1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells ([email protected]). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <[email protected]> 8 * and Michel Lespinasse <[email protected]> 9 * 10 * Optimistic spinning by Tim Chen <[email protected]> 11 * and Davidlohr Bueso <[email protected]>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <[email protected]> and 15 * Peter Zijlstra <[email protected]>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 31 #ifndef CONFIG_PREEMPT_RT 32 #include "lock_events.h" 33 34 /* 35 * The least significant 2 bits of the owner value has the following 36 * meanings when set. 37 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers 38 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock 39 * 40 * When the rwsem is reader-owned and a spinning writer has timed out, 41 * the nonspinnable bit will be set to disable optimistic spinning. 42 43 * When a writer acquires a rwsem, it puts its task_struct pointer 44 * into the owner field. It is cleared after an unlock. 45 * 46 * When a reader acquires a rwsem, it will also puts its task_struct 47 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 48 * On unlock, the owner field will largely be left untouched. So 49 * for a free or reader-owned rwsem, the owner value may contain 50 * information about the last reader that acquires the rwsem. 51 * 52 * That information may be helpful in debugging cases where the system 53 * seems to hang on a reader owned rwsem especially if only one reader 54 * is involved. Ideally we would like to track all the readers that own 55 * a rwsem, but the overhead is simply too big. 56 * 57 * A fast path reader optimistic lock stealing is supported when the rwsem 58 * is previously owned by a writer and the following conditions are met: 59 * - rwsem is not currently writer owned 60 * - the handoff isn't set. 61 */ 62 #define RWSEM_READER_OWNED (1UL << 0) 63 #define RWSEM_NONSPINNABLE (1UL << 1) 64 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 65 66 #ifdef CONFIG_DEBUG_RWSEMS 67 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 68 if (!debug_locks_silent && \ 69 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 70 #c, atomic_long_read(&(sem)->count), \ 71 (unsigned long) sem->magic, \ 72 atomic_long_read(&(sem)->owner), (long)current, \ 73 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 74 debug_locks_off(); \ 75 } while (0) 76 #else 77 # define DEBUG_RWSEMS_WARN_ON(c, sem) 78 #endif 79 80 /* 81 * On 64-bit architectures, the bit definitions of the count are: 82 * 83 * Bit 0 - writer locked bit 84 * Bit 1 - waiters present bit 85 * Bit 2 - lock handoff bit 86 * Bits 3-7 - reserved 87 * Bits 8-62 - 55-bit reader count 88 * Bit 63 - read fail bit 89 * 90 * On 32-bit architectures, the bit definitions of the count are: 91 * 92 * Bit 0 - writer locked bit 93 * Bit 1 - waiters present bit 94 * Bit 2 - lock handoff bit 95 * Bits 3-7 - reserved 96 * Bits 8-30 - 23-bit reader count 97 * Bit 31 - read fail bit 98 * 99 * It is not likely that the most significant bit (read fail bit) will ever 100 * be set. This guard bit is still checked anyway in the down_read() fastpath 101 * just in case we need to use up more of the reader bits for other purpose 102 * in the future. 103 * 104 * atomic_long_fetch_add() is used to obtain reader lock, whereas 105 * atomic_long_cmpxchg() will be used to obtain writer lock. 106 * 107 * There are three places where the lock handoff bit may be set or cleared. 108 * 1) rwsem_mark_wake() for readers. 109 * 2) rwsem_try_write_lock() for writers. 110 * 3) Error path of rwsem_down_write_slowpath(). 111 * 112 * For all the above cases, wait_lock will be held. A writer must also 113 * be the first one in the wait_list to be eligible for setting the handoff 114 * bit. So concurrent setting/clearing of handoff bit is not possible. 115 */ 116 #define RWSEM_WRITER_LOCKED (1UL << 0) 117 #define RWSEM_FLAG_WAITERS (1UL << 1) 118 #define RWSEM_FLAG_HANDOFF (1UL << 2) 119 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 120 121 #define RWSEM_READER_SHIFT 8 122 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 123 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 124 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 125 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 126 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 127 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 128 129 /* 130 * All writes to owner are protected by WRITE_ONCE() to make sure that 131 * store tearing can't happen as optimistic spinners may read and use 132 * the owner value concurrently without lock. Read from owner, however, 133 * may not need READ_ONCE() as long as the pointer value is only used 134 * for comparison and isn't being dereferenced. 135 */ 136 static inline void rwsem_set_owner(struct rw_semaphore *sem) 137 { 138 atomic_long_set(&sem->owner, (long)current); 139 } 140 141 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 142 { 143 atomic_long_set(&sem->owner, 0); 144 } 145 146 /* 147 * Test the flags in the owner field. 148 */ 149 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 150 { 151 return atomic_long_read(&sem->owner) & flags; 152 } 153 154 /* 155 * The task_struct pointer of the last owning reader will be left in 156 * the owner field. 157 * 158 * Note that the owner value just indicates the task has owned the rwsem 159 * previously, it may not be the real owner or one of the real owners 160 * anymore when that field is examined, so take it with a grain of salt. 161 * 162 * The reader non-spinnable bit is preserved. 163 */ 164 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 165 struct task_struct *owner) 166 { 167 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 168 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); 169 170 atomic_long_set(&sem->owner, val); 171 } 172 173 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 174 { 175 __rwsem_set_reader_owned(sem, current); 176 } 177 178 /* 179 * Return true if the rwsem is owned by a reader. 180 */ 181 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 182 { 183 #ifdef CONFIG_DEBUG_RWSEMS 184 /* 185 * Check the count to see if it is write-locked. 186 */ 187 long count = atomic_long_read(&sem->count); 188 189 if (count & RWSEM_WRITER_MASK) 190 return false; 191 #endif 192 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 193 } 194 195 #ifdef CONFIG_DEBUG_RWSEMS 196 /* 197 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 198 * is a task pointer in owner of a reader-owned rwsem, it will be the 199 * real owner or one of the real owners. The only exception is when the 200 * unlock is done by up_read_non_owner(). 201 */ 202 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 203 { 204 unsigned long val = atomic_long_read(&sem->owner); 205 206 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 207 if (atomic_long_try_cmpxchg(&sem->owner, &val, 208 val & RWSEM_OWNER_FLAGS_MASK)) 209 return; 210 } 211 } 212 #else 213 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 214 { 215 } 216 #endif 217 218 /* 219 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 220 * remains set. Otherwise, the operation will be aborted. 221 */ 222 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 223 { 224 unsigned long owner = atomic_long_read(&sem->owner); 225 226 do { 227 if (!(owner & RWSEM_READER_OWNED)) 228 break; 229 if (owner & RWSEM_NONSPINNABLE) 230 break; 231 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 232 owner | RWSEM_NONSPINNABLE)); 233 } 234 235 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) 236 { 237 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 238 239 if (WARN_ON_ONCE(*cntp < 0)) 240 rwsem_set_nonspinnable(sem); 241 242 if (!(*cntp & RWSEM_READ_FAILED_MASK)) { 243 rwsem_set_reader_owned(sem); 244 return true; 245 } 246 247 return false; 248 } 249 250 static inline bool rwsem_write_trylock(struct rw_semaphore *sem) 251 { 252 long tmp = RWSEM_UNLOCKED_VALUE; 253 254 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { 255 rwsem_set_owner(sem); 256 return true; 257 } 258 259 return false; 260 } 261 262 /* 263 * Return just the real task structure pointer of the owner 264 */ 265 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 266 { 267 return (struct task_struct *) 268 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 269 } 270 271 /* 272 * Return the real task structure pointer of the owner and the embedded 273 * flags in the owner. pflags must be non-NULL. 274 */ 275 static inline struct task_struct * 276 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 277 { 278 unsigned long owner = atomic_long_read(&sem->owner); 279 280 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 281 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 282 } 283 284 /* 285 * Guide to the rw_semaphore's count field. 286 * 287 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 288 * by a writer. 289 * 290 * The lock is owned by readers when 291 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 292 * (2) some of the reader bits are set in count, and 293 * (3) the owner field has RWSEM_READ_OWNED bit set. 294 * 295 * Having some reader bits set is not enough to guarantee a readers owned 296 * lock as the readers may be in the process of backing out from the count 297 * and a writer has just released the lock. So another writer may steal 298 * the lock immediately after that. 299 */ 300 301 /* 302 * Initialize an rwsem: 303 */ 304 void __init_rwsem(struct rw_semaphore *sem, const char *name, 305 struct lock_class_key *key) 306 { 307 #ifdef CONFIG_DEBUG_LOCK_ALLOC 308 /* 309 * Make sure we are not reinitializing a held semaphore: 310 */ 311 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 312 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 313 #endif 314 #ifdef CONFIG_DEBUG_RWSEMS 315 sem->magic = sem; 316 #endif 317 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 318 raw_spin_lock_init(&sem->wait_lock); 319 INIT_LIST_HEAD(&sem->wait_list); 320 atomic_long_set(&sem->owner, 0L); 321 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 322 osq_lock_init(&sem->osq); 323 #endif 324 } 325 EXPORT_SYMBOL(__init_rwsem); 326 327 enum rwsem_waiter_type { 328 RWSEM_WAITING_FOR_WRITE, 329 RWSEM_WAITING_FOR_READ 330 }; 331 332 struct rwsem_waiter { 333 struct list_head list; 334 struct task_struct *task; 335 enum rwsem_waiter_type type; 336 unsigned long timeout; 337 }; 338 #define rwsem_first_waiter(sem) \ 339 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 340 341 enum rwsem_wake_type { 342 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 343 RWSEM_WAKE_READERS, /* Wake readers only */ 344 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 345 }; 346 347 enum writer_wait_state { 348 WRITER_NOT_FIRST, /* Writer is not first in wait list */ 349 WRITER_FIRST, /* Writer is first in wait list */ 350 WRITER_HANDOFF /* Writer is first & handoff needed */ 351 }; 352 353 /* 354 * The typical HZ value is either 250 or 1000. So set the minimum waiting 355 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 356 * queue before initiating the handoff protocol. 357 */ 358 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 359 360 /* 361 * Magic number to batch-wakeup waiting readers, even when writers are 362 * also present in the queue. This both limits the amount of work the 363 * waking thread must do and also prevents any potential counter overflow, 364 * however unlikely. 365 */ 366 #define MAX_READERS_WAKEUP 0x100 367 368 /* 369 * handle the lock release when processes blocked on it that can now run 370 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 371 * have been set. 372 * - there must be someone on the queue 373 * - the wait_lock must be held by the caller 374 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 375 * to actually wakeup the blocked task(s) and drop the reference count, 376 * preferably when the wait_lock is released 377 * - woken process blocks are discarded from the list after having task zeroed 378 * - writers are only marked woken if downgrading is false 379 */ 380 static void rwsem_mark_wake(struct rw_semaphore *sem, 381 enum rwsem_wake_type wake_type, 382 struct wake_q_head *wake_q) 383 { 384 struct rwsem_waiter *waiter, *tmp; 385 long oldcount, woken = 0, adjustment = 0; 386 struct list_head wlist; 387 388 lockdep_assert_held(&sem->wait_lock); 389 390 /* 391 * Take a peek at the queue head waiter such that we can determine 392 * the wakeup(s) to perform. 393 */ 394 waiter = rwsem_first_waiter(sem); 395 396 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 397 if (wake_type == RWSEM_WAKE_ANY) { 398 /* 399 * Mark writer at the front of the queue for wakeup. 400 * Until the task is actually later awoken later by 401 * the caller, other writers are able to steal it. 402 * Readers, on the other hand, will block as they 403 * will notice the queued writer. 404 */ 405 wake_q_add(wake_q, waiter->task); 406 lockevent_inc(rwsem_wake_writer); 407 } 408 409 return; 410 } 411 412 /* 413 * No reader wakeup if there are too many of them already. 414 */ 415 if (unlikely(atomic_long_read(&sem->count) < 0)) 416 return; 417 418 /* 419 * Writers might steal the lock before we grant it to the next reader. 420 * We prefer to do the first reader grant before counting readers 421 * so we can bail out early if a writer stole the lock. 422 */ 423 if (wake_type != RWSEM_WAKE_READ_OWNED) { 424 struct task_struct *owner; 425 426 adjustment = RWSEM_READER_BIAS; 427 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 428 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 429 /* 430 * When we've been waiting "too" long (for writers 431 * to give up the lock), request a HANDOFF to 432 * force the issue. 433 */ 434 if (!(oldcount & RWSEM_FLAG_HANDOFF) && 435 time_after(jiffies, waiter->timeout)) { 436 adjustment -= RWSEM_FLAG_HANDOFF; 437 lockevent_inc(rwsem_rlock_handoff); 438 } 439 440 atomic_long_add(-adjustment, &sem->count); 441 return; 442 } 443 /* 444 * Set it to reader-owned to give spinners an early 445 * indication that readers now have the lock. 446 * The reader nonspinnable bit seen at slowpath entry of 447 * the reader is copied over. 448 */ 449 owner = waiter->task; 450 __rwsem_set_reader_owned(sem, owner); 451 } 452 453 /* 454 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 455 * queue. We know that the woken will be at least 1 as we accounted 456 * for above. Note we increment the 'active part' of the count by the 457 * number of readers before waking any processes up. 458 * 459 * This is an adaptation of the phase-fair R/W locks where at the 460 * reader phase (first waiter is a reader), all readers are eligible 461 * to acquire the lock at the same time irrespective of their order 462 * in the queue. The writers acquire the lock according to their 463 * order in the queue. 464 * 465 * We have to do wakeup in 2 passes to prevent the possibility that 466 * the reader count may be decremented before it is incremented. It 467 * is because the to-be-woken waiter may not have slept yet. So it 468 * may see waiter->task got cleared, finish its critical section and 469 * do an unlock before the reader count increment. 470 * 471 * 1) Collect the read-waiters in a separate list, count them and 472 * fully increment the reader count in rwsem. 473 * 2) For each waiters in the new list, clear waiter->task and 474 * put them into wake_q to be woken up later. 475 */ 476 INIT_LIST_HEAD(&wlist); 477 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 478 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 479 continue; 480 481 woken++; 482 list_move_tail(&waiter->list, &wlist); 483 484 /* 485 * Limit # of readers that can be woken up per wakeup call. 486 */ 487 if (unlikely(woken >= MAX_READERS_WAKEUP)) 488 break; 489 } 490 491 adjustment = woken * RWSEM_READER_BIAS - adjustment; 492 lockevent_cond_inc(rwsem_wake_reader, woken); 493 if (list_empty(&sem->wait_list)) { 494 /* hit end of list above */ 495 adjustment -= RWSEM_FLAG_WAITERS; 496 } 497 498 /* 499 * When we've woken a reader, we no longer need to force writers 500 * to give up the lock and we can clear HANDOFF. 501 */ 502 if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF)) 503 adjustment -= RWSEM_FLAG_HANDOFF; 504 505 if (adjustment) 506 atomic_long_add(adjustment, &sem->count); 507 508 /* 2nd pass */ 509 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 510 struct task_struct *tsk; 511 512 tsk = waiter->task; 513 get_task_struct(tsk); 514 515 /* 516 * Ensure calling get_task_struct() before setting the reader 517 * waiter to nil such that rwsem_down_read_slowpath() cannot 518 * race with do_exit() by always holding a reference count 519 * to the task to wakeup. 520 */ 521 smp_store_release(&waiter->task, NULL); 522 /* 523 * Ensure issuing the wakeup (either by us or someone else) 524 * after setting the reader waiter to nil. 525 */ 526 wake_q_add_safe(wake_q, tsk); 527 } 528 } 529 530 /* 531 * This function must be called with the sem->wait_lock held to prevent 532 * race conditions between checking the rwsem wait list and setting the 533 * sem->count accordingly. 534 * 535 * If wstate is WRITER_HANDOFF, it will make sure that either the handoff 536 * bit is set or the lock is acquired with handoff bit cleared. 537 */ 538 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 539 enum writer_wait_state wstate) 540 { 541 long count, new; 542 543 lockdep_assert_held(&sem->wait_lock); 544 545 count = atomic_long_read(&sem->count); 546 do { 547 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 548 549 if (has_handoff && wstate == WRITER_NOT_FIRST) 550 return false; 551 552 new = count; 553 554 if (count & RWSEM_LOCK_MASK) { 555 if (has_handoff || (wstate != WRITER_HANDOFF)) 556 return false; 557 558 new |= RWSEM_FLAG_HANDOFF; 559 } else { 560 new |= RWSEM_WRITER_LOCKED; 561 new &= ~RWSEM_FLAG_HANDOFF; 562 563 if (list_is_singular(&sem->wait_list)) 564 new &= ~RWSEM_FLAG_WAITERS; 565 } 566 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 567 568 /* 569 * We have either acquired the lock with handoff bit cleared or 570 * set the handoff bit. 571 */ 572 if (new & RWSEM_FLAG_HANDOFF) 573 return false; 574 575 rwsem_set_owner(sem); 576 return true; 577 } 578 579 /* 580 * The rwsem_spin_on_owner() function returns the following 4 values 581 * depending on the lock owner state. 582 * OWNER_NULL : owner is currently NULL 583 * OWNER_WRITER: when owner changes and is a writer 584 * OWNER_READER: when owner changes and the new owner may be a reader. 585 * OWNER_NONSPINNABLE: 586 * when optimistic spinning has to stop because either the 587 * owner stops running, is unknown, or its timeslice has 588 * been used up. 589 */ 590 enum owner_state { 591 OWNER_NULL = 1 << 0, 592 OWNER_WRITER = 1 << 1, 593 OWNER_READER = 1 << 2, 594 OWNER_NONSPINNABLE = 1 << 3, 595 }; 596 597 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 598 /* 599 * Try to acquire write lock before the writer has been put on wait queue. 600 */ 601 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 602 { 603 long count = atomic_long_read(&sem->count); 604 605 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 606 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 607 count | RWSEM_WRITER_LOCKED)) { 608 rwsem_set_owner(sem); 609 lockevent_inc(rwsem_opt_lock); 610 return true; 611 } 612 } 613 return false; 614 } 615 616 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 617 { 618 struct task_struct *owner; 619 unsigned long flags; 620 bool ret = true; 621 622 if (need_resched()) { 623 lockevent_inc(rwsem_opt_fail); 624 return false; 625 } 626 627 preempt_disable(); 628 /* 629 * Disable preemption is equal to the RCU read-side crital section, 630 * thus the task_strcut structure won't go away. 631 */ 632 owner = rwsem_owner_flags(sem, &flags); 633 /* 634 * Don't check the read-owner as the entry may be stale. 635 */ 636 if ((flags & RWSEM_NONSPINNABLE) || 637 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 638 ret = false; 639 preempt_enable(); 640 641 lockevent_cond_inc(rwsem_opt_fail, !ret); 642 return ret; 643 } 644 645 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 646 647 static inline enum owner_state 648 rwsem_owner_state(struct task_struct *owner, unsigned long flags) 649 { 650 if (flags & RWSEM_NONSPINNABLE) 651 return OWNER_NONSPINNABLE; 652 653 if (flags & RWSEM_READER_OWNED) 654 return OWNER_READER; 655 656 return owner ? OWNER_WRITER : OWNER_NULL; 657 } 658 659 static noinline enum owner_state 660 rwsem_spin_on_owner(struct rw_semaphore *sem) 661 { 662 struct task_struct *new, *owner; 663 unsigned long flags, new_flags; 664 enum owner_state state; 665 666 lockdep_assert_preemption_disabled(); 667 668 owner = rwsem_owner_flags(sem, &flags); 669 state = rwsem_owner_state(owner, flags); 670 if (state != OWNER_WRITER) 671 return state; 672 673 for (;;) { 674 /* 675 * When a waiting writer set the handoff flag, it may spin 676 * on the owner as well. Once that writer acquires the lock, 677 * we can spin on it. So we don't need to quit even when the 678 * handoff bit is set. 679 */ 680 new = rwsem_owner_flags(sem, &new_flags); 681 if ((new != owner) || (new_flags != flags)) { 682 state = rwsem_owner_state(new, new_flags); 683 break; 684 } 685 686 /* 687 * Ensure we emit the owner->on_cpu, dereference _after_ 688 * checking sem->owner still matches owner, if that fails, 689 * owner might point to free()d memory, if it still matches, 690 * our spinning context already disabled preemption which is 691 * equal to RCU read-side crital section ensures the memory 692 * stays valid. 693 */ 694 barrier(); 695 696 if (need_resched() || !owner_on_cpu(owner)) { 697 state = OWNER_NONSPINNABLE; 698 break; 699 } 700 701 cpu_relax(); 702 } 703 704 return state; 705 } 706 707 /* 708 * Calculate reader-owned rwsem spinning threshold for writer 709 * 710 * The more readers own the rwsem, the longer it will take for them to 711 * wind down and free the rwsem. So the empirical formula used to 712 * determine the actual spinning time limit here is: 713 * 714 * Spinning threshold = (10 + nr_readers/2)us 715 * 716 * The limit is capped to a maximum of 25us (30 readers). This is just 717 * a heuristic and is subjected to change in the future. 718 */ 719 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 720 { 721 long count = atomic_long_read(&sem->count); 722 int readers = count >> RWSEM_READER_SHIFT; 723 u64 delta; 724 725 if (readers > 30) 726 readers = 30; 727 delta = (20 + readers) * NSEC_PER_USEC / 2; 728 729 return sched_clock() + delta; 730 } 731 732 static bool rwsem_optimistic_spin(struct rw_semaphore *sem) 733 { 734 bool taken = false; 735 int prev_owner_state = OWNER_NULL; 736 int loop = 0; 737 u64 rspin_threshold = 0; 738 739 preempt_disable(); 740 741 /* sem->wait_lock should not be held when doing optimistic spinning */ 742 if (!osq_lock(&sem->osq)) 743 goto done; 744 745 /* 746 * Optimistically spin on the owner field and attempt to acquire the 747 * lock whenever the owner changes. Spinning will be stopped when: 748 * 1) the owning writer isn't running; or 749 * 2) readers own the lock and spinning time has exceeded limit. 750 */ 751 for (;;) { 752 enum owner_state owner_state; 753 754 owner_state = rwsem_spin_on_owner(sem); 755 if (!(owner_state & OWNER_SPINNABLE)) 756 break; 757 758 /* 759 * Try to acquire the lock 760 */ 761 taken = rwsem_try_write_lock_unqueued(sem); 762 763 if (taken) 764 break; 765 766 /* 767 * Time-based reader-owned rwsem optimistic spinning 768 */ 769 if (owner_state == OWNER_READER) { 770 /* 771 * Re-initialize rspin_threshold every time when 772 * the owner state changes from non-reader to reader. 773 * This allows a writer to steal the lock in between 774 * 2 reader phases and have the threshold reset at 775 * the beginning of the 2nd reader phase. 776 */ 777 if (prev_owner_state != OWNER_READER) { 778 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 779 break; 780 rspin_threshold = rwsem_rspin_threshold(sem); 781 loop = 0; 782 } 783 784 /* 785 * Check time threshold once every 16 iterations to 786 * avoid calling sched_clock() too frequently so 787 * as to reduce the average latency between the times 788 * when the lock becomes free and when the spinner 789 * is ready to do a trylock. 790 */ 791 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 792 rwsem_set_nonspinnable(sem); 793 lockevent_inc(rwsem_opt_nospin); 794 break; 795 } 796 } 797 798 /* 799 * An RT task cannot do optimistic spinning if it cannot 800 * be sure the lock holder is running or live-lock may 801 * happen if the current task and the lock holder happen 802 * to run in the same CPU. However, aborting optimistic 803 * spinning while a NULL owner is detected may miss some 804 * opportunity where spinning can continue without causing 805 * problem. 806 * 807 * There are 2 possible cases where an RT task may be able 808 * to continue spinning. 809 * 810 * 1) The lock owner is in the process of releasing the 811 * lock, sem->owner is cleared but the lock has not 812 * been released yet. 813 * 2) The lock was free and owner cleared, but another 814 * task just comes in and acquire the lock before 815 * we try to get it. The new owner may be a spinnable 816 * writer. 817 * 818 * To take advantage of two scenarios listed above, the RT 819 * task is made to retry one more time to see if it can 820 * acquire the lock or continue spinning on the new owning 821 * writer. Of course, if the time lag is long enough or the 822 * new owner is not a writer or spinnable, the RT task will 823 * quit spinning. 824 * 825 * If the owner is a writer, the need_resched() check is 826 * done inside rwsem_spin_on_owner(). If the owner is not 827 * a writer, need_resched() check needs to be done here. 828 */ 829 if (owner_state != OWNER_WRITER) { 830 if (need_resched()) 831 break; 832 if (rt_task(current) && 833 (prev_owner_state != OWNER_WRITER)) 834 break; 835 } 836 prev_owner_state = owner_state; 837 838 /* 839 * The cpu_relax() call is a compiler barrier which forces 840 * everything in this loop to be re-loaded. We don't need 841 * memory barriers as we'll eventually observe the right 842 * values at the cost of a few extra spins. 843 */ 844 cpu_relax(); 845 } 846 osq_unlock(&sem->osq); 847 done: 848 preempt_enable(); 849 lockevent_cond_inc(rwsem_opt_fail, !taken); 850 return taken; 851 } 852 853 /* 854 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should 855 * only be called when the reader count reaches 0. 856 */ 857 static inline void clear_nonspinnable(struct rw_semaphore *sem) 858 { 859 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 860 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); 861 } 862 863 #else 864 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 865 { 866 return false; 867 } 868 869 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) 870 { 871 return false; 872 } 873 874 static inline void clear_nonspinnable(struct rw_semaphore *sem) { } 875 876 static inline enum owner_state 877 rwsem_spin_on_owner(struct rw_semaphore *sem) 878 { 879 return OWNER_NONSPINNABLE; 880 } 881 #endif 882 883 /* 884 * Wait for the read lock to be granted 885 */ 886 static struct rw_semaphore __sched * 887 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) 888 { 889 long adjustment = -RWSEM_READER_BIAS; 890 long rcnt = (count >> RWSEM_READER_SHIFT); 891 struct rwsem_waiter waiter; 892 DEFINE_WAKE_Q(wake_q); 893 bool wake = false; 894 895 /* 896 * To prevent a constant stream of readers from starving a sleeping 897 * waiter, don't attempt optimistic lock stealing if the lock is 898 * currently owned by readers. 899 */ 900 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && 901 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) 902 goto queue; 903 904 /* 905 * Reader optimistic lock stealing. 906 */ 907 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { 908 rwsem_set_reader_owned(sem); 909 lockevent_inc(rwsem_rlock_steal); 910 911 /* 912 * Wake up other readers in the wait queue if it is 913 * the first reader. 914 */ 915 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { 916 raw_spin_lock_irq(&sem->wait_lock); 917 if (!list_empty(&sem->wait_list)) 918 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 919 &wake_q); 920 raw_spin_unlock_irq(&sem->wait_lock); 921 wake_up_q(&wake_q); 922 } 923 return sem; 924 } 925 926 queue: 927 waiter.task = current; 928 waiter.type = RWSEM_WAITING_FOR_READ; 929 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 930 931 raw_spin_lock_irq(&sem->wait_lock); 932 if (list_empty(&sem->wait_list)) { 933 /* 934 * In case the wait queue is empty and the lock isn't owned 935 * by a writer or has the handoff bit set, this reader can 936 * exit the slowpath and return immediately as its 937 * RWSEM_READER_BIAS has already been set in the count. 938 */ 939 if (!(atomic_long_read(&sem->count) & 940 (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) { 941 /* Provide lock ACQUIRE */ 942 smp_acquire__after_ctrl_dep(); 943 raw_spin_unlock_irq(&sem->wait_lock); 944 rwsem_set_reader_owned(sem); 945 lockevent_inc(rwsem_rlock_fast); 946 return sem; 947 } 948 adjustment += RWSEM_FLAG_WAITERS; 949 } 950 list_add_tail(&waiter.list, &sem->wait_list); 951 952 /* we're now waiting on the lock, but no longer actively locking */ 953 count = atomic_long_add_return(adjustment, &sem->count); 954 955 /* 956 * If there are no active locks, wake the front queued process(es). 957 * 958 * If there are no writers and we are first in the queue, 959 * wake our own waiter to join the existing active readers ! 960 */ 961 if (!(count & RWSEM_LOCK_MASK)) { 962 clear_nonspinnable(sem); 963 wake = true; 964 } 965 if (wake || (!(count & RWSEM_WRITER_MASK) && 966 (adjustment & RWSEM_FLAG_WAITERS))) 967 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 968 969 raw_spin_unlock_irq(&sem->wait_lock); 970 wake_up_q(&wake_q); 971 972 /* wait to be given the lock */ 973 for (;;) { 974 set_current_state(state); 975 if (!smp_load_acquire(&waiter.task)) { 976 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 977 break; 978 } 979 if (signal_pending_state(state, current)) { 980 raw_spin_lock_irq(&sem->wait_lock); 981 if (waiter.task) 982 goto out_nolock; 983 raw_spin_unlock_irq(&sem->wait_lock); 984 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 985 break; 986 } 987 schedule(); 988 lockevent_inc(rwsem_sleep_reader); 989 } 990 991 __set_current_state(TASK_RUNNING); 992 lockevent_inc(rwsem_rlock); 993 return sem; 994 995 out_nolock: 996 list_del(&waiter.list); 997 if (list_empty(&sem->wait_list)) { 998 atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF, 999 &sem->count); 1000 } 1001 raw_spin_unlock_irq(&sem->wait_lock); 1002 __set_current_state(TASK_RUNNING); 1003 lockevent_inc(rwsem_rlock_fail); 1004 return ERR_PTR(-EINTR); 1005 } 1006 1007 /* 1008 * Wait until we successfully acquire the write lock 1009 */ 1010 static struct rw_semaphore * 1011 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1012 { 1013 long count; 1014 enum writer_wait_state wstate; 1015 struct rwsem_waiter waiter; 1016 struct rw_semaphore *ret = sem; 1017 DEFINE_WAKE_Q(wake_q); 1018 1019 /* do optimistic spinning and steal lock if possible */ 1020 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { 1021 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1022 return sem; 1023 } 1024 1025 /* 1026 * Optimistic spinning failed, proceed to the slowpath 1027 * and block until we can acquire the sem. 1028 */ 1029 waiter.task = current; 1030 waiter.type = RWSEM_WAITING_FOR_WRITE; 1031 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1032 1033 raw_spin_lock_irq(&sem->wait_lock); 1034 1035 /* account for this before adding a new element to the list */ 1036 wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST; 1037 1038 list_add_tail(&waiter.list, &sem->wait_list); 1039 1040 /* we're now waiting on the lock */ 1041 if (wstate == WRITER_NOT_FIRST) { 1042 count = atomic_long_read(&sem->count); 1043 1044 /* 1045 * If there were already threads queued before us and: 1046 * 1) there are no active locks, wake the front 1047 * queued process(es) as the handoff bit might be set. 1048 * 2) there are no active writers and some readers, the lock 1049 * must be read owned; so we try to wake any read lock 1050 * waiters that were queued ahead of us. 1051 */ 1052 if (count & RWSEM_WRITER_MASK) 1053 goto wait; 1054 1055 rwsem_mark_wake(sem, (count & RWSEM_READER_MASK) 1056 ? RWSEM_WAKE_READERS 1057 : RWSEM_WAKE_ANY, &wake_q); 1058 1059 if (!wake_q_empty(&wake_q)) { 1060 /* 1061 * We want to minimize wait_lock hold time especially 1062 * when a large number of readers are to be woken up. 1063 */ 1064 raw_spin_unlock_irq(&sem->wait_lock); 1065 wake_up_q(&wake_q); 1066 wake_q_init(&wake_q); /* Used again, reinit */ 1067 raw_spin_lock_irq(&sem->wait_lock); 1068 } 1069 } else { 1070 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1071 } 1072 1073 wait: 1074 /* wait until we successfully acquire the lock */ 1075 set_current_state(state); 1076 for (;;) { 1077 if (rwsem_try_write_lock(sem, wstate)) { 1078 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1079 break; 1080 } 1081 1082 raw_spin_unlock_irq(&sem->wait_lock); 1083 1084 /* 1085 * After setting the handoff bit and failing to acquire 1086 * the lock, attempt to spin on owner to accelerate lock 1087 * transfer. If the previous owner is a on-cpu writer and it 1088 * has just released the lock, OWNER_NULL will be returned. 1089 * In this case, we attempt to acquire the lock again 1090 * without sleeping. 1091 */ 1092 if (wstate == WRITER_HANDOFF) { 1093 enum owner_state owner_state; 1094 1095 preempt_disable(); 1096 owner_state = rwsem_spin_on_owner(sem); 1097 preempt_enable(); 1098 1099 if (owner_state == OWNER_NULL) 1100 goto trylock_again; 1101 } 1102 1103 /* Block until there are no active lockers. */ 1104 for (;;) { 1105 if (signal_pending_state(state, current)) 1106 goto out_nolock; 1107 1108 schedule(); 1109 lockevent_inc(rwsem_sleep_writer); 1110 set_current_state(state); 1111 /* 1112 * If HANDOFF bit is set, unconditionally do 1113 * a trylock. 1114 */ 1115 if (wstate == WRITER_HANDOFF) 1116 break; 1117 1118 if ((wstate == WRITER_NOT_FIRST) && 1119 (rwsem_first_waiter(sem) == &waiter)) 1120 wstate = WRITER_FIRST; 1121 1122 count = atomic_long_read(&sem->count); 1123 if (!(count & RWSEM_LOCK_MASK)) 1124 break; 1125 1126 /* 1127 * The setting of the handoff bit is deferred 1128 * until rwsem_try_write_lock() is called. 1129 */ 1130 if ((wstate == WRITER_FIRST) && (rt_task(current) || 1131 time_after(jiffies, waiter.timeout))) { 1132 wstate = WRITER_HANDOFF; 1133 lockevent_inc(rwsem_wlock_handoff); 1134 break; 1135 } 1136 } 1137 trylock_again: 1138 raw_spin_lock_irq(&sem->wait_lock); 1139 } 1140 __set_current_state(TASK_RUNNING); 1141 list_del(&waiter.list); 1142 raw_spin_unlock_irq(&sem->wait_lock); 1143 lockevent_inc(rwsem_wlock); 1144 1145 return ret; 1146 1147 out_nolock: 1148 __set_current_state(TASK_RUNNING); 1149 raw_spin_lock_irq(&sem->wait_lock); 1150 list_del(&waiter.list); 1151 1152 if (unlikely(wstate == WRITER_HANDOFF)) 1153 atomic_long_add(-RWSEM_FLAG_HANDOFF, &sem->count); 1154 1155 if (list_empty(&sem->wait_list)) 1156 atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count); 1157 else 1158 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1159 raw_spin_unlock_irq(&sem->wait_lock); 1160 wake_up_q(&wake_q); 1161 lockevent_inc(rwsem_wlock_fail); 1162 1163 return ERR_PTR(-EINTR); 1164 } 1165 1166 /* 1167 * handle waking up a waiter on the semaphore 1168 * - up_read/up_write has decremented the active part of count if we come here 1169 */ 1170 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) 1171 { 1172 unsigned long flags; 1173 DEFINE_WAKE_Q(wake_q); 1174 1175 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1176 1177 if (!list_empty(&sem->wait_list)) 1178 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1179 1180 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1181 wake_up_q(&wake_q); 1182 1183 return sem; 1184 } 1185 1186 /* 1187 * downgrade a write lock into a read lock 1188 * - caller incremented waiting part of count and discovered it still negative 1189 * - just wake up any readers at the front of the queue 1190 */ 1191 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1192 { 1193 unsigned long flags; 1194 DEFINE_WAKE_Q(wake_q); 1195 1196 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1197 1198 if (!list_empty(&sem->wait_list)) 1199 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1200 1201 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1202 wake_up_q(&wake_q); 1203 1204 return sem; 1205 } 1206 1207 /* 1208 * lock for reading 1209 */ 1210 static inline int __down_read_common(struct rw_semaphore *sem, int state) 1211 { 1212 long count; 1213 1214 if (!rwsem_read_trylock(sem, &count)) { 1215 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) 1216 return -EINTR; 1217 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1218 } 1219 return 0; 1220 } 1221 1222 static inline void __down_read(struct rw_semaphore *sem) 1223 { 1224 __down_read_common(sem, TASK_UNINTERRUPTIBLE); 1225 } 1226 1227 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1228 { 1229 return __down_read_common(sem, TASK_INTERRUPTIBLE); 1230 } 1231 1232 static inline int __down_read_killable(struct rw_semaphore *sem) 1233 { 1234 return __down_read_common(sem, TASK_KILLABLE); 1235 } 1236 1237 static inline int __down_read_trylock(struct rw_semaphore *sem) 1238 { 1239 long tmp; 1240 1241 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1242 1243 /* 1244 * Optimize for the case when the rwsem is not locked at all. 1245 */ 1246 tmp = RWSEM_UNLOCKED_VALUE; 1247 do { 1248 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1249 tmp + RWSEM_READER_BIAS)) { 1250 rwsem_set_reader_owned(sem); 1251 return 1; 1252 } 1253 } while (!(tmp & RWSEM_READ_FAILED_MASK)); 1254 return 0; 1255 } 1256 1257 /* 1258 * lock for writing 1259 */ 1260 static inline int __down_write_common(struct rw_semaphore *sem, int state) 1261 { 1262 if (unlikely(!rwsem_write_trylock(sem))) { 1263 if (IS_ERR(rwsem_down_write_slowpath(sem, state))) 1264 return -EINTR; 1265 } 1266 1267 return 0; 1268 } 1269 1270 static inline void __down_write(struct rw_semaphore *sem) 1271 { 1272 __down_write_common(sem, TASK_UNINTERRUPTIBLE); 1273 } 1274 1275 static inline int __down_write_killable(struct rw_semaphore *sem) 1276 { 1277 return __down_write_common(sem, TASK_KILLABLE); 1278 } 1279 1280 static inline int __down_write_trylock(struct rw_semaphore *sem) 1281 { 1282 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1283 return rwsem_write_trylock(sem); 1284 } 1285 1286 /* 1287 * unlock after reading 1288 */ 1289 static inline void __up_read(struct rw_semaphore *sem) 1290 { 1291 long tmp; 1292 1293 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1294 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1295 1296 rwsem_clear_reader_owned(sem); 1297 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1298 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1299 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1300 RWSEM_FLAG_WAITERS)) { 1301 clear_nonspinnable(sem); 1302 rwsem_wake(sem); 1303 } 1304 } 1305 1306 /* 1307 * unlock after writing 1308 */ 1309 static inline void __up_write(struct rw_semaphore *sem) 1310 { 1311 long tmp; 1312 1313 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1314 /* 1315 * sem->owner may differ from current if the ownership is transferred 1316 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1317 */ 1318 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1319 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1320 1321 rwsem_clear_owner(sem); 1322 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1323 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1324 rwsem_wake(sem); 1325 } 1326 1327 /* 1328 * downgrade write lock to read lock 1329 */ 1330 static inline void __downgrade_write(struct rw_semaphore *sem) 1331 { 1332 long tmp; 1333 1334 /* 1335 * When downgrading from exclusive to shared ownership, 1336 * anything inside the write-locked region cannot leak 1337 * into the read side. In contrast, anything in the 1338 * read-locked region is ok to be re-ordered into the 1339 * write side. As such, rely on RELEASE semantics. 1340 */ 1341 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1342 tmp = atomic_long_fetch_add_release( 1343 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1344 rwsem_set_reader_owned(sem); 1345 if (tmp & RWSEM_FLAG_WAITERS) 1346 rwsem_downgrade_wake(sem); 1347 } 1348 1349 #else /* !CONFIG_PREEMPT_RT */ 1350 1351 #define RT_MUTEX_BUILD_MUTEX 1352 #include "rtmutex.c" 1353 1354 #define rwbase_set_and_save_current_state(state) \ 1355 set_current_state(state) 1356 1357 #define rwbase_restore_current_state() \ 1358 __set_current_state(TASK_RUNNING) 1359 1360 #define rwbase_rtmutex_lock_state(rtm, state) \ 1361 __rt_mutex_lock(rtm, state) 1362 1363 #define rwbase_rtmutex_slowlock_locked(rtm, state) \ 1364 __rt_mutex_slowlock_locked(rtm, NULL, state) 1365 1366 #define rwbase_rtmutex_unlock(rtm) \ 1367 __rt_mutex_unlock(rtm) 1368 1369 #define rwbase_rtmutex_trylock(rtm) \ 1370 __rt_mutex_trylock(rtm) 1371 1372 #define rwbase_signal_pending_state(state, current) \ 1373 signal_pending_state(state, current) 1374 1375 #define rwbase_schedule() \ 1376 schedule() 1377 1378 #include "rwbase_rt.c" 1379 1380 void __init_rwsem(struct rw_semaphore *sem, const char *name, 1381 struct lock_class_key *key) 1382 { 1383 init_rwbase_rt(&(sem)->rwbase); 1384 1385 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1386 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 1387 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 1388 #endif 1389 } 1390 EXPORT_SYMBOL(__init_rwsem); 1391 1392 static inline void __down_read(struct rw_semaphore *sem) 1393 { 1394 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1395 } 1396 1397 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1398 { 1399 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE); 1400 } 1401 1402 static inline int __down_read_killable(struct rw_semaphore *sem) 1403 { 1404 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE); 1405 } 1406 1407 static inline int __down_read_trylock(struct rw_semaphore *sem) 1408 { 1409 return rwbase_read_trylock(&sem->rwbase); 1410 } 1411 1412 static inline void __up_read(struct rw_semaphore *sem) 1413 { 1414 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL); 1415 } 1416 1417 static inline void __sched __down_write(struct rw_semaphore *sem) 1418 { 1419 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1420 } 1421 1422 static inline int __sched __down_write_killable(struct rw_semaphore *sem) 1423 { 1424 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE); 1425 } 1426 1427 static inline int __down_write_trylock(struct rw_semaphore *sem) 1428 { 1429 return rwbase_write_trylock(&sem->rwbase); 1430 } 1431 1432 static inline void __up_write(struct rw_semaphore *sem) 1433 { 1434 rwbase_write_unlock(&sem->rwbase); 1435 } 1436 1437 static inline void __downgrade_write(struct rw_semaphore *sem) 1438 { 1439 rwbase_write_downgrade(&sem->rwbase); 1440 } 1441 1442 /* Debug stubs for the common API */ 1443 #define DEBUG_RWSEMS_WARN_ON(c, sem) 1444 1445 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 1446 struct task_struct *owner) 1447 { 1448 } 1449 1450 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 1451 { 1452 int count = atomic_read(&sem->rwbase.readers); 1453 1454 return count < 0 && count != READER_BIAS; 1455 } 1456 1457 #endif /* CONFIG_PREEMPT_RT */ 1458 1459 /* 1460 * lock for reading 1461 */ 1462 void __sched down_read(struct rw_semaphore *sem) 1463 { 1464 might_sleep(); 1465 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1466 1467 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1468 } 1469 EXPORT_SYMBOL(down_read); 1470 1471 int __sched down_read_interruptible(struct rw_semaphore *sem) 1472 { 1473 might_sleep(); 1474 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1475 1476 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { 1477 rwsem_release(&sem->dep_map, _RET_IP_); 1478 return -EINTR; 1479 } 1480 1481 return 0; 1482 } 1483 EXPORT_SYMBOL(down_read_interruptible); 1484 1485 int __sched down_read_killable(struct rw_semaphore *sem) 1486 { 1487 might_sleep(); 1488 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1489 1490 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1491 rwsem_release(&sem->dep_map, _RET_IP_); 1492 return -EINTR; 1493 } 1494 1495 return 0; 1496 } 1497 EXPORT_SYMBOL(down_read_killable); 1498 1499 /* 1500 * trylock for reading -- returns 1 if successful, 0 if contention 1501 */ 1502 int down_read_trylock(struct rw_semaphore *sem) 1503 { 1504 int ret = __down_read_trylock(sem); 1505 1506 if (ret == 1) 1507 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1508 return ret; 1509 } 1510 EXPORT_SYMBOL(down_read_trylock); 1511 1512 /* 1513 * lock for writing 1514 */ 1515 void __sched down_write(struct rw_semaphore *sem) 1516 { 1517 might_sleep(); 1518 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1519 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1520 } 1521 EXPORT_SYMBOL(down_write); 1522 1523 /* 1524 * lock for writing 1525 */ 1526 int __sched down_write_killable(struct rw_semaphore *sem) 1527 { 1528 might_sleep(); 1529 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1530 1531 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1532 __down_write_killable)) { 1533 rwsem_release(&sem->dep_map, _RET_IP_); 1534 return -EINTR; 1535 } 1536 1537 return 0; 1538 } 1539 EXPORT_SYMBOL(down_write_killable); 1540 1541 /* 1542 * trylock for writing -- returns 1 if successful, 0 if contention 1543 */ 1544 int down_write_trylock(struct rw_semaphore *sem) 1545 { 1546 int ret = __down_write_trylock(sem); 1547 1548 if (ret == 1) 1549 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1550 1551 return ret; 1552 } 1553 EXPORT_SYMBOL(down_write_trylock); 1554 1555 /* 1556 * release a read lock 1557 */ 1558 void up_read(struct rw_semaphore *sem) 1559 { 1560 rwsem_release(&sem->dep_map, _RET_IP_); 1561 __up_read(sem); 1562 } 1563 EXPORT_SYMBOL(up_read); 1564 1565 /* 1566 * release a write lock 1567 */ 1568 void up_write(struct rw_semaphore *sem) 1569 { 1570 rwsem_release(&sem->dep_map, _RET_IP_); 1571 __up_write(sem); 1572 } 1573 EXPORT_SYMBOL(up_write); 1574 1575 /* 1576 * downgrade write lock to read lock 1577 */ 1578 void downgrade_write(struct rw_semaphore *sem) 1579 { 1580 lock_downgrade(&sem->dep_map, _RET_IP_); 1581 __downgrade_write(sem); 1582 } 1583 EXPORT_SYMBOL(downgrade_write); 1584 1585 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1586 1587 void down_read_nested(struct rw_semaphore *sem, int subclass) 1588 { 1589 might_sleep(); 1590 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1591 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1592 } 1593 EXPORT_SYMBOL(down_read_nested); 1594 1595 int down_read_killable_nested(struct rw_semaphore *sem, int subclass) 1596 { 1597 might_sleep(); 1598 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1599 1600 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1601 rwsem_release(&sem->dep_map, _RET_IP_); 1602 return -EINTR; 1603 } 1604 1605 return 0; 1606 } 1607 EXPORT_SYMBOL(down_read_killable_nested); 1608 1609 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1610 { 1611 might_sleep(); 1612 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1613 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1614 } 1615 EXPORT_SYMBOL(_down_write_nest_lock); 1616 1617 void down_read_non_owner(struct rw_semaphore *sem) 1618 { 1619 might_sleep(); 1620 __down_read(sem); 1621 __rwsem_set_reader_owned(sem, NULL); 1622 } 1623 EXPORT_SYMBOL(down_read_non_owner); 1624 1625 void down_write_nested(struct rw_semaphore *sem, int subclass) 1626 { 1627 might_sleep(); 1628 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1629 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1630 } 1631 EXPORT_SYMBOL(down_write_nested); 1632 1633 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1634 { 1635 might_sleep(); 1636 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1637 1638 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1639 __down_write_killable)) { 1640 rwsem_release(&sem->dep_map, _RET_IP_); 1641 return -EINTR; 1642 } 1643 1644 return 0; 1645 } 1646 EXPORT_SYMBOL(down_write_killable_nested); 1647 1648 void up_read_non_owner(struct rw_semaphore *sem) 1649 { 1650 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1651 __up_read(sem); 1652 } 1653 EXPORT_SYMBOL(up_read_non_owner); 1654 1655 #endif 1656