptr(&sym->name_offset); 289 #else 290 return sym->name; 291 #endif 292 } 293 294 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym) 295 { 296 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS 297 if (!sym->namespace_offset) 298 return NULL; 299 return offset_to_ptr(&sym->namespace_offset); 300 #else 301 return sym->namespace; 302 #endif 303 } 304 305 int cmp_name(const void *name, const void *sym) 306 { 307 return strcmp(name, kernel_symbol_name(sym)); 308 } 309 310 static bool find_exported_symbol_in_section(const struct symsearch *syms, 311 struct module *owner, 312 struct find_symbol_arg *fsa) 313 { 314 struct kernel_symbol *sym; 315 316 if (!fsa->gplok && syms->license == GPL_ONLY) 317 return false; 318 319 sym = bsearch(fsa->name, syms->start, syms->stop - syms->start, 320 sizeof(struct kernel_symbol), cmp_name); 321 if (!sym) 322 return false; 323 324 fsa->owner = owner; 325 fsa->crc = symversion(syms->crcs, sym - syms->start); 326 fsa->sym = sym; 327 fsa->license = syms->license; 328 329 return true; 330 } 331 332 /* 333 * Find an exported symbol and return it, along with, (optional) crc and 334 * (optional) module which owns it. Needs RCU or module_mutex. 335 */ 336 bool find_symbol(struct find_symbol_arg *fsa) 337 { 338 static const struct symsearch arr[] = { 339 { __start___ksymtab, __stop___ksymtab, __start___kcrctab, 340 NOT_GPL_ONLY }, 341 { __start___ksymtab_gpl, __stop___ksymtab_gpl, 342 __start___kcrctab_gpl, 343 GPL_ONLY }, 344 }; 345 struct module *mod; 346 unsigned int i; 347 348 for (i = 0; i < ARRAY_SIZE(arr); i++) 349 if (find_exported_symbol_in_section(&arr[i], NULL, fsa)) 350 return true; 351 352 list_for_each_entry_rcu(mod, &modules, list, 353 lockdep_is_held(&module_mutex)) { 354 struct symsearch arr[] = { 355 { mod->syms, mod->syms + mod->num_syms, mod->crcs, 356 NOT_GPL_ONLY }, 357 { mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms, 358 mod->gpl_crcs, 359 GPL_ONLY }, 360 }; 361 362 if (mod->state == MODULE_STATE_UNFORMED) 363 continue; 364 365 for (i = 0; i < ARRAY_SIZE(arr); i++) 366 if (find_exported_symbol_in_section(&arr[i], mod, fsa)) 367 return true; 368 } 369 370 pr_debug("Failed to find symbol %s\n", fsa->name); 371 return false; 372 } 373 374 /* 375 * Search for module by name: must hold module_mutex (or RCU for read-only 376 * access). 377 */ 378 struct module *find_module_all(const char *name, size_t len, 379 bool even_unformed) 380 { 381 struct module *mod; 382 383 list_for_each_entry_rcu(mod, &modules, list, 384 lockdep_is_held(&module_mutex)) { 385 if (!even_unformed && mod->state == MODULE_STATE_UNFORMED) 386 continue; 387 if (strlen(mod->name) == len && !memcmp(mod->name, name, len)) 388 return mod; 389 } 390 return NULL; 391 } 392 393 struct module *find_module(const char *name) 394 { 395 return find_module_all(name, strlen(name), false); 396 } 397 398 #ifdef CONFIG_SMP 399 400 static inline void __percpu *mod_percpu(struct module *mod) 401 { 402 return mod->percpu; 403 } 404 405 static int percpu_modalloc(struct module *mod, struct load_info *info) 406 { 407 Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu]; 408 unsigned long align = pcpusec->sh_addralign; 409 410 if (!pcpusec->sh_size) 411 return 0; 412 413 if (align > PAGE_SIZE) { 414 pr_warn("%s: per-cpu alignment %li > %li\n", 415 mod->name, align, PAGE_SIZE); 416 align = PAGE_SIZE; 417 } 418 419 mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align); 420 if (!mod->percpu) { 421 pr_warn("%s: Could not allocate %lu bytes percpu data\n", 422 mod->name, (unsigned long)pcpusec->sh_size); 423 return -ENOMEM; 424 } 425 mod->percpu_size = pcpusec->sh_size; 426 return 0; 427 } 428 429 static void percpu_modfree(struct module *mod) 430 { 431 free_percpu(mod->percpu); 432 } 433 434 static unsigned int find_pcpusec(struct load_info *info) 435 { 436 return find_sec(info, ".data..percpu"); 437 } 438 439 static void percpu_modcopy(struct module *mod, 440 const void *from, unsigned long size) 441 { 442 int cpu; 443 444 for_each_possible_cpu(cpu) 445 memcpy(per_cpu_ptr(mod->percpu, cpu), from, size); 446 } 447 448 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 449 { 450 struct module *mod; 451 unsigned int cpu; 452 453 guard(rcu)(); 454 list_for_each_entry_rcu(mod, &modules, list) { 455 if (mod->state == MODULE_STATE_UNFORMED) 456 continue; 457 if (!mod->percpu_size) 458 continue; 459 for_each_possible_cpu(cpu) { 460 void *start = per_cpu_ptr(mod->percpu, cpu); 461 void *va = (void *)addr; 462 463 if (va >= start && va < start + mod->percpu_size) { 464 if (can_addr) { 465 *can_addr = (unsigned long) (va - start); 466 *can_addr += (unsigned long) 467 per_cpu_ptr(mod->percpu, 468 get_boot_cpu_id()); 469 } 470 return true; 471 } 472 } 473 } 474 return false; 475 } 476 477 /** 478 * is_module_percpu_address() - test whether address is from module static percpu 479 * @addr: address to test 480 * 481 * Test whether @addr belongs to module static percpu area. 482 * 483 * Return: %true if @addr is from module static percpu area 484 */ 485 bool is_module_percpu_address(unsigned long addr) 486 { 487 return __is_module_percpu_address(addr, NULL); 488 } 489 490 #else /* ... !CONFIG_SMP */ 491 492 static inline void __percpu *mod_percpu(struct module *mod) 493 { 494 return NULL; 495 } 496 static int percpu_modalloc(struct module *mod, struct load_info *info) 497 { 498 /* UP modules shouldn't have this section: ENOMEM isn't quite right */ 499 if (info->sechdrs[info->index.pcpu].sh_size != 0) 500 return -ENOMEM; 501 return 0; 502 } 503 static inline void percpu_modfree(struct module *mod) 504 { 505 } 506 static unsigned int find_pcpusec(struct load_info *info) 507 { 508 return 0; 509 } 510 static inline void percpu_modcopy(struct module *mod, 511 const void *from, unsigned long size) 512 { 513 /* pcpusec should be 0, and size of that section should be 0. */ 514 BUG_ON(size != 0); 515 } 516 bool is_module_percpu_address(unsigned long addr) 517 { 518 return false; 519 } 520 521 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr) 522 { 523 return false; 524 } 525 526 #endif /* CONFIG_SMP */ 527 528 #define MODINFO_ATTR(field) \ 529 static void setup_modinfo_##field(struct module *mod, const char *s) \ 530 { \ 531 mod->field = kstrdup(s, GFP_KERNEL); \ 532 } \ 533 static ssize_t show_modinfo_##field(const struct module_attribute *mattr, \ 534 struct module_kobject *mk, char *buffer) \ 535 { \ 536 return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field); \ 537 } \ 538 static int modinfo_##field##_exists(struct module *mod) \ 539 { \ 540 return mod->field != NULL; \ 541 } \ 542 static void free_modinfo_##field(struct module *mod) \ 543 { \ 544 kfree(mod->field); \ 545 mod->field = NULL; \ 546 } \ 547 static const struct module_attribute modinfo_##field = { \ 548 .attr = { .name = __stringify(field), .mode = 0444 }, \ 549 .show = show_modinfo_##field, \ 550 .setup = setup_modinfo_##field, \ 551 .test = modinfo_##field##_exists, \ 552 .free = free_modinfo_##field, \ 553 }; 554 555 MODINFO_ATTR(version); 556 MODINFO_ATTR(srcversion); 557 558 static struct { 559 char name[MODULE_NAME_LEN + 1]; 560 char taints[MODULE_FLAGS_BUF_SIZE]; 561 } last_unloaded_module; 562 563 #ifdef CONFIG_MODULE_UNLOAD 564 565 EXPORT_TRACEPOINT_SYMBOL(module_get); 566 567 /* MODULE_REF_BASE is the base reference count by kmodule loader. */ 568 #define MODULE_REF_BASE 1 569 570 /* Init the unload section of the module. */ 571 static int module_unload_init(struct module *mod) 572 { 573 /* 574 * Initialize reference counter to MODULE_REF_BASE. 575 * refcnt == 0 means module is going. 576 */ 577 atomic_set(&mod->refcnt, MODULE_REF_BASE); 578 579 INIT_LIST_HEAD(&mod->source_list); 580 INIT_LIST_HEAD(&mod->target_list); 581 582 /* Hold reference count during initialization. */ 583 atomic_inc(&mod->refcnt); 584 585 return 0; 586 } 587 588 /* Does a already use b? */ 589 static int already_uses(struct module *a, struct module *b) 590 { 591 struct module_use *use; 592 593 list_for_each_entry(use, &b->source_list, source_list) { 594 if (use->source == a) 595 return 1; 596 } 597 pr_debug("%s does not use %s!\n", a->name, b->name); 598 return 0; 599 } 600 601 /* 602 * Module a uses b 603 * - we add 'a' as a "source", 'b' as a "target" of module use 604 * - the module_use is added to the list of 'b' sources (so 605 * 'b' can walk the list to see who sourced them), and of 'a' 606 * targets (so 'a' can see what modules it targets). 607 */ 608 static int add_module_usage(struct module *a, struct module *b) 609 { 610 struct module_use *use; 611 612 pr_debug("Allocating new usage for %s.\n", a->name); 613 use = kmalloc(sizeof(*use), GFP_ATOMIC); 614 if (!use) 615 return -ENOMEM; 616 617 use->source = a; 618 use->target = b; 619 list_add(&use->source_list, &b->source_list); 620 list_add(&use->target_list, &a->target_list); 621 return 0; 622 } 623 624 /* Module a uses b: caller needs module_mutex() */ 625 static int ref_module(struct module *a, struct module *b) 626 { 627 int err; 628 629 if (b == NULL || already_uses(a, b)) 630 return 0; 631 632 /* If module isn't available, we fail. */ 633 err = strong_try_module_get(b); 634 if (err) 635 return err; 636 637 err = add_module_usage(a, b); 638 if (err) { 639 module_put(b); 640 return err; 641 } 642 return 0; 643 } 644 645 /* Clear the unload stuff of the module. */ 646 static void module_unload_free(struct module *mod) 647 { 648 struct module_use *use, *tmp; 649 650 mutex_lock(&module_mutex); 651 list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) { 652 struct module *i = use->target; 653 pr_debug("%s unusing %s\n", mod->name, i->name); 654 module_put(i); 655 list_del(&use->source_list); 656 list_del(&use->target_list); 657 kfree(use); 658 } 659 mutex_unlock(&module_mutex); 660 } 661 662 #ifdef CONFIG_MODULE_FORCE_UNLOAD 663 static inline int try_force_unload(unsigned int flags) 664 { 665 int ret = (flags & O_TRUNC); 666 if (ret) 667 add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE); 668 return ret; 669 } 670 #else 671 static inline int try_force_unload(unsigned int flags) 672 { 673 return 0; 674 } 675 #endif /* CONFIG_MODULE_FORCE_UNLOAD */ 676 677 /* Try to release refcount of module, 0 means success. */ 678 static int try_release_module_ref(struct module *mod) 679 { 680 int ret; 681 682 /* Try to decrement refcnt which we set at loading */ 683 ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt); 684 BUG_ON(ret < 0); 685 if (ret) 686 /* Someone can put this right now, recover with checking */ 687 ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0); 688 689 return ret; 690 } 691 692 static int try_stop_module(struct module *mod, int flags, int *forced) 693 { 694 /* If it's not unused, quit unless we're forcing. */ 695 if (try_release_module_ref(mod) != 0) { 696 *forced = try_force_unload(flags); 697 if (!(*forced)) 698 return -EWOULDBLOCK; 699 } 700 701 /* Mark it as dying. */ 702 mod->state = MODULE_STATE_GOING; 703 704 return 0; 705 } 706 707 /** 708 * module_refcount() - return the refcount or -1 if unloading 709 * @mod: the module we're checking 710 * 711 * Return: 712 * -1 if the module is in the process of unloading 713 * otherwise the number of references in the kernel to the module 714 */ 715 int module_refcount(struct module *mod) 716 { 717 return atomic_read(&mod->refcnt) - MODULE_REF_BASE; 718 } 719 EXPORT_SYMBOL(module_refcount); 720 721 /* This exists whether we can unload or not */ 722 static void free_module(struct module *mod); 723 724 SYSCALL_DEFINE2(delete_module, const char __user *, name_user, 725 unsigned int, flags) 726 { 727 struct module *mod; 728 char name[MODULE_NAME_LEN]; 729 char buf[MODULE_FLAGS_BUF_SIZE]; 730 int ret, forced = 0; 731 732 if (!capable(CAP_SYS_MODULE) || modules_disabled) 733 return -EPERM; 734 735 if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0) 736 return -EFAULT; 737 name[MODULE_NAME_LEN-1] = '\0'; 738 739 audit_log_kern_module(name); 740 741 if (mutex_lock_interruptible(&module_mutex) != 0) 742 return -EINTR; 743 744 mod = find_module(name); 745 if (!mod) { 746 ret = -ENOENT; 747 goto out; 748 } 749 750 if (!list_empty(&mod->source_list)) { 751 /* Other modules depend on us: get rid of them first. */ 752 ret = -EWOULDBLOCK; 753 goto out; 754 } 755 756 /* Doing init or already dying? */ 757 if (mod->state != MODULE_STATE_LIVE) { 758 /* FIXME: if (force), slam module count damn the torpedoes */ 759 pr_debug("%s already dying\n", mod->name); 760 ret = -EBUSY; 761 goto out; 762 } 763 764 /* If it has an init func, it must have an exit func to unload */ 765 if (mod->init && !mod->exit) { 766 forced = try_force_unload(flags); 767 if (!forced) { 768 /* This module can't be removed */ 769 ret = -EBUSY; 770 goto out; 771 } 772 } 773 774 ret = try_stop_module(mod, flags, &forced); 775 if (ret != 0) 776 goto out; 777 778 mutex_unlock(&module_mutex); 779 /* Final destruction now no one is using it. */ 780 if (mod->exit != NULL) 781 mod->exit(); 782 blocking_notifier_call_chain(&module_notify_list, 783 MODULE_STATE_GOING, mod); 784 klp_module_going(mod); 785 ftrace_release_mod(mod); 786 787 async_synchronize_full(); 788 789 /* Store the name and taints of the last unloaded module for diagnostic purposes */ 790 strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name)); 791 strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints)); 792 793 free_module(mod); 794 /* someone could wait for the module in add_unformed_module() */ 795 wake_up_all(&module_wq); 796 return 0; 797 out: 798 mutex_unlock(&module_mutex); 799 return ret; 800 } 801 802 void __symbol_put(const char *symbol) 803 { 804 struct find_symbol_arg fsa = { 805 .name = symbol, 806 .gplok = true, 807 }; 808 809 guard(rcu)(); 810 BUG_ON(!find_symbol(&fsa)); 811 module_put(fsa.owner); 812 } 813 EXPORT_SYMBOL(__symbol_put); 814 815 /* Note this assumes addr is a function, which it currently always is. */ 816 void symbol_put_addr(void *addr) 817 { 818 struct module *modaddr; 819 unsigned long a = (unsigned long)dereference_function_descriptor(addr); 820 821 if (core_kernel_text(a)) 822 return; 823 824 /* 825 * Even though we hold a reference on the module; we still need to 826 * disable preemption in order to safely traverse the data structure. 827 */ 828 preempt_disable(); 829 modaddr = __module_text_address(a); 830 BUG_ON(!modaddr); 831 module_put(modaddr); 832 preempt_enable(); 833 } 834 EXPORT_SYMBOL_GPL(symbol_put_addr); 835 836 static ssize_t show_refcnt(const struct module_attribute *mattr, 837 struct module_kobject *mk, char *buffer) 838 { 839 return sprintf(buffer, "%i\n", module_refcount(mk->mod)); 840 } 841 842 static const struct module_attribute modinfo_refcnt = 843 __ATTR(refcnt, 0444, show_refcnt, NULL); 844 845 void __module_get(struct module *module) 846 { 847 if (module) { 848 atomic_inc(&module->refcnt); 849 trace_module_get(module, _RET_IP_); 850 } 851 } 852 EXPORT_SYMBOL(__module_get); 853 854 bool try_module_get(struct module *module) 855 { 856 bool ret = true; 857 858 if (module) { 859 /* Note: here, we can fail to get a reference */ 860 if (likely(module_is_live(module) && 861 atomic_inc_not_zero(&module->refcnt) != 0)) 862 trace_module_get(module, _RET_IP_); 863 else 864 ret = false; 865 } 866 return ret; 867 } 868 EXPORT_SYMBOL(try_module_get); 869 870 void module_put(struct module *module) 871 { 872 int ret; 873 874 if (module) { 875 ret = atomic_dec_if_positive(&module->refcnt); 876 WARN_ON(ret < 0); /* Failed to put refcount */ 877 trace_module_put(module, _RET_IP_); 878 } 879 } 880 EXPORT_SYMBOL(module_put); 881 882 #else /* !CONFIG_MODULE_UNLOAD */ 883 static inline void module_unload_free(struct module *mod) 884 { 885 } 886 887 static int ref_module(struct module *a, struct module *b) 888 { 889 return strong_try_module_get(b); 890 } 891 892 static inline int module_unload_init(struct module *mod) 893 { 894 return 0; 895 } 896 #endif /* CONFIG_MODULE_UNLOAD */ 897 898 size_t module_flags_taint(unsigned long taints, char *buf) 899 { 900 size_t l = 0; 901 int i; 902 903 for (i = 0; i < TAINT_FLAGS_COUNT; i++) { 904 if (taint_flags[i].module && test_bit(i, &taints)) 905 buf[l++] = taint_flags[i].c_true; 906 } 907 908 return l; 909 } 910 911 static ssize_t show_initstate(const struct module_attribute *mattr, 912 struct module_kobject *mk, char *buffer) 913 { 914 const char *state = "unknown"; 915 916 switch (mk->mod->state) { 917 case MODULE_STATE_LIVE: 918 state = "live"; 919 break; 920 case MODULE_STATE_COMING: 921 state = "coming"; 922 break; 923 case MODULE_STATE_GOING: 924 state = "going"; 925 break; 926 default: 927 BUG(); 928 } 929 return sprintf(buffer, "%s\n", state); 930 } 931 932 static const struct module_attribute modinfo_initstate = 933 __ATTR(initstate, 0444, show_initstate, NULL); 934 935 static ssize_t store_uevent(const struct module_attribute *mattr, 936 struct module_kobject *mk, 937 const char *buffer, size_t count) 938 { 939 int rc; 940 941 rc = kobject_synth_uevent(&mk->kobj, buffer, count); 942 return rc ? rc : count; 943 } 944 945 const struct module_attribute module_uevent = 946 __ATTR(uevent, 0200, NULL, store_uevent); 947 948 static ssize_t show_coresize(const struct module_attribute *mattr, 949 struct module_kobject *mk, char *buffer) 950 { 951 unsigned int size = mk->mod->mem[MOD_TEXT].size; 952 953 if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) { 954 for_class_mod_mem_type(type, core_data) 955 size += mk->mod->mem[type].size; 956 } 957 return sprintf(buffer, "%u\n", size); 958 } 959 960 static const struct module_attribute modinfo_coresize = 961 __ATTR(coresize, 0444, show_coresize, NULL); 962 963 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 964 static ssize_t show_datasize(const struct module_attribute *mattr, 965 struct module_kobject *mk, char *buffer) 966 { 967 unsigned int size = 0; 968 969 for_class_mod_mem_type(type, core_data) 970 size += mk->mod->mem[type].size; 971 return sprintf(buffer, "%u\n", size); 972 } 973 974 static const struct module_attribute modinfo_datasize = 975 __ATTR(datasize, 0444, show_datasize, NULL); 976 #endif 977 978 static ssize_t show_initsize(const struct module_attribute *mattr, 979 struct module_kobject *mk, char *buffer) 980 { 981 unsigned int size = 0; 982 983 for_class_mod_mem_type(type, init) 984 size += mk->mod->mem[type].size; 985 return sprintf(buffer, "%u\n", size); 986 } 987 988 static const struct module_attribute modinfo_initsize = 989 __ATTR(initsize, 0444, show_initsize, NULL); 990 991 static ssize_t show_taint(const struct module_attribute *mattr, 992 struct module_kobject *mk, char *buffer) 993 { 994 size_t l; 995 996 l = module_flags_taint(mk->mod->taints, buffer); 997 buffer[l++] = '\n'; 998 return l; 999 } 1000 1001 static const struct module_attribute modinfo_taint = 1002 __ATTR(taint, 0444, show_taint, NULL); 1003 1004 const struct module_attribute *const modinfo_attrs[] = { 1005 &module_uevent, 1006 &modinfo_version, 1007 &modinfo_srcversion, 1008 &modinfo_initstate, 1009 &modinfo_coresize, 1010 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 1011 &modinfo_datasize, 1012 #endif 1013 &modinfo_initsize, 1014 &modinfo_taint, 1015 #ifdef CONFIG_MODULE_UNLOAD 1016 &modinfo_refcnt, 1017 #endif 1018 NULL, 1019 }; 1020 1021 const size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs); 1022 1023 static const char vermagic[] = VERMAGIC_STRING; 1024 1025 int try_to_force_load(struct module *mod, const char *reason) 1026 { 1027 #ifdef CONFIG_MODULE_FORCE_LOAD 1028 if (!test_taint(TAINT_FORCED_MODULE)) 1029 pr_warn("%s: %s: kernel tainted.\n", mod->name, reason); 1030 add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE); 1031 return 0; 1032 #else 1033 return -ENOEXEC; 1034 #endif 1035 } 1036 1037 /* Parse tag=value strings from .modinfo section */ 1038 char *module_next_tag_pair(char *string, unsigned long *secsize) 1039 { 1040 /* Skip non-zero chars */ 1041 while (string[0]) { 1042 string++; 1043 if ((*secsize)-- <= 1) 1044 return NULL; 1045 } 1046 1047 /* Skip any zero padding. */ 1048 while (!string[0]) { 1049 string++; 1050 if ((*secsize)-- <= 1) 1051 return NULL; 1052 } 1053 return string; 1054 } 1055 1056 static char *get_next_modinfo(const struct load_info *info, const char *tag, 1057 char *prev) 1058 { 1059 char *p; 1060 unsigned int taglen = strlen(tag); 1061 Elf_Shdr *infosec = &info->sechdrs[info->index.info]; 1062 unsigned long size = infosec->sh_size; 1063 1064 /* 1065 * get_modinfo() calls made before rewrite_section_headers() 1066 * must use sh_offset, as sh_addr isn't set! 1067 */ 1068 char *modinfo = (char *)info->hdr + infosec->sh_offset; 1069 1070 if (prev) { 1071 size -= prev - modinfo; 1072 modinfo = module_next_tag_pair(prev, &size); 1073 } 1074 1075 for (p = modinfo; p; p = module_next_tag_pair(p, &size)) { 1076 if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=') 1077 return p + taglen + 1; 1078 } 1079 return NULL; 1080 } 1081 1082 static char *get_modinfo(const struct load_info *info, const char *tag) 1083 { 1084 return get_next_modinfo(info, tag, NULL); 1085 } 1086 1087 static int verify_namespace_is_imported(const struct load_info *info, 1088 const struct kernel_symbol *sym, 1089 struct module *mod) 1090 { 1091 const char *namespace; 1092 char *imported_namespace; 1093 1094 namespace = kernel_symbol_namespace(sym); 1095 if (namespace && namespace[0]) { 1096 for_each_modinfo_entry(imported_namespace, info, "import_ns") { 1097 if (strcmp(namespace, imported_namespace) == 0) 1098 return 0; 1099 } 1100 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1101 pr_warn( 1102 #else 1103 pr_err( 1104 #endif 1105 "%s: module uses symbol (%s) from namespace %s, but does not import it.\n", 1106 mod->name, kernel_symbol_name(sym), namespace); 1107 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS 1108 return -EINVAL; 1109 #endif 1110 } 1111 return 0; 1112 } 1113 1114 static bool inherit_taint(struct module *mod, struct module *owner, const char *name) 1115 { 1116 if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints)) 1117 return true; 1118 1119 if (mod->using_gplonly_symbols) { 1120 pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n", 1121 mod->name, name, owner->name); 1122 return false; 1123 } 1124 1125 if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) { 1126 pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n", 1127 mod->name, name, owner->name); 1128 set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints); 1129 } 1130 return true; 1131 } 1132 1133 /* Resolve a symbol for this module. I.e. if we find one, record usage. */ 1134 static const struct kernel_symbol *resolve_symbol(struct module *mod, 1135 const struct load_info *info, 1136 const char *name, 1137 char ownername[]) 1138 { 1139 struct find_symbol_arg fsa = { 1140 .name = name, 1141 .gplok = !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)), 1142 .warn = true, 1143 }; 1144 int err; 1145 1146 /* 1147 * The module_mutex should not be a heavily contended lock; 1148 * if we get the occasional sleep here, we'll go an extra iteration 1149 * in the wait_event_interruptible(), which is harmless. 1150 */ 1151 sched_annotate_sleep(); 1152 mutex_lock(&module_mutex); 1153 if (!find_symbol(&fsa)) 1154 goto unlock; 1155 1156 if (fsa.license == GPL_ONLY) 1157 mod->using_gplonly_symbols = true; 1158 1159 if (!inherit_taint(mod, fsa.owner, name)) { 1160 fsa.sym = NULL; 1161 goto getname; 1162 } 1163 1164 if (!check_version(info, name, mod, fsa.crc)) { 1165 fsa.sym = ERR_PTR(-EINVAL); 1166 goto getname; 1167 } 1168 1169 err = verify_namespace_is_imported(info, fsa.sym, mod); 1170 if (err) { 1171 fsa.sym = ERR_PTR(err); 1172 goto getname; 1173 } 1174 1175 err = ref_module(mod, fsa.owner); 1176 if (err) { 1177 fsa.sym = ERR_PTR(err); 1178 goto getname; 1179 } 1180 1181 getname: 1182 /* We must make copy under the lock if we failed to get ref. */ 1183 strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN); 1184 unlock: 1185 mutex_unlock(&module_mutex); 1186 return fsa.sym; 1187 } 1188 1189 static const struct kernel_symbol * 1190 resolve_symbol_wait(struct module *mod, 1191 const struct load_info *info, 1192 const char *name) 1193 { 1194 const struct kernel_symbol *ksym; 1195 char owner[MODULE_NAME_LEN]; 1196 1197 if (wait_event_interruptible_timeout(module_wq, 1198 !IS_ERR(ksym = resolve_symbol(mod, info, name, owner)) 1199 || PTR_ERR(ksym) != -EBUSY, 1200 30 * HZ) <= 0) { 1201 pr_warn("%s: gave up waiting for init of module %s.\n", 1202 mod->name, owner); 1203 } 1204 return ksym; 1205 } 1206 1207 void __weak module_arch_cleanup(struct module *mod) 1208 { 1209 } 1210 1211 void __weak module_arch_freeing_init(struct module *mod) 1212 { 1213 } 1214 1215 void *__module_writable_address(struct module *mod, void *loc) 1216 { 1217 for_class_mod_mem_type(type, text) { 1218 struct module_memory *mem = &mod->mem[type]; 1219 1220 if (loc >= mem->base && loc < mem->base + mem->size) 1221 return loc + (mem->rw_copy - mem->base); 1222 } 1223 1224 return loc; 1225 } 1226 1227 static int module_memory_alloc(struct module *mod, enum mod_mem_type type) 1228 { 1229 unsigned int size = PAGE_ALIGN(mod->mem[type].size); 1230 enum execmem_type execmem_type; 1231 void *ptr; 1232 1233 mod->mem[type].size = size; 1234 1235 if (mod_mem_type_is_data(type)) 1236 execmem_type = EXECMEM_MODULE_DATA; 1237 else 1238 execmem_type = EXECMEM_MODULE_TEXT; 1239 1240 ptr = execmem_alloc(execmem_type, size); 1241 if (!ptr) 1242 return -ENOMEM; 1243 1244 mod->mem[type].base = ptr; 1245 1246 if (execmem_is_rox(execmem_type)) { 1247 ptr = vzalloc(size); 1248 1249 if (!ptr) { 1250 execmem_free(mod->mem[type].base); 1251 return -ENOMEM; 1252 } 1253 1254 mod->mem[type].rw_copy = ptr; 1255 mod->mem[type].is_rox = true; 1256 } else { 1257 mod->mem[type].rw_copy = mod->mem[type].base; 1258 memset(mod->mem[type].base, 0, size); 1259 } 1260 1261 /* 1262 * The pointer to these blocks of memory are stored on the module 1263 * structure and we keep that around so long as the module is 1264 * around. We only free that memory when we unload the module. 1265 * Just mark them as not being a leak then. The .init* ELF 1266 * sections *do* get freed after boot so we *could* treat them 1267 * slightly differently with kmemleak_ignore() and only grey 1268 * them out as they work as typical memory allocations which 1269 * *do* eventually get freed, but let's just keep things simple 1270 * and avoid *any* false positives. 1271 */ 1272 kmemleak_not_leak(ptr); 1273 1274 return 0; 1275 } 1276 1277 static void module_memory_free(struct module *mod, enum mod_mem_type type) 1278 { 1279 struct module_memory *mem = &mod->mem[type]; 1280 1281 if (mem->is_rox) 1282 vfree(mem->rw_copy); 1283 1284 execmem_free(mem->base); 1285 } 1286 1287 static void free_mod_mem(struct module *mod) 1288 { 1289 for_each_mod_mem_type(type) { 1290 struct module_memory *mod_mem = &mod->mem[type]; 1291 1292 if (type == MOD_DATA) 1293 continue; 1294 1295 /* Free lock-classes; relies on the preceding sync_rcu(). */ 1296 lockdep_free_key_range(mod_mem->base, mod_mem->size); 1297 if (mod_mem->size) 1298 module_memory_free(mod, type); 1299 } 1300 1301 /* MOD_DATA hosts mod, so free it at last */ 1302 lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size); 1303 module_memory_free(mod, MOD_DATA); 1304 } 1305 1306 /* Free a module, remove from lists, etc. */ 1307 static void free_module(struct module *mod) 1308 { 1309 trace_module_free(mod); 1310 1311 codetag_unload_module(mod); 1312 1313 mod_sysfs_teardown(mod); 1314 1315 /* 1316 * We leave it in list to prevent duplicate loads, but make sure 1317 * that noone uses it while it's being deconstructed. 1318 */ 1319 mutex_lock(&module_mutex); 1320 mod->state = MODULE_STATE_UNFORMED; 1321 mutex_unlock(&module_mutex); 1322 1323 /* Arch-specific cleanup. */ 1324 module_arch_cleanup(mod); 1325 1326 /* Module unload stuff */ 1327 module_unload_free(mod); 1328 1329 /* Free any allocated parameters. */ 1330 destroy_params(mod->kp, mod->num_kp); 1331 1332 if (is_livepatch_module(mod)) 1333 free_module_elf(mod); 1334 1335 /* Now we can delete it from the lists */ 1336 mutex_lock(&module_mutex); 1337 /* Unlink carefully: kallsyms could be walking list. */ 1338 list_del_rcu(&mod->list); 1339 mod_tree_remove(mod); 1340 /* Remove this module from bug list, this uses list_del_rcu */ 1341 module_bug_cleanup(mod); 1342 /* Wait for RCU synchronizing before releasing mod->list and buglist. */ 1343 synchronize_rcu(); 1344 if (try_add_tainted_module(mod)) 1345 pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n", 1346 mod->name); 1347 mutex_unlock(&module_mutex); 1348 1349 /* This may be empty, but that's OK */ 1350 module_arch_freeing_init(mod); 1351 kfree(mod->args); 1352 percpu_modfree(mod); 1353 1354 free_mod_mem(mod); 1355 } 1356 1357 void *__symbol_get(const char *symbol) 1358 { 1359 struct find_symbol_arg fsa = { 1360 .name = symbol, 1361 .gplok = true, 1362 .warn = true, 1363 }; 1364 1365 scoped_guard(rcu) { 1366 if (!find_symbol(&fsa)) 1367 return NULL; 1368 if (fsa.license != GPL_ONLY) { 1369 pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n", 1370 symbol); 1371 return NULL; 1372 } 1373 if (strong_try_module_get(fsa.owner)) 1374 return NULL; 1375 } 1376 return (void *)kernel_symbol_value(fsa.sym); 1377 } 1378 EXPORT_SYMBOL_GPL(__symbol_get); 1379 1380 /* 1381 * Ensure that an exported symbol [global namespace] does not already exist 1382 * in the kernel or in some other module's exported symbol table. 1383 * 1384 * You must hold the module_mutex. 1385 */ 1386 static int verify_exported_symbols(struct module *mod) 1387 { 1388 unsigned int i; 1389 const struct kernel_symbol *s; 1390 struct { 1391 const struct kernel_symbol *sym; 1392 unsigned int num; 1393 } arr[] = { 1394 { mod->syms, mod->num_syms }, 1395 { mod->gpl_syms, mod->num_gpl_syms }, 1396 }; 1397 1398 for (i = 0; i < ARRAY_SIZE(arr); i++) { 1399 for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) { 1400 struct find_symbol_arg fsa = { 1401 .name = kernel_symbol_name(s), 1402 .gplok = true, 1403 }; 1404 if (find_symbol(&fsa)) { 1405 pr_err("%s: exports duplicate symbol %s" 1406 " (owned by %s)\n", 1407 mod->name, kernel_symbol_name(s), 1408 module_name(fsa.owner)); 1409 return -ENOEXEC; 1410 } 1411 } 1412 } 1413 return 0; 1414 } 1415 1416 static bool ignore_undef_symbol(Elf_Half emachine, const char *name) 1417 { 1418 /* 1419 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as 1420 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64. 1421 * i386 has a similar problem but may not deserve a fix. 1422 * 1423 * If we ever have to ignore many symbols, consider refactoring the code to 1424 * only warn if referenced by a relocation. 1425 */ 1426 if (emachine == EM_386 || emachine == EM_X86_64) 1427 return !strcmp(name, "_GLOBAL_OFFSET_TABLE_"); 1428 return false; 1429 } 1430 1431 /* Change all symbols so that st_value encodes the pointer directly. */ 1432 static int simplify_symbols(struct module *mod, const struct load_info *info) 1433 { 1434 Elf_Shdr *symsec = &info->sechdrs[info->index.sym]; 1435 Elf_Sym *sym = (void *)symsec->sh_addr; 1436 unsigned long secbase; 1437 unsigned int i; 1438 int ret = 0; 1439 const struct kernel_symbol *ksym; 1440 1441 for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) { 1442 const char *name = info->strtab + sym[i].st_name; 1443 1444 switch (sym[i].st_shndx) { 1445 case SHN_COMMON: 1446 /* Ignore common symbols */ 1447 if (!strncmp(name, "__gnu_lto", 9)) 1448 break; 1449 1450 /* 1451 * We compiled with -fno-common. These are not 1452 * supposed to happen. 1453 */ 1454 pr_debug("Common symbol: %s\n", name); 1455 pr_warn("%s: please compile with -fno-common\n", 1456 mod->name); 1457 ret = -ENOEXEC; 1458 break; 1459 1460 case SHN_ABS: 1461 /* Don't need to do anything */ 1462 pr_debug("Absolute symbol: 0x%08lx %s\n", 1463 (long)sym[i].st_value, name); 1464 break; 1465 1466 case SHN_LIVEPATCH: 1467 /* Livepatch symbols are resolved by livepatch */ 1468 break; 1469 1470 case SHN_UNDEF: 1471 ksym = resolve_symbol_wait(mod, info, name); 1472 /* Ok if resolved. */ 1473 if (ksym && !IS_ERR(ksym)) { 1474 sym[i].st_value = kernel_symbol_value(ksym); 1475 break; 1476 } 1477 1478 /* Ok if weak or ignored. */ 1479 if (!ksym && 1480 (ELF_ST_BIND(sym[i].st_info) == STB_WEAK || 1481 ignore_undef_symbol(info->hdr->e_machine, name))) 1482 break; 1483 1484 ret = PTR_ERR(ksym) ?: -ENOENT; 1485 pr_warn("%s: Unknown symbol %s (err %d)\n", 1486 mod->name, name, ret); 1487 break; 1488 1489 default: 1490 /* Divert to percpu allocation if a percpu var. */ 1491 if (sym[i].st_shndx == info->index.pcpu) 1492 secbase = (unsigned long)mod_percpu(mod); 1493 else 1494 secbase = info->sechdrs[sym[i].st_shndx].sh_addr; 1495 sym[i].st_value += secbase; 1496 break; 1497 } 1498 } 1499 1500 return ret; 1501 } 1502 1503 static int apply_relocations(struct module *mod, const struct load_info *info) 1504 { 1505 unsigned int i; 1506 int err = 0; 1507 1508 /* Now do relocations. */ 1509 for (i = 1; i < info->hdr->e_shnum; i++) { 1510 unsigned int infosec = info->sechdrs[i].sh_info; 1511 1512 /* Not a valid relocation section? */ 1513 if (infosec >= info->hdr->e_shnum) 1514 continue; 1515 1516 /* Don't bother with non-allocated sections */ 1517 if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC)) 1518 continue; 1519 1520 if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH) 1521 err = klp_apply_section_relocs(mod, info->sechdrs, 1522 info->secstrings, 1523 info->strtab, 1524 info->index.sym, i, 1525 NULL); 1526 else if (info->sechdrs[i].sh_type == SHT_REL) 1527 err = apply_relocate(info->sechdrs, info->strtab, 1528 info->index.sym, i, mod); 1529 else if (info->sechdrs[i].sh_type == SHT_RELA) 1530 err = apply_relocate_add(info->sechdrs, info->strtab, 1531 info->index.sym, i, mod); 1532 if (err < 0) 1533 break; 1534 } 1535 return err; 1536 } 1537 1538 /* Additional bytes needed by arch in front of individual sections */ 1539 unsigned int __weak arch_mod_section_prepend(struct module *mod, 1540 unsigned int section) 1541 { 1542 /* default implementation just returns zero */ 1543 return 0; 1544 } 1545 1546 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type, 1547 Elf_Shdr *sechdr, unsigned int section) 1548 { 1549 long offset; 1550 long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT; 1551 1552 mod->mem[type].size += arch_mod_section_prepend(mod, section); 1553 offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1); 1554 mod->mem[type].size = offset + sechdr->sh_size; 1555 1556 WARN_ON_ONCE(offset & mask); 1557 return offset | mask; 1558 } 1559 1560 bool module_init_layout_section(const char *sname) 1561 { 1562 #ifndef CONFIG_MODULE_UNLOAD 1563 if (module_exit_section(sname)) 1564 return true; 1565 #endif 1566 return module_init_section(sname); 1567 } 1568 1569 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init) 1570 { 1571 unsigned int m, i; 1572 1573 static const unsigned long masks[][2] = { 1574 /* 1575 * NOTE: all executable code must be the first section 1576 * in this array; otherwise modify the text_size 1577 * finder in the two loops below 1578 */ 1579 { SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL }, 1580 { SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL }, 1581 { SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL }, 1582 { SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL }, 1583 { ARCH_SHF_SMALL | SHF_ALLOC, 0 } 1584 }; 1585 static const int core_m_to_mem_type[] = { 1586 MOD_TEXT, 1587 MOD_RODATA, 1588 MOD_RO_AFTER_INIT, 1589 MOD_DATA, 1590 MOD_DATA, 1591 }; 1592 static const int init_m_to_mem_type[] = { 1593 MOD_INIT_TEXT, 1594 MOD_INIT_RODATA, 1595 MOD_INVALID, 1596 MOD_INIT_DATA, 1597 MOD_INIT_DATA, 1598 }; 1599 1600 for (m = 0; m < ARRAY_SIZE(masks); ++m) { 1601 enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m]; 1602 1603 for (i = 0; i < info->hdr->e_shnum; ++i) { 1604 Elf_Shdr *s = &info->sechdrs[i]; 1605 const char *sname = info->secstrings + s->sh_name; 1606 1607 if ((s->sh_flags & masks[m][0]) != masks[m][0] 1608 || (s->sh_flags & masks[m][1]) 1609 || s->sh_entsize != ~0UL 1610 || is_init != module_init_layout_section(sname)) 1611 continue; 1612 1613 if (WARN_ON_ONCE(type == MOD_INVALID)) 1614 continue; 1615 1616 /* 1617 * Do not allocate codetag memory as we load it into 1618 * preallocated contiguous memory. 1619 */ 1620 if (codetag_needs_module_section(mod, sname, s->sh_size)) { 1621 /* 1622 * s->sh_entsize won't be used but populate the 1623 * type field to avoid confusion. 1624 */ 1625 s->sh_entsize = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) 1626 << SH_ENTSIZE_TYPE_SHIFT; 1627 continue; 1628 } 1629 1630 s->sh_entsize = module_get_offset_and_type(mod, type, s, i); 1631 pr_debug("\t%s\n", sname); 1632 } 1633 } 1634 } 1635 1636 /* 1637 * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld 1638 * might -- code, read-only data, read-write data, small data. Tally 1639 * sizes, and place the offsets into sh_entsize fields: high bit means it 1640 * belongs in init. 1641 */ 1642 static void layout_sections(struct module *mod, struct load_info *info) 1643 { 1644 unsigned int i; 1645 1646 for (i = 0; i < info->hdr->e_shnum; i++) 1647 info->sechdrs[i].sh_entsize = ~0UL; 1648 1649 pr_debug("Core section allocation order for %s:\n", mod->name); 1650 __layout_sections(mod, info, false); 1651 1652 pr_debug("Init section allocation order for %s:\n", mod->name); 1653 __layout_sections(mod, info, true); 1654 } 1655 1656 static void module_license_taint_check(struct module *mod, const char *license) 1657 { 1658 if (!license) 1659 license = "unspecified"; 1660 1661 if (!license_is_gpl_compatible(license)) { 1662 if (!test_taint(TAINT_PROPRIETARY_MODULE)) 1663 pr_warn("%s: module license '%s' taints kernel.\n", 1664 mod->name, license); 1665 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 1666 LOCKDEP_NOW_UNRELIABLE); 1667 } 1668 } 1669 1670 static void setup_modinfo(struct module *mod, struct load_info *info) 1671 { 1672 const struct module_attribute *attr; 1673 int i; 1674 1675 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1676 if (attr->setup) 1677 attr->setup(mod, get_modinfo(info, attr->attr.name)); 1678 } 1679 } 1680 1681 static void free_modinfo(struct module *mod) 1682 { 1683 const struct module_attribute *attr; 1684 int i; 1685 1686 for (i = 0; (attr = modinfo_attrs[i]); i++) { 1687 if (attr->free) 1688 attr->free(mod); 1689 } 1690 } 1691 1692 bool __weak module_init_section(const char *name) 1693 { 1694 return strstarts(name, ".init"); 1695 } 1696 1697 bool __weak module_exit_section(const char *name) 1698 { 1699 return strstarts(name, ".exit"); 1700 } 1701 1702 static int validate_section_offset(const struct load_info *info, Elf_Shdr *shdr) 1703 { 1704 #if defined(CONFIG_64BIT) 1705 unsigned long long secend; 1706 #else 1707 unsigned long secend; 1708 #endif 1709 1710 /* 1711 * Check for both overflow and offset/size being 1712 * too large. 1713 */ 1714 secend = shdr->sh_offset + shdr->sh_size; 1715 if (secend < shdr->sh_offset || secend > info->len) 1716 return -ENOEXEC; 1717 1718 return 0; 1719 } 1720 1721 /** 1722 * elf_validity_ehdr() - Checks an ELF header for module validity 1723 * @info: Load info containing the ELF header to check 1724 * 1725 * Checks whether an ELF header could belong to a valid module. Checks: 1726 * 1727 * * ELF header is within the data the user provided 1728 * * ELF magic is present 1729 * * It is relocatable (not final linked, not core file, etc.) 1730 * * The header's machine type matches what the architecture expects. 1731 * * Optional arch-specific hook for other properties 1732 * - module_elf_check_arch() is currently only used by PPC to check 1733 * ELF ABI version, but may be used by others in the future. 1734 * 1735 * Return: %0 if valid, %-ENOEXEC on failure. 1736 */ 1737 static int elf_validity_ehdr(const struct load_info *info) 1738 { 1739 if (info->len < sizeof(*(info->hdr))) { 1740 pr_err("Invalid ELF header len %lu\n", info->len); 1741 return -ENOEXEC; 1742 } 1743 if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) { 1744 pr_err("Invalid ELF header magic: != %s\n", ELFMAG); 1745 return -ENOEXEC; 1746 } 1747 if (info->hdr->e_type != ET_REL) { 1748 pr_err("Invalid ELF header type: %u != %u\n", 1749 info->hdr->e_type, ET_REL); 1750 return -ENOEXEC; 1751 } 1752 if (!elf_check_arch(info->hdr)) { 1753 pr_err("Invalid architecture in ELF header: %u\n", 1754 info->hdr->e_machine); 1755 return -ENOEXEC; 1756 } 1757 if (!module_elf_check_arch(info->hdr)) { 1758 pr_err("Invalid module architecture in ELF header: %u\n", 1759 info->hdr->e_machine); 1760 return -ENOEXEC; 1761 } 1762 return 0; 1763 } 1764 1765 /** 1766 * elf_validity_cache_sechdrs() - Cache section headers if valid 1767 * @info: Load info to compute section headers from 1768 * 1769 * Checks: 1770 * 1771 * * ELF header is valid (see elf_validity_ehdr()) 1772 * * Section headers are the size we expect 1773 * * Section array fits in the user provided data 1774 * * Section index 0 is NULL 1775 * * Section contents are inbounds 1776 * 1777 * Then updates @info with a &load_info->sechdrs pointer if valid. 1778 * 1779 * Return: %0 if valid, negative error code if validation failed. 1780 */ 1781 static int elf_validity_cache_sechdrs(struct load_info *info) 1782 { 1783 Elf_Shdr *sechdrs; 1784 Elf_Shdr *shdr; 1785 int i; 1786 int err; 1787 1788 err = elf_validity_ehdr(info); 1789 if (err < 0) 1790 return err; 1791 1792 if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) { 1793 pr_err("Invalid ELF section header size\n"); 1794 return -ENOEXEC; 1795 } 1796 1797 /* 1798 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is 1799 * known and small. So e_shnum * sizeof(Elf_Shdr) 1800 * will not overflow unsigned long on any platform. 1801 */ 1802 if (info->hdr->e_shoff >= info->len 1803 || (info->hdr->e_shnum * sizeof(Elf_Shdr) > 1804 info->len - info->hdr->e_shoff)) { 1805 pr_err("Invalid ELF section header overflow\n"); 1806 return -ENOEXEC; 1807 } 1808 1809 sechdrs = (void *)info->hdr + info->hdr->e_shoff; 1810 1811 /* 1812 * The code assumes that section 0 has a length of zero and 1813 * an addr of zero, so check for it. 1814 */ 1815 if (sechdrs[0].sh_type != SHT_NULL 1816 || sechdrs[0].sh_size != 0 1817 || sechdrs[0].sh_addr != 0) { 1818 pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n", 1819 sechdrs[0].sh_type); 1820 return -ENOEXEC; 1821 } 1822 1823 /* Validate contents are inbounds */ 1824 for (i = 1; i < info->hdr->e_shnum; i++) { 1825 shdr = &sechdrs[i]; 1826 switch (shdr->sh_type) { 1827 case SHT_NULL: 1828 case SHT_NOBITS: 1829 /* No contents, offset/size don't mean anything */ 1830 continue; 1831 default: 1832 err = validate_section_offset(info, shdr); 1833 if (err < 0) { 1834 pr_err("Invalid ELF section in module (section %u type %u)\n", 1835 i, shdr->sh_type); 1836 return err; 1837 } 1838 } 1839 } 1840 1841 info->sechdrs = sechdrs; 1842 1843 return 0; 1844 } 1845 1846 /** 1847 * elf_validity_cache_secstrings() - Caches section names if valid 1848 * @info: Load info to cache section names from. Must have valid sechdrs. 1849 * 1850 * Specifically checks: 1851 * 1852 * * Section name table index is inbounds of section headers 1853 * * Section name table is not empty 1854 * * Section name table is NUL terminated 1855 * * All section name offsets are inbounds of the section 1856 * 1857 * Then updates @info with a &load_info->secstrings pointer if valid. 1858 * 1859 * Return: %0 if valid, negative error code if validation failed. 1860 */ 1861 static int elf_validity_cache_secstrings(struct load_info *info) 1862 { 1863 Elf_Shdr *strhdr, *shdr; 1864 char *secstrings; 1865 int i; 1866 1867 /* 1868 * Verify if the section name table index is valid. 1869 */ 1870 if (info->hdr->e_shstrndx == SHN_UNDEF 1871 || info->hdr->e_shstrndx >= info->hdr->e_shnum) { 1872 pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n", 1873 info->hdr->e_shstrndx, info->hdr->e_shstrndx, 1874 info->hdr->e_shnum); 1875 return -ENOEXEC; 1876 } 1877 1878 strhdr = &info->sechdrs[info->hdr->e_shstrndx]; 1879 1880 /* 1881 * The section name table must be NUL-terminated, as required 1882 * by the spec. This makes strcmp and pr_* calls that access 1883 * strings in the section safe. 1884 */ 1885 secstrings = (void *)info->hdr + strhdr->sh_offset; 1886 if (strhdr->sh_size == 0) { 1887 pr_err("empty section name table\n"); 1888 return -ENOEXEC; 1889 } 1890 if (secstrings[strhdr->sh_size - 1] != '\0') { 1891 pr_err("ELF Spec violation: section name table isn't null terminated\n"); 1892 return -ENOEXEC; 1893 } 1894 1895 for (i = 0; i < info->hdr->e_shnum; i++) { 1896 shdr = &info->sechdrs[i]; 1897 /* SHT_NULL means sh_name has an undefined value */ 1898 if (shdr->sh_type == SHT_NULL) 1899 continue; 1900 if (shdr->sh_name >= strhdr->sh_size) { 1901 pr_err("Invalid ELF section name in module (section %u type %u)\n", 1902 i, shdr->sh_type); 1903 return -ENOEXEC; 1904 } 1905 } 1906 1907 info->secstrings = secstrings; 1908 return 0; 1909 } 1910 1911 /** 1912 * elf_validity_cache_index_info() - Validate and cache modinfo section 1913 * @info: Load info to populate the modinfo index on. 1914 * Must have &load_info->sechdrs and &load_info->secstrings populated 1915 * 1916 * Checks that if there is a .modinfo section, it is unique. 1917 * Then, it caches its index in &load_info->index.info. 1918 * Finally, it tries to populate the name to improve error messages. 1919 * 1920 * Return: %0 if valid, %-ENOEXEC if multiple modinfo sections were found. 1921 */ 1922 static int elf_validity_cache_index_info(struct load_info *info) 1923 { 1924 int info_idx; 1925 1926 info_idx = find_any_unique_sec(info, ".modinfo"); 1927 1928 if (info_idx == 0) 1929 /* Early return, no .modinfo */ 1930 return 0; 1931 1932 if (info_idx < 0) { 1933 pr_err("Only one .modinfo section must exist.\n"); 1934 return -ENOEXEC; 1935 } 1936 1937 info->index.info = info_idx; 1938 /* Try to find a name early so we can log errors with a module name */ 1939 info->name = get_modinfo(info, "name"); 1940 1941 return 0; 1942 } 1943 1944 /** 1945 * elf_validity_cache_index_mod() - Validates and caches this_module section 1946 * @info: Load info to cache this_module on. 1947 * Must have &load_info->sechdrs and &load_info->secstrings populated 1948 * 1949 * The ".gnu.linkonce.this_module" ELF section is special. It is what modpost 1950 * uses to refer to __this_module and let's use rely on THIS_MODULE to point 1951 * to &__this_module properly. The kernel's modpost declares it on each 1952 * modules's *.mod.c file. If the struct module of the kernel changes a full 1953 * kernel rebuild is required. 1954 * 1955 * We have a few expectations for this special section, this function 1956 * validates all this for us: 1957 * 1958 * * The section has contents 1959 * * The section is unique 1960 * * We expect the kernel to always have to allocate it: SHF_ALLOC 1961 * * The section size must match the kernel's run time's struct module 1962 * size 1963 * 1964 * If all checks pass, the index will be cached in &load_info->index.mod 1965 * 1966 * Return: %0 on validation success, %-ENOEXEC on failure 1967 */ 1968 static int elf_validity_cache_index_mod(struct load_info *info) 1969 { 1970 Elf_Shdr *shdr; 1971 int mod_idx; 1972 1973 mod_idx = find_any_unique_sec(info, ".gnu.linkonce.this_module"); 1974 if (mod_idx <= 0) { 1975 pr_err("module %s: Exactly one .gnu.linkonce.this_module section must exist.\n", 1976 info->name ?: "(missing .modinfo section or name field)"); 1977 return -ENOEXEC; 1978 } 1979 1980 shdr = &info->sechdrs[mod_idx]; 1981 1982 if (shdr->sh_type == SHT_NOBITS) { 1983 pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n", 1984 info->name ?: "(missing .modinfo section or name field)"); 1985 return -ENOEXEC; 1986 } 1987 1988 if (!(shdr->sh_flags & SHF_ALLOC)) { 1989 pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n", 1990 info->name ?: "(missing .modinfo section or name field)"); 1991 return -ENOEXEC; 1992 } 1993 1994 if (shdr->sh_size != sizeof(struct module)) { 1995 pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n", 1996 info->name ?: "(missing .modinfo section or name field)"); 1997 return -ENOEXEC; 1998 } 1999 2000 info->index.mod = mod_idx; 2001 2002 return 0; 2003 } 2004 2005 /** 2006 * elf_validity_cache_index_sym() - Validate and cache symtab index 2007 * @info: Load info to cache symtab index in. 2008 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2009 * 2010 * Checks that there is exactly one symbol table, then caches its index in 2011 * &load_info->index.sym. 2012 * 2013 * Return: %0 if valid, %-ENOEXEC on failure. 2014 */ 2015 static int elf_validity_cache_index_sym(struct load_info *info) 2016 { 2017 unsigned int sym_idx; 2018 unsigned int num_sym_secs = 0; 2019 int i; 2020 2021 for (i = 1; i < info->hdr->e_shnum; i++) { 2022 if (info->sechdrs[i].sh_type == SHT_SYMTAB) { 2023 num_sym_secs++; 2024 sym_idx = i; 2025 } 2026 } 2027 2028 if (num_sym_secs != 1) { 2029 pr_warn("%s: module has no symbols (stripped?)\n", 2030 info->name ?: "(missing .modinfo section or name field)"); 2031 return -ENOEXEC; 2032 } 2033 2034 info->index.sym = sym_idx; 2035 2036 return 0; 2037 } 2038 2039 /** 2040 * elf_validity_cache_index_str() - Validate and cache strtab index 2041 * @info: Load info to cache strtab index in. 2042 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2043 * Must have &load_info->index.sym populated. 2044 * 2045 * Looks at the symbol table's associated string table, makes sure it is 2046 * in-bounds, and caches it. 2047 * 2048 * Return: %0 if valid, %-ENOEXEC on failure. 2049 */ 2050 static int elf_validity_cache_index_str(struct load_info *info) 2051 { 2052 unsigned int str_idx = info->sechdrs[info->index.sym].sh_link; 2053 2054 if (str_idx == SHN_UNDEF || str_idx >= info->hdr->e_shnum) { 2055 pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n", 2056 str_idx, str_idx, info->hdr->e_shnum); 2057 return -ENOEXEC; 2058 } 2059 2060 info->index.str = str_idx; 2061 return 0; 2062 } 2063 2064 /** 2065 * elf_validity_cache_index_versions() - Validate and cache version indices 2066 * @info: Load info to cache version indices in. 2067 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2068 * @flags: Load flags, relevant to suppress version loading, see 2069 * uapi/linux/module.h 2070 * 2071 * If we're ignoring modversions based on @flags, zero all version indices 2072 * and return validity. Othewrise check: 2073 * 2074 * * If "__version_ext_crcs" is present, "__version_ext_names" is present 2075 * * There is a name present for every crc 2076 * 2077 * Then populate: 2078 * 2079 * * &load_info->index.vers 2080 * * &load_info->index.vers_ext_crc 2081 * * &load_info->index.vers_ext_names 2082 * 2083 * if present. 2084 * 2085 * Return: %0 if valid, %-ENOEXEC on failure. 2086 */ 2087 static int elf_validity_cache_index_versions(struct load_info *info, int flags) 2088 { 2089 unsigned int vers_ext_crc; 2090 unsigned int vers_ext_name; 2091 size_t crc_count; 2092 size_t remaining_len; 2093 size_t name_size; 2094 char *name; 2095 2096 /* If modversions were suppressed, pretend we didn't find any */ 2097 if (flags & MODULE_INIT_IGNORE_MODVERSIONS) { 2098 info->index.vers = 0; 2099 info->index.vers_ext_crc = 0; 2100 info->index.vers_ext_name = 0; 2101 return 0; 2102 } 2103 2104 vers_ext_crc = find_sec(info, "__version_ext_crcs"); 2105 vers_ext_name = find_sec(info, "__version_ext_names"); 2106 2107 /* If we have one field, we must have the other */ 2108 if (!!vers_ext_crc != !!vers_ext_name) { 2109 pr_err("extended version crc+name presence does not match"); 2110 return -ENOEXEC; 2111 } 2112 2113 /* 2114 * If we have extended version information, we should have the same 2115 * number of entries in every section. 2116 */ 2117 if (vers_ext_crc) { 2118 crc_count = info->sechdrs[vers_ext_crc].sh_size / sizeof(u32); 2119 name = (void *)info->hdr + 2120 info->sechdrs[vers_ext_name].sh_offset; 2121 remaining_len = info->sechdrs[vers_ext_name].sh_size; 2122 2123 while (crc_count--) { 2124 name_size = strnlen(name, remaining_len) + 1; 2125 if (name_size > remaining_len) { 2126 pr_err("more extended version crcs than names"); 2127 return -ENOEXEC; 2128 } 2129 remaining_len -= name_size; 2130 name += name_size; 2131 } 2132 } 2133 2134 info->index.vers = find_sec(info, "__versions"); 2135 info->index.vers_ext_crc = vers_ext_crc; 2136 info->index.vers_ext_name = vers_ext_name; 2137 return 0; 2138 } 2139 2140 /** 2141 * elf_validity_cache_index() - Resolve, validate, cache section indices 2142 * @info: Load info to read from and update. 2143 * &load_info->sechdrs and &load_info->secstrings must be populated. 2144 * @flags: Load flags, relevant to suppress version loading, see 2145 * uapi/linux/module.h 2146 * 2147 * Populates &load_info->index, validating as it goes. 2148 * See child functions for per-field validation: 2149 * 2150 * * elf_validity_cache_index_info() 2151 * * elf_validity_cache_index_mod() 2152 * * elf_validity_cache_index_sym() 2153 * * elf_validity_cache_index_str() 2154 * * elf_validity_cache_index_versions() 2155 * 2156 * If CONFIG_SMP is enabled, load the percpu section by name with no 2157 * validation. 2158 * 2159 * Return: 0 on success, negative error code if an index failed validation. 2160 */ 2161 static int elf_validity_cache_index(struct load_info *info, int flags) 2162 { 2163 int err; 2164 2165 err = elf_validity_cache_index_info(info); 2166 if (err < 0) 2167 return err; 2168 err = elf_validity_cache_index_mod(info); 2169 if (err < 0) 2170 return err; 2171 err = elf_validity_cache_index_sym(info); 2172 if (err < 0) 2173 return err; 2174 err = elf_validity_cache_index_str(info); 2175 if (err < 0) 2176 return err; 2177 err = elf_validity_cache_index_versions(info, flags); 2178 if (err < 0) 2179 return err; 2180 2181 info->index.pcpu = find_pcpusec(info); 2182 2183 return 0; 2184 } 2185 2186 /** 2187 * elf_validity_cache_strtab() - Validate and cache symbol string table 2188 * @info: Load info to read from and update. 2189 * Must have &load_info->sechdrs and &load_info->secstrings populated. 2190 * Must have &load_info->index populated. 2191 * 2192 * Checks: 2193 * 2194 * * The string table is not empty. 2195 * * The string table starts and ends with NUL (required by ELF spec). 2196 * * Every &Elf_Sym->st_name offset in the symbol table is inbounds of the 2197 * string table. 2198 * 2199 * And caches the pointer as &load_info->strtab in @info. 2200 * 2201 * Return: 0 on success, negative error code if a check failed. 2202 */ 2203 static int elf_validity_cache_strtab(struct load_info *info) 2204 { 2205 Elf_Shdr *str_shdr = &info->sechdrs[info->index.str]; 2206 Elf_Shdr *sym_shdr = &info->sechdrs[info->index.sym]; 2207 char *strtab = (char *)info->hdr + str_shdr->sh_offset; 2208 Elf_Sym *syms = (void *)info->hdr + sym_shdr->sh_offset; 2209 int i; 2210 2211 if (str_shdr->sh_size == 0) { 2212 pr_err("empty symbol string table\n"); 2213 return -ENOEXEC; 2214 } 2215 if (strtab[0] != '\0') { 2216 pr_err("symbol string table missing leading NUL\n"); 2217 return -ENOEXEC; 2218 } 2219 if (strtab[str_shdr->sh_size - 1] != '\0') { 2220 pr_err("symbol string table isn't NUL terminated\n"); 2221 return -ENOEXEC; 2222 } 2223 2224 /* 2225 * Now that we know strtab is correctly structured, check symbol 2226 * starts are inbounds before they're used later. 2227 */ 2228 for (i = 0; i < sym_shdr->sh_size / sizeof(*syms); i++) { 2229 if (syms[i].st_name >= str_shdr->sh_size) { 2230 pr_err("symbol name out of bounds in string table"); 2231 return -ENOEXEC; 2232 } 2233 } 2234 2235 info->strtab = strtab; 2236 return 0; 2237 } 2238 2239 /* 2240 * Check userspace passed ELF module against our expectations, and cache 2241 * useful variables for further processing as we go. 2242 * 2243 * This does basic validity checks against section offsets and sizes, the 2244 * section name string table, and the indices used for it (sh_name). 2245 * 2246 * As a last step, since we're already checking the ELF sections we cache 2247 * useful variables which will be used later for our convenience: 2248 * 2249 * o pointers to section headers 2250 * o cache the modinfo symbol section 2251 * o cache the string symbol section 2252 * o cache the module section 2253 * 2254 * As a last step we set info->mod to the temporary copy of the module in 2255 * info->hdr. The final one will be allocated in move_module(). Any 2256 * modifications we make to our copy of the module will be carried over 2257 * to the final minted module. 2258 */ 2259 static int elf_validity_cache_copy(struct load_info *info, int flags) 2260 { 2261 int err; 2262 2263 err = elf_validity_cache_sechdrs(info); 2264 if (err < 0) 2265 return err; 2266 err = elf_validity_cache_secstrings(info); 2267 if (err < 0) 2268 return err; 2269 err = elf_validity_cache_index(info, flags); 2270 if (err < 0) 2271 return err; 2272 err = elf_validity_cache_strtab(info); 2273 if (err < 0) 2274 return err; 2275 2276 /* This is temporary: point mod into copy of data. */ 2277 info->mod = (void *)info->hdr + info->sechdrs[info->index.mod].sh_offset; 2278 2279 /* 2280 * If we didn't load the .modinfo 'name' field earlier, fall back to 2281 * on-disk struct mod 'name' field. 2282 */ 2283 if (!info->name) 2284 info->name = info->mod->name; 2285 2286 return 0; 2287 } 2288 2289 #define COPY_CHUNK_SIZE (16*PAGE_SIZE) 2290 2291 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len) 2292 { 2293 do { 2294 unsigned long n = min(len, COPY_CHUNK_SIZE); 2295 2296 if (copy_from_user(dst, usrc, n) != 0) 2297 return -EFAULT; 2298 cond_resched(); 2299 dst += n; 2300 usrc += n; 2301 len -= n; 2302 } while (len); 2303 return 0; 2304 } 2305 2306 static int check_modinfo_livepatch(struct module *mod, struct load_info *info) 2307 { 2308 if (!get_modinfo(info, "livepatch")) 2309 /* Nothing more to do */ 2310 return 0; 2311 2312 if (set_livepatch_module(mod)) 2313 return 0; 2314 2315 pr_err("%s: module is marked as livepatch module, but livepatch support is disabled", 2316 mod->name); 2317 return -ENOEXEC; 2318 } 2319 2320 static void check_modinfo_retpoline(struct module *mod, struct load_info *info) 2321 { 2322 if (retpoline_module_ok(get_modinfo(info, "retpoline"))) 2323 return; 2324 2325 pr_warn("%s: loading module not compiled with retpoline compiler.\n", 2326 mod->name); 2327 } 2328 2329 /* Sets info->hdr and info->len. */ 2330 static int copy_module_from_user(const void __user *umod, unsigned long len, 2331 struct load_info *info) 2332 { 2333 int err; 2334 2335 info->len = len; 2336 if (info->len < sizeof(*(info->hdr))) 2337 return -ENOEXEC; 2338 2339 err = security_kernel_load_data(LOADING_MODULE, true); 2340 if (err) 2341 return err; 2342 2343 /* Suck in entire file: we'll want most of it. */ 2344 info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN); 2345 if (!info->hdr) 2346 return -ENOMEM; 2347 2348 if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) { 2349 err = -EFAULT; 2350 goto out; 2351 } 2352 2353 err = security_kernel_post_load_data((char *)info->hdr, info->len, 2354 LOADING_MODULE, "init_module"); 2355 out: 2356 if (err) 2357 vfree(info->hdr); 2358 2359 return err; 2360 } 2361 2362 static void free_copy(struct load_info *info, int flags) 2363 { 2364 if (flags & MODULE_INIT_COMPRESSED_FILE) 2365 module_decompress_cleanup(info); 2366 else 2367 vfree(info->hdr); 2368 } 2369 2370 static int rewrite_section_headers(struct load_info *info, int flags) 2371 { 2372 unsigned int i; 2373 2374 /* This should always be true, but let's be sure. */ 2375 info->sechdrs[0].sh_addr = 0; 2376 2377 for (i = 1; i < info->hdr->e_shnum; i++) { 2378 Elf_Shdr *shdr = &info->sechdrs[i]; 2379 2380 /* 2381 * Mark all sections sh_addr with their address in the 2382 * temporary image. 2383 */ 2384 shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset; 2385 2386 } 2387 2388 /* Track but don't keep modinfo and version sections. */ 2389 info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC; 2390 info->sechdrs[info->index.vers_ext_crc].sh_flags &= 2391 ~(unsigned long)SHF_ALLOC; 2392 info->sechdrs[info->index.vers_ext_name].sh_flags &= 2393 ~(unsigned long)SHF_ALLOC; 2394 info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC; 2395 2396 return 0; 2397 } 2398 2399 static const char *const module_license_offenders[] = { 2400 /* driverloader was caught wrongly pretending to be under GPL */ 2401 "driverloader", 2402 2403 /* lve claims to be GPL but upstream won't provide source */ 2404 "lve", 2405 }; 2406 2407 /* 2408 * These calls taint the kernel depending certain module circumstances */ 2409 static void module_augment_kernel_taints(struct module *mod, struct load_info *info) 2410 { 2411 int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE); 2412 size_t i; 2413 2414 if (!get_modinfo(info, "intree")) { 2415 if (!test_taint(TAINT_OOT_MODULE)) 2416 pr_warn("%s: loading out-of-tree module taints kernel.\n", 2417 mod->name); 2418 add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK); 2419 } 2420 2421 check_modinfo_retpoline(mod, info); 2422 2423 if (get_modinfo(info, "staging")) { 2424 add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK); 2425 pr_warn("%s: module is from the staging directory, the quality " 2426 "is unknown, you have been warned.\n", mod->name); 2427 } 2428 2429 if (is_livepatch_module(mod)) { 2430 add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK); 2431 pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n", 2432 mod->name); 2433 } 2434 2435 module_license_taint_check(mod, get_modinfo(info, "license")); 2436 2437 if (get_modinfo(info, "test")) { 2438 if (!test_taint(TAINT_TEST)) 2439 pr_warn("%s: loading test module taints kernel.\n", 2440 mod->name); 2441 add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK); 2442 } 2443 #ifdef CONFIG_MODULE_SIG 2444 mod->sig_ok = info->sig_ok; 2445 if (!mod->sig_ok) { 2446 pr_notice_once("%s: module verification failed: signature " 2447 "and/or required key missing - tainting " 2448 "kernel\n", mod->name); 2449 add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK); 2450 } 2451 #endif 2452 2453 /* 2454 * ndiswrapper is under GPL by itself, but loads proprietary modules. 2455 * Don't use add_taint_module(), as it would prevent ndiswrapper from 2456 * using GPL-only symbols it needs. 2457 */ 2458 if (strcmp(mod->name, "ndiswrapper") == 0) 2459 add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE); 2460 2461 for (i = 0; i < ARRAY_SIZE(module_license_offenders); ++i) { 2462 if (strcmp(mod->name, module_license_offenders[i]) == 0) 2463 add_taint_module(mod, TAINT_PROPRIETARY_MODULE, 2464 LOCKDEP_NOW_UNRELIABLE); 2465 } 2466 2467 if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE)) 2468 pr_warn("%s: module license taints kernel.\n", mod->name); 2469 2470 } 2471 2472 static int check_modinfo(struct module *mod, struct load_info *info, int flags) 2473 { 2474 const char *modmagic = get_modinfo(info, "vermagic"); 2475 int err; 2476 2477 if (flags & MODULE_INIT_IGNORE_VERMAGIC) 2478 modmagic = NULL; 2479 2480 /* This is allowed: modprobe --force will invalidate it. */ 2481 if (!modmagic) { 2482 err = try_to_force_load(mod, "bad vermagic"); 2483 if (err) 2484 return err; 2485 } else if (!same_magic(modmagic, vermagic, info->index.vers)) { 2486 pr_err("%s: version magic '%s' should be '%s'\n", 2487 info->name, modmagic, vermagic); 2488 return -ENOEXEC; 2489 } 2490 2491 err = check_modinfo_livepatch(mod, info); 2492 if (err) 2493 return err; 2494 2495 return 0; 2496 } 2497 2498 static int find_module_sections(struct module *mod, struct load_info *info) 2499 { 2500 mod->kp = section_objs(info, "__param", 2501 sizeof(*mod->kp), &mod->num_kp); 2502 mod->syms = section_objs(info, "__ksymtab", 2503 sizeof(*mod->syms), &mod->num_syms); 2504 mod->crcs = section_addr(info, "__kcrctab"); 2505 mod->gpl_syms = section_objs(info, "__ksymtab_gpl", 2506 sizeof(*mod->gpl_syms), 2507 &mod->num_gpl_syms); 2508 mod->gpl_crcs = section_addr(info, "__kcrctab_gpl"); 2509 2510 #ifdef CONFIG_CONSTRUCTORS 2511 mod->ctors = section_objs(info, ".ctors", 2512 sizeof(*mod->ctors), &mod->num_ctors); 2513 if (!mod->ctors) 2514 mod->ctors = section_objs(info, ".init_array", 2515 sizeof(*mod->ctors), &mod->num_ctors); 2516 else if (find_sec(info, ".init_array")) { 2517 /* 2518 * This shouldn't happen with same compiler and binutils 2519 * building all parts of the module. 2520 */ 2521 pr_warn("%s: has both .ctors and .init_array.\n", 2522 mod->name); 2523 return -EINVAL; 2524 } 2525 #endif 2526 2527 mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1, 2528 &mod->noinstr_text_size); 2529 2530 #ifdef CONFIG_TRACEPOINTS 2531 mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs", 2532 sizeof(*mod->tracepoints_ptrs), 2533 &mod->num_tracepoints); 2534 #endif 2535 #ifdef CONFIG_TREE_SRCU 2536 mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs", 2537 sizeof(*mod->srcu_struct_ptrs), 2538 &mod->num_srcu_structs); 2539 #endif 2540 #ifdef CONFIG_BPF_EVENTS 2541 mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map", 2542 sizeof(*mod->bpf_raw_events), 2543 &mod->num_bpf_raw_events); 2544 #endif 2545 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 2546 mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size); 2547 mod->btf_base_data = any_section_objs(info, ".BTF.base", 1, 2548 &mod->btf_base_data_size); 2549 #endif 2550 #ifdef CONFIG_JUMP_LABEL 2551 mod->jump_entries = section_objs(info, "__jump_table", 2552 sizeof(*mod->jump_entries), 2553 &mod->num_jump_entries); 2554 #endif 2555 #ifdef CONFIG_EVENT_TRACING 2556 mod->trace_events = section_objs(info, "_ftrace_events", 2557 sizeof(*mod->trace_events), 2558 &mod->num_trace_events); 2559 mod->trace_evals = section_objs(info, "_ftrace_eval_map", 2560 sizeof(*mod->trace_evals), 2561 &mod->num_trace_evals); 2562 #endif 2563 #ifdef CONFIG_TRACING 2564 mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt", 2565 sizeof(*mod->trace_bprintk_fmt_start), 2566 &mod->num_trace_bprintk_fmt); 2567 #endif 2568 #ifdef CONFIG_FTRACE_MCOUNT_RECORD 2569 /* sechdrs[0].sh_size is always zero */ 2570 mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION, 2571 sizeof(*mod->ftrace_callsites), 2572 &mod->num_ftrace_callsites); 2573 #endif 2574 #ifdef CONFIG_FUNCTION_ERROR_INJECTION 2575 mod->ei_funcs = section_objs(info, "_error_injection_whitelist", 2576 sizeof(*mod->ei_funcs), 2577 &mod->num_ei_funcs); 2578 #endif 2579 #ifdef CONFIG_KPROBES 2580 mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1, 2581 &mod->kprobes_text_size); 2582 mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist", 2583 sizeof(unsigned long), 2584 &mod->num_kprobe_blacklist); 2585 #endif 2586 #ifdef CONFIG_PRINTK_INDEX 2587 mod->printk_index_start = section_objs(info, ".printk_index", 2588 sizeof(*mod->printk_index_start), 2589 &mod->printk_index_size); 2590 #endif 2591 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE 2592 mod->static_call_sites = section_objs(info, ".static_call_sites", 2593 sizeof(*mod->static_call_sites), 2594 &mod->num_static_call_sites); 2595 #endif 2596 #if IS_ENABLED(CONFIG_KUNIT) 2597 mod->kunit_suites = section_objs(info, ".kunit_test_suites", 2598 sizeof(*mod->kunit_suites), 2599 &mod->num_kunit_suites); 2600 mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites", 2601 sizeof(*mod->kunit_init_suites), 2602 &mod->num_kunit_init_suites); 2603 #endif 2604 2605 mod->extable = section_objs(info, "__ex_table", 2606 sizeof(*mod->extable), &mod->num_exentries); 2607 2608 if (section_addr(info, "__obsparm")) 2609 pr_warn("%s: Ignoring obsolete parameters\n", mod->name); 2610 2611 #ifdef CONFIG_DYNAMIC_DEBUG_CORE 2612 mod->dyndbg_info.descs = section_objs(info, "__dyndbg", 2613 sizeof(*mod->dyndbg_info.descs), 2614 &mod->dyndbg_info.num_descs); 2615 mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes", 2616 sizeof(*mod->dyndbg_info.classes), 2617 &mod->dyndbg_info.num_classes); 2618 #endif 2619 2620 return 0; 2621 } 2622 2623 static int move_module(struct module *mod, struct load_info *info) 2624 { 2625 int i; 2626 enum mod_mem_type t = 0; 2627 int ret = -ENOMEM; 2628 bool codetag_section_found = false; 2629 2630 for_each_mod_mem_type(type) { 2631 if (!mod->mem[type].size) { 2632 mod->mem[type].base = NULL; 2633 mod->mem[type].rw_copy = NULL; 2634 continue; 2635 } 2636 2637 ret = module_memory_alloc(mod, type); 2638 if (ret) { 2639 t = type; 2640 goto out_err; 2641 } 2642 } 2643 2644 /* Transfer each section which specifies SHF_ALLOC */ 2645 pr_debug("Final section addresses for %s:\n", mod->name); 2646 for (i = 0; i < info->hdr->e_shnum; i++) { 2647 void *dest; 2648 Elf_Shdr *shdr = &info->sechdrs[i]; 2649 const char *sname; 2650 unsigned long addr; 2651 2652 if (!(shdr->sh_flags & SHF_ALLOC)) 2653 continue; 2654 2655 sname = info->secstrings + shdr->sh_name; 2656 /* 2657 * Load codetag sections separately as they might still be used 2658 * after module unload. 2659 */ 2660 if (codetag_needs_module_section(mod, sname, shdr->sh_size)) { 2661 dest = codetag_alloc_module_section(mod, sname, shdr->sh_size, 2662 arch_mod_section_prepend(mod, i), shdr->sh_addralign); 2663 if (WARN_ON(!dest)) { 2664 ret = -EINVAL; 2665 goto out_err; 2666 } 2667 if (IS_ERR(dest)) { 2668 ret = PTR_ERR(dest); 2669 goto out_err; 2670 } 2671 addr = (unsigned long)dest; 2672 codetag_section_found = true; 2673 } else { 2674 enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT; 2675 unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK; 2676 2677 addr = (unsigned long)mod->mem[type].base + offset; 2678 dest = mod->mem[type].rw_copy + offset; 2679 } 2680 2681 if (shdr->sh_type != SHT_NOBITS) { 2682 /* 2683 * Our ELF checker already validated this, but let's 2684 * be pedantic and make the goal clearer. We actually 2685 * end up copying over all modifications made to the 2686 * userspace copy of the entire struct module. 2687 */ 2688 if (i == info->index.mod && 2689 (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) { 2690 ret = -ENOEXEC; 2691 goto out_err; 2692 } 2693 memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size); 2694 } 2695 /* 2696 * Update the userspace copy's ELF section address to point to 2697 * our newly allocated memory as a pure convenience so that 2698 * users of info can keep taking advantage and using the newly 2699 * minted official memory area. 2700 */ 2701 shdr->sh_addr = addr; 2702 pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr, 2703 (long)shdr->sh_size, info->secstrings + shdr->sh_name); 2704 } 2705 2706 return 0; 2707 out_err: 2708 for (t--; t >= 0; t--) 2709 module_memory_free(mod, t); 2710 if (codetag_section_found) 2711 codetag_free_module_sections(mod); 2712 2713 return ret; 2714 } 2715 2716 static int check_export_symbol_versions(struct module *mod) 2717 { 2718 #ifdef CONFIG_MODVERSIONS 2719 if ((mod->num_syms && !mod->crcs) || 2720 (mod->num_gpl_syms && !mod->gpl_crcs)) { 2721 return try_to_force_load(mod, 2722 "no versions for exported symbols"); 2723 } 2724 #endif 2725 return 0; 2726 } 2727 2728 static void flush_module_icache(const struct module *mod) 2729 { 2730 /* 2731 * Flush the instruction cache, since we've played with text. 2732 * Do it before processing of module parameters, so the module 2733 * can provide parameter accessor functions of its own. 2734 */ 2735 for_each_mod_mem_type(type) { 2736 const struct module_memory *mod_mem = &mod->mem[type]; 2737 2738 if (mod_mem->size) { 2739 flush_icache_range((unsigned long)mod_mem->base, 2740 (unsigned long)mod_mem->base + mod_mem->size); 2741 } 2742 } 2743 } 2744 2745 bool __weak module_elf_check_arch(Elf_Ehdr *hdr) 2746 { 2747 return true; 2748 } 2749 2750 int __weak module_frob_arch_sections(Elf_Ehdr *hdr, 2751 Elf_Shdr *sechdrs, 2752 char *secstrings, 2753 struct module *mod) 2754 { 2755 return 0; 2756 } 2757 2758 /* module_blacklist is a comma-separated list of module names */ 2759 static char *module_blacklist; 2760 static bool blacklisted(const char *module_name) 2761 { 2762 const char *p; 2763 size_t len; 2764 2765 if (!module_blacklist) 2766 return false; 2767 2768 for (p = module_blacklist; *p; p += len) { 2769 len = strcspn(p, ","); 2770 if (strlen(module_name) == len && !memcmp(module_name, p, len)) 2771 return true; 2772 if (p[len] == ',') 2773 len++; 2774 } 2775 return false; 2776 } 2777 core_param(module_blacklist, module_blacklist, charp, 0400); 2778 2779 static struct module *layout_and_allocate(struct load_info *info, int flags) 2780 { 2781 struct module *mod; 2782 unsigned int ndx; 2783 int err; 2784 2785 /* Allow arches to frob section contents and sizes. */ 2786 err = module_frob_arch_sections(info->hdr, info->sechdrs, 2787 info->secstrings, info->mod); 2788 if (err < 0) 2789 return ERR_PTR(err); 2790 2791 err = module_enforce_rwx_sections(info->hdr, info->sechdrs, 2792 info->secstrings, info->mod); 2793 if (err < 0) 2794 return ERR_PTR(err); 2795 2796 /* We will do a special allocation for per-cpu sections later. */ 2797 info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC; 2798 2799 /* 2800 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that 2801 * layout_sections() can put it in the right place. 2802 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set. 2803 */ 2804 ndx = find_sec(info, ".data..ro_after_init"); 2805 if (ndx) 2806 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2807 /* 2808 * Mark the __jump_table section as ro_after_init as well: these data 2809 * structures are never modified, with the exception of entries that 2810 * refer to code in the __init section, which are annotated as such 2811 * at module load time. 2812 */ 2813 ndx = find_sec(info, "__jump_table"); 2814 if (ndx) 2815 info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT; 2816 2817 /* 2818 * Determine total sizes, and put offsets in sh_entsize. For now 2819 * this is done generically; there doesn't appear to be any 2820 * special cases for the architectures. 2821 */ 2822 layout_sections(info->mod, info); 2823 layout_symtab(info->mod, info); 2824 2825 /* Allocate and move to the final place */ 2826 err = move_module(info->mod, info); 2827 if (err) 2828 return ERR_PTR(err); 2829 2830 /* Module has been copied to its final place now: return it. */ 2831 mod = (void *)info->sechdrs[info->index.mod].sh_addr; 2832 kmemleak_load_module(mod, info); 2833 codetag_module_replaced(info->mod, mod); 2834 2835 return mod; 2836 } 2837 2838 /* mod is no longer valid after this! */ 2839 static void module_deallocate(struct module *mod, struct load_info *info) 2840 { 2841 percpu_modfree(mod); 2842 module_arch_freeing_init(mod); 2843 2844 free_mod_mem(mod); 2845 } 2846 2847 int __weak module_finalize(const Elf_Ehdr *hdr, 2848 const Elf_Shdr *sechdrs, 2849 struct module *me) 2850 { 2851 return 0; 2852 } 2853 2854 int __weak module_post_finalize(const Elf_Ehdr *hdr, 2855 const Elf_Shdr *sechdrs, 2856 struct module *me) 2857 { 2858 return 0; 2859 } 2860 2861 static int post_relocation(struct module *mod, const struct load_info *info) 2862 { 2863 int ret; 2864 2865 /* Sort exception table now relocations are done. */ 2866 sort_extable(mod->extable, mod->extable + mod->num_exentries); 2867 2868 /* Copy relocated percpu area over. */ 2869 percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr, 2870 info->sechdrs[info->index.pcpu].sh_size); 2871 2872 /* Setup kallsyms-specific fields. */ 2873 add_kallsyms(mod, info); 2874 2875 /* Arch-specific module finalizing. */ 2876 ret = module_finalize(info->hdr, info->sechdrs, mod); 2877 if (ret) 2878 return ret; 2879 2880 for_each_mod_mem_type(type) { 2881 struct module_memory *mem = &mod->mem[type]; 2882 2883 if (mem->is_rox) { 2884 if (!execmem_update_copy(mem->base, mem->rw_copy, 2885 mem->size)) 2886 return -ENOMEM; 2887 2888 vfree(mem->rw_copy); 2889 mem->rw_copy = NULL; 2890 } 2891 } 2892 2893 return module_post_finalize(info->hdr, info->sechdrs, mod); 2894 } 2895 2896 /* Call module constructors. */ 2897 static void do_mod_ctors(struct module *mod) 2898 { 2899 #ifdef CONFIG_CONSTRUCTORS 2900 unsigned long i; 2901 2902 for (i = 0; i < mod->num_ctors; i++) 2903 mod->ctors[i](); 2904 #endif 2905 } 2906 2907 /* For freeing module_init on success, in case kallsyms traversing */ 2908 struct mod_initfree { 2909 struct llist_node node; 2910 void *init_text; 2911 void *init_data; 2912 void *init_rodata; 2913 }; 2914 2915 static void do_free_init(struct work_struct *w) 2916 { 2917 struct llist_node *pos, *n, *list; 2918 struct mod_initfree *initfree; 2919 2920 list = llist_del_all(&init_free_list); 2921 2922 synchronize_rcu(); 2923 2924 llist_for_each_safe(pos, n, list) { 2925 initfree = container_of(pos, struct mod_initfree, node); 2926 execmem_free(initfree->init_text); 2927 execmem_free(initfree->init_data); 2928 execmem_free(initfree->init_rodata); 2929 kfree(initfree); 2930 } 2931 } 2932 2933 void flush_module_init_free_work(void) 2934 { 2935 flush_work(&init_free_wq); 2936 } 2937 2938 #undef MODULE_PARAM_PREFIX 2939 #define MODULE_PARAM_PREFIX "module." 2940 /* Default value for module->async_probe_requested */ 2941 static bool async_probe; 2942 module_param(async_probe, bool, 0644); 2943 2944 /* 2945 * This is where the real work happens. 2946 * 2947 * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb 2948 * helper command 'lx-symbols'. 2949 */ 2950 static noinline int do_init_module(struct module *mod) 2951 { 2952 int ret = 0; 2953 struct mod_initfree *freeinit; 2954 #if defined(CONFIG_MODULE_STATS) 2955 unsigned int text_size = 0, total_size = 0; 2956 2957 for_each_mod_mem_type(type) { 2958 const struct module_memory *mod_mem = &mod->mem[type]; 2959 if (mod_mem->size) { 2960 total_size += mod_mem->size; 2961 if (type == MOD_TEXT || type == MOD_INIT_TEXT) 2962 text_size += mod_mem->size; 2963 } 2964 } 2965 #endif 2966 2967 freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL); 2968 if (!freeinit) { 2969 ret = -ENOMEM; 2970 goto fail; 2971 } 2972 freeinit->init_text = mod->mem[MOD_INIT_TEXT].base; 2973 freeinit->init_data = mod->mem[MOD_INIT_DATA].base; 2974 freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base; 2975 2976 do_mod_ctors(mod); 2977 /* Start the module */ 2978 if (mod->init != NULL) 2979 ret = do_one_initcall(mod->init); 2980 if (ret < 0) { 2981 goto fail_free_freeinit; 2982 } 2983 if (ret > 0) { 2984 pr_warn("%s: '%s'->init suspiciously returned %d, it should " 2985 "follow 0/-E convention\n" 2986 "%s: loading module anyway...\n", 2987 __func__, mod->name, ret, __func__); 2988 dump_stack(); 2989 } 2990 2991 /* Now it's a first class citizen! */ 2992 mod->state = MODULE_STATE_LIVE; 2993 blocking_notifier_call_chain(&module_notify_list, 2994 MODULE_STATE_LIVE, mod); 2995 2996 /* Delay uevent until module has finished its init routine */ 2997 kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD); 2998 2999 /* 3000 * We need to finish all async code before the module init sequence 3001 * is done. This has potential to deadlock if synchronous module 3002 * loading is requested from async (which is not allowed!). 3003 * 3004 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous 3005 * request_module() from async workers") for more details. 3006 */ 3007 if (!mod->async_probe_requested) 3008 async_synchronize_full(); 3009 3010 ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base, 3011 mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size); 3012 mutex_lock(&module_mutex); 3013 /* Drop initial reference. */ 3014 module_put(mod); 3015 trim_init_extable(mod); 3016 #ifdef CONFIG_KALLSYMS 3017 /* Switch to core kallsyms now init is done: kallsyms may be walking! */ 3018 rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms); 3019 #endif 3020 ret = module_enable_rodata_ro_after_init(mod); 3021 if (ret) 3022 pr_warn("%s: module_enable_rodata_ro_after_init() returned %d, " 3023 "ro_after_init data might still be writable\n", 3024 mod->name, ret); 3025 3026 mod_tree_remove_init(mod); 3027 module_arch_freeing_init(mod); 3028 for_class_mod_mem_type(type, init) { 3029 mod->mem[type].base = NULL; 3030 mod->mem[type].size = 0; 3031 } 3032 3033 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES 3034 /* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */ 3035 mod->btf_data = NULL; 3036 mod->btf_base_data = NULL; 3037 #endif 3038 /* 3039 * We want to free module_init, but be aware that kallsyms may be 3040 * walking this within an RCU read section. In all the failure paths, we 3041 * call synchronize_rcu(), but we don't want to slow down the success 3042 * path. execmem_free() cannot be called in an interrupt, so do the 3043 * work and call synchronize_rcu() in a work queue. 3044 * 3045 * Note that execmem_alloc() on most architectures creates W+X page 3046 * mappings which won't be cleaned up until do_free_init() runs. Any 3047 * code such as mark_rodata_ro() which depends on those mappings to 3048 * be cleaned up needs to sync with the queued work by invoking 3049 * flush_module_init_free_work(). 3050 */ 3051 if (llist_add(&freeinit->node, &init_free_list)) 3052 schedule_work(&init_free_wq); 3053 3054 mutex_unlock(&module_mutex); 3055 wake_up_all(&module_wq); 3056 3057 mod_stat_add_long(text_size, &total_text_size); 3058 mod_stat_add_long(total_size, &total_mod_size); 3059 3060 mod_stat_inc(&modcount); 3061 3062 return 0; 3063 3064 fail_free_freeinit: 3065 kfree(freeinit); 3066 fail: 3067 /* Try to protect us from buggy refcounters. */ 3068 mod->state = MODULE_STATE_GOING; 3069 synchronize_rcu(); 3070 module_put(mod); 3071 blocking_notifier_call_chain(&module_notify_list, 3072 MODULE_STATE_GOING, mod); 3073 klp_module_going(mod); 3074 ftrace_release_mod(mod); 3075 free_module(mod); 3076 wake_up_all(&module_wq); 3077 3078 return ret; 3079 } 3080 3081 static int may_init_module(void) 3082 { 3083 if (!capable(CAP_SYS_MODULE) || modules_disabled) 3084 return -EPERM; 3085 3086 return 0; 3087 } 3088 3089 /* Is this module of this name done loading? No locks held. */ 3090 static bool finished_loading(const char *name) 3091 { 3092 struct module *mod; 3093 bool ret; 3094 3095 /* 3096 * The module_mutex should not be a heavily contended lock; 3097 * if we get the occasional sleep here, we'll go an extra iteration 3098 * in the wait_event_interruptible(), which is harmless. 3099 */ 3100 sched_annotate_sleep(); 3101 mutex_lock(&module_mutex); 3102 mod = find_module_all(name, strlen(name), true); 3103 ret = !mod || mod->state == MODULE_STATE_LIVE 3104 || mod->state == MODULE_STATE_GOING; 3105 mutex_unlock(&module_mutex); 3106 3107 return ret; 3108 } 3109 3110 /* Must be called with module_mutex held */ 3111 static int module_patient_check_exists(const char *name, 3112 enum fail_dup_mod_reason reason) 3113 { 3114 struct module *old; 3115 int err = 0; 3116 3117 old = find_module_all(name, strlen(name), true); 3118 if (old == NULL) 3119 return 0; 3120 3121 if (old->state == MODULE_STATE_COMING || 3122 old->state == MODULE_STATE_UNFORMED) { 3123 /* Wait in case it fails to load. */ 3124 mutex_unlock(&module_mutex); 3125 err = wait_event_interruptible(module_wq, 3126 finished_loading(name)); 3127 mutex_lock(&module_mutex); 3128 if (err) 3129 return err; 3130 3131 /* The module might have gone in the meantime. */ 3132 old = find_module_all(name, strlen(name), true); 3133 } 3134 3135 if (try_add_failed_module(name, reason)) 3136 pr_warn("Could not add fail-tracking for module: %s\n", name); 3137 3138 /* 3139 * We are here only when the same module was being loaded. Do 3140 * not try to load it again right now. It prevents long delays 3141 * caused by serialized module load failures. It might happen 3142 * when more devices of the same type trigger load of 3143 * a particular module. 3144 */ 3145 if (old && old->state == MODULE_STATE_LIVE) 3146 return -EEXIST; 3147 return -EBUSY; 3148 } 3149 3150 /* 3151 * We try to place it in the list now to make sure it's unique before 3152 * we dedicate too many resources. In particular, temporary percpu 3153 * memory exhaustion. 3154 */ 3155 static int add_unformed_module(struct module *mod) 3156 { 3157 int err; 3158 3159 mod->state = MODULE_STATE_UNFORMED; 3160 3161 mutex_lock(&module_mutex); 3162 err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD); 3163 if (err) 3164 goto out; 3165 3166 mod_update_bounds(mod); 3167 list_add_rcu(&mod->list, &modules); 3168 mod_tree_insert(mod); 3169 err = 0; 3170 3171 out: 3172 mutex_unlock(&module_mutex); 3173 return err; 3174 } 3175 3176 static int complete_formation(struct module *mod, struct load_info *info) 3177 { 3178 int err; 3179 3180 mutex_lock(&module_mutex); 3181 3182 /* Find duplicate symbols (must be called under lock). */ 3183 err = verify_exported_symbols(mod); 3184 if (err < 0) 3185 goto out; 3186 3187 /* These rely on module_mutex for list integrity. */ 3188 module_bug_finalize(info->hdr, info->sechdrs, mod); 3189 module_cfi_finalize(info->hdr, info->sechdrs, mod); 3190 3191 err = module_enable_rodata_ro(mod); 3192 if (err) 3193 goto out_strict_rwx; 3194 err = module_enable_data_nx(mod); 3195 if (err) 3196 goto out_strict_rwx; 3197 err = module_enable_text_rox(mod); 3198 if (err) 3199 goto out_strict_rwx; 3200 3201 /* 3202 * Mark state as coming so strong_try_module_get() ignores us, 3203 * but kallsyms etc. can see us. 3204 */ 3205 mod->state = MODULE_STATE_COMING; 3206 mutex_unlock(&module_mutex); 3207 3208 return 0; 3209 3210 out_strict_rwx: 3211 module_bug_cleanup(mod); 3212 out: 3213 mutex_unlock(&module_mutex); 3214 return err; 3215 } 3216 3217 static int prepare_coming_module(struct module *mod) 3218 { 3219 int err; 3220 3221 ftrace_module_enable(mod); 3222 err = klp_module_coming(mod); 3223 if (err) 3224 return err; 3225 3226 err = blocking_notifier_call_chain_robust(&module_notify_list, 3227 MODULE_STATE_COMING, MODULE_STATE_GOING, mod); 3228 err = notifier_to_errno(err); 3229 if (err) 3230 klp_module_going(mod); 3231 3232 return err; 3233 } 3234 3235 static int unknown_module_param_cb(char *param, char *val, const char *modname, 3236 void *arg) 3237 { 3238 struct module *mod = arg; 3239 int ret; 3240 3241 if (strcmp(param, "async_probe") == 0) { 3242 if (kstrtobool(val, &mod->async_probe_requested)) 3243 mod->async_probe_requested = true; 3244 return 0; 3245 } 3246 3247 /* Check for magic 'dyndbg' arg */ 3248 ret = ddebug_dyndbg_module_param_cb(param, val, modname); 3249 if (ret != 0) 3250 pr_warn("%s: unknown parameter '%s' ignored\n", modname, param); 3251 return 0; 3252 } 3253 3254 /* Module within temporary copy, this doesn't do any allocation */ 3255 static int early_mod_check(struct load_info *info, int flags) 3256 { 3257 int err; 3258 3259 /* 3260 * Now that we know we have the correct module name, check 3261 * if it's blacklisted. 3262 */ 3263 if (blacklisted(info->name)) { 3264 pr_err("Module %s is blacklisted\n", info->name); 3265 return -EPERM; 3266 } 3267 3268 err = rewrite_section_headers(info, flags); 3269 if (err) 3270 return err; 3271 3272 /* Check module struct version now, before we try to use module. */ 3273 if (!check_modstruct_version(info, info->mod)) 3274 return -ENOEXEC; 3275 3276 err = check_modinfo(info->mod, info, flags); 3277 if (err) 3278 return err; 3279 3280 mutex_lock(&module_mutex); 3281 err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING); 3282 mutex_unlock(&module_mutex); 3283 3284 return err; 3285 } 3286 3287 /* 3288 * Allocate and load the module: note that size of section 0 is always 3289 * zero, and we rely on this for optional sections. 3290 */ 3291 static int load_module(struct load_info *info, const char __user *uargs, 3292 int flags) 3293 { 3294 struct module *mod; 3295 bool module_allocated = false; 3296 long err = 0; 3297 char *after_dashes; 3298 3299 /* 3300 * Do the signature check (if any) first. All that 3301 * the signature check needs is info->len, it does 3302 * not need any of the section info. That can be 3303 * set up later. This will minimize the chances 3304 * of a corrupt module causing problems before 3305 * we even get to the signature check. 3306 * 3307 * The check will also adjust info->len by stripping 3308 * off the sig length at the end of the module, making 3309 * checks against info->len more correct. 3310 */ 3311 err = module_sig_check(info, flags); 3312 if (err) 3313 goto free_copy; 3314 3315 /* 3316 * Do basic sanity checks against the ELF header and 3317 * sections. Cache useful sections and set the 3318 * info->mod to the userspace passed struct module. 3319 */ 3320 err = elf_validity_cache_copy(info, flags); 3321 if (err) 3322 goto free_copy; 3323 3324 err = early_mod_check(info, flags); 3325 if (err) 3326 goto free_copy; 3327 3328 /* Figure out module layout, and allocate all the memory. */ 3329 mod = layout_and_allocate(info, flags); 3330 if (IS_ERR(mod)) { 3331 err = PTR_ERR(mod); 3332 goto free_copy; 3333 } 3334 3335 module_allocated = true; 3336 3337 audit_log_kern_module(mod->name); 3338 3339 /* Reserve our place in the list. */ 3340 err = add_unformed_module(mod); 3341 if (err) 3342 goto free_module; 3343 3344 /* 3345 * We are tainting your kernel if your module gets into 3346 * the modules linked list somehow. 3347 */ 3348 module_augment_kernel_taints(mod, info); 3349 3350 /* To avoid stressing percpu allocator, do this once we're unique. */ 3351 err = percpu_modalloc(mod, info); 3352 if (err) 3353 goto unlink_mod; 3354 3355 /* Now module is in final location, initialize linked lists, etc. */ 3356 err = module_unload_init(mod); 3357 if (err) 3358 goto unlink_mod; 3359 3360 init_param_lock(mod); 3361 3362 /* 3363 * Now we've got everything in the final locations, we can 3364 * find optional sections. 3365 */ 3366 err = find_module_sections(mod, info); 3367 if (err) 3368 goto free_unload; 3369 3370 err = check_export_symbol_versions(mod); 3371 if (err) 3372 goto free_unload; 3373 3374 /* Set up MODINFO_ATTR fields */ 3375 setup_modinfo(mod, info); 3376 3377 /* Fix up syms, so that st_value is a pointer to location. */ 3378 err = simplify_symbols(mod, info); 3379 if (err < 0) 3380 goto free_modinfo; 3381 3382 err = apply_relocations(mod, info); 3383 if (err < 0) 3384 goto free_modinfo; 3385 3386 err = post_relocation(mod, info); 3387 if (err < 0) 3388 goto free_modinfo; 3389 3390 flush_module_icache(mod); 3391 3392 /* Now copy in args */ 3393 mod->args = strndup_user(uargs, ~0UL >> 1); 3394 if (IS_ERR(mod->args)) { 3395 err = PTR_ERR(mod->args); 3396 goto free_arch_cleanup; 3397 } 3398 3399 init_build_id(mod, info); 3400 3401 /* Ftrace init must be called in the MODULE_STATE_UNFORMED state */ 3402 ftrace_module_init(mod); 3403 3404 /* Finally it's fully formed, ready to start executing. */ 3405 err = complete_formation(mod, info); 3406 if (err) 3407 goto ddebug_cleanup; 3408 3409 err = prepare_coming_module(mod); 3410 if (err) 3411 goto bug_cleanup; 3412 3413 mod->async_probe_requested = async_probe; 3414 3415 /* Module is ready to execute: parsing args may do that. */ 3416 after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp, 3417 -32768, 32767, mod, 3418 unknown_module_param_cb); 3419 if (IS_ERR(after_dashes)) { 3420 err = PTR_ERR(after_dashes); 3421 goto coming_cleanup; 3422 } else if (after_dashes) { 3423 pr_warn("%s: parameters '%s' after `--' ignored\n", 3424 mod->name, after_dashes); 3425 } 3426 3427 /* Link in to sysfs. */ 3428 err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp); 3429 if (err < 0) 3430 goto coming_cleanup; 3431 3432 if (is_livepatch_module(mod)) { 3433 err = copy_module_elf(mod, info); 3434 if (err < 0) 3435 goto sysfs_cleanup; 3436 } 3437 3438 /* Get rid of temporary copy. */ 3439 free_copy(info, flags); 3440 3441 codetag_load_module(mod); 3442 3443 /* Done! */ 3444 trace_module_load(mod); 3445 3446 return do_init_module(mod); 3447 3448 sysfs_cleanup: 3449 mod_sysfs_teardown(mod); 3450 coming_cleanup: 3451 mod->state = MODULE_STATE_GOING; 3452 destroy_params(mod->kp, mod->num_kp); 3453 blocking_notifier_call_chain(&module_notify_list, 3454 MODULE_STATE_GOING, mod); 3455 klp_module_going(mod); 3456 bug_cleanup: 3457 mod->state = MODULE_STATE_GOING; 3458 /* module_bug_cleanup needs module_mutex protection */ 3459 mutex_lock(&module_mutex); 3460 module_bug_cleanup(mod); 3461 mutex_unlock(&module_mutex); 3462 3463 ddebug_cleanup: 3464 ftrace_release_mod(mod); 3465 synchronize_rcu(); 3466 kfree(mod->args); 3467 free_arch_cleanup: 3468 module_arch_cleanup(mod); 3469 free_modinfo: 3470 free_modinfo(mod); 3471 free_unload: 3472 module_unload_free(mod); 3473 unlink_mod: 3474 mutex_lock(&module_mutex); 3475 /* Unlink carefully: kallsyms could be walking list. */ 3476 list_del_rcu(&mod->list); 3477 mod_tree_remove(mod); 3478 wake_up_all(&module_wq); 3479 /* Wait for RCU-sched synchronizing before releasing mod->list. */ 3480 synchronize_rcu(); 3481 mutex_unlock(&module_mutex); 3482 free_module: 3483 mod_stat_bump_invalid(info, flags); 3484 /* Free lock-classes; relies on the preceding sync_rcu() */ 3485 for_class_mod_mem_type(type, core_data) { 3486 lockdep_free_key_range(mod->mem[type].base, 3487 mod->mem[type].size); 3488 } 3489 3490 module_deallocate(mod, info); 3491 free_copy: 3492 /* 3493 * The info->len is always set. We distinguish between 3494 * failures once the proper module was allocated and 3495 * before that. 3496 */ 3497 if (!module_allocated) 3498 mod_stat_bump_becoming(info, flags); 3499 free_copy(info, flags); 3500 return err; 3501 } 3502 3503 SYSCALL_DEFINE3(init_module, void __user *, umod, 3504 unsigned long, len, const char __user *, uargs) 3505 { 3506 int err; 3507 struct load_info info = { }; 3508 3509 err = may_init_module(); 3510 if (err) 3511 return err; 3512 3513 pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n", 3514 umod, len, uargs); 3515 3516 err = copy_module_from_user(umod, len, &info); 3517 if (err) { 3518 mod_stat_inc(&failed_kreads); 3519 mod_stat_add_long(len, &invalid_kread_bytes); 3520 return err; 3521 } 3522 3523 return load_module(&info, uargs, 0); 3524 } 3525 3526 struct idempotent { 3527 const void *cookie; 3528 struct hlist_node entry; 3529 struct completion complete; 3530 int ret; 3531 }; 3532 3533 #define IDEM_HASH_BITS 8 3534 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS]; 3535 static DEFINE_SPINLOCK(idem_lock); 3536 3537 static bool idempotent(struct idempotent *u, const void *cookie) 3538 { 3539 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3540 struct hlist_head *head = idem_hash + hash; 3541 struct idempotent *existing; 3542 bool first; 3543 3544 u->ret = -EINTR; 3545 u->cookie = cookie; 3546 init_completion(&u->complete); 3547 3548 spin_lock(&idem_lock); 3549 first = true; 3550 hlist_for_each_entry(existing, head, entry) { 3551 if (existing->cookie != cookie) 3552 continue; 3553 first = false; 3554 break; 3555 } 3556 hlist_add_head(&u->entry, idem_hash + hash); 3557 spin_unlock(&idem_lock); 3558 3559 return !first; 3560 } 3561 3562 /* 3563 * We were the first one with 'cookie' on the list, and we ended 3564 * up completing the operation. We now need to walk the list, 3565 * remove everybody - which includes ourselves - fill in the return 3566 * value, and then complete the operation. 3567 */ 3568 static int idempotent_complete(struct idempotent *u, int ret) 3569 { 3570 const void *cookie = u->cookie; 3571 int hash = hash_ptr(cookie, IDEM_HASH_BITS); 3572 struct hlist_head *head = idem_hash + hash; 3573 struct hlist_node *next; 3574 struct idempotent *pos; 3575 3576 spin_lock(&idem_lock); 3577 hlist_for_each_entry_safe(pos, next, head, entry) { 3578 if (pos->cookie != cookie) 3579 continue; 3580 hlist_del_init(&pos->entry); 3581 pos->ret = ret; 3582 complete(&pos->complete); 3583 } 3584 spin_unlock(&idem_lock); 3585 return ret; 3586 } 3587 3588 /* 3589 * Wait for the idempotent worker. 3590 * 3591 * If we get interrupted, we need to remove ourselves from the 3592 * the idempotent list, and the completion may still come in. 3593 * 3594 * The 'idem_lock' protects against the race, and 'idem.ret' was 3595 * initialized to -EINTR and is thus always the right return 3596 * value even if the idempotent work then completes between 3597 * the wait_for_completion and the cleanup. 3598 */ 3599 static int idempotent_wait_for_completion(struct idempotent *u) 3600 { 3601 if (wait_for_completion_interruptible(&u->complete)) { 3602 spin_lock(&idem_lock); 3603 if (!hlist_unhashed(&u->entry)) 3604 hlist_del(&u->entry); 3605 spin_unlock(&idem_lock); 3606 } 3607 return u->ret; 3608 } 3609 3610 static int init_module_from_file(struct file *f, const char __user * uargs, int flags) 3611 { 3612 struct load_info info = { }; 3613 void *buf = NULL; 3614 int len; 3615 3616 len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE); 3617 if (len < 0) { 3618 mod_stat_inc(&failed_kreads); 3619 return len; 3620 } 3621 3622 if (flags & MODULE_INIT_COMPRESSED_FILE) { 3623 int err = module_decompress(&info, buf, len); 3624 vfree(buf); /* compressed data is no longer needed */ 3625 if (err) { 3626 mod_stat_inc(&failed_decompress); 3627 mod_stat_add_long(len, &invalid_decompress_bytes); 3628 return err; 3629 } 3630 } else { 3631 info.hdr = buf; 3632 info.len = len; 3633 } 3634 3635 return load_module(&info, uargs, flags); 3636 } 3637 3638 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags) 3639 { 3640 struct idempotent idem; 3641 3642 if (!(f->f_mode & FMODE_READ)) 3643 return -EBADF; 3644 3645 /* Are we the winners of the race and get to do this? */ 3646 if (!idempotent(&idem, file_inode(f))) { 3647 int ret = init_module_from_file(f, uargs, flags); 3648 return idempotent_complete(&idem, ret); 3649 } 3650 3651 /* 3652 * Somebody else won the race and is loading the module. 3653 */ 3654 return idempotent_wait_for_completion(&idem); 3655 } 3656 3657 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags) 3658 { 3659 int err = may_init_module(); 3660 if (err) 3661 return err; 3662 3663 pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags); 3664 3665 if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS 3666 |MODULE_INIT_IGNORE_VERMAGIC 3667 |MODULE_INIT_COMPRESSED_FILE)) 3668 return -EINVAL; 3669 3670 CLASS(fd, f)(fd); 3671 if (fd_empty(f)) 3672 return -EBADF; 3673 return idempotent_init_module(fd_file(f), uargs, flags); 3674 } 3675 3676 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */ 3677 char *module_flags(struct module *mod, char *buf, bool show_state) 3678 { 3679 int bx = 0; 3680 3681 BUG_ON(mod->state == MODULE_STATE_UNFORMED); 3682 if (!mod->taints && !show_state) 3683 goto out; 3684 if (mod->taints || 3685 mod->state == MODULE_STATE_GOING || 3686 mod->state == MODULE_STATE_COMING) { 3687 buf[bx++] = '('; 3688 bx += module_flags_taint(mod->taints, buf + bx); 3689 /* Show a - for module-is-being-unloaded */ 3690 if (mod->state == MODULE_STATE_GOING && show_state) 3691 buf[bx++] = '-'; 3692 /* Show a + for module-is-being-loaded */ 3693 if (mod->state == MODULE_STATE_COMING && show_state) 3694 buf[bx++] = '+'; 3695 buf[bx++] = ')'; 3696 } 3697 out: 3698 buf[bx] = '\0'; 3699 3700 return buf; 3701 } 3702 3703 /* Given an address, look for it in the module exception tables. */ 3704 const struct exception_table_entry *search_module_extables(unsigned long addr) 3705 { 3706 const struct exception_table_entry *e = NULL; 3707 struct module *mod; 3708 3709 preempt_disable(); 3710 mod = __module_address(addr); 3711 if (!mod) 3712 goto out; 3713 3714 if (!mod->num_exentries) 3715 goto out; 3716 3717 e = search_extable(mod->extable, 3718 mod->num_exentries, 3719 addr); 3720 out: 3721 preempt_enable(); 3722 3723 /* 3724 * Now, if we found one, we are running inside it now, hence 3725 * we cannot unload the module, hence no refcnt needed. 3726 */ 3727 return e; 3728 } 3729 3730 /** 3731 * is_module_address() - is this address inside a module? 3732 * @addr: the address to check. 3733 * 3734 * See is_module_text_address() if you simply want to see if the address 3735 * is code (not data). 3736 */ 3737 bool is_module_address(unsigned long addr) 3738 { 3739 bool ret; 3740 3741 preempt_disable(); 3742 ret = __module_address(addr) != NULL; 3743 preempt_enable(); 3744 3745 return ret; 3746 } 3747 3748 /** 3749 * __module_address() - get the module which contains an address. 3750 * @addr: the address. 3751 * 3752 * Must be called with preempt disabled or module mutex held so that 3753 * module doesn't get freed during this. 3754 */ 3755 struct module *__module_address(unsigned long addr) 3756 { 3757 struct module *mod; 3758 3759 if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max) 3760 goto lookup; 3761 3762 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC 3763 if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max) 3764 goto lookup; 3765 #endif 3766 3767 return NULL; 3768 3769 lookup: 3770 module_assert_mutex_or_preempt(); 3771 3772 mod = mod_find(addr, &mod_tree); 3773 if (mod) { 3774 BUG_ON(!within_module(addr, mod)); 3775 if (mod->state == MODULE_STATE_UNFORMED) 3776 mod = NULL; 3777 } 3778 return mod; 3779 } 3780 3781 /** 3782 * is_module_text_address() - is this address inside module code? 3783 * @addr: the address to check. 3784 * 3785 * See is_module_address() if you simply want to see if the address is 3786 * anywhere in a module. See kernel_text_address() for testing if an 3787 * address corresponds to kernel or module code. 3788 */ 3789 bool is_module_text_address(unsigned long addr) 3790 { 3791 bool ret; 3792 3793 preempt_disable(); 3794 ret = __module_text_address(addr) != NULL; 3795 preempt_enable(); 3796 3797 return ret; 3798 } 3799 3800 /** 3801 * __module_text_address() - get the module whose code contains an address. 3802 * @addr: the address. 3803 * 3804 * Must be called with preempt disabled or module mutex held so that 3805 * module doesn't get freed during this. 3806 */ 3807 struct module *__module_text_address(unsigned long addr) 3808 { 3809 struct module *mod = __module_address(addr); 3810 if (mod) { 3811 /* Make sure it's within the text section. */ 3812 if (!within_module_mem_type(addr, mod, MOD_TEXT) && 3813 !within_module_mem_type(addr, mod, MOD_INIT_TEXT)) 3814 mod = NULL; 3815 } 3816 return mod; 3817 } 3818 3819 /* Don't grab lock, we're oopsing. */ 3820 void print_modules(void) 3821 { 3822 struct module *mod; 3823 char buf[MODULE_FLAGS_BUF_SIZE]; 3824 3825 printk(KERN_DEFAULT "Modules linked in:"); 3826 /* Most callers should already have preempt disabled, but make sure */ 3827 guard(rcu)(); 3828 list_for_each_entry_rcu(mod, &modules, list) { 3829 if (mod->state == MODULE_STATE_UNFORMED) 3830 continue; 3831 pr_cont(" %s%s", mod->name, module_flags(mod, buf, true)); 3832 } 3833 3834 print_unloaded_tainted_modules(); 3835 if (last_unloaded_module.name[0]) 3836 pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name, 3837 last_unloaded_module.taints); 3838 pr_cont("\n"); 3839 } 3840 3841 #ifdef CONFIG_MODULE_DEBUGFS 3842 struct dentry *mod_debugfs_root; 3843 3844 static int module_debugfs_init(void) 3845 { 3846 mod_debugfs_root = debugfs_create_dir("modules", NULL); 3847 return 0; 3848 } 3849 module_init(module_debugfs_init); 3850 #endif 3851