xref: /linux-6.15/kernel/locking/rwsem.c (revision b613c7f3)
1 // SPDX-License-Identifier: GPL-2.0
2 /* kernel/rwsem.c: R/W semaphores, public implementation
3  *
4  * Written by David Howells ([email protected]).
5  * Derived from asm-i386/semaphore.h
6  *
7  * Writer lock-stealing by Alex Shi <[email protected]>
8  * and Michel Lespinasse <[email protected]>
9  *
10  * Optimistic spinning by Tim Chen <[email protected]>
11  * and Davidlohr Bueso <[email protected]>. Based on mutexes.
12  *
13  * Rwsem count bit fields re-definition and rwsem rearchitecture by
14  * Waiman Long <[email protected]> and
15  * Peter Zijlstra <[email protected]>.
16  */
17 
18 #include <linux/types.h>
19 #include <linux/kernel.h>
20 #include <linux/sched.h>
21 #include <linux/sched/rt.h>
22 #include <linux/sched/task.h>
23 #include <linux/sched/debug.h>
24 #include <linux/sched/wake_q.h>
25 #include <linux/sched/signal.h>
26 #include <linux/sched/clock.h>
27 #include <linux/export.h>
28 #include <linux/rwsem.h>
29 #include <linux/atomic.h>
30 #include <trace/events/lock.h>
31 
32 #ifndef CONFIG_PREEMPT_RT
33 #include "lock_events.h"
34 
35 /*
36  * The least significant 2 bits of the owner value has the following
37  * meanings when set.
38  *  - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers
39  *  - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock
40  *
41  * When the rwsem is reader-owned and a spinning writer has timed out,
42  * the nonspinnable bit will be set to disable optimistic spinning.
43 
44  * When a writer acquires a rwsem, it puts its task_struct pointer
45  * into the owner field. It is cleared after an unlock.
46  *
47  * When a reader acquires a rwsem, it will also puts its task_struct
48  * pointer into the owner field with the RWSEM_READER_OWNED bit set.
49  * On unlock, the owner field will largely be left untouched. So
50  * for a free or reader-owned rwsem, the owner value may contain
51  * information about the last reader that acquires the rwsem.
52  *
53  * That information may be helpful in debugging cases where the system
54  * seems to hang on a reader owned rwsem especially if only one reader
55  * is involved. Ideally we would like to track all the readers that own
56  * a rwsem, but the overhead is simply too big.
57  *
58  * A fast path reader optimistic lock stealing is supported when the rwsem
59  * is previously owned by a writer and the following conditions are met:
60  *  - rwsem is not currently writer owned
61  *  - the handoff isn't set.
62  */
63 #define RWSEM_READER_OWNED	(1UL << 0)
64 #define RWSEM_NONSPINNABLE	(1UL << 1)
65 #define RWSEM_OWNER_FLAGS_MASK	(RWSEM_READER_OWNED | RWSEM_NONSPINNABLE)
66 
67 #ifdef CONFIG_DEBUG_RWSEMS
68 # define DEBUG_RWSEMS_WARN_ON(c, sem)	do {			\
69 	if (!debug_locks_silent &&				\
70 	    WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\
71 		#c, atomic_long_read(&(sem)->count),		\
72 		(unsigned long) sem->magic,			\
73 		atomic_long_read(&(sem)->owner), (long)current,	\
74 		list_empty(&(sem)->wait_list) ? "" : "not "))	\
75 			debug_locks_off();			\
76 	} while (0)
77 #else
78 # define DEBUG_RWSEMS_WARN_ON(c, sem)
79 #endif
80 
81 /*
82  * On 64-bit architectures, the bit definitions of the count are:
83  *
84  * Bit  0    - writer locked bit
85  * Bit  1    - waiters present bit
86  * Bit  2    - lock handoff bit
87  * Bits 3-7  - reserved
88  * Bits 8-62 - 55-bit reader count
89  * Bit  63   - read fail bit
90  *
91  * On 32-bit architectures, the bit definitions of the count are:
92  *
93  * Bit  0    - writer locked bit
94  * Bit  1    - waiters present bit
95  * Bit  2    - lock handoff bit
96  * Bits 3-7  - reserved
97  * Bits 8-30 - 23-bit reader count
98  * Bit  31   - read fail bit
99  *
100  * It is not likely that the most significant bit (read fail bit) will ever
101  * be set. This guard bit is still checked anyway in the down_read() fastpath
102  * just in case we need to use up more of the reader bits for other purpose
103  * in the future.
104  *
105  * atomic_long_fetch_add() is used to obtain reader lock, whereas
106  * atomic_long_cmpxchg() will be used to obtain writer lock.
107  *
108  * There are three places where the lock handoff bit may be set or cleared.
109  * 1) rwsem_mark_wake() for readers		-- set, clear
110  * 2) rwsem_try_write_lock() for writers	-- set, clear
111  * 3) rwsem_del_waiter()			-- clear
112  *
113  * For all the above cases, wait_lock will be held. A writer must also
114  * be the first one in the wait_list to be eligible for setting the handoff
115  * bit. So concurrent setting/clearing of handoff bit is not possible.
116  */
117 #define RWSEM_WRITER_LOCKED	(1UL << 0)
118 #define RWSEM_FLAG_WAITERS	(1UL << 1)
119 #define RWSEM_FLAG_HANDOFF	(1UL << 2)
120 #define RWSEM_FLAG_READFAIL	(1UL << (BITS_PER_LONG - 1))
121 
122 #define RWSEM_READER_SHIFT	8
123 #define RWSEM_READER_BIAS	(1UL << RWSEM_READER_SHIFT)
124 #define RWSEM_READER_MASK	(~(RWSEM_READER_BIAS - 1))
125 #define RWSEM_WRITER_MASK	RWSEM_WRITER_LOCKED
126 #define RWSEM_LOCK_MASK		(RWSEM_WRITER_MASK|RWSEM_READER_MASK)
127 #define RWSEM_READ_FAILED_MASK	(RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\
128 				 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL)
129 
130 /*
131  * All writes to owner are protected by WRITE_ONCE() to make sure that
132  * store tearing can't happen as optimistic spinners may read and use
133  * the owner value concurrently without lock. Read from owner, however,
134  * may not need READ_ONCE() as long as the pointer value is only used
135  * for comparison and isn't being dereferenced.
136  *
137  * Both rwsem_{set,clear}_owner() functions should be in the same
138  * preempt disable section as the atomic op that changes sem->count.
139  */
140 static inline void rwsem_set_owner(struct rw_semaphore *sem)
141 {
142 	lockdep_assert_preemption_disabled();
143 	atomic_long_set(&sem->owner, (long)current);
144 }
145 
146 static inline void rwsem_clear_owner(struct rw_semaphore *sem)
147 {
148 	lockdep_assert_preemption_disabled();
149 	atomic_long_set(&sem->owner, 0);
150 }
151 
152 /*
153  * Test the flags in the owner field.
154  */
155 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags)
156 {
157 	return atomic_long_read(&sem->owner) & flags;
158 }
159 
160 /*
161  * The task_struct pointer of the last owning reader will be left in
162  * the owner field.
163  *
164  * Note that the owner value just indicates the task has owned the rwsem
165  * previously, it may not be the real owner or one of the real owners
166  * anymore when that field is examined, so take it with a grain of salt.
167  *
168  * The reader non-spinnable bit is preserved.
169  */
170 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
171 					    struct task_struct *owner)
172 {
173 	unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED |
174 		(atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE);
175 
176 	atomic_long_set(&sem->owner, val);
177 }
178 
179 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem)
180 {
181 	__rwsem_set_reader_owned(sem, current);
182 }
183 
184 /*
185  * Return true if the rwsem is owned by a reader.
186  */
187 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
188 {
189 #ifdef CONFIG_DEBUG_RWSEMS
190 	/*
191 	 * Check the count to see if it is write-locked.
192 	 */
193 	long count = atomic_long_read(&sem->count);
194 
195 	if (count & RWSEM_WRITER_MASK)
196 		return false;
197 #endif
198 	return rwsem_test_oflags(sem, RWSEM_READER_OWNED);
199 }
200 
201 #ifdef CONFIG_DEBUG_RWSEMS
202 /*
203  * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there
204  * is a task pointer in owner of a reader-owned rwsem, it will be the
205  * real owner or one of the real owners. The only exception is when the
206  * unlock is done by up_read_non_owner().
207  */
208 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
209 {
210 	unsigned long val = atomic_long_read(&sem->owner);
211 
212 	while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) {
213 		if (atomic_long_try_cmpxchg(&sem->owner, &val,
214 					    val & RWSEM_OWNER_FLAGS_MASK))
215 			return;
216 	}
217 }
218 #else
219 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem)
220 {
221 }
222 #endif
223 
224 /*
225  * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag
226  * remains set. Otherwise, the operation will be aborted.
227  */
228 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem)
229 {
230 	unsigned long owner = atomic_long_read(&sem->owner);
231 
232 	do {
233 		if (!(owner & RWSEM_READER_OWNED))
234 			break;
235 		if (owner & RWSEM_NONSPINNABLE)
236 			break;
237 	} while (!atomic_long_try_cmpxchg(&sem->owner, &owner,
238 					  owner | RWSEM_NONSPINNABLE));
239 }
240 
241 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp)
242 {
243 	*cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count);
244 
245 	if (WARN_ON_ONCE(*cntp < 0))
246 		rwsem_set_nonspinnable(sem);
247 
248 	if (!(*cntp & RWSEM_READ_FAILED_MASK)) {
249 		rwsem_set_reader_owned(sem);
250 		return true;
251 	}
252 
253 	return false;
254 }
255 
256 static inline bool rwsem_write_trylock(struct rw_semaphore *sem)
257 {
258 	long tmp = RWSEM_UNLOCKED_VALUE;
259 	bool ret = false;
260 
261 	preempt_disable();
262 	if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) {
263 		rwsem_set_owner(sem);
264 		ret = true;
265 	}
266 
267 	preempt_enable();
268 	return ret;
269 }
270 
271 /*
272  * Return just the real task structure pointer of the owner
273  */
274 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem)
275 {
276 	return (struct task_struct *)
277 		(atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK);
278 }
279 
280 /*
281  * Return the real task structure pointer of the owner and the embedded
282  * flags in the owner. pflags must be non-NULL.
283  */
284 static inline struct task_struct *
285 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags)
286 {
287 	unsigned long owner = atomic_long_read(&sem->owner);
288 
289 	*pflags = owner & RWSEM_OWNER_FLAGS_MASK;
290 	return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK);
291 }
292 
293 /*
294  * Guide to the rw_semaphore's count field.
295  *
296  * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned
297  * by a writer.
298  *
299  * The lock is owned by readers when
300  * (1) the RWSEM_WRITER_LOCKED isn't set in count,
301  * (2) some of the reader bits are set in count, and
302  * (3) the owner field has RWSEM_READ_OWNED bit set.
303  *
304  * Having some reader bits set is not enough to guarantee a readers owned
305  * lock as the readers may be in the process of backing out from the count
306  * and a writer has just released the lock. So another writer may steal
307  * the lock immediately after that.
308  */
309 
310 /*
311  * Initialize an rwsem:
312  */
313 void __init_rwsem(struct rw_semaphore *sem, const char *name,
314 		  struct lock_class_key *key)
315 {
316 #ifdef CONFIG_DEBUG_LOCK_ALLOC
317 	/*
318 	 * Make sure we are not reinitializing a held semaphore:
319 	 */
320 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
321 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
322 #endif
323 #ifdef CONFIG_DEBUG_RWSEMS
324 	sem->magic = sem;
325 #endif
326 	atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE);
327 	raw_spin_lock_init(&sem->wait_lock);
328 	INIT_LIST_HEAD(&sem->wait_list);
329 	atomic_long_set(&sem->owner, 0L);
330 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
331 	osq_lock_init(&sem->osq);
332 #endif
333 }
334 EXPORT_SYMBOL(__init_rwsem);
335 
336 enum rwsem_waiter_type {
337 	RWSEM_WAITING_FOR_WRITE,
338 	RWSEM_WAITING_FOR_READ
339 };
340 
341 struct rwsem_waiter {
342 	struct list_head list;
343 	struct task_struct *task;
344 	enum rwsem_waiter_type type;
345 	unsigned long timeout;
346 	bool handoff_set;
347 };
348 #define rwsem_first_waiter(sem) \
349 	list_first_entry(&sem->wait_list, struct rwsem_waiter, list)
350 
351 enum rwsem_wake_type {
352 	RWSEM_WAKE_ANY,		/* Wake whatever's at head of wait list */
353 	RWSEM_WAKE_READERS,	/* Wake readers only */
354 	RWSEM_WAKE_READ_OWNED	/* Waker thread holds the read lock */
355 };
356 
357 /*
358  * The typical HZ value is either 250 or 1000. So set the minimum waiting
359  * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait
360  * queue before initiating the handoff protocol.
361  */
362 #define RWSEM_WAIT_TIMEOUT	DIV_ROUND_UP(HZ, 250)
363 
364 /*
365  * Magic number to batch-wakeup waiting readers, even when writers are
366  * also present in the queue. This both limits the amount of work the
367  * waking thread must do and also prevents any potential counter overflow,
368  * however unlikely.
369  */
370 #define MAX_READERS_WAKEUP	0x100
371 
372 static inline void
373 rwsem_add_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
374 {
375 	lockdep_assert_held(&sem->wait_lock);
376 	list_add_tail(&waiter->list, &sem->wait_list);
377 	/* caller will set RWSEM_FLAG_WAITERS */
378 }
379 
380 /*
381  * Remove a waiter from the wait_list and clear flags.
382  *
383  * Both rwsem_mark_wake() and rwsem_try_write_lock() contain a full 'copy' of
384  * this function. Modify with care.
385  *
386  * Return: true if wait_list isn't empty and false otherwise
387  */
388 static inline bool
389 rwsem_del_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter)
390 {
391 	lockdep_assert_held(&sem->wait_lock);
392 	list_del(&waiter->list);
393 	if (likely(!list_empty(&sem->wait_list)))
394 		return true;
395 
396 	atomic_long_andnot(RWSEM_FLAG_HANDOFF | RWSEM_FLAG_WAITERS, &sem->count);
397 	return false;
398 }
399 
400 /*
401  * handle the lock release when processes blocked on it that can now run
402  * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must
403  *   have been set.
404  * - there must be someone on the queue
405  * - the wait_lock must be held by the caller
406  * - tasks are marked for wakeup, the caller must later invoke wake_up_q()
407  *   to actually wakeup the blocked task(s) and drop the reference count,
408  *   preferably when the wait_lock is released
409  * - woken process blocks are discarded from the list after having task zeroed
410  * - writers are only marked woken if downgrading is false
411  *
412  * Implies rwsem_del_waiter() for all woken readers.
413  */
414 static void rwsem_mark_wake(struct rw_semaphore *sem,
415 			    enum rwsem_wake_type wake_type,
416 			    struct wake_q_head *wake_q)
417 {
418 	struct rwsem_waiter *waiter, *tmp;
419 	long oldcount, woken = 0, adjustment = 0;
420 	struct list_head wlist;
421 
422 	lockdep_assert_held(&sem->wait_lock);
423 
424 	/*
425 	 * Take a peek at the queue head waiter such that we can determine
426 	 * the wakeup(s) to perform.
427 	 */
428 	waiter = rwsem_first_waiter(sem);
429 
430 	if (waiter->type == RWSEM_WAITING_FOR_WRITE) {
431 		if (wake_type == RWSEM_WAKE_ANY) {
432 			/*
433 			 * Mark writer at the front of the queue for wakeup.
434 			 * Until the task is actually later awoken later by
435 			 * the caller, other writers are able to steal it.
436 			 * Readers, on the other hand, will block as they
437 			 * will notice the queued writer.
438 			 */
439 			wake_q_add(wake_q, waiter->task);
440 			lockevent_inc(rwsem_wake_writer);
441 		}
442 
443 		return;
444 	}
445 
446 	/*
447 	 * No reader wakeup if there are too many of them already.
448 	 */
449 	if (unlikely(atomic_long_read(&sem->count) < 0))
450 		return;
451 
452 	/*
453 	 * Writers might steal the lock before we grant it to the next reader.
454 	 * We prefer to do the first reader grant before counting readers
455 	 * so we can bail out early if a writer stole the lock.
456 	 */
457 	if (wake_type != RWSEM_WAKE_READ_OWNED) {
458 		struct task_struct *owner;
459 
460 		adjustment = RWSEM_READER_BIAS;
461 		oldcount = atomic_long_fetch_add(adjustment, &sem->count);
462 		if (unlikely(oldcount & RWSEM_WRITER_MASK)) {
463 			/*
464 			 * When we've been waiting "too" long (for writers
465 			 * to give up the lock), request a HANDOFF to
466 			 * force the issue.
467 			 */
468 			if (time_after(jiffies, waiter->timeout)) {
469 				if (!(oldcount & RWSEM_FLAG_HANDOFF)) {
470 					adjustment -= RWSEM_FLAG_HANDOFF;
471 					lockevent_inc(rwsem_rlock_handoff);
472 				}
473 				waiter->handoff_set = true;
474 			}
475 
476 			atomic_long_add(-adjustment, &sem->count);
477 			return;
478 		}
479 		/*
480 		 * Set it to reader-owned to give spinners an early
481 		 * indication that readers now have the lock.
482 		 * The reader nonspinnable bit seen at slowpath entry of
483 		 * the reader is copied over.
484 		 */
485 		owner = waiter->task;
486 		__rwsem_set_reader_owned(sem, owner);
487 	}
488 
489 	/*
490 	 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the
491 	 * queue. We know that the woken will be at least 1 as we accounted
492 	 * for above. Note we increment the 'active part' of the count by the
493 	 * number of readers before waking any processes up.
494 	 *
495 	 * This is an adaptation of the phase-fair R/W locks where at the
496 	 * reader phase (first waiter is a reader), all readers are eligible
497 	 * to acquire the lock at the same time irrespective of their order
498 	 * in the queue. The writers acquire the lock according to their
499 	 * order in the queue.
500 	 *
501 	 * We have to do wakeup in 2 passes to prevent the possibility that
502 	 * the reader count may be decremented before it is incremented. It
503 	 * is because the to-be-woken waiter may not have slept yet. So it
504 	 * may see waiter->task got cleared, finish its critical section and
505 	 * do an unlock before the reader count increment.
506 	 *
507 	 * 1) Collect the read-waiters in a separate list, count them and
508 	 *    fully increment the reader count in rwsem.
509 	 * 2) For each waiters in the new list, clear waiter->task and
510 	 *    put them into wake_q to be woken up later.
511 	 */
512 	INIT_LIST_HEAD(&wlist);
513 	list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) {
514 		if (waiter->type == RWSEM_WAITING_FOR_WRITE)
515 			continue;
516 
517 		woken++;
518 		list_move_tail(&waiter->list, &wlist);
519 
520 		/*
521 		 * Limit # of readers that can be woken up per wakeup call.
522 		 */
523 		if (unlikely(woken >= MAX_READERS_WAKEUP))
524 			break;
525 	}
526 
527 	adjustment = woken * RWSEM_READER_BIAS - adjustment;
528 	lockevent_cond_inc(rwsem_wake_reader, woken);
529 
530 	oldcount = atomic_long_read(&sem->count);
531 	if (list_empty(&sem->wait_list)) {
532 		/*
533 		 * Combined with list_move_tail() above, this implies
534 		 * rwsem_del_waiter().
535 		 */
536 		adjustment -= RWSEM_FLAG_WAITERS;
537 		if (oldcount & RWSEM_FLAG_HANDOFF)
538 			adjustment -= RWSEM_FLAG_HANDOFF;
539 	} else if (woken) {
540 		/*
541 		 * When we've woken a reader, we no longer need to force
542 		 * writers to give up the lock and we can clear HANDOFF.
543 		 */
544 		if (oldcount & RWSEM_FLAG_HANDOFF)
545 			adjustment -= RWSEM_FLAG_HANDOFF;
546 	}
547 
548 	if (adjustment)
549 		atomic_long_add(adjustment, &sem->count);
550 
551 	/* 2nd pass */
552 	list_for_each_entry_safe(waiter, tmp, &wlist, list) {
553 		struct task_struct *tsk;
554 
555 		tsk = waiter->task;
556 		get_task_struct(tsk);
557 
558 		/*
559 		 * Ensure calling get_task_struct() before setting the reader
560 		 * waiter to nil such that rwsem_down_read_slowpath() cannot
561 		 * race with do_exit() by always holding a reference count
562 		 * to the task to wakeup.
563 		 */
564 		smp_store_release(&waiter->task, NULL);
565 		/*
566 		 * Ensure issuing the wakeup (either by us or someone else)
567 		 * after setting the reader waiter to nil.
568 		 */
569 		wake_q_add_safe(wake_q, tsk);
570 	}
571 }
572 
573 /*
574  * Remove a waiter and try to wake up other waiters in the wait queue
575  * This function is called from the out_nolock path of both the reader and
576  * writer slowpaths with wait_lock held. It releases the wait_lock and
577  * optionally wake up waiters before it returns.
578  */
579 static inline void
580 rwsem_del_wake_waiter(struct rw_semaphore *sem, struct rwsem_waiter *waiter,
581 		      struct wake_q_head *wake_q)
582 		      __releases(&sem->wait_lock)
583 {
584 	bool first = rwsem_first_waiter(sem) == waiter;
585 
586 	wake_q_init(wake_q);
587 
588 	/*
589 	 * If the wait_list isn't empty and the waiter to be deleted is
590 	 * the first waiter, we wake up the remaining waiters as they may
591 	 * be eligible to acquire or spin on the lock.
592 	 */
593 	if (rwsem_del_waiter(sem, waiter) && first)
594 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, wake_q);
595 	raw_spin_unlock_irq(&sem->wait_lock);
596 	if (!wake_q_empty(wake_q))
597 		wake_up_q(wake_q);
598 }
599 
600 /*
601  * This function must be called with the sem->wait_lock held to prevent
602  * race conditions between checking the rwsem wait list and setting the
603  * sem->count accordingly.
604  *
605  * Implies rwsem_del_waiter() on success.
606  */
607 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem,
608 					struct rwsem_waiter *waiter)
609 {
610 	struct rwsem_waiter *first = rwsem_first_waiter(sem);
611 	long count, new;
612 
613 	lockdep_assert_held(&sem->wait_lock);
614 
615 	count = atomic_long_read(&sem->count);
616 	do {
617 		bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF);
618 
619 		if (has_handoff) {
620 			/*
621 			 * Honor handoff bit and yield only when the first
622 			 * waiter is the one that set it. Otherwisee, we
623 			 * still try to acquire the rwsem.
624 			 */
625 			if (first->handoff_set && (waiter != first))
626 				return false;
627 		}
628 
629 		new = count;
630 
631 		if (count & RWSEM_LOCK_MASK) {
632 			/*
633 			 * A waiter (first or not) can set the handoff bit
634 			 * if it is an RT task or wait in the wait queue
635 			 * for too long.
636 			 */
637 			if (has_handoff || (!rt_task(waiter->task) &&
638 					    !time_after(jiffies, waiter->timeout)))
639 				return false;
640 
641 			new |= RWSEM_FLAG_HANDOFF;
642 		} else {
643 			new |= RWSEM_WRITER_LOCKED;
644 			new &= ~RWSEM_FLAG_HANDOFF;
645 
646 			if (list_is_singular(&sem->wait_list))
647 				new &= ~RWSEM_FLAG_WAITERS;
648 		}
649 	} while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new));
650 
651 	/*
652 	 * We have either acquired the lock with handoff bit cleared or set
653 	 * the handoff bit. Only the first waiter can have its handoff_set
654 	 * set here to enable optimistic spinning in slowpath loop.
655 	 */
656 	if (new & RWSEM_FLAG_HANDOFF) {
657 		first->handoff_set = true;
658 		lockevent_inc(rwsem_wlock_handoff);
659 		return false;
660 	}
661 
662 	/*
663 	 * Have rwsem_try_write_lock() fully imply rwsem_del_waiter() on
664 	 * success.
665 	 */
666 	list_del(&waiter->list);
667 	rwsem_set_owner(sem);
668 	return true;
669 }
670 
671 /*
672  * The rwsem_spin_on_owner() function returns the following 4 values
673  * depending on the lock owner state.
674  *   OWNER_NULL  : owner is currently NULL
675  *   OWNER_WRITER: when owner changes and is a writer
676  *   OWNER_READER: when owner changes and the new owner may be a reader.
677  *   OWNER_NONSPINNABLE:
678  *		   when optimistic spinning has to stop because either the
679  *		   owner stops running, is unknown, or its timeslice has
680  *		   been used up.
681  */
682 enum owner_state {
683 	OWNER_NULL		= 1 << 0,
684 	OWNER_WRITER		= 1 << 1,
685 	OWNER_READER		= 1 << 2,
686 	OWNER_NONSPINNABLE	= 1 << 3,
687 };
688 
689 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER
690 /*
691  * Try to acquire write lock before the writer has been put on wait queue.
692  */
693 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem)
694 {
695 	long count = atomic_long_read(&sem->count);
696 
697 	while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) {
698 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &count,
699 					count | RWSEM_WRITER_LOCKED)) {
700 			rwsem_set_owner(sem);
701 			lockevent_inc(rwsem_opt_lock);
702 			return true;
703 		}
704 	}
705 	return false;
706 }
707 
708 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
709 {
710 	struct task_struct *owner;
711 	unsigned long flags;
712 	bool ret = true;
713 
714 	if (need_resched()) {
715 		lockevent_inc(rwsem_opt_fail);
716 		return false;
717 	}
718 
719 	preempt_disable();
720 	/*
721 	 * Disable preemption is equal to the RCU read-side crital section,
722 	 * thus the task_strcut structure won't go away.
723 	 */
724 	owner = rwsem_owner_flags(sem, &flags);
725 	/*
726 	 * Don't check the read-owner as the entry may be stale.
727 	 */
728 	if ((flags & RWSEM_NONSPINNABLE) ||
729 	    (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner)))
730 		ret = false;
731 	preempt_enable();
732 
733 	lockevent_cond_inc(rwsem_opt_fail, !ret);
734 	return ret;
735 }
736 
737 #define OWNER_SPINNABLE		(OWNER_NULL | OWNER_WRITER | OWNER_READER)
738 
739 static inline enum owner_state
740 rwsem_owner_state(struct task_struct *owner, unsigned long flags)
741 {
742 	if (flags & RWSEM_NONSPINNABLE)
743 		return OWNER_NONSPINNABLE;
744 
745 	if (flags & RWSEM_READER_OWNED)
746 		return OWNER_READER;
747 
748 	return owner ? OWNER_WRITER : OWNER_NULL;
749 }
750 
751 static noinline enum owner_state
752 rwsem_spin_on_owner(struct rw_semaphore *sem)
753 {
754 	struct task_struct *new, *owner;
755 	unsigned long flags, new_flags;
756 	enum owner_state state;
757 
758 	lockdep_assert_preemption_disabled();
759 
760 	owner = rwsem_owner_flags(sem, &flags);
761 	state = rwsem_owner_state(owner, flags);
762 	if (state != OWNER_WRITER)
763 		return state;
764 
765 	for (;;) {
766 		/*
767 		 * When a waiting writer set the handoff flag, it may spin
768 		 * on the owner as well. Once that writer acquires the lock,
769 		 * we can spin on it. So we don't need to quit even when the
770 		 * handoff bit is set.
771 		 */
772 		new = rwsem_owner_flags(sem, &new_flags);
773 		if ((new != owner) || (new_flags != flags)) {
774 			state = rwsem_owner_state(new, new_flags);
775 			break;
776 		}
777 
778 		/*
779 		 * Ensure we emit the owner->on_cpu, dereference _after_
780 		 * checking sem->owner still matches owner, if that fails,
781 		 * owner might point to free()d memory, if it still matches,
782 		 * our spinning context already disabled preemption which is
783 		 * equal to RCU read-side crital section ensures the memory
784 		 * stays valid.
785 		 */
786 		barrier();
787 
788 		if (need_resched() || !owner_on_cpu(owner)) {
789 			state = OWNER_NONSPINNABLE;
790 			break;
791 		}
792 
793 		cpu_relax();
794 	}
795 
796 	return state;
797 }
798 
799 /*
800  * Calculate reader-owned rwsem spinning threshold for writer
801  *
802  * The more readers own the rwsem, the longer it will take for them to
803  * wind down and free the rwsem. So the empirical formula used to
804  * determine the actual spinning time limit here is:
805  *
806  *   Spinning threshold = (10 + nr_readers/2)us
807  *
808  * The limit is capped to a maximum of 25us (30 readers). This is just
809  * a heuristic and is subjected to change in the future.
810  */
811 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem)
812 {
813 	long count = atomic_long_read(&sem->count);
814 	int readers = count >> RWSEM_READER_SHIFT;
815 	u64 delta;
816 
817 	if (readers > 30)
818 		readers = 30;
819 	delta = (20 + readers) * NSEC_PER_USEC / 2;
820 
821 	return sched_clock() + delta;
822 }
823 
824 static bool rwsem_optimistic_spin(struct rw_semaphore *sem)
825 {
826 	bool taken = false;
827 	int prev_owner_state = OWNER_NULL;
828 	int loop = 0;
829 	u64 rspin_threshold = 0;
830 
831 	preempt_disable();
832 
833 	/* sem->wait_lock should not be held when doing optimistic spinning */
834 	if (!osq_lock(&sem->osq))
835 		goto done;
836 
837 	/*
838 	 * Optimistically spin on the owner field and attempt to acquire the
839 	 * lock whenever the owner changes. Spinning will be stopped when:
840 	 *  1) the owning writer isn't running; or
841 	 *  2) readers own the lock and spinning time has exceeded limit.
842 	 */
843 	for (;;) {
844 		enum owner_state owner_state;
845 
846 		owner_state = rwsem_spin_on_owner(sem);
847 		if (!(owner_state & OWNER_SPINNABLE))
848 			break;
849 
850 		/*
851 		 * Try to acquire the lock
852 		 */
853 		taken = rwsem_try_write_lock_unqueued(sem);
854 
855 		if (taken)
856 			break;
857 
858 		/*
859 		 * Time-based reader-owned rwsem optimistic spinning
860 		 */
861 		if (owner_state == OWNER_READER) {
862 			/*
863 			 * Re-initialize rspin_threshold every time when
864 			 * the owner state changes from non-reader to reader.
865 			 * This allows a writer to steal the lock in between
866 			 * 2 reader phases and have the threshold reset at
867 			 * the beginning of the 2nd reader phase.
868 			 */
869 			if (prev_owner_state != OWNER_READER) {
870 				if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE))
871 					break;
872 				rspin_threshold = rwsem_rspin_threshold(sem);
873 				loop = 0;
874 			}
875 
876 			/*
877 			 * Check time threshold once every 16 iterations to
878 			 * avoid calling sched_clock() too frequently so
879 			 * as to reduce the average latency between the times
880 			 * when the lock becomes free and when the spinner
881 			 * is ready to do a trylock.
882 			 */
883 			else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) {
884 				rwsem_set_nonspinnable(sem);
885 				lockevent_inc(rwsem_opt_nospin);
886 				break;
887 			}
888 		}
889 
890 		/*
891 		 * An RT task cannot do optimistic spinning if it cannot
892 		 * be sure the lock holder is running or live-lock may
893 		 * happen if the current task and the lock holder happen
894 		 * to run in the same CPU. However, aborting optimistic
895 		 * spinning while a NULL owner is detected may miss some
896 		 * opportunity where spinning can continue without causing
897 		 * problem.
898 		 *
899 		 * There are 2 possible cases where an RT task may be able
900 		 * to continue spinning.
901 		 *
902 		 * 1) The lock owner is in the process of releasing the
903 		 *    lock, sem->owner is cleared but the lock has not
904 		 *    been released yet.
905 		 * 2) The lock was free and owner cleared, but another
906 		 *    task just comes in and acquire the lock before
907 		 *    we try to get it. The new owner may be a spinnable
908 		 *    writer.
909 		 *
910 		 * To take advantage of two scenarios listed above, the RT
911 		 * task is made to retry one more time to see if it can
912 		 * acquire the lock or continue spinning on the new owning
913 		 * writer. Of course, if the time lag is long enough or the
914 		 * new owner is not a writer or spinnable, the RT task will
915 		 * quit spinning.
916 		 *
917 		 * If the owner is a writer, the need_resched() check is
918 		 * done inside rwsem_spin_on_owner(). If the owner is not
919 		 * a writer, need_resched() check needs to be done here.
920 		 */
921 		if (owner_state != OWNER_WRITER) {
922 			if (need_resched())
923 				break;
924 			if (rt_task(current) &&
925 			   (prev_owner_state != OWNER_WRITER))
926 				break;
927 		}
928 		prev_owner_state = owner_state;
929 
930 		/*
931 		 * The cpu_relax() call is a compiler barrier which forces
932 		 * everything in this loop to be re-loaded. We don't need
933 		 * memory barriers as we'll eventually observe the right
934 		 * values at the cost of a few extra spins.
935 		 */
936 		cpu_relax();
937 	}
938 	osq_unlock(&sem->osq);
939 done:
940 	preempt_enable();
941 	lockevent_cond_inc(rwsem_opt_fail, !taken);
942 	return taken;
943 }
944 
945 /*
946  * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should
947  * only be called when the reader count reaches 0.
948  */
949 static inline void clear_nonspinnable(struct rw_semaphore *sem)
950 {
951 	if (unlikely(rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)))
952 		atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner);
953 }
954 
955 #else
956 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem)
957 {
958 	return false;
959 }
960 
961 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem)
962 {
963 	return false;
964 }
965 
966 static inline void clear_nonspinnable(struct rw_semaphore *sem) { }
967 
968 static inline enum owner_state
969 rwsem_spin_on_owner(struct rw_semaphore *sem)
970 {
971 	return OWNER_NONSPINNABLE;
972 }
973 #endif
974 
975 /*
976  * Prepare to wake up waiter(s) in the wait queue by putting them into the
977  * given wake_q if the rwsem lock owner isn't a writer. If rwsem is likely
978  * reader-owned, wake up read lock waiters in queue front or wake up any
979  * front waiter otherwise.
980 
981  * This is being called from both reader and writer slow paths.
982  */
983 static inline void rwsem_cond_wake_waiter(struct rw_semaphore *sem, long count,
984 					  struct wake_q_head *wake_q)
985 {
986 	enum rwsem_wake_type wake_type;
987 
988 	if (count & RWSEM_WRITER_MASK)
989 		return;
990 
991 	if (count & RWSEM_READER_MASK) {
992 		wake_type = RWSEM_WAKE_READERS;
993 	} else {
994 		wake_type = RWSEM_WAKE_ANY;
995 		clear_nonspinnable(sem);
996 	}
997 	rwsem_mark_wake(sem, wake_type, wake_q);
998 }
999 
1000 /*
1001  * Wait for the read lock to be granted
1002  */
1003 static struct rw_semaphore __sched *
1004 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state)
1005 {
1006 	long adjustment = -RWSEM_READER_BIAS;
1007 	long rcnt = (count >> RWSEM_READER_SHIFT);
1008 	struct rwsem_waiter waiter;
1009 	DEFINE_WAKE_Q(wake_q);
1010 
1011 	/*
1012 	 * To prevent a constant stream of readers from starving a sleeping
1013 	 * waiter, don't attempt optimistic lock stealing if the lock is
1014 	 * currently owned by readers.
1015 	 */
1016 	if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) &&
1017 	    (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED))
1018 		goto queue;
1019 
1020 	/*
1021 	 * Reader optimistic lock stealing.
1022 	 */
1023 	if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) {
1024 		rwsem_set_reader_owned(sem);
1025 		lockevent_inc(rwsem_rlock_steal);
1026 
1027 		/*
1028 		 * Wake up other readers in the wait queue if it is
1029 		 * the first reader.
1030 		 */
1031 		if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) {
1032 			raw_spin_lock_irq(&sem->wait_lock);
1033 			if (!list_empty(&sem->wait_list))
1034 				rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED,
1035 						&wake_q);
1036 			raw_spin_unlock_irq(&sem->wait_lock);
1037 			wake_up_q(&wake_q);
1038 		}
1039 		return sem;
1040 	}
1041 
1042 queue:
1043 	waiter.task = current;
1044 	waiter.type = RWSEM_WAITING_FOR_READ;
1045 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1046 	waiter.handoff_set = false;
1047 
1048 	raw_spin_lock_irq(&sem->wait_lock);
1049 	if (list_empty(&sem->wait_list)) {
1050 		/*
1051 		 * In case the wait queue is empty and the lock isn't owned
1052 		 * by a writer, this reader can exit the slowpath and return
1053 		 * immediately as its RWSEM_READER_BIAS has already been set
1054 		 * in the count.
1055 		 */
1056 		if (!(atomic_long_read(&sem->count) & RWSEM_WRITER_MASK)) {
1057 			/* Provide lock ACQUIRE */
1058 			smp_acquire__after_ctrl_dep();
1059 			raw_spin_unlock_irq(&sem->wait_lock);
1060 			rwsem_set_reader_owned(sem);
1061 			lockevent_inc(rwsem_rlock_fast);
1062 			return sem;
1063 		}
1064 		adjustment += RWSEM_FLAG_WAITERS;
1065 	}
1066 	rwsem_add_waiter(sem, &waiter);
1067 
1068 	/* we're now waiting on the lock, but no longer actively locking */
1069 	count = atomic_long_add_return(adjustment, &sem->count);
1070 
1071 	rwsem_cond_wake_waiter(sem, count, &wake_q);
1072 	raw_spin_unlock_irq(&sem->wait_lock);
1073 
1074 	if (!wake_q_empty(&wake_q))
1075 		wake_up_q(&wake_q);
1076 
1077 	trace_contention_begin(sem, LCB_F_READ);
1078 
1079 	/* wait to be given the lock */
1080 	for (;;) {
1081 		set_current_state(state);
1082 		if (!smp_load_acquire(&waiter.task)) {
1083 			/* Matches rwsem_mark_wake()'s smp_store_release(). */
1084 			break;
1085 		}
1086 		if (signal_pending_state(state, current)) {
1087 			raw_spin_lock_irq(&sem->wait_lock);
1088 			if (waiter.task)
1089 				goto out_nolock;
1090 			raw_spin_unlock_irq(&sem->wait_lock);
1091 			/* Ordered by sem->wait_lock against rwsem_mark_wake(). */
1092 			break;
1093 		}
1094 		schedule();
1095 		lockevent_inc(rwsem_sleep_reader);
1096 	}
1097 
1098 	__set_current_state(TASK_RUNNING);
1099 	lockevent_inc(rwsem_rlock);
1100 	trace_contention_end(sem, 0);
1101 	return sem;
1102 
1103 out_nolock:
1104 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1105 	__set_current_state(TASK_RUNNING);
1106 	lockevent_inc(rwsem_rlock_fail);
1107 	trace_contention_end(sem, -EINTR);
1108 	return ERR_PTR(-EINTR);
1109 }
1110 
1111 /*
1112  * Wait until we successfully acquire the write lock
1113  */
1114 static struct rw_semaphore __sched *
1115 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state)
1116 {
1117 	struct rwsem_waiter waiter;
1118 	DEFINE_WAKE_Q(wake_q);
1119 
1120 	/* do optimistic spinning and steal lock if possible */
1121 	if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) {
1122 		/* rwsem_optimistic_spin() implies ACQUIRE on success */
1123 		return sem;
1124 	}
1125 
1126 	/*
1127 	 * Optimistic spinning failed, proceed to the slowpath
1128 	 * and block until we can acquire the sem.
1129 	 */
1130 	waiter.task = current;
1131 	waiter.type = RWSEM_WAITING_FOR_WRITE;
1132 	waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT;
1133 	waiter.handoff_set = false;
1134 
1135 	raw_spin_lock_irq(&sem->wait_lock);
1136 	rwsem_add_waiter(sem, &waiter);
1137 
1138 	/* we're now waiting on the lock */
1139 	if (rwsem_first_waiter(sem) != &waiter) {
1140 		rwsem_cond_wake_waiter(sem, atomic_long_read(&sem->count),
1141 				       &wake_q);
1142 		if (!wake_q_empty(&wake_q)) {
1143 			/*
1144 			 * We want to minimize wait_lock hold time especially
1145 			 * when a large number of readers are to be woken up.
1146 			 */
1147 			raw_spin_unlock_irq(&sem->wait_lock);
1148 			wake_up_q(&wake_q);
1149 			raw_spin_lock_irq(&sem->wait_lock);
1150 		}
1151 	} else {
1152 		atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count);
1153 	}
1154 
1155 	/* wait until we successfully acquire the lock */
1156 	set_current_state(state);
1157 	trace_contention_begin(sem, LCB_F_WRITE);
1158 
1159 	for (;;) {
1160 		if (rwsem_try_write_lock(sem, &waiter)) {
1161 			/* rwsem_try_write_lock() implies ACQUIRE on success */
1162 			break;
1163 		}
1164 
1165 		raw_spin_unlock_irq(&sem->wait_lock);
1166 
1167 		if (signal_pending_state(state, current))
1168 			goto out_nolock;
1169 
1170 		/*
1171 		 * After setting the handoff bit and failing to acquire
1172 		 * the lock, attempt to spin on owner to accelerate lock
1173 		 * transfer. If the previous owner is a on-cpu writer and it
1174 		 * has just released the lock, OWNER_NULL will be returned.
1175 		 * In this case, we attempt to acquire the lock again
1176 		 * without sleeping.
1177 		 */
1178 		if (waiter.handoff_set) {
1179 			enum owner_state owner_state;
1180 
1181 			preempt_disable();
1182 			owner_state = rwsem_spin_on_owner(sem);
1183 			preempt_enable();
1184 
1185 			if (owner_state == OWNER_NULL)
1186 				goto trylock_again;
1187 		}
1188 
1189 		schedule();
1190 		lockevent_inc(rwsem_sleep_writer);
1191 		set_current_state(state);
1192 trylock_again:
1193 		raw_spin_lock_irq(&sem->wait_lock);
1194 	}
1195 	__set_current_state(TASK_RUNNING);
1196 	raw_spin_unlock_irq(&sem->wait_lock);
1197 	lockevent_inc(rwsem_wlock);
1198 	trace_contention_end(sem, 0);
1199 	return sem;
1200 
1201 out_nolock:
1202 	__set_current_state(TASK_RUNNING);
1203 	raw_spin_lock_irq(&sem->wait_lock);
1204 	rwsem_del_wake_waiter(sem, &waiter, &wake_q);
1205 	lockevent_inc(rwsem_wlock_fail);
1206 	trace_contention_end(sem, -EINTR);
1207 	return ERR_PTR(-EINTR);
1208 }
1209 
1210 /*
1211  * handle waking up a waiter on the semaphore
1212  * - up_read/up_write has decremented the active part of count if we come here
1213  */
1214 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem)
1215 {
1216 	unsigned long flags;
1217 	DEFINE_WAKE_Q(wake_q);
1218 
1219 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1220 
1221 	if (!list_empty(&sem->wait_list))
1222 		rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q);
1223 
1224 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1225 	wake_up_q(&wake_q);
1226 
1227 	return sem;
1228 }
1229 
1230 /*
1231  * downgrade a write lock into a read lock
1232  * - caller incremented waiting part of count and discovered it still negative
1233  * - just wake up any readers at the front of the queue
1234  */
1235 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem)
1236 {
1237 	unsigned long flags;
1238 	DEFINE_WAKE_Q(wake_q);
1239 
1240 	raw_spin_lock_irqsave(&sem->wait_lock, flags);
1241 
1242 	if (!list_empty(&sem->wait_list))
1243 		rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q);
1244 
1245 	raw_spin_unlock_irqrestore(&sem->wait_lock, flags);
1246 	wake_up_q(&wake_q);
1247 
1248 	return sem;
1249 }
1250 
1251 /*
1252  * lock for reading
1253  */
1254 static inline int __down_read_common(struct rw_semaphore *sem, int state)
1255 {
1256 	long count;
1257 
1258 	if (!rwsem_read_trylock(sem, &count)) {
1259 		if (IS_ERR(rwsem_down_read_slowpath(sem, count, state)))
1260 			return -EINTR;
1261 		DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1262 	}
1263 	return 0;
1264 }
1265 
1266 static inline void __down_read(struct rw_semaphore *sem)
1267 {
1268 	__down_read_common(sem, TASK_UNINTERRUPTIBLE);
1269 }
1270 
1271 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1272 {
1273 	return __down_read_common(sem, TASK_INTERRUPTIBLE);
1274 }
1275 
1276 static inline int __down_read_killable(struct rw_semaphore *sem)
1277 {
1278 	return __down_read_common(sem, TASK_KILLABLE);
1279 }
1280 
1281 static inline int __down_read_trylock(struct rw_semaphore *sem)
1282 {
1283 	long tmp;
1284 
1285 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1286 
1287 	tmp = atomic_long_read(&sem->count);
1288 	while (!(tmp & RWSEM_READ_FAILED_MASK)) {
1289 		if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp,
1290 						    tmp + RWSEM_READER_BIAS)) {
1291 			rwsem_set_reader_owned(sem);
1292 			return 1;
1293 		}
1294 	}
1295 	return 0;
1296 }
1297 
1298 /*
1299  * lock for writing
1300  */
1301 static inline int __down_write_common(struct rw_semaphore *sem, int state)
1302 {
1303 	if (unlikely(!rwsem_write_trylock(sem))) {
1304 		if (IS_ERR(rwsem_down_write_slowpath(sem, state)))
1305 			return -EINTR;
1306 	}
1307 
1308 	return 0;
1309 }
1310 
1311 static inline void __down_write(struct rw_semaphore *sem)
1312 {
1313 	__down_write_common(sem, TASK_UNINTERRUPTIBLE);
1314 }
1315 
1316 static inline int __down_write_killable(struct rw_semaphore *sem)
1317 {
1318 	return __down_write_common(sem, TASK_KILLABLE);
1319 }
1320 
1321 static inline int __down_write_trylock(struct rw_semaphore *sem)
1322 {
1323 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1324 	return rwsem_write_trylock(sem);
1325 }
1326 
1327 /*
1328  * unlock after reading
1329  */
1330 static inline void __up_read(struct rw_semaphore *sem)
1331 {
1332 	long tmp;
1333 
1334 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1335 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1336 
1337 	rwsem_clear_reader_owned(sem);
1338 	tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count);
1339 	DEBUG_RWSEMS_WARN_ON(tmp < 0, sem);
1340 	if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) ==
1341 		      RWSEM_FLAG_WAITERS)) {
1342 		clear_nonspinnable(sem);
1343 		rwsem_wake(sem);
1344 	}
1345 }
1346 
1347 /*
1348  * unlock after writing
1349  */
1350 static inline void __up_write(struct rw_semaphore *sem)
1351 {
1352 	long tmp;
1353 
1354 	DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem);
1355 	/*
1356 	 * sem->owner may differ from current if the ownership is transferred
1357 	 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits.
1358 	 */
1359 	DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) &&
1360 			    !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem);
1361 
1362 	preempt_disable();
1363 	rwsem_clear_owner(sem);
1364 	tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count);
1365 	preempt_enable();
1366 	if (unlikely(tmp & RWSEM_FLAG_WAITERS))
1367 		rwsem_wake(sem);
1368 }
1369 
1370 /*
1371  * downgrade write lock to read lock
1372  */
1373 static inline void __downgrade_write(struct rw_semaphore *sem)
1374 {
1375 	long tmp;
1376 
1377 	/*
1378 	 * When downgrading from exclusive to shared ownership,
1379 	 * anything inside the write-locked region cannot leak
1380 	 * into the read side. In contrast, anything in the
1381 	 * read-locked region is ok to be re-ordered into the
1382 	 * write side. As such, rely on RELEASE semantics.
1383 	 */
1384 	DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem);
1385 	tmp = atomic_long_fetch_add_release(
1386 		-RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count);
1387 	rwsem_set_reader_owned(sem);
1388 	if (tmp & RWSEM_FLAG_WAITERS)
1389 		rwsem_downgrade_wake(sem);
1390 }
1391 
1392 #else /* !CONFIG_PREEMPT_RT */
1393 
1394 #define RT_MUTEX_BUILD_MUTEX
1395 #include "rtmutex.c"
1396 
1397 #define rwbase_set_and_save_current_state(state)	\
1398 	set_current_state(state)
1399 
1400 #define rwbase_restore_current_state()			\
1401 	__set_current_state(TASK_RUNNING)
1402 
1403 #define rwbase_rtmutex_lock_state(rtm, state)		\
1404 	__rt_mutex_lock(rtm, state)
1405 
1406 #define rwbase_rtmutex_slowlock_locked(rtm, state)	\
1407 	__rt_mutex_slowlock_locked(rtm, NULL, state)
1408 
1409 #define rwbase_rtmutex_unlock(rtm)			\
1410 	__rt_mutex_unlock(rtm)
1411 
1412 #define rwbase_rtmutex_trylock(rtm)			\
1413 	__rt_mutex_trylock(rtm)
1414 
1415 #define rwbase_signal_pending_state(state, current)	\
1416 	signal_pending_state(state, current)
1417 
1418 #define rwbase_schedule()				\
1419 	schedule()
1420 
1421 #include "rwbase_rt.c"
1422 
1423 void __init_rwsem(struct rw_semaphore *sem, const char *name,
1424 		  struct lock_class_key *key)
1425 {
1426 	init_rwbase_rt(&(sem)->rwbase);
1427 
1428 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1429 	debug_check_no_locks_freed((void *)sem, sizeof(*sem));
1430 	lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP);
1431 #endif
1432 }
1433 EXPORT_SYMBOL(__init_rwsem);
1434 
1435 static inline void __down_read(struct rw_semaphore *sem)
1436 {
1437 	rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1438 }
1439 
1440 static inline int __down_read_interruptible(struct rw_semaphore *sem)
1441 {
1442 	return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE);
1443 }
1444 
1445 static inline int __down_read_killable(struct rw_semaphore *sem)
1446 {
1447 	return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE);
1448 }
1449 
1450 static inline int __down_read_trylock(struct rw_semaphore *sem)
1451 {
1452 	return rwbase_read_trylock(&sem->rwbase);
1453 }
1454 
1455 static inline void __up_read(struct rw_semaphore *sem)
1456 {
1457 	rwbase_read_unlock(&sem->rwbase, TASK_NORMAL);
1458 }
1459 
1460 static inline void __sched __down_write(struct rw_semaphore *sem)
1461 {
1462 	rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE);
1463 }
1464 
1465 static inline int __sched __down_write_killable(struct rw_semaphore *sem)
1466 {
1467 	return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE);
1468 }
1469 
1470 static inline int __down_write_trylock(struct rw_semaphore *sem)
1471 {
1472 	return rwbase_write_trylock(&sem->rwbase);
1473 }
1474 
1475 static inline void __up_write(struct rw_semaphore *sem)
1476 {
1477 	rwbase_write_unlock(&sem->rwbase);
1478 }
1479 
1480 static inline void __downgrade_write(struct rw_semaphore *sem)
1481 {
1482 	rwbase_write_downgrade(&sem->rwbase);
1483 }
1484 
1485 /* Debug stubs for the common API */
1486 #define DEBUG_RWSEMS_WARN_ON(c, sem)
1487 
1488 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem,
1489 					    struct task_struct *owner)
1490 {
1491 }
1492 
1493 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem)
1494 {
1495 	int count = atomic_read(&sem->rwbase.readers);
1496 
1497 	return count < 0 && count != READER_BIAS;
1498 }
1499 
1500 #endif /* CONFIG_PREEMPT_RT */
1501 
1502 /*
1503  * lock for reading
1504  */
1505 void __sched down_read(struct rw_semaphore *sem)
1506 {
1507 	might_sleep();
1508 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1509 
1510 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1511 }
1512 EXPORT_SYMBOL(down_read);
1513 
1514 int __sched down_read_interruptible(struct rw_semaphore *sem)
1515 {
1516 	might_sleep();
1517 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1518 
1519 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) {
1520 		rwsem_release(&sem->dep_map, _RET_IP_);
1521 		return -EINTR;
1522 	}
1523 
1524 	return 0;
1525 }
1526 EXPORT_SYMBOL(down_read_interruptible);
1527 
1528 int __sched down_read_killable(struct rw_semaphore *sem)
1529 {
1530 	might_sleep();
1531 	rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_);
1532 
1533 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1534 		rwsem_release(&sem->dep_map, _RET_IP_);
1535 		return -EINTR;
1536 	}
1537 
1538 	return 0;
1539 }
1540 EXPORT_SYMBOL(down_read_killable);
1541 
1542 /*
1543  * trylock for reading -- returns 1 if successful, 0 if contention
1544  */
1545 int down_read_trylock(struct rw_semaphore *sem)
1546 {
1547 	int ret = __down_read_trylock(sem);
1548 
1549 	if (ret == 1)
1550 		rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_);
1551 	return ret;
1552 }
1553 EXPORT_SYMBOL(down_read_trylock);
1554 
1555 /*
1556  * lock for writing
1557  */
1558 void __sched down_write(struct rw_semaphore *sem)
1559 {
1560 	might_sleep();
1561 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1562 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1563 }
1564 EXPORT_SYMBOL(down_write);
1565 
1566 /*
1567  * lock for writing
1568  */
1569 int __sched down_write_killable(struct rw_semaphore *sem)
1570 {
1571 	might_sleep();
1572 	rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_);
1573 
1574 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1575 				  __down_write_killable)) {
1576 		rwsem_release(&sem->dep_map, _RET_IP_);
1577 		return -EINTR;
1578 	}
1579 
1580 	return 0;
1581 }
1582 EXPORT_SYMBOL(down_write_killable);
1583 
1584 /*
1585  * trylock for writing -- returns 1 if successful, 0 if contention
1586  */
1587 int down_write_trylock(struct rw_semaphore *sem)
1588 {
1589 	int ret = __down_write_trylock(sem);
1590 
1591 	if (ret == 1)
1592 		rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_);
1593 
1594 	return ret;
1595 }
1596 EXPORT_SYMBOL(down_write_trylock);
1597 
1598 /*
1599  * release a read lock
1600  */
1601 void up_read(struct rw_semaphore *sem)
1602 {
1603 	rwsem_release(&sem->dep_map, _RET_IP_);
1604 	__up_read(sem);
1605 }
1606 EXPORT_SYMBOL(up_read);
1607 
1608 /*
1609  * release a write lock
1610  */
1611 void up_write(struct rw_semaphore *sem)
1612 {
1613 	rwsem_release(&sem->dep_map, _RET_IP_);
1614 	__up_write(sem);
1615 }
1616 EXPORT_SYMBOL(up_write);
1617 
1618 /*
1619  * downgrade write lock to read lock
1620  */
1621 void downgrade_write(struct rw_semaphore *sem)
1622 {
1623 	lock_downgrade(&sem->dep_map, _RET_IP_);
1624 	__downgrade_write(sem);
1625 }
1626 EXPORT_SYMBOL(downgrade_write);
1627 
1628 #ifdef CONFIG_DEBUG_LOCK_ALLOC
1629 
1630 void down_read_nested(struct rw_semaphore *sem, int subclass)
1631 {
1632 	might_sleep();
1633 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1634 	LOCK_CONTENDED(sem, __down_read_trylock, __down_read);
1635 }
1636 EXPORT_SYMBOL(down_read_nested);
1637 
1638 int down_read_killable_nested(struct rw_semaphore *sem, int subclass)
1639 {
1640 	might_sleep();
1641 	rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_);
1642 
1643 	if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) {
1644 		rwsem_release(&sem->dep_map, _RET_IP_);
1645 		return -EINTR;
1646 	}
1647 
1648 	return 0;
1649 }
1650 EXPORT_SYMBOL(down_read_killable_nested);
1651 
1652 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest)
1653 {
1654 	might_sleep();
1655 	rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_);
1656 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1657 }
1658 EXPORT_SYMBOL(_down_write_nest_lock);
1659 
1660 void down_read_non_owner(struct rw_semaphore *sem)
1661 {
1662 	might_sleep();
1663 	__down_read(sem);
1664 	__rwsem_set_reader_owned(sem, NULL);
1665 }
1666 EXPORT_SYMBOL(down_read_non_owner);
1667 
1668 void down_write_nested(struct rw_semaphore *sem, int subclass)
1669 {
1670 	might_sleep();
1671 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1672 	LOCK_CONTENDED(sem, __down_write_trylock, __down_write);
1673 }
1674 EXPORT_SYMBOL(down_write_nested);
1675 
1676 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass)
1677 {
1678 	might_sleep();
1679 	rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_);
1680 
1681 	if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock,
1682 				  __down_write_killable)) {
1683 		rwsem_release(&sem->dep_map, _RET_IP_);
1684 		return -EINTR;
1685 	}
1686 
1687 	return 0;
1688 }
1689 EXPORT_SYMBOL(down_write_killable_nested);
1690 
1691 void up_read_non_owner(struct rw_semaphore *sem)
1692 {
1693 	DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem);
1694 	__up_read(sem);
1695 }
1696 EXPORT_SYMBOL(up_read_non_owner);
1697 
1698 #endif
1699