xref: /linux-6.15/kernel/module/main.c (revision 0c133b1e)
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2002 Richard Henderson
4  * Copyright (C) 2001 Rusty Russell, 2002, 2010 Rusty Russell IBM.
5  * Copyright (C) 2023 Luis Chamberlain <[email protected]>
6  */
7 
8 #define INCLUDE_VERMAGIC
9 
10 #include <linux/export.h>
11 #include <linux/extable.h>
12 #include <linux/moduleloader.h>
13 #include <linux/module_signature.h>
14 #include <linux/trace_events.h>
15 #include <linux/init.h>
16 #include <linux/kallsyms.h>
17 #include <linux/buildid.h>
18 #include <linux/fs.h>
19 #include <linux/kernel.h>
20 #include <linux/kernel_read_file.h>
21 #include <linux/kstrtox.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/elf.h>
25 #include <linux/seq_file.h>
26 #include <linux/syscalls.h>
27 #include <linux/fcntl.h>
28 #include <linux/rcupdate.h>
29 #include <linux/capability.h>
30 #include <linux/cpu.h>
31 #include <linux/moduleparam.h>
32 #include <linux/errno.h>
33 #include <linux/err.h>
34 #include <linux/vermagic.h>
35 #include <linux/notifier.h>
36 #include <linux/sched.h>
37 #include <linux/device.h>
38 #include <linux/string.h>
39 #include <linux/mutex.h>
40 #include <linux/rculist.h>
41 #include <linux/uaccess.h>
42 #include <asm/cacheflush.h>
43 #include <linux/set_memory.h>
44 #include <asm/mmu_context.h>
45 #include <linux/license.h>
46 #include <asm/sections.h>
47 #include <linux/tracepoint.h>
48 #include <linux/ftrace.h>
49 #include <linux/livepatch.h>
50 #include <linux/async.h>
51 #include <linux/percpu.h>
52 #include <linux/kmemleak.h>
53 #include <linux/jump_label.h>
54 #include <linux/pfn.h>
55 #include <linux/bsearch.h>
56 #include <linux/dynamic_debug.h>
57 #include <linux/audit.h>
58 #include <linux/cfi.h>
59 #include <linux/codetag.h>
60 #include <linux/debugfs.h>
61 #include <linux/execmem.h>
62 #include <uapi/linux/module.h>
63 #include "internal.h"
64 
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/module.h>
67 
68 /*
69  * Mutex protects:
70  * 1) List of modules (also safely readable with preempt_disable),
71  * 2) module_use links,
72  * 3) mod_tree.addr_min/mod_tree.addr_max.
73  * (delete and add uses RCU list operations).
74  */
75 DEFINE_MUTEX(module_mutex);
76 LIST_HEAD(modules);
77 
78 /* Work queue for freeing init sections in success case */
79 static void do_free_init(struct work_struct *w);
80 static DECLARE_WORK(init_free_wq, do_free_init);
81 static LLIST_HEAD(init_free_list);
82 
83 struct mod_tree_root mod_tree __cacheline_aligned = {
84 	.addr_min = -1UL,
85 };
86 
87 struct symsearch {
88 	const struct kernel_symbol *start, *stop;
89 	const s32 *crcs;
90 	enum mod_license license;
91 };
92 
93 /*
94  * Bounds of module memory, for speeding up __module_address.
95  * Protected by module_mutex.
96  */
97 static void __mod_update_bounds(enum mod_mem_type type __maybe_unused, void *base,
98 				unsigned int size, struct mod_tree_root *tree)
99 {
100 	unsigned long min = (unsigned long)base;
101 	unsigned long max = min + size;
102 
103 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
104 	if (mod_mem_type_is_core_data(type)) {
105 		if (min < tree->data_addr_min)
106 			tree->data_addr_min = min;
107 		if (max > tree->data_addr_max)
108 			tree->data_addr_max = max;
109 		return;
110 	}
111 #endif
112 	if (min < tree->addr_min)
113 		tree->addr_min = min;
114 	if (max > tree->addr_max)
115 		tree->addr_max = max;
116 }
117 
118 static void mod_update_bounds(struct module *mod)
119 {
120 	for_each_mod_mem_type(type) {
121 		struct module_memory *mod_mem = &mod->mem[type];
122 
123 		if (mod_mem->size)
124 			__mod_update_bounds(type, mod_mem->base, mod_mem->size, &mod_tree);
125 	}
126 }
127 
128 /* Block module loading/unloading? */
129 int modules_disabled;
130 core_param(nomodule, modules_disabled, bint, 0);
131 
132 /* Waiting for a module to finish initializing? */
133 static DECLARE_WAIT_QUEUE_HEAD(module_wq);
134 
135 static BLOCKING_NOTIFIER_HEAD(module_notify_list);
136 
137 int register_module_notifier(struct notifier_block *nb)
138 {
139 	return blocking_notifier_chain_register(&module_notify_list, nb);
140 }
141 EXPORT_SYMBOL(register_module_notifier);
142 
143 int unregister_module_notifier(struct notifier_block *nb)
144 {
145 	return blocking_notifier_chain_unregister(&module_notify_list, nb);
146 }
147 EXPORT_SYMBOL(unregister_module_notifier);
148 
149 /*
150  * We require a truly strong try_module_get(): 0 means success.
151  * Otherwise an error is returned due to ongoing or failed
152  * initialization etc.
153  */
154 static inline int strong_try_module_get(struct module *mod)
155 {
156 	BUG_ON(mod && mod->state == MODULE_STATE_UNFORMED);
157 	if (mod && mod->state == MODULE_STATE_COMING)
158 		return -EBUSY;
159 	if (try_module_get(mod))
160 		return 0;
161 	else
162 		return -ENOENT;
163 }
164 
165 static inline void add_taint_module(struct module *mod, unsigned flag,
166 				    enum lockdep_ok lockdep_ok)
167 {
168 	add_taint(flag, lockdep_ok);
169 	set_bit(flag, &mod->taints);
170 }
171 
172 /*
173  * A thread that wants to hold a reference to a module only while it
174  * is running can call this to safely exit.
175  */
176 void __noreturn __module_put_and_kthread_exit(struct module *mod, long code)
177 {
178 	module_put(mod);
179 	kthread_exit(code);
180 }
181 EXPORT_SYMBOL(__module_put_and_kthread_exit);
182 
183 /* Find a module section: 0 means not found. */
184 static unsigned int find_sec(const struct load_info *info, const char *name)
185 {
186 	unsigned int i;
187 
188 	for (i = 1; i < info->hdr->e_shnum; i++) {
189 		Elf_Shdr *shdr = &info->sechdrs[i];
190 		/* Alloc bit cleared means "ignore it." */
191 		if ((shdr->sh_flags & SHF_ALLOC)
192 		    && strcmp(info->secstrings + shdr->sh_name, name) == 0)
193 			return i;
194 	}
195 	return 0;
196 }
197 
198 /* Find a module section, or NULL. */
199 static void *section_addr(const struct load_info *info, const char *name)
200 {
201 	/* Section 0 has sh_addr 0. */
202 	return (void *)info->sechdrs[find_sec(info, name)].sh_addr;
203 }
204 
205 /* Find a module section, or NULL.  Fill in number of "objects" in section. */
206 static void *section_objs(const struct load_info *info,
207 			  const char *name,
208 			  size_t object_size,
209 			  unsigned int *num)
210 {
211 	unsigned int sec = find_sec(info, name);
212 
213 	/* Section 0 has sh_addr 0 and sh_size 0. */
214 	*num = info->sechdrs[sec].sh_size / object_size;
215 	return (void *)info->sechdrs[sec].sh_addr;
216 }
217 
218 /* Find a module section: 0 means not found. Ignores SHF_ALLOC flag. */
219 static unsigned int find_any_sec(const struct load_info *info, const char *name)
220 {
221 	unsigned int i;
222 
223 	for (i = 1; i < info->hdr->e_shnum; i++) {
224 		Elf_Shdr *shdr = &info->sechdrs[i];
225 		if (strcmp(info->secstrings + shdr->sh_name, name) == 0)
226 			return i;
227 	}
228 	return 0;
229 }
230 
231 /*
232  * Find a module section, or NULL. Fill in number of "objects" in section.
233  * Ignores SHF_ALLOC flag.
234  */
235 static __maybe_unused void *any_section_objs(const struct load_info *info,
236 					     const char *name,
237 					     size_t object_size,
238 					     unsigned int *num)
239 {
240 	unsigned int sec = find_any_sec(info, name);
241 
242 	/* Section 0 has sh_addr 0 and sh_size 0. */
243 	*num = info->sechdrs[sec].sh_size / object_size;
244 	return (void *)info->sechdrs[sec].sh_addr;
245 }
246 
247 #ifndef CONFIG_MODVERSIONS
248 #define symversion(base, idx) NULL
249 #else
250 #define symversion(base, idx) ((base != NULL) ? ((base) + (idx)) : NULL)
251 #endif
252 
253 static const char *kernel_symbol_name(const struct kernel_symbol *sym)
254 {
255 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
256 	return offset_to_ptr(&sym->name_offset);
257 #else
258 	return sym->name;
259 #endif
260 }
261 
262 static const char *kernel_symbol_namespace(const struct kernel_symbol *sym)
263 {
264 #ifdef CONFIG_HAVE_ARCH_PREL32_RELOCATIONS
265 	if (!sym->namespace_offset)
266 		return NULL;
267 	return offset_to_ptr(&sym->namespace_offset);
268 #else
269 	return sym->namespace;
270 #endif
271 }
272 
273 int cmp_name(const void *name, const void *sym)
274 {
275 	return strcmp(name, kernel_symbol_name(sym));
276 }
277 
278 static bool find_exported_symbol_in_section(const struct symsearch *syms,
279 					    struct module *owner,
280 					    struct find_symbol_arg *fsa)
281 {
282 	struct kernel_symbol *sym;
283 
284 	if (!fsa->gplok && syms->license == GPL_ONLY)
285 		return false;
286 
287 	sym = bsearch(fsa->name, syms->start, syms->stop - syms->start,
288 			sizeof(struct kernel_symbol), cmp_name);
289 	if (!sym)
290 		return false;
291 
292 	fsa->owner = owner;
293 	fsa->crc = symversion(syms->crcs, sym - syms->start);
294 	fsa->sym = sym;
295 	fsa->license = syms->license;
296 
297 	return true;
298 }
299 
300 /*
301  * Find an exported symbol and return it, along with, (optional) crc and
302  * (optional) module which owns it.  Needs preempt disabled or module_mutex.
303  */
304 bool find_symbol(struct find_symbol_arg *fsa)
305 {
306 	static const struct symsearch arr[] = {
307 		{ __start___ksymtab, __stop___ksymtab, __start___kcrctab,
308 		  NOT_GPL_ONLY },
309 		{ __start___ksymtab_gpl, __stop___ksymtab_gpl,
310 		  __start___kcrctab_gpl,
311 		  GPL_ONLY },
312 	};
313 	struct module *mod;
314 	unsigned int i;
315 
316 	module_assert_mutex_or_preempt();
317 
318 	for (i = 0; i < ARRAY_SIZE(arr); i++)
319 		if (find_exported_symbol_in_section(&arr[i], NULL, fsa))
320 			return true;
321 
322 	list_for_each_entry_rcu(mod, &modules, list,
323 				lockdep_is_held(&module_mutex)) {
324 		struct symsearch arr[] = {
325 			{ mod->syms, mod->syms + mod->num_syms, mod->crcs,
326 			  NOT_GPL_ONLY },
327 			{ mod->gpl_syms, mod->gpl_syms + mod->num_gpl_syms,
328 			  mod->gpl_crcs,
329 			  GPL_ONLY },
330 		};
331 
332 		if (mod->state == MODULE_STATE_UNFORMED)
333 			continue;
334 
335 		for (i = 0; i < ARRAY_SIZE(arr); i++)
336 			if (find_exported_symbol_in_section(&arr[i], mod, fsa))
337 				return true;
338 	}
339 
340 	pr_debug("Failed to find symbol %s\n", fsa->name);
341 	return false;
342 }
343 
344 /*
345  * Search for module by name: must hold module_mutex (or preempt disabled
346  * for read-only access).
347  */
348 struct module *find_module_all(const char *name, size_t len,
349 			       bool even_unformed)
350 {
351 	struct module *mod;
352 
353 	module_assert_mutex_or_preempt();
354 
355 	list_for_each_entry_rcu(mod, &modules, list,
356 				lockdep_is_held(&module_mutex)) {
357 		if (!even_unformed && mod->state == MODULE_STATE_UNFORMED)
358 			continue;
359 		if (strlen(mod->name) == len && !memcmp(mod->name, name, len))
360 			return mod;
361 	}
362 	return NULL;
363 }
364 
365 struct module *find_module(const char *name)
366 {
367 	return find_module_all(name, strlen(name), false);
368 }
369 
370 #ifdef CONFIG_SMP
371 
372 static inline void __percpu *mod_percpu(struct module *mod)
373 {
374 	return mod->percpu;
375 }
376 
377 static int percpu_modalloc(struct module *mod, struct load_info *info)
378 {
379 	Elf_Shdr *pcpusec = &info->sechdrs[info->index.pcpu];
380 	unsigned long align = pcpusec->sh_addralign;
381 
382 	if (!pcpusec->sh_size)
383 		return 0;
384 
385 	if (align > PAGE_SIZE) {
386 		pr_warn("%s: per-cpu alignment %li > %li\n",
387 			mod->name, align, PAGE_SIZE);
388 		align = PAGE_SIZE;
389 	}
390 
391 	mod->percpu = __alloc_reserved_percpu(pcpusec->sh_size, align);
392 	if (!mod->percpu) {
393 		pr_warn("%s: Could not allocate %lu bytes percpu data\n",
394 			mod->name, (unsigned long)pcpusec->sh_size);
395 		return -ENOMEM;
396 	}
397 	mod->percpu_size = pcpusec->sh_size;
398 	return 0;
399 }
400 
401 static void percpu_modfree(struct module *mod)
402 {
403 	free_percpu(mod->percpu);
404 }
405 
406 static unsigned int find_pcpusec(struct load_info *info)
407 {
408 	return find_sec(info, ".data..percpu");
409 }
410 
411 static void percpu_modcopy(struct module *mod,
412 			   const void *from, unsigned long size)
413 {
414 	int cpu;
415 
416 	for_each_possible_cpu(cpu)
417 		memcpy(per_cpu_ptr(mod->percpu, cpu), from, size);
418 }
419 
420 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
421 {
422 	struct module *mod;
423 	unsigned int cpu;
424 
425 	preempt_disable();
426 
427 	list_for_each_entry_rcu(mod, &modules, list) {
428 		if (mod->state == MODULE_STATE_UNFORMED)
429 			continue;
430 		if (!mod->percpu_size)
431 			continue;
432 		for_each_possible_cpu(cpu) {
433 			void *start = per_cpu_ptr(mod->percpu, cpu);
434 			void *va = (void *)addr;
435 
436 			if (va >= start && va < start + mod->percpu_size) {
437 				if (can_addr) {
438 					*can_addr = (unsigned long) (va - start);
439 					*can_addr += (unsigned long)
440 						per_cpu_ptr(mod->percpu,
441 							    get_boot_cpu_id());
442 				}
443 				preempt_enable();
444 				return true;
445 			}
446 		}
447 	}
448 
449 	preempt_enable();
450 	return false;
451 }
452 
453 /**
454  * is_module_percpu_address() - test whether address is from module static percpu
455  * @addr: address to test
456  *
457  * Test whether @addr belongs to module static percpu area.
458  *
459  * Return: %true if @addr is from module static percpu area
460  */
461 bool is_module_percpu_address(unsigned long addr)
462 {
463 	return __is_module_percpu_address(addr, NULL);
464 }
465 
466 #else /* ... !CONFIG_SMP */
467 
468 static inline void __percpu *mod_percpu(struct module *mod)
469 {
470 	return NULL;
471 }
472 static int percpu_modalloc(struct module *mod, struct load_info *info)
473 {
474 	/* UP modules shouldn't have this section: ENOMEM isn't quite right */
475 	if (info->sechdrs[info->index.pcpu].sh_size != 0)
476 		return -ENOMEM;
477 	return 0;
478 }
479 static inline void percpu_modfree(struct module *mod)
480 {
481 }
482 static unsigned int find_pcpusec(struct load_info *info)
483 {
484 	return 0;
485 }
486 static inline void percpu_modcopy(struct module *mod,
487 				  const void *from, unsigned long size)
488 {
489 	/* pcpusec should be 0, and size of that section should be 0. */
490 	BUG_ON(size != 0);
491 }
492 bool is_module_percpu_address(unsigned long addr)
493 {
494 	return false;
495 }
496 
497 bool __is_module_percpu_address(unsigned long addr, unsigned long *can_addr)
498 {
499 	return false;
500 }
501 
502 #endif /* CONFIG_SMP */
503 
504 #define MODINFO_ATTR(field)	\
505 static void setup_modinfo_##field(struct module *mod, const char *s)  \
506 {                                                                     \
507 	mod->field = kstrdup(s, GFP_KERNEL);                          \
508 }                                                                     \
509 static ssize_t show_modinfo_##field(struct module_attribute *mattr,   \
510 			struct module_kobject *mk, char *buffer)      \
511 {                                                                     \
512 	return scnprintf(buffer, PAGE_SIZE, "%s\n", mk->mod->field);  \
513 }                                                                     \
514 static int modinfo_##field##_exists(struct module *mod)               \
515 {                                                                     \
516 	return mod->field != NULL;                                    \
517 }                                                                     \
518 static void free_modinfo_##field(struct module *mod)                  \
519 {                                                                     \
520 	kfree(mod->field);                                            \
521 	mod->field = NULL;                                            \
522 }                                                                     \
523 static struct module_attribute modinfo_##field = {                    \
524 	.attr = { .name = __stringify(field), .mode = 0444 },         \
525 	.show = show_modinfo_##field,                                 \
526 	.setup = setup_modinfo_##field,                               \
527 	.test = modinfo_##field##_exists,                             \
528 	.free = free_modinfo_##field,                                 \
529 };
530 
531 MODINFO_ATTR(version);
532 MODINFO_ATTR(srcversion);
533 
534 static struct {
535 	char name[MODULE_NAME_LEN + 1];
536 	char taints[MODULE_FLAGS_BUF_SIZE];
537 } last_unloaded_module;
538 
539 #ifdef CONFIG_MODULE_UNLOAD
540 
541 EXPORT_TRACEPOINT_SYMBOL(module_get);
542 
543 /* MODULE_REF_BASE is the base reference count by kmodule loader. */
544 #define MODULE_REF_BASE	1
545 
546 /* Init the unload section of the module. */
547 static int module_unload_init(struct module *mod)
548 {
549 	/*
550 	 * Initialize reference counter to MODULE_REF_BASE.
551 	 * refcnt == 0 means module is going.
552 	 */
553 	atomic_set(&mod->refcnt, MODULE_REF_BASE);
554 
555 	INIT_LIST_HEAD(&mod->source_list);
556 	INIT_LIST_HEAD(&mod->target_list);
557 
558 	/* Hold reference count during initialization. */
559 	atomic_inc(&mod->refcnt);
560 
561 	return 0;
562 }
563 
564 /* Does a already use b? */
565 static int already_uses(struct module *a, struct module *b)
566 {
567 	struct module_use *use;
568 
569 	list_for_each_entry(use, &b->source_list, source_list) {
570 		if (use->source == a)
571 			return 1;
572 	}
573 	pr_debug("%s does not use %s!\n", a->name, b->name);
574 	return 0;
575 }
576 
577 /*
578  * Module a uses b
579  *  - we add 'a' as a "source", 'b' as a "target" of module use
580  *  - the module_use is added to the list of 'b' sources (so
581  *    'b' can walk the list to see who sourced them), and of 'a'
582  *    targets (so 'a' can see what modules it targets).
583  */
584 static int add_module_usage(struct module *a, struct module *b)
585 {
586 	struct module_use *use;
587 
588 	pr_debug("Allocating new usage for %s.\n", a->name);
589 	use = kmalloc(sizeof(*use), GFP_ATOMIC);
590 	if (!use)
591 		return -ENOMEM;
592 
593 	use->source = a;
594 	use->target = b;
595 	list_add(&use->source_list, &b->source_list);
596 	list_add(&use->target_list, &a->target_list);
597 	return 0;
598 }
599 
600 /* Module a uses b: caller needs module_mutex() */
601 static int ref_module(struct module *a, struct module *b)
602 {
603 	int err;
604 
605 	if (b == NULL || already_uses(a, b))
606 		return 0;
607 
608 	/* If module isn't available, we fail. */
609 	err = strong_try_module_get(b);
610 	if (err)
611 		return err;
612 
613 	err = add_module_usage(a, b);
614 	if (err) {
615 		module_put(b);
616 		return err;
617 	}
618 	return 0;
619 }
620 
621 /* Clear the unload stuff of the module. */
622 static void module_unload_free(struct module *mod)
623 {
624 	struct module_use *use, *tmp;
625 
626 	mutex_lock(&module_mutex);
627 	list_for_each_entry_safe(use, tmp, &mod->target_list, target_list) {
628 		struct module *i = use->target;
629 		pr_debug("%s unusing %s\n", mod->name, i->name);
630 		module_put(i);
631 		list_del(&use->source_list);
632 		list_del(&use->target_list);
633 		kfree(use);
634 	}
635 	mutex_unlock(&module_mutex);
636 }
637 
638 #ifdef CONFIG_MODULE_FORCE_UNLOAD
639 static inline int try_force_unload(unsigned int flags)
640 {
641 	int ret = (flags & O_TRUNC);
642 	if (ret)
643 		add_taint(TAINT_FORCED_RMMOD, LOCKDEP_NOW_UNRELIABLE);
644 	return ret;
645 }
646 #else
647 static inline int try_force_unload(unsigned int flags)
648 {
649 	return 0;
650 }
651 #endif /* CONFIG_MODULE_FORCE_UNLOAD */
652 
653 /* Try to release refcount of module, 0 means success. */
654 static int try_release_module_ref(struct module *mod)
655 {
656 	int ret;
657 
658 	/* Try to decrement refcnt which we set at loading */
659 	ret = atomic_sub_return(MODULE_REF_BASE, &mod->refcnt);
660 	BUG_ON(ret < 0);
661 	if (ret)
662 		/* Someone can put this right now, recover with checking */
663 		ret = atomic_add_unless(&mod->refcnt, MODULE_REF_BASE, 0);
664 
665 	return ret;
666 }
667 
668 static int try_stop_module(struct module *mod, int flags, int *forced)
669 {
670 	/* If it's not unused, quit unless we're forcing. */
671 	if (try_release_module_ref(mod) != 0) {
672 		*forced = try_force_unload(flags);
673 		if (!(*forced))
674 			return -EWOULDBLOCK;
675 	}
676 
677 	/* Mark it as dying. */
678 	mod->state = MODULE_STATE_GOING;
679 
680 	return 0;
681 }
682 
683 /**
684  * module_refcount() - return the refcount or -1 if unloading
685  * @mod:	the module we're checking
686  *
687  * Return:
688  *	-1 if the module is in the process of unloading
689  *	otherwise the number of references in the kernel to the module
690  */
691 int module_refcount(struct module *mod)
692 {
693 	return atomic_read(&mod->refcnt) - MODULE_REF_BASE;
694 }
695 EXPORT_SYMBOL(module_refcount);
696 
697 /* This exists whether we can unload or not */
698 static void free_module(struct module *mod);
699 
700 SYSCALL_DEFINE2(delete_module, const char __user *, name_user,
701 		unsigned int, flags)
702 {
703 	struct module *mod;
704 	char name[MODULE_NAME_LEN];
705 	char buf[MODULE_FLAGS_BUF_SIZE];
706 	int ret, forced = 0;
707 
708 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
709 		return -EPERM;
710 
711 	if (strncpy_from_user(name, name_user, MODULE_NAME_LEN-1) < 0)
712 		return -EFAULT;
713 	name[MODULE_NAME_LEN-1] = '\0';
714 
715 	audit_log_kern_module(name);
716 
717 	if (mutex_lock_interruptible(&module_mutex) != 0)
718 		return -EINTR;
719 
720 	mod = find_module(name);
721 	if (!mod) {
722 		ret = -ENOENT;
723 		goto out;
724 	}
725 
726 	if (!list_empty(&mod->source_list)) {
727 		/* Other modules depend on us: get rid of them first. */
728 		ret = -EWOULDBLOCK;
729 		goto out;
730 	}
731 
732 	/* Doing init or already dying? */
733 	if (mod->state != MODULE_STATE_LIVE) {
734 		/* FIXME: if (force), slam module count damn the torpedoes */
735 		pr_debug("%s already dying\n", mod->name);
736 		ret = -EBUSY;
737 		goto out;
738 	}
739 
740 	/* If it has an init func, it must have an exit func to unload */
741 	if (mod->init && !mod->exit) {
742 		forced = try_force_unload(flags);
743 		if (!forced) {
744 			/* This module can't be removed */
745 			ret = -EBUSY;
746 			goto out;
747 		}
748 	}
749 
750 	ret = try_stop_module(mod, flags, &forced);
751 	if (ret != 0)
752 		goto out;
753 
754 	mutex_unlock(&module_mutex);
755 	/* Final destruction now no one is using it. */
756 	if (mod->exit != NULL)
757 		mod->exit();
758 	blocking_notifier_call_chain(&module_notify_list,
759 				     MODULE_STATE_GOING, mod);
760 	klp_module_going(mod);
761 	ftrace_release_mod(mod);
762 
763 	async_synchronize_full();
764 
765 	/* Store the name and taints of the last unloaded module for diagnostic purposes */
766 	strscpy(last_unloaded_module.name, mod->name, sizeof(last_unloaded_module.name));
767 	strscpy(last_unloaded_module.taints, module_flags(mod, buf, false), sizeof(last_unloaded_module.taints));
768 
769 	free_module(mod);
770 	/* someone could wait for the module in add_unformed_module() */
771 	wake_up_all(&module_wq);
772 	return 0;
773 out:
774 	mutex_unlock(&module_mutex);
775 	return ret;
776 }
777 
778 void __symbol_put(const char *symbol)
779 {
780 	struct find_symbol_arg fsa = {
781 		.name	= symbol,
782 		.gplok	= true,
783 	};
784 
785 	preempt_disable();
786 	BUG_ON(!find_symbol(&fsa));
787 	module_put(fsa.owner);
788 	preempt_enable();
789 }
790 EXPORT_SYMBOL(__symbol_put);
791 
792 /* Note this assumes addr is a function, which it currently always is. */
793 void symbol_put_addr(void *addr)
794 {
795 	struct module *modaddr;
796 	unsigned long a = (unsigned long)dereference_function_descriptor(addr);
797 
798 	if (core_kernel_text(a))
799 		return;
800 
801 	/*
802 	 * Even though we hold a reference on the module; we still need to
803 	 * disable preemption in order to safely traverse the data structure.
804 	 */
805 	preempt_disable();
806 	modaddr = __module_text_address(a);
807 	BUG_ON(!modaddr);
808 	module_put(modaddr);
809 	preempt_enable();
810 }
811 EXPORT_SYMBOL_GPL(symbol_put_addr);
812 
813 static ssize_t show_refcnt(struct module_attribute *mattr,
814 			   struct module_kobject *mk, char *buffer)
815 {
816 	return sprintf(buffer, "%i\n", module_refcount(mk->mod));
817 }
818 
819 static struct module_attribute modinfo_refcnt =
820 	__ATTR(refcnt, 0444, show_refcnt, NULL);
821 
822 void __module_get(struct module *module)
823 {
824 	if (module) {
825 		atomic_inc(&module->refcnt);
826 		trace_module_get(module, _RET_IP_);
827 	}
828 }
829 EXPORT_SYMBOL(__module_get);
830 
831 bool try_module_get(struct module *module)
832 {
833 	bool ret = true;
834 
835 	if (module) {
836 		/* Note: here, we can fail to get a reference */
837 		if (likely(module_is_live(module) &&
838 			   atomic_inc_not_zero(&module->refcnt) != 0))
839 			trace_module_get(module, _RET_IP_);
840 		else
841 			ret = false;
842 	}
843 	return ret;
844 }
845 EXPORT_SYMBOL(try_module_get);
846 
847 void module_put(struct module *module)
848 {
849 	int ret;
850 
851 	if (module) {
852 		ret = atomic_dec_if_positive(&module->refcnt);
853 		WARN_ON(ret < 0);	/* Failed to put refcount */
854 		trace_module_put(module, _RET_IP_);
855 	}
856 }
857 EXPORT_SYMBOL(module_put);
858 
859 #else /* !CONFIG_MODULE_UNLOAD */
860 static inline void module_unload_free(struct module *mod)
861 {
862 }
863 
864 static int ref_module(struct module *a, struct module *b)
865 {
866 	return strong_try_module_get(b);
867 }
868 
869 static inline int module_unload_init(struct module *mod)
870 {
871 	return 0;
872 }
873 #endif /* CONFIG_MODULE_UNLOAD */
874 
875 size_t module_flags_taint(unsigned long taints, char *buf)
876 {
877 	size_t l = 0;
878 	int i;
879 
880 	for (i = 0; i < TAINT_FLAGS_COUNT; i++) {
881 		if (taint_flags[i].module && test_bit(i, &taints))
882 			buf[l++] = taint_flags[i].c_true;
883 	}
884 
885 	return l;
886 }
887 
888 static ssize_t show_initstate(struct module_attribute *mattr,
889 			      struct module_kobject *mk, char *buffer)
890 {
891 	const char *state = "unknown";
892 
893 	switch (mk->mod->state) {
894 	case MODULE_STATE_LIVE:
895 		state = "live";
896 		break;
897 	case MODULE_STATE_COMING:
898 		state = "coming";
899 		break;
900 	case MODULE_STATE_GOING:
901 		state = "going";
902 		break;
903 	default:
904 		BUG();
905 	}
906 	return sprintf(buffer, "%s\n", state);
907 }
908 
909 static struct module_attribute modinfo_initstate =
910 	__ATTR(initstate, 0444, show_initstate, NULL);
911 
912 static ssize_t store_uevent(struct module_attribute *mattr,
913 			    struct module_kobject *mk,
914 			    const char *buffer, size_t count)
915 {
916 	int rc;
917 
918 	rc = kobject_synth_uevent(&mk->kobj, buffer, count);
919 	return rc ? rc : count;
920 }
921 
922 struct module_attribute module_uevent =
923 	__ATTR(uevent, 0200, NULL, store_uevent);
924 
925 static ssize_t show_coresize(struct module_attribute *mattr,
926 			     struct module_kobject *mk, char *buffer)
927 {
928 	unsigned int size = mk->mod->mem[MOD_TEXT].size;
929 
930 	if (!IS_ENABLED(CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC)) {
931 		for_class_mod_mem_type(type, core_data)
932 			size += mk->mod->mem[type].size;
933 	}
934 	return sprintf(buffer, "%u\n", size);
935 }
936 
937 static struct module_attribute modinfo_coresize =
938 	__ATTR(coresize, 0444, show_coresize, NULL);
939 
940 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
941 static ssize_t show_datasize(struct module_attribute *mattr,
942 			     struct module_kobject *mk, char *buffer)
943 {
944 	unsigned int size = 0;
945 
946 	for_class_mod_mem_type(type, core_data)
947 		size += mk->mod->mem[type].size;
948 	return sprintf(buffer, "%u\n", size);
949 }
950 
951 static struct module_attribute modinfo_datasize =
952 	__ATTR(datasize, 0444, show_datasize, NULL);
953 #endif
954 
955 static ssize_t show_initsize(struct module_attribute *mattr,
956 			     struct module_kobject *mk, char *buffer)
957 {
958 	unsigned int size = 0;
959 
960 	for_class_mod_mem_type(type, init)
961 		size += mk->mod->mem[type].size;
962 	return sprintf(buffer, "%u\n", size);
963 }
964 
965 static struct module_attribute modinfo_initsize =
966 	__ATTR(initsize, 0444, show_initsize, NULL);
967 
968 static ssize_t show_taint(struct module_attribute *mattr,
969 			  struct module_kobject *mk, char *buffer)
970 {
971 	size_t l;
972 
973 	l = module_flags_taint(mk->mod->taints, buffer);
974 	buffer[l++] = '\n';
975 	return l;
976 }
977 
978 static struct module_attribute modinfo_taint =
979 	__ATTR(taint, 0444, show_taint, NULL);
980 
981 struct module_attribute *modinfo_attrs[] = {
982 	&module_uevent,
983 	&modinfo_version,
984 	&modinfo_srcversion,
985 	&modinfo_initstate,
986 	&modinfo_coresize,
987 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
988 	&modinfo_datasize,
989 #endif
990 	&modinfo_initsize,
991 	&modinfo_taint,
992 #ifdef CONFIG_MODULE_UNLOAD
993 	&modinfo_refcnt,
994 #endif
995 	NULL,
996 };
997 
998 size_t modinfo_attrs_count = ARRAY_SIZE(modinfo_attrs);
999 
1000 static const char vermagic[] = VERMAGIC_STRING;
1001 
1002 int try_to_force_load(struct module *mod, const char *reason)
1003 {
1004 #ifdef CONFIG_MODULE_FORCE_LOAD
1005 	if (!test_taint(TAINT_FORCED_MODULE))
1006 		pr_warn("%s: %s: kernel tainted.\n", mod->name, reason);
1007 	add_taint_module(mod, TAINT_FORCED_MODULE, LOCKDEP_NOW_UNRELIABLE);
1008 	return 0;
1009 #else
1010 	return -ENOEXEC;
1011 #endif
1012 }
1013 
1014 /* Parse tag=value strings from .modinfo section */
1015 char *module_next_tag_pair(char *string, unsigned long *secsize)
1016 {
1017 	/* Skip non-zero chars */
1018 	while (string[0]) {
1019 		string++;
1020 		if ((*secsize)-- <= 1)
1021 			return NULL;
1022 	}
1023 
1024 	/* Skip any zero padding. */
1025 	while (!string[0]) {
1026 		string++;
1027 		if ((*secsize)-- <= 1)
1028 			return NULL;
1029 	}
1030 	return string;
1031 }
1032 
1033 static char *get_next_modinfo(const struct load_info *info, const char *tag,
1034 			      char *prev)
1035 {
1036 	char *p;
1037 	unsigned int taglen = strlen(tag);
1038 	Elf_Shdr *infosec = &info->sechdrs[info->index.info];
1039 	unsigned long size = infosec->sh_size;
1040 
1041 	/*
1042 	 * get_modinfo() calls made before rewrite_section_headers()
1043 	 * must use sh_offset, as sh_addr isn't set!
1044 	 */
1045 	char *modinfo = (char *)info->hdr + infosec->sh_offset;
1046 
1047 	if (prev) {
1048 		size -= prev - modinfo;
1049 		modinfo = module_next_tag_pair(prev, &size);
1050 	}
1051 
1052 	for (p = modinfo; p; p = module_next_tag_pair(p, &size)) {
1053 		if (strncmp(p, tag, taglen) == 0 && p[taglen] == '=')
1054 			return p + taglen + 1;
1055 	}
1056 	return NULL;
1057 }
1058 
1059 static char *get_modinfo(const struct load_info *info, const char *tag)
1060 {
1061 	return get_next_modinfo(info, tag, NULL);
1062 }
1063 
1064 static int verify_namespace_is_imported(const struct load_info *info,
1065 					const struct kernel_symbol *sym,
1066 					struct module *mod)
1067 {
1068 	const char *namespace;
1069 	char *imported_namespace;
1070 
1071 	namespace = kernel_symbol_namespace(sym);
1072 	if (namespace && namespace[0]) {
1073 		for_each_modinfo_entry(imported_namespace, info, "import_ns") {
1074 			if (strcmp(namespace, imported_namespace) == 0)
1075 				return 0;
1076 		}
1077 #ifdef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1078 		pr_warn(
1079 #else
1080 		pr_err(
1081 #endif
1082 			"%s: module uses symbol (%s) from namespace %s, but does not import it.\n",
1083 			mod->name, kernel_symbol_name(sym), namespace);
1084 #ifndef CONFIG_MODULE_ALLOW_MISSING_NAMESPACE_IMPORTS
1085 		return -EINVAL;
1086 #endif
1087 	}
1088 	return 0;
1089 }
1090 
1091 static bool inherit_taint(struct module *mod, struct module *owner, const char *name)
1092 {
1093 	if (!owner || !test_bit(TAINT_PROPRIETARY_MODULE, &owner->taints))
1094 		return true;
1095 
1096 	if (mod->using_gplonly_symbols) {
1097 		pr_err("%s: module using GPL-only symbols uses symbols %s from proprietary module %s.\n",
1098 			mod->name, name, owner->name);
1099 		return false;
1100 	}
1101 
1102 	if (!test_bit(TAINT_PROPRIETARY_MODULE, &mod->taints)) {
1103 		pr_warn("%s: module uses symbols %s from proprietary module %s, inheriting taint.\n",
1104 			mod->name, name, owner->name);
1105 		set_bit(TAINT_PROPRIETARY_MODULE, &mod->taints);
1106 	}
1107 	return true;
1108 }
1109 
1110 /* Resolve a symbol for this module.  I.e. if we find one, record usage. */
1111 static const struct kernel_symbol *resolve_symbol(struct module *mod,
1112 						  const struct load_info *info,
1113 						  const char *name,
1114 						  char ownername[])
1115 {
1116 	struct find_symbol_arg fsa = {
1117 		.name	= name,
1118 		.gplok	= !(mod->taints & (1 << TAINT_PROPRIETARY_MODULE)),
1119 		.warn	= true,
1120 	};
1121 	int err;
1122 
1123 	/*
1124 	 * The module_mutex should not be a heavily contended lock;
1125 	 * if we get the occasional sleep here, we'll go an extra iteration
1126 	 * in the wait_event_interruptible(), which is harmless.
1127 	 */
1128 	sched_annotate_sleep();
1129 	mutex_lock(&module_mutex);
1130 	if (!find_symbol(&fsa))
1131 		goto unlock;
1132 
1133 	if (fsa.license == GPL_ONLY)
1134 		mod->using_gplonly_symbols = true;
1135 
1136 	if (!inherit_taint(mod, fsa.owner, name)) {
1137 		fsa.sym = NULL;
1138 		goto getname;
1139 	}
1140 
1141 	if (!check_version(info, name, mod, fsa.crc)) {
1142 		fsa.sym = ERR_PTR(-EINVAL);
1143 		goto getname;
1144 	}
1145 
1146 	err = verify_namespace_is_imported(info, fsa.sym, mod);
1147 	if (err) {
1148 		fsa.sym = ERR_PTR(err);
1149 		goto getname;
1150 	}
1151 
1152 	err = ref_module(mod, fsa.owner);
1153 	if (err) {
1154 		fsa.sym = ERR_PTR(err);
1155 		goto getname;
1156 	}
1157 
1158 getname:
1159 	/* We must make copy under the lock if we failed to get ref. */
1160 	strncpy(ownername, module_name(fsa.owner), MODULE_NAME_LEN);
1161 unlock:
1162 	mutex_unlock(&module_mutex);
1163 	return fsa.sym;
1164 }
1165 
1166 static const struct kernel_symbol *
1167 resolve_symbol_wait(struct module *mod,
1168 		    const struct load_info *info,
1169 		    const char *name)
1170 {
1171 	const struct kernel_symbol *ksym;
1172 	char owner[MODULE_NAME_LEN];
1173 
1174 	if (wait_event_interruptible_timeout(module_wq,
1175 			!IS_ERR(ksym = resolve_symbol(mod, info, name, owner))
1176 			|| PTR_ERR(ksym) != -EBUSY,
1177 					     30 * HZ) <= 0) {
1178 		pr_warn("%s: gave up waiting for init of module %s.\n",
1179 			mod->name, owner);
1180 	}
1181 	return ksym;
1182 }
1183 
1184 void __weak module_arch_cleanup(struct module *mod)
1185 {
1186 }
1187 
1188 void __weak module_arch_freeing_init(struct module *mod)
1189 {
1190 }
1191 
1192 void *__module_writable_address(struct module *mod, void *loc)
1193 {
1194 	for_class_mod_mem_type(type, text) {
1195 		struct module_memory *mem = &mod->mem[type];
1196 
1197 		if (loc >= mem->base && loc < mem->base + mem->size)
1198 			return loc + (mem->rw_copy - mem->base);
1199 	}
1200 
1201 	return loc;
1202 }
1203 
1204 static int module_memory_alloc(struct module *mod, enum mod_mem_type type)
1205 {
1206 	unsigned int size = PAGE_ALIGN(mod->mem[type].size);
1207 	enum execmem_type execmem_type;
1208 	void *ptr;
1209 
1210 	mod->mem[type].size = size;
1211 
1212 	if (mod_mem_type_is_data(type))
1213 		execmem_type = EXECMEM_MODULE_DATA;
1214 	else
1215 		execmem_type = EXECMEM_MODULE_TEXT;
1216 
1217 	ptr = execmem_alloc(execmem_type, size);
1218 	if (!ptr)
1219 		return -ENOMEM;
1220 
1221 	mod->mem[type].base = ptr;
1222 
1223 	if (execmem_is_rox(execmem_type)) {
1224 		ptr = vzalloc(size);
1225 
1226 		if (!ptr) {
1227 			execmem_free(mod->mem[type].base);
1228 			return -ENOMEM;
1229 		}
1230 
1231 		mod->mem[type].rw_copy = ptr;
1232 		mod->mem[type].is_rox = true;
1233 	} else {
1234 		mod->mem[type].rw_copy = mod->mem[type].base;
1235 		memset(mod->mem[type].base, 0, size);
1236 	}
1237 
1238 	/*
1239 	 * The pointer to these blocks of memory are stored on the module
1240 	 * structure and we keep that around so long as the module is
1241 	 * around. We only free that memory when we unload the module.
1242 	 * Just mark them as not being a leak then. The .init* ELF
1243 	 * sections *do* get freed after boot so we *could* treat them
1244 	 * slightly differently with kmemleak_ignore() and only grey
1245 	 * them out as they work as typical memory allocations which
1246 	 * *do* eventually get freed, but let's just keep things simple
1247 	 * and avoid *any* false positives.
1248 	 */
1249 	kmemleak_not_leak(ptr);
1250 
1251 	return 0;
1252 }
1253 
1254 static void module_memory_free(struct module *mod, enum mod_mem_type type,
1255 			       bool unload_codetags)
1256 {
1257 	struct module_memory *mem = &mod->mem[type];
1258 	void *ptr = mem->base;
1259 
1260 	if (mem->is_rox)
1261 		vfree(mem->rw_copy);
1262 
1263 	if (!unload_codetags && mod_mem_type_is_core_data(type))
1264 		return;
1265 
1266 	execmem_free(ptr);
1267 }
1268 
1269 static void free_mod_mem(struct module *mod, bool unload_codetags)
1270 {
1271 	for_each_mod_mem_type(type) {
1272 		struct module_memory *mod_mem = &mod->mem[type];
1273 
1274 		if (type == MOD_DATA)
1275 			continue;
1276 
1277 		/* Free lock-classes; relies on the preceding sync_rcu(). */
1278 		lockdep_free_key_range(mod_mem->base, mod_mem->size);
1279 		if (mod_mem->size)
1280 			module_memory_free(mod, type, unload_codetags);
1281 	}
1282 
1283 	/* MOD_DATA hosts mod, so free it at last */
1284 	lockdep_free_key_range(mod->mem[MOD_DATA].base, mod->mem[MOD_DATA].size);
1285 	module_memory_free(mod, MOD_DATA, unload_codetags);
1286 }
1287 
1288 /* Free a module, remove from lists, etc. */
1289 static void free_module(struct module *mod)
1290 {
1291 	bool unload_codetags;
1292 
1293 	trace_module_free(mod);
1294 
1295 	unload_codetags = codetag_unload_module(mod);
1296 	if (!unload_codetags)
1297 		pr_warn("%s: memory allocation(s) from the module still alive, cannot unload cleanly\n",
1298 			mod->name);
1299 
1300 	mod_sysfs_teardown(mod);
1301 
1302 	/*
1303 	 * We leave it in list to prevent duplicate loads, but make sure
1304 	 * that noone uses it while it's being deconstructed.
1305 	 */
1306 	mutex_lock(&module_mutex);
1307 	mod->state = MODULE_STATE_UNFORMED;
1308 	mutex_unlock(&module_mutex);
1309 
1310 	/* Arch-specific cleanup. */
1311 	module_arch_cleanup(mod);
1312 
1313 	/* Module unload stuff */
1314 	module_unload_free(mod);
1315 
1316 	/* Free any allocated parameters. */
1317 	destroy_params(mod->kp, mod->num_kp);
1318 
1319 	if (is_livepatch_module(mod))
1320 		free_module_elf(mod);
1321 
1322 	/* Now we can delete it from the lists */
1323 	mutex_lock(&module_mutex);
1324 	/* Unlink carefully: kallsyms could be walking list. */
1325 	list_del_rcu(&mod->list);
1326 	mod_tree_remove(mod);
1327 	/* Remove this module from bug list, this uses list_del_rcu */
1328 	module_bug_cleanup(mod);
1329 	/* Wait for RCU-sched synchronizing before releasing mod->list and buglist. */
1330 	synchronize_rcu();
1331 	if (try_add_tainted_module(mod))
1332 		pr_err("%s: adding tainted module to the unloaded tainted modules list failed.\n",
1333 		       mod->name);
1334 	mutex_unlock(&module_mutex);
1335 
1336 	/* This may be empty, but that's OK */
1337 	module_arch_freeing_init(mod);
1338 	kfree(mod->args);
1339 	percpu_modfree(mod);
1340 
1341 	free_mod_mem(mod, unload_codetags);
1342 }
1343 
1344 void *__symbol_get(const char *symbol)
1345 {
1346 	struct find_symbol_arg fsa = {
1347 		.name	= symbol,
1348 		.gplok	= true,
1349 		.warn	= true,
1350 	};
1351 
1352 	preempt_disable();
1353 	if (!find_symbol(&fsa))
1354 		goto fail;
1355 	if (fsa.license != GPL_ONLY) {
1356 		pr_warn("failing symbol_get of non-GPLONLY symbol %s.\n",
1357 			symbol);
1358 		goto fail;
1359 	}
1360 	if (strong_try_module_get(fsa.owner))
1361 		goto fail;
1362 	preempt_enable();
1363 	return (void *)kernel_symbol_value(fsa.sym);
1364 fail:
1365 	preempt_enable();
1366 	return NULL;
1367 }
1368 EXPORT_SYMBOL_GPL(__symbol_get);
1369 
1370 /*
1371  * Ensure that an exported symbol [global namespace] does not already exist
1372  * in the kernel or in some other module's exported symbol table.
1373  *
1374  * You must hold the module_mutex.
1375  */
1376 static int verify_exported_symbols(struct module *mod)
1377 {
1378 	unsigned int i;
1379 	const struct kernel_symbol *s;
1380 	struct {
1381 		const struct kernel_symbol *sym;
1382 		unsigned int num;
1383 	} arr[] = {
1384 		{ mod->syms, mod->num_syms },
1385 		{ mod->gpl_syms, mod->num_gpl_syms },
1386 	};
1387 
1388 	for (i = 0; i < ARRAY_SIZE(arr); i++) {
1389 		for (s = arr[i].sym; s < arr[i].sym + arr[i].num; s++) {
1390 			struct find_symbol_arg fsa = {
1391 				.name	= kernel_symbol_name(s),
1392 				.gplok	= true,
1393 			};
1394 			if (find_symbol(&fsa)) {
1395 				pr_err("%s: exports duplicate symbol %s"
1396 				       " (owned by %s)\n",
1397 				       mod->name, kernel_symbol_name(s),
1398 				       module_name(fsa.owner));
1399 				return -ENOEXEC;
1400 			}
1401 		}
1402 	}
1403 	return 0;
1404 }
1405 
1406 static bool ignore_undef_symbol(Elf_Half emachine, const char *name)
1407 {
1408 	/*
1409 	 * On x86, PIC code and Clang non-PIC code may have call foo@PLT. GNU as
1410 	 * before 2.37 produces an unreferenced _GLOBAL_OFFSET_TABLE_ on x86-64.
1411 	 * i386 has a similar problem but may not deserve a fix.
1412 	 *
1413 	 * If we ever have to ignore many symbols, consider refactoring the code to
1414 	 * only warn if referenced by a relocation.
1415 	 */
1416 	if (emachine == EM_386 || emachine == EM_X86_64)
1417 		return !strcmp(name, "_GLOBAL_OFFSET_TABLE_");
1418 	return false;
1419 }
1420 
1421 /* Change all symbols so that st_value encodes the pointer directly. */
1422 static int simplify_symbols(struct module *mod, const struct load_info *info)
1423 {
1424 	Elf_Shdr *symsec = &info->sechdrs[info->index.sym];
1425 	Elf_Sym *sym = (void *)symsec->sh_addr;
1426 	unsigned long secbase;
1427 	unsigned int i;
1428 	int ret = 0;
1429 	const struct kernel_symbol *ksym;
1430 
1431 	for (i = 1; i < symsec->sh_size / sizeof(Elf_Sym); i++) {
1432 		const char *name = info->strtab + sym[i].st_name;
1433 
1434 		switch (sym[i].st_shndx) {
1435 		case SHN_COMMON:
1436 			/* Ignore common symbols */
1437 			if (!strncmp(name, "__gnu_lto", 9))
1438 				break;
1439 
1440 			/*
1441 			 * We compiled with -fno-common.  These are not
1442 			 * supposed to happen.
1443 			 */
1444 			pr_debug("Common symbol: %s\n", name);
1445 			pr_warn("%s: please compile with -fno-common\n",
1446 			       mod->name);
1447 			ret = -ENOEXEC;
1448 			break;
1449 
1450 		case SHN_ABS:
1451 			/* Don't need to do anything */
1452 			pr_debug("Absolute symbol: 0x%08lx %s\n",
1453 				 (long)sym[i].st_value, name);
1454 			break;
1455 
1456 		case SHN_LIVEPATCH:
1457 			/* Livepatch symbols are resolved by livepatch */
1458 			break;
1459 
1460 		case SHN_UNDEF:
1461 			ksym = resolve_symbol_wait(mod, info, name);
1462 			/* Ok if resolved.  */
1463 			if (ksym && !IS_ERR(ksym)) {
1464 				sym[i].st_value = kernel_symbol_value(ksym);
1465 				break;
1466 			}
1467 
1468 			/* Ok if weak or ignored.  */
1469 			if (!ksym &&
1470 			    (ELF_ST_BIND(sym[i].st_info) == STB_WEAK ||
1471 			     ignore_undef_symbol(info->hdr->e_machine, name)))
1472 				break;
1473 
1474 			ret = PTR_ERR(ksym) ?: -ENOENT;
1475 			pr_warn("%s: Unknown symbol %s (err %d)\n",
1476 				mod->name, name, ret);
1477 			break;
1478 
1479 		default:
1480 			/* Divert to percpu allocation if a percpu var. */
1481 			if (sym[i].st_shndx == info->index.pcpu)
1482 				secbase = (unsigned long)mod_percpu(mod);
1483 			else
1484 				secbase = info->sechdrs[sym[i].st_shndx].sh_addr;
1485 			sym[i].st_value += secbase;
1486 			break;
1487 		}
1488 	}
1489 
1490 	return ret;
1491 }
1492 
1493 static int apply_relocations(struct module *mod, const struct load_info *info)
1494 {
1495 	unsigned int i;
1496 	int err = 0;
1497 
1498 	/* Now do relocations. */
1499 	for (i = 1; i < info->hdr->e_shnum; i++) {
1500 		unsigned int infosec = info->sechdrs[i].sh_info;
1501 
1502 		/* Not a valid relocation section? */
1503 		if (infosec >= info->hdr->e_shnum)
1504 			continue;
1505 
1506 		/* Don't bother with non-allocated sections */
1507 		if (!(info->sechdrs[infosec].sh_flags & SHF_ALLOC))
1508 			continue;
1509 
1510 		if (info->sechdrs[i].sh_flags & SHF_RELA_LIVEPATCH)
1511 			err = klp_apply_section_relocs(mod, info->sechdrs,
1512 						       info->secstrings,
1513 						       info->strtab,
1514 						       info->index.sym, i,
1515 						       NULL);
1516 		else if (info->sechdrs[i].sh_type == SHT_REL)
1517 			err = apply_relocate(info->sechdrs, info->strtab,
1518 					     info->index.sym, i, mod);
1519 		else if (info->sechdrs[i].sh_type == SHT_RELA)
1520 			err = apply_relocate_add(info->sechdrs, info->strtab,
1521 						 info->index.sym, i, mod);
1522 		if (err < 0)
1523 			break;
1524 	}
1525 	return err;
1526 }
1527 
1528 /* Additional bytes needed by arch in front of individual sections */
1529 unsigned int __weak arch_mod_section_prepend(struct module *mod,
1530 					     unsigned int section)
1531 {
1532 	/* default implementation just returns zero */
1533 	return 0;
1534 }
1535 
1536 long module_get_offset_and_type(struct module *mod, enum mod_mem_type type,
1537 				Elf_Shdr *sechdr, unsigned int section)
1538 {
1539 	long offset;
1540 	long mask = ((unsigned long)(type) & SH_ENTSIZE_TYPE_MASK) << SH_ENTSIZE_TYPE_SHIFT;
1541 
1542 	mod->mem[type].size += arch_mod_section_prepend(mod, section);
1543 	offset = ALIGN(mod->mem[type].size, sechdr->sh_addralign ?: 1);
1544 	mod->mem[type].size = offset + sechdr->sh_size;
1545 
1546 	WARN_ON_ONCE(offset & mask);
1547 	return offset | mask;
1548 }
1549 
1550 bool module_init_layout_section(const char *sname)
1551 {
1552 #ifndef CONFIG_MODULE_UNLOAD
1553 	if (module_exit_section(sname))
1554 		return true;
1555 #endif
1556 	return module_init_section(sname);
1557 }
1558 
1559 static void __layout_sections(struct module *mod, struct load_info *info, bool is_init)
1560 {
1561 	unsigned int m, i;
1562 
1563 	static const unsigned long masks[][2] = {
1564 		/*
1565 		 * NOTE: all executable code must be the first section
1566 		 * in this array; otherwise modify the text_size
1567 		 * finder in the two loops below
1568 		 */
1569 		{ SHF_EXECINSTR | SHF_ALLOC, ARCH_SHF_SMALL },
1570 		{ SHF_ALLOC, SHF_WRITE | ARCH_SHF_SMALL },
1571 		{ SHF_RO_AFTER_INIT | SHF_ALLOC, ARCH_SHF_SMALL },
1572 		{ SHF_WRITE | SHF_ALLOC, ARCH_SHF_SMALL },
1573 		{ ARCH_SHF_SMALL | SHF_ALLOC, 0 }
1574 	};
1575 	static const int core_m_to_mem_type[] = {
1576 		MOD_TEXT,
1577 		MOD_RODATA,
1578 		MOD_RO_AFTER_INIT,
1579 		MOD_DATA,
1580 		MOD_DATA,
1581 	};
1582 	static const int init_m_to_mem_type[] = {
1583 		MOD_INIT_TEXT,
1584 		MOD_INIT_RODATA,
1585 		MOD_INVALID,
1586 		MOD_INIT_DATA,
1587 		MOD_INIT_DATA,
1588 	};
1589 
1590 	for (m = 0; m < ARRAY_SIZE(masks); ++m) {
1591 		enum mod_mem_type type = is_init ? init_m_to_mem_type[m] : core_m_to_mem_type[m];
1592 
1593 		for (i = 0; i < info->hdr->e_shnum; ++i) {
1594 			Elf_Shdr *s = &info->sechdrs[i];
1595 			const char *sname = info->secstrings + s->sh_name;
1596 
1597 			if ((s->sh_flags & masks[m][0]) != masks[m][0]
1598 			    || (s->sh_flags & masks[m][1])
1599 			    || s->sh_entsize != ~0UL
1600 			    || is_init != module_init_layout_section(sname))
1601 				continue;
1602 
1603 			if (WARN_ON_ONCE(type == MOD_INVALID))
1604 				continue;
1605 
1606 			s->sh_entsize = module_get_offset_and_type(mod, type, s, i);
1607 			pr_debug("\t%s\n", sname);
1608 		}
1609 	}
1610 }
1611 
1612 /*
1613  * Lay out the SHF_ALLOC sections in a way not dissimilar to how ld
1614  * might -- code, read-only data, read-write data, small data.  Tally
1615  * sizes, and place the offsets into sh_entsize fields: high bit means it
1616  * belongs in init.
1617  */
1618 static void layout_sections(struct module *mod, struct load_info *info)
1619 {
1620 	unsigned int i;
1621 
1622 	for (i = 0; i < info->hdr->e_shnum; i++)
1623 		info->sechdrs[i].sh_entsize = ~0UL;
1624 
1625 	pr_debug("Core section allocation order for %s:\n", mod->name);
1626 	__layout_sections(mod, info, false);
1627 
1628 	pr_debug("Init section allocation order for %s:\n", mod->name);
1629 	__layout_sections(mod, info, true);
1630 }
1631 
1632 static void module_license_taint_check(struct module *mod, const char *license)
1633 {
1634 	if (!license)
1635 		license = "unspecified";
1636 
1637 	if (!license_is_gpl_compatible(license)) {
1638 		if (!test_taint(TAINT_PROPRIETARY_MODULE))
1639 			pr_warn("%s: module license '%s' taints kernel.\n",
1640 				mod->name, license);
1641 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
1642 				 LOCKDEP_NOW_UNRELIABLE);
1643 	}
1644 }
1645 
1646 static void setup_modinfo(struct module *mod, struct load_info *info)
1647 {
1648 	struct module_attribute *attr;
1649 	int i;
1650 
1651 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1652 		if (attr->setup)
1653 			attr->setup(mod, get_modinfo(info, attr->attr.name));
1654 	}
1655 }
1656 
1657 static void free_modinfo(struct module *mod)
1658 {
1659 	struct module_attribute *attr;
1660 	int i;
1661 
1662 	for (i = 0; (attr = modinfo_attrs[i]); i++) {
1663 		if (attr->free)
1664 			attr->free(mod);
1665 	}
1666 }
1667 
1668 bool __weak module_init_section(const char *name)
1669 {
1670 	return strstarts(name, ".init");
1671 }
1672 
1673 bool __weak module_exit_section(const char *name)
1674 {
1675 	return strstarts(name, ".exit");
1676 }
1677 
1678 static int validate_section_offset(struct load_info *info, Elf_Shdr *shdr)
1679 {
1680 #if defined(CONFIG_64BIT)
1681 	unsigned long long secend;
1682 #else
1683 	unsigned long secend;
1684 #endif
1685 
1686 	/*
1687 	 * Check for both overflow and offset/size being
1688 	 * too large.
1689 	 */
1690 	secend = shdr->sh_offset + shdr->sh_size;
1691 	if (secend < shdr->sh_offset || secend > info->len)
1692 		return -ENOEXEC;
1693 
1694 	return 0;
1695 }
1696 
1697 /*
1698  * Check userspace passed ELF module against our expectations, and cache
1699  * useful variables for further processing as we go.
1700  *
1701  * This does basic validity checks against section offsets and sizes, the
1702  * section name string table, and the indices used for it (sh_name).
1703  *
1704  * As a last step, since we're already checking the ELF sections we cache
1705  * useful variables which will be used later for our convenience:
1706  *
1707  * 	o pointers to section headers
1708  * 	o cache the modinfo symbol section
1709  * 	o cache the string symbol section
1710  * 	o cache the module section
1711  *
1712  * As a last step we set info->mod to the temporary copy of the module in
1713  * info->hdr. The final one will be allocated in move_module(). Any
1714  * modifications we make to our copy of the module will be carried over
1715  * to the final minted module.
1716  */
1717 static int elf_validity_cache_copy(struct load_info *info, int flags)
1718 {
1719 	unsigned int i;
1720 	Elf_Shdr *shdr, *strhdr;
1721 	int err;
1722 	unsigned int num_mod_secs = 0, mod_idx;
1723 	unsigned int num_info_secs = 0, info_idx;
1724 	unsigned int num_sym_secs = 0, sym_idx;
1725 
1726 	if (info->len < sizeof(*(info->hdr))) {
1727 		pr_err("Invalid ELF header len %lu\n", info->len);
1728 		goto no_exec;
1729 	}
1730 
1731 	if (memcmp(info->hdr->e_ident, ELFMAG, SELFMAG) != 0) {
1732 		pr_err("Invalid ELF header magic: != %s\n", ELFMAG);
1733 		goto no_exec;
1734 	}
1735 	if (info->hdr->e_type != ET_REL) {
1736 		pr_err("Invalid ELF header type: %u != %u\n",
1737 		       info->hdr->e_type, ET_REL);
1738 		goto no_exec;
1739 	}
1740 	if (!elf_check_arch(info->hdr)) {
1741 		pr_err("Invalid architecture in ELF header: %u\n",
1742 		       info->hdr->e_machine);
1743 		goto no_exec;
1744 	}
1745 	if (!module_elf_check_arch(info->hdr)) {
1746 		pr_err("Invalid module architecture in ELF header: %u\n",
1747 		       info->hdr->e_machine);
1748 		goto no_exec;
1749 	}
1750 	if (info->hdr->e_shentsize != sizeof(Elf_Shdr)) {
1751 		pr_err("Invalid ELF section header size\n");
1752 		goto no_exec;
1753 	}
1754 
1755 	/*
1756 	 * e_shnum is 16 bits, and sizeof(Elf_Shdr) is
1757 	 * known and small. So e_shnum * sizeof(Elf_Shdr)
1758 	 * will not overflow unsigned long on any platform.
1759 	 */
1760 	if (info->hdr->e_shoff >= info->len
1761 	    || (info->hdr->e_shnum * sizeof(Elf_Shdr) >
1762 		info->len - info->hdr->e_shoff)) {
1763 		pr_err("Invalid ELF section header overflow\n");
1764 		goto no_exec;
1765 	}
1766 
1767 	info->sechdrs = (void *)info->hdr + info->hdr->e_shoff;
1768 
1769 	/*
1770 	 * Verify if the section name table index is valid.
1771 	 */
1772 	if (info->hdr->e_shstrndx == SHN_UNDEF
1773 	    || info->hdr->e_shstrndx >= info->hdr->e_shnum) {
1774 		pr_err("Invalid ELF section name index: %d || e_shstrndx (%d) >= e_shnum (%d)\n",
1775 		       info->hdr->e_shstrndx, info->hdr->e_shstrndx,
1776 		       info->hdr->e_shnum);
1777 		goto no_exec;
1778 	}
1779 
1780 	strhdr = &info->sechdrs[info->hdr->e_shstrndx];
1781 	err = validate_section_offset(info, strhdr);
1782 	if (err < 0) {
1783 		pr_err("Invalid ELF section hdr(type %u)\n", strhdr->sh_type);
1784 		return err;
1785 	}
1786 
1787 	/*
1788 	 * The section name table must be NUL-terminated, as required
1789 	 * by the spec. This makes strcmp and pr_* calls that access
1790 	 * strings in the section safe.
1791 	 */
1792 	info->secstrings = (void *)info->hdr + strhdr->sh_offset;
1793 	if (strhdr->sh_size == 0) {
1794 		pr_err("empty section name table\n");
1795 		goto no_exec;
1796 	}
1797 	if (info->secstrings[strhdr->sh_size - 1] != '\0') {
1798 		pr_err("ELF Spec violation: section name table isn't null terminated\n");
1799 		goto no_exec;
1800 	}
1801 
1802 	/*
1803 	 * The code assumes that section 0 has a length of zero and
1804 	 * an addr of zero, so check for it.
1805 	 */
1806 	if (info->sechdrs[0].sh_type != SHT_NULL
1807 	    || info->sechdrs[0].sh_size != 0
1808 	    || info->sechdrs[0].sh_addr != 0) {
1809 		pr_err("ELF Spec violation: section 0 type(%d)!=SH_NULL or non-zero len or addr\n",
1810 		       info->sechdrs[0].sh_type);
1811 		goto no_exec;
1812 	}
1813 
1814 	for (i = 1; i < info->hdr->e_shnum; i++) {
1815 		shdr = &info->sechdrs[i];
1816 		switch (shdr->sh_type) {
1817 		case SHT_NULL:
1818 		case SHT_NOBITS:
1819 			continue;
1820 		case SHT_SYMTAB:
1821 			if (shdr->sh_link == SHN_UNDEF
1822 			    || shdr->sh_link >= info->hdr->e_shnum) {
1823 				pr_err("Invalid ELF sh_link!=SHN_UNDEF(%d) or (sh_link(%d) >= hdr->e_shnum(%d)\n",
1824 				       shdr->sh_link, shdr->sh_link,
1825 				       info->hdr->e_shnum);
1826 				goto no_exec;
1827 			}
1828 			num_sym_secs++;
1829 			sym_idx = i;
1830 			fallthrough;
1831 		default:
1832 			err = validate_section_offset(info, shdr);
1833 			if (err < 0) {
1834 				pr_err("Invalid ELF section in module (section %u type %u)\n",
1835 					i, shdr->sh_type);
1836 				return err;
1837 			}
1838 			if (strcmp(info->secstrings + shdr->sh_name,
1839 				   ".gnu.linkonce.this_module") == 0) {
1840 				num_mod_secs++;
1841 				mod_idx = i;
1842 			} else if (strcmp(info->secstrings + shdr->sh_name,
1843 				   ".modinfo") == 0) {
1844 				num_info_secs++;
1845 				info_idx = i;
1846 			}
1847 
1848 			if (shdr->sh_flags & SHF_ALLOC) {
1849 				if (shdr->sh_name >= strhdr->sh_size) {
1850 					pr_err("Invalid ELF section name in module (section %u type %u)\n",
1851 					       i, shdr->sh_type);
1852 					return -ENOEXEC;
1853 				}
1854 			}
1855 			break;
1856 		}
1857 	}
1858 
1859 	if (num_info_secs > 1) {
1860 		pr_err("Only one .modinfo section must exist.\n");
1861 		goto no_exec;
1862 	} else if (num_info_secs == 1) {
1863 		/* Try to find a name early so we can log errors with a module name */
1864 		info->index.info = info_idx;
1865 		info->name = get_modinfo(info, "name");
1866 	}
1867 
1868 	if (num_sym_secs != 1) {
1869 		pr_warn("%s: module has no symbols (stripped?)\n",
1870 			info->name ?: "(missing .modinfo section or name field)");
1871 		goto no_exec;
1872 	}
1873 
1874 	/* Sets internal symbols and strings. */
1875 	info->index.sym = sym_idx;
1876 	shdr = &info->sechdrs[sym_idx];
1877 	info->index.str = shdr->sh_link;
1878 	info->strtab = (char *)info->hdr + info->sechdrs[info->index.str].sh_offset;
1879 
1880 	/*
1881 	 * The ".gnu.linkonce.this_module" ELF section is special. It is
1882 	 * what modpost uses to refer to __this_module and let's use rely
1883 	 * on THIS_MODULE to point to &__this_module properly. The kernel's
1884 	 * modpost declares it on each modules's *.mod.c file. If the struct
1885 	 * module of the kernel changes a full kernel rebuild is required.
1886 	 *
1887 	 * We have a few expectaions for this special section, the following
1888 	 * code validates all this for us:
1889 	 *
1890 	 *   o Only one section must exist
1891 	 *   o We expect the kernel to always have to allocate it: SHF_ALLOC
1892 	 *   o The section size must match the kernel's run time's struct module
1893 	 *     size
1894 	 */
1895 	if (num_mod_secs != 1) {
1896 		pr_err("module %s: Only one .gnu.linkonce.this_module section must exist.\n",
1897 		       info->name ?: "(missing .modinfo section or name field)");
1898 		goto no_exec;
1899 	}
1900 
1901 	shdr = &info->sechdrs[mod_idx];
1902 
1903 	/*
1904 	 * This is already implied on the switch above, however let's be
1905 	 * pedantic about it.
1906 	 */
1907 	if (shdr->sh_type == SHT_NOBITS) {
1908 		pr_err("module %s: .gnu.linkonce.this_module section must have a size set\n",
1909 		       info->name ?: "(missing .modinfo section or name field)");
1910 		goto no_exec;
1911 	}
1912 
1913 	if (!(shdr->sh_flags & SHF_ALLOC)) {
1914 		pr_err("module %s: .gnu.linkonce.this_module must occupy memory during process execution\n",
1915 		       info->name ?: "(missing .modinfo section or name field)");
1916 		goto no_exec;
1917 	}
1918 
1919 	if (shdr->sh_size != sizeof(struct module)) {
1920 		pr_err("module %s: .gnu.linkonce.this_module section size must match the kernel's built struct module size at run time\n",
1921 		       info->name ?: "(missing .modinfo section or name field)");
1922 		goto no_exec;
1923 	}
1924 
1925 	info->index.mod = mod_idx;
1926 
1927 	/* This is temporary: point mod into copy of data. */
1928 	info->mod = (void *)info->hdr + shdr->sh_offset;
1929 
1930 	/*
1931 	 * If we didn't load the .modinfo 'name' field earlier, fall back to
1932 	 * on-disk struct mod 'name' field.
1933 	 */
1934 	if (!info->name)
1935 		info->name = info->mod->name;
1936 
1937 	if (flags & MODULE_INIT_IGNORE_MODVERSIONS)
1938 		info->index.vers = 0; /* Pretend no __versions section! */
1939 	else
1940 		info->index.vers = find_sec(info, "__versions");
1941 
1942 	info->index.pcpu = find_pcpusec(info);
1943 
1944 	return 0;
1945 
1946 no_exec:
1947 	return -ENOEXEC;
1948 }
1949 
1950 #define COPY_CHUNK_SIZE (16*PAGE_SIZE)
1951 
1952 static int copy_chunked_from_user(void *dst, const void __user *usrc, unsigned long len)
1953 {
1954 	do {
1955 		unsigned long n = min(len, COPY_CHUNK_SIZE);
1956 
1957 		if (copy_from_user(dst, usrc, n) != 0)
1958 			return -EFAULT;
1959 		cond_resched();
1960 		dst += n;
1961 		usrc += n;
1962 		len -= n;
1963 	} while (len);
1964 	return 0;
1965 }
1966 
1967 static int check_modinfo_livepatch(struct module *mod, struct load_info *info)
1968 {
1969 	if (!get_modinfo(info, "livepatch"))
1970 		/* Nothing more to do */
1971 		return 0;
1972 
1973 	if (set_livepatch_module(mod))
1974 		return 0;
1975 
1976 	pr_err("%s: module is marked as livepatch module, but livepatch support is disabled",
1977 	       mod->name);
1978 	return -ENOEXEC;
1979 }
1980 
1981 static void check_modinfo_retpoline(struct module *mod, struct load_info *info)
1982 {
1983 	if (retpoline_module_ok(get_modinfo(info, "retpoline")))
1984 		return;
1985 
1986 	pr_warn("%s: loading module not compiled with retpoline compiler.\n",
1987 		mod->name);
1988 }
1989 
1990 /* Sets info->hdr and info->len. */
1991 static int copy_module_from_user(const void __user *umod, unsigned long len,
1992 				  struct load_info *info)
1993 {
1994 	int err;
1995 
1996 	info->len = len;
1997 	if (info->len < sizeof(*(info->hdr)))
1998 		return -ENOEXEC;
1999 
2000 	err = security_kernel_load_data(LOADING_MODULE, true);
2001 	if (err)
2002 		return err;
2003 
2004 	/* Suck in entire file: we'll want most of it. */
2005 	info->hdr = __vmalloc(info->len, GFP_KERNEL | __GFP_NOWARN);
2006 	if (!info->hdr)
2007 		return -ENOMEM;
2008 
2009 	if (copy_chunked_from_user(info->hdr, umod, info->len) != 0) {
2010 		err = -EFAULT;
2011 		goto out;
2012 	}
2013 
2014 	err = security_kernel_post_load_data((char *)info->hdr, info->len,
2015 					     LOADING_MODULE, "init_module");
2016 out:
2017 	if (err)
2018 		vfree(info->hdr);
2019 
2020 	return err;
2021 }
2022 
2023 static void free_copy(struct load_info *info, int flags)
2024 {
2025 	if (flags & MODULE_INIT_COMPRESSED_FILE)
2026 		module_decompress_cleanup(info);
2027 	else
2028 		vfree(info->hdr);
2029 }
2030 
2031 static int rewrite_section_headers(struct load_info *info, int flags)
2032 {
2033 	unsigned int i;
2034 
2035 	/* This should always be true, but let's be sure. */
2036 	info->sechdrs[0].sh_addr = 0;
2037 
2038 	for (i = 1; i < info->hdr->e_shnum; i++) {
2039 		Elf_Shdr *shdr = &info->sechdrs[i];
2040 
2041 		/*
2042 		 * Mark all sections sh_addr with their address in the
2043 		 * temporary image.
2044 		 */
2045 		shdr->sh_addr = (size_t)info->hdr + shdr->sh_offset;
2046 
2047 	}
2048 
2049 	/* Track but don't keep modinfo and version sections. */
2050 	info->sechdrs[info->index.vers].sh_flags &= ~(unsigned long)SHF_ALLOC;
2051 	info->sechdrs[info->index.info].sh_flags &= ~(unsigned long)SHF_ALLOC;
2052 
2053 	return 0;
2054 }
2055 
2056 /*
2057  * These calls taint the kernel depending certain module circumstances */
2058 static void module_augment_kernel_taints(struct module *mod, struct load_info *info)
2059 {
2060 	int prev_taint = test_taint(TAINT_PROPRIETARY_MODULE);
2061 
2062 	if (!get_modinfo(info, "intree")) {
2063 		if (!test_taint(TAINT_OOT_MODULE))
2064 			pr_warn("%s: loading out-of-tree module taints kernel.\n",
2065 				mod->name);
2066 		add_taint_module(mod, TAINT_OOT_MODULE, LOCKDEP_STILL_OK);
2067 	}
2068 
2069 	check_modinfo_retpoline(mod, info);
2070 
2071 	if (get_modinfo(info, "staging")) {
2072 		add_taint_module(mod, TAINT_CRAP, LOCKDEP_STILL_OK);
2073 		pr_warn("%s: module is from the staging directory, the quality "
2074 			"is unknown, you have been warned.\n", mod->name);
2075 	}
2076 
2077 	if (is_livepatch_module(mod)) {
2078 		add_taint_module(mod, TAINT_LIVEPATCH, LOCKDEP_STILL_OK);
2079 		pr_notice_once("%s: tainting kernel with TAINT_LIVEPATCH\n",
2080 				mod->name);
2081 	}
2082 
2083 	module_license_taint_check(mod, get_modinfo(info, "license"));
2084 
2085 	if (get_modinfo(info, "test")) {
2086 		if (!test_taint(TAINT_TEST))
2087 			pr_warn("%s: loading test module taints kernel.\n",
2088 				mod->name);
2089 		add_taint_module(mod, TAINT_TEST, LOCKDEP_STILL_OK);
2090 	}
2091 #ifdef CONFIG_MODULE_SIG
2092 	mod->sig_ok = info->sig_ok;
2093 	if (!mod->sig_ok) {
2094 		pr_notice_once("%s: module verification failed: signature "
2095 			       "and/or required key missing - tainting "
2096 			       "kernel\n", mod->name);
2097 		add_taint_module(mod, TAINT_UNSIGNED_MODULE, LOCKDEP_STILL_OK);
2098 	}
2099 #endif
2100 
2101 	/*
2102 	 * ndiswrapper is under GPL by itself, but loads proprietary modules.
2103 	 * Don't use add_taint_module(), as it would prevent ndiswrapper from
2104 	 * using GPL-only symbols it needs.
2105 	 */
2106 	if (strcmp(mod->name, "ndiswrapper") == 0)
2107 		add_taint(TAINT_PROPRIETARY_MODULE, LOCKDEP_NOW_UNRELIABLE);
2108 
2109 	/* driverloader was caught wrongly pretending to be under GPL */
2110 	if (strcmp(mod->name, "driverloader") == 0)
2111 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2112 				 LOCKDEP_NOW_UNRELIABLE);
2113 
2114 	/* lve claims to be GPL but upstream won't provide source */
2115 	if (strcmp(mod->name, "lve") == 0)
2116 		add_taint_module(mod, TAINT_PROPRIETARY_MODULE,
2117 				 LOCKDEP_NOW_UNRELIABLE);
2118 
2119 	if (!prev_taint && test_taint(TAINT_PROPRIETARY_MODULE))
2120 		pr_warn("%s: module license taints kernel.\n", mod->name);
2121 
2122 }
2123 
2124 static int check_modinfo(struct module *mod, struct load_info *info, int flags)
2125 {
2126 	const char *modmagic = get_modinfo(info, "vermagic");
2127 	int err;
2128 
2129 	if (flags & MODULE_INIT_IGNORE_VERMAGIC)
2130 		modmagic = NULL;
2131 
2132 	/* This is allowed: modprobe --force will invalidate it. */
2133 	if (!modmagic) {
2134 		err = try_to_force_load(mod, "bad vermagic");
2135 		if (err)
2136 			return err;
2137 	} else if (!same_magic(modmagic, vermagic, info->index.vers)) {
2138 		pr_err("%s: version magic '%s' should be '%s'\n",
2139 		       info->name, modmagic, vermagic);
2140 		return -ENOEXEC;
2141 	}
2142 
2143 	err = check_modinfo_livepatch(mod, info);
2144 	if (err)
2145 		return err;
2146 
2147 	return 0;
2148 }
2149 
2150 static int find_module_sections(struct module *mod, struct load_info *info)
2151 {
2152 	mod->kp = section_objs(info, "__param",
2153 			       sizeof(*mod->kp), &mod->num_kp);
2154 	mod->syms = section_objs(info, "__ksymtab",
2155 				 sizeof(*mod->syms), &mod->num_syms);
2156 	mod->crcs = section_addr(info, "__kcrctab");
2157 	mod->gpl_syms = section_objs(info, "__ksymtab_gpl",
2158 				     sizeof(*mod->gpl_syms),
2159 				     &mod->num_gpl_syms);
2160 	mod->gpl_crcs = section_addr(info, "__kcrctab_gpl");
2161 
2162 #ifdef CONFIG_CONSTRUCTORS
2163 	mod->ctors = section_objs(info, ".ctors",
2164 				  sizeof(*mod->ctors), &mod->num_ctors);
2165 	if (!mod->ctors)
2166 		mod->ctors = section_objs(info, ".init_array",
2167 				sizeof(*mod->ctors), &mod->num_ctors);
2168 	else if (find_sec(info, ".init_array")) {
2169 		/*
2170 		 * This shouldn't happen with same compiler and binutils
2171 		 * building all parts of the module.
2172 		 */
2173 		pr_warn("%s: has both .ctors and .init_array.\n",
2174 		       mod->name);
2175 		return -EINVAL;
2176 	}
2177 #endif
2178 
2179 	mod->noinstr_text_start = section_objs(info, ".noinstr.text", 1,
2180 						&mod->noinstr_text_size);
2181 
2182 #ifdef CONFIG_TRACEPOINTS
2183 	mod->tracepoints_ptrs = section_objs(info, "__tracepoints_ptrs",
2184 					     sizeof(*mod->tracepoints_ptrs),
2185 					     &mod->num_tracepoints);
2186 #endif
2187 #ifdef CONFIG_TREE_SRCU
2188 	mod->srcu_struct_ptrs = section_objs(info, "___srcu_struct_ptrs",
2189 					     sizeof(*mod->srcu_struct_ptrs),
2190 					     &mod->num_srcu_structs);
2191 #endif
2192 #ifdef CONFIG_BPF_EVENTS
2193 	mod->bpf_raw_events = section_objs(info, "__bpf_raw_tp_map",
2194 					   sizeof(*mod->bpf_raw_events),
2195 					   &mod->num_bpf_raw_events);
2196 #endif
2197 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2198 	mod->btf_data = any_section_objs(info, ".BTF", 1, &mod->btf_data_size);
2199 	mod->btf_base_data = any_section_objs(info, ".BTF.base", 1,
2200 					      &mod->btf_base_data_size);
2201 #endif
2202 #ifdef CONFIG_JUMP_LABEL
2203 	mod->jump_entries = section_objs(info, "__jump_table",
2204 					sizeof(*mod->jump_entries),
2205 					&mod->num_jump_entries);
2206 #endif
2207 #ifdef CONFIG_EVENT_TRACING
2208 	mod->trace_events = section_objs(info, "_ftrace_events",
2209 					 sizeof(*mod->trace_events),
2210 					 &mod->num_trace_events);
2211 	mod->trace_evals = section_objs(info, "_ftrace_eval_map",
2212 					sizeof(*mod->trace_evals),
2213 					&mod->num_trace_evals);
2214 #endif
2215 #ifdef CONFIG_TRACING
2216 	mod->trace_bprintk_fmt_start = section_objs(info, "__trace_printk_fmt",
2217 					 sizeof(*mod->trace_bprintk_fmt_start),
2218 					 &mod->num_trace_bprintk_fmt);
2219 #endif
2220 #ifdef CONFIG_FTRACE_MCOUNT_RECORD
2221 	/* sechdrs[0].sh_size is always zero */
2222 	mod->ftrace_callsites = section_objs(info, FTRACE_CALLSITE_SECTION,
2223 					     sizeof(*mod->ftrace_callsites),
2224 					     &mod->num_ftrace_callsites);
2225 #endif
2226 #ifdef CONFIG_FUNCTION_ERROR_INJECTION
2227 	mod->ei_funcs = section_objs(info, "_error_injection_whitelist",
2228 					    sizeof(*mod->ei_funcs),
2229 					    &mod->num_ei_funcs);
2230 #endif
2231 #ifdef CONFIG_KPROBES
2232 	mod->kprobes_text_start = section_objs(info, ".kprobes.text", 1,
2233 						&mod->kprobes_text_size);
2234 	mod->kprobe_blacklist = section_objs(info, "_kprobe_blacklist",
2235 						sizeof(unsigned long),
2236 						&mod->num_kprobe_blacklist);
2237 #endif
2238 #ifdef CONFIG_PRINTK_INDEX
2239 	mod->printk_index_start = section_objs(info, ".printk_index",
2240 					       sizeof(*mod->printk_index_start),
2241 					       &mod->printk_index_size);
2242 #endif
2243 #ifdef CONFIG_HAVE_STATIC_CALL_INLINE
2244 	mod->static_call_sites = section_objs(info, ".static_call_sites",
2245 					      sizeof(*mod->static_call_sites),
2246 					      &mod->num_static_call_sites);
2247 #endif
2248 #if IS_ENABLED(CONFIG_KUNIT)
2249 	mod->kunit_suites = section_objs(info, ".kunit_test_suites",
2250 					      sizeof(*mod->kunit_suites),
2251 					      &mod->num_kunit_suites);
2252 	mod->kunit_init_suites = section_objs(info, ".kunit_init_test_suites",
2253 					      sizeof(*mod->kunit_init_suites),
2254 					      &mod->num_kunit_init_suites);
2255 #endif
2256 
2257 	mod->extable = section_objs(info, "__ex_table",
2258 				    sizeof(*mod->extable), &mod->num_exentries);
2259 
2260 	if (section_addr(info, "__obsparm"))
2261 		pr_warn("%s: Ignoring obsolete parameters\n", mod->name);
2262 
2263 #ifdef CONFIG_DYNAMIC_DEBUG_CORE
2264 	mod->dyndbg_info.descs = section_objs(info, "__dyndbg",
2265 					      sizeof(*mod->dyndbg_info.descs),
2266 					      &mod->dyndbg_info.num_descs);
2267 	mod->dyndbg_info.classes = section_objs(info, "__dyndbg_classes",
2268 						sizeof(*mod->dyndbg_info.classes),
2269 						&mod->dyndbg_info.num_classes);
2270 #endif
2271 
2272 	return 0;
2273 }
2274 
2275 static int move_module(struct module *mod, struct load_info *info)
2276 {
2277 	int i;
2278 	enum mod_mem_type t = 0;
2279 	int ret = -ENOMEM;
2280 
2281 	for_each_mod_mem_type(type) {
2282 		if (!mod->mem[type].size) {
2283 			mod->mem[type].base = NULL;
2284 			mod->mem[type].rw_copy = NULL;
2285 			continue;
2286 		}
2287 
2288 		ret = module_memory_alloc(mod, type);
2289 		if (ret) {
2290 			t = type;
2291 			goto out_enomem;
2292 		}
2293 	}
2294 
2295 	/* Transfer each section which specifies SHF_ALLOC */
2296 	pr_debug("Final section addresses for %s:\n", mod->name);
2297 	for (i = 0; i < info->hdr->e_shnum; i++) {
2298 		void *dest;
2299 		Elf_Shdr *shdr = &info->sechdrs[i];
2300 		enum mod_mem_type type = shdr->sh_entsize >> SH_ENTSIZE_TYPE_SHIFT;
2301 		unsigned long offset = shdr->sh_entsize & SH_ENTSIZE_OFFSET_MASK;
2302 		unsigned long addr;
2303 
2304 		if (!(shdr->sh_flags & SHF_ALLOC))
2305 			continue;
2306 
2307 		addr = (unsigned long)mod->mem[type].base + offset;
2308 		dest = mod->mem[type].rw_copy + offset;
2309 
2310 		if (shdr->sh_type != SHT_NOBITS) {
2311 			/*
2312 			 * Our ELF checker already validated this, but let's
2313 			 * be pedantic and make the goal clearer. We actually
2314 			 * end up copying over all modifications made to the
2315 			 * userspace copy of the entire struct module.
2316 			 */
2317 			if (i == info->index.mod &&
2318 			   (WARN_ON_ONCE(shdr->sh_size != sizeof(struct module)))) {
2319 				ret = -ENOEXEC;
2320 				goto out_enomem;
2321 			}
2322 			memcpy(dest, (void *)shdr->sh_addr, shdr->sh_size);
2323 		}
2324 		/*
2325 		 * Update the userspace copy's ELF section address to point to
2326 		 * our newly allocated memory as a pure convenience so that
2327 		 * users of info can keep taking advantage and using the newly
2328 		 * minted official memory area.
2329 		 */
2330 		shdr->sh_addr = addr;
2331 		pr_debug("\t0x%lx 0x%.8lx %s\n", (long)shdr->sh_addr,
2332 			 (long)shdr->sh_size, info->secstrings + shdr->sh_name);
2333 	}
2334 
2335 	return 0;
2336 out_enomem:
2337 	for (t--; t >= 0; t--)
2338 		module_memory_free(mod, t, true);
2339 	return ret;
2340 }
2341 
2342 static int check_export_symbol_versions(struct module *mod)
2343 {
2344 #ifdef CONFIG_MODVERSIONS
2345 	if ((mod->num_syms && !mod->crcs) ||
2346 	    (mod->num_gpl_syms && !mod->gpl_crcs)) {
2347 		return try_to_force_load(mod,
2348 					 "no versions for exported symbols");
2349 	}
2350 #endif
2351 	return 0;
2352 }
2353 
2354 static void flush_module_icache(const struct module *mod)
2355 {
2356 	/*
2357 	 * Flush the instruction cache, since we've played with text.
2358 	 * Do it before processing of module parameters, so the module
2359 	 * can provide parameter accessor functions of its own.
2360 	 */
2361 	for_each_mod_mem_type(type) {
2362 		const struct module_memory *mod_mem = &mod->mem[type];
2363 
2364 		if (mod_mem->size) {
2365 			flush_icache_range((unsigned long)mod_mem->base,
2366 					   (unsigned long)mod_mem->base + mod_mem->size);
2367 		}
2368 	}
2369 }
2370 
2371 bool __weak module_elf_check_arch(Elf_Ehdr *hdr)
2372 {
2373 	return true;
2374 }
2375 
2376 int __weak module_frob_arch_sections(Elf_Ehdr *hdr,
2377 				     Elf_Shdr *sechdrs,
2378 				     char *secstrings,
2379 				     struct module *mod)
2380 {
2381 	return 0;
2382 }
2383 
2384 /* module_blacklist is a comma-separated list of module names */
2385 static char *module_blacklist;
2386 static bool blacklisted(const char *module_name)
2387 {
2388 	const char *p;
2389 	size_t len;
2390 
2391 	if (!module_blacklist)
2392 		return false;
2393 
2394 	for (p = module_blacklist; *p; p += len) {
2395 		len = strcspn(p, ",");
2396 		if (strlen(module_name) == len && !memcmp(module_name, p, len))
2397 			return true;
2398 		if (p[len] == ',')
2399 			len++;
2400 	}
2401 	return false;
2402 }
2403 core_param(module_blacklist, module_blacklist, charp, 0400);
2404 
2405 static struct module *layout_and_allocate(struct load_info *info, int flags)
2406 {
2407 	struct module *mod;
2408 	unsigned int ndx;
2409 	int err;
2410 
2411 	/* Allow arches to frob section contents and sizes.  */
2412 	err = module_frob_arch_sections(info->hdr, info->sechdrs,
2413 					info->secstrings, info->mod);
2414 	if (err < 0)
2415 		return ERR_PTR(err);
2416 
2417 	err = module_enforce_rwx_sections(info->hdr, info->sechdrs,
2418 					  info->secstrings, info->mod);
2419 	if (err < 0)
2420 		return ERR_PTR(err);
2421 
2422 	/* We will do a special allocation for per-cpu sections later. */
2423 	info->sechdrs[info->index.pcpu].sh_flags &= ~(unsigned long)SHF_ALLOC;
2424 
2425 	/*
2426 	 * Mark ro_after_init section with SHF_RO_AFTER_INIT so that
2427 	 * layout_sections() can put it in the right place.
2428 	 * Note: ro_after_init sections also have SHF_{WRITE,ALLOC} set.
2429 	 */
2430 	ndx = find_sec(info, ".data..ro_after_init");
2431 	if (ndx)
2432 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2433 	/*
2434 	 * Mark the __jump_table section as ro_after_init as well: these data
2435 	 * structures are never modified, with the exception of entries that
2436 	 * refer to code in the __init section, which are annotated as such
2437 	 * at module load time.
2438 	 */
2439 	ndx = find_sec(info, "__jump_table");
2440 	if (ndx)
2441 		info->sechdrs[ndx].sh_flags |= SHF_RO_AFTER_INIT;
2442 
2443 	/*
2444 	 * Determine total sizes, and put offsets in sh_entsize.  For now
2445 	 * this is done generically; there doesn't appear to be any
2446 	 * special cases for the architectures.
2447 	 */
2448 	layout_sections(info->mod, info);
2449 	layout_symtab(info->mod, info);
2450 
2451 	/* Allocate and move to the final place */
2452 	err = move_module(info->mod, info);
2453 	if (err)
2454 		return ERR_PTR(err);
2455 
2456 	/* Module has been copied to its final place now: return it. */
2457 	mod = (void *)info->sechdrs[info->index.mod].sh_addr;
2458 	kmemleak_load_module(mod, info);
2459 	return mod;
2460 }
2461 
2462 /* mod is no longer valid after this! */
2463 static void module_deallocate(struct module *mod, struct load_info *info)
2464 {
2465 	percpu_modfree(mod);
2466 	module_arch_freeing_init(mod);
2467 
2468 	free_mod_mem(mod, true);
2469 }
2470 
2471 int __weak module_finalize(const Elf_Ehdr *hdr,
2472 			   const Elf_Shdr *sechdrs,
2473 			   struct module *me)
2474 {
2475 	return 0;
2476 }
2477 
2478 int __weak module_post_finalize(const Elf_Ehdr *hdr,
2479 				const Elf_Shdr *sechdrs,
2480 				struct module *me)
2481 {
2482 	return 0;
2483 }
2484 
2485 static int post_relocation(struct module *mod, const struct load_info *info)
2486 {
2487 	int ret;
2488 
2489 	/* Sort exception table now relocations are done. */
2490 	sort_extable(mod->extable, mod->extable + mod->num_exentries);
2491 
2492 	/* Copy relocated percpu area over. */
2493 	percpu_modcopy(mod, (void *)info->sechdrs[info->index.pcpu].sh_addr,
2494 		       info->sechdrs[info->index.pcpu].sh_size);
2495 
2496 	/* Setup kallsyms-specific fields. */
2497 	add_kallsyms(mod, info);
2498 
2499 	/* Arch-specific module finalizing. */
2500 	ret = module_finalize(info->hdr, info->sechdrs, mod);
2501 	if (ret)
2502 		return ret;
2503 
2504 	for_each_mod_mem_type(type) {
2505 		struct module_memory *mem = &mod->mem[type];
2506 
2507 		if (mem->is_rox) {
2508 			if (!execmem_update_copy(mem->base, mem->rw_copy,
2509 						 mem->size))
2510 				return -ENOMEM;
2511 
2512 			vfree(mem->rw_copy);
2513 			mem->rw_copy = NULL;
2514 		}
2515 	}
2516 
2517 	return module_post_finalize(info->hdr, info->sechdrs, mod);
2518 }
2519 
2520 /* Call module constructors. */
2521 static void do_mod_ctors(struct module *mod)
2522 {
2523 #ifdef CONFIG_CONSTRUCTORS
2524 	unsigned long i;
2525 
2526 	for (i = 0; i < mod->num_ctors; i++)
2527 		mod->ctors[i]();
2528 #endif
2529 }
2530 
2531 /* For freeing module_init on success, in case kallsyms traversing */
2532 struct mod_initfree {
2533 	struct llist_node node;
2534 	void *init_text;
2535 	void *init_data;
2536 	void *init_rodata;
2537 };
2538 
2539 static void do_free_init(struct work_struct *w)
2540 {
2541 	struct llist_node *pos, *n, *list;
2542 	struct mod_initfree *initfree;
2543 
2544 	list = llist_del_all(&init_free_list);
2545 
2546 	synchronize_rcu();
2547 
2548 	llist_for_each_safe(pos, n, list) {
2549 		initfree = container_of(pos, struct mod_initfree, node);
2550 		execmem_free(initfree->init_text);
2551 		execmem_free(initfree->init_data);
2552 		execmem_free(initfree->init_rodata);
2553 		kfree(initfree);
2554 	}
2555 }
2556 
2557 void flush_module_init_free_work(void)
2558 {
2559 	flush_work(&init_free_wq);
2560 }
2561 
2562 #undef MODULE_PARAM_PREFIX
2563 #define MODULE_PARAM_PREFIX "module."
2564 /* Default value for module->async_probe_requested */
2565 static bool async_probe;
2566 module_param(async_probe, bool, 0644);
2567 
2568 /*
2569  * This is where the real work happens.
2570  *
2571  * Keep it uninlined to provide a reliable breakpoint target, e.g. for the gdb
2572  * helper command 'lx-symbols'.
2573  */
2574 static noinline int do_init_module(struct module *mod)
2575 {
2576 	int ret = 0;
2577 	struct mod_initfree *freeinit;
2578 #if defined(CONFIG_MODULE_STATS)
2579 	unsigned int text_size = 0, total_size = 0;
2580 
2581 	for_each_mod_mem_type(type) {
2582 		const struct module_memory *mod_mem = &mod->mem[type];
2583 		if (mod_mem->size) {
2584 			total_size += mod_mem->size;
2585 			if (type == MOD_TEXT || type == MOD_INIT_TEXT)
2586 				text_size += mod_mem->size;
2587 		}
2588 	}
2589 #endif
2590 
2591 	freeinit = kmalloc(sizeof(*freeinit), GFP_KERNEL);
2592 	if (!freeinit) {
2593 		ret = -ENOMEM;
2594 		goto fail;
2595 	}
2596 	freeinit->init_text = mod->mem[MOD_INIT_TEXT].base;
2597 	freeinit->init_data = mod->mem[MOD_INIT_DATA].base;
2598 	freeinit->init_rodata = mod->mem[MOD_INIT_RODATA].base;
2599 
2600 	do_mod_ctors(mod);
2601 	/* Start the module */
2602 	if (mod->init != NULL)
2603 		ret = do_one_initcall(mod->init);
2604 	if (ret < 0) {
2605 		goto fail_free_freeinit;
2606 	}
2607 	if (ret > 0) {
2608 		pr_warn("%s: '%s'->init suspiciously returned %d, it should "
2609 			"follow 0/-E convention\n"
2610 			"%s: loading module anyway...\n",
2611 			__func__, mod->name, ret, __func__);
2612 		dump_stack();
2613 	}
2614 
2615 	/* Now it's a first class citizen! */
2616 	mod->state = MODULE_STATE_LIVE;
2617 	blocking_notifier_call_chain(&module_notify_list,
2618 				     MODULE_STATE_LIVE, mod);
2619 
2620 	/* Delay uevent until module has finished its init routine */
2621 	kobject_uevent(&mod->mkobj.kobj, KOBJ_ADD);
2622 
2623 	/*
2624 	 * We need to finish all async code before the module init sequence
2625 	 * is done. This has potential to deadlock if synchronous module
2626 	 * loading is requested from async (which is not allowed!).
2627 	 *
2628 	 * See commit 0fdff3ec6d87 ("async, kmod: warn on synchronous
2629 	 * request_module() from async workers") for more details.
2630 	 */
2631 	if (!mod->async_probe_requested)
2632 		async_synchronize_full();
2633 
2634 	ftrace_free_mem(mod, mod->mem[MOD_INIT_TEXT].base,
2635 			mod->mem[MOD_INIT_TEXT].base + mod->mem[MOD_INIT_TEXT].size);
2636 	mutex_lock(&module_mutex);
2637 	/* Drop initial reference. */
2638 	module_put(mod);
2639 	trim_init_extable(mod);
2640 #ifdef CONFIG_KALLSYMS
2641 	/* Switch to core kallsyms now init is done: kallsyms may be walking! */
2642 	rcu_assign_pointer(mod->kallsyms, &mod->core_kallsyms);
2643 #endif
2644 	ret = module_enable_rodata_ro(mod, true);
2645 	if (ret)
2646 		goto fail_mutex_unlock;
2647 	mod_tree_remove_init(mod);
2648 	module_arch_freeing_init(mod);
2649 	for_class_mod_mem_type(type, init) {
2650 		mod->mem[type].base = NULL;
2651 		mod->mem[type].size = 0;
2652 	}
2653 
2654 #ifdef CONFIG_DEBUG_INFO_BTF_MODULES
2655 	/* .BTF is not SHF_ALLOC and will get removed, so sanitize pointers */
2656 	mod->btf_data = NULL;
2657 	mod->btf_base_data = NULL;
2658 #endif
2659 	/*
2660 	 * We want to free module_init, but be aware that kallsyms may be
2661 	 * walking this with preempt disabled.  In all the failure paths, we
2662 	 * call synchronize_rcu(), but we don't want to slow down the success
2663 	 * path. execmem_free() cannot be called in an interrupt, so do the
2664 	 * work and call synchronize_rcu() in a work queue.
2665 	 *
2666 	 * Note that execmem_alloc() on most architectures creates W+X page
2667 	 * mappings which won't be cleaned up until do_free_init() runs.  Any
2668 	 * code such as mark_rodata_ro() which depends on those mappings to
2669 	 * be cleaned up needs to sync with the queued work by invoking
2670 	 * flush_module_init_free_work().
2671 	 */
2672 	if (llist_add(&freeinit->node, &init_free_list))
2673 		schedule_work(&init_free_wq);
2674 
2675 	mutex_unlock(&module_mutex);
2676 	wake_up_all(&module_wq);
2677 
2678 	mod_stat_add_long(text_size, &total_text_size);
2679 	mod_stat_add_long(total_size, &total_mod_size);
2680 
2681 	mod_stat_inc(&modcount);
2682 
2683 	return 0;
2684 
2685 fail_mutex_unlock:
2686 	mutex_unlock(&module_mutex);
2687 fail_free_freeinit:
2688 	kfree(freeinit);
2689 fail:
2690 	/* Try to protect us from buggy refcounters. */
2691 	mod->state = MODULE_STATE_GOING;
2692 	synchronize_rcu();
2693 	module_put(mod);
2694 	blocking_notifier_call_chain(&module_notify_list,
2695 				     MODULE_STATE_GOING, mod);
2696 	klp_module_going(mod);
2697 	ftrace_release_mod(mod);
2698 	free_module(mod);
2699 	wake_up_all(&module_wq);
2700 
2701 	return ret;
2702 }
2703 
2704 static int may_init_module(void)
2705 {
2706 	if (!capable(CAP_SYS_MODULE) || modules_disabled)
2707 		return -EPERM;
2708 
2709 	return 0;
2710 }
2711 
2712 /* Is this module of this name done loading?  No locks held. */
2713 static bool finished_loading(const char *name)
2714 {
2715 	struct module *mod;
2716 	bool ret;
2717 
2718 	/*
2719 	 * The module_mutex should not be a heavily contended lock;
2720 	 * if we get the occasional sleep here, we'll go an extra iteration
2721 	 * in the wait_event_interruptible(), which is harmless.
2722 	 */
2723 	sched_annotate_sleep();
2724 	mutex_lock(&module_mutex);
2725 	mod = find_module_all(name, strlen(name), true);
2726 	ret = !mod || mod->state == MODULE_STATE_LIVE
2727 		|| mod->state == MODULE_STATE_GOING;
2728 	mutex_unlock(&module_mutex);
2729 
2730 	return ret;
2731 }
2732 
2733 /* Must be called with module_mutex held */
2734 static int module_patient_check_exists(const char *name,
2735 				       enum fail_dup_mod_reason reason)
2736 {
2737 	struct module *old;
2738 	int err = 0;
2739 
2740 	old = find_module_all(name, strlen(name), true);
2741 	if (old == NULL)
2742 		return 0;
2743 
2744 	if (old->state == MODULE_STATE_COMING ||
2745 	    old->state == MODULE_STATE_UNFORMED) {
2746 		/* Wait in case it fails to load. */
2747 		mutex_unlock(&module_mutex);
2748 		err = wait_event_interruptible(module_wq,
2749 				       finished_loading(name));
2750 		mutex_lock(&module_mutex);
2751 		if (err)
2752 			return err;
2753 
2754 		/* The module might have gone in the meantime. */
2755 		old = find_module_all(name, strlen(name), true);
2756 	}
2757 
2758 	if (try_add_failed_module(name, reason))
2759 		pr_warn("Could not add fail-tracking for module: %s\n", name);
2760 
2761 	/*
2762 	 * We are here only when the same module was being loaded. Do
2763 	 * not try to load it again right now. It prevents long delays
2764 	 * caused by serialized module load failures. It might happen
2765 	 * when more devices of the same type trigger load of
2766 	 * a particular module.
2767 	 */
2768 	if (old && old->state == MODULE_STATE_LIVE)
2769 		return -EEXIST;
2770 	return -EBUSY;
2771 }
2772 
2773 /*
2774  * We try to place it in the list now to make sure it's unique before
2775  * we dedicate too many resources.  In particular, temporary percpu
2776  * memory exhaustion.
2777  */
2778 static int add_unformed_module(struct module *mod)
2779 {
2780 	int err;
2781 
2782 	mod->state = MODULE_STATE_UNFORMED;
2783 
2784 	mutex_lock(&module_mutex);
2785 	err = module_patient_check_exists(mod->name, FAIL_DUP_MOD_LOAD);
2786 	if (err)
2787 		goto out;
2788 
2789 	mod_update_bounds(mod);
2790 	list_add_rcu(&mod->list, &modules);
2791 	mod_tree_insert(mod);
2792 	err = 0;
2793 
2794 out:
2795 	mutex_unlock(&module_mutex);
2796 	return err;
2797 }
2798 
2799 static int complete_formation(struct module *mod, struct load_info *info)
2800 {
2801 	int err;
2802 
2803 	mutex_lock(&module_mutex);
2804 
2805 	/* Find duplicate symbols (must be called under lock). */
2806 	err = verify_exported_symbols(mod);
2807 	if (err < 0)
2808 		goto out;
2809 
2810 	/* These rely on module_mutex for list integrity. */
2811 	module_bug_finalize(info->hdr, info->sechdrs, mod);
2812 	module_cfi_finalize(info->hdr, info->sechdrs, mod);
2813 
2814 	err = module_enable_rodata_ro(mod, false);
2815 	if (err)
2816 		goto out_strict_rwx;
2817 	err = module_enable_data_nx(mod);
2818 	if (err)
2819 		goto out_strict_rwx;
2820 	err = module_enable_text_rox(mod);
2821 	if (err)
2822 		goto out_strict_rwx;
2823 
2824 	/*
2825 	 * Mark state as coming so strong_try_module_get() ignores us,
2826 	 * but kallsyms etc. can see us.
2827 	 */
2828 	mod->state = MODULE_STATE_COMING;
2829 	mutex_unlock(&module_mutex);
2830 
2831 	return 0;
2832 
2833 out_strict_rwx:
2834 	module_bug_cleanup(mod);
2835 out:
2836 	mutex_unlock(&module_mutex);
2837 	return err;
2838 }
2839 
2840 static int prepare_coming_module(struct module *mod)
2841 {
2842 	int err;
2843 
2844 	ftrace_module_enable(mod);
2845 	err = klp_module_coming(mod);
2846 	if (err)
2847 		return err;
2848 
2849 	err = blocking_notifier_call_chain_robust(&module_notify_list,
2850 			MODULE_STATE_COMING, MODULE_STATE_GOING, mod);
2851 	err = notifier_to_errno(err);
2852 	if (err)
2853 		klp_module_going(mod);
2854 
2855 	return err;
2856 }
2857 
2858 static int unknown_module_param_cb(char *param, char *val, const char *modname,
2859 				   void *arg)
2860 {
2861 	struct module *mod = arg;
2862 	int ret;
2863 
2864 	if (strcmp(param, "async_probe") == 0) {
2865 		if (kstrtobool(val, &mod->async_probe_requested))
2866 			mod->async_probe_requested = true;
2867 		return 0;
2868 	}
2869 
2870 	/* Check for magic 'dyndbg' arg */
2871 	ret = ddebug_dyndbg_module_param_cb(param, val, modname);
2872 	if (ret != 0)
2873 		pr_warn("%s: unknown parameter '%s' ignored\n", modname, param);
2874 	return 0;
2875 }
2876 
2877 /* Module within temporary copy, this doesn't do any allocation  */
2878 static int early_mod_check(struct load_info *info, int flags)
2879 {
2880 	int err;
2881 
2882 	/*
2883 	 * Now that we know we have the correct module name, check
2884 	 * if it's blacklisted.
2885 	 */
2886 	if (blacklisted(info->name)) {
2887 		pr_err("Module %s is blacklisted\n", info->name);
2888 		return -EPERM;
2889 	}
2890 
2891 	err = rewrite_section_headers(info, flags);
2892 	if (err)
2893 		return err;
2894 
2895 	/* Check module struct version now, before we try to use module. */
2896 	if (!check_modstruct_version(info, info->mod))
2897 		return -ENOEXEC;
2898 
2899 	err = check_modinfo(info->mod, info, flags);
2900 	if (err)
2901 		return err;
2902 
2903 	mutex_lock(&module_mutex);
2904 	err = module_patient_check_exists(info->mod->name, FAIL_DUP_MOD_BECOMING);
2905 	mutex_unlock(&module_mutex);
2906 
2907 	return err;
2908 }
2909 
2910 /*
2911  * Allocate and load the module: note that size of section 0 is always
2912  * zero, and we rely on this for optional sections.
2913  */
2914 static int load_module(struct load_info *info, const char __user *uargs,
2915 		       int flags)
2916 {
2917 	struct module *mod;
2918 	bool module_allocated = false;
2919 	long err = 0;
2920 	char *after_dashes;
2921 
2922 	/*
2923 	 * Do the signature check (if any) first. All that
2924 	 * the signature check needs is info->len, it does
2925 	 * not need any of the section info. That can be
2926 	 * set up later. This will minimize the chances
2927 	 * of a corrupt module causing problems before
2928 	 * we even get to the signature check.
2929 	 *
2930 	 * The check will also adjust info->len by stripping
2931 	 * off the sig length at the end of the module, making
2932 	 * checks against info->len more correct.
2933 	 */
2934 	err = module_sig_check(info, flags);
2935 	if (err)
2936 		goto free_copy;
2937 
2938 	/*
2939 	 * Do basic sanity checks against the ELF header and
2940 	 * sections. Cache useful sections and set the
2941 	 * info->mod to the userspace passed struct module.
2942 	 */
2943 	err = elf_validity_cache_copy(info, flags);
2944 	if (err)
2945 		goto free_copy;
2946 
2947 	err = early_mod_check(info, flags);
2948 	if (err)
2949 		goto free_copy;
2950 
2951 	/* Figure out module layout, and allocate all the memory. */
2952 	mod = layout_and_allocate(info, flags);
2953 	if (IS_ERR(mod)) {
2954 		err = PTR_ERR(mod);
2955 		goto free_copy;
2956 	}
2957 
2958 	module_allocated = true;
2959 
2960 	audit_log_kern_module(mod->name);
2961 
2962 	/* Reserve our place in the list. */
2963 	err = add_unformed_module(mod);
2964 	if (err)
2965 		goto free_module;
2966 
2967 	/*
2968 	 * We are tainting your kernel if your module gets into
2969 	 * the modules linked list somehow.
2970 	 */
2971 	module_augment_kernel_taints(mod, info);
2972 
2973 	/* To avoid stressing percpu allocator, do this once we're unique. */
2974 	err = percpu_modalloc(mod, info);
2975 	if (err)
2976 		goto unlink_mod;
2977 
2978 	/* Now module is in final location, initialize linked lists, etc. */
2979 	err = module_unload_init(mod);
2980 	if (err)
2981 		goto unlink_mod;
2982 
2983 	init_param_lock(mod);
2984 
2985 	/*
2986 	 * Now we've got everything in the final locations, we can
2987 	 * find optional sections.
2988 	 */
2989 	err = find_module_sections(mod, info);
2990 	if (err)
2991 		goto free_unload;
2992 
2993 	err = check_export_symbol_versions(mod);
2994 	if (err)
2995 		goto free_unload;
2996 
2997 	/* Set up MODINFO_ATTR fields */
2998 	setup_modinfo(mod, info);
2999 
3000 	/* Fix up syms, so that st_value is a pointer to location. */
3001 	err = simplify_symbols(mod, info);
3002 	if (err < 0)
3003 		goto free_modinfo;
3004 
3005 	err = apply_relocations(mod, info);
3006 	if (err < 0)
3007 		goto free_modinfo;
3008 
3009 	err = post_relocation(mod, info);
3010 	if (err < 0)
3011 		goto free_modinfo;
3012 
3013 	flush_module_icache(mod);
3014 
3015 	/* Now copy in args */
3016 	mod->args = strndup_user(uargs, ~0UL >> 1);
3017 	if (IS_ERR(mod->args)) {
3018 		err = PTR_ERR(mod->args);
3019 		goto free_arch_cleanup;
3020 	}
3021 
3022 	init_build_id(mod, info);
3023 
3024 	/* Ftrace init must be called in the MODULE_STATE_UNFORMED state */
3025 	ftrace_module_init(mod);
3026 
3027 	/* Finally it's fully formed, ready to start executing. */
3028 	err = complete_formation(mod, info);
3029 	if (err)
3030 		goto ddebug_cleanup;
3031 
3032 	err = prepare_coming_module(mod);
3033 	if (err)
3034 		goto bug_cleanup;
3035 
3036 	mod->async_probe_requested = async_probe;
3037 
3038 	/* Module is ready to execute: parsing args may do that. */
3039 	after_dashes = parse_args(mod->name, mod->args, mod->kp, mod->num_kp,
3040 				  -32768, 32767, mod,
3041 				  unknown_module_param_cb);
3042 	if (IS_ERR(after_dashes)) {
3043 		err = PTR_ERR(after_dashes);
3044 		goto coming_cleanup;
3045 	} else if (after_dashes) {
3046 		pr_warn("%s: parameters '%s' after `--' ignored\n",
3047 		       mod->name, after_dashes);
3048 	}
3049 
3050 	/* Link in to sysfs. */
3051 	err = mod_sysfs_setup(mod, info, mod->kp, mod->num_kp);
3052 	if (err < 0)
3053 		goto coming_cleanup;
3054 
3055 	if (is_livepatch_module(mod)) {
3056 		err = copy_module_elf(mod, info);
3057 		if (err < 0)
3058 			goto sysfs_cleanup;
3059 	}
3060 
3061 	/* Get rid of temporary copy. */
3062 	free_copy(info, flags);
3063 
3064 	codetag_load_module(mod);
3065 
3066 	/* Done! */
3067 	trace_module_load(mod);
3068 
3069 	return do_init_module(mod);
3070 
3071  sysfs_cleanup:
3072 	mod_sysfs_teardown(mod);
3073  coming_cleanup:
3074 	mod->state = MODULE_STATE_GOING;
3075 	destroy_params(mod->kp, mod->num_kp);
3076 	blocking_notifier_call_chain(&module_notify_list,
3077 				     MODULE_STATE_GOING, mod);
3078 	klp_module_going(mod);
3079  bug_cleanup:
3080 	mod->state = MODULE_STATE_GOING;
3081 	/* module_bug_cleanup needs module_mutex protection */
3082 	mutex_lock(&module_mutex);
3083 	module_bug_cleanup(mod);
3084 	mutex_unlock(&module_mutex);
3085 
3086  ddebug_cleanup:
3087 	ftrace_release_mod(mod);
3088 	synchronize_rcu();
3089 	kfree(mod->args);
3090  free_arch_cleanup:
3091 	module_arch_cleanup(mod);
3092  free_modinfo:
3093 	free_modinfo(mod);
3094  free_unload:
3095 	module_unload_free(mod);
3096  unlink_mod:
3097 	mutex_lock(&module_mutex);
3098 	/* Unlink carefully: kallsyms could be walking list. */
3099 	list_del_rcu(&mod->list);
3100 	mod_tree_remove(mod);
3101 	wake_up_all(&module_wq);
3102 	/* Wait for RCU-sched synchronizing before releasing mod->list. */
3103 	synchronize_rcu();
3104 	mutex_unlock(&module_mutex);
3105  free_module:
3106 	mod_stat_bump_invalid(info, flags);
3107 	/* Free lock-classes; relies on the preceding sync_rcu() */
3108 	for_class_mod_mem_type(type, core_data) {
3109 		lockdep_free_key_range(mod->mem[type].base,
3110 				       mod->mem[type].size);
3111 	}
3112 
3113 	module_deallocate(mod, info);
3114  free_copy:
3115 	/*
3116 	 * The info->len is always set. We distinguish between
3117 	 * failures once the proper module was allocated and
3118 	 * before that.
3119 	 */
3120 	if (!module_allocated)
3121 		mod_stat_bump_becoming(info, flags);
3122 	free_copy(info, flags);
3123 	return err;
3124 }
3125 
3126 SYSCALL_DEFINE3(init_module, void __user *, umod,
3127 		unsigned long, len, const char __user *, uargs)
3128 {
3129 	int err;
3130 	struct load_info info = { };
3131 
3132 	err = may_init_module();
3133 	if (err)
3134 		return err;
3135 
3136 	pr_debug("init_module: umod=%p, len=%lu, uargs=%p\n",
3137 	       umod, len, uargs);
3138 
3139 	err = copy_module_from_user(umod, len, &info);
3140 	if (err) {
3141 		mod_stat_inc(&failed_kreads);
3142 		mod_stat_add_long(len, &invalid_kread_bytes);
3143 		return err;
3144 	}
3145 
3146 	return load_module(&info, uargs, 0);
3147 }
3148 
3149 struct idempotent {
3150 	const void *cookie;
3151 	struct hlist_node entry;
3152 	struct completion complete;
3153 	int ret;
3154 };
3155 
3156 #define IDEM_HASH_BITS 8
3157 static struct hlist_head idem_hash[1 << IDEM_HASH_BITS];
3158 static DEFINE_SPINLOCK(idem_lock);
3159 
3160 static bool idempotent(struct idempotent *u, const void *cookie)
3161 {
3162 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3163 	struct hlist_head *head = idem_hash + hash;
3164 	struct idempotent *existing;
3165 	bool first;
3166 
3167 	u->ret = -EINTR;
3168 	u->cookie = cookie;
3169 	init_completion(&u->complete);
3170 
3171 	spin_lock(&idem_lock);
3172 	first = true;
3173 	hlist_for_each_entry(existing, head, entry) {
3174 		if (existing->cookie != cookie)
3175 			continue;
3176 		first = false;
3177 		break;
3178 	}
3179 	hlist_add_head(&u->entry, idem_hash + hash);
3180 	spin_unlock(&idem_lock);
3181 
3182 	return !first;
3183 }
3184 
3185 /*
3186  * We were the first one with 'cookie' on the list, and we ended
3187  * up completing the operation. We now need to walk the list,
3188  * remove everybody - which includes ourselves - fill in the return
3189  * value, and then complete the operation.
3190  */
3191 static int idempotent_complete(struct idempotent *u, int ret)
3192 {
3193 	const void *cookie = u->cookie;
3194 	int hash = hash_ptr(cookie, IDEM_HASH_BITS);
3195 	struct hlist_head *head = idem_hash + hash;
3196 	struct hlist_node *next;
3197 	struct idempotent *pos;
3198 
3199 	spin_lock(&idem_lock);
3200 	hlist_for_each_entry_safe(pos, next, head, entry) {
3201 		if (pos->cookie != cookie)
3202 			continue;
3203 		hlist_del_init(&pos->entry);
3204 		pos->ret = ret;
3205 		complete(&pos->complete);
3206 	}
3207 	spin_unlock(&idem_lock);
3208 	return ret;
3209 }
3210 
3211 /*
3212  * Wait for the idempotent worker.
3213  *
3214  * If we get interrupted, we need to remove ourselves from the
3215  * the idempotent list, and the completion may still come in.
3216  *
3217  * The 'idem_lock' protects against the race, and 'idem.ret' was
3218  * initialized to -EINTR and is thus always the right return
3219  * value even if the idempotent work then completes between
3220  * the wait_for_completion and the cleanup.
3221  */
3222 static int idempotent_wait_for_completion(struct idempotent *u)
3223 {
3224 	if (wait_for_completion_interruptible(&u->complete)) {
3225 		spin_lock(&idem_lock);
3226 		if (!hlist_unhashed(&u->entry))
3227 			hlist_del(&u->entry);
3228 		spin_unlock(&idem_lock);
3229 	}
3230 	return u->ret;
3231 }
3232 
3233 static int init_module_from_file(struct file *f, const char __user * uargs, int flags)
3234 {
3235 	struct load_info info = { };
3236 	void *buf = NULL;
3237 	int len;
3238 
3239 	len = kernel_read_file(f, 0, &buf, INT_MAX, NULL, READING_MODULE);
3240 	if (len < 0) {
3241 		mod_stat_inc(&failed_kreads);
3242 		return len;
3243 	}
3244 
3245 	if (flags & MODULE_INIT_COMPRESSED_FILE) {
3246 		int err = module_decompress(&info, buf, len);
3247 		vfree(buf); /* compressed data is no longer needed */
3248 		if (err) {
3249 			mod_stat_inc(&failed_decompress);
3250 			mod_stat_add_long(len, &invalid_decompress_bytes);
3251 			return err;
3252 		}
3253 	} else {
3254 		info.hdr = buf;
3255 		info.len = len;
3256 	}
3257 
3258 	return load_module(&info, uargs, flags);
3259 }
3260 
3261 static int idempotent_init_module(struct file *f, const char __user * uargs, int flags)
3262 {
3263 	struct idempotent idem;
3264 
3265 	if (!f || !(f->f_mode & FMODE_READ))
3266 		return -EBADF;
3267 
3268 	/* Are we the winners of the race and get to do this? */
3269 	if (!idempotent(&idem, file_inode(f))) {
3270 		int ret = init_module_from_file(f, uargs, flags);
3271 		return idempotent_complete(&idem, ret);
3272 	}
3273 
3274 	/*
3275 	 * Somebody else won the race and is loading the module.
3276 	 */
3277 	return idempotent_wait_for_completion(&idem);
3278 }
3279 
3280 SYSCALL_DEFINE3(finit_module, int, fd, const char __user *, uargs, int, flags)
3281 {
3282 	int err;
3283 	struct fd f;
3284 
3285 	err = may_init_module();
3286 	if (err)
3287 		return err;
3288 
3289 	pr_debug("finit_module: fd=%d, uargs=%p, flags=%i\n", fd, uargs, flags);
3290 
3291 	if (flags & ~(MODULE_INIT_IGNORE_MODVERSIONS
3292 		      |MODULE_INIT_IGNORE_VERMAGIC
3293 		      |MODULE_INIT_COMPRESSED_FILE))
3294 		return -EINVAL;
3295 
3296 	f = fdget(fd);
3297 	err = idempotent_init_module(fd_file(f), uargs, flags);
3298 	fdput(f);
3299 	return err;
3300 }
3301 
3302 /* Keep in sync with MODULE_FLAGS_BUF_SIZE !!! */
3303 char *module_flags(struct module *mod, char *buf, bool show_state)
3304 {
3305 	int bx = 0;
3306 
3307 	BUG_ON(mod->state == MODULE_STATE_UNFORMED);
3308 	if (!mod->taints && !show_state)
3309 		goto out;
3310 	if (mod->taints ||
3311 	    mod->state == MODULE_STATE_GOING ||
3312 	    mod->state == MODULE_STATE_COMING) {
3313 		buf[bx++] = '(';
3314 		bx += module_flags_taint(mod->taints, buf + bx);
3315 		/* Show a - for module-is-being-unloaded */
3316 		if (mod->state == MODULE_STATE_GOING && show_state)
3317 			buf[bx++] = '-';
3318 		/* Show a + for module-is-being-loaded */
3319 		if (mod->state == MODULE_STATE_COMING && show_state)
3320 			buf[bx++] = '+';
3321 		buf[bx++] = ')';
3322 	}
3323 out:
3324 	buf[bx] = '\0';
3325 
3326 	return buf;
3327 }
3328 
3329 /* Given an address, look for it in the module exception tables. */
3330 const struct exception_table_entry *search_module_extables(unsigned long addr)
3331 {
3332 	const struct exception_table_entry *e = NULL;
3333 	struct module *mod;
3334 
3335 	preempt_disable();
3336 	mod = __module_address(addr);
3337 	if (!mod)
3338 		goto out;
3339 
3340 	if (!mod->num_exentries)
3341 		goto out;
3342 
3343 	e = search_extable(mod->extable,
3344 			   mod->num_exentries,
3345 			   addr);
3346 out:
3347 	preempt_enable();
3348 
3349 	/*
3350 	 * Now, if we found one, we are running inside it now, hence
3351 	 * we cannot unload the module, hence no refcnt needed.
3352 	 */
3353 	return e;
3354 }
3355 
3356 /**
3357  * is_module_address() - is this address inside a module?
3358  * @addr: the address to check.
3359  *
3360  * See is_module_text_address() if you simply want to see if the address
3361  * is code (not data).
3362  */
3363 bool is_module_address(unsigned long addr)
3364 {
3365 	bool ret;
3366 
3367 	preempt_disable();
3368 	ret = __module_address(addr) != NULL;
3369 	preempt_enable();
3370 
3371 	return ret;
3372 }
3373 
3374 /**
3375  * __module_address() - get the module which contains an address.
3376  * @addr: the address.
3377  *
3378  * Must be called with preempt disabled or module mutex held so that
3379  * module doesn't get freed during this.
3380  */
3381 struct module *__module_address(unsigned long addr)
3382 {
3383 	struct module *mod;
3384 
3385 	if (addr >= mod_tree.addr_min && addr <= mod_tree.addr_max)
3386 		goto lookup;
3387 
3388 #ifdef CONFIG_ARCH_WANTS_MODULES_DATA_IN_VMALLOC
3389 	if (addr >= mod_tree.data_addr_min && addr <= mod_tree.data_addr_max)
3390 		goto lookup;
3391 #endif
3392 
3393 	return NULL;
3394 
3395 lookup:
3396 	module_assert_mutex_or_preempt();
3397 
3398 	mod = mod_find(addr, &mod_tree);
3399 	if (mod) {
3400 		BUG_ON(!within_module(addr, mod));
3401 		if (mod->state == MODULE_STATE_UNFORMED)
3402 			mod = NULL;
3403 	}
3404 	return mod;
3405 }
3406 
3407 /**
3408  * is_module_text_address() - is this address inside module code?
3409  * @addr: the address to check.
3410  *
3411  * See is_module_address() if you simply want to see if the address is
3412  * anywhere in a module.  See kernel_text_address() for testing if an
3413  * address corresponds to kernel or module code.
3414  */
3415 bool is_module_text_address(unsigned long addr)
3416 {
3417 	bool ret;
3418 
3419 	preempt_disable();
3420 	ret = __module_text_address(addr) != NULL;
3421 	preempt_enable();
3422 
3423 	return ret;
3424 }
3425 
3426 /**
3427  * __module_text_address() - get the module whose code contains an address.
3428  * @addr: the address.
3429  *
3430  * Must be called with preempt disabled or module mutex held so that
3431  * module doesn't get freed during this.
3432  */
3433 struct module *__module_text_address(unsigned long addr)
3434 {
3435 	struct module *mod = __module_address(addr);
3436 	if (mod) {
3437 		/* Make sure it's within the text section. */
3438 		if (!within_module_mem_type(addr, mod, MOD_TEXT) &&
3439 		    !within_module_mem_type(addr, mod, MOD_INIT_TEXT))
3440 			mod = NULL;
3441 	}
3442 	return mod;
3443 }
3444 
3445 /* Don't grab lock, we're oopsing. */
3446 void print_modules(void)
3447 {
3448 	struct module *mod;
3449 	char buf[MODULE_FLAGS_BUF_SIZE];
3450 
3451 	printk(KERN_DEFAULT "Modules linked in:");
3452 	/* Most callers should already have preempt disabled, but make sure */
3453 	preempt_disable();
3454 	list_for_each_entry_rcu(mod, &modules, list) {
3455 		if (mod->state == MODULE_STATE_UNFORMED)
3456 			continue;
3457 		pr_cont(" %s%s", mod->name, module_flags(mod, buf, true));
3458 	}
3459 
3460 	print_unloaded_tainted_modules();
3461 	preempt_enable();
3462 	if (last_unloaded_module.name[0])
3463 		pr_cont(" [last unloaded: %s%s]", last_unloaded_module.name,
3464 			last_unloaded_module.taints);
3465 	pr_cont("\n");
3466 }
3467 
3468 #ifdef CONFIG_MODULE_DEBUGFS
3469 struct dentry *mod_debugfs_root;
3470 
3471 static int module_debugfs_init(void)
3472 {
3473 	mod_debugfs_root = debugfs_create_dir("modules", NULL);
3474 	return 0;
3475 }
3476 module_init(module_debugfs_init);
3477 #endif
3478