1 // SPDX-License-Identifier: GPL-2.0 2 /* kernel/rwsem.c: R/W semaphores, public implementation 3 * 4 * Written by David Howells ([email protected]). 5 * Derived from asm-i386/semaphore.h 6 * 7 * Writer lock-stealing by Alex Shi <[email protected]> 8 * and Michel Lespinasse <[email protected]> 9 * 10 * Optimistic spinning by Tim Chen <[email protected]> 11 * and Davidlohr Bueso <[email protected]>. Based on mutexes. 12 * 13 * Rwsem count bit fields re-definition and rwsem rearchitecture by 14 * Waiman Long <[email protected]> and 15 * Peter Zijlstra <[email protected]>. 16 */ 17 18 #include <linux/types.h> 19 #include <linux/kernel.h> 20 #include <linux/sched.h> 21 #include <linux/sched/rt.h> 22 #include <linux/sched/task.h> 23 #include <linux/sched/debug.h> 24 #include <linux/sched/wake_q.h> 25 #include <linux/sched/signal.h> 26 #include <linux/sched/clock.h> 27 #include <linux/export.h> 28 #include <linux/rwsem.h> 29 #include <linux/atomic.h> 30 31 #ifndef CONFIG_PREEMPT_RT 32 #include "lock_events.h" 33 34 /* 35 * The least significant 2 bits of the owner value has the following 36 * meanings when set. 37 * - Bit 0: RWSEM_READER_OWNED - The rwsem is owned by readers 38 * - Bit 1: RWSEM_NONSPINNABLE - Cannot spin on a reader-owned lock 39 * 40 * When the rwsem is reader-owned and a spinning writer has timed out, 41 * the nonspinnable bit will be set to disable optimistic spinning. 42 43 * When a writer acquires a rwsem, it puts its task_struct pointer 44 * into the owner field. It is cleared after an unlock. 45 * 46 * When a reader acquires a rwsem, it will also puts its task_struct 47 * pointer into the owner field with the RWSEM_READER_OWNED bit set. 48 * On unlock, the owner field will largely be left untouched. So 49 * for a free or reader-owned rwsem, the owner value may contain 50 * information about the last reader that acquires the rwsem. 51 * 52 * That information may be helpful in debugging cases where the system 53 * seems to hang on a reader owned rwsem especially if only one reader 54 * is involved. Ideally we would like to track all the readers that own 55 * a rwsem, but the overhead is simply too big. 56 * 57 * A fast path reader optimistic lock stealing is supported when the rwsem 58 * is previously owned by a writer and the following conditions are met: 59 * - OSQ is empty 60 * - rwsem is not currently writer owned 61 * - the handoff isn't set. 62 */ 63 #define RWSEM_READER_OWNED (1UL << 0) 64 #define RWSEM_NONSPINNABLE (1UL << 1) 65 #define RWSEM_OWNER_FLAGS_MASK (RWSEM_READER_OWNED | RWSEM_NONSPINNABLE) 66 67 #ifdef CONFIG_DEBUG_RWSEMS 68 # define DEBUG_RWSEMS_WARN_ON(c, sem) do { \ 69 if (!debug_locks_silent && \ 70 WARN_ONCE(c, "DEBUG_RWSEMS_WARN_ON(%s): count = 0x%lx, magic = 0x%lx, owner = 0x%lx, curr 0x%lx, list %sempty\n",\ 71 #c, atomic_long_read(&(sem)->count), \ 72 (unsigned long) sem->magic, \ 73 atomic_long_read(&(sem)->owner), (long)current, \ 74 list_empty(&(sem)->wait_list) ? "" : "not ")) \ 75 debug_locks_off(); \ 76 } while (0) 77 #else 78 # define DEBUG_RWSEMS_WARN_ON(c, sem) 79 #endif 80 81 /* 82 * On 64-bit architectures, the bit definitions of the count are: 83 * 84 * Bit 0 - writer locked bit 85 * Bit 1 - waiters present bit 86 * Bit 2 - lock handoff bit 87 * Bits 3-7 - reserved 88 * Bits 8-62 - 55-bit reader count 89 * Bit 63 - read fail bit 90 * 91 * On 32-bit architectures, the bit definitions of the count are: 92 * 93 * Bit 0 - writer locked bit 94 * Bit 1 - waiters present bit 95 * Bit 2 - lock handoff bit 96 * Bits 3-7 - reserved 97 * Bits 8-30 - 23-bit reader count 98 * Bit 31 - read fail bit 99 * 100 * It is not likely that the most significant bit (read fail bit) will ever 101 * be set. This guard bit is still checked anyway in the down_read() fastpath 102 * just in case we need to use up more of the reader bits for other purpose 103 * in the future. 104 * 105 * atomic_long_fetch_add() is used to obtain reader lock, whereas 106 * atomic_long_cmpxchg() will be used to obtain writer lock. 107 * 108 * There are three places where the lock handoff bit may be set or cleared. 109 * 1) rwsem_mark_wake() for readers. 110 * 2) rwsem_try_write_lock() for writers. 111 * 3) Error path of rwsem_down_write_slowpath(). 112 * 113 * For all the above cases, wait_lock will be held. A writer must also 114 * be the first one in the wait_list to be eligible for setting the handoff 115 * bit. So concurrent setting/clearing of handoff bit is not possible. 116 */ 117 #define RWSEM_WRITER_LOCKED (1UL << 0) 118 #define RWSEM_FLAG_WAITERS (1UL << 1) 119 #define RWSEM_FLAG_HANDOFF (1UL << 2) 120 #define RWSEM_FLAG_READFAIL (1UL << (BITS_PER_LONG - 1)) 121 122 #define RWSEM_READER_SHIFT 8 123 #define RWSEM_READER_BIAS (1UL << RWSEM_READER_SHIFT) 124 #define RWSEM_READER_MASK (~(RWSEM_READER_BIAS - 1)) 125 #define RWSEM_WRITER_MASK RWSEM_WRITER_LOCKED 126 #define RWSEM_LOCK_MASK (RWSEM_WRITER_MASK|RWSEM_READER_MASK) 127 #define RWSEM_READ_FAILED_MASK (RWSEM_WRITER_MASK|RWSEM_FLAG_WAITERS|\ 128 RWSEM_FLAG_HANDOFF|RWSEM_FLAG_READFAIL) 129 130 /* 131 * All writes to owner are protected by WRITE_ONCE() to make sure that 132 * store tearing can't happen as optimistic spinners may read and use 133 * the owner value concurrently without lock. Read from owner, however, 134 * may not need READ_ONCE() as long as the pointer value is only used 135 * for comparison and isn't being dereferenced. 136 */ 137 static inline void rwsem_set_owner(struct rw_semaphore *sem) 138 { 139 atomic_long_set(&sem->owner, (long)current); 140 } 141 142 static inline void rwsem_clear_owner(struct rw_semaphore *sem) 143 { 144 atomic_long_set(&sem->owner, 0); 145 } 146 147 /* 148 * Test the flags in the owner field. 149 */ 150 static inline bool rwsem_test_oflags(struct rw_semaphore *sem, long flags) 151 { 152 return atomic_long_read(&sem->owner) & flags; 153 } 154 155 /* 156 * The task_struct pointer of the last owning reader will be left in 157 * the owner field. 158 * 159 * Note that the owner value just indicates the task has owned the rwsem 160 * previously, it may not be the real owner or one of the real owners 161 * anymore when that field is examined, so take it with a grain of salt. 162 * 163 * The reader non-spinnable bit is preserved. 164 */ 165 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 166 struct task_struct *owner) 167 { 168 unsigned long val = (unsigned long)owner | RWSEM_READER_OWNED | 169 (atomic_long_read(&sem->owner) & RWSEM_NONSPINNABLE); 170 171 atomic_long_set(&sem->owner, val); 172 } 173 174 static inline void rwsem_set_reader_owned(struct rw_semaphore *sem) 175 { 176 __rwsem_set_reader_owned(sem, current); 177 } 178 179 /* 180 * Return true if the rwsem is owned by a reader. 181 */ 182 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 183 { 184 #ifdef CONFIG_DEBUG_RWSEMS 185 /* 186 * Check the count to see if it is write-locked. 187 */ 188 long count = atomic_long_read(&sem->count); 189 190 if (count & RWSEM_WRITER_MASK) 191 return false; 192 #endif 193 return rwsem_test_oflags(sem, RWSEM_READER_OWNED); 194 } 195 196 #ifdef CONFIG_DEBUG_RWSEMS 197 /* 198 * With CONFIG_DEBUG_RWSEMS configured, it will make sure that if there 199 * is a task pointer in owner of a reader-owned rwsem, it will be the 200 * real owner or one of the real owners. The only exception is when the 201 * unlock is done by up_read_non_owner(). 202 */ 203 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 204 { 205 unsigned long val = atomic_long_read(&sem->owner); 206 207 while ((val & ~RWSEM_OWNER_FLAGS_MASK) == (unsigned long)current) { 208 if (atomic_long_try_cmpxchg(&sem->owner, &val, 209 val & RWSEM_OWNER_FLAGS_MASK)) 210 return; 211 } 212 } 213 #else 214 static inline void rwsem_clear_reader_owned(struct rw_semaphore *sem) 215 { 216 } 217 #endif 218 219 /* 220 * Set the RWSEM_NONSPINNABLE bits if the RWSEM_READER_OWNED flag 221 * remains set. Otherwise, the operation will be aborted. 222 */ 223 static inline void rwsem_set_nonspinnable(struct rw_semaphore *sem) 224 { 225 unsigned long owner = atomic_long_read(&sem->owner); 226 227 do { 228 if (!(owner & RWSEM_READER_OWNED)) 229 break; 230 if (owner & RWSEM_NONSPINNABLE) 231 break; 232 } while (!atomic_long_try_cmpxchg(&sem->owner, &owner, 233 owner | RWSEM_NONSPINNABLE)); 234 } 235 236 static inline bool rwsem_read_trylock(struct rw_semaphore *sem, long *cntp) 237 { 238 *cntp = atomic_long_add_return_acquire(RWSEM_READER_BIAS, &sem->count); 239 240 if (WARN_ON_ONCE(*cntp < 0)) 241 rwsem_set_nonspinnable(sem); 242 243 if (!(*cntp & RWSEM_READ_FAILED_MASK)) { 244 rwsem_set_reader_owned(sem); 245 return true; 246 } 247 248 return false; 249 } 250 251 static inline bool rwsem_write_trylock(struct rw_semaphore *sem) 252 { 253 long tmp = RWSEM_UNLOCKED_VALUE; 254 255 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, RWSEM_WRITER_LOCKED)) { 256 rwsem_set_owner(sem); 257 return true; 258 } 259 260 return false; 261 } 262 263 /* 264 * Return just the real task structure pointer of the owner 265 */ 266 static inline struct task_struct *rwsem_owner(struct rw_semaphore *sem) 267 { 268 return (struct task_struct *) 269 (atomic_long_read(&sem->owner) & ~RWSEM_OWNER_FLAGS_MASK); 270 } 271 272 /* 273 * Return the real task structure pointer of the owner and the embedded 274 * flags in the owner. pflags must be non-NULL. 275 */ 276 static inline struct task_struct * 277 rwsem_owner_flags(struct rw_semaphore *sem, unsigned long *pflags) 278 { 279 unsigned long owner = atomic_long_read(&sem->owner); 280 281 *pflags = owner & RWSEM_OWNER_FLAGS_MASK; 282 return (struct task_struct *)(owner & ~RWSEM_OWNER_FLAGS_MASK); 283 } 284 285 /* 286 * Guide to the rw_semaphore's count field. 287 * 288 * When the RWSEM_WRITER_LOCKED bit in count is set, the lock is owned 289 * by a writer. 290 * 291 * The lock is owned by readers when 292 * (1) the RWSEM_WRITER_LOCKED isn't set in count, 293 * (2) some of the reader bits are set in count, and 294 * (3) the owner field has RWSEM_READ_OWNED bit set. 295 * 296 * Having some reader bits set is not enough to guarantee a readers owned 297 * lock as the readers may be in the process of backing out from the count 298 * and a writer has just released the lock. So another writer may steal 299 * the lock immediately after that. 300 */ 301 302 /* 303 * Initialize an rwsem: 304 */ 305 void __init_rwsem(struct rw_semaphore *sem, const char *name, 306 struct lock_class_key *key) 307 { 308 #ifdef CONFIG_DEBUG_LOCK_ALLOC 309 /* 310 * Make sure we are not reinitializing a held semaphore: 311 */ 312 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 313 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 314 #endif 315 #ifdef CONFIG_DEBUG_RWSEMS 316 sem->magic = sem; 317 #endif 318 atomic_long_set(&sem->count, RWSEM_UNLOCKED_VALUE); 319 raw_spin_lock_init(&sem->wait_lock); 320 INIT_LIST_HEAD(&sem->wait_list); 321 atomic_long_set(&sem->owner, 0L); 322 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 323 osq_lock_init(&sem->osq); 324 #endif 325 } 326 EXPORT_SYMBOL(__init_rwsem); 327 328 enum rwsem_waiter_type { 329 RWSEM_WAITING_FOR_WRITE, 330 RWSEM_WAITING_FOR_READ 331 }; 332 333 struct rwsem_waiter { 334 struct list_head list; 335 struct task_struct *task; 336 enum rwsem_waiter_type type; 337 unsigned long timeout; 338 }; 339 #define rwsem_first_waiter(sem) \ 340 list_first_entry(&sem->wait_list, struct rwsem_waiter, list) 341 342 enum rwsem_wake_type { 343 RWSEM_WAKE_ANY, /* Wake whatever's at head of wait list */ 344 RWSEM_WAKE_READERS, /* Wake readers only */ 345 RWSEM_WAKE_READ_OWNED /* Waker thread holds the read lock */ 346 }; 347 348 enum writer_wait_state { 349 WRITER_NOT_FIRST, /* Writer is not first in wait list */ 350 WRITER_FIRST, /* Writer is first in wait list */ 351 WRITER_HANDOFF /* Writer is first & handoff needed */ 352 }; 353 354 /* 355 * The typical HZ value is either 250 or 1000. So set the minimum waiting 356 * time to at least 4ms or 1 jiffy (if it is higher than 4ms) in the wait 357 * queue before initiating the handoff protocol. 358 */ 359 #define RWSEM_WAIT_TIMEOUT DIV_ROUND_UP(HZ, 250) 360 361 /* 362 * Magic number to batch-wakeup waiting readers, even when writers are 363 * also present in the queue. This both limits the amount of work the 364 * waking thread must do and also prevents any potential counter overflow, 365 * however unlikely. 366 */ 367 #define MAX_READERS_WAKEUP 0x100 368 369 /* 370 * handle the lock release when processes blocked on it that can now run 371 * - if we come here from up_xxxx(), then the RWSEM_FLAG_WAITERS bit must 372 * have been set. 373 * - there must be someone on the queue 374 * - the wait_lock must be held by the caller 375 * - tasks are marked for wakeup, the caller must later invoke wake_up_q() 376 * to actually wakeup the blocked task(s) and drop the reference count, 377 * preferably when the wait_lock is released 378 * - woken process blocks are discarded from the list after having task zeroed 379 * - writers are only marked woken if downgrading is false 380 */ 381 static void rwsem_mark_wake(struct rw_semaphore *sem, 382 enum rwsem_wake_type wake_type, 383 struct wake_q_head *wake_q) 384 { 385 struct rwsem_waiter *waiter, *tmp; 386 long oldcount, woken = 0, adjustment = 0; 387 struct list_head wlist; 388 389 lockdep_assert_held(&sem->wait_lock); 390 391 /* 392 * Take a peek at the queue head waiter such that we can determine 393 * the wakeup(s) to perform. 394 */ 395 waiter = rwsem_first_waiter(sem); 396 397 if (waiter->type == RWSEM_WAITING_FOR_WRITE) { 398 if (wake_type == RWSEM_WAKE_ANY) { 399 /* 400 * Mark writer at the front of the queue for wakeup. 401 * Until the task is actually later awoken later by 402 * the caller, other writers are able to steal it. 403 * Readers, on the other hand, will block as they 404 * will notice the queued writer. 405 */ 406 wake_q_add(wake_q, waiter->task); 407 lockevent_inc(rwsem_wake_writer); 408 } 409 410 return; 411 } 412 413 /* 414 * No reader wakeup if there are too many of them already. 415 */ 416 if (unlikely(atomic_long_read(&sem->count) < 0)) 417 return; 418 419 /* 420 * Writers might steal the lock before we grant it to the next reader. 421 * We prefer to do the first reader grant before counting readers 422 * so we can bail out early if a writer stole the lock. 423 */ 424 if (wake_type != RWSEM_WAKE_READ_OWNED) { 425 struct task_struct *owner; 426 427 adjustment = RWSEM_READER_BIAS; 428 oldcount = atomic_long_fetch_add(adjustment, &sem->count); 429 if (unlikely(oldcount & RWSEM_WRITER_MASK)) { 430 /* 431 * When we've been waiting "too" long (for writers 432 * to give up the lock), request a HANDOFF to 433 * force the issue. 434 */ 435 if (!(oldcount & RWSEM_FLAG_HANDOFF) && 436 time_after(jiffies, waiter->timeout)) { 437 adjustment -= RWSEM_FLAG_HANDOFF; 438 lockevent_inc(rwsem_rlock_handoff); 439 } 440 441 atomic_long_add(-adjustment, &sem->count); 442 return; 443 } 444 /* 445 * Set it to reader-owned to give spinners an early 446 * indication that readers now have the lock. 447 * The reader nonspinnable bit seen at slowpath entry of 448 * the reader is copied over. 449 */ 450 owner = waiter->task; 451 __rwsem_set_reader_owned(sem, owner); 452 } 453 454 /* 455 * Grant up to MAX_READERS_WAKEUP read locks to all the readers in the 456 * queue. We know that the woken will be at least 1 as we accounted 457 * for above. Note we increment the 'active part' of the count by the 458 * number of readers before waking any processes up. 459 * 460 * This is an adaptation of the phase-fair R/W locks where at the 461 * reader phase (first waiter is a reader), all readers are eligible 462 * to acquire the lock at the same time irrespective of their order 463 * in the queue. The writers acquire the lock according to their 464 * order in the queue. 465 * 466 * We have to do wakeup in 2 passes to prevent the possibility that 467 * the reader count may be decremented before it is incremented. It 468 * is because the to-be-woken waiter may not have slept yet. So it 469 * may see waiter->task got cleared, finish its critical section and 470 * do an unlock before the reader count increment. 471 * 472 * 1) Collect the read-waiters in a separate list, count them and 473 * fully increment the reader count in rwsem. 474 * 2) For each waiters in the new list, clear waiter->task and 475 * put them into wake_q to be woken up later. 476 */ 477 INIT_LIST_HEAD(&wlist); 478 list_for_each_entry_safe(waiter, tmp, &sem->wait_list, list) { 479 if (waiter->type == RWSEM_WAITING_FOR_WRITE) 480 continue; 481 482 woken++; 483 list_move_tail(&waiter->list, &wlist); 484 485 /* 486 * Limit # of readers that can be woken up per wakeup call. 487 */ 488 if (woken >= MAX_READERS_WAKEUP) 489 break; 490 } 491 492 adjustment = woken * RWSEM_READER_BIAS - adjustment; 493 lockevent_cond_inc(rwsem_wake_reader, woken); 494 if (list_empty(&sem->wait_list)) { 495 /* hit end of list above */ 496 adjustment -= RWSEM_FLAG_WAITERS; 497 } 498 499 /* 500 * When we've woken a reader, we no longer need to force writers 501 * to give up the lock and we can clear HANDOFF. 502 */ 503 if (woken && (atomic_long_read(&sem->count) & RWSEM_FLAG_HANDOFF)) 504 adjustment -= RWSEM_FLAG_HANDOFF; 505 506 if (adjustment) 507 atomic_long_add(adjustment, &sem->count); 508 509 /* 2nd pass */ 510 list_for_each_entry_safe(waiter, tmp, &wlist, list) { 511 struct task_struct *tsk; 512 513 tsk = waiter->task; 514 get_task_struct(tsk); 515 516 /* 517 * Ensure calling get_task_struct() before setting the reader 518 * waiter to nil such that rwsem_down_read_slowpath() cannot 519 * race with do_exit() by always holding a reference count 520 * to the task to wakeup. 521 */ 522 smp_store_release(&waiter->task, NULL); 523 /* 524 * Ensure issuing the wakeup (either by us or someone else) 525 * after setting the reader waiter to nil. 526 */ 527 wake_q_add_safe(wake_q, tsk); 528 } 529 } 530 531 /* 532 * This function must be called with the sem->wait_lock held to prevent 533 * race conditions between checking the rwsem wait list and setting the 534 * sem->count accordingly. 535 * 536 * If wstate is WRITER_HANDOFF, it will make sure that either the handoff 537 * bit is set or the lock is acquired with handoff bit cleared. 538 */ 539 static inline bool rwsem_try_write_lock(struct rw_semaphore *sem, 540 enum writer_wait_state wstate) 541 { 542 long count, new; 543 544 lockdep_assert_held(&sem->wait_lock); 545 546 count = atomic_long_read(&sem->count); 547 do { 548 bool has_handoff = !!(count & RWSEM_FLAG_HANDOFF); 549 550 if (has_handoff && wstate == WRITER_NOT_FIRST) 551 return false; 552 553 new = count; 554 555 if (count & RWSEM_LOCK_MASK) { 556 if (has_handoff || (wstate != WRITER_HANDOFF)) 557 return false; 558 559 new |= RWSEM_FLAG_HANDOFF; 560 } else { 561 new |= RWSEM_WRITER_LOCKED; 562 new &= ~RWSEM_FLAG_HANDOFF; 563 564 if (list_is_singular(&sem->wait_list)) 565 new &= ~RWSEM_FLAG_WAITERS; 566 } 567 } while (!atomic_long_try_cmpxchg_acquire(&sem->count, &count, new)); 568 569 /* 570 * We have either acquired the lock with handoff bit cleared or 571 * set the handoff bit. 572 */ 573 if (new & RWSEM_FLAG_HANDOFF) 574 return false; 575 576 rwsem_set_owner(sem); 577 return true; 578 } 579 580 /* 581 * The rwsem_spin_on_owner() function returns the following 4 values 582 * depending on the lock owner state. 583 * OWNER_NULL : owner is currently NULL 584 * OWNER_WRITER: when owner changes and is a writer 585 * OWNER_READER: when owner changes and the new owner may be a reader. 586 * OWNER_NONSPINNABLE: 587 * when optimistic spinning has to stop because either the 588 * owner stops running, is unknown, or its timeslice has 589 * been used up. 590 */ 591 enum owner_state { 592 OWNER_NULL = 1 << 0, 593 OWNER_WRITER = 1 << 1, 594 OWNER_READER = 1 << 2, 595 OWNER_NONSPINNABLE = 1 << 3, 596 }; 597 598 #ifdef CONFIG_RWSEM_SPIN_ON_OWNER 599 /* 600 * Try to acquire write lock before the writer has been put on wait queue. 601 */ 602 static inline bool rwsem_try_write_lock_unqueued(struct rw_semaphore *sem) 603 { 604 long count = atomic_long_read(&sem->count); 605 606 while (!(count & (RWSEM_LOCK_MASK|RWSEM_FLAG_HANDOFF))) { 607 if (atomic_long_try_cmpxchg_acquire(&sem->count, &count, 608 count | RWSEM_WRITER_LOCKED)) { 609 rwsem_set_owner(sem); 610 lockevent_inc(rwsem_opt_lock); 611 return true; 612 } 613 } 614 return false; 615 } 616 617 static inline bool owner_on_cpu(struct task_struct *owner) 618 { 619 /* 620 * As lock holder preemption issue, we both skip spinning if 621 * task is not on cpu or its cpu is preempted 622 */ 623 return owner->on_cpu && !vcpu_is_preempted(task_cpu(owner)); 624 } 625 626 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 627 { 628 struct task_struct *owner; 629 unsigned long flags; 630 bool ret = true; 631 632 if (need_resched()) { 633 lockevent_inc(rwsem_opt_fail); 634 return false; 635 } 636 637 preempt_disable(); 638 /* 639 * Disable preemption is equal to the RCU read-side crital section, 640 * thus the task_strcut structure won't go away. 641 */ 642 owner = rwsem_owner_flags(sem, &flags); 643 /* 644 * Don't check the read-owner as the entry may be stale. 645 */ 646 if ((flags & RWSEM_NONSPINNABLE) || 647 (owner && !(flags & RWSEM_READER_OWNED) && !owner_on_cpu(owner))) 648 ret = false; 649 preempt_enable(); 650 651 lockevent_cond_inc(rwsem_opt_fail, !ret); 652 return ret; 653 } 654 655 #define OWNER_SPINNABLE (OWNER_NULL | OWNER_WRITER | OWNER_READER) 656 657 static inline enum owner_state 658 rwsem_owner_state(struct task_struct *owner, unsigned long flags) 659 { 660 if (flags & RWSEM_NONSPINNABLE) 661 return OWNER_NONSPINNABLE; 662 663 if (flags & RWSEM_READER_OWNED) 664 return OWNER_READER; 665 666 return owner ? OWNER_WRITER : OWNER_NULL; 667 } 668 669 static noinline enum owner_state 670 rwsem_spin_on_owner(struct rw_semaphore *sem) 671 { 672 struct task_struct *new, *owner; 673 unsigned long flags, new_flags; 674 enum owner_state state; 675 676 lockdep_assert_preemption_disabled(); 677 678 owner = rwsem_owner_flags(sem, &flags); 679 state = rwsem_owner_state(owner, flags); 680 if (state != OWNER_WRITER) 681 return state; 682 683 for (;;) { 684 /* 685 * When a waiting writer set the handoff flag, it may spin 686 * on the owner as well. Once that writer acquires the lock, 687 * we can spin on it. So we don't need to quit even when the 688 * handoff bit is set. 689 */ 690 new = rwsem_owner_flags(sem, &new_flags); 691 if ((new != owner) || (new_flags != flags)) { 692 state = rwsem_owner_state(new, new_flags); 693 break; 694 } 695 696 /* 697 * Ensure we emit the owner->on_cpu, dereference _after_ 698 * checking sem->owner still matches owner, if that fails, 699 * owner might point to free()d memory, if it still matches, 700 * our spinning context already disabled preemption which is 701 * equal to RCU read-side crital section ensures the memory 702 * stays valid. 703 */ 704 barrier(); 705 706 if (need_resched() || !owner_on_cpu(owner)) { 707 state = OWNER_NONSPINNABLE; 708 break; 709 } 710 711 cpu_relax(); 712 } 713 714 return state; 715 } 716 717 /* 718 * Calculate reader-owned rwsem spinning threshold for writer 719 * 720 * The more readers own the rwsem, the longer it will take for them to 721 * wind down and free the rwsem. So the empirical formula used to 722 * determine the actual spinning time limit here is: 723 * 724 * Spinning threshold = (10 + nr_readers/2)us 725 * 726 * The limit is capped to a maximum of 25us (30 readers). This is just 727 * a heuristic and is subjected to change in the future. 728 */ 729 static inline u64 rwsem_rspin_threshold(struct rw_semaphore *sem) 730 { 731 long count = atomic_long_read(&sem->count); 732 int readers = count >> RWSEM_READER_SHIFT; 733 u64 delta; 734 735 if (readers > 30) 736 readers = 30; 737 delta = (20 + readers) * NSEC_PER_USEC / 2; 738 739 return sched_clock() + delta; 740 } 741 742 static bool rwsem_optimistic_spin(struct rw_semaphore *sem) 743 { 744 bool taken = false; 745 int prev_owner_state = OWNER_NULL; 746 int loop = 0; 747 u64 rspin_threshold = 0; 748 749 preempt_disable(); 750 751 /* sem->wait_lock should not be held when doing optimistic spinning */ 752 if (!osq_lock(&sem->osq)) 753 goto done; 754 755 /* 756 * Optimistically spin on the owner field and attempt to acquire the 757 * lock whenever the owner changes. Spinning will be stopped when: 758 * 1) the owning writer isn't running; or 759 * 2) readers own the lock and spinning time has exceeded limit. 760 */ 761 for (;;) { 762 enum owner_state owner_state; 763 764 owner_state = rwsem_spin_on_owner(sem); 765 if (!(owner_state & OWNER_SPINNABLE)) 766 break; 767 768 /* 769 * Try to acquire the lock 770 */ 771 taken = rwsem_try_write_lock_unqueued(sem); 772 773 if (taken) 774 break; 775 776 /* 777 * Time-based reader-owned rwsem optimistic spinning 778 */ 779 if (owner_state == OWNER_READER) { 780 /* 781 * Re-initialize rspin_threshold every time when 782 * the owner state changes from non-reader to reader. 783 * This allows a writer to steal the lock in between 784 * 2 reader phases and have the threshold reset at 785 * the beginning of the 2nd reader phase. 786 */ 787 if (prev_owner_state != OWNER_READER) { 788 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 789 break; 790 rspin_threshold = rwsem_rspin_threshold(sem); 791 loop = 0; 792 } 793 794 /* 795 * Check time threshold once every 16 iterations to 796 * avoid calling sched_clock() too frequently so 797 * as to reduce the average latency between the times 798 * when the lock becomes free and when the spinner 799 * is ready to do a trylock. 800 */ 801 else if (!(++loop & 0xf) && (sched_clock() > rspin_threshold)) { 802 rwsem_set_nonspinnable(sem); 803 lockevent_inc(rwsem_opt_nospin); 804 break; 805 } 806 } 807 808 /* 809 * An RT task cannot do optimistic spinning if it cannot 810 * be sure the lock holder is running or live-lock may 811 * happen if the current task and the lock holder happen 812 * to run in the same CPU. However, aborting optimistic 813 * spinning while a NULL owner is detected may miss some 814 * opportunity where spinning can continue without causing 815 * problem. 816 * 817 * There are 2 possible cases where an RT task may be able 818 * to continue spinning. 819 * 820 * 1) The lock owner is in the process of releasing the 821 * lock, sem->owner is cleared but the lock has not 822 * been released yet. 823 * 2) The lock was free and owner cleared, but another 824 * task just comes in and acquire the lock before 825 * we try to get it. The new owner may be a spinnable 826 * writer. 827 * 828 * To take advantage of two scenarios listed above, the RT 829 * task is made to retry one more time to see if it can 830 * acquire the lock or continue spinning on the new owning 831 * writer. Of course, if the time lag is long enough or the 832 * new owner is not a writer or spinnable, the RT task will 833 * quit spinning. 834 * 835 * If the owner is a writer, the need_resched() check is 836 * done inside rwsem_spin_on_owner(). If the owner is not 837 * a writer, need_resched() check needs to be done here. 838 */ 839 if (owner_state != OWNER_WRITER) { 840 if (need_resched()) 841 break; 842 if (rt_task(current) && 843 (prev_owner_state != OWNER_WRITER)) 844 break; 845 } 846 prev_owner_state = owner_state; 847 848 /* 849 * The cpu_relax() call is a compiler barrier which forces 850 * everything in this loop to be re-loaded. We don't need 851 * memory barriers as we'll eventually observe the right 852 * values at the cost of a few extra spins. 853 */ 854 cpu_relax(); 855 } 856 osq_unlock(&sem->osq); 857 done: 858 preempt_enable(); 859 lockevent_cond_inc(rwsem_opt_fail, !taken); 860 return taken; 861 } 862 863 /* 864 * Clear the owner's RWSEM_NONSPINNABLE bit if it is set. This should 865 * only be called when the reader count reaches 0. 866 */ 867 static inline void clear_nonspinnable(struct rw_semaphore *sem) 868 { 869 if (rwsem_test_oflags(sem, RWSEM_NONSPINNABLE)) 870 atomic_long_andnot(RWSEM_NONSPINNABLE, &sem->owner); 871 } 872 873 #else 874 static inline bool rwsem_can_spin_on_owner(struct rw_semaphore *sem) 875 { 876 return false; 877 } 878 879 static inline bool rwsem_optimistic_spin(struct rw_semaphore *sem) 880 { 881 return false; 882 } 883 884 static inline void clear_nonspinnable(struct rw_semaphore *sem) { } 885 886 static inline enum owner_state 887 rwsem_spin_on_owner(struct rw_semaphore *sem) 888 { 889 return OWNER_NONSPINNABLE; 890 } 891 #endif 892 893 /* 894 * Wait for the read lock to be granted 895 */ 896 static struct rw_semaphore __sched * 897 rwsem_down_read_slowpath(struct rw_semaphore *sem, long count, unsigned int state) 898 { 899 long adjustment = -RWSEM_READER_BIAS; 900 long rcnt = (count >> RWSEM_READER_SHIFT); 901 struct rwsem_waiter waiter; 902 DEFINE_WAKE_Q(wake_q); 903 bool wake = false; 904 905 /* 906 * To prevent a constant stream of readers from starving a sleeping 907 * waiter, don't attempt optimistic lock stealing if the lock is 908 * currently owned by readers. 909 */ 910 if ((atomic_long_read(&sem->owner) & RWSEM_READER_OWNED) && 911 (rcnt > 1) && !(count & RWSEM_WRITER_LOCKED)) 912 goto queue; 913 914 /* 915 * Reader optimistic lock stealing. 916 */ 917 if (!(count & (RWSEM_WRITER_LOCKED | RWSEM_FLAG_HANDOFF))) { 918 rwsem_set_reader_owned(sem); 919 lockevent_inc(rwsem_rlock_steal); 920 921 /* 922 * Wake up other readers in the wait queue if it is 923 * the first reader. 924 */ 925 if ((rcnt == 1) && (count & RWSEM_FLAG_WAITERS)) { 926 raw_spin_lock_irq(&sem->wait_lock); 927 if (!list_empty(&sem->wait_list)) 928 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, 929 &wake_q); 930 raw_spin_unlock_irq(&sem->wait_lock); 931 wake_up_q(&wake_q); 932 } 933 return sem; 934 } 935 936 queue: 937 waiter.task = current; 938 waiter.type = RWSEM_WAITING_FOR_READ; 939 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 940 941 raw_spin_lock_irq(&sem->wait_lock); 942 if (list_empty(&sem->wait_list)) { 943 /* 944 * In case the wait queue is empty and the lock isn't owned 945 * by a writer or has the handoff bit set, this reader can 946 * exit the slowpath and return immediately as its 947 * RWSEM_READER_BIAS has already been set in the count. 948 */ 949 if (!(atomic_long_read(&sem->count) & 950 (RWSEM_WRITER_MASK | RWSEM_FLAG_HANDOFF))) { 951 /* Provide lock ACQUIRE */ 952 smp_acquire__after_ctrl_dep(); 953 raw_spin_unlock_irq(&sem->wait_lock); 954 rwsem_set_reader_owned(sem); 955 lockevent_inc(rwsem_rlock_fast); 956 return sem; 957 } 958 adjustment += RWSEM_FLAG_WAITERS; 959 } 960 list_add_tail(&waiter.list, &sem->wait_list); 961 962 /* we're now waiting on the lock, but no longer actively locking */ 963 count = atomic_long_add_return(adjustment, &sem->count); 964 965 /* 966 * If there are no active locks, wake the front queued process(es). 967 * 968 * If there are no writers and we are first in the queue, 969 * wake our own waiter to join the existing active readers ! 970 */ 971 if (!(count & RWSEM_LOCK_MASK)) { 972 clear_nonspinnable(sem); 973 wake = true; 974 } 975 if (wake || (!(count & RWSEM_WRITER_MASK) && 976 (adjustment & RWSEM_FLAG_WAITERS))) 977 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 978 979 raw_spin_unlock_irq(&sem->wait_lock); 980 wake_up_q(&wake_q); 981 982 /* wait to be given the lock */ 983 for (;;) { 984 set_current_state(state); 985 if (!smp_load_acquire(&waiter.task)) { 986 /* Matches rwsem_mark_wake()'s smp_store_release(). */ 987 break; 988 } 989 if (signal_pending_state(state, current)) { 990 raw_spin_lock_irq(&sem->wait_lock); 991 if (waiter.task) 992 goto out_nolock; 993 raw_spin_unlock_irq(&sem->wait_lock); 994 /* Ordered by sem->wait_lock against rwsem_mark_wake(). */ 995 break; 996 } 997 schedule(); 998 lockevent_inc(rwsem_sleep_reader); 999 } 1000 1001 __set_current_state(TASK_RUNNING); 1002 lockevent_inc(rwsem_rlock); 1003 return sem; 1004 1005 out_nolock: 1006 list_del(&waiter.list); 1007 if (list_empty(&sem->wait_list)) { 1008 atomic_long_andnot(RWSEM_FLAG_WAITERS|RWSEM_FLAG_HANDOFF, 1009 &sem->count); 1010 } 1011 raw_spin_unlock_irq(&sem->wait_lock); 1012 __set_current_state(TASK_RUNNING); 1013 lockevent_inc(rwsem_rlock_fail); 1014 return ERR_PTR(-EINTR); 1015 } 1016 1017 /* 1018 * Wait until we successfully acquire the write lock 1019 */ 1020 static struct rw_semaphore * 1021 rwsem_down_write_slowpath(struct rw_semaphore *sem, int state) 1022 { 1023 long count; 1024 enum writer_wait_state wstate; 1025 struct rwsem_waiter waiter; 1026 struct rw_semaphore *ret = sem; 1027 DEFINE_WAKE_Q(wake_q); 1028 1029 /* do optimistic spinning and steal lock if possible */ 1030 if (rwsem_can_spin_on_owner(sem) && rwsem_optimistic_spin(sem)) { 1031 /* rwsem_optimistic_spin() implies ACQUIRE on success */ 1032 return sem; 1033 } 1034 1035 /* 1036 * Optimistic spinning failed, proceed to the slowpath 1037 * and block until we can acquire the sem. 1038 */ 1039 waiter.task = current; 1040 waiter.type = RWSEM_WAITING_FOR_WRITE; 1041 waiter.timeout = jiffies + RWSEM_WAIT_TIMEOUT; 1042 1043 raw_spin_lock_irq(&sem->wait_lock); 1044 1045 /* account for this before adding a new element to the list */ 1046 wstate = list_empty(&sem->wait_list) ? WRITER_FIRST : WRITER_NOT_FIRST; 1047 1048 list_add_tail(&waiter.list, &sem->wait_list); 1049 1050 /* we're now waiting on the lock */ 1051 if (wstate == WRITER_NOT_FIRST) { 1052 count = atomic_long_read(&sem->count); 1053 1054 /* 1055 * If there were already threads queued before us and: 1056 * 1) there are no active locks, wake the front 1057 * queued process(es) as the handoff bit might be set. 1058 * 2) there are no active writers and some readers, the lock 1059 * must be read owned; so we try to wake any read lock 1060 * waiters that were queued ahead of us. 1061 */ 1062 if (count & RWSEM_WRITER_MASK) 1063 goto wait; 1064 1065 rwsem_mark_wake(sem, (count & RWSEM_READER_MASK) 1066 ? RWSEM_WAKE_READERS 1067 : RWSEM_WAKE_ANY, &wake_q); 1068 1069 if (!wake_q_empty(&wake_q)) { 1070 /* 1071 * We want to minimize wait_lock hold time especially 1072 * when a large number of readers are to be woken up. 1073 */ 1074 raw_spin_unlock_irq(&sem->wait_lock); 1075 wake_up_q(&wake_q); 1076 wake_q_init(&wake_q); /* Used again, reinit */ 1077 raw_spin_lock_irq(&sem->wait_lock); 1078 } 1079 } else { 1080 atomic_long_or(RWSEM_FLAG_WAITERS, &sem->count); 1081 } 1082 1083 wait: 1084 /* wait until we successfully acquire the lock */ 1085 set_current_state(state); 1086 for (;;) { 1087 if (rwsem_try_write_lock(sem, wstate)) { 1088 /* rwsem_try_write_lock() implies ACQUIRE on success */ 1089 break; 1090 } 1091 1092 raw_spin_unlock_irq(&sem->wait_lock); 1093 1094 /* 1095 * After setting the handoff bit and failing to acquire 1096 * the lock, attempt to spin on owner to accelerate lock 1097 * transfer. If the previous owner is a on-cpu writer and it 1098 * has just released the lock, OWNER_NULL will be returned. 1099 * In this case, we attempt to acquire the lock again 1100 * without sleeping. 1101 */ 1102 if (wstate == WRITER_HANDOFF) { 1103 enum owner_state owner_state; 1104 1105 preempt_disable(); 1106 owner_state = rwsem_spin_on_owner(sem); 1107 preempt_enable(); 1108 1109 if (owner_state == OWNER_NULL) 1110 goto trylock_again; 1111 } 1112 1113 /* Block until there are no active lockers. */ 1114 for (;;) { 1115 if (signal_pending_state(state, current)) 1116 goto out_nolock; 1117 1118 schedule(); 1119 lockevent_inc(rwsem_sleep_writer); 1120 set_current_state(state); 1121 /* 1122 * If HANDOFF bit is set, unconditionally do 1123 * a trylock. 1124 */ 1125 if (wstate == WRITER_HANDOFF) 1126 break; 1127 1128 if ((wstate == WRITER_NOT_FIRST) && 1129 (rwsem_first_waiter(sem) == &waiter)) 1130 wstate = WRITER_FIRST; 1131 1132 count = atomic_long_read(&sem->count); 1133 if (!(count & RWSEM_LOCK_MASK)) 1134 break; 1135 1136 /* 1137 * The setting of the handoff bit is deferred 1138 * until rwsem_try_write_lock() is called. 1139 */ 1140 if ((wstate == WRITER_FIRST) && (rt_task(current) || 1141 time_after(jiffies, waiter.timeout))) { 1142 wstate = WRITER_HANDOFF; 1143 lockevent_inc(rwsem_wlock_handoff); 1144 break; 1145 } 1146 } 1147 trylock_again: 1148 raw_spin_lock_irq(&sem->wait_lock); 1149 } 1150 __set_current_state(TASK_RUNNING); 1151 list_del(&waiter.list); 1152 raw_spin_unlock_irq(&sem->wait_lock); 1153 lockevent_inc(rwsem_wlock); 1154 1155 return ret; 1156 1157 out_nolock: 1158 __set_current_state(TASK_RUNNING); 1159 raw_spin_lock_irq(&sem->wait_lock); 1160 list_del(&waiter.list); 1161 1162 if (unlikely(wstate == WRITER_HANDOFF)) 1163 atomic_long_add(-RWSEM_FLAG_HANDOFF, &sem->count); 1164 1165 if (list_empty(&sem->wait_list)) 1166 atomic_long_andnot(RWSEM_FLAG_WAITERS, &sem->count); 1167 else 1168 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1169 raw_spin_unlock_irq(&sem->wait_lock); 1170 wake_up_q(&wake_q); 1171 lockevent_inc(rwsem_wlock_fail); 1172 1173 return ERR_PTR(-EINTR); 1174 } 1175 1176 /* 1177 * handle waking up a waiter on the semaphore 1178 * - up_read/up_write has decremented the active part of count if we come here 1179 */ 1180 static struct rw_semaphore *rwsem_wake(struct rw_semaphore *sem) 1181 { 1182 unsigned long flags; 1183 DEFINE_WAKE_Q(wake_q); 1184 1185 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1186 1187 if (!list_empty(&sem->wait_list)) 1188 rwsem_mark_wake(sem, RWSEM_WAKE_ANY, &wake_q); 1189 1190 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1191 wake_up_q(&wake_q); 1192 1193 return sem; 1194 } 1195 1196 /* 1197 * downgrade a write lock into a read lock 1198 * - caller incremented waiting part of count and discovered it still negative 1199 * - just wake up any readers at the front of the queue 1200 */ 1201 static struct rw_semaphore *rwsem_downgrade_wake(struct rw_semaphore *sem) 1202 { 1203 unsigned long flags; 1204 DEFINE_WAKE_Q(wake_q); 1205 1206 raw_spin_lock_irqsave(&sem->wait_lock, flags); 1207 1208 if (!list_empty(&sem->wait_list)) 1209 rwsem_mark_wake(sem, RWSEM_WAKE_READ_OWNED, &wake_q); 1210 1211 raw_spin_unlock_irqrestore(&sem->wait_lock, flags); 1212 wake_up_q(&wake_q); 1213 1214 return sem; 1215 } 1216 1217 /* 1218 * lock for reading 1219 */ 1220 static inline int __down_read_common(struct rw_semaphore *sem, int state) 1221 { 1222 long count; 1223 1224 if (!rwsem_read_trylock(sem, &count)) { 1225 if (IS_ERR(rwsem_down_read_slowpath(sem, count, state))) 1226 return -EINTR; 1227 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1228 } 1229 return 0; 1230 } 1231 1232 static inline void __down_read(struct rw_semaphore *sem) 1233 { 1234 __down_read_common(sem, TASK_UNINTERRUPTIBLE); 1235 } 1236 1237 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1238 { 1239 return __down_read_common(sem, TASK_INTERRUPTIBLE); 1240 } 1241 1242 static inline int __down_read_killable(struct rw_semaphore *sem) 1243 { 1244 return __down_read_common(sem, TASK_KILLABLE); 1245 } 1246 1247 static inline int __down_read_trylock(struct rw_semaphore *sem) 1248 { 1249 long tmp; 1250 1251 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1252 1253 /* 1254 * Optimize for the case when the rwsem is not locked at all. 1255 */ 1256 tmp = RWSEM_UNLOCKED_VALUE; 1257 do { 1258 if (atomic_long_try_cmpxchg_acquire(&sem->count, &tmp, 1259 tmp + RWSEM_READER_BIAS)) { 1260 rwsem_set_reader_owned(sem); 1261 return 1; 1262 } 1263 } while (!(tmp & RWSEM_READ_FAILED_MASK)); 1264 return 0; 1265 } 1266 1267 /* 1268 * lock for writing 1269 */ 1270 static inline int __down_write_common(struct rw_semaphore *sem, int state) 1271 { 1272 if (unlikely(!rwsem_write_trylock(sem))) { 1273 if (IS_ERR(rwsem_down_write_slowpath(sem, state))) 1274 return -EINTR; 1275 } 1276 1277 return 0; 1278 } 1279 1280 static inline void __down_write(struct rw_semaphore *sem) 1281 { 1282 __down_write_common(sem, TASK_UNINTERRUPTIBLE); 1283 } 1284 1285 static inline int __down_write_killable(struct rw_semaphore *sem) 1286 { 1287 return __down_write_common(sem, TASK_KILLABLE); 1288 } 1289 1290 static inline int __down_write_trylock(struct rw_semaphore *sem) 1291 { 1292 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1293 return rwsem_write_trylock(sem); 1294 } 1295 1296 /* 1297 * unlock after reading 1298 */ 1299 static inline void __up_read(struct rw_semaphore *sem) 1300 { 1301 long tmp; 1302 1303 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1304 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1305 1306 rwsem_clear_reader_owned(sem); 1307 tmp = atomic_long_add_return_release(-RWSEM_READER_BIAS, &sem->count); 1308 DEBUG_RWSEMS_WARN_ON(tmp < 0, sem); 1309 if (unlikely((tmp & (RWSEM_LOCK_MASK|RWSEM_FLAG_WAITERS)) == 1310 RWSEM_FLAG_WAITERS)) { 1311 clear_nonspinnable(sem); 1312 rwsem_wake(sem); 1313 } 1314 } 1315 1316 /* 1317 * unlock after writing 1318 */ 1319 static inline void __up_write(struct rw_semaphore *sem) 1320 { 1321 long tmp; 1322 1323 DEBUG_RWSEMS_WARN_ON(sem->magic != sem, sem); 1324 /* 1325 * sem->owner may differ from current if the ownership is transferred 1326 * to an anonymous writer by setting the RWSEM_NONSPINNABLE bits. 1327 */ 1328 DEBUG_RWSEMS_WARN_ON((rwsem_owner(sem) != current) && 1329 !rwsem_test_oflags(sem, RWSEM_NONSPINNABLE), sem); 1330 1331 rwsem_clear_owner(sem); 1332 tmp = atomic_long_fetch_add_release(-RWSEM_WRITER_LOCKED, &sem->count); 1333 if (unlikely(tmp & RWSEM_FLAG_WAITERS)) 1334 rwsem_wake(sem); 1335 } 1336 1337 /* 1338 * downgrade write lock to read lock 1339 */ 1340 static inline void __downgrade_write(struct rw_semaphore *sem) 1341 { 1342 long tmp; 1343 1344 /* 1345 * When downgrading from exclusive to shared ownership, 1346 * anything inside the write-locked region cannot leak 1347 * into the read side. In contrast, anything in the 1348 * read-locked region is ok to be re-ordered into the 1349 * write side. As such, rely on RELEASE semantics. 1350 */ 1351 DEBUG_RWSEMS_WARN_ON(rwsem_owner(sem) != current, sem); 1352 tmp = atomic_long_fetch_add_release( 1353 -RWSEM_WRITER_LOCKED+RWSEM_READER_BIAS, &sem->count); 1354 rwsem_set_reader_owned(sem); 1355 if (tmp & RWSEM_FLAG_WAITERS) 1356 rwsem_downgrade_wake(sem); 1357 } 1358 1359 #else /* !CONFIG_PREEMPT_RT */ 1360 1361 #define RT_MUTEX_BUILD_MUTEX 1362 #include "rtmutex.c" 1363 1364 #define rwbase_set_and_save_current_state(state) \ 1365 set_current_state(state) 1366 1367 #define rwbase_restore_current_state() \ 1368 __set_current_state(TASK_RUNNING) 1369 1370 #define rwbase_rtmutex_lock_state(rtm, state) \ 1371 __rt_mutex_lock(rtm, state) 1372 1373 #define rwbase_rtmutex_slowlock_locked(rtm, state) \ 1374 __rt_mutex_slowlock_locked(rtm, NULL, state) 1375 1376 #define rwbase_rtmutex_unlock(rtm) \ 1377 __rt_mutex_unlock(rtm) 1378 1379 #define rwbase_rtmutex_trylock(rtm) \ 1380 __rt_mutex_trylock(rtm) 1381 1382 #define rwbase_signal_pending_state(state, current) \ 1383 signal_pending_state(state, current) 1384 1385 #define rwbase_schedule() \ 1386 schedule() 1387 1388 #include "rwbase_rt.c" 1389 1390 void __init_rwsem(struct rw_semaphore *sem, const char *name, 1391 struct lock_class_key *key) 1392 { 1393 init_rwbase_rt(&(sem)->rwbase); 1394 1395 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1396 debug_check_no_locks_freed((void *)sem, sizeof(*sem)); 1397 lockdep_init_map_wait(&sem->dep_map, name, key, 0, LD_WAIT_SLEEP); 1398 #endif 1399 } 1400 EXPORT_SYMBOL(__init_rwsem); 1401 1402 static inline void __down_read(struct rw_semaphore *sem) 1403 { 1404 rwbase_read_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1405 } 1406 1407 static inline int __down_read_interruptible(struct rw_semaphore *sem) 1408 { 1409 return rwbase_read_lock(&sem->rwbase, TASK_INTERRUPTIBLE); 1410 } 1411 1412 static inline int __down_read_killable(struct rw_semaphore *sem) 1413 { 1414 return rwbase_read_lock(&sem->rwbase, TASK_KILLABLE); 1415 } 1416 1417 static inline int __down_read_trylock(struct rw_semaphore *sem) 1418 { 1419 return rwbase_read_trylock(&sem->rwbase); 1420 } 1421 1422 static inline void __up_read(struct rw_semaphore *sem) 1423 { 1424 rwbase_read_unlock(&sem->rwbase, TASK_NORMAL); 1425 } 1426 1427 static inline void __sched __down_write(struct rw_semaphore *sem) 1428 { 1429 rwbase_write_lock(&sem->rwbase, TASK_UNINTERRUPTIBLE); 1430 } 1431 1432 static inline int __sched __down_write_killable(struct rw_semaphore *sem) 1433 { 1434 return rwbase_write_lock(&sem->rwbase, TASK_KILLABLE); 1435 } 1436 1437 static inline int __down_write_trylock(struct rw_semaphore *sem) 1438 { 1439 return rwbase_write_trylock(&sem->rwbase); 1440 } 1441 1442 static inline void __up_write(struct rw_semaphore *sem) 1443 { 1444 rwbase_write_unlock(&sem->rwbase); 1445 } 1446 1447 static inline void __downgrade_write(struct rw_semaphore *sem) 1448 { 1449 rwbase_write_downgrade(&sem->rwbase); 1450 } 1451 1452 /* Debug stubs for the common API */ 1453 #define DEBUG_RWSEMS_WARN_ON(c, sem) 1454 1455 static inline void __rwsem_set_reader_owned(struct rw_semaphore *sem, 1456 struct task_struct *owner) 1457 { 1458 } 1459 1460 static inline bool is_rwsem_reader_owned(struct rw_semaphore *sem) 1461 { 1462 int count = atomic_read(&sem->rwbase.readers); 1463 1464 return count < 0 && count != READER_BIAS; 1465 } 1466 1467 #endif /* CONFIG_PREEMPT_RT */ 1468 1469 /* 1470 * lock for reading 1471 */ 1472 void __sched down_read(struct rw_semaphore *sem) 1473 { 1474 might_sleep(); 1475 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1476 1477 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1478 } 1479 EXPORT_SYMBOL(down_read); 1480 1481 int __sched down_read_interruptible(struct rw_semaphore *sem) 1482 { 1483 might_sleep(); 1484 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1485 1486 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_interruptible)) { 1487 rwsem_release(&sem->dep_map, _RET_IP_); 1488 return -EINTR; 1489 } 1490 1491 return 0; 1492 } 1493 EXPORT_SYMBOL(down_read_interruptible); 1494 1495 int __sched down_read_killable(struct rw_semaphore *sem) 1496 { 1497 might_sleep(); 1498 rwsem_acquire_read(&sem->dep_map, 0, 0, _RET_IP_); 1499 1500 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1501 rwsem_release(&sem->dep_map, _RET_IP_); 1502 return -EINTR; 1503 } 1504 1505 return 0; 1506 } 1507 EXPORT_SYMBOL(down_read_killable); 1508 1509 /* 1510 * trylock for reading -- returns 1 if successful, 0 if contention 1511 */ 1512 int down_read_trylock(struct rw_semaphore *sem) 1513 { 1514 int ret = __down_read_trylock(sem); 1515 1516 if (ret == 1) 1517 rwsem_acquire_read(&sem->dep_map, 0, 1, _RET_IP_); 1518 return ret; 1519 } 1520 EXPORT_SYMBOL(down_read_trylock); 1521 1522 /* 1523 * lock for writing 1524 */ 1525 void __sched down_write(struct rw_semaphore *sem) 1526 { 1527 might_sleep(); 1528 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1529 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1530 } 1531 EXPORT_SYMBOL(down_write); 1532 1533 /* 1534 * lock for writing 1535 */ 1536 int __sched down_write_killable(struct rw_semaphore *sem) 1537 { 1538 might_sleep(); 1539 rwsem_acquire(&sem->dep_map, 0, 0, _RET_IP_); 1540 1541 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1542 __down_write_killable)) { 1543 rwsem_release(&sem->dep_map, _RET_IP_); 1544 return -EINTR; 1545 } 1546 1547 return 0; 1548 } 1549 EXPORT_SYMBOL(down_write_killable); 1550 1551 /* 1552 * trylock for writing -- returns 1 if successful, 0 if contention 1553 */ 1554 int down_write_trylock(struct rw_semaphore *sem) 1555 { 1556 int ret = __down_write_trylock(sem); 1557 1558 if (ret == 1) 1559 rwsem_acquire(&sem->dep_map, 0, 1, _RET_IP_); 1560 1561 return ret; 1562 } 1563 EXPORT_SYMBOL(down_write_trylock); 1564 1565 /* 1566 * release a read lock 1567 */ 1568 void up_read(struct rw_semaphore *sem) 1569 { 1570 rwsem_release(&sem->dep_map, _RET_IP_); 1571 __up_read(sem); 1572 } 1573 EXPORT_SYMBOL(up_read); 1574 1575 /* 1576 * release a write lock 1577 */ 1578 void up_write(struct rw_semaphore *sem) 1579 { 1580 rwsem_release(&sem->dep_map, _RET_IP_); 1581 __up_write(sem); 1582 } 1583 EXPORT_SYMBOL(up_write); 1584 1585 /* 1586 * downgrade write lock to read lock 1587 */ 1588 void downgrade_write(struct rw_semaphore *sem) 1589 { 1590 lock_downgrade(&sem->dep_map, _RET_IP_); 1591 __downgrade_write(sem); 1592 } 1593 EXPORT_SYMBOL(downgrade_write); 1594 1595 #ifdef CONFIG_DEBUG_LOCK_ALLOC 1596 1597 void down_read_nested(struct rw_semaphore *sem, int subclass) 1598 { 1599 might_sleep(); 1600 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1601 LOCK_CONTENDED(sem, __down_read_trylock, __down_read); 1602 } 1603 EXPORT_SYMBOL(down_read_nested); 1604 1605 int down_read_killable_nested(struct rw_semaphore *sem, int subclass) 1606 { 1607 might_sleep(); 1608 rwsem_acquire_read(&sem->dep_map, subclass, 0, _RET_IP_); 1609 1610 if (LOCK_CONTENDED_RETURN(sem, __down_read_trylock, __down_read_killable)) { 1611 rwsem_release(&sem->dep_map, _RET_IP_); 1612 return -EINTR; 1613 } 1614 1615 return 0; 1616 } 1617 EXPORT_SYMBOL(down_read_killable_nested); 1618 1619 void _down_write_nest_lock(struct rw_semaphore *sem, struct lockdep_map *nest) 1620 { 1621 might_sleep(); 1622 rwsem_acquire_nest(&sem->dep_map, 0, 0, nest, _RET_IP_); 1623 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1624 } 1625 EXPORT_SYMBOL(_down_write_nest_lock); 1626 1627 void down_read_non_owner(struct rw_semaphore *sem) 1628 { 1629 might_sleep(); 1630 __down_read(sem); 1631 __rwsem_set_reader_owned(sem, NULL); 1632 } 1633 EXPORT_SYMBOL(down_read_non_owner); 1634 1635 void down_write_nested(struct rw_semaphore *sem, int subclass) 1636 { 1637 might_sleep(); 1638 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1639 LOCK_CONTENDED(sem, __down_write_trylock, __down_write); 1640 } 1641 EXPORT_SYMBOL(down_write_nested); 1642 1643 int __sched down_write_killable_nested(struct rw_semaphore *sem, int subclass) 1644 { 1645 might_sleep(); 1646 rwsem_acquire(&sem->dep_map, subclass, 0, _RET_IP_); 1647 1648 if (LOCK_CONTENDED_RETURN(sem, __down_write_trylock, 1649 __down_write_killable)) { 1650 rwsem_release(&sem->dep_map, _RET_IP_); 1651 return -EINTR; 1652 } 1653 1654 return 0; 1655 } 1656 EXPORT_SYMBOL(down_write_killable_nested); 1657 1658 void up_read_non_owner(struct rw_semaphore *sem) 1659 { 1660 DEBUG_RWSEMS_WARN_ON(!is_rwsem_reader_owned(sem), sem); 1661 __up_read(sem); 1662 } 1663 EXPORT_SYMBOL(up_read_non_owner); 1664 1665 #endif 1666