1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells ([email protected]). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <[email protected]> 8 * and Michel Lespinasse <[email protected]> 9 * 10 * Optimistic spinning by Tim Chen <[email protected]> 11 * and Davidlohr Bueso <[email protected]>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <[email protected]> and 15 * Peter Zijlstra <[email protected]>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 #include <trace/events/lock.h> 31 32 #ifndef CONFIG_PREEMPT_RT 33 #include "lock_events.h" 34 35 /* 36 * The least significant 2 bits of the owner value has the following 37 * meanings when set. 38 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers 39 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock 40 * 41 * When the rwsem is reader-owned and a spinning writer has timed out, 42 * the nonspinnable bit will be set to disable optimistic spinning. 43 44 * When a writer acquires a rwsem, it puts its task_struct pointer 45 * into the owner field. It is cleared after an unlock. 46 * 47 * When a reader acquires a rwsem, it will also puts its task_struct 48 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 49 * On unlock, the owner field will largely be left untouched. So 50 * for a free or reader-owned rwsem, the owner value may contain 51 * information about the last reader that acquires the rwsem. 52 * 53 * That information may be helpful in debugging cases where the system 54 * seems to hang on a reader owned rwsem especially if only one reader 55 * is involved. Ideally we would like to track all the readers that own 56 * a rwsem, but the overhead is simply too big. 57 * 58 * A fast path reader optimistic lock stealing is supported when the rwsem 59 * is previously owned by a writer and the following conditions are met: 60 * - rwsem is not currently writer owned 61 * - the handoff isn't set. 62 */ 63 #define RWSEM_READER_OWNED (1UL << 0) 64 #define RWSEM_NONSPINNABLE (1UL << 1) 65 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 66 67 #ifdef CONFIG_DEBUG_RWSEMS 68 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 69 if (!debug_locks_silent && \ 70 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 71 #c, atomic_long_read(&(sem)->count), \ 72 (unsigned long) sem->magic, \ 73 atomic_long_read(&(sem)->owner), (long)current, \ 74 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 75 debug_locks_off(); \ 76 } while (0) 77 #else 78 # define DEBUG_RWSEMS_WARN_ON(c, sem) 79 #endif 80 81 /* 82 * On 64-bit architectures, the bit definitions of the count are: 83 * 84 * Bit 0 - writer locked bit 85 * Bit 1 - waiters present bit 86 * Bit 2 - lock handoff bit 87 * Bits 3-7 - reserved 88 * Bits 8-62 - 55-bit reader count 89 * Bit 63 - read fail bit 90 * 91 * On 32-bit architectures, the bit definitions of the count are: 92 * 93 * Bit 0 - writer locked bit 94 * Bit 1 - waiters present bit 95 * Bit 2 - lock handoff bit 96 * Bits 3-7 - reserved 97 * Bits 8-30 - 23-bit reader count 98 * Bit 31 - read fail bit 99 * 100 * It is not likely that the most significant bit (read fail bit) will ever 101 * be set. This guard bit is still checked anyway in the down_read() fastpath 102 * just in case we need to use up more of the reader bits for other purpose 103 * in the future. 104 * 105 * atomic_long_fetch_add() is used to obtain reader lock, whereas 106 * atomic_long_cmpxchg() will be used to obtain writer lock. 107 * 108 * There are three places where the lock handoff bit may be set or cleared. 109 * 1) rwsem_mark_wake() for readers -- set, clear 110 * 2) rwsem_try_write_lock() for writers -- set, clear 111 * 3) rwsem_del_waiter() -- clear 112 * 113 * For all the above cases, wait_lock will be held. A writer must also 114 * be the first one in the wait_list to be eligible for setting the handoff 115 * bit. So concurrent setting/clearing of handoff bit is not possible. 116 */ 117 #define RWSEM_WRITER_LOCKED (1UL << 0) 118 #define RWSEM_FLAG_WAITERS (1UL << 1) 119 #define RWSEM_FLAG_HANDOFF (1UL << 2) 120 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 121 122 #define RWSEM_READER_SHIFT 8 123 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 124 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 125 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 126 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 127 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 128 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 129 130 /* 131 * All writes to owner are protected by WRITE_ONCE() to make sure that 132 * store tearing can't happen as optimistic spinners may read and use 133 * the owner value concurrently without lock. Read from owner, however, 134 * may not need READ_ONCE() as long as the pointer value is only used 135 * for comparison and isn't being dereferenced. 136 * 137 * Both rwsem_{set,clear}_owner() functions should be in the same 138 * preempt disable section as the atomic op that changes sem->count. 139 */ 140 static inline void rwsem_set_owner(struct rw_semaphore *sem) 141 { 142 lockdep_assert_preemption_disabled(); 143 atomic_long_set(&sem->owner, (long)current); 144 } 145 146 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 147 { 148 lockdep_assert_preemption_disabled(); 149 atomic_long_set(&sem->owner, 0); 150 } 151 152 /* 153 * Test the flags in the owner field. 154 */ 155 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 156 { 157 return atomic_long_read(&sem->owner) & flags; 158 } 159 160 /* 161 * The task_struct pointer of the last owning reader will be left in 162 * the owner field. 163 * 164 * Note that the owner value just indicates the task has owned the rwsem 165 * previously, it may not be the real owner or one of the real owners 166 * anymore when that field is examined, so take it with a grain of salt. 167 * 168 * The reader non-spinnable bit is preserved. 169 */ 170 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 171 struct task_struct *owner) 172 { 173 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 174 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); 175 176 atomic_long_set(&sem->owner, val); 177 } 178 179 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 180 { 181 __rwsem_set_reader_owned(sem, current); 182 } 183 184 /* 185 * Return true if the rwsem is owned by a reader. 186 */ 187 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 188 { 189 #ifdef CONFIG_DEBUG_RWSEMS 190 /* 191 * Check the count to see if it is write-locked. 192 */ 193 long count = atomic_long_read(&sem->count); 194 195 if (count & RWSEM_WRITER_MASK) 196 return false; 197 #endif 198 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 199 } 200 201 #ifdef CONFIG_DEBUG_RWSEMS 202 /* 203 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 204 * is a task pointer in owner of a reader-owned rwsem, it will be the 205 * real owner or one of the real owners. The only exception is when the 206 * unlock is done by up_read_non_owner(). 207 */ 208 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 209 { 210 unsigned long val = atomic_long_read(&sem->owner); 211 212 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 213 if (atomic_long_try_cmpxchg(&sem->owner, &val, 214 val & RWSEM_OWNER_FLAGS_MASK)) 215 return; 216 } 217 } 218 #else 219 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 220 { 221 } 222 #endif 223 224 /* 225 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 226 * remains set. Otherwise, the operation will be aborted. 227 */ 228 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 229 { 230 unsigned long owner = atomic_long_read(&sem->owner); 231 232 do { 233 if (!(owner & RWSEM_READER_OWNED)) 234 break; 235 if (owner & RWSEM_NONSPINNABLE) 236 break; 237 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 238 owner | RWSEM_NONSPINNABLE)); 239 } 240 241 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) 242 { 243 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 244 245 if (WARN_ON_ONCE(*cntp < 0)) 246 rwsem_set_nonspinnable(sem); 247 248 if (!(*cntp & RWSEM_READ_FAILED_MASK)) { 249 rwsem_set_reader_owned(sem); 250 return true; 251 } 252 253 return false; 254 } 255 256 static inline bool rwsem_write_trylock(struct rw_semaphore *sem) 257 { 258 long tmp = RWSEM_UNLOCKED_VALUE; 259 bool ret = false; 260 261 preempt_disable(); 262 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { 263 rwsem_set_owner(sem); 264 ret = true; 265 } 266 267 preempt_enable(); 268 return ret; 269 } 270 271 /* 272 * Return just the real task structure pointer of the owner 273 */ 274 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 275 { 276 return (struct task_struct *) 277 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 278 } 279 280 /* 281 * Return the real task structure pointer of the owner and the embedded 282 * flags in the owner. pflags must be non-NULL. 283 */ 284 static inline struct task_struct * 285 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 286 { 287 unsigned long owner = atomic_long_read(&sem->owner); 288 289 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 290 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 291 } 292 293 /* 294 * Guide to the rw_semaphore's count field. 295 * 296 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 297 * by a writer. 298 * 299 * The lock is owned by readers when 300 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 301 * (2) some of the reader bits are set in count, and 302 * (3) the owner field has RWSEM_READ_OWNED bit set. 303 * 304 * Having some reader bits set is not enough to guarantee a readers owned 305 * lock as the readers may be in the process of backing out from the count 306 * and a writer has just released the lock. So another writer may steal 307 * the lock immediately after that. 308 */ 309 310 /* 311 * Initialize an rwsem: 312 */ 313 void __init_rwsem(struct rw_semaphore *sem, const char *name, 314 struct lock_class_key *key) 315 { 316 #ifdef CONFIG_DEBUG_LOCK_ALLOC 317 /* 318 * Make sure we are not reinitializing a held semaphore: 319 */ 320 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 321 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 322 #endif 323 #ifdef CONFIG_DEBUG_RWSEMS 324 sem->magic = sem; 325 #endif 326 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 327 raw_spin_lock_init(&sem->wait_lock); 328 INIT_LIST_HEAD(&sem->wait_list); 329 atomic_long_set(&sem->owner, 0L); 330 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 331 osq_lock_init(&sem->osq); 332 #endif 333 } 334 EXPORT_SYMBOL(__init_rwsem); 335 336 enum rwsem_waiter_type { 337 RWSEM_WAITING_FOR_WRITE, 338 RWSEM_WAITING_FOR_READ 339 }; 340 341 struct rwsem_waiter { 342 struct list_head list; 343 struct task_struct *task; 344 enum rwsem_waiter_type type; 345 unsigned long timeout; 346 bool handoff_set; 347 }; 348 #define rwsem_first_waiter(sem) \ 349 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 350 351 enum rwsem_wake_type { 352 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 353 RWSEM_WAKE_READERS, /* Wake readers only */ 354 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 355 }; 356 357 /* 358 * The typical HZ value is either 250 or 1000. So set the minimum waiting 359 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 360 * queue before initiating the handoff protocol. 361 */ 362 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 363 364 /* 365 * Magic number to batch-wakeup waiting readers, even when writers are 366 * also present in the queue. This both limits the amount of work the 367 * waking thread must do and also prevents any potential counter overflow, 368 * however unlikely. 369 */ 370 #define MAX_READERS_WAKEUP 0x100 371 372 static inline void 373 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 374 { 375 lockdep_assert_held(&sem->wait_lock); 376 list_add_tail(&waiter->list, &sem->wait_list); 377 /* caller will set RWSEM_FLAG_WAITERS */ 378 } 379 380 /* 381 * Remove a waiter from the wait_list and clear flags. 382 * 383 * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of 384 * this function. Modify with care. 385 * 386 * Return: true if wait_list isn't empty and false otherwise 387 */ 388 static inline bool 389 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter) 390 { 391 lockdep_assert_held(&sem->wait_lock); 392 list_del(&waiter->list); 393 if (likely(!list_empty(&sem->wait_list))) 394 return true; 395 396 atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count); 397 return false; 398 } 399 400 /* 401 * handle the lock release when processes blocked on it that can now run 402 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 403 * have been set. 404 * - there must be someone on the queue 405 * - the wait_lock must be held by the caller 406 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 407 * to actually wakeup the blocked task(s) and drop the reference count, 408 * preferably when the wait_lock is released 409 * - woken process blocks are discarded from the list after having task zeroed 410 * - writers are only marked woken if downgrading is false 411 * 412 * Implies rwsem_del_waiter() for all woken readers. 413 */ 414 static void rwsem_mark_wake(struct rw_semaphore *sem, 415 enum rwsem_wake_type wake_type, 416 struct wake_q_head *wake_q) 417 { 418 struct rwsem_waiter *waiter, *tmp; 419 long oldcount, woken = 0, adjustment = 0; 420 struct list_head wlist; 421 422 lockdep_assert_held(&sem->wait_lock); 423 424 /* 425 * Take a peek at the queue head waiter such that we can determine 426 * the wakeup(s) to perform. 427 */ 428 waiter = rwsem_first_waiter(sem); 429 430 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 431 if (wake_type == RWSEM_WAKE_ANY) { 432 /* 433 * Mark writer at the front of the queue for wakeup. 434 * Until the task is actually later awoken later by 435 * the caller, other writers are able to steal it. 436 * Readers, on the other hand, will block as they 437 * will notice the queued writer. 438 */ 439 wake_q_add(wake_q, waiter->task); 440 lockevent_inc(rwsem_wake_writer); 441 } 442 443 return; 444 } 445 446 /* 447 * No reader wakeup if there are too many of them already. 448 */ 449 if (unlikely(atomic_long_read(&sem->count) < 0)) 450 return; 451 452 /* 453 * Writers might steal the lock before we grant it to the next reader. 454 * We prefer to do the first reader grant before counting readers 455 * so we can bail out early if a writer stole the lock. 456 */ 457 if (wake_type != RWSEM_WAKE_READ_OWNED) { 458 struct task_struct *owner; 459 460 adjustment = RWSEM_READER_BIAS; 461 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 462 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 463 /* 464 * When we've been waiting "too" long (for writers 465 * to give up the lock), request a HANDOFF to 466 * force the issue. 467 */ 468 if (time_after(jiffies, waiter->timeout)) { 469 if (!(oldcount & RWSEM_FLAG_HANDOFF)) { 470 adjustment -= RWSEM_FLAG_HANDOFF; 471 lockevent_inc(rwsem_rlock_handoff); 472 } 473 waiter->handoff_set = true; 474 } 475 476 atomic_long_add(-adjustment, &sem->count); 477 return; 478 } 479 /* 480 * Set it to reader-owned to give spinners an early 481 * indication that readers now have the lock. 482 * The reader nonspinnable bit seen at slowpath entry of 483 * the reader is copied over. 484 */ 485 owner = waiter->task; 486 __rwsem_set_reader_owned(sem, owner); 487 } 488 489 /* 490 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 491 * queue. We know that the woken will be at least 1 as we accounted 492 * for above. Note we increment the 'active part' of the count by the 493 * number of readers before waking any processes up. 494 * 495 * This is an adaptation of the phase-fair R/W locks where at the 496 * reader phase (first waiter is a reader), all readers are eligible 497 * to acquire the lock at the same time irrespective of their order 498 * in the queue. The writers acquire the lock according to their 499 * order in the queue. 500 * 501 * We have to do wakeup in 2 passes to prevent the possibility that 502 * the reader count may be decremented before it is incremented. It 503 * is because the to-be-woken waiter may not have slept yet. So it 504 * may see waiter->task got cleared, finish its critical section and 505 * do an unlock before the reader count increment. 506 * 507 * 1) Collect the read-waiters in a separate list, count them and 508 * fully increment the reader count in rwsem. 509 * 2) For each waiters in the new list, clear waiter->task and 510 * put them into wake_q to be woken up later. 511 */ 512 INIT_LIST_HEAD(&wlist); 513 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 514 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 515 continue; 516 517 woken++; 518 list_move_tail(&waiter->list, &wlist); 519 520 /* 521 * Limit # of readers that can be woken up per wakeup call. 522 */ 523 if (unlikely(woken >= MAX_READERS_WAKEUP)) 524 break; 525 } 526 527 adjustment = woken * RWSEM_READER_BIAS - adjustment; 528 lockevent_cond_inc(rwsem_wake_reader, woken); 529 530 oldcount = atomic_long_read(&sem->count); 531 if (list_empty(&sem->wait_list)) { 532 /* 533 * Combined with list_move_tail() above, this implies 534 * rwsem_del_waiter(). 535 */ 536 adjustment -= RWSEM_FLAG_WAITERS; 537 if (oldcount & RWSEM_FLAG_HANDOFF) 538 adjustment -= RWSEM_FLAG_HANDOFF; 539 } else if (woken) { 540 /* 541 * When we've woken a reader, we no longer need to force 542 * writers to give up the lock and we can clear HANDOFF. 543 */ 544 if (oldcount & RWSEM_FLAG_HANDOFF) 545 adjustment -= RWSEM_FLAG_HANDOFF; 546 } 547 548 if (adjustment) 549 atomic_long_add(adjustment, &sem->count); 550 551 /* 2nd pass */ 552 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 553 struct task_struct *tsk; 554 555 tsk = waiter->task; 556 get_task_struct(tsk); 557 558 /* 559 * Ensure calling get_task_struct() before setting the reader 560 * waiter to nil such that rwsem_down_read_slowpath() cannot 561 * race with do_exit() by always holding a reference count 562 * to the task to wakeup. 563 */ 564 smp_store_release(&waiter->task, NULL); 565 /* 566 * Ensure issuing the wakeup (either by us or someone else) 567 * after setting the reader waiter to nil. 568 */ 569 wake_q_add_safe(wake_q, tsk); 570 } 571 } 572 573 /* 574 * Remove a waiter and try to wake up other waiters in the wait queue 575 * This function is called from the out_nolock path of both the reader and 576 * writer slowpaths with wait_lock held. It releases the wait_lock and 577 * optionally wake up waiters before it returns. 578 */ 579 static inline void 580 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter, 581 struct wake_q_head *wake_q) 582 __releases(&sem->wait_lock) 583 { 584 bool first = rwsem_first_waiter(sem) == waiter; 585 586 wake_q_init(wake_q); 587 588 /* 589 * If the wait_list isn't empty and the waiter to be deleted is 590 * the first waiter, we wake up the remaining waiters as they may 591 * be eligible to acquire or spin on the lock. 592 */ 593 if (rwsem_del_waiter(sem, waiter) && first) 594 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q); 595 raw_spin_unlock_irq(&sem->wait_lock); 596 if (!wake_q_empty(wake_q)) 597 wake_up_q(wake_q); 598 } 599 600 /* 601 * This function must be called with the sem->wait_lock held to prevent 602 * race conditions between checking the rwsem wait list and setting the 603 * sem->count accordingly. 604 * 605 * Implies rwsem_del_waiter() on success. 606 */ 607 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 608 struct rwsem_waiter *waiter) 609 { 610 struct rwsem_waiter *first = rwsem_first_waiter(sem); 611 long count, new; 612 613 lockdep_assert_held(&sem->wait_lock); 614 615 count = atomic_long_read(&sem->count); 616 do { 617 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 618 619 if (has_handoff) { 620 /* 621 * Honor handoff bit and yield only when the first 622 * waiter is the one that set it. Otherwisee, we 623 * still try to acquire the rwsem. 624 */ 625 if (first->handoff_set && (waiter != first)) 626 return false; 627 } 628 629 new = count; 630 631 if (count & RWSEM_LOCK_MASK) { 632 /* 633 * A waiter (first or not) can set the handoff bit 634 * if it is an RT task or wait in the wait queue 635 * for too long. 636 */ 637 if (has_handoff || (!rt_task(waiter->task) && 638 !time_after(jiffies, waiter->timeout))) 639 return false; 640 641 new |= RWSEM_FLAG_HANDOFF; 642 } else { 643 new |= RWSEM_WRITER_LOCKED; 644 new &= ~RWSEM_FLAG_HANDOFF; 645 646 if (list_is_singular(&sem->wait_list)) 647 new &= ~RWSEM_FLAG_WAITERS; 648 } 649 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 650 651 /* 652 * We have either acquired the lock with handoff bit cleared or set 653 * the handoff bit. Only the first waiter can have its handoff_set 654 * set here to enable optimistic spinning in slowpath loop. 655 */ 656 if (new & RWSEM_FLAG_HANDOFF) { 657 first->handoff_set = true; 658 lockevent_inc(rwsem_wlock_handoff); 659 return false; 660 } 661 662 /* 663 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on 664 * success. 665 */ 666 list_del(&waiter->list); 667 rwsem_set_owner(sem); 668 return true; 669 } 670 671 /* 672 * The rwsem_spin_on_owner() function returns the following 4 values 673 * depending on the lock owner state. 674 * OWNER_NULL : owner is currently NULL 675 * OWNER_WRITER: when owner changes and is a writer 676 * OWNER_READER: when owner changes and the new owner may be a reader. 677 * OWNER_NONSPINNABLE: 678 * when optimistic spinning has to stop because either the 679 * owner stops running, is unknown, or its timeslice has 680 * been used up. 681 */ 682 enum owner_state { 683 OWNER_NULL = 1 << 0, 684 OWNER_WRITER = 1 << 1, 685 OWNER_READER = 1 << 2, 686 OWNER_NONSPINNABLE = 1 << 3, 687 }; 688 689 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 690 /* 691 * Try to acquire write lock before the writer has been put on wait queue. 692 */ 693 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 694 { 695 long count = atomic_long_read(&sem->count); 696 697 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 698 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 699 count | RWSEM_WRITER_LOCKED)) { 700 rwsem_set_owner(sem); 701 lockevent_inc(rwsem_opt_lock); 702 return true; 703 } 704 } 705 return false; 706 } 707 708 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 709 { 710 struct task_struct *owner; 711 unsigned long flags; 712 bool ret = true; 713 714 if (need_resched()) { 715 lockevent_inc(rwsem_opt_fail); 716 return false; 717 } 718 719 preempt_disable(); 720 /* 721 * Disable preemption is equal to the RCU read-side crital section, 722 * thus the task_strcut structure won't go away. 723 */ 724 owner = rwsem_owner_flags(sem, &flags); 725 /* 726 * Don't check the read-owner as the entry may be stale. 727 */ 728 if ((flags & RWSEM_NONSPINNABLE) || 729 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 730 ret = false; 731 preempt_enable(); 732 733 lockevent_cond_inc(rwsem_opt_fail, !ret); 734 return ret; 735 } 736 737 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 738 739 static inline enum owner_state 740 rwsem_owner_state(struct task_struct *owner, unsigned long flags) 741 { 742 if (flags & RWSEM_NONSPINNABLE) 743 return OWNER_NONSPINNABLE; 744 745 if (flags & RWSEM_READER_OWNED) 746 return OWNER_READER; 747 748 return owner ? OWNER_WRITER : OWNER_NULL; 749 } 750 751 static noinline enum owner_state 752 rwsem_spin_on_owner(struct rw_semaphore *sem) 753 { 754 struct task_struct *new, *owner; 755 unsigned long flags, new_flags; 756 enum owner_state state; 757 758 lockdep_assert_preemption_disabled(); 759 760 owner = rwsem_owner_flags(sem, &flags); 761 state = rwsem_owner_state(owner, flags); 762 if (state != OWNER_WRITER) 763 return state; 764 765 for (;;) { 766 /* 767 * When a waiting writer set the handoff flag, it may spin 768 * on the owner as well. Once that writer acquires the lock, 769 * we can spin on it. So we don't need to quit even when the 770 * handoff bit is set. 771 */ 772 new = rwsem_owner_flags(sem, &new_flags); 773 if ((new != owner) || (new_flags != flags)) { 774 state = rwsem_owner_state(new, new_flags); 775 break; 776 } 777 778 /* 779 * Ensure we emit the owner->on_cpu, dereference _after_ 780 * checking sem->owner still matches owner, if that fails, 781 * owner might point to free()d memory, if it still matches, 782 * our spinning context already disabled preemption which is 783 * equal to RCU read-side crital section ensures the memory 784 * stays valid. 785 */ 786 barrier(); 787 788 if (need_resched() || !owner_on_cpu(owner)) { 789 state = OWNER_NONSPINNABLE; 790 break; 791 } 792 793 cpu_relax(); 794 } 795 796 return state; 797 } 798 799 /* 800 * Calculate reader-owned rwsem spinning threshold for writer 801 * 802 * The more readers own the rwsem, the longer it will take for them to 803 * wind down and free the rwsem. So the empirical formula used to 804 * determine the actual spinning time limit here is: 805 * 806 * Spinning threshold = (10 + nr_readers/2)us 807 * 808 * The limit is capped to a maximum of 25us (30 readers). This is just 809 * a heuristic and is subjected to change in the future. 810 */ 811 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 812 { 813 long count = atomic_long_read(&sem->count); 814 int readers = count >> RWSEM_READER_SHIFT; 815 u64 delta; 816 817 if (readers > 30) 818 readers = 30; 819 delta = (20 + readers) * NSEC_PER_USEC / 2; 820 821 return sched_clock() + delta; 822 } 823 824 static bool rwsem_optimistic_spin(struct rw_semaphore *sem) 825 { 826 bool taken = false; 827 int prev_owner_state = OWNER_NULL; 828 int loop = 0; 829 u64 rspin_threshold = 0; 830 831 preempt_disable(); 832 833 /* sem->wait_lock should not be held when doing optimistic spinning */ 834 if (!osq_lock(&sem->osq)) 835 goto done; 836 837 /* 838 * Optimistically spin on the owner field and attempt to acquire the 839 * lock whenever the owner changes. Spinning will be stopped when: 840 * 1) the owning writer isn't running; or 841 * 2) readers own the lock and spinning time has exceeded limit. 842 */ 843 for (;;) { 844 enum owner_state owner_state; 845 846 owner_state = rwsem_spin_on_owner(sem); 847 if (!(owner_state & OWNER_SPINNABLE)) 848 break; 849 850 /* 851 * Try to acquire the lock 852 */ 853 taken = rwsem_try_write_lock_unqueued(sem); 854 855 if (taken) 856 break; 857 858 /* 859 * Time-based reader-owned rwsem optimistic spinning 860 */ 861 if (owner_state == OWNER_READER) { 862 /* 863 * Re-initialize rspin_threshold every time when 864 * the owner state changes from non-reader to reader. 865 * This allows a writer to steal the lock in between 866 * 2 reader phases and have the threshold reset at 867 * the beginning of the 2nd reader phase. 868 */ 869 if (prev_owner_state != OWNER_READER) { 870 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 871 break; 872 rspin_threshold = rwsem_rspin_threshold(sem); 873 loop = 0; 874 } 875 876 /* 877 * Check time threshold once every 16 iterations to 878 * avoid calling sched_clock() too frequently so 879 * as to reduce the average latency between the times 880 * when the lock becomes free and when the spinner 881 * is ready to do a trylock. 882 */ 883 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 884 rwsem_set_nonspinnable(sem); 885 lockevent_inc(rwsem_opt_nospin); 886 break; 887 } 888 } 889 890 /* 891 * An RT task cannot do optimistic spinning if it cannot 892 * be sure the lock holder is running or live-lock may 893 * happen if the current task and the lock holder happen 894 * to run in the same CPU. However, aborting optimistic 895 * spinning while a NULL owner is detected may miss some 896 * opportunity where spinning can continue without causing 897 * problem. 898 * 899 * There are 2 possible cases where an RT task may be able 900 * to continue spinning. 901 * 902 * 1) The lock owner is in the process of releasing the 903 * lock, sem->owner is cleared but the lock has not 904 * been released yet. 905 * 2) The lock was free and owner cleared, but another 906 * task just comes in and acquire the lock before 907 * we try to get it. The new owner may be a spinnable 908 * writer. 909 * 910 * To take advantage of two scenarios listed above, the RT 911 * task is made to retry one more time to see if it can 912 * acquire the lock or continue spinning on the new owning 913 * writer. Of course, if the time lag is long enough or the 914 * new owner is not a writer or spinnable, the RT task will 915 * quit spinning. 916 * 917 * If the owner is a writer, the need_resched() check is 918 * done inside rwsem_spin_on_owner(). If the owner is not 919 * a writer, need_resched() check needs to be done here. 920 */ 921 if (owner_state != OWNER_WRITER) { 922 if (need_resched()) 923 break; 924 if (rt_task(current) && 925 (prev_owner_state != OWNER_WRITER)) 926 break; 927 } 928 prev_owner_state = owner_state; 929 930 /* 931 * The cpu_relax() call is a compiler barrier which forces 932 * everything in this loop to be re-loaded. We don't need 933 * memory barriers as we'll eventually observe the right 934 * values at the cost of a few extra spins. 935 */ 936 cpu_relax(); 937 } 938 osq_unlock(&sem->osq); 939 done: 940 preempt_enable(); 941 lockevent_cond_inc(rwsem_opt_fail, !taken); 942 return taken; 943 } 944 945 /* 946 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should 947 * only be called when the reader count reaches 0. 948 */ 949 static inline void clear_nonspinnable(struct rw_semaphore *sem) 950 { 951 if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))) 952 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); 953 } 954 955 #else 956 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 957 { 958 return false; 959 } 960 961 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) 962 { 963 return false; 964 } 965 966 static inline void clear_nonspinnable(struct rw_semaphore *sem) { } 967 968 static inline enum owner_state 969 rwsem_spin_on_owner(struct rw_semaphore *sem) 970 { 971 return OWNER_NONSPINNABLE; 972 } 973 #endif 974 975 /* 976 * Prepare to wake up waiter(s) in the wait queue by putting them into the 977 * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely 978 * reader-owned, wake up read lock waiters in queue front or wake up any 979 * front waiter otherwise. 980 981 * This is being called from both reader and writer slow paths. 982 */ 983 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count, 984 struct wake_q_head *wake_q) 985 { 986 enum rwsem_wake_type wake_type; 987 988 if (count & RWSEM_WRITER_MASK) 989 return; 990 991 if (count & RWSEM_READER_MASK) { 992 wake_type = RWSEM_WAKE_READERS; 993 } else { 994 wake_type = RWSEM_WAKE_ANY; 995 clear_nonspinnable(sem); 996 } 997 rwsem_mark_wake(sem, wake_type, wake_q); 998 } 999 1000 /* 1001 * Wait for the read lock to be granted 1002 */ 1003 static struct rw_semaphore __sched * 1004 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) 1005 { 1006 long adjustment = -RWSEM_READER_BIAS; 1007 long rcnt = (count >> RWSEM_READER_SHIFT); 1008 struct rwsem_waiter waiter; 1009 DEFINE_WAKE_Q(wake_q); 1010 1011 /* 1012 * To prevent a constant stream of readers from starving a sleeping 1013 * waiter, don't attempt optimistic lock stealing if the lock is 1014 * currently owned by readers. 1015 */ 1016 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && 1017 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) 1018 goto queue; 1019 1020 /* 1021 * Reader optimistic lock stealing. 1022 */ 1023 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { 1024 rwsem_set_reader_owned(sem); 1025 lockevent_inc(rwsem_rlock_steal); 1026 1027 /* 1028 * Wake up other readers in the wait queue if it is 1029 * the first reader. 1030 */ 1031 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { 1032 raw_spin_lock_irq(&sem->wait_lock); 1033 if (!list_empty(&sem->wait_list)) 1034 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 1035 &wake_q); 1036 raw_spin_unlock_irq(&sem->wait_lock); 1037 wake_up_q(&wake_q); 1038 } 1039 return sem; 1040 } 1041 1042 queue: 1043 waiter.task = current; 1044 waiter.type = RWSEM_WAITING_FOR_READ; 1045 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1046 waiter.handoff_set = false; 1047 1048 raw_spin_lock_irq(&sem->wait_lock); 1049 if (list_empty(&sem->wait_list)) { 1050 /* 1051 * In case the wait queue is empty and the lock isn't owned 1052 * by a writer, this reader can exit the slowpath and return 1053 * immediately as its RWSEM_READER_BIAS has already been set 1054 * in the count. 1055 */ 1056 if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) { 1057 /* Provide lock ACQUIRE */ 1058 smp_acquire__after_ctrl_dep(); 1059 raw_spin_unlock_irq(&sem->wait_lock); 1060 rwsem_set_reader_owned(sem); 1061 lockevent_inc(rwsem_rlock_fast); 1062 return sem; 1063 } 1064 adjustment += RWSEM_FLAG_WAITERS; 1065 } 1066 rwsem_add_waiter(sem, &waiter); 1067 1068 /* we're now waiting on the lock, but no longer actively locking */ 1069 count = atomic_long_add_return(adjustment, &sem->count); 1070 1071 rwsem_cond_wake_waiter(sem, count, &wake_q); 1072 raw_spin_unlock_irq(&sem->wait_lock); 1073 1074 if (!wake_q_empty(&wake_q)) 1075 wake_up_q(&wake_q); 1076 1077 trace_contention_begin(sem, LCB_F_READ); 1078 1079 /* wait to be given the lock */ 1080 for (;;) { 1081 set_current_state(state); 1082 if (!smp_load_acquire(&waiter.task)) { 1083 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 1084 break; 1085 } 1086 if (signal_pending_state(state, current)) { 1087 raw_spin_lock_irq(&sem->wait_lock); 1088 if (waiter.task) 1089 goto out_nolock; 1090 raw_spin_unlock_irq(&sem->wait_lock); 1091 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 1092 break; 1093 } 1094 schedule(); 1095 lockevent_inc(rwsem_sleep_reader); 1096 } 1097 1098 __set_current_state(TASK_RUNNING); 1099 lockevent_inc(rwsem_rlock); 1100 trace_contention_end(sem, 0); 1101 return sem; 1102 1103 out_nolock: 1104 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1105 __set_current_state(TASK_RUNNING); 1106 lockevent_inc(rwsem_rlock_fail); 1107 trace_contention_end(sem, -EINTR); 1108 return ERR_PTR(-EINTR); 1109 } 1110 1111 /* 1112 * Wait until we successfully acquire the write lock 1113 */ 1114 static struct rw_semaphore __sched * 1115 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1116 { 1117 struct rwsem_waiter waiter; 1118 DEFINE_WAKE_Q(wake_q); 1119 1120 /* do optimistic spinning and steal lock if possible */ 1121 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { 1122 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1123 return sem; 1124 } 1125 1126 /* 1127 * Optimistic spinning failed, proceed to the slowpath 1128 * and block until we can acquire the sem. 1129 */ 1130 waiter.task = current; 1131 waiter.type = RWSEM_WAITING_FOR_WRITE; 1132 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1133 waiter.handoff_set = false; 1134 1135 raw_spin_lock_irq(&sem->wait_lock); 1136 rwsem_add_waiter(sem, &waiter); 1137 1138 /* we're now waiting on the lock */ 1139 if (rwsem_first_waiter(sem) != &waiter) { 1140 rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count), 1141 &wake_q); 1142 if (!wake_q_empty(&wake_q)) { 1143 /* 1144 * We want to minimize wait_lock hold time especially 1145 * when a large number of readers are to be woken up. 1146 */ 1147 raw_spin_unlock_irq(&sem->wait_lock); 1148 wake_up_q(&wake_q); 1149 raw_spin_lock_irq(&sem->wait_lock); 1150 } 1151 } else { 1152 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1153 } 1154 1155 /* wait until we successfully acquire the lock */ 1156 set_current_state(state); 1157 trace_contention_begin(sem, LCB_F_WRITE); 1158 1159 for (;;) { 1160 if (rwsem_try_write_lock(sem, &waiter)) { 1161 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1162 break; 1163 } 1164 1165 raw_spin_unlock_irq(&sem->wait_lock); 1166 1167 if (signal_pending_state(state, current)) 1168 goto out_nolock; 1169 1170 /* 1171 * After setting the handoff bit and failing to acquire 1172 * the lock, attempt to spin on owner to accelerate lock 1173 * transfer. If the previous owner is a on-cpu writer and it 1174 * has just released the lock, OWNER_NULL will be returned. 1175 * In this case, we attempt to acquire the lock again 1176 * without sleeping. 1177 */ 1178 if (waiter.handoff_set) { 1179 enum owner_state owner_state; 1180 1181 preempt_disable(); 1182 owner_state = rwsem_spin_on_owner(sem); 1183 preempt_enable(); 1184 1185 if (owner_state == OWNER_NULL) 1186 goto trylock_again; 1187 } 1188 1189 schedule(); 1190 lockevent_inc(rwsem_sleep_writer); 1191 set_current_state(state); 1192 trylock_again: 1193 raw_spin_lock_irq(&sem->wait_lock); 1194 } 1195 __set_current_state(TASK_RUNNING); 1196 raw_spin_unlock_irq(&sem->wait_lock); 1197 lockevent_inc(rwsem_wlock); 1198 trace_contention_end(sem, 0); 1199 return sem; 1200 1201 out_nolock: 1202 __set_current_state(TASK_RUNNING); 1203 raw_spin_lock_irq(&sem->wait_lock); 1204 rwsem_del_wake_waiter(sem, &waiter, &wake_q); 1205 lockevent_inc(rwsem_wlock_fail); 1206 trace_contention_end(sem, -EINTR); 1207 return ERR_PTR(-EINTR); 1208 } 1209 1210 /* 1211 * handle waking up a waiter on the semaphore 1212 * - up_read/up_write has decremented the active part of count if we come here 1213 */ 1214 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) 1215 { 1216 unsigned long flags; 1217 DEFINE_WAKE_Q(wake_q); 1218 1219 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1220 1221 if (!list_empty(&sem->wait_list)) 1222 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1223 1224 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1225 wake_up_q(&wake_q); 1226 1227 return sem; 1228 } 1229 1230 /* 1231 * downgrade a write lock into a read lock 1232 * - caller incremented waiting part of count and discovered it still negative 1233 * - just wake up any readers at the front of the queue 1234 */ 1235 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1236 { 1237 unsigned long flags; 1238 DEFINE_WAKE_Q(wake_q); 1239 1240 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1241 1242 if (!list_empty(&sem->wait_list)) 1243 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1244 1245 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1246 wake_up_q(&wake_q); 1247 1248 return sem; 1249 } 1250 1251 /* 1252 * lock for reading 1253 */ 1254 static inline int __down_read_common(struct rw_semaphore *sem, int state) 1255 { 1256 long count; 1257 1258 if (!rwsem_read_trylock(sem, &count)) { 1259 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) 1260 return -EINTR; 1261 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1262 } 1263 return 0; 1264 } 1265 1266 static inline void __down_read(struct rw_semaphore *sem) 1267 { 1268 __down_read_common(sem, TASK_UNINTERRUPTIBLE); 1269 } 1270 1271 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1272 { 1273 return __down_read_common(sem, TASK_INTERRUPTIBLE); 1274 } 1275 1276 static inline int __down_read_killable(struct rw_semaphore *sem) 1277 { 1278 return __down_read_common(sem, TASK_KILLABLE); 1279 } 1280 1281 static inline int __down_read_trylock(struct rw_semaphore *sem) 1282 { 1283 long tmp; 1284 1285 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1286 1287 tmp = atomic_long_read(&sem->count); 1288 while (!(tmp & RWSEM_READ_FAILED_MASK)) { 1289 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1290 tmp + RWSEM_READER_BIAS)) { 1291 rwsem_set_reader_owned(sem); 1292 return 1; 1293 } 1294 } 1295 return 0; 1296 } 1297 1298 /* 1299 * lock for writing 1300 */ 1301 static inline int __down_write_common(struct rw_semaphore *sem, int state) 1302 { 1303 if (unlikely(!rwsem_write_trylock(sem))) { 1304 if (IS_ERR(rwsem_down_write_slowpath(sem, state))) 1305 return -EINTR; 1306 } 1307 1308 return 0; 1309 } 1310 1311 static inline void __down_write(struct rw_semaphore *sem) 1312 { 1313 __down_write_common(sem, TASK_UNINTERRUPTIBLE); 1314 } 1315 1316 static inline int __down_write_killable(struct rw_semaphore *sem) 1317 { 1318 return __down_write_common(sem, TASK_KILLABLE); 1319 } 1320 1321 static inline int __down_write_trylock(struct rw_semaphore *sem) 1322 { 1323 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1324 return rwsem_write_trylock(sem); 1325 } 1326 1327 /* 1328 * unlock after reading 1329 */ 1330 static inline void __up_read(struct rw_semaphore *sem) 1331 { 1332 long tmp; 1333 1334 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1335 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1336 1337 rwsem_clear_reader_owned(sem); 1338 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1339 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1340 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1341 RWSEM_FLAG_WAITERS)) { 1342 clear_nonspinnable(sem); 1343 rwsem_wake(sem); 1344 } 1345 } 1346 1347 /* 1348 * unlock after writing 1349 */ 1350 static inline void __up_write(struct rw_semaphore *sem) 1351 { 1352 long tmp; 1353 1354 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1355 /* 1356 * sem->owner may differ from current if the ownership is transferred 1357 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1358 */ 1359 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1360 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1361 1362 preempt_disable(); 1363 rwsem_clear_owner(sem); 1364 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1365 preempt_enable(); 1366 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1367 rwsem_wake(sem); 1368 } 1369 1370 /* 1371 * downgrade write lock to read lock 1372 */ 1373 static inline void __downgrade_write(struct rw_semaphore *sem) 1374 { 1375 long tmp; 1376 1377 /* 1378 * When downgrading from exclusive to shared ownership, 1379 * anything inside the write-locked region cannot leak 1380 * into the read side. In contrast, anything in the 1381 * read-locked region is ok to be re-ordered into the 1382 * write side. As such, rely on RELEASE semantics. 1383 */ 1384 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1385 tmp = atomic_long_fetch_add_release( 1386 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1387 rwsem_set_reader_owned(sem); 1388 if (tmp & RWSEM_FLAG_WAITERS) 1389 rwsem_downgrade_wake(sem); 1390 } 1391 1392 #else /* !CONFIG_PREEMPT_RT */ 1393 1394 #define RT_MUTEX_BUILD_MUTEX 1395 #include "rtmutex.c" 1396 1397 #define rwbase_set_and_save_current_state(state) \ 1398 set_current_state(state) 1399 1400 #define rwbase_restore_current_state() \ 1401 __set_current_state(TASK_RUNNING) 1402 1403 #define rwbase_rtmutex_lock_state(rtm, state) \ 1404 __rt_mutex_lock(rtm, state) 1405 1406 #define rwbase_rtmutex_slowlock_locked(rtm, state) \ 1407 __rt_mutex_slowlock_locked(rtm, NULL, state) 1408 1409 #define rwbase_rtmutex_unlock(rtm) \ 1410 __rt_mutex_unlock(rtm) 1411 1412 #define rwbase_rtmutex_trylock(rtm) \ 1413 __rt_mutex_trylock(rtm) 1414 1415 #define rwbase_signal_pending_state(state, current) \ 1416 signal_pending_state(state, current) 1417 1418 #define rwbase_schedule() \ 1419 schedule() 1420 1421 #include "rwbase_rt.c" 1422 1423 void __init_rwsem(struct rw_semaphore *sem, const char *name, 1424 struct lock_class_key *key) 1425 { 1426 init_rwbase_rt(&(sem)->rwbase); 1427 1428 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1429 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 1430 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 1431 #endif 1432 } 1433 EXPORT_SYMBOL(__init_rwsem); 1434 1435 static inline void __down_read(struct rw_semaphore *sem) 1436 { 1437 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1438 } 1439 1440 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1441 { 1442 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE); 1443 } 1444 1445 static inline int __down_read_killable(struct rw_semaphore *sem) 1446 { 1447 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE); 1448 } 1449 1450 static inline int __down_read_trylock(struct rw_semaphore *sem) 1451 { 1452 return rwbase_read_trylock(&sem->rwbase); 1453 } 1454 1455 static inline void __up_read(struct rw_semaphore *sem) 1456 { 1457 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL); 1458 } 1459 1460 static inline void __sched __down_write(struct rw_semaphore *sem) 1461 { 1462 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1463 } 1464 1465 static inline int __sched __down_write_killable(struct rw_semaphore *sem) 1466 { 1467 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE); 1468 } 1469 1470 static inline int __down_write_trylock(struct rw_semaphore *sem) 1471 { 1472 return rwbase_write_trylock(&sem->rwbase); 1473 } 1474 1475 static inline void __up_write(struct rw_semaphore *sem) 1476 { 1477 rwbase_write_unlock(&sem->rwbase); 1478 } 1479 1480 static inline void __downgrade_write(struct rw_semaphore *sem) 1481 { 1482 rwbase_write_downgrade(&sem->rwbase); 1483 } 1484 1485 /* Debug stubs for the common API */ 1486 #define DEBUG_RWSEMS_WARN_ON(c, sem) 1487 1488 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 1489 struct task_struct *owner) 1490 { 1491 } 1492 1493 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 1494 { 1495 int count = atomic_read(&sem->rwbase.readers); 1496 1497 return count < 0 && count != READER_BIAS; 1498 } 1499 1500 #endif /* CONFIG_PREEMPT_RT */ 1501 1502 /* 1503 * lock for reading 1504 */ 1505 void __sched down_read(struct rw_semaphore *sem) 1506 { 1507 might_sleep(); 1508 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1509 1510 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1511 } 1512 EXPORT_SYMBOL(down_read); 1513 1514 int __sched down_read_interruptible(struct rw_semaphore *sem) 1515 { 1516 might_sleep(); 1517 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1518 1519 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { 1520 rwsem_release(&sem->dep_map, _RET_IP_); 1521 return -EINTR; 1522 } 1523 1524 return 0; 1525 } 1526 EXPORT_SYMBOL(down_read_interruptible); 1527 1528 int __sched down_read_killable(struct rw_semaphore *sem) 1529 { 1530 might_sleep(); 1531 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1532 1533 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1534 rwsem_release(&sem->dep_map, _RET_IP_); 1535 return -EINTR; 1536 } 1537 1538 return 0; 1539 } 1540 EXPORT_SYMBOL(down_read_killable); 1541 1542 /* 1543 * trylock for reading -- returns 1 if successful, 0 if contention 1544 */ 1545 int down_read_trylock(struct rw_semaphore *sem) 1546 { 1547 int ret = __down_read_trylock(sem); 1548 1549 if (ret == 1) 1550 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1551 return ret; 1552 } 1553 EXPORT_SYMBOL(down_read_trylock); 1554 1555 /* 1556 * lock for writing 1557 */ 1558 void __sched down_write(struct rw_semaphore *sem) 1559 { 1560 might_sleep(); 1561 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1562 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1563 } 1564 EXPORT_SYMBOL(down_write); 1565 1566 /* 1567 * lock for writing 1568 */ 1569 int __sched down_write_killable(struct rw_semaphore *sem) 1570 { 1571 might_sleep(); 1572 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1573 1574 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1575 __down_write_killable)) { 1576 rwsem_release(&sem->dep_map, _RET_IP_); 1577 return -EINTR; 1578 } 1579 1580 return 0; 1581 } 1582 EXPORT_SYMBOL(down_write_killable); 1583 1584 /* 1585 * trylock for writing -- returns 1 if successful, 0 if contention 1586 */ 1587 int down_write_trylock(struct rw_semaphore *sem) 1588 { 1589 int ret = __down_write_trylock(sem); 1590 1591 if (ret == 1) 1592 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1593 1594 return ret; 1595 } 1596 EXPORT_SYMBOL(down_write_trylock); 1597 1598 /* 1599 * release a read lock 1600 */ 1601 void up_read(struct rw_semaphore *sem) 1602 { 1603 rwsem_release(&sem->dep_map, _RET_IP_); 1604 __up_read(sem); 1605 } 1606 EXPORT_SYMBOL(up_read); 1607 1608 /* 1609 * release a write lock 1610 */ 1611 void up_write(struct rw_semaphore *sem) 1612 { 1613 rwsem_release(&sem->dep_map, _RET_IP_); 1614 __up_write(sem); 1615 } 1616 EXPORT_SYMBOL(up_write); 1617 1618 /* 1619 * downgrade write lock to read lock 1620 */ 1621 void downgrade_write(struct rw_semaphore *sem) 1622 { 1623 lock_downgrade(&sem->dep_map, _RET_IP_); 1624 __downgrade_write(sem); 1625 } 1626 EXPORT_SYMBOL(downgrade_write); 1627 1628 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1629 1630 void down_read_nested(struct rw_semaphore *sem, int subclass) 1631 { 1632 might_sleep(); 1633 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1634 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1635 } 1636 EXPORT_SYMBOL(down_read_nested); 1637 1638 int down_read_killable_nested(struct rw_semaphore *sem, int subclass) 1639 { 1640 might_sleep(); 1641 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1642 1643 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1644 rwsem_release(&sem->dep_map, _RET_IP_); 1645 return -EINTR; 1646 } 1647 1648 return 0; 1649 } 1650 EXPORT_SYMBOL(down_read_killable_nested); 1651 1652 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1653 { 1654 might_sleep(); 1655 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1656 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1657 } 1658 EXPORT_SYMBOL(_down_write_nest_lock); 1659 1660 void down_read_non_owner(struct rw_semaphore *sem) 1661 { 1662 might_sleep(); 1663 __down_read(sem); 1664 __rwsem_set_reader_owned(sem, NULL); 1665 } 1666 EXPORT_SYMBOL(down_read_non_owner); 1667 1668 void down_write_nested(struct rw_semaphore *sem, int subclass) 1669 { 1670 might_sleep(); 1671 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1672 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1673 } 1674 EXPORT_SYMBOL(down_write_nested); 1675 1676 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1677 { 1678 might_sleep(); 1679 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1680 1681 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1682 __down_write_killable)) { 1683 rwsem_release(&sem->dep_map, _RET_IP_); 1684 return -EINTR; 1685 } 1686 1687 return 0; 1688 } 1689 EXPORT_SYMBOL(down_write_killable_nested); 1690 1691 void up_read_non_owner(struct rw_semaphore *sem) 1692 { 1693 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1694 __up_read(sem); 1695 } 1696 EXPORT_SYMBOL(up_read_non_owner); 1697 1698 #endif 1699