1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells ([email protected]). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <[email protected]> 8 * and Michel Lespinasse <[email protected]> 9 * 10 * Optimistic spinning by Tim Chen <[email protected]> 11 * and Davidlohr Bueso <[email protected]>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <[email protected]> and 15 * Peter Zijlstra <[email protected]>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 31 #ifndef CONFIG_PREEMPT_RT 32 #include "lock_events.h" 33 34 /* 35 * The least significant 2 bits of the owner value has the following 36 * meanings when set. 37 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers 38 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock 39 * 40 * When the rwsem is reader-owned and a spinning writer has timed out, 41 * the nonspinnable bit will be set to disable optimistic spinning. 42 43 * When a writer acquires a rwsem, it puts its task_struct pointer 44 * into the owner field. It is cleared after an unlock. 45 * 46 * When a reader acquires a rwsem, it will also puts its task_struct 47 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 48 * On unlock, the owner field will largely be left untouched. So 49 * for a free or reader-owned rwsem, the owner value may contain 50 * information about the last reader that acquires the rwsem. 51 * 52 * That information may be helpful in debugging cases where the system 53 * seems to hang on a reader owned rwsem especially if only one reader 54 * is involved. Ideally we would like to track all the readers that own 55 * a rwsem, but the overhead is simply too big. 56 * 57 * A fast path reader optimistic lock stealing is supported when the rwsem 58 * is previously owned by a writer and the following conditions are met: 59 * - OSQ is empty 60 * - rwsem is not currently writer owned 61 * - the handoff isn't set. 62 */ 63 #define RWSEM_READER_OWNED (1UL << 0) 64 #define RWSEM_NONSPINNABLE (1UL << 1) 65 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 66 67 #ifdef CONFIG_DEBUG_RWSEMS 68 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 69 if (!debug_locks_silent && \ 70 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 71 #c, atomic_long_read(&(sem)->count), \ 72 (unsigned long) sem->magic, \ 73 atomic_long_read(&(sem)->owner), (long)current, \ 74 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 75 debug_locks_off(); \ 76 } while (0) 77 #else 78 # define DEBUG_RWSEMS_WARN_ON(c, sem) 79 #endif 80 81 /* 82 * On 64-bit architectures, the bit definitions of the count are: 83 * 84 * Bit 0 - writer locked bit 85 * Bit 1 - waiters present bit 86 * Bit 2 - lock handoff bit 87 * Bits 3-7 - reserved 88 * Bits 8-62 - 55-bit reader count 89 * Bit 63 - read fail bit 90 * 91 * On 32-bit architectures, the bit definitions of the count are: 92 * 93 * Bit 0 - writer locked bit 94 * Bit 1 - waiters present bit 95 * Bit 2 - lock handoff bit 96 * Bits 3-7 - reserved 97 * Bits 8-30 - 23-bit reader count 98 * Bit 31 - read fail bit 99 * 100 * It is not likely that the most significant bit (read fail bit) will ever 101 * be set. This guard bit is still checked anyway in the down_read() fastpath 102 * just in case we need to use up more of the reader bits for other purpose 103 * in the future. 104 * 105 * atomic_long_fetch_add() is used to obtain reader lock, whereas 106 * atomic_long_cmpxchg() will be used to obtain writer lock. 107 * 108 * There are three places where the lock handoff bit may be set or cleared. 109 * 1) rwsem_mark_wake() for readers. 110 * 2) rwsem_try_write_lock() for writers. 111 * 3) Error path of rwsem_down_write_slowpath(). 112 * 113 * For all the above cases, wait_lock will be held. A writer must also 114 * be the first one in the wait_list to be eligible for setting the handoff 115 * bit. So concurrent setting/clearing of handoff bit is not possible. 116 */ 117 #define RWSEM_WRITER_LOCKED (1UL << 0) 118 #define RWSEM_FLAG_WAITERS (1UL << 1) 119 #define RWSEM_FLAG_HANDOFF (1UL << 2) 120 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 121 122 #define RWSEM_READER_SHIFT 8 123 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 124 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 125 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 126 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 127 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 128 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 129 130 /* 131 * All writes to owner are protected by WRITE_ONCE() to make sure that 132 * store tearing can't happen as optimistic spinners may read and use 133 * the owner value concurrently without lock. Read from owner, however, 134 * may not need READ_ONCE() as long as the pointer value is only used 135 * for comparison and isn't being dereferenced. 136 */ 137 static inline void rwsem_set_owner(struct rw_semaphore *sem) 138 { 139 atomic_long_set(&sem->owner, (long)current); 140 } 141 142 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 143 { 144 atomic_long_set(&sem->owner, 0); 145 } 146 147 /* 148 * Test the flags in the owner field. 149 */ 150 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 151 { 152 return atomic_long_read(&sem->owner) & flags; 153 } 154 155 /* 156 * The task_struct pointer of the last owning reader will be left in 157 * the owner field. 158 * 159 * Note that the owner value just indicates the task has owned the rwsem 160 * previously, it may not be the real owner or one of the real owners 161 * anymore when that field is examined, so take it with a grain of salt. 162 * 163 * The reader non-spinnable bit is preserved. 164 */ 165 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 166 struct task_struct *owner) 167 { 168 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 169 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); 170 171 atomic_long_set(&sem->owner, val); 172 } 173 174 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 175 { 176 __rwsem_set_reader_owned(sem, current); 177 } 178 179 /* 180 * Return true if the rwsem is owned by a reader. 181 */ 182 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 183 { 184 #ifdef CONFIG_DEBUG_RWSEMS 185 /* 186 * Check the count to see if it is write-locked. 187 */ 188 long count = atomic_long_read(&sem->count); 189 190 if (count & RWSEM_WRITER_MASK) 191 return false; 192 #endif 193 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 194 } 195 196 #ifdef CONFIG_DEBUG_RWSEMS 197 /* 198 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 199 * is a task pointer in owner of a reader-owned rwsem, it will be the 200 * real owner or one of the real owners. The only exception is when the 201 * unlock is done by up_read_non_owner(). 202 */ 203 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 204 { 205 unsigned long val = atomic_long_read(&sem->owner); 206 207 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 208 if (atomic_long_try_cmpxchg(&sem->owner, &val, 209 val & RWSEM_OWNER_FLAGS_MASK)) 210 return; 211 } 212 } 213 #else 214 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 215 { 216 } 217 #endif 218 219 /* 220 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 221 * remains set. Otherwise, the operation will be aborted. 222 */ 223 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 224 { 225 unsigned long owner = atomic_long_read(&sem->owner); 226 227 do { 228 if (!(owner & RWSEM_READER_OWNED)) 229 break; 230 if (owner & RWSEM_NONSPINNABLE) 231 break; 232 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 233 owner | RWSEM_NONSPINNABLE)); 234 } 235 236 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) 237 { 238 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 239 240 if (WARN_ON_ONCE(*cntp < 0)) 241 rwsem_set_nonspinnable(sem); 242 243 if (!(*cntp & RWSEM_READ_FAILED_MASK)) { 244 rwsem_set_reader_owned(sem); 245 return true; 246 } 247 248 return false; 249 } 250 251 static inline bool rwsem_write_trylock(struct rw_semaphore *sem) 252 { 253 long tmp = RWSEM_UNLOCKED_VALUE; 254 255 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { 256 rwsem_set_owner(sem); 257 return true; 258 } 259 260 return false; 261 } 262 263 /* 264 * Return just the real task structure pointer of the owner 265 */ 266 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 267 { 268 return (struct task_struct *) 269 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 270 } 271 272 /* 273 * Return the real task structure pointer of the owner and the embedded 274 * flags in the owner. pflags must be non-NULL. 275 */ 276 static inline struct task_struct * 277 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 278 { 279 unsigned long owner = atomic_long_read(&sem->owner); 280 281 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 282 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 283 } 284 285 /* 286 * Guide to the rw_semaphore's count field. 287 * 288 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 289 * by a writer. 290 * 291 * The lock is owned by readers when 292 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 293 * (2) some of the reader bits are set in count, and 294 * (3) the owner field has RWSEM_READ_OWNED bit set. 295 * 296 * Having some reader bits set is not enough to guarantee a readers owned 297 * lock as the readers may be in the process of backing out from the count 298 * and a writer has just released the lock. So another writer may steal 299 * the lock immediately after that. 300 */ 301 302 /* 303 * Initialize an rwsem: 304 */ 305 void __init_rwsem(struct rw_semaphore *sem, const char *name, 306 struct lock_class_key *key) 307 { 308 #ifdef CONFIG_DEBUG_LOCK_ALLOC 309 /* 310 * Make sure we are not reinitializing a held semaphore: 311 */ 312 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 313 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 314 #endif 315 #ifdef CONFIG_DEBUG_RWSEMS 316 sem->magic = sem; 317 #endif 318 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 319 raw_spin_lock_init(&sem->wait_lock); 320 INIT_LIST_HEAD(&sem->wait_list); 321 atomic_long_set(&sem->owner, 0L); 322 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 323 osq_lock_init(&sem->osq); 324 #endif 325 } 326 EXPORT_SYMBOL(__init_rwsem); 327 328 enum rwsem_waiter_type { 329 RWSEM_WAITING_FOR_WRITE, 330 RWSEM_WAITING_FOR_READ 331 }; 332 333 struct rwsem_waiter { 334 struct list_head list; 335 struct task_struct *task; 336 enum rwsem_waiter_type type; 337 unsigned long timeout; 338 }; 339 #define rwsem_first_waiter(sem) \ 340 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 341 342 enum rwsem_wake_type { 343 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 344 RWSEM_WAKE_READERS, /* Wake readers only */ 345 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 346 }; 347 348 enum writer_wait_state { 349 WRITER_NOT_FIRST, /* Writer is not first in wait list */ 350 WRITER_FIRST, /* Writer is first in wait list */ 351 WRITER_HANDOFF /* Writer is first & handoff needed */ 352 }; 353 354 /* 355 * The typical HZ value is either 250 or 1000. So set the minimum waiting 356 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 357 * queue before initiating the handoff protocol. 358 */ 359 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 360 361 /* 362 * Magic number to batch-wakeup waiting readers, even when writers are 363 * also present in the queue. This both limits the amount of work the 364 * waking thread must do and also prevents any potential counter overflow, 365 * however unlikely. 366 */ 367 #define MAX_READERS_WAKEUP 0x100 368 369 /* 370 * handle the lock release when processes blocked on it that can now run 371 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 372 * have been set. 373 * - there must be someone on the queue 374 * - the wait_lock must be held by the caller 375 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 376 * to actually wakeup the blocked task(s) and drop the reference count, 377 * preferably when the wait_lock is released 378 * - woken process blocks are discarded from the list after having task zeroed 379 * - writers are only marked woken if downgrading is false 380 */ 381 static void rwsem_mark_wake(struct rw_semaphore *sem, 382 enum rwsem_wake_type wake_type, 383 struct wake_q_head *wake_q) 384 { 385 struct rwsem_waiter *waiter, *tmp; 386 long oldcount, woken = 0, adjustment = 0; 387 struct list_head wlist; 388 389 lockdep_assert_held(&sem->wait_lock); 390 391 /* 392 * Take a peek at the queue head waiter such that we can determine 393 * the wakeup(s) to perform. 394 */ 395 waiter = rwsem_first_waiter(sem); 396 397 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 398 if (wake_type == RWSEM_WAKE_ANY) { 399 /* 400 * Mark writer at the front of the queue for wakeup. 401 * Until the task is actually later awoken later by 402 * the caller, other writers are able to steal it. 403 * Readers, on the other hand, will block as they 404 * will notice the queued writer. 405 */ 406 wake_q_add(wake_q, waiter->task); 407 lockevent_inc(rwsem_wake_writer); 408 } 409 410 return; 411 } 412 413 /* 414 * No reader wakeup if there are too many of them already. 415 */ 416 if (unlikely(atomic_long_read(&sem->count) < 0)) 417 return; 418 419 /* 420 * Writers might steal the lock before we grant it to the next reader. 421 * We prefer to do the first reader grant before counting readers 422 * so we can bail out early if a writer stole the lock. 423 */ 424 if (wake_type != RWSEM_WAKE_READ_OWNED) { 425 struct task_struct *owner; 426 427 adjustment = RWSEM_READER_BIAS; 428 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 429 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 430 /* 431 * When we've been waiting "too" long (for writers 432 * to give up the lock), request a HANDOFF to 433 * force the issue. 434 */ 435 if (!(oldcount & RWSEM_FLAG_HANDOFF) && 436 time_after(jiffies, waiter->timeout)) { 437 adjustment -= RWSEM_FLAG_HANDOFF; 438 lockevent_inc(rwsem_rlock_handoff); 439 } 440 441 atomic_long_add(-adjustment, &sem->count); 442 return; 443 } 444 /* 445 * Set it to reader-owned to give spinners an early 446 * indication that readers now have the lock. 447 * The reader nonspinnable bit seen at slowpath entry of 448 * the reader is copied over. 449 */ 450 owner = waiter->task; 451 __rwsem_set_reader_owned(sem, owner); 452 } 453 454 /* 455 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 456 * queue. We know that the woken will be at least 1 as we accounted 457 * for above. Note we increment the 'active part' of the count by the 458 * number of readers before waking any processes up. 459 * 460 * This is an adaptation of the phase-fair R/W locks where at the 461 * reader phase (first waiter is a reader), all readers are eligible 462 * to acquire the lock at the same time irrespective of their order 463 * in the queue. The writers acquire the lock according to their 464 * order in the queue. 465 * 466 * We have to do wakeup in 2 passes to prevent the possibility that 467 * the reader count may be decremented before it is incremented. It 468 * is because the to-be-woken waiter may not have slept yet. So it 469 * may see waiter->task got cleared, finish its critical section and 470 * do an unlock before the reader count increment. 471 * 472 * 1) Collect the read-waiters in a separate list, count them and 473 * fully increment the reader count in rwsem. 474 * 2) For each waiters in the new list, clear waiter->task and 475 * put them into wake_q to be woken up later. 476 */ 477 INIT_LIST_HEAD(&wlist); 478 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 479 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 480 continue; 481 482 woken++; 483 list_move_tail(&waiter->list, &wlist); 484 485 /* 486 * Limit # of readers that can be woken up per wakeup call. 487 */ 488 if (woken >= MAX_READERS_WAKEUP) 489 break; 490 } 491 492 adjustment = woken * RWSEM_READER_BIAS - adjustment; 493 lockevent_cond_inc(rwsem_wake_reader, woken); 494 if (list_empty(&sem->wait_list)) { 495 /* hit end of list above */ 496 adjustment -= RWSEM_FLAG_WAITERS; 497 } 498 499 /* 500 * When we've woken a reader, we no longer need to force writers 501 * to give up the lock and we can clear HANDOFF. 502 */ 503 if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF)) 504 adjustment -= RWSEM_FLAG_HANDOFF; 505 506 if (adjustment) 507 atomic_long_add(adjustment, &sem->count); 508 509 /* 2nd pass */ 510 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 511 struct task_struct *tsk; 512 513 tsk = waiter->task; 514 get_task_struct(tsk); 515 516 /* 517 * Ensure calling get_task_struct() before setting the reader 518 * waiter to nil such that rwsem_down_read_slowpath() cannot 519 * race with do_exit() by always holding a reference count 520 * to the task to wakeup. 521 */ 522 smp_store_release(&waiter->task, NULL); 523 /* 524 * Ensure issuing the wakeup (either by us or someone else) 525 * after setting the reader waiter to nil. 526 */ 527 wake_q_add_safe(wake_q, tsk); 528 } 529 } 530 531 /* 532 * This function must be called with the sem->wait_lock held to prevent 533 * race conditions between checking the rwsem wait list and setting the 534 * sem->count accordingly. 535 * 536 * If wstate is WRITER_HANDOFF, it will make sure that either the handoff 537 * bit is set or the lock is acquired with handoff bit cleared. 538 */ 539 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 540 enum writer_wait_state wstate) 541 { 542 long count, new; 543 544 lockdep_assert_held(&sem->wait_lock); 545 546 count = atomic_long_read(&sem->count); 547 do { 548 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 549 550 if (has_handoff && wstate == WRITER_NOT_FIRST) 551 return false; 552 553 new = count; 554 555 if (count & RWSEM_LOCK_MASK) { 556 if (has_handoff || (wstate != WRITER_HANDOFF)) 557 return false; 558 559 new |= RWSEM_FLAG_HANDOFF; 560 } else { 561 new |= RWSEM_WRITER_LOCKED; 562 new &= ~RWSEM_FLAG_HANDOFF; 563 564 if (list_is_singular(&sem->wait_list)) 565 new &= ~RWSEM_FLAG_WAITERS; 566 } 567 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 568 569 /* 570 * We have either acquired the lock with handoff bit cleared or 571 * set the handoff bit. 572 */ 573 if (new & RWSEM_FLAG_HANDOFF) 574 return false; 575 576 rwsem_set_owner(sem); 577 return true; 578 } 579 580 /* 581 * The rwsem_spin_on_owner() function returns the following 4 values 582 * depending on the lock owner state. 583 * OWNER_NULL : owner is currently NULL 584 * OWNER_WRITER: when owner changes and is a writer 585 * OWNER_READER: when owner changes and the new owner may be a reader. 586 * OWNER_NONSPINNABLE: 587 * when optimistic spinning has to stop because either the 588 * owner stops running, is unknown, or its timeslice has 589 * been used up. 590 */ 591 enum owner_state { 592 OWNER_NULL = 1 << 0, 593 OWNER_WRITER = 1 << 1, 594 OWNER_READER = 1 << 2, 595 OWNER_NONSPINNABLE = 1 << 3, 596 }; 597 598 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 599 /* 600 * Try to acquire write lock before the writer has been put on wait queue. 601 */ 602 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 603 { 604 long count = atomic_long_read(&sem->count); 605 606 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 607 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 608 count | RWSEM_WRITER_LOCKED)) { 609 rwsem_set_owner(sem); 610 lockevent_inc(rwsem_opt_lock); 611 return true; 612 } 613 } 614 return false; 615 } 616 617 static inline bool owner_on_cpu(struct task_struct *owner) 618 { 619 /* 620 * As lock holder preemption issue, we both skip spinning if 621 * task is not on cpu or its cpu is preempted 622 */ 623 return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 624 } 625 626 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 627 { 628 struct task_struct *owner; 629 unsigned long flags; 630 bool ret = true; 631 632 if (need_resched()) { 633 lockevent_inc(rwsem_opt_fail); 634 return false; 635 } 636 637 preempt_disable(); 638 rcu_read_lock(); 639 owner = rwsem_owner_flags(sem, &flags); 640 /* 641 * Don't check the read-owner as the entry may be stale. 642 */ 643 if ((flags & RWSEM_NONSPINNABLE) || 644 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 645 ret = false; 646 rcu_read_unlock(); 647 preempt_enable(); 648 649 lockevent_cond_inc(rwsem_opt_fail, !ret); 650 return ret; 651 } 652 653 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 654 655 static inline enum owner_state 656 rwsem_owner_state(struct task_struct *owner, unsigned long flags) 657 { 658 if (flags & RWSEM_NONSPINNABLE) 659 return OWNER_NONSPINNABLE; 660 661 if (flags & RWSEM_READER_OWNED) 662 return OWNER_READER; 663 664 return owner ? OWNER_WRITER : OWNER_NULL; 665 } 666 667 static noinline enum owner_state 668 rwsem_spin_on_owner(struct rw_semaphore *sem) 669 { 670 struct task_struct *new, *owner; 671 unsigned long flags, new_flags; 672 enum owner_state state; 673 674 owner = rwsem_owner_flags(sem, &flags); 675 state = rwsem_owner_state(owner, flags); 676 if (state != OWNER_WRITER) 677 return state; 678 679 rcu_read_lock(); 680 for (;;) { 681 /* 682 * When a waiting writer set the handoff flag, it may spin 683 * on the owner as well. Once that writer acquires the lock, 684 * we can spin on it. So we don't need to quit even when the 685 * handoff bit is set. 686 */ 687 new = rwsem_owner_flags(sem, &new_flags); 688 if ((new != owner) || (new_flags != flags)) { 689 state = rwsem_owner_state(new, new_flags); 690 break; 691 } 692 693 /* 694 * Ensure we emit the owner->on_cpu, dereference _after_ 695 * checking sem->owner still matches owner, if that fails, 696 * owner might point to free()d memory, if it still matches, 697 * the rcu_read_lock() ensures the memory stays valid. 698 */ 699 barrier(); 700 701 if (need_resched() || !owner_on_cpu(owner)) { 702 state = OWNER_NONSPINNABLE; 703 break; 704 } 705 706 cpu_relax(); 707 } 708 rcu_read_unlock(); 709 710 return state; 711 } 712 713 /* 714 * Calculate reader-owned rwsem spinning threshold for writer 715 * 716 * The more readers own the rwsem, the longer it will take for them to 717 * wind down and free the rwsem. So the empirical formula used to 718 * determine the actual spinning time limit here is: 719 * 720 * Spinning threshold = (10 + nr_readers/2)us 721 * 722 * The limit is capped to a maximum of 25us (30 readers). This is just 723 * a heuristic and is subjected to change in the future. 724 */ 725 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 726 { 727 long count = atomic_long_read(&sem->count); 728 int readers = count >> RWSEM_READER_SHIFT; 729 u64 delta; 730 731 if (readers > 30) 732 readers = 30; 733 delta = (20 + readers) * NSEC_PER_USEC / 2; 734 735 return sched_clock() + delta; 736 } 737 738 static bool rwsem_optimistic_spin(struct rw_semaphore *sem) 739 { 740 bool taken = false; 741 int prev_owner_state = OWNER_NULL; 742 int loop = 0; 743 u64 rspin_threshold = 0; 744 745 preempt_disable(); 746 747 /* sem->wait_lock should not be held when doing optimistic spinning */ 748 if (!osq_lock(&sem->osq)) 749 goto done; 750 751 /* 752 * Optimistically spin on the owner field and attempt to acquire the 753 * lock whenever the owner changes. Spinning will be stopped when: 754 * 1) the owning writer isn't running; or 755 * 2) readers own the lock and spinning time has exceeded limit. 756 */ 757 for (;;) { 758 enum owner_state owner_state; 759 760 owner_state = rwsem_spin_on_owner(sem); 761 if (!(owner_state & OWNER_SPINNABLE)) 762 break; 763 764 /* 765 * Try to acquire the lock 766 */ 767 taken = rwsem_try_write_lock_unqueued(sem); 768 769 if (taken) 770 break; 771 772 /* 773 * Time-based reader-owned rwsem optimistic spinning 774 */ 775 if (owner_state == OWNER_READER) { 776 /* 777 * Re-initialize rspin_threshold every time when 778 * the owner state changes from non-reader to reader. 779 * This allows a writer to steal the lock in between 780 * 2 reader phases and have the threshold reset at 781 * the beginning of the 2nd reader phase. 782 */ 783 if (prev_owner_state != OWNER_READER) { 784 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 785 break; 786 rspin_threshold = rwsem_rspin_threshold(sem); 787 loop = 0; 788 } 789 790 /* 791 * Check time threshold once every 16 iterations to 792 * avoid calling sched_clock() too frequently so 793 * as to reduce the average latency between the times 794 * when the lock becomes free and when the spinner 795 * is ready to do a trylock. 796 */ 797 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 798 rwsem_set_nonspinnable(sem); 799 lockevent_inc(rwsem_opt_nospin); 800 break; 801 } 802 } 803 804 /* 805 * An RT task cannot do optimistic spinning if it cannot 806 * be sure the lock holder is running or live-lock may 807 * happen if the current task and the lock holder happen 808 * to run in the same CPU. However, aborting optimistic 809 * spinning while a NULL owner is detected may miss some 810 * opportunity where spinning can continue without causing 811 * problem. 812 * 813 * There are 2 possible cases where an RT task may be able 814 * to continue spinning. 815 * 816 * 1) The lock owner is in the process of releasing the 817 * lock, sem->owner is cleared but the lock has not 818 * been released yet. 819 * 2) The lock was free and owner cleared, but another 820 * task just comes in and acquire the lock before 821 * we try to get it. The new owner may be a spinnable 822 * writer. 823 * 824 * To take advantage of two scenarios listed above, the RT 825 * task is made to retry one more time to see if it can 826 * acquire the lock or continue spinning on the new owning 827 * writer. Of course, if the time lag is long enough or the 828 * new owner is not a writer or spinnable, the RT task will 829 * quit spinning. 830 * 831 * If the owner is a writer, the need_resched() check is 832 * done inside rwsem_spin_on_owner(). If the owner is not 833 * a writer, need_resched() check needs to be done here. 834 */ 835 if (owner_state != OWNER_WRITER) { 836 if (need_resched()) 837 break; 838 if (rt_task(current) && 839 (prev_owner_state != OWNER_WRITER)) 840 break; 841 } 842 prev_owner_state = owner_state; 843 844 /* 845 * The cpu_relax() call is a compiler barrier which forces 846 * everything in this loop to be re-loaded. We don't need 847 * memory barriers as we'll eventually observe the right 848 * values at the cost of a few extra spins. 849 */ 850 cpu_relax(); 851 } 852 osq_unlock(&sem->osq); 853 done: 854 preempt_enable(); 855 lockevent_cond_inc(rwsem_opt_fail, !taken); 856 return taken; 857 } 858 859 /* 860 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should 861 * only be called when the reader count reaches 0. 862 */ 863 static inline void clear_nonspinnable(struct rw_semaphore *sem) 864 { 865 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 866 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); 867 } 868 869 #else 870 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 871 { 872 return false; 873 } 874 875 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) 876 { 877 return false; 878 } 879 880 static inline void clear_nonspinnable(struct rw_semaphore *sem) { } 881 882 static inline enum owner_state 883 rwsem_spin_on_owner(struct rw_semaphore *sem) 884 { 885 return OWNER_NONSPINNABLE; 886 } 887 #endif 888 889 /* 890 * Wait for the read lock to be granted 891 */ 892 static struct rw_semaphore __sched * 893 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) 894 { 895 long adjustment = -RWSEM_READER_BIAS; 896 long rcnt = (count >> RWSEM_READER_SHIFT); 897 struct rwsem_waiter waiter; 898 DEFINE_WAKE_Q(wake_q); 899 bool wake = false; 900 901 /* 902 * To prevent a constant stream of readers from starving a sleeping 903 * waiter, don't attempt optimistic lock stealing if the lock is 904 * currently owned by readers. 905 */ 906 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && 907 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) 908 goto queue; 909 910 /* 911 * Reader optimistic lock stealing. 912 */ 913 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { 914 rwsem_set_reader_owned(sem); 915 lockevent_inc(rwsem_rlock_steal); 916 917 /* 918 * Wake up other readers in the wait queue if it is 919 * the first reader. 920 */ 921 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { 922 raw_spin_lock_irq(&sem->wait_lock); 923 if (!list_empty(&sem->wait_list)) 924 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 925 &wake_q); 926 raw_spin_unlock_irq(&sem->wait_lock); 927 wake_up_q(&wake_q); 928 } 929 return sem; 930 } 931 932 queue: 933 waiter.task = current; 934 waiter.type = RWSEM_WAITING_FOR_READ; 935 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 936 937 raw_spin_lock_irq(&sem->wait_lock); 938 if (list_empty(&sem->wait_list)) { 939 /* 940 * In case the wait queue is empty and the lock isn't owned 941 * by a writer or has the handoff bit set, this reader can 942 * exit the slowpath and return immediately as its 943 * RWSEM_READER_BIAS has already been set in the count. 944 */ 945 if (!(atomic_long_read(&sem->count) & 946 (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) { 947 /* Provide lock ACQUIRE */ 948 smp_acquire__after_ctrl_dep(); 949 raw_spin_unlock_irq(&sem->wait_lock); 950 rwsem_set_reader_owned(sem); 951 lockevent_inc(rwsem_rlock_fast); 952 return sem; 953 } 954 adjustment += RWSEM_FLAG_WAITERS; 955 } 956 list_add_tail(&waiter.list, &sem->wait_list); 957 958 /* we're now waiting on the lock, but no longer actively locking */ 959 count = atomic_long_add_return(adjustment, &sem->count); 960 961 /* 962 * If there are no active locks, wake the front queued process(es). 963 * 964 * If there are no writers and we are first in the queue, 965 * wake our own waiter to join the existing active readers ! 966 */ 967 if (!(count & RWSEM_LOCK_MASK)) { 968 clear_nonspinnable(sem); 969 wake = true; 970 } 971 if (wake || (!(count & RWSEM_WRITER_MASK) && 972 (adjustment & RWSEM_FLAG_WAITERS))) 973 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 974 975 raw_spin_unlock_irq(&sem->wait_lock); 976 wake_up_q(&wake_q); 977 978 /* wait to be given the lock */ 979 for (;;) { 980 set_current_state(state); 981 if (!smp_load_acquire(&waiter.task)) { 982 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 983 break; 984 } 985 if (signal_pending_state(state, current)) { 986 raw_spin_lock_irq(&sem->wait_lock); 987 if (waiter.task) 988 goto out_nolock; 989 raw_spin_unlock_irq(&sem->wait_lock); 990 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 991 break; 992 } 993 schedule(); 994 lockevent_inc(rwsem_sleep_reader); 995 } 996 997 __set_current_state(TASK_RUNNING); 998 lockevent_inc(rwsem_rlock); 999 return sem; 1000 1001 out_nolock: 1002 list_del(&waiter.list); 1003 if (list_empty(&sem->wait_list)) { 1004 atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF, 1005 &sem->count); 1006 } 1007 raw_spin_unlock_irq(&sem->wait_lock); 1008 __set_current_state(TASK_RUNNING); 1009 lockevent_inc(rwsem_rlock_fail); 1010 return ERR_PTR(-EINTR); 1011 } 1012 1013 /* 1014 * Wait until we successfully acquire the write lock 1015 */ 1016 static struct rw_semaphore * 1017 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1018 { 1019 long count; 1020 enum writer_wait_state wstate; 1021 struct rwsem_waiter waiter; 1022 struct rw_semaphore *ret = sem; 1023 DEFINE_WAKE_Q(wake_q); 1024 1025 /* do optimistic spinning and steal lock if possible */ 1026 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { 1027 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1028 return sem; 1029 } 1030 1031 /* 1032 * Optimistic spinning failed, proceed to the slowpath 1033 * and block until we can acquire the sem. 1034 */ 1035 waiter.task = current; 1036 waiter.type = RWSEM_WAITING_FOR_WRITE; 1037 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1038 1039 raw_spin_lock_irq(&sem->wait_lock); 1040 1041 /* account for this before adding a new element to the list */ 1042 wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST; 1043 1044 list_add_tail(&waiter.list, &sem->wait_list); 1045 1046 /* we're now waiting on the lock */ 1047 if (wstate == WRITER_NOT_FIRST) { 1048 count = atomic_long_read(&sem->count); 1049 1050 /* 1051 * If there were already threads queued before us and: 1052 * 1) there are no active locks, wake the front 1053 * queued process(es) as the handoff bit might be set. 1054 * 2) there are no active writers and some readers, the lock 1055 * must be read owned; so we try to wake any read lock 1056 * waiters that were queued ahead of us. 1057 */ 1058 if (count & RWSEM_WRITER_MASK) 1059 goto wait; 1060 1061 rwsem_mark_wake(sem, (count & RWSEM_READER_MASK) 1062 ? RWSEM_WAKE_READERS 1063 : RWSEM_WAKE_ANY, &wake_q); 1064 1065 if (!wake_q_empty(&wake_q)) { 1066 /* 1067 * We want to minimize wait_lock hold time especially 1068 * when a large number of readers are to be woken up. 1069 */ 1070 raw_spin_unlock_irq(&sem->wait_lock); 1071 wake_up_q(&wake_q); 1072 wake_q_init(&wake_q); /* Used again, reinit */ 1073 raw_spin_lock_irq(&sem->wait_lock); 1074 } 1075 } else { 1076 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1077 } 1078 1079 wait: 1080 /* wait until we successfully acquire the lock */ 1081 set_current_state(state); 1082 for (;;) { 1083 if (rwsem_try_write_lock(sem, wstate)) { 1084 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1085 break; 1086 } 1087 1088 raw_spin_unlock_irq(&sem->wait_lock); 1089 1090 /* 1091 * After setting the handoff bit and failing to acquire 1092 * the lock, attempt to spin on owner to accelerate lock 1093 * transfer. If the previous owner is a on-cpu writer and it 1094 * has just released the lock, OWNER_NULL will be returned. 1095 * In this case, we attempt to acquire the lock again 1096 * without sleeping. 1097 */ 1098 if (wstate == WRITER_HANDOFF) { 1099 enum owner_state owner_state; 1100 1101 preempt_disable(); 1102 owner_state = rwsem_spin_on_owner(sem); 1103 preempt_enable(); 1104 1105 if (owner_state == OWNER_NULL) 1106 goto trylock_again; 1107 } 1108 1109 /* Block until there are no active lockers. */ 1110 for (;;) { 1111 if (signal_pending_state(state, current)) 1112 goto out_nolock; 1113 1114 schedule(); 1115 lockevent_inc(rwsem_sleep_writer); 1116 set_current_state(state); 1117 /* 1118 * If HANDOFF bit is set, unconditionally do 1119 * a trylock. 1120 */ 1121 if (wstate == WRITER_HANDOFF) 1122 break; 1123 1124 if ((wstate == WRITER_NOT_FIRST) && 1125 (rwsem_first_waiter(sem) == &waiter)) 1126 wstate = WRITER_FIRST; 1127 1128 count = atomic_long_read(&sem->count); 1129 if (!(count & RWSEM_LOCK_MASK)) 1130 break; 1131 1132 /* 1133 * The setting of the handoff bit is deferred 1134 * until rwsem_try_write_lock() is called. 1135 */ 1136 if ((wstate == WRITER_FIRST) && (rt_task(current) || 1137 time_after(jiffies, waiter.timeout))) { 1138 wstate = WRITER_HANDOFF; 1139 lockevent_inc(rwsem_wlock_handoff); 1140 break; 1141 } 1142 } 1143 trylock_again: 1144 raw_spin_lock_irq(&sem->wait_lock); 1145 } 1146 __set_current_state(TASK_RUNNING); 1147 list_del(&waiter.list); 1148 raw_spin_unlock_irq(&sem->wait_lock); 1149 lockevent_inc(rwsem_wlock); 1150 1151 return ret; 1152 1153 out_nolock: 1154 __set_current_state(TASK_RUNNING); 1155 raw_spin_lock_irq(&sem->wait_lock); 1156 list_del(&waiter.list); 1157 1158 if (unlikely(wstate == WRITER_HANDOFF)) 1159 atomic_long_add(-RWSEM_FLAG_HANDOFF, &sem->count); 1160 1161 if (list_empty(&sem->wait_list)) 1162 atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count); 1163 else 1164 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1165 raw_spin_unlock_irq(&sem->wait_lock); 1166 wake_up_q(&wake_q); 1167 lockevent_inc(rwsem_wlock_fail); 1168 1169 return ERR_PTR(-EINTR); 1170 } 1171 1172 /* 1173 * handle waking up a waiter on the semaphore 1174 * - up_read/up_write has decremented the active part of count if we come here 1175 */ 1176 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) 1177 { 1178 unsigned long flags; 1179 DEFINE_WAKE_Q(wake_q); 1180 1181 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1182 1183 if (!list_empty(&sem->wait_list)) 1184 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1185 1186 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1187 wake_up_q(&wake_q); 1188 1189 return sem; 1190 } 1191 1192 /* 1193 * downgrade a write lock into a read lock 1194 * - caller incremented waiting part of count and discovered it still negative 1195 * - just wake up any readers at the front of the queue 1196 */ 1197 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1198 { 1199 unsigned long flags; 1200 DEFINE_WAKE_Q(wake_q); 1201 1202 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1203 1204 if (!list_empty(&sem->wait_list)) 1205 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1206 1207 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1208 wake_up_q(&wake_q); 1209 1210 return sem; 1211 } 1212 1213 /* 1214 * lock for reading 1215 */ 1216 static inline int __down_read_common(struct rw_semaphore *sem, int state) 1217 { 1218 long count; 1219 1220 if (!rwsem_read_trylock(sem, &count)) { 1221 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) 1222 return -EINTR; 1223 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1224 } 1225 return 0; 1226 } 1227 1228 static inline void __down_read(struct rw_semaphore *sem) 1229 { 1230 __down_read_common(sem, TASK_UNINTERRUPTIBLE); 1231 } 1232 1233 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1234 { 1235 return __down_read_common(sem, TASK_INTERRUPTIBLE); 1236 } 1237 1238 static inline int __down_read_killable(struct rw_semaphore *sem) 1239 { 1240 return __down_read_common(sem, TASK_KILLABLE); 1241 } 1242 1243 static inline int __down_read_trylock(struct rw_semaphore *sem) 1244 { 1245 long tmp; 1246 1247 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1248 1249 /* 1250 * Optimize for the case when the rwsem is not locked at all. 1251 */ 1252 tmp = RWSEM_UNLOCKED_VALUE; 1253 do { 1254 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1255 tmp + RWSEM_READER_BIAS)) { 1256 rwsem_set_reader_owned(sem); 1257 return 1; 1258 } 1259 } while (!(tmp & RWSEM_READ_FAILED_MASK)); 1260 return 0; 1261 } 1262 1263 /* 1264 * lock for writing 1265 */ 1266 static inline int __down_write_common(struct rw_semaphore *sem, int state) 1267 { 1268 if (unlikely(!rwsem_write_trylock(sem))) { 1269 if (IS_ERR(rwsem_down_write_slowpath(sem, state))) 1270 return -EINTR; 1271 } 1272 1273 return 0; 1274 } 1275 1276 static inline void __down_write(struct rw_semaphore *sem) 1277 { 1278 __down_write_common(sem, TASK_UNINTERRUPTIBLE); 1279 } 1280 1281 static inline int __down_write_killable(struct rw_semaphore *sem) 1282 { 1283 return __down_write_common(sem, TASK_KILLABLE); 1284 } 1285 1286 static inline int __down_write_trylock(struct rw_semaphore *sem) 1287 { 1288 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1289 return rwsem_write_trylock(sem); 1290 } 1291 1292 /* 1293 * unlock after reading 1294 */ 1295 static inline void __up_read(struct rw_semaphore *sem) 1296 { 1297 long tmp; 1298 1299 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1300 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1301 1302 rwsem_clear_reader_owned(sem); 1303 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1304 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1305 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1306 RWSEM_FLAG_WAITERS)) { 1307 clear_nonspinnable(sem); 1308 rwsem_wake(sem); 1309 } 1310 } 1311 1312 /* 1313 * unlock after writing 1314 */ 1315 static inline void __up_write(struct rw_semaphore *sem) 1316 { 1317 long tmp; 1318 1319 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1320 /* 1321 * sem->owner may differ from current if the ownership is transferred 1322 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1323 */ 1324 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1325 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1326 1327 rwsem_clear_owner(sem); 1328 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1329 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1330 rwsem_wake(sem); 1331 } 1332 1333 /* 1334 * downgrade write lock to read lock 1335 */ 1336 static inline void __downgrade_write(struct rw_semaphore *sem) 1337 { 1338 long tmp; 1339 1340 /* 1341 * When downgrading from exclusive to shared ownership, 1342 * anything inside the write-locked region cannot leak 1343 * into the read side. In contrast, anything in the 1344 * read-locked region is ok to be re-ordered into the 1345 * write side. As such, rely on RELEASE semantics. 1346 */ 1347 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1348 tmp = atomic_long_fetch_add_release( 1349 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1350 rwsem_set_reader_owned(sem); 1351 if (tmp & RWSEM_FLAG_WAITERS) 1352 rwsem_downgrade_wake(sem); 1353 } 1354 1355 #else /* !CONFIG_PREEMPT_RT */ 1356 1357 #define RT_MUTEX_BUILD_MUTEX 1358 #include "rtmutex.c" 1359 1360 #define rwbase_set_and_save_current_state(state) \ 1361 set_current_state(state) 1362 1363 #define rwbase_restore_current_state() \ 1364 __set_current_state(TASK_RUNNING) 1365 1366 #define rwbase_rtmutex_lock_state(rtm, state) \ 1367 __rt_mutex_lock(rtm, state) 1368 1369 #define rwbase_rtmutex_slowlock_locked(rtm, state) \ 1370 __rt_mutex_slowlock_locked(rtm, NULL, state) 1371 1372 #define rwbase_rtmutex_unlock(rtm) \ 1373 __rt_mutex_unlock(rtm) 1374 1375 #define rwbase_rtmutex_trylock(rtm) \ 1376 __rt_mutex_trylock(rtm) 1377 1378 #define rwbase_signal_pending_state(state, current) \ 1379 signal_pending_state(state, current) 1380 1381 #define rwbase_schedule() \ 1382 schedule() 1383 1384 #include "rwbase_rt.c" 1385 1386 void __init_rwsem(struct rw_semaphore *sem, const char *name, 1387 struct lock_class_key *key) 1388 { 1389 init_rwbase_rt(&(sem)->rwbase); 1390 1391 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1392 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 1393 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 1394 #endif 1395 } 1396 EXPORT_SYMBOL(__init_rwsem); 1397 1398 static inline void __down_read(struct rw_semaphore *sem) 1399 { 1400 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1401 } 1402 1403 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1404 { 1405 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE); 1406 } 1407 1408 static inline int __down_read_killable(struct rw_semaphore *sem) 1409 { 1410 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE); 1411 } 1412 1413 static inline int __down_read_trylock(struct rw_semaphore *sem) 1414 { 1415 return rwbase_read_trylock(&sem->rwbase); 1416 } 1417 1418 static inline void __up_read(struct rw_semaphore *sem) 1419 { 1420 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL); 1421 } 1422 1423 static inline void __sched __down_write(struct rw_semaphore *sem) 1424 { 1425 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1426 } 1427 1428 static inline int __sched __down_write_killable(struct rw_semaphore *sem) 1429 { 1430 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE); 1431 } 1432 1433 static inline int __down_write_trylock(struct rw_semaphore *sem) 1434 { 1435 return rwbase_write_trylock(&sem->rwbase); 1436 } 1437 1438 static inline void __up_write(struct rw_semaphore *sem) 1439 { 1440 rwbase_write_unlock(&sem->rwbase); 1441 } 1442 1443 static inline void __downgrade_write(struct rw_semaphore *sem) 1444 { 1445 rwbase_write_downgrade(&sem->rwbase); 1446 } 1447 1448 /* Debug stubs for the common API */ 1449 #define DEBUG_RWSEMS_WARN_ON(c, sem) 1450 1451 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 1452 struct task_struct *owner) 1453 { 1454 } 1455 1456 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 1457 { 1458 int count = atomic_read(&sem->rwbase.readers); 1459 1460 return count < 0 && count != READER_BIAS; 1461 } 1462 1463 #endif /* CONFIG_PREEMPT_RT */ 1464 1465 /* 1466 * lock for reading 1467 */ 1468 void __sched down_read(struct rw_semaphore *sem) 1469 { 1470 might_sleep(); 1471 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1472 1473 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1474 } 1475 EXPORT_SYMBOL(down_read); 1476 1477 int __sched down_read_interruptible(struct rw_semaphore *sem) 1478 { 1479 might_sleep(); 1480 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1481 1482 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { 1483 rwsem_release(&sem->dep_map, _RET_IP_); 1484 return -EINTR; 1485 } 1486 1487 return 0; 1488 } 1489 EXPORT_SYMBOL(down_read_interruptible); 1490 1491 int __sched down_read_killable(struct rw_semaphore *sem) 1492 { 1493 might_sleep(); 1494 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1495 1496 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1497 rwsem_release(&sem->dep_map, _RET_IP_); 1498 return -EINTR; 1499 } 1500 1501 return 0; 1502 } 1503 EXPORT_SYMBOL(down_read_killable); 1504 1505 /* 1506 * trylock for reading -- returns 1 if successful, 0 if contention 1507 */ 1508 int down_read_trylock(struct rw_semaphore *sem) 1509 { 1510 int ret = __down_read_trylock(sem); 1511 1512 if (ret == 1) 1513 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1514 return ret; 1515 } 1516 EXPORT_SYMBOL(down_read_trylock); 1517 1518 /* 1519 * lock for writing 1520 */ 1521 void __sched down_write(struct rw_semaphore *sem) 1522 { 1523 might_sleep(); 1524 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1525 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1526 } 1527 EXPORT_SYMBOL(down_write); 1528 1529 /* 1530 * lock for writing 1531 */ 1532 int __sched down_write_killable(struct rw_semaphore *sem) 1533 { 1534 might_sleep(); 1535 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1536 1537 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1538 __down_write_killable)) { 1539 rwsem_release(&sem->dep_map, _RET_IP_); 1540 return -EINTR; 1541 } 1542 1543 return 0; 1544 } 1545 EXPORT_SYMBOL(down_write_killable); 1546 1547 /* 1548 * trylock for writing -- returns 1 if successful, 0 if contention 1549 */ 1550 int down_write_trylock(struct rw_semaphore *sem) 1551 { 1552 int ret = __down_write_trylock(sem); 1553 1554 if (ret == 1) 1555 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1556 1557 return ret; 1558 } 1559 EXPORT_SYMBOL(down_write_trylock); 1560 1561 /* 1562 * release a read lock 1563 */ 1564 void up_read(struct rw_semaphore *sem) 1565 { 1566 rwsem_release(&sem->dep_map, _RET_IP_); 1567 __up_read(sem); 1568 } 1569 EXPORT_SYMBOL(up_read); 1570 1571 /* 1572 * release a write lock 1573 */ 1574 void up_write(struct rw_semaphore *sem) 1575 { 1576 rwsem_release(&sem->dep_map, _RET_IP_); 1577 __up_write(sem); 1578 } 1579 EXPORT_SYMBOL(up_write); 1580 1581 /* 1582 * downgrade write lock to read lock 1583 */ 1584 void downgrade_write(struct rw_semaphore *sem) 1585 { 1586 lock_downgrade(&sem->dep_map, _RET_IP_); 1587 __downgrade_write(sem); 1588 } 1589 EXPORT_SYMBOL(downgrade_write); 1590 1591 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1592 1593 void down_read_nested(struct rw_semaphore *sem, int subclass) 1594 { 1595 might_sleep(); 1596 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1597 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1598 } 1599 EXPORT_SYMBOL(down_read_nested); 1600 1601 int down_read_killable_nested(struct rw_semaphore *sem, int subclass) 1602 { 1603 might_sleep(); 1604 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1605 1606 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1607 rwsem_release(&sem->dep_map, _RET_IP_); 1608 return -EINTR; 1609 } 1610 1611 return 0; 1612 } 1613 EXPORT_SYMBOL(down_read_killable_nested); 1614 1615 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1616 { 1617 might_sleep(); 1618 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1619 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1620 } 1621 EXPORT_SYMBOL(_down_write_nest_lock); 1622 1623 void down_read_non_owner(struct rw_semaphore *sem) 1624 { 1625 might_sleep(); 1626 __down_read(sem); 1627 __rwsem_set_reader_owned(sem, NULL); 1628 } 1629 EXPORT_SYMBOL(down_read_non_owner); 1630 1631 void down_write_nested(struct rw_semaphore *sem, int subclass) 1632 { 1633 might_sleep(); 1634 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1635 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1636 } 1637 EXPORT_SYMBOL(down_write_nested); 1638 1639 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1640 { 1641 might_sleep(); 1642 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1643 1644 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1645 __down_write_killable)) { 1646 rwsem_release(&sem->dep_map, _RET_IP_); 1647 return -EINTR; 1648 } 1649 1650 return 0; 1651 } 1652 EXPORT_SYMBOL(down_write_killable_nested); 1653 1654 void up_read_non_owner(struct rw_semaphore *sem) 1655 { 1656 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1657 __up_read(sem); 1658 } 1659 EXPORT_SYMBOL(up_read_non_owner); 1660 1661 #endif 1662